1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Architecture-independent CPU control functions. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/var.h> 33 #include <sys/thread.h> 34 #include <sys/cpuvar.h> 35 #include <sys/kstat.h> 36 #include <sys/uadmin.h> 37 #include <sys/systm.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/procset.h> 41 #include <sys/processor.h> 42 #include <sys/debug.h> 43 #include <sys/cpupart.h> 44 #include <sys/lgrp.h> 45 #include <sys/pset.h> 46 #include <sys/pghw.h> 47 #include <sys/kmem.h> 48 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 49 #include <sys/atomic.h> 50 #include <sys/callb.h> 51 #include <sys/vtrace.h> 52 #include <sys/cyclic.h> 53 #include <sys/bitmap.h> 54 #include <sys/nvpair.h> 55 #include <sys/pool_pset.h> 56 #include <sys/msacct.h> 57 #include <sys/time.h> 58 #include <sys/archsystm.h> 59 #if defined(__x86) || defined(__amd64) 60 #include <sys/x86_archext.h> 61 #endif 62 63 extern int mp_cpu_start(cpu_t *); 64 extern int mp_cpu_stop(cpu_t *); 65 extern int mp_cpu_poweron(cpu_t *); 66 extern int mp_cpu_poweroff(cpu_t *); 67 extern int mp_cpu_configure(int); 68 extern int mp_cpu_unconfigure(int); 69 extern void mp_cpu_faulted_enter(cpu_t *); 70 extern void mp_cpu_faulted_exit(cpu_t *); 71 72 extern int cmp_cpu_to_chip(processorid_t cpuid); 73 #ifdef __sparcv9 74 extern char *cpu_fru_fmri(cpu_t *cp); 75 #endif 76 77 static void cpu_add_active_internal(cpu_t *cp); 78 static void cpu_remove_active(cpu_t *cp); 79 static void cpu_info_kstat_create(cpu_t *cp); 80 static void cpu_info_kstat_destroy(cpu_t *cp); 81 static void cpu_stats_kstat_create(cpu_t *cp); 82 static void cpu_stats_kstat_destroy(cpu_t *cp); 83 84 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 85 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 86 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 87 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 88 89 /* 90 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 91 * and dispatch queue reallocations. The lock ordering with respect to 92 * related locks is: 93 * 94 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 95 * 96 * Warning: Certain sections of code do not use the cpu_lock when 97 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 98 * all cpus are paused during modifications to this list, a solution 99 * to protect the list is too either disable kernel preemption while 100 * walking the list, *or* recheck the cpu_next pointer at each 101 * iteration in the loop. Note that in no cases can any cached 102 * copies of the cpu pointers be kept as they may become invalid. 103 */ 104 kmutex_t cpu_lock; 105 cpu_t *cpu_list; /* list of all CPUs */ 106 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 107 cpu_t *cpu_active; /* list of active CPUs */ 108 static cpuset_t cpu_available; /* set of available CPUs */ 109 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 110 111 /* 112 * max_ncpus keeps the max cpus the system can have. Initially 113 * it's NCPU, but since most archs scan the devtree for cpus 114 * fairly early on during boot, the real max can be known before 115 * ncpus is set (useful for early NCPU based allocations). 116 */ 117 int max_ncpus = NCPU; 118 /* 119 * platforms that set max_ncpus to maxiumum number of cpus that can be 120 * dynamically added will set boot_max_ncpus to the number of cpus found 121 * at device tree scan time during boot. 122 */ 123 int boot_max_ncpus = -1; 124 int boot_ncpus = -1; 125 /* 126 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 127 * used to size arrays that are indexed by CPU id. 128 */ 129 processorid_t max_cpuid = NCPU - 1; 130 131 int ncpus = 1; 132 int ncpus_online = 1; 133 134 /* 135 * CPU that we're trying to offline. Protected by cpu_lock. 136 */ 137 cpu_t *cpu_inmotion; 138 139 /* 140 * Can be raised to suppress further weakbinding, which are instead 141 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 142 * while individual thread weakbinding synchronisation is done under thread 143 * lock. 144 */ 145 int weakbindingbarrier; 146 147 /* 148 * Variables used in pause_cpus(). 149 */ 150 static volatile char safe_list[NCPU]; 151 152 static struct _cpu_pause_info { 153 int cp_spl; /* spl saved in pause_cpus() */ 154 volatile int cp_go; /* Go signal sent after all ready */ 155 int cp_count; /* # of CPUs to pause */ 156 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 157 kthread_id_t cp_paused; 158 } cpu_pause_info; 159 160 static kmutex_t pause_free_mutex; 161 static kcondvar_t pause_free_cv; 162 163 void *(*cpu_pause_func)(void *) = NULL; 164 165 166 static struct cpu_sys_stats_ks_data { 167 kstat_named_t cpu_ticks_idle; 168 kstat_named_t cpu_ticks_user; 169 kstat_named_t cpu_ticks_kernel; 170 kstat_named_t cpu_ticks_wait; 171 kstat_named_t cpu_nsec_idle; 172 kstat_named_t cpu_nsec_user; 173 kstat_named_t cpu_nsec_kernel; 174 kstat_named_t cpu_nsec_intr; 175 kstat_named_t cpu_load_intr; 176 kstat_named_t wait_ticks_io; 177 kstat_named_t bread; 178 kstat_named_t bwrite; 179 kstat_named_t lread; 180 kstat_named_t lwrite; 181 kstat_named_t phread; 182 kstat_named_t phwrite; 183 kstat_named_t pswitch; 184 kstat_named_t trap; 185 kstat_named_t intr; 186 kstat_named_t syscall; 187 kstat_named_t sysread; 188 kstat_named_t syswrite; 189 kstat_named_t sysfork; 190 kstat_named_t sysvfork; 191 kstat_named_t sysexec; 192 kstat_named_t readch; 193 kstat_named_t writech; 194 kstat_named_t rcvint; 195 kstat_named_t xmtint; 196 kstat_named_t mdmint; 197 kstat_named_t rawch; 198 kstat_named_t canch; 199 kstat_named_t outch; 200 kstat_named_t msg; 201 kstat_named_t sema; 202 kstat_named_t namei; 203 kstat_named_t ufsiget; 204 kstat_named_t ufsdirblk; 205 kstat_named_t ufsipage; 206 kstat_named_t ufsinopage; 207 kstat_named_t procovf; 208 kstat_named_t intrthread; 209 kstat_named_t intrblk; 210 kstat_named_t intrunpin; 211 kstat_named_t idlethread; 212 kstat_named_t inv_swtch; 213 kstat_named_t nthreads; 214 kstat_named_t cpumigrate; 215 kstat_named_t xcalls; 216 kstat_named_t mutex_adenters; 217 kstat_named_t rw_rdfails; 218 kstat_named_t rw_wrfails; 219 kstat_named_t modload; 220 kstat_named_t modunload; 221 kstat_named_t bawrite; 222 kstat_named_t iowait; 223 } cpu_sys_stats_ks_data_template = { 224 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 225 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 226 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 227 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 228 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 229 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 230 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 231 { "cpu_nsec_intr", KSTAT_DATA_UINT64 }, 232 { "cpu_load_intr", KSTAT_DATA_UINT64 }, 233 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 234 { "bread", KSTAT_DATA_UINT64 }, 235 { "bwrite", KSTAT_DATA_UINT64 }, 236 { "lread", KSTAT_DATA_UINT64 }, 237 { "lwrite", KSTAT_DATA_UINT64 }, 238 { "phread", KSTAT_DATA_UINT64 }, 239 { "phwrite", KSTAT_DATA_UINT64 }, 240 { "pswitch", KSTAT_DATA_UINT64 }, 241 { "trap", KSTAT_DATA_UINT64 }, 242 { "intr", KSTAT_DATA_UINT64 }, 243 { "syscall", KSTAT_DATA_UINT64 }, 244 { "sysread", KSTAT_DATA_UINT64 }, 245 { "syswrite", KSTAT_DATA_UINT64 }, 246 { "sysfork", KSTAT_DATA_UINT64 }, 247 { "sysvfork", KSTAT_DATA_UINT64 }, 248 { "sysexec", KSTAT_DATA_UINT64 }, 249 { "readch", KSTAT_DATA_UINT64 }, 250 { "writech", KSTAT_DATA_UINT64 }, 251 { "rcvint", KSTAT_DATA_UINT64 }, 252 { "xmtint", KSTAT_DATA_UINT64 }, 253 { "mdmint", KSTAT_DATA_UINT64 }, 254 { "rawch", KSTAT_DATA_UINT64 }, 255 { "canch", KSTAT_DATA_UINT64 }, 256 { "outch", KSTAT_DATA_UINT64 }, 257 { "msg", KSTAT_DATA_UINT64 }, 258 { "sema", KSTAT_DATA_UINT64 }, 259 { "namei", KSTAT_DATA_UINT64 }, 260 { "ufsiget", KSTAT_DATA_UINT64 }, 261 { "ufsdirblk", KSTAT_DATA_UINT64 }, 262 { "ufsipage", KSTAT_DATA_UINT64 }, 263 { "ufsinopage", KSTAT_DATA_UINT64 }, 264 { "procovf", KSTAT_DATA_UINT64 }, 265 { "intrthread", KSTAT_DATA_UINT64 }, 266 { "intrblk", KSTAT_DATA_UINT64 }, 267 { "intrunpin", KSTAT_DATA_UINT64 }, 268 { "idlethread", KSTAT_DATA_UINT64 }, 269 { "inv_swtch", KSTAT_DATA_UINT64 }, 270 { "nthreads", KSTAT_DATA_UINT64 }, 271 { "cpumigrate", KSTAT_DATA_UINT64 }, 272 { "xcalls", KSTAT_DATA_UINT64 }, 273 { "mutex_adenters", KSTAT_DATA_UINT64 }, 274 { "rw_rdfails", KSTAT_DATA_UINT64 }, 275 { "rw_wrfails", KSTAT_DATA_UINT64 }, 276 { "modload", KSTAT_DATA_UINT64 }, 277 { "modunload", KSTAT_DATA_UINT64 }, 278 { "bawrite", KSTAT_DATA_UINT64 }, 279 { "iowait", KSTAT_DATA_UINT64 }, 280 }; 281 282 static struct cpu_vm_stats_ks_data { 283 kstat_named_t pgrec; 284 kstat_named_t pgfrec; 285 kstat_named_t pgin; 286 kstat_named_t pgpgin; 287 kstat_named_t pgout; 288 kstat_named_t pgpgout; 289 kstat_named_t swapin; 290 kstat_named_t pgswapin; 291 kstat_named_t swapout; 292 kstat_named_t pgswapout; 293 kstat_named_t zfod; 294 kstat_named_t dfree; 295 kstat_named_t scan; 296 kstat_named_t rev; 297 kstat_named_t hat_fault; 298 kstat_named_t as_fault; 299 kstat_named_t maj_fault; 300 kstat_named_t cow_fault; 301 kstat_named_t prot_fault; 302 kstat_named_t softlock; 303 kstat_named_t kernel_asflt; 304 kstat_named_t pgrrun; 305 kstat_named_t execpgin; 306 kstat_named_t execpgout; 307 kstat_named_t execfree; 308 kstat_named_t anonpgin; 309 kstat_named_t anonpgout; 310 kstat_named_t anonfree; 311 kstat_named_t fspgin; 312 kstat_named_t fspgout; 313 kstat_named_t fsfree; 314 } cpu_vm_stats_ks_data_template = { 315 { "pgrec", KSTAT_DATA_UINT64 }, 316 { "pgfrec", KSTAT_DATA_UINT64 }, 317 { "pgin", KSTAT_DATA_UINT64 }, 318 { "pgpgin", KSTAT_DATA_UINT64 }, 319 { "pgout", KSTAT_DATA_UINT64 }, 320 { "pgpgout", KSTAT_DATA_UINT64 }, 321 { "swapin", KSTAT_DATA_UINT64 }, 322 { "pgswapin", KSTAT_DATA_UINT64 }, 323 { "swapout", KSTAT_DATA_UINT64 }, 324 { "pgswapout", KSTAT_DATA_UINT64 }, 325 { "zfod", KSTAT_DATA_UINT64 }, 326 { "dfree", KSTAT_DATA_UINT64 }, 327 { "scan", KSTAT_DATA_UINT64 }, 328 { "rev", KSTAT_DATA_UINT64 }, 329 { "hat_fault", KSTAT_DATA_UINT64 }, 330 { "as_fault", KSTAT_DATA_UINT64 }, 331 { "maj_fault", KSTAT_DATA_UINT64 }, 332 { "cow_fault", KSTAT_DATA_UINT64 }, 333 { "prot_fault", KSTAT_DATA_UINT64 }, 334 { "softlock", KSTAT_DATA_UINT64 }, 335 { "kernel_asflt", KSTAT_DATA_UINT64 }, 336 { "pgrrun", KSTAT_DATA_UINT64 }, 337 { "execpgin", KSTAT_DATA_UINT64 }, 338 { "execpgout", KSTAT_DATA_UINT64 }, 339 { "execfree", KSTAT_DATA_UINT64 }, 340 { "anonpgin", KSTAT_DATA_UINT64 }, 341 { "anonpgout", KSTAT_DATA_UINT64 }, 342 { "anonfree", KSTAT_DATA_UINT64 }, 343 { "fspgin", KSTAT_DATA_UINT64 }, 344 { "fspgout", KSTAT_DATA_UINT64 }, 345 { "fsfree", KSTAT_DATA_UINT64 }, 346 }; 347 348 /* 349 * Force the specified thread to migrate to the appropriate processor. 350 * Called with thread lock held, returns with it dropped. 351 */ 352 static void 353 force_thread_migrate(kthread_id_t tp) 354 { 355 ASSERT(THREAD_LOCK_HELD(tp)); 356 if (tp == curthread) { 357 THREAD_TRANSITION(tp); 358 CL_SETRUN(tp); 359 thread_unlock_nopreempt(tp); 360 swtch(); 361 } else { 362 if (tp->t_state == TS_ONPROC) { 363 cpu_surrender(tp); 364 } else if (tp->t_state == TS_RUN) { 365 (void) dispdeq(tp); 366 setbackdq(tp); 367 } 368 thread_unlock(tp); 369 } 370 } 371 372 /* 373 * Set affinity for a specified CPU. 374 * A reference count is incremented and the affinity is held until the 375 * reference count is decremented to zero by thread_affinity_clear(). 376 * This is so regions of code requiring affinity can be nested. 377 * Caller needs to ensure that cpu_id remains valid, which can be 378 * done by holding cpu_lock across this call, unless the caller 379 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 380 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 381 */ 382 void 383 thread_affinity_set(kthread_id_t t, int cpu_id) 384 { 385 cpu_t *cp; 386 int c; 387 388 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 389 390 if ((c = cpu_id) == CPU_CURRENT) { 391 mutex_enter(&cpu_lock); 392 cpu_id = CPU->cpu_id; 393 } 394 /* 395 * We should be asserting that cpu_lock is held here, but 396 * the NCA code doesn't acquire it. The following assert 397 * should be uncommented when the NCA code is fixed. 398 * 399 * ASSERT(MUTEX_HELD(&cpu_lock)); 400 */ 401 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 402 cp = cpu[cpu_id]; 403 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 404 /* 405 * If there is already a hard affinity requested, and this affinity 406 * conflicts with that, panic. 