1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/thread.h> 28 #include <sys/proc.h> 29 #include <sys/debug.h> 30 #include <sys/cmn_err.h> 31 #include <sys/systm.h> 32 #include <sys/sobject.h> 33 #include <sys/sleepq.h> 34 #include <sys/cpuvar.h> 35 #include <sys/condvar.h> 36 #include <sys/condvar_impl.h> 37 #include <sys/schedctl.h> 38 #include <sys/procfs.h> 39 #include <sys/sdt.h> 40 #include <sys/callo.h> 41 42 clock_t cv_timedwait_hires(kcondvar_t *, kmutex_t *, hrtime_t, hrtime_t, int); 43 44 /* 45 * CV_MAX_WAITERS is the maximum number of waiters we track; once 46 * the number becomes higher than that, we look at the sleepq to 47 * see whether there are *really* any waiters. 48 */ 49 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 50 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 51 52 /* 53 * Threads don't "own" condition variables. 54 */ 55 /* ARGSUSED */ 56 static kthread_t * 57 cv_owner(void *cvp) 58 { 59 return (NULL); 60 } 61 62 /* 63 * Unsleep a thread that's blocked on a condition variable. 64 */ 65 static void 66 cv_unsleep(kthread_t *t) 67 { 68 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 69 sleepq_head_t *sqh = SQHASH(cvp); 70 71 ASSERT(THREAD_LOCK_HELD(t)); 72 73 if (cvp == NULL) 74 panic("cv_unsleep: thread %p not on sleepq %p", 75 (void *)t, (void *)sqh); 76 DTRACE_SCHED1(wakeup, kthread_t *, t); 77 sleepq_unsleep(t); 78 if (cvp->cv_waiters != CV_MAX_WAITERS) 79 cvp->cv_waiters--; 80 disp_lock_exit_high(&sqh->sq_lock); 81 CL_SETRUN(t); 82 } 83 84 /* 85 * Change the priority of a thread that's blocked on a condition variable. 86 */ 87 static void 88 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 89 { 90 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 91 sleepq_t *sqp = t->t_sleepq; 92 93 ASSERT(THREAD_LOCK_HELD(t)); 94 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 95 96 if (cvp == NULL) 97 panic("cv_change_pri: %p not on sleep queue", (void *)t); 98 sleepq_dequeue(t); 99 *t_prip = pri; 100 sleepq_insert(sqp, t); 101 } 102 103 /* 104 * The sobj_ops vector exports a set of functions needed when a thread 105 * is asleep on a synchronization object of this type. 106 */ 107 static sobj_ops_t cv_sobj_ops = { 108 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 109 }; 110 111 /* ARGSUSED */ 112 void 113 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 114 { 115 ((condvar_impl_t *)cvp)->cv_waiters = 0; 116 } 117 118 /* 119 * cv_destroy is not currently needed, but is part of the DDI. 120 * This is in case cv_init ever needs to allocate something for a cv. 121 */ 122 /* ARGSUSED */ 123 void 124 cv_destroy(kcondvar_t *cvp) 125 { 126 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 127 } 128 129 /* 130 * The cv_block() function blocks a thread on a condition variable 131 * by putting it in a hashed sleep queue associated with the 132 * synchronization object. 133 * 134 * Threads are taken off the hashed sleep queues via calls to 135 * cv_signal(), cv_broadcast(), or cv_unsleep(). 136 */ 137 static void 138 cv_block(condvar_impl_t *cvp) 139 { 140 kthread_t *t = curthread; 141 klwp_t *lwp = ttolwp(t); 142 sleepq_head_t *sqh; 143 144 ASSERT(THREAD_LOCK_HELD(t)); 145 ASSERT(t != CPU->cpu_idle_thread); 146 ASSERT(CPU_ON_INTR(CPU) == 0); 147 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 148 ASSERT(t->t_state == TS_ONPROC); 149 150 t->t_schedflag &= ~TS_SIGNALLED; 151 CL_SLEEP(t); /* assign kernel priority */ 152 t->t_wchan = (caddr_t)cvp; 153 t->t_sobj_ops = &cv_sobj_ops; 154 DTRACE_SCHED(sleep); 155 156 /* 157 * The check for t_intr is to avoid doing the 158 * account for an interrupt thread on the still-pinned 159 * lwp's statistics. 160 */ 161 if (lwp != NULL && t->t_intr == NULL) { 162 lwp->lwp_ru.nvcsw++; 163 (void) new_mstate(t, LMS_SLEEP); 164 } 165 166 sqh = SQHASH(cvp); 167 disp_lock_enter_high(&sqh->sq_lock); 168 if (cvp->cv_waiters < CV_MAX_WAITERS) 169 cvp->cv_waiters++; 170 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 171 THREAD_SLEEP(t, &sqh->sq_lock); 172 sleepq_insert(&sqh->sq_queue, t); 173 /* 174 * THREAD_SLEEP() moves curthread->t_lockp to point to the 175 * lock sqh->sq_lock. This lock is later released by the caller 176 * when it calls thread_unlock() on curthread. 