1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/thread.h> 30 #include <sys/proc.h> 31 #include <sys/debug.h> 32 #include <sys/cmn_err.h> 33 #include <sys/systm.h> 34 #include <sys/sobject.h> 35 #include <sys/sleepq.h> 36 #include <sys/cpuvar.h> 37 #include <sys/condvar.h> 38 #include <sys/condvar_impl.h> 39 #include <sys/schedctl.h> 40 #include <sys/procfs.h> 41 #include <sys/sdt.h> 42 43 /* 44 * CV_MAX_WAITERS is the maximum number of waiters we track; once 45 * the number becomes higher than that, we look at the sleepq to 46 * see whether there are *really* any waiters. 47 */ 48 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 49 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 50 51 /* 52 * Threads don't "own" condition variables. 53 */ 54 /* ARGSUSED */ 55 static kthread_t * 56 cv_owner(void *cvp) 57 { 58 return (NULL); 59 } 60 61 /* 62 * Unsleep a thread that's blocked on a condition variable. 63 */ 64 static void 65 cv_unsleep(kthread_t *t) 66 { 67 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 68 sleepq_head_t *sqh = SQHASH(cvp); 69 70 ASSERT(THREAD_LOCK_HELD(t)); 71 72 if (cvp == NULL) 73 panic("cv_unsleep: thread %p not on sleepq %p", 74 (void *)t, (void *)sqh); 75 DTRACE_SCHED1(wakeup, kthread_t *, t); 76 sleepq_unsleep(t); 77 if (cvp->cv_waiters != CV_MAX_WAITERS) 78 cvp->cv_waiters--; 79 disp_lock_exit_high(&sqh->sq_lock); 80 CL_SETRUN(t); 81 } 82 83 /* 84 * Change the priority of a thread that's blocked on a condition variable. 85 */ 86 static void 87 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 88 { 89 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 90 sleepq_t *sqp = t->t_sleepq; 91 92 ASSERT(THREAD_LOCK_HELD(t)); 93 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 94 95 if (cvp == NULL) 96 panic("cv_change_pri: %p not on sleep queue", (void *)t); 97 sleepq_dequeue(t); 98 *t_prip = pri; 99 sleepq_insert(sqp, t); 100 } 101 102 /* 103 * The sobj_ops vector exports a set of functions needed when a thread 104 * is asleep on a synchronization object of this type. 105 */ 106 static sobj_ops_t cv_sobj_ops = { 107 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 108 }; 109 110 /* ARGSUSED */ 111 void 112 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 113 { 114 ((condvar_impl_t *)cvp)->cv_waiters = 0; 115 } 116 117 /* 118 * cv_destroy is not currently needed, but is part of the DDI. 119 * This is in case cv_init ever needs to allocate something for a cv. 120 */ 121 /* ARGSUSED */ 122 void 123 cv_destroy(kcondvar_t *cvp) 124 { 125 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 126 } 127 128 /* 129 * The cv_block() function blocks a thread on a condition variable 130 * by putting it in a hashed sleep queue associated with the 131 * synchronization object. 132 * 133 * Threads are taken off the hashed sleep queues via calls to 134 * cv_signal(), cv_broadcast(), or cv_unsleep(). 135 */ 136 static void 137 cv_block(condvar_impl_t *cvp) 138 { 139 kthread_t *t = curthread; 140 klwp_t *lwp = ttolwp(t); 141 sleepq_head_t *sqh; 142 143 ASSERT(THREAD_LOCK_HELD(t)); 144 ASSERT(t != CPU->cpu_idle_thread); 145 ASSERT(CPU_ON_INTR(CPU) == 0); 146 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 147 ASSERT(t->t_state == TS_ONPROC); 148 149 t->t_schedflag &= ~TS_SIGNALLED; 150 CL_SLEEP(t); /* assign kernel priority */ 151 t->t_wchan = (caddr_t)cvp; 152 t->