407 */ 408 thread_lock(t); 409 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 410 panic("affinity_set: setting %p but already bound to %p", 411 (void *)cp, (void *)t->t_bound_cpu); 412 } 413 t->t_affinitycnt++; 414 t->t_bound_cpu = cp; 415 416 /* 417 * Make sure we're running on the right CPU. 418 */ 419 if (cp != t->t_cpu || t != curthread) { 420 force_thread_migrate(t); /* drops thread lock */ 421 } else { 422 thread_unlock(t); 423 } 424 425 if (c == CPU_CURRENT) 426 mutex_exit(&cpu_lock); 427 } 428 429 /* 430 * Wrapper for backward compatibility. 431 */ 432 void 433 affinity_set(int cpu_id) 434 { 435 thread_affinity_set(curthread, cpu_id); 436 } 437 438 /* 439 * Decrement the affinity reservation count and if it becomes zero, 440 * clear the CPU affinity for the current thread, or set it to the user's 441 * software binding request. 442 */ 443 void 444 thread_affinity_clear(kthread_id_t t) 445 { 446 register processorid_t binding; 447 448 thread_lock(t); 449 if (--t->t_affinitycnt == 0) { 450 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 451 /* 452 * Adjust disp_max_unbound_pri if necessary. 453 */ 454 disp_adjust_unbound_pri(t); 455 t->t_bound_cpu = NULL; 456 if (t->t_cpu->cpu_part != t->t_cpupart) { 457 force_thread_migrate(t); 458 return; 459 } 460 } else { 461 t->t_bound_cpu = cpu[binding]; 462 /* 463 * Make sure the thread is running on the bound CPU. 464 */ 465 if (t->t_cpu != t->t_bound_cpu) { 466 force_thread_migrate(t); 467 return; /* already dropped lock */ 468 } 469 } 470 } 471 thread_unlock(t); 472 } 473 474 /* 475 * Wrapper for backward compatibility. 476 */ 477 void 478 affinity_clear(void) 479 { 480 thread_affinity_clear(curthread); 481 } 482 483 /* 484 * Weak cpu affinity. Bind to the "current" cpu for short periods 485 * of time during which the thread must not block (but may be preempted). 486 * Use this instead of kpreempt_disable() when it is only "no migration" 487 * rather than "no preemption" semantics that are required - disabling 488 * preemption holds higher priority threads off of cpu and if the 489 * operation that is protected is more than momentary this is not good 490 * for realtime etc. 491 * 492 * Weakly bound threads will not prevent a cpu from being offlined - 493 * we'll only run them on the cpu to which they are weakly bound but 494 * (because they do not block) we'll always be able to move them on to 495 * another cpu at offline time if we give them just a short moment to 496 * run during which they will unbind. To give a cpu a chance of offlining, 497 * however, we require a barrier to weak bindings that may be raised for a 498 * given cpu (offline/move code may set this and then wait a short time for 499 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 500 * 501 * There are few restrictions on the calling context of thread_nomigrate. 502 * The caller must not hold the thread lock. Calls may be nested. 503 * 504 * After weakbinding a thread must not perform actions that may block. 505 * In particular it must not call thread_affinity_set; calling that when 506 * already weakbound is nonsensical anyway. 507 * 508 * If curthread is prevented from migrating for other reasons 509 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 510 * then the weak binding will succeed even if this cpu is the target of an 511 * offline/move request. 512 */ 513 void 514 thread_nomigrate(void) 515 { 516 cpu_t *cp; 517 kthread_id_t t = curthread; 518 519 again: 520 kpreempt_disable(); 521 cp = CPU; 522 523 /* 524 * A highlevel interrupt must not modify t_nomigrate or 525 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 526 * interrupt thread cannot migrate and we can avoid the 527 * thread_lock call below by short-circuiting here. In either 528 * case we can just return since no migration is possible and 529 * the condition will persist (ie, when we test for these again 530 * in thread_allowmigrate they can't have changed). Migration 531 * is also impossible if we're at or above DISP_LEVEL pil. 532 */ 533 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 534 getpil() >= DISP_LEVEL) { 535 kpreempt_enable(); 536 return; 537 } 538 539 /* 540 * We must be consistent with existing weak bindings. Since we 541 * may be interrupted between the increment of t_nomigrate and 542 * the store to t_weakbound_cpu below we cannot assume that 543 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 544 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 545 * always the case. 546 */ 547 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 548 if (!panicstr) 549 panic("thread_nomigrate: binding to %p but already " 550 "bound to %p", (void *)cp, 551 (void *)t->t_weakbound_cpu); 552 } 553 554 /* 555 * At this point we have preemption disabled and we don't yet hold 556 * the thread lock. So it's possible that somebody else could 557 * set t_bind_cpu here and not be able to force us across to the 558 * new cpu (since we have preemption disabled). 559 */ 560 thread_lock(curthread); 561 562 /* 563 * If further weak bindings are being (temporarily) suppressed then 564 * we'll settle for disabling kernel preemption (which assures 565 * no migration provided the thread does not block which it is 566 * not allowed to if using thread_nomigrate). We must remember 567 * this disposition so we can take appropriate action in 568 * thread_allowmigrate. If this is a nested call and the 569 * thread is already weakbound then fall through as normal. 570 * We remember the decision to settle for kpreempt_disable through 571 * negative nesting counting in t_nomigrate. Once a thread has had one 572 * weakbinding request satisfied in this way any further (nested) 573 * requests will continue to be satisfied in the same way, 574 * even if weak bindings have recommenced. 575 */ 576 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 577 --t->t_nomigrate; 578 thread_unlock(curthread); 579 return; /* with kpreempt_disable still active */ 580 } 581 582 /* 583 * We hold thread_lock so t_bind_cpu cannot change. We could, 584 * however, be running on a different cpu to which we are t_bound_cpu 585 * to (as explained above). If we grant the weak binding request 586 * in that case then the dispatcher must favour our weak binding 587 * over our strong (in which case, just as when preemption is 588 * disabled, we can continue to run on a cpu other than the one to 589 * which we are strongbound; the difference in this case is that 590 * this thread can be preempted and so can appear on the dispatch 591 * queues of a cpu other than the one it is strongbound to). 592 * 593 * If the cpu we are running on does not appear to be a current 594 * offline target (we check cpu_inmotion to determine this - since 595 * we don't hold cpu_lock we may not see a recent store to that, 596 * so it's possible that we at times can grant a weak binding to a 597 * cpu that is an offline target, but that one request will not 598 * prevent the offline from succeeding) then we will always grant 599 * the weak binding request. This includes the case above where 600 * we grant a weakbinding not commensurate with our strong binding. 601 * 602 * If our cpu does appear to be an offline target then we're inclined 603 * not to grant the weakbinding request just yet - we'd prefer to 604 * migrate to another cpu and grant the request there. The 605 * exceptions are those cases where going through preemption code 606 * will not result in us changing cpu: 607 * 608 * . interrupts have already bypassed this case (see above) 609 * . we are already weakbound to this cpu (dispatcher code will 610 * always return us to the weakbound cpu) 611 * . preemption was disabled even before we disabled it above 612 * . we are strongbound to this cpu (if we're strongbound to 613 * another and not yet running there the trip through the 614 * dispatcher will move us to the strongbound cpu and we 615 * will grant the weak binding there) 616 */ 617 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 618 t->t_bound_cpu == cp) { 619 /* 620 * Don't be tempted to store to t_weakbound_cpu only on 621 * the first nested bind request - if we're interrupted 622 * after the increment of t_nomigrate and before the 623 * store to t_weakbound_cpu and the interrupt calls 624 * thread_nomigrate then the assertion in thread_allowmigrate 625 * would fail. 626 */ 627 t->t_nomigrate++; 628 t->t_weakbound_cpu = cp; 629 membar_producer(); 630 thread_unlock(curthread); 631 /* 632 * Now that we have dropped the thread_lock another thread 633 * can set our t_weakbound_cpu, and will try to migrate us 634 * to the strongbound cpu (which will not be prevented by 635 * preemption being disabled since we're about to enable 636 * preemption). We have granted the weakbinding to the current 637 * cpu, so again we are in the position that is is is possible 638 * that our weak and strong bindings differ. Again this 639 * is catered for by dispatcher code which will favour our 640 * weak binding. 641 */ 642 kpreempt_enable(); 643 } else { 644 /* 645 * Move to another cpu before granting the request by 646 * forcing this thread through preemption code. When we 647 * get to set{front,back}dq called from CL_PREEMPT() 648 * cpu_choose() will be used to select a cpu to queue 649 * us on - that will see cpu_inmotion and take 650 * steps to avoid returning us to this cpu. 651 */ 652 cp->cpu_kprunrun = 1; 653 thread_unlock(curthread); 654 kpreempt_enable(); /* will call preempt() */ 655 goto again; 656 } 657 } 658 659 void 660 thread_allowmigrate(void) 661 { 662 kthread_id_t t = curthread; 663 664 ASSERT(t->t_weakbound_cpu == CPU || 665 (t->t_nomigrate < 0 && t->t_preempt > 0) || 666 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 667 getpil() >= DISP_LEVEL); 668 669 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 670 getpil() >= DISP_LEVEL) 671 return; 672 673 if (t->t_nomigrate < 0) { 674 /* 675 * This thread was granted "weak binding" in the 676 * stronger form of kernel preemption disabling. 677 * Undo a level of nesting for both t_nomigrate 678 * and t_preempt. 679 */ 680 ++t->t_nomigrate; 681 kpreempt_enable(); 682 } else if (--t->t_nomigrate == 0) { 683 /* 684 * Time to drop the weak binding. We need to cater 685 * for the case where we're weakbound to a different 686 * cpu than that to which we're strongbound (a very 687 * temporary arrangement that must only persist until 688 * weak binding drops). We don't acquire thread_lock 689 * here so even as this code executes t_bound_cpu 690 * may be changing. So we disable preemption and 691 * a) in the case that t_bound_cpu changes while we 692 * have preemption disabled kprunrun will be set 693 * asynchronously, and b) if before disabling 694 * preemption we were already on a different cpu to 695 * our t_bound_cpu then we set kprunrun ourselves 696 * to force a trip through the dispatcher when 697 * preemption is enabled. 698 */ 699 kpreempt_disable(); 700 if (t->t_bound_cpu && 701 t->t_weakbound_cpu != t->t_bound_cpu) 702 CPU->cpu_kprunrun = 1; 703 t->t_weakbound_cpu = NULL; 704 membar_producer(); 705 kpreempt_enable(); 706 } 707 } 708 709 /* 710 * weakbinding_stop can be used to temporarily cause weakbindings made 711 * with thread_nomigrate to be satisfied through the stronger action of 712 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 713 */ 714 715 void 716 weakbinding_stop(void) 717 { 718 ASSERT(MUTEX_HELD(&cpu_lock)); 719 weakbindingbarrier = 1; 720 membar_producer(); /* make visible before subsequent thread_lock */ 721 } 722 723 void 724 weakbinding_start(void) 725 { 726 ASSERT(MUTEX_HELD(&cpu_lock)); 727 weakbindingbarrier = 0; 728 } 729 730 void 731 null_xcall(void) 732 { 733 } 734 735 /* 736 * This routine is called to place the CPUs in a safe place so that 737 * one of them can be taken off line or placed on line. What we are 738 * trying to do here is prevent a thread from traversing the list 739 * of active CPUs while we are changing it or from getting placed on 740 * the run queue of a CPU that has just gone off line. We do this by 741 * creating a thread with the highest possible prio for each CPU and 742 * having it call this routine. The advantage of this method is that 743 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 744 * This makes disp faster at the expense of making p_online() slower 745 * which is a good trade off. 746 */ 747 static void 748 cpu_pause(int index) 749 { 750 int s; 751 struct _cpu_pause_info *cpi = &cpu_pause_info; 752 volatile char *safe = &safe_list[index]; 753 long lindex = index; 754 755 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 756 757 while (*safe != PAUSE_DIE) { 758 *safe = PAUSE_READY; 759 membar_enter(); /* make sure stores are flushed */ 760 sema_v(&cpi->cp_sem); /* signal requesting thread */ 761 762 /* 763 * Wait here until all pause threads are running. That 764 * indicates that it's safe to do the spl. Until 765 * cpu_pause_info.cp_go is set, we don't want to spl 766 * because that might block clock interrupts needed 767 * to preempt threads on other CPUs. 768 */ 769 while (cpi->cp_go == 0) 770 ; 771 /* 772 * Even though we are at the highest disp prio, we need 773 * to block out all interrupts below LOCK_LEVEL so that 774 * an intr doesn't come in, wake up a thread, and call 775 * setbackdq/setfrontdq. 