177 */ 178 } 179 180 #define cv_block_sig(t, cvp) \ 181 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 182 183 /* 184 * Block on the indicated condition variable and release the 185 * associated kmutex while blocked. 186 */ 187 void 188 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 189 { 190 if (panicstr) 191 return; 192 193 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 194 thread_lock(curthread); /* lock the thread */ 195 cv_block((condvar_impl_t *)cvp); 196 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 197 mutex_exit(mp); 198 swtch(); 199 mutex_enter(mp); 200 } 201 202 static void 203 cv_wakeup(void *arg) 204 { 205 kthread_t *t = arg; 206 207 /* 208 * This mutex is acquired and released in order to make sure that 209 * the wakeup does not happen before the block itself happens. 210 */ 211 mutex_enter(&t->t_wait_mutex); 212 mutex_exit(&t->t_wait_mutex); 213 setrun(t); 214 } 215 216 /* 217 * Same as cv_wait except the thread will unblock at 'tim' 218 * (an absolute time) if it hasn't already unblocked. 219 * 220 * Returns the amount of time left from the original 'tim' value 221 * when it was unblocked. 222 */ 223 clock_t 224 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 225 { 226 hrtime_t hrtim; 227 228 if (tim <= lbolt) 229 return (-1); 230 231 hrtim = TICK_TO_NSEC(tim - lbolt); 232 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 233 } 234 235 clock_t 236 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 237 hrtime_t res, int flag) 238 { 239 kthread_t *t = curthread; 240 callout_id_t id; 241 clock_t timeleft; 242 hrtime_t limit; 243 int signalled; 244 245 if (panicstr) 246 return (-1); 247 248 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 249 if (tim <= limit) 250 return (-1); 251 mutex_enter(&t->t_wait_mutex); 252 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 253 tim, res, flag); 254 thread_lock(t); /* lock the thread */ 255 cv_block((condvar_impl_t *)cvp); 256 thread_unlock_nopreempt(t); 257 mutex_exit(&t->t_wait_mutex); 258 mutex_exit(mp); 259 swtch(); 260 signalled = (t->t_schedflag & TS_SIGNALLED); 261 /* 262 * Get the time left. untimeout() returns -1 if the timeout has 263 * occured or the time remaining. If the time remaining is zero, 264 * the timeout has occured between when we were awoken and 265 * we called untimeout. We will treat this as if the timeout 266 * has occured and set timeleft to -1. 267 */ 268 timeleft = untimeout_default(id, 0); 269 mutex_enter(mp); 270 if (timeleft <= 0) { 271 timeleft = -1; 272 if (signalled) /* avoid consuming the cv_signal() */ 273 cv_signal(cvp); 274 } 275 return (timeleft); 276 } 277 278 int 279 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 280 { 281 kthread_t *t = curthread; 282 proc_t *p = ttoproc(t); 283 klwp_t *lwp = ttolwp(t); 284 int cancel_pending; 285 int rval = 1; 286 int signalled = 0; 287 288 if (panicstr) 289 return (rval); 290 291 /* 292 * The check for t_intr is to catch an interrupt thread 293 * that has not yet unpinned the thread underneath. 294 */ 295 if (lwp == NULL || t->t_intr) { 296 cv_wait(cvp, mp); 297 return (rval); 298 } 299 300 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 301 cancel_pending = schedctl_cancel_pending(); 302 lwp->lwp_asleep = 1; 303 lwp->lwp_sysabort = 0; 304 thread_lock(t); 305 cv_block_sig(t, (condvar_impl_t *)cvp); 306 thread_unlock_nopreempt(t); 307 mutex_exit(mp); 308 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 309 setrun(t); 310 /* ASSERT(no locks are held) */ 311 swtch(); 312 signalled = (t->t_schedflag & TS_SIGNALLED); 313 t->t_flag &= ~T_WAKEABLE; 314 mutex_enter(mp); 315 if (ISSIG_PENDING(t, lwp, p)) { 316 mutex_exit(mp); 317 if (issig(FORREAL)) 318 rval = 0; 319 mutex_enter(mp); 320 } 321 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 322 rval = 0; 323 if (rval != 0 && cancel_pending) { 324 schedctl_cancel_eintr(); 325 rval = 0; 326 } 327 lwp->lwp_asleep = 0; 328 lwp->lwp_sysabort = 0; 329 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 330 cv_signal(cvp); 331 return (rval); 332 } 333 334 static clock_t 335 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 336 hrtime_t res, int flag) 337 { 338 kthread_t *t = curthread; 339 proc_t *p = ttoproc(t); 340 klwp_t *lwp = ttolwp(t); 341 int cancel_pending = 0; 342 callout_id_t id; 343 clock_t rval = 1; 344 hrtime_t limit; 345 int signalled = 0; 346 347 if (panicstr) 348 return (rval); 349 350 /* 351 * If there is no lwp, then we don't need to wait for a signal. 