776 */ 777 s = splhigh(); 778 /* 779 * if cpu_pause_func() has been set then call it using 780 * index as the argument, currently only used by 781 * cpr_suspend_cpus(). This function is used as the 782 * code to execute on the "paused" cpu's when a machine 783 * comes out of a sleep state and CPU's were powered off. 784 * (could also be used for hotplugging CPU's). 785 */ 786 if (cpu_pause_func != NULL) 787 (*cpu_pause_func)((void *)lindex); 788 789 mach_cpu_pause(safe); 790 791 splx(s); 792 /* 793 * Waiting is at an end. Switch out of cpu_pause 794 * loop and resume useful work. 795 */ 796 swtch(); 797 } 798 799 mutex_enter(&pause_free_mutex); 800 *safe = PAUSE_DEAD; 801 cv_broadcast(&pause_free_cv); 802 mutex_exit(&pause_free_mutex); 803 } 804 805 /* 806 * Allow the cpus to start running again. 807 */ 808 void 809 start_cpus() 810 { 811 int i; 812 813 ASSERT(MUTEX_HELD(&cpu_lock)); 814 ASSERT(cpu_pause_info.cp_paused); 815 cpu_pause_info.cp_paused = NULL; 816 for (i = 0; i < NCPU; i++) 817 safe_list[i] = PAUSE_IDLE; 818 membar_enter(); /* make sure stores are flushed */ 819 affinity_clear(); 820 splx(cpu_pause_info.cp_spl); 821 kpreempt_enable(); 822 } 823 824 /* 825 * Allocate a pause thread for a CPU. 826 */ 827 static void 828 cpu_pause_alloc(cpu_t *cp) 829 { 830 kthread_id_t t; 831 long cpun = cp->cpu_id; 832 833 /* 834 * Note, v.v_nglobpris will not change value as long as I hold 835 * cpu_lock. 836 */ 837 t = thread_create(NULL, 0, cpu_pause, (void *)cpun, 838 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 839 thread_lock(t); 840 t->t_bound_cpu = cp; 841 t->t_disp_queue = cp->cpu_disp; 842 t->t_affinitycnt = 1; 843 t->t_preempt = 1; 844 thread_unlock(t); 845 cp->cpu_pause_thread = t; 846 /* 847 * Registering a thread in the callback table is usually done 848 * in the initialization code of the thread. In this 849 * case, we do it right after thread creation because the 850 * thread itself may never run, and we need to register the 851 * fact that it is safe for cpr suspend. 852 */ 853 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 854 } 855 856 /* 857 * Free a pause thread for a CPU. 858 */ 859 static void 860 cpu_pause_free(cpu_t *cp) 861 { 862 kthread_id_t t; 863 int cpun = cp->cpu_id; 864 865 ASSERT(MUTEX_HELD(&cpu_lock)); 866 /* 867 * We have to get the thread and tell him to die. 868 */ 869 if ((t = cp->cpu_pause_thread) == NULL) { 870 ASSERT(safe_list[cpun] == PAUSE_IDLE); 871 return; 872 } 873 thread_lock(t); 874 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 875 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 876 t->t_pri = v.v_nglobpris - 1; 877 ASSERT(safe_list[cpun] == PAUSE_IDLE); 878 safe_list[cpun] = PAUSE_DIE; 879 THREAD_TRANSITION(t); 880 setbackdq(t); 881 thread_unlock_nopreempt(t); 882 883 /* 884 * If we don't wait for the thread to actually die, it may try to 885 * run on the wrong cpu as part of an actual call to pause_cpus(). 886 */ 887 mutex_enter(&pause_free_mutex); 888 while (safe_list[cpun] != PAUSE_DEAD) { 889 cv_wait(&pause_free_cv, &pause_free_mutex); 890 } 891 mutex_exit(&pause_free_mutex); 892 safe_list[cpun] = PAUSE_IDLE; 893 894 cp->cpu_pause_thread = NULL; 895 } 896 897 /* 898 * Initialize basic structures for pausing CPUs. 899 */ 900 void 901 cpu_pause_init() 902 { 903 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 904 /* 905 * Create initial CPU pause thread. 906 */ 907 cpu_pause_alloc(CPU); 908 } 909 910 /* 911 * Start the threads used to pause another CPU. 912 */ 913 static int 914 cpu_pause_start(processorid_t cpu_id) 915 { 916 int i; 917 int cpu_count = 0; 918 919 for (i = 0; i < NCPU; i++) { 920 cpu_t *cp; 921 kthread_id_t t; 922 923 cp = cpu[i]; 924 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 925 safe_list[i] = PAUSE_WAIT; 926 continue; 927 } 928 929 /* 930 * Skip CPU if it is quiesced or not yet started. 931 */ 932 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 933 safe_list[i] = PAUSE_WAIT; 934 continue; 935 } 936 937 /* 938 * Start this CPU's pause thread. 939 */ 940 t = cp->cpu_pause_thread; 941 thread_lock(t); 942 /* 943 * Reset the priority, since nglobpris may have 944 * changed since the thread was created, if someone 945 * has loaded the RT (or some other) scheduling 946 * class. 947 */ 948 t->t_pri = v.v_nglobpris - 1; 949 THREAD_TRANSITION(t); 950 setbackdq(t); 951 thread_unlock_nopreempt(t); 952 ++cpu_count; 953 } 954 return (cpu_count); 955 } 956 957 958 /* 959 * Pause all of the CPUs except the one we are on by creating a high 960 * priority thread bound to those CPUs. 961 * 962 * Note that one must be extremely careful regarding code 963 * executed while CPUs are paused. Since a CPU may be paused 964 * while a thread scheduling on that CPU is holding an adaptive 965 * lock, code executed with CPUs paused must not acquire adaptive 966 * (or low-level spin) locks. Also, such code must not block, 967 * since the thread that is supposed to initiate the wakeup may 968 * never run. 969 * 970 * With a few exceptions, the restrictions on code executed with CPUs 971 * paused match those for code executed at high-level interrupt 972 * context. 973 */ 974 void 975 pause_cpus(cpu_t *off_cp) 976 { 977 processorid_t cpu_id; 978 int i; 979 struct _cpu_pause_info *cpi = &cpu_pause_info; 980 981 ASSERT(MUTEX_HELD(&cpu_lock)); 982 ASSERT(cpi->cp_paused == NULL); 983 cpi->cp_count = 0; 984 cpi->cp_go = 0; 985 for (i = 0; i < NCPU; i++) 986 safe_list[i] = PAUSE_IDLE; 987 kpreempt_disable(); 988 989 /* 990 * If running on the cpu that is going offline, get off it. 991 * This is so that it won't be necessary to rechoose a CPU 992 * when done. 993 */ 994 if (CPU == off_cp) 995 cpu_id = off_cp->cpu_next_part->cpu_id; 996 else 997 cpu_id = CPU->cpu_id; 998 affinity_set(cpu_id); 999 1000 /* 1001 * Start the pause threads and record how many were started 1002 */ 1003 cpi->cp_count = cpu_pause_start(cpu_id); 1004 1005 /* 1006 * Now wait for all CPUs to be running the pause thread. 1007 */ 1008 while (cpi->cp_count > 0) { 1009 /* 1010 * Spin reading the count without grabbing the disp 1011 * lock to make sure we don't prevent the pause 1012 * threads from getting the lock. 1013 */ 1014 while (sema_held(&cpi->cp_sem)) 1015 ; 1016 if (sema_tryp(&cpi->cp_sem)) 1017 --cpi->cp_count; 1018 } 1019 cpi->cp_go = 1; /* all have reached cpu_pause */ 1020 1021 /* 1022 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1023 * to PAUSE_WAIT.) 1024 */ 1025 for (i = 0; i < NCPU; i++) { 1026 while (safe_list[i] != PAUSE_WAIT) 1027 ; 1028 } 1029 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1030 cpi->cp_paused = curthread; 1031 } 1032 1033 /* 1034 * Check whether the current thread has CPUs paused 1035 */ 1036 int 1037 cpus_paused(void) 1038 { 1039 if (cpu_pause_info.cp_paused != NULL) { 1040 ASSERT(cpu_pause_info.cp_paused == curthread); 1041 return (1); 1042 } 1043 return (0); 1044 } 1045 1046 static cpu_t * 1047 cpu_get_all(processorid_t cpun) 1048 { 1049 ASSERT(MUTEX_HELD(&cpu_lock)); 1050 1051 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1052 return (NULL); 1053 return (cpu[cpun]); 1054 } 1055 1056 /* 1057 * Check whether cpun is a valid processor id and whether it should be 1058 * visible from the current zone. If it is, return a pointer to the 1059 * associated CPU structure. 1060 */ 1061 cpu_t * 1062 cpu_get(processorid_t cpun) 1063 { 1064 cpu_t *c; 1065 1066 ASSERT(MUTEX_HELD(&cpu_lock)); 1067 c = cpu_get_all(cpun); 1068 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1069 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1070 return (NULL); 1071 return (c); 1072 } 1073 1074 /* 1075 * The following functions should be used to check CPU states in the kernel. 1076 * They should be invoked with cpu_lock held. Kernel subsystems interested 1077 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1078 * states. Those are for user-land (and system call) use only. 1079 */ 1080 1081 /* 1082 * Determine whether the CPU is online and handling interrupts. 1083 */ 1084 int 1085 cpu_is_online(cpu_t *cpu) 1086 { 1087 ASSERT(MUTEX_HELD(&cpu_lock)); 1088 return (cpu_flagged_online(cpu->cpu_flags)); 1089 } 1090 1091 /* 1092 * Determine whether the CPU is offline (this includes spare and faulted). 1093 */ 1094 int 1095 cpu_is_offline(cpu_t *cpu) 1096 { 1097 ASSERT(MUTEX_HELD(&cpu_lock)); 1098 return (cpu_flagged_offline(cpu->cpu_flags)); 1099 } 1100 1101 /* 1102 * Determine whether the CPU is powered off. 1103 */ 1104 int 1105 cpu_is_poweredoff(cpu_t *cpu) 1106 { 1107 ASSERT(MUTEX_HELD(&cpu_lock)); 1108 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1109 } 1110 1111 /* 1112 * Determine whether the CPU is handling interrupts. 1113 */ 1114 int 1115 cpu_is_nointr(cpu_t *cpu) 1116 { 1117 ASSERT(MUTEX_HELD(&cpu_lock)); 1118 return (cpu_flagged_nointr(cpu->cpu_flags)); 1119 } 1120 1121 /* 1122 * Determine whether the CPU is active (scheduling threads). 1123 */ 1124 int 1125 cpu_is_active(cpu_t *cpu) 1126 { 1127 ASSERT(MUTEX_HELD(&cpu_lock)); 1128 return (cpu_flagged_active(cpu->cpu_flags)); 1129 } 1130 1131 /* 1132 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1133 */ 1134 int 1135 cpu_flagged_online(cpu_flag_t cpu_flags) 1136 { 1137 return (cpu_flagged_active(cpu_flags) && 1138 (cpu_flags & CPU_ENABLE)); 1139 } 1140 1141 int 1142 cpu_flagged_offline(cpu_flag_t cpu_flags) 1143 { 1144 return (((cpu_flags & CPU_POWEROFF) == 0) && 1145 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1146 } 1147 1148 int 1149 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1150 { 1151 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1152 } 1153 1154 int 1155 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1156 { 1157 return (cpu_flagged_active(cpu_flags) && 1158 (cpu_flags & CPU_ENABLE) == 0); 1159 } 1160 1161 int 1162 cpu_flagged_active(cpu_flag_t cpu_flags) 1163 { 1164 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1165 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1166 } 1167 1168 /* 1169 * Bring the indicated CPU online. 1170 */ 1171 int 1172 cpu_online(cpu_t *cp) 1173 { 1174 int error = 0; 1175 1176 /* 1177 * Handle on-line request. 1178 * This code must put the new CPU on the active list before 1179 * starting it because it will not be paused, and will start 1180 * using the active list immediately. The real start occurs 1181 * when the CPU_QUIESCED flag is turned off. 1182 */ 1183 1184 ASSERT(MUTEX_HELD(&cpu_lock)); 1185 1186 /* 1187 * Put all the cpus into a known safe place. 1188 * No mutexes can be entered while CPUs are paused. 1189 */ 1190 error = mp_cpu_start(cp); /* arch-dep hook */ 1191 if (error == 0) { 1192 pg_cpupart_in(cp, cp->cpu_part); 1193 pause_cpus(NULL); 1194 cpu_add_active_internal(cp); 1195 if (cp->cpu_flags & CPU_FAULTED) { 1196 cp->cpu_flags &= ~CPU_FAULTED; 1197 mp_cpu_faulted_exit(cp); 1198 } 1199 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1200 CPU_SPARE); 1201 start_cpus(); 1202 cpu_stats_kstat_create(cp); 1203 cpu_create_intrstat(cp); 1204 lgrp_kstat_create(cp); 1205 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1206 cpu_intr_enable(cp); /* arch-dep hook */ 1207 cpu_set_state(cp); 1208 cyclic_online(cp); 1209 poke_cpu(cp->cpu_id); 1210 } 1211 1212 return (error); 1213 } 1214 1215 /* 1216 * Take the indicated CPU offline. 1217 */ 1218 int 1219 cpu_offline(cpu_t *cp, int flags) 1220 { 1221 cpupart_t *pp; 1222 int error = 0; 1223 cpu_t *ncp; 1224 int intr_enable; 1225 int cyclic_off = 0; 1226 int loop_count; 1227 int no_quiesce = 0; 1228 int (*bound_func)(struct cpu *, int); 1229 kthread_t *t; 1230 lpl_t *cpu_lpl; 1231 proc_t *p; 1232 int lgrp_diff_lpl; 1233 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0; 1234 1235 ASSERT(MUTEX_HELD(&cpu_lock)); 1236 1237 /* 1238 * If we're going from faulted or spare to offline, just 1239 * clear these flags and update CPU state. 