352 * The check for t_intr is to catch an interrupt thread 353 * that has not yet unpinned the thread underneath. 354 */ 355 if (lwp == NULL || t->t_intr) 356 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 357 358 /* 359 * If tim is less than or equal to current hrtime, then the timeout 360 * has already occured. So just check to see if there is a signal 361 * pending. If so return 0 indicating that there is a signal pending. 362 * Else return -1 indicating that the timeout occured. No need to 363 * wait on anything. 364 */ 365 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 366 if (tim <= limit) { 367 lwp->lwp_asleep = 1; 368 lwp->lwp_sysabort = 0; 369 rval = -1; 370 goto out; 371 } 372 373 /* 374 * Set the timeout and wait. 375 */ 376 cancel_pending = schedctl_cancel_pending(); 377 mutex_enter(&t->t_wait_mutex); 378 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 379 tim, res, flag); 380 lwp->lwp_asleep = 1; 381 lwp->lwp_sysabort = 0; 382 thread_lock(t); 383 cv_block_sig(t, (condvar_impl_t *)cvp); 384 thread_unlock_nopreempt(t); 385 mutex_exit(&t->t_wait_mutex); 386 mutex_exit(mp); 387 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 388 setrun(t); 389 /* ASSERT(no locks are held) */ 390 swtch(); 391 signalled = (t->t_schedflag & TS_SIGNALLED); 392 t->t_flag &= ~T_WAKEABLE; 393 394 /* 395 * Untimeout the thread. untimeout() returns -1 if the timeout has 396 * occured or the time remaining. If the time remaining is zero, 397 * the timeout has occured between when we were awoken and 398 * we called untimeout. We will treat this as if the timeout 399 * has occured and set rval to -1. 400 */ 401 rval = untimeout_default(id, 0); 402 mutex_enter(mp); 403 if (rval <= 0) 404 rval = -1; 405 406 /* 407 * Check to see if a signal is pending. If so, regardless of whether 408 * or not we were awoken due to the signal, the signal is now pending 409 * and a return of 0 has the highest priority. 410 */ 411 out: 412 if (ISSIG_PENDING(t, lwp, p)) { 413 mutex_exit(mp); 414 if (issig(FORREAL)) 415 rval = 0; 416 mutex_enter(mp); 417 } 418 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 419 rval = 0; 420 if (rval != 0 && cancel_pending) { 421 schedctl_cancel_eintr(); 422 rval = 0; 423 } 424 lwp->lwp_asleep = 0; 425 lwp->lwp_sysabort = 0; 426 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 427 cv_signal(cvp); 428 return (rval); 429 } 430 431 /* 432 * Returns: 433 * Function result in order of precedence: 434 * 0 if a signal was received 435 * -1 if timeout occured 436 * >0 if awakened via cv_signal() or cv_broadcast(). 437 * (returns time remaining) 438 * 439 * cv_timedwait_sig() is now part of the DDI. 440 * 441 * This function is now just a wrapper for cv_timedwait_sig_hires(). 442 */ 443 clock_t 444 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 445 { 446 hrtime_t hrtim; 447 448 hrtim = TICK_TO_NSEC(tim - lbolt); 449 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 450 } 451 452 /* 453 * Like cv_wait_sig_swap but allows the caller to indicate (with a 454 * non-NULL sigret) that they will take care of signalling the cv 455 * after wakeup, if necessary. This is a vile hack that should only 456 * be used when no other option is available; almost all callers 457 * should just use cv_wait_sig_swap (which takes care of the cv_signal 458 * stuff automatically) instead. 