1240 */ 1241 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1242 if (cp->cpu_flags & CPU_FAULTED) { 1243 cp->cpu_flags &= ~CPU_FAULTED; 1244 mp_cpu_faulted_exit(cp); 1245 } 1246 cp->cpu_flags &= ~CPU_SPARE; 1247 cpu_set_state(cp); 1248 return (0); 1249 } 1250 1251 /* 1252 * Handle off-line request. 1253 */ 1254 pp = cp->cpu_part; 1255 /* 1256 * Don't offline last online CPU in partition 1257 */ 1258 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1259 return (EBUSY); 1260 /* 1261 * Unbind all soft-bound threads bound to our CPU and hard bound threads 1262 * if we were asked to. 1263 */ 1264 error = cpu_unbind(cp->cpu_id, unbind_all_threads); 1265 if (error != 0) 1266 return (error); 1267 /* 1268 * We shouldn't be bound to this CPU ourselves. 1269 */ 1270 if (curthread->t_bound_cpu == cp) 1271 return (EBUSY); 1272 1273 /* 1274 * Tell interested parties that this CPU is going offline. 1275 */ 1276 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1277 1278 /* 1279 * Tell the PG subsystem that the CPU is leaving the partition 1280 */ 1281 pg_cpupart_out(cp, pp); 1282 1283 /* 1284 * Take the CPU out of interrupt participation so we won't find 1285 * bound kernel threads. If the architecture cannot completely 1286 * shut off interrupts on the CPU, don't quiesce it, but don't 1287 * run anything but interrupt thread... this is indicated by 1288 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1289 * off. 1290 */ 1291 intr_enable = cp->cpu_flags & CPU_ENABLE; 1292 if (intr_enable) 1293 no_quiesce = cpu_intr_disable(cp); 1294 1295 /* 1296 * Record that we are aiming to offline this cpu. This acts as 1297 * a barrier to further weak binding requests in thread_nomigrate 1298 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1299 * lean away from this cpu. Further strong bindings are already 1300 * avoided since we hold cpu_lock. Since threads that are set 1301 * runnable around now and others coming off the target cpu are 1302 * directed away from the target, existing strong and weak bindings 1303 * (especially the latter) to the target cpu stand maximum chance of 1304 * being able to unbind during the short delay loop below (if other 1305 * unbound threads compete they may not see cpu in time to unbind 1306 * even if they would do so immediately. 1307 */ 1308 cpu_inmotion = cp; 1309 membar_enter(); 1310 1311 /* 1312 * Check for kernel threads (strong or weak) bound to that CPU. 1313 * Strongly bound threads may not unbind, and we'll have to return 1314 * EBUSY. Weakly bound threads should always disappear - we've 1315 * stopped more weak binding with cpu_inmotion and existing 1316 * bindings will drain imminently (they may not block). Nonetheless 1317 * we will wait for a fixed period for all bound threads to disappear. 1318 * Inactive interrupt threads are OK (they'll be in TS_FREE 1319 * state). If test finds some bound threads, wait a few ticks 1320 * to give short-lived threads (such as interrupts) chance to 1321 * complete. Note that if no_quiesce is set, i.e. this cpu 1322 * is required to service interrupts, then we take the route 1323 * that permits interrupt threads to be active (or bypassed). 1324 */ 1325 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1326 1327 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1328 if (loop_count >= 5) { 1329 error = EBUSY; /* some threads still bound */ 1330 break; 1331 } 1332 1333 /* 1334 * If some threads were assigned, give them 1335 * a chance to complete or move. 1336 * 1337 * This assumes that the clock_thread is not bound 1338 * to any CPU, because the clock_thread is needed to 1339 * do the delay(hz/100). 1340 * 1341 * Note: we still hold the cpu_lock while waiting for 1342 * the next clock tick. This is OK since it isn't 1343 * needed for anything else except processor_bind(2), 1344 * and system initialization. If we drop the lock, 1345 * we would risk another p_online disabling the last 1346 * processor. 1347 */ 1348 delay(hz/100); 1349 } 1350 1351 if (error == 0 && cyclic_off == 0) { 1352 if (!cyclic_offline(cp)) { 1353 /* 1354 * We must have bound cyclics... 1355 */ 1356 error = EBUSY; 1357 goto out; 1358 } 1359 cyclic_off = 1; 1360 } 1361 1362 /* 1363 * Call mp_cpu_stop() to perform any special operations 1364 * needed for this machine architecture to offline a CPU. 1365 */ 1366 if (error == 0) 1367 error = mp_cpu_stop(cp); /* arch-dep hook */ 1368 1369 /* 1370 * If that all worked, take the CPU offline and decrement 1371 * ncpus_online. 1372 */ 1373 if (error == 0) { 1374 /* 1375 * Put all the cpus into a known safe place. 1376 * No mutexes can be entered while CPUs are paused. 1377 */ 1378 pause_cpus(cp); 1379 /* 1380 * Repeat the operation, if necessary, to make sure that 1381 * all outstanding low-level interrupts run to completion 1382 * before we set the CPU_QUIESCED flag. It's also possible 1383 * that a thread has weak bound to the cpu despite our raising 1384 * cpu_inmotion above since it may have loaded that 1385 * value before the barrier became visible (this would have 1386 * to be the thread that was on the target cpu at the time 1387 * we raised the barrier). 1388 */ 1389 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1390 (*bound_func)(cp, 1)) { 1391 start_cpus(); 1392 (void) mp_cpu_start(cp); 1393 goto again; 1394 } 1395 ncp = cp->cpu_next_part; 1396 cpu_lpl = cp->cpu_lpl; 1397 ASSERT(cpu_lpl != NULL); 1398 1399 /* 1400 * Remove the CPU from the list of active CPUs. 1401 */ 1402 cpu_remove_active(cp); 1403 1404 /* 1405 * Walk the active process list and look for threads 1406 * whose home lgroup needs to be updated, or 1407 * the last CPU they run on is the one being offlined now. 1408 */ 1409 1410 ASSERT(curthread->t_cpu != cp); 1411 for (p = practive; p != NULL; p = p->p_next) { 1412 1413 t = p->p_tlist; 1414 1415 if (t == NULL) 1416 continue; 1417 1418 lgrp_diff_lpl = 0; 1419 1420 do { 1421 ASSERT(t->t_lpl != NULL); 1422 /* 1423 * Taking last CPU in lpl offline 1424 * Rehome thread if it is in this lpl 1425 * Otherwise, update the count of how many 1426 * threads are in this CPU's lgroup but have 1427 * a different lpl. 1428 */ 1429 1430 if (cpu_lpl->lpl_ncpu == 0) { 1431 if (t->t_lpl == cpu_lpl) 1432 lgrp_move_thread(t, 1433 lgrp_choose(t, 1434 t->t_cpupart), 0); 1435 else if (t->t_lpl->lpl_lgrpid == 1436 cpu_lpl->lpl_lgrpid) 1437 lgrp_diff_lpl++; 1438 } 1439 ASSERT(t->t_lpl->lpl_ncpu > 0); 1440 1441 /* 1442 * Update CPU last ran on if it was this CPU 1443 */ 1444 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1445 t->t_cpu = disp_lowpri_cpu(ncp, 1446 t->t_lpl, t->t_pri, NULL); 1447 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1448 t->t_weakbound_cpu == cp); 1449 1450 t = t->t_forw; 1451 } while (t != p->p_tlist); 1452 1453 /* 1454 * Didn't find any threads in the same lgroup as this 1455 * CPU with a different lpl, so remove the lgroup from 1456 * the process lgroup bitmask. 1457 */ 1458 1459 if (lgrp_diff_lpl == 0) 1460 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1461 } 1462 1463 /* 1464 * Walk thread list looking for threads that need to be 1465 * rehomed, since there are some threads that are not in 1466 * their process's p_tlist. 1467 */ 1468 1469 t = curthread; 1470 do { 1471 ASSERT(t != NULL && t->t_lpl != NULL); 1472 1473 /* 1474 * Rehome threads with same lpl as this CPU when this 1475 * is the last CPU in the lpl. 1476 */ 1477 1478 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1479 lgrp_move_thread(t, 1480 lgrp_choose(t, t->t_cpupart), 1); 1481 1482 ASSERT(t->t_lpl->lpl_ncpu > 0); 1483 1484 /* 1485 * Update CPU last ran on if it was this CPU 1486 */ 1487 1488 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1489 t->t_cpu = disp_lowpri_cpu(ncp, 1490 t->t_lpl, t->t_pri, NULL); 1491 } 1492 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1493 t->t_weakbound_cpu == cp); 1494 t = t->t_next; 1495 1496 } while (t != curthread); 1497 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1498 cp->cpu_flags |= CPU_OFFLINE; 1499 disp_cpu_inactive(cp); 1500 if (!no_quiesce) 1501 cp->cpu_flags |= CPU_QUIESCED; 1502 ncpus_online--; 1503 cpu_set_state(cp); 1504 cpu_inmotion = NULL; 1505 start_cpus(); 1506 cpu_stats_kstat_destroy(cp); 1507 cpu_delete_intrstat(cp); 1508 lgrp_kstat_destroy(cp); 1509 } 1510 1511 out: 1512 cpu_inmotion = NULL; 1513 1514 /* 1515 * If we failed, re-enable interrupts. 1516 * Do this even if cpu_intr_disable returned an error, because 1517 * it may have partially disabled interrupts. 1518 */ 1519 if (error && intr_enable) 1520 cpu_intr_enable(cp); 1521 1522 /* 1523 * If we failed, but managed to offline the cyclic subsystem on this 1524 * CPU, bring it back online. 1525 */ 1526 if (error && cyclic_off) 1527 cyclic_online(cp); 1528 1529 /* 1530 * If we failed, tell the PG subsystem that the CPU is back 1531 */ 1532 pg_cpupart_in(cp, pp); 1533 1534 /* 1535 * If we failed, we need to notify everyone that this CPU is back on. 1536 */ 1537 if (error != 0) 1538 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1539 1540 return (error); 1541 } 1542 1543 /* 1544 * Mark the indicated CPU as faulted, taking it offline. 1545 */ 1546 int 1547 cpu_faulted(cpu_t *cp, int flags) 1548 { 1549 int error = 0; 1550 1551 ASSERT(MUTEX_HELD(&cpu_lock)); 1552 ASSERT(!cpu_is_poweredoff(cp)); 1553 1554 if (cpu_is_offline(cp)) { 1555 cp->cpu_flags &= ~CPU_SPARE; 1556 cp->cpu_flags |= CPU_FAULTED; 1557 mp_cpu_faulted_enter(cp); 1558 cpu_set_state(cp); 1559 return (0); 1560 } 1561 1562 if ((error = cpu_offline(cp, flags)) == 0) { 1563 cp->cpu_flags |= CPU_FAULTED; 1564 mp_cpu_faulted_enter(cp); 1565 cpu_set_state(cp); 1566 } 1567 1568 return (error); 1569 } 1570 1571 /* 1572 * Mark the indicated CPU as a spare, taking it offline. 1573 */ 1574 int 1575 cpu_spare(cpu_t *cp, int flags) 1576 { 1577 int error = 0; 1578 1579 ASSERT(MUTEX_HELD(&cpu_lock)); 1580 ASSERT(!cpu_is_poweredoff(cp)); 1581 1582 if (cpu_is_offline(cp)) { 1583 if (cp->cpu_flags & CPU_FAULTED) { 1584 cp->cpu_flags &= ~CPU_FAULTED; 1585 mp_cpu_faulted_exit(cp); 1586 } 1587 cp->cpu_flags |= CPU_SPARE; 1588 cpu_set_state(cp); 1589 return (0); 1590 } 1591 1592 if ((error = cpu_offline(cp, flags)) == 0) { 1593 cp->cpu_flags |= CPU_SPARE; 1594 cpu_set_state(cp); 1595 } 1596 1597 return (error); 1598 } 1599 1600 /* 1601 * Take the indicated CPU from poweroff to offline. 1602 */ 1603 int 1604 cpu_poweron(cpu_t *cp) 1605 { 1606 int error = ENOTSUP; 1607 1608 ASSERT(MUTEX_HELD(&cpu_lock)); 1609 ASSERT(cpu_is_poweredoff(cp)); 1610 1611 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1612 if (error == 0) 1613 cpu_set_state(cp); 1614 1615 return (error); 1616 } 1617 1618 /* 1619 * Take the indicated CPU from any inactive state to powered off. 1620 */ 1621 int 1622 cpu_poweroff(cpu_t *cp) 1623 { 1624 int error = ENOTSUP; 1625 1626 ASSERT(MUTEX_HELD(&cpu_lock)); 1627 ASSERT(cpu_is_offline(cp)); 1628 1629 if (!(cp->cpu_flags & CPU_QUIESCED)) 1630 return (EBUSY); /* not completely idle */ 1631 1632 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1633 if (error == 0) 1634 cpu_set_state(cp); 1635 1636 return (error); 1637 } 1638 1639 /* 1640 * Initialize the CPU lists for the first CPU. 1641 */ 1642 void 1643 cpu_list_init(cpu_t *cp) 1644 { 1645 cp->cpu_next = cp; 1646 cp->cpu_prev = cp; 1647 cpu_list = cp; 1648 clock_cpu_list = cp; 1649 1650 cp->cpu_next_onln = cp; 1651 cp->cpu_prev_onln = cp; 1652 cpu_active = cp; 1653 1654 cp->cpu_seqid = 0; 1655 CPUSET_ADD(cpu_seqid_inuse, 0); 1656 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1657 cp_default.cp_mach = &cp_default_mach; 1658 cp_default.cp_cpulist = cp; 1659 cp_default.cp_ncpus = 1; 1660 cp->cpu_next_part = cp; 1661 cp->cpu_prev_part = cp; 1662 cp->cpu_part = &cp_default; 1663 1664 CPUSET_ADD(cpu_available, cp->cpu_id); 1665 } 1666 1667 /* 1668 * Insert a CPU into the list of available CPUs. 1669 */ 1670 void 1671 cpu_add_unit(cpu_t *cp) 1672 { 1673 int seqid; 1674 1675 ASSERT(MUTEX_HELD(&cpu_lock)); 1676 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1677 1678 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1679 1680 /* 1681 * Note: most users of the cpu_list will grab the 1682 * cpu_lock to insure that it isn't modified. However, 1683 * certain users can't or won't do that. To allow this 1684 * we pause the other cpus. Users who walk the list 1685 * without cpu_lock, must disable kernel preemption 1686 * to insure that the list isn't modified underneath 1687 * them. Also, any cached pointers to cpu structures 1688 * must be revalidated by checking to see if the 1689 * cpu_next pointer points to itself. This check must 1690 * be done with the cpu_lock held or kernel preemption 1691 * disabled. This check relies upon the fact that 1692 * old cpu structures are not free'ed or cleared after 1693 * then are removed from the cpu_list. 1694 * 1695 * Note that the clock code walks the cpu list dereferencing 1696 * the cpu_part pointer, so we need to initialize it before 1697 * adding the cpu to the list. 1698 */ 1699 cp->cpu_part = &cp_default; 1700 (void) pause_cpus(NULL); 1701 cp->cpu_next = cpu_list; 1702 cp->cpu_prev = cpu_list->cpu_prev; 1703 cpu_list->cpu_prev->cpu_next = cp; 1704 cpu_list->cpu_prev = cp; 1705 start_cpus(); 1706 1707 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1708 continue; 1709 CPUSET_ADD(cpu_seqid_inuse, seqid); 1710 cp->cpu_seqid = seqid; 1711 ASSERT(ncpus < max_ncpus); 1712 ncpus++; 1713 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1714 cpu[cp->cpu_id] = cp; 1715 CPUSET_ADD(cpu_available, cp->cpu_id); 1716 1717 /* 1718 * allocate a pause thread for this CPU. 1719 */ 1720 cpu_pause_alloc(cp); 1721 1722 /* 1723 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1724 * link them into a list of just that CPU. 1725 * This is so that disp_lowpri_cpu will work for thread_create in 1726 * pause_cpus() when called from the startup thread in a new CPU. 1727 */ 1728 cp->cpu_next_onln = cp; 1729 cp->cpu_prev_onln = cp; 1730 cpu_info_kstat_create(cp); 1731 cp->cpu_next_part = cp; 1732 cp->cpu_prev_part = cp; 1733 1734 init_cpu_mstate(cp, CMS_SYSTEM); 1735 1736 pool_pset_mod = gethrtime(); 1737 } 1738 1739 /* 1740 * Do the opposite of cpu_add_unit(). 1741 */ 1742 void 1743 cpu_del_unit(int cpuid) 1744 { 1745 struct cpu *cp, *cpnext; 1746 1747 ASSERT(MUTEX_HELD(&cpu_lock)); 1748 cp = cpu[cpuid]; 1749 ASSERT(cp != NULL); 1750 1751 ASSERT(cp->cpu_next_onln == cp); 1752 ASSERT(cp->cpu_prev_onln == cp); 1753 ASSERT(cp->cpu_next_part == cp); 1754 ASSERT(cp->cpu_prev_part == cp); 1755 1756 /* 1757 * Tear down the CPU's physical ID cache, and update any 1758 * processor groups 1759 */ 1760 pg_cpu_fini(cp); 1761 pghw_physid_destroy(cp); 1762 1763 /* 1764 * Destroy kstat stuff. 1765 */ 1766 cpu_info_kstat_destroy(cp); 1767 term_cpu_mstate(cp); 1768 /* 1769 * Free up pause thread. 1770 */ 1771 cpu_pause_free(cp); 1772 CPUSET_DEL(cpu_available, cp->cpu_id); 1773 cpu[cp->cpu_id] = NULL; 1774 /* 1775 * The clock thread and mutex_vector_enter cannot hold the 1776 * cpu_lock while traversing the cpu list, therefore we pause 1777 * all other threads by pausing the other cpus. These, and any 1778 * other routines holding cpu pointers while possibly sleeping 1779 * must be sure to call kpreempt_disable before processing the 1780 * list and be sure to check that the cpu has not been deleted 1781 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1782 * to keep the deleted cpu structure around. 1783 * 1784 * Note that this MUST be done AFTER cpu_available 1785 * has been updated so that we don't waste time 1786 * trying to pause the cpu we're trying to delete. 1787 */ 1788 (void) pause_cpus(NULL); 1789 1790 cpnext = cp->cpu_next; 1791 cp->cpu_prev->cpu_next = cp->cpu_next; 1792 cp->cpu_next->cpu_prev = cp->cpu_prev; 1793 if (cp == cpu_list) 1794 cpu_list = cpnext; 1795 1796 /* 1797 * Signals that the cpu has been deleted (see above). 1798 */ 1799 cp->cpu_next = NULL; 1800 cp->cpu_prev = NULL; 1801 1802 start_cpus(); 1803 1804 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1805 ncpus--; 1806 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1807 1808 pool_pset_mod = gethrtime(); 1809 } 1810 1811 /* 1812 * Add a CPU to the list of active CPUs. 1813 * This routine must not get any locks, because other CPUs are paused. 1814 */ 1815 static void 1816 cpu_add_active_internal(cpu_t *cp) 1817 { 1818 cpupart_t *pp = cp->cpu_part; 1819 1820 ASSERT(MUTEX_HELD(&cpu_lock)); 1821 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1822 1823 ncpus_online++; 1824 cpu_set_state(cp); 1825 cp->cpu_next_onln = cpu_active; 1826 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1827 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1828 cpu_active->cpu_prev_onln = cp; 1829 1830 if (pp->cp_cpulist) { 1831 cp->cpu_next_part = pp->cp_cpulist; 1832 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1833 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1834 pp->cp_cpulist->cpu_prev_part = cp; 1835 } else { 1836 ASSERT(pp->cp_ncpus == 0); 1837 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1838 } 1839 pp->cp_ncpus++; 1840 if (pp->cp_ncpus == 1) { 1841 cp_numparts_nonempty++; 1842 ASSERT(cp_numparts_nonempty != 0); 1843 } 1844 1845 pg_cpu_active(cp); 1846 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1847 1848 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1849 } 1850 1851 /* 1852 * Add a CPU to the list of active CPUs. 1853 * This is called from machine-dependent layers when a new CPU is started. 1854 */ 1855 void 1856 cpu_add_active(cpu_t *cp) 1857 { 1858 pg_cpupart_in(cp, cp->cpu_part); 1859 1860 pause_cpus(NULL); 1861 cpu_add_active_internal(cp); 1862 start_cpus(); 1863 1864 cpu_stats_kstat_create(cp); 1865 cpu_create_intrstat(cp); 1866 lgrp_kstat_create(cp); 1867 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1868 } 1869 1870 1871 /* 1872 * Remove a CPU from the list of active CPUs. 1873 * This routine must not get any locks, because other CPUs are paused. 1874 */ 1875 /* ARGSUSED */ 1876 static void 1877 cpu_remove_active(cpu_t *cp) 1878 { 1879 cpupart_t *pp = cp->cpu_part; 1880 1881 ASSERT(MUTEX_HELD(&cpu_lock)); 1882 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1883 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1884 1885 pg_cpu_inactive(cp); 1886 1887 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1888 1889 if (cp == clock_cpu_list) 1890 clock_cpu_list = cp->cpu_next_onln; 1891 1892 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1893 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1894 if (cpu_active == cp) { 1895 cpu_active = cp->cpu_next_onln; 1896 } 1897 cp->cpu_next_onln = cp; 1898 cp->cpu_prev_onln = cp; 1899 1900 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1901 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1902 if (pp->cp_cpulist == cp) { 1903 pp->cp_cpulist = cp->cpu_next_part; 1904 ASSERT(pp->cp_cpulist != cp); 1905 } 1906 cp->cpu_next_part = cp; 1907 cp->cpu_prev_part = cp; 1908 pp->cp_ncpus--; 1909 if (pp->cp_ncpus == 0) { 1910 cp_numparts_nonempty--; 1911 ASSERT(cp_numparts_nonempty != 0); 1912 } 1913 } 1914 1915 /* 1916 * Routine used to setup a newly inserted CPU in preparation for starting 1917 * it running code. 1918 */ 1919 int 1920 cpu_configure(int cpuid) 1921 { 1922 int retval = 0; 1923 1924 ASSERT(MUTEX_HELD(&cpu_lock)); 1925 1926 /* 1927 * Some structures are statically allocated based upon 1928 * the maximum number of cpus the system supports. Do not 1929 * try to add anything beyond this limit. 1930 */ 1931 if (cpuid < 0 || cpuid >= NCPU) { 1932 return (EINVAL); 1933 } 1934 1935 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1936 return (EALREADY); 1937 } 1938 1939 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1940 return (retval); 1941 } 1942 1943 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1944 cpu_set_state(cpu[cpuid]); 1945 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1946 if (retval != 0) 1947 (void) mp_cpu_unconfigure(cpuid); 1948 1949 return (retval); 1950 } 1951 1952 /* 1953 * Routine used to cleanup a CPU that has been powered off. This will 1954 * destroy all per-cpu information related to this cpu. 1955 */ 1956 int 1957 cpu_unconfigure(int cpuid) 1958 { 1959 int error; 1960 1961 ASSERT(MUTEX_HELD(&cpu_lock)); 1962 1963 if (cpu[cpuid] == NULL) { 1964 return (ENODEV); 1965 } 1966 1967 if (cpu[cpuid]->cpu_flags == 0) { 1968 return (EALREADY); 1969 } 1970 1971 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1972 return (EBUSY); 1973 } 1974 1975 if (cpu[cpuid]->cpu_props != NULL) { 1976 (void) nvlist_free(cpu[cpuid]->cpu_props); 1977 cpu[cpuid]->cpu_props = NULL; 1978 } 1979 1980 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1981 1982 if (error != 0) 1983 return (error); 1984 1985 return (mp_cpu_unconfigure(cpuid)); 1986 } 1987 1988 /* 1989 * Routines for registering and de-registering cpu_setup callback functions. 1990 * 1991 * Caller's context 1992 * These routines must not be called from a driver's attach(9E) or 1993 * detach(9E) entry point. 1994 * 1995 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1996 */ 1997 1998 /* 1999 * Ideally, these would be dynamically allocated and put into a linked 2000 * list; however that is not feasible because the registration routine 2001 * has to be available before the kmem allocator is working (in fact, 2002 * it is called by the kmem allocator init code). In any case, there 2003 * are quite a few extra entries for future users. 2004 */ 2005 #define NCPU_SETUPS 20 2006 2007 struct cpu_setup { 2008 cpu_setup_func_t *func; 2009 void *arg; 2010 } cpu_setups[NCPU_SETUPS]; 2011 2012 void 2013 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2014 { 2015 int i; 2016 2017 ASSERT(MUTEX_HELD(&cpu_lock)); 2018 2019 for (i = 0; i < NCPU_SETUPS; i++) 2020 if (cpu_setups[i].func == NULL) 2021 break; 2022 if (i >= NCPU_SETUPS) 2023 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 2024 2025 cpu_setups[i].func = func; 2026 cpu_setups[i].arg = arg; 2027 } 2028 2029 void 2030 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2031 { 2032 int i; 2033 2034 ASSERT(MUTEX_HELD(&cpu_lock)); 2035 2036 for (i = 0; i < NCPU_SETUPS; i++) 2037 if ((cpu_setups[i].func == func) && 2038 (cpu_setups[i].arg == arg)) 2039 break; 2040 if (i >= NCPU_SETUPS) 2041 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2042 "deregister"); 2043 2044 cpu_setups[i].func = NULL; 2045 cpu_setups[i].arg = 0; 2046 } 2047 2048 /* 2049 * Call any state change hooks for this CPU, ignore any errors. 2050 */ 2051 void 2052 cpu_state_change_notify(int id, cpu_setup_t what) 2053 { 2054 int i; 2055 2056 ASSERT(MUTEX_HELD(&cpu_lock)); 2057 2058 for (i = 0; i < NCPU_SETUPS; i++) { 2059 if (cpu_setups[i].func != NULL) { 2060 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2061 } 2062 } 2063 } 2064 2065 /* 2066 * Call any state change hooks for this CPU, undo it if error found. 2067 */ 2068 static int 2069 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2070 { 2071 int i; 2072 int retval = 0; 2073 2074 ASSERT(MUTEX_HELD(&cpu_lock)); 2075 2076 for (i = 0; i < NCPU_SETUPS; i++) { 2077 if (cpu_setups[i].func != NULL) { 2078 retval = cpu_setups[i].func(what, id, 2079 cpu_setups[i].arg); 2080 if (retval) { 2081 for (i--; i >= 0; i--) { 2082 if (cpu_setups[i].func != NULL) 2083 cpu_setups[i].func(undo, 2084 id, cpu_setups[i].arg); 2085 } 2086 break; 2087 } 2088 } 2089 } 2090 return (retval); 2091 } 2092 2093 /* 2094 * Export information about this CPU via the kstat mechanism. 