459 */ 460 int 461 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 462 { 463 kthread_t *t = curthread; 464 proc_t *p = ttoproc(t); 465 klwp_t *lwp = ttolwp(t); 466 int cancel_pending; 467 int rval = 1; 468 int signalled = 0; 469 470 if (panicstr) 471 return (rval); 472 473 /* 474 * The check for t_intr is to catch an interrupt thread 475 * that has not yet unpinned the thread underneath. 476 */ 477 if (lwp == NULL || t->t_intr) { 478 cv_wait(cvp, mp); 479 return (rval); 480 } 481 482 cancel_pending = schedctl_cancel_pending(); 483 lwp->lwp_asleep = 1; 484 lwp->lwp_sysabort = 0; 485 thread_lock(t); 486 t->t_kpri_req = 0; /* don't need kernel priority */ 487 cv_block_sig(t, (condvar_impl_t *)cvp); 488 /* I can be swapped now */ 489 curthread->t_schedflag &= ~TS_DONT_SWAP; 490 thread_unlock_nopreempt(t); 491 mutex_exit(mp); 492 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 493 setrun(t); 494 /* ASSERT(no locks are held) */ 495 swtch(); 496 signalled = (t->t_schedflag & TS_SIGNALLED); 497 t->t_flag &= ~T_WAKEABLE; 498 /* TS_DONT_SWAP set by disp() */ 499 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 500 mutex_enter(mp); 501 if (ISSIG_PENDING(t, lwp, p)) { 502 mutex_exit(mp); 503 if (issig(FORREAL)) 504 rval = 0; 505 mutex_enter(mp); 506 } 507 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 508 rval = 0; 509 if (rval != 0 && cancel_pending) { 510 schedctl_cancel_eintr(); 511 rval = 0; 512 } 513 lwp->lwp_asleep = 0; 514 lwp->lwp_sysabort = 0; 515 if (rval == 0) { 516 if (sigret != NULL) 517 *sigret = signalled; /* just tell the caller */ 518 else if (signalled) 519 cv_signal(cvp); /* avoid consuming the cv_signal() */ 520 } 521 return (rval); 522 } 523 524 /* 525 * Same as cv_wait_sig but the thread can be swapped out while waiting. 526 * This should only be used when we know we aren't holding any locks. 527 */ 528 int 529 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 530 { 531 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 532 } 533 534 void 535 cv_signal(kcondvar_t *cvp) 536 { 537 condvar_impl_t *cp = (condvar_impl_t *)cvp; 538 539 /* make sure the cv_waiters field looks sane */ 540 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 541 if (cp->cv_waiters > 0) { 542 sleepq_head_t *sqh = SQHASH(cp); 543 disp_lock_enter(&sqh->sq_lock); 544 ASSERT(CPU_ON_INTR(CPU) == 0); 545 if (cp->cv_waiters & CV_WAITERS_MASK) { 546 kthread_t *t; 547 cp->cv_waiters--; 548 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 549 /* 550 * If cv_waiters is non-zero (and less than 551 * CV_MAX_WAITERS) there should be a thread 552 * in the queue. 553 */ 554 ASSERT(t != NULL); 555 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 556 cp->cv_waiters = 0; 557 } 558 disp_lock_exit(&sqh->sq_lock); 559 } 560 } 561 562 void 563 cv_broadcast(kcondvar_t *cvp) 564 { 565 condvar_impl_t *cp = (condvar_impl_t *)cvp; 566 567 /* make sure the cv_waiters field looks sane */ 568 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 569 if (cp->cv_waiters > 0) { 570 sleepq_head_t *sqh = SQHASH(cp); 571 disp_lock_enter(&sqh->sq_lock); 572 ASSERT(CPU_ON_INTR(CPU) == 0); 573 sleepq_wakeall_chan(&sqh->sq_queue, cp); 574 cp->cv_waiters = 0; 575 disp_lock_exit(&sqh->sq_lock); 576 } 577 } 578 579 /* 580 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 581 * for requests to stop, like cv_wait_sig() but without dealing with signals. 582 * This is a horrible kludge. It is evil. It is vile. It is swill. 583 * If your code has to call this function then your code is the same. 584 */ 585 void 586 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 587 { 588 kthread_t *t = curthread; 589 klwp_t *lwp = ttolwp(t); 590 proc_t *p = ttoproc(t); 591 callout_id_t id; 592 clock_t tim; 593 594 if (panicstr) 595 return; 596 597 /* 598 * If there is no lwp, then we don't need to eventually stop it 599 * The check for t_intr is to catch an interrupt thread 600 * that has not yet unpinned the thread underneath. 