2095 */ 2096 static struct { 2097 kstat_named_t ci_state; 2098 kstat_named_t ci_state_begin; 2099 kstat_named_t ci_cpu_type; 2100 kstat_named_t ci_fpu_type; 2101 kstat_named_t ci_clock_MHz; 2102 kstat_named_t ci_chip_id; 2103 kstat_named_t ci_implementation; 2104 kstat_named_t ci_brandstr; 2105 kstat_named_t ci_core_id; 2106 kstat_named_t ci_curr_clock_Hz; 2107 kstat_named_t ci_supp_freq_Hz; 2108 #if defined(__sparcv9) 2109 kstat_named_t ci_device_ID; 2110 kstat_named_t ci_cpu_fru; 2111 #endif 2112 #if defined(__x86) 2113 kstat_named_t ci_vendorstr; 2114 kstat_named_t ci_family; 2115 kstat_named_t ci_model; 2116 kstat_named_t ci_step; 2117 kstat_named_t ci_clogid; 2118 kstat_named_t ci_pkg_core_id; 2119 kstat_named_t ci_ncpuperchip; 2120 kstat_named_t ci_ncoreperchip; 2121 #endif 2122 } cpu_info_template = { 2123 { "state", KSTAT_DATA_CHAR }, 2124 { "state_begin", KSTAT_DATA_LONG }, 2125 { "cpu_type", KSTAT_DATA_CHAR }, 2126 { "fpu_type", KSTAT_DATA_CHAR }, 2127 { "clock_MHz", KSTAT_DATA_LONG }, 2128 { "chip_id", KSTAT_DATA_LONG }, 2129 { "implementation", KSTAT_DATA_STRING }, 2130 { "brand", KSTAT_DATA_STRING }, 2131 { "core_id", KSTAT_DATA_LONG }, 2132 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2133 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2134 #if defined(__sparcv9) 2135 { "device_ID", KSTAT_DATA_UINT64 }, 2136 { "cpu_fru", KSTAT_DATA_STRING }, 2137 #endif 2138 #if defined(__x86) 2139 { "vendor_id", KSTAT_DATA_STRING }, 2140 { "family", KSTAT_DATA_INT32 }, 2141 { "model", KSTAT_DATA_INT32 }, 2142 { "stepping", KSTAT_DATA_INT32 }, 2143 { "clog_id", KSTAT_DATA_INT32 }, 2144 { "pkg_core_id", KSTAT_DATA_LONG }, 2145 { "ncpu_per_chip", KSTAT_DATA_INT32 }, 2146 { "ncore_per_chip", KSTAT_DATA_INT32 }, 2147 #endif 2148 }; 2149 2150 static kmutex_t cpu_info_template_lock; 2151 2152 static int 2153 cpu_info_kstat_update(kstat_t *ksp, int rw) 2154 { 2155 cpu_t *cp = ksp->ks_private; 2156 const char *pi_state; 2157 2158 if (rw == KSTAT_WRITE) 2159 return (EACCES); 2160 2161 switch (cp->cpu_type_info.pi_state) { 2162 case P_ONLINE: 2163 pi_state = PS_ONLINE; 2164 break; 2165 case P_POWEROFF: 2166 pi_state = PS_POWEROFF; 2167 break; 2168 case P_NOINTR: 2169 pi_state = PS_NOINTR; 2170 break; 2171 case P_FAULTED: 2172 pi_state = PS_FAULTED; 2173 break; 2174 case P_SPARE: 2175 pi_state = PS_SPARE; 2176 break; 2177 case P_OFFLINE: 2178 pi_state = PS_OFFLINE; 2179 break; 2180 default: 2181 pi_state = "unknown"; 2182 } 2183 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2184 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2185 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2186 cp->cpu_type_info.pi_processor_type, 15); 2187 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2188 cp->cpu_type_info.pi_fputypes, 15); 2189 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2190 cpu_info_template.ci_chip_id.value.l = 2191 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2192 kstat_named_setstr(&cpu_info_template.ci_implementation, 2193 cp->cpu_idstr); 2194 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2195 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2196 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2197 cp->cpu_curr_clock; 2198 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2199 cp->cpu_supp_freqs); 2200 #if defined(__sparcv9) 2201 cpu_info_template.ci_device_ID.value.ui64 = 2202 cpunodes[cp->cpu_id].device_id; 2203 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2204 #endif 2205 #if defined(__x86) 2206 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2207 cpuid_getvendorstr(cp)); 2208 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2209 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2210 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2211 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2212 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp); 2213 cpu_info_template.ci_ncoreperchip.value.l = 2214 cpuid_get_ncore_per_chip(cp); 2215 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp); 2216 #endif 2217 2218 return (0); 2219 } 2220 2221 static void 2222 cpu_info_kstat_create(cpu_t *cp) 2223 { 2224 zoneid_t zoneid; 2225 2226 ASSERT(MUTEX_HELD(&cpu_lock)); 2227 2228 if (pool_pset_enabled()) 2229 zoneid = GLOBAL_ZONEID; 2230 else 2231 zoneid = ALL_ZONES; 2232 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2233 NULL, "misc", KSTAT_TYPE_NAMED, 2234 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2235 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2236 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2237 #if defined(__sparcv9) 2238 cp->cpu_info_kstat->ks_data_size += 2239 strlen(cpu_fru_fmri(cp)) + 1; 2240 #endif 2241 #if defined(__x86) 2242 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2243 #endif 2244 if (cp->cpu_supp_freqs != NULL) 2245 cp->cpu_info_kstat->ks_data_size += 2246 strlen(cp->cpu_supp_freqs) + 1; 2247 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2248 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2249 cp->cpu_info_kstat->ks_private = cp; 2250 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2251 kstat_install(cp->cpu_info_kstat); 2252 } 2253 } 2254 2255 static void 2256 cpu_info_kstat_destroy(cpu_t *cp) 2257 { 2258 ASSERT(MUTEX_HELD(&cpu_lock)); 2259 2260 kstat_delete(cp->cpu_info_kstat); 2261 cp->cpu_info_kstat = NULL; 2262 } 2263 2264 /* 2265 * Create and install kstats for the boot CPU. 2266 */ 2267 void 2268 cpu_kstat_init(cpu_t *cp) 2269 { 2270 mutex_enter(&cpu_lock); 2271 cpu_info_kstat_create(cp); 2272 cpu_stats_kstat_create(cp); 2273 cpu_create_intrstat(cp); 2274 cpu_set_state(cp); 2275 mutex_exit(&cpu_lock); 2276 } 2277 2278 /* 2279 * Make visible to the zone that subset of the cpu information that would be 2280 * initialized when a cpu is configured (but still offline). 2281 */ 2282 void 2283 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2284 { 2285 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2286 2287 ASSERT(MUTEX_HELD(&cpu_lock)); 2288 ASSERT(pool_pset_enabled()); 2289 ASSERT(cp != NULL); 2290 2291 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2292 zone->zone_ncpus++; 2293 ASSERT(zone->zone_ncpus <= ncpus); 2294 } 2295 if (cp->cpu_info_kstat != NULL) 2296 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2297 } 2298 2299 /* 2300 * Make visible to the zone that subset of the cpu information that would be 2301 * initialized when a previously configured cpu is onlined. 2302 */ 2303 void 2304 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2305 { 2306 kstat_t *ksp; 2307 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2308 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2309 processorid_t cpun; 2310 2311 ASSERT(MUTEX_HELD(&cpu_lock)); 2312 ASSERT(pool_pset_enabled()); 2313 ASSERT(cp != NULL); 2314 ASSERT(cpu_is_active(cp)); 2315 2316 cpun = cp->cpu_id; 2317 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2318 zone->zone_ncpus_online++; 2319 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2320 } 2321 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2322 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2323 != NULL) { 2324 kstat_zone_add(ksp, zoneid); 2325 kstat_rele(ksp); 2326 } 2327 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2328 kstat_zone_add(ksp, zoneid); 2329 kstat_rele(ksp); 2330 } 2331 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2332 kstat_zone_add(ksp, zoneid); 2333 kstat_rele(ksp); 2334 } 2335 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2336 NULL) { 2337 kstat_zone_add(ksp, zoneid); 2338 kstat_rele(ksp); 2339 } 2340 } 2341 2342 /* 2343 * Update relevant kstats such that cpu is now visible to processes 2344 * executing in specified zone. 2345 */ 2346 void 2347 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2348 { 2349 cpu_visibility_configure(cp, zone); 2350 if (cpu_is_active(cp)) 2351 cpu_visibility_online(cp, zone); 2352 } 2353 2354 /* 2355 * Make invisible to the zone that subset of the cpu information that would be 2356 * torn down when a previously offlined cpu is unconfigured. 2357 */ 2358 void 2359 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2360 { 2361 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2362 2363 ASSERT(MUTEX_HELD(&cpu_lock)); 2364 ASSERT(pool_pset_enabled()); 2365 ASSERT(cp != NULL); 2366 2367 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2368 ASSERT(zone->zone_ncpus != 0); 2369 zone->zone_ncpus--; 2370 } 2371 if (cp->cpu_info_kstat) 2372 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2373 } 2374 2375 /* 2376 * Make invisible to the zone that subset of the cpu information that would be 2377 * torn down when a cpu is offlined (but still configured). 2378 */ 2379 void 2380 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2381 { 2382 kstat_t *ksp; 2383 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2384 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2385 processorid_t cpun; 2386 2387 ASSERT(MUTEX_HELD(&cpu_lock)); 2388 ASSERT(pool_pset_enabled()); 2389 ASSERT(cp != NULL); 2390 ASSERT(cpu_is_active(cp)); 2391 2392 cpun = cp->cpu_id; 2393 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2394 ASSERT(zone->zone_ncpus_online != 0); 2395 zone->zone_ncpus_online--; 2396 } 2397 2398 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2399 NULL) { 2400 kstat_zone_remove(ksp, zoneid); 2401 kstat_rele(ksp); 2402 } 2403 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2404 kstat_zone_remove(ksp, zoneid); 2405 kstat_rele(ksp); 2406 } 2407 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2408 kstat_zone_remove(ksp, zoneid); 2409 kstat_rele(ksp); 2410 } 2411 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2412 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2413 != NULL) { 2414 kstat_zone_remove(ksp, zoneid); 2415 kstat_rele(ksp); 2416 } 2417 } 2418 2419 /* 2420 * Update relevant kstats such that cpu is no longer visible to processes 2421 * executing in specified zone. 2422 */ 2423 void 2424 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2425 { 2426 if (cpu_is_active(cp)) 2427 cpu_visibility_offline(cp, zone); 2428 cpu_visibility_unconfigure(cp, zone); 2429 } 2430 2431 /* 2432 * Bind a thread to a CPU as requested. 2433 */ 2434 int 2435 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2436 int *error) 2437 { 2438 processorid_t binding; 2439 cpu_t *cp = NULL; 2440 2441 ASSERT(MUTEX_HELD(&cpu_lock)); 2442 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2443 2444 thread_lock(tp); 2445 2446 /* 2447 * Record old binding, but change the obind, which was initialized 2448 * to PBIND_NONE, only if this thread has a binding. This avoids 2449 * reporting PBIND_NONE for a process when some LWPs are bound. 2450 */ 2451 binding = tp->t_bind_cpu; 2452 if (binding != PBIND_NONE) 2453 *obind = binding; /* record old binding */ 2454 2455 switch (bind) { 2456 case PBIND_QUERY: 2457 /* Just return the old binding */ 2458 thread_unlock(tp); 2459 return (0); 2460 2461 case PBIND_QUERY_TYPE: 2462 /* Return the binding type */ 2463 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD; 2464 thread_unlock(tp); 2465 return (0); 2466 2467 case PBIND_SOFT: 2468 /* 2469 * Set soft binding for this thread and return the actual 2470 * binding 2471 */ 2472 TB_CPU_SOFT_SET(tp); 2473 thread_unlock(tp); 2474 return (0); 2475 2476 case PBIND_HARD: 2477 /* 2478 * Set hard binding for this thread and return the actual 2479 * binding 2480 */ 2481 TB_CPU_HARD_SET(tp); 2482 thread_unlock(tp); 2483 return (0); 2484 2485 default: 2486 break; 2487 } 2488 2489 /* 2490 * If this thread/LWP cannot be bound because of permission 2491 * problems, just note that and return success so that the 2492 * other threads/LWPs will be bound. This is the way 2493 * processor_bind() is defined to work. 2494 * 2495 * Binding will get EPERM if the thread is of system class 2496 * or hasprocperm() fails. 2497 */ 2498 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2499 *error = EPERM; 2500 thread_unlock(tp); 2501 return (0); 2502 } 2503 2504 binding = bind; 2505 if (binding != PBIND_NONE) { 2506 cp = cpu_get((processorid_t)binding); 2507 /* 2508 * Make sure binding is valid and is in right partition. 2509 */ 2510 if (cp == NULL || tp->t_cpupart != cp->cpu_part) { 2511 *error = EINVAL; 2512 thread_unlock(tp); 2513 return (0); 2514 } 2515 } 2516 tp->t_bind_cpu = binding; /* set new binding */ 2517 2518 /* 2519 * If there is no system-set reason for affinity, set 2520 * the t_bound_cpu field to reflect the binding. 2521 */ 2522 if (tp->t_affinitycnt == 0) { 2523 if (binding == PBIND_NONE) { 2524 /* 2525 * We may need to adjust disp_max_unbound_pri 2526 * since we're becoming unbound. 2527 */ 2528 disp_adjust_unbound_pri(tp); 2529 2530 tp->t_bound_cpu = NULL; /* set new binding */ 2531 2532 /* 2533 * Move thread to lgroup with strongest affinity 2534 * after unbinding 2535 */ 2536 if (tp->t_lgrp_affinity) 2537 lgrp_move_thread(tp, 2538 lgrp_choose(tp, tp->t_cpupart), 1); 2539 2540 if (tp->t_state == TS_ONPROC && 2541 tp->t_cpu->cpu_part != tp->t_cpupart) 2542 cpu_surrender(tp); 2543 } else { 2544 lpl_t *lpl; 2545 2546 tp->t_bound_cpu = cp; 2547 ASSERT(cp->cpu_lpl != NULL); 2548 2549 /* 2550 * Set home to lgroup with most affinity containing CPU 2551 * that thread is being bound or minimum bounding 2552 * lgroup if no affinities set 2553 */ 2554 if (tp->t_lgrp_affinity) 2555 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2556 LGRP_NONE, B_FALSE); 2557 else 2558 lpl = cp->cpu_lpl; 2559 2560 if (tp->t_lpl != lpl) { 2561 /* can't grab cpu_lock */ 2562 lgrp_move_thread(tp, lpl, 1); 2563 } 2564 2565 /* 2566 * Make the thread switch to the bound CPU. 2567 * If the thread is runnable, we need to 2568 * requeue it even if t_cpu is already set 2569 * to the right CPU, since it may be on a 2570 * kpreempt queue and need to move to a local 2571 * queue. We could check t_disp_queue to 2572 * avoid unnecessary overhead if it's already 2573 * on the right queue, but since this isn't 2574 * a performance-critical operation it doesn't 2575 * seem worth the extra code and complexity. 2576 * 2577 * If the thread is weakbound to the cpu then it will 2578 * resist the new binding request until the weak 2579 * binding drops. The cpu_surrender or requeueing 2580 * below could be skipped in such cases (since it 2581 * will have no effect), but that would require 2582 * thread_allowmigrate to acquire thread_lock so 2583 * we'll take the very occasional hit here instead. 2584 */ 2585 if (tp->t_state == TS_ONPROC) { 2586 cpu_surrender(tp); 2587 } else if (tp->t_state == TS_RUN) { 2588 cpu_t *ocp = tp->t_cpu; 2589 2590 (void) dispdeq(tp); 2591 setbackdq(tp); 2592 /* 2593 * Either on the bound CPU's disp queue now, 2594 * or swapped out or on the swap queue. 2595 */ 2596 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2597 tp->t_weakbound_cpu == ocp || 2598 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2599 != TS_LOAD); 2600 } 2601 } 2602 } 2603 2604 /* 2605 * Our binding has changed; set TP_CHANGEBIND. 2606 */ 2607 tp->t_proc_flag |= TP_CHANGEBIND; 2608 aston(tp); 2609 2610 thread_unlock(tp); 2611 2612 return (0); 2613 } 2614 2615 #if CPUSET_WORDS > 1 2616 2617 /* 2618 * Functions for implementing cpuset operations when a cpuset is more 2619 * than one word. On platforms where a cpuset is a single word these 2620 * are implemented as macros in cpuvar.h. 2621 */ 2622 2623 void 2624 cpuset_all(cpuset_t *s) 2625 { 2626 int i; 2627 2628 for (i = 0; i < CPUSET_WORDS; i++) 2629 s->cpub[i] = ~0UL; 2630 } 2631 2632 void 2633 cpuset_all_but(cpuset_t *s, uint_t cpu) 2634 { 2635 cpuset_all(s); 2636 CPUSET_DEL(*s, cpu); 2637 } 2638 2639 void 2640 cpuset_only(cpuset_t *s, uint_t cpu) 2641 { 2642 CPUSET_ZERO(*s); 2643 CPUSET_ADD(*s, cpu); 2644 } 2645 2646 int 2647 cpuset_isnull(cpuset_t *s) 2648 { 2649 int i; 2650 2651 for (i = 0; i < CPUSET_WORDS; i++) 2652 if (s->cpub[i] != 0) 2653 return (0); 2654 return (1); 2655 } 2656 2657 int 2658 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2659 { 2660 int i; 2661 2662 for (i = 0; i < CPUSET_WORDS; i++) 2663 if (s1->cpub[i] != s2->cpub[i]) 2664 return (0); 2665 return (1); 2666 } 2667 2668 uint_t 2669 cpuset_find(cpuset_t *s) 2670 { 2671 2672 uint_t i; 2673 uint_t cpu = (uint_t)-1; 2674 2675 /* 2676 * Find a cpu in the cpuset 2677 */ 2678 for (i = 0; i < CPUSET_WORDS; i++) { 2679 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2680 if (cpu != (uint_t)-1) { 2681 cpu += i * BT_NBIPUL; 2682 break; 2683 } 2684 } 2685 return (cpu); 2686 } 2687 2688 void 2689 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2690 { 2691 int i, j; 2692 uint_t bit; 2693 2694 /* 2695 * First, find the smallest cpu id in the set. 2696 */ 2697 for (i = 0; i < CPUSET_WORDS; i++) { 2698 if (s->cpub[i] != 0) { 2699 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2700 ASSERT(bit != (uint_t)-1); 2701 *smallestid = bit + (i * BT_NBIPUL); 2702 2703 /* 2704 * Now find the largest cpu id in 2705 * the set and return immediately. 2706 * Done in an inner loop to avoid 2707 * having to break out of the first 2708 * loop. 2709 */ 2710 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2711 if (s->cpub[j] != 0) { 2712 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2713 ASSERT(bit != (uint_t)-1); 2714 *largestid = bit + (j * BT_NBIPUL); 2715 ASSERT(*largestid >= *smallestid); 2716 return; 2717 } 2718 } 2719 2720 /* 2721 * If this code is reached, a 2722 * smallestid was found, but not a 2723 * largestid. The cpuset must have 2724 * been changed during the course 2725 * of this function call. 2726 */ 2727 ASSERT(0); 2728 } 2729 } 2730 *smallestid = *largestid = CPUSET_NOTINSET; 2731 } 2732 2733 #endif /* CPUSET_WORDS */ 2734 2735 /* 2736 * Unbind threads bound to specified CPU. 2737 * 2738 * If `unbind_all_threads' is true, unbind all user threads bound to a given 2739 * CPU. Otherwise unbind all soft-bound user threads. 2740 */ 2741 int 2742 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads) 2743 { 2744 processorid_t obind; 2745 kthread_t *tp; 2746 int ret = 0; 2747 proc_t *pp; 2748 int err, berr = 0; 2749 2750 ASSERT(MUTEX_HELD(&cpu_lock)); 2751 2752 mutex_enter(&pidlock); 2753 for (pp = practive; pp != NULL; pp = pp->p_next) { 2754 mutex_enter(&pp->p_lock); 2755 tp = pp->p_tlist; 2756 /* 2757 * Skip zombies, kernel processes, and processes in 2758 * other zones, if called from a non-global zone. 2759 */ 2760 if (tp == NULL || (pp->p_flag & SSYS) || 2761 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2762 mutex_exit(&pp->p_lock); 2763 continue; 2764 } 2765 do { 2766 if (tp->t_bind_cpu != cpu) 2767 continue; 2768 /* 2769 * Skip threads with hard binding when 2770 * `unbind_all_threads' is not specified. 2771 */ 2772 if (!unbind_all_threads && TB_CPU_IS_HARD(tp)) 2773 continue; 2774 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2775 if (ret == 0) 2776 ret = err; 2777 } while ((tp = tp->t_forw) != pp->p_tlist); 2778 mutex_exit(&pp->p_lock); 2779 } 2780 mutex_exit(&pidlock); 2781 if (ret == 0) 2782 ret = berr; 2783 return (ret); 2784 } 2785 2786 2787 /* 2788 * Destroy all remaining bound threads on a cpu. 2789 */ 2790 void 2791 cpu_destroy_bound_threads(cpu_t *cp) 2792 { 2793 extern id_t syscid; 2794 register kthread_id_t t, tlist, tnext; 2795 2796 /* 2797 * Destroy all remaining bound threads on the cpu. This 2798 * should include both the interrupt threads and the idle thread. 2799 * This requires some care, since we need to traverse the 2800 * thread list with the pidlock mutex locked, but thread_free 2801 * also locks the pidlock mutex. So, we collect the threads 2802 * we're going to reap in a list headed by "tlist", then we 2803 * unlock the pidlock mutex and traverse the tlist list, 2804 * doing thread_free's on the thread's. Simple, n'est pas? 2805 * Also, this depends on thread_free not mucking with the 2806 * t_next and t_prev links of the thread. 2807 */ 2808 2809 if ((t = curthread) != NULL) { 2810 2811 tlist = NULL; 2812 mutex_enter(&pidlock); 2813 do { 2814 tnext = t->t_next; 2815 if (t->t_bound_cpu == cp) { 2816 2817 /* 2818 * We've found a bound thread, carefully unlink 2819 * it out of the thread list, and add it to 2820 * our "tlist". We "know" we don't have to 2821 * worry about unlinking curthread (the thread 2822 * that is executing this code). 2823 */ 2824 t->t_next->t_prev = t->t_prev; 2825 t->t_prev->t_next = t->t_next; 2826 t->t_next = tlist; 2827 tlist = t; 2828 ASSERT(t->t_cid == syscid); 2829 /* wake up anyone blocked in thread_join */ 2830 cv_broadcast(&t->t_joincv); 2831 /* 2832 * t_lwp set by interrupt threads and not 2833 * cleared. 2834 */ 2835 t->t_lwp = NULL; 2836 /* 2837 * Pause and idle threads always have 2838 * t_state set to TS_ONPROC. 2839 */ 2840 t->t_state = TS_FREE; 2841 t->t_prev = NULL; /* Just in case */ 2842 } 2843 2844 } while ((t = tnext) != curthread); 2845 2846 mutex_exit(&pidlock); 2847 2848 mutex_sync(); 2849 for (t = tlist; t != NULL; t = tnext) { 2850 tnext = t->t_next; 2851 thread_free(t); 2852 } 2853 } 2854 } 2855 2856 /* 2857 * Update the cpu_supp_freqs of this cpu. This information is returned 2858 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then 2859 * maintain the kstat data size. 2860 */ 2861 void 2862 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2863 { 2864 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2865 const char *lfreqs = clkstr; 2866 boolean_t kstat_exists = B_FALSE; 2867 kstat_t *ksp; 2868 size_t len; 2869 2870 /* 2871 * A NULL pointer means we only support one speed. 2872 */ 2873 if (freqs == NULL) 2874 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2875 cp->cpu_curr_clock); 2876 else 2877 lfreqs = freqs; 2878 2879 /* 2880 * Make sure the frequency doesn't change while a snapshot is 2881 * going on. Of course, we only need to worry about this if 2882 * the kstat exists. 2883 */ 2884 if ((ksp = cp->cpu_info_kstat) != NULL) { 2885 mutex_enter(ksp->ks_lock); 2886 kstat_exists = B_TRUE; 2887 } 2888 2889 /* 2890 * Free any previously allocated string and if the kstat 2891 * already exists, then update its data size. 2892 */ 2893 if (cp->cpu_supp_freqs != NULL) { 2894 len = strlen(cp->cpu_supp_freqs) + 1; 2895 kmem_free(cp->cpu_supp_freqs, len); 2896 if (kstat_exists) 2897 ksp->ks_data_size -= len; 2898 } 2899 2900 /* 2901 * Allocate the new string and set the pointer. 2902 */ 2903 len = strlen(lfreqs) + 1; 2904 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP); 2905 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2906 2907 /* 2908 * If the kstat already exists then update the data size and 2909 * free the lock. 2910 */ 2911 if (kstat_exists) { 2912 ksp->ks_data_size += len; 2913 mutex_exit(ksp->ks_lock); 2914 } 2915 } 2916 2917 /* 2918 * processor_info(2) and p_online(2) status support functions 2919 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2920 * for use in communicating processor state information to userland. Kernel 2921 * subsystems should only be using the cpu_flags value directly. Subsystems 2922 * modifying cpu_flags should record the state change via a call to the 2923 * cpu_set_state(). 2924 */ 2925 2926 /* 2927 * Update the pi_state of this CPU. This function provides the CPU status for 2928 * the information returned by processor_info(2). 2929 */ 2930 void 2931 cpu_set_state(cpu_t *cpu) 2932 { 2933 ASSERT(MUTEX_HELD(&cpu_lock)); 2934 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2935 cpu->cpu_state_begin = gethrestime_sec(); 2936 pool_cpu_mod = gethrtime(); 2937 } 2938 2939 /* 2940 * Return offline/online/other status for the indicated CPU. Use only for 2941 * communication with user applications; cpu_flags provides the in-kernel 2942 * interface. 2943 */ 2944 int 2945 cpu_get_state(cpu_t *cpu) 2946 { 2947 ASSERT(MUTEX_HELD(&cpu_lock)); 2948 if (cpu->cpu_flags & CPU_POWEROFF) 2949 return (P_POWEROFF); 2950 else if (cpu->cpu_flags & CPU_FAULTED) 2951 return (P_FAULTED); 2952 else if (cpu->cpu_flags & CPU_SPARE) 2953 return (P_SPARE); 2954 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2955 return (P_OFFLINE); 2956 else if (cpu->cpu_flags & CPU_ENABLE) 2957 return (P_ONLINE); 2958 else 2959 return (P_NOINTR); 2960 } 2961 2962 /* 2963 * Return processor_info(2) state as a string. 2964 */ 2965 const char * 2966 cpu_get_state_str(cpu_t *cpu) 2967 { 2968 const char *string; 2969 2970 switch (cpu_get_state(cpu)) { 2971 case P_ONLINE: 2972 string = PS_ONLINE; 2973 break; 2974 case P_POWEROFF: 2975 string = PS_POWEROFF; 2976 break; 2977 case P_NOINTR: 2978 string = PS_NOINTR; 2979 break; 2980 case P_SPARE: 2981 string = PS_SPARE; 2982 break; 2983 case P_FAULTED: 2984 string = PS_FAULTED; 2985 break; 2986 case P_OFFLINE: 2987 string = PS_OFFLINE; 2988 break; 2989 default: 2990 string = "unknown"; 2991 break; 2992 } 2993 return (string); 2994 } 2995 2996 /* 2997 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2998 * kstats, respectively. This is done when a CPU is initialized or placed 2999 * online via p_online(2). 3000 */ 3001 static void 3002 cpu_stats_kstat_create(cpu_t *cp) 3003 { 3004 int instance = cp->cpu_id; 3005 char *module = "cpu"; 3006 char *class = "misc"; 3007 kstat_t *ksp; 3008 zoneid_t zoneid; 3009 3010 ASSERT(MUTEX_HELD(&cpu_lock)); 3011 3012 if (pool_pset_enabled()) 3013 zoneid = GLOBAL_ZONEID; 3014 else 3015 zoneid = ALL_ZONES; 3016 /* 3017 * Create named kstats 3018 */ 3019 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 3020 ksp = kstat_create_zone(module, instance, (name), class, \ 3021 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 3022 zoneid); \ 3023 if (ksp != NULL) { \ 3024 ksp->ks_private = cp; \ 3025 ksp->ks_update = (update_func); \ 3026 kstat_install(ksp); \ 3027 } else \ 3028 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 3029 module, instance, (name)); 3030 3031 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 3032 cpu_sys_stats_ks_update); 3033 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 3034 cpu_vm_stats_ks_update); 3035 3036 /* 3037 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 3038 */ 3039 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 3040 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 3041 if (ksp != NULL) { 3042 ksp->ks_update = cpu_stat_ks_update; 3043 ksp->ks_private = cp; 3044 kstat_install(ksp); 3045 } 3046 } 3047 3048 static void 3049 cpu_stats_kstat_destroy(cpu_t *cp) 3050 { 3051 char ks_name[KSTAT_STRLEN]; 3052 3053 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 3054 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 3055 3056 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 3057 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 3058 } 3059 3060 static int 3061 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 3062 { 3063 cpu_t *cp = (cpu_t *)ksp->ks_private; 3064 struct cpu_sys_stats_ks_data *csskd; 3065 cpu_sys_stats_t *css; 3066 hrtime_t msnsecs[NCMSTATES]; 3067 int i; 3068 3069 if (rw == KSTAT_WRITE) 3070 return (EACCES); 3071 3072 csskd = ksp->ks_data; 3073 css = &cp->cpu_stats.sys; 3074 3075 /* 3076 * Read CPU mstate, but compare with the last values we 3077 * received to make sure that the returned kstats never 3078 * decrease. 