601 */ 602 if (lwp == NULL || t->t_intr) { 603 cv_wait(cvp, mp); 604 return; 605 } 606 607 /* 608 * Wakeup in wakeup_time milliseconds, i.e., human time. 609 */ 610 tim = lbolt + MSEC_TO_TICK(wakeup_time); 611 mutex_enter(&t->t_wait_mutex); 612 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 613 tim - lbolt); 614 thread_lock(t); /* lock the thread */ 615 cv_block((condvar_impl_t *)cvp); 616 thread_unlock_nopreempt(t); 617 mutex_exit(&t->t_wait_mutex); 618 mutex_exit(mp); 619 /* ASSERT(no locks are held); */ 620 swtch(); 621 (void) untimeout_default(id, 0); 622 623 /* 624 * Check for reasons to stop, if lwp_nostop is not true. 625 * See issig_forreal() for explanations of the various stops. 626 */ 627 mutex_enter(&p->p_lock); 628 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 629 /* 630 * Hold the lwp here for watchpoint manipulation. 631 */ 632 if (t->t_proc_flag & TP_PAUSE) { 633 stop(PR_SUSPENDED, SUSPEND_PAUSE); 634 continue; 635 } 636 /* 637 * System checkpoint. 638 */ 639 if (t->t_proc_flag & TP_CHKPT) { 640 stop(PR_CHECKPOINT, 0); 641 continue; 642 } 643 /* 644 * Honor fork1(), watchpoint activity (remapping a page), 645 * and lwp_suspend() requests. 646 */ 647 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 648 (t->t_proc_flag & TP_HOLDLWP)) { 649 stop(PR_SUSPENDED, SUSPEND_NORMAL); 650 continue; 651 } 652 /* 653 * Honor /proc requested stop. 654 */ 655 if (t->t_proc_flag & TP_PRSTOP) { 656 stop(PR_REQUESTED, 0); 657 } 658 /* 659 * If some lwp in the process has already stopped 660 * showing PR_JOBCONTROL, stop in sympathy with it. 661 */ 662 if (p->p_stopsig && t != p->p_agenttp) { 663 stop(PR_JOBCONTROL, p->p_stopsig); 664 continue; 665 } 666 break; 667 } 668 mutex_exit(&p->p_lock); 669 mutex_enter(mp); 670 } 671 672 /* 673 * Like cv_timedwait_sig(), but takes an absolute hires future time 674 * rather than a future time in clock ticks. Will not return showing 675 * that a timeout occurred until the future time is passed. 676 * If 'when' is a NULL pointer, no timeout will occur. 677 * Returns: 678 * Function result in order of precedence: 679 * 0 if a signal was received 680 * -1 if timeout occured 681 * >0 if awakened via cv_signal() or cv_broadcast() 682 * or by a spurious wakeup. 683 * (might return time remaining) 684 * As a special test, if someone abruptly resets the system time 685 * (but not through adjtime(2); drifting of the clock is allowed and 686 * expected [see timespectohz_adj()]), then we force a return of -1 687 * so the caller can return a premature timeout to the calling process 688 * so it can reevaluate the situation in light of the new system time. 689 * (The system clock has been reset if timecheck != timechanged.) 690 */ 691 int 692 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 693 timestruc_t *when, int timecheck) 694 { 695 timestruc_t now; 696 timestruc_t delta; 697 hrtime_t interval; 698 int rval; 699 700 if (when == NULL) 701 return (cv_wait_sig_swap(cvp, mp)); 702 703 gethrestime(&now); 704 delta = *when; 705 timespecsub(&delta, &now); 706 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 707 /* 708 * We have already reached the absolute future time. 709 * Call cv_timedwait_sig() just to check for signals. 710 * We will return immediately with either 0 or -1. 711 */ 712 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 713 } else { 714 if (timecheck == timechanged) { 715 /* 716 * Make sure that the interval is atleast one tick. 717 * This is to prevent a user from flooding the system 718 * with very small, high resolution timers. 719 */ 720 interval = ts2hrt(&delta); 721 if (interval < nsec_per_tick) 722 interval = nsec_per_tick; 723 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 724 CALLOUT_FLAG_HRESTIME); 725 } else { 726 /* 727 * Someone reset the system time; 728 * just force an immediate timeout. 729 */ 730 rval = -1; 731 } 732 if (rval == -1 && timecheck == timechanged) { 733 /* 734 * Even though cv_timedwait_sig() returned showing a 735 * timeout, the future time may not have passed yet. 736 * If not, change rval to indicate a normal wakeup. 737 */ 738 gethrestime(&now); 739 delta = *when; 740 timespecsub(&delta, &now); 741 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 742 delta.tv_nsec > 0)) 743 rval = 1; 744 } 745 } 746 return (rval); 747 } 748