3079 */ 3080 3081 get_cpu_mstate(cp, msnsecs); 3082 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 3083 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 3084 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 3085 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 3086 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 3087 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 3088 3089 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3090 sizeof (cpu_sys_stats_ks_data_template)); 3091 3092 csskd->cpu_ticks_wait.value.ui64 = 0; 3093 csskd->wait_ticks_io.value.ui64 = 0; 3094 3095 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3096 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3097 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3098 csskd->cpu_ticks_idle.value.ui64 = 3099 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3100 csskd->cpu_ticks_user.value.ui64 = 3101 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3102 csskd->cpu_ticks_kernel.value.ui64 = 3103 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3104 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast; 3105 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload; 3106 csskd->bread.value.ui64 = css->bread; 3107 csskd->bwrite.value.ui64 = css->bwrite; 3108 csskd->lread.value.ui64 = css->lread; 3109 csskd->lwrite.value.ui64 = css->lwrite; 3110 csskd->phread.value.ui64 = css->phread; 3111 csskd->phwrite.value.ui64 = css->phwrite; 3112 csskd->pswitch.value.ui64 = css->pswitch; 3113 csskd->trap.value.ui64 = css->trap; 3114 csskd->intr.value.ui64 = 0; 3115 for (i = 0; i < PIL_MAX; i++) 3116 csskd->intr.value.ui64 += css->intr[i]; 3117 csskd->syscall.value.ui64 = css->syscall; 3118 csskd->sysread.value.ui64 = css->sysread; 3119 csskd->syswrite.value.ui64 = css->syswrite; 3120 csskd->sysfork.value.ui64 = css->sysfork; 3121 csskd->sysvfork.value.ui64 = css->sysvfork; 3122 csskd->sysexec.value.ui64 = css->sysexec; 3123 csskd->readch.value.ui64 = css->readch; 3124 csskd->writech.value.ui64 = css->writech; 3125 csskd->rcvint.value.ui64 = css->rcvint; 3126 csskd->xmtint.value.ui64 = css->xmtint; 3127 csskd->mdmint.value.ui64 = css->mdmint; 3128 csskd->rawch.value.ui64 = css->rawch; 3129 csskd->canch.value.ui64 = css->canch; 3130 csskd->outch.value.ui64 = css->outch; 3131 csskd->msg.value.ui64 = css->msg; 3132 csskd->sema.value.ui64 = css->sema; 3133 csskd->namei.value.ui64 = css->namei; 3134 csskd->ufsiget.value.ui64 = css->ufsiget; 3135 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3136 csskd->ufsipage.value.ui64 = css->ufsipage; 3137 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3138 csskd->procovf.value.ui64 = css->procovf; 3139 csskd->intrthread.value.ui64 = 0; 3140 for (i = 0; i < LOCK_LEVEL - 1; i++) 3141 csskd->intrthread.value.ui64 += css->intr[i]; 3142 csskd->intrblk.value.ui64 = css->intrblk; 3143 csskd->intrunpin.value.ui64 = css->intrunpin; 3144 csskd->idlethread.value.ui64 = css->idlethread; 3145 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3146 csskd->nthreads.value.ui64 = css->nthreads; 3147 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3148 csskd->xcalls.value.ui64 = css->xcalls; 3149 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3150 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3151 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3152 csskd->modload.value.ui64 = css->modload; 3153 csskd->modunload.value.ui64 = css->modunload; 3154 csskd->bawrite.value.ui64 = css->bawrite; 3155 csskd->iowait.value.ui64 = css->iowait; 3156 3157 return (0); 3158 } 3159 3160 static int 3161 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3162 { 3163 cpu_t *cp = (cpu_t *)ksp->ks_private; 3164 struct cpu_vm_stats_ks_data *cvskd; 3165 cpu_vm_stats_t *cvs; 3166 3167 if (rw == KSTAT_WRITE) 3168 return (EACCES); 3169 3170 cvs = &cp->cpu_stats.vm; 3171 cvskd = ksp->ks_data; 3172 3173 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3174 sizeof (cpu_vm_stats_ks_data_template)); 3175 cvskd->pgrec.value.ui64 = cvs->pgrec; 3176 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3177 cvskd->pgin.value.ui64 = cvs->pgin; 3178 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3179 cvskd->pgout.value.ui64 = cvs->pgout; 3180 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3181 cvskd->swapin.value.ui64 = cvs->swapin; 3182 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3183 cvskd->swapout.value.ui64 = cvs->swapout; 3184 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3185 cvskd->zfod.value.ui64 = cvs->zfod; 3186 cvskd->dfree.value.ui64 = cvs->dfree; 3187 cvskd->scan.value.ui64 = cvs->scan; 3188 cvskd->rev.value.ui64 = cvs->rev; 3189 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3190 cvskd->as_fault.value.ui64 = cvs->as_fault; 3191 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3192 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3193 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3194 cvskd->softlock.value.ui64 = cvs->softlock; 3195 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3196 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3197 cvskd->execpgin.value.ui64 = cvs->execpgin; 3198 cvskd->execpgout.value.ui64 = cvs->execpgout; 3199 cvskd->execfree.value.ui64 = cvs->execfree; 3200 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3201 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3202 cvskd->anonfree.value.ui64 = cvs->anonfree; 3203 cvskd->fspgin.value.ui64 = cvs->fspgin; 3204 cvskd->fspgout.value.ui64 = cvs->fspgout; 3205 cvskd->fsfree.value.ui64 = cvs->fsfree; 3206 3207 return (0); 3208 } 3209 3210 static int 3211 cpu_stat_ks_update(kstat_t *ksp, int rw) 3212 { 3213 cpu_stat_t *cso; 3214 cpu_t *cp; 3215 int i; 3216 hrtime_t msnsecs[NCMSTATES]; 3217 3218 cso = (cpu_stat_t *)ksp->ks_data; 3219 cp = (cpu_t *)ksp->ks_private; 3220 3221 if (rw == KSTAT_WRITE) 3222 return (EACCES); 3223 3224 /* 3225 * Read CPU mstate, but compare with the last values we 3226 * received to make sure that the returned kstats never 3227 * decrease. 3228 */ 3229 3230 get_cpu_mstate(cp, msnsecs); 3231 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3232 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3233 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3234 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3235 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3236 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3237 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3238 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3239 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3240 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3241 cso->cpu_sysinfo.wait[W_IO] = 0; 3242 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3243 cso->cpu_sysinfo.wait[W_PIO] = 0; 3244 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3245 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3246 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3247 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3248 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3249 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3250 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3251 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3252 cso->cpu_sysinfo.intr = 0; 3253 for (i = 0; i < PIL_MAX; i++) 3254 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3255 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3256 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3257 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3258 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3259 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3260 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3261 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3262 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3263 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3264 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3265 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3266 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3267 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3268 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3269 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3270 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3271 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3272 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3273 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3274 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3275 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3276 cso->cpu_sysinfo.inodeovf = 0; 3277 cso->cpu_sysinfo.fileovf = 0; 3278 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3279 cso->cpu_sysinfo.intrthread = 0; 3280 for (i = 0; i < LOCK_LEVEL - 1; i++) 3281 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3282 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3283 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3284 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3285 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3286 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3287 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3288 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3289 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3290 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3291 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3292 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3293 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3294 cso->cpu_sysinfo.rw_enters = 0; 3295 cso->cpu_sysinfo.win_uo_cnt = 0; 3296 cso->cpu_sysinfo.win_uu_cnt = 0; 3297 cso->cpu_sysinfo.win_so_cnt = 0; 3298 cso->cpu_sysinfo.win_su_cnt = 0; 3299 cso->cpu_sysinfo.win_suo_cnt = 0; 3300 3301 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3302 cso->cpu_syswait.swap = 0; 3303 cso->cpu_syswait.physio = 0; 3304 3305 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3306 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3307 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3308 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3309 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3310 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3311 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3312 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3313 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3314 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3315 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3316 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3317 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3318 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3319 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3320 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3321 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3322 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3323 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3324 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3325 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3326 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3327 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3328 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3329 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3330 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3331 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3332 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3333 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3334 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3335 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3336 3337 return (0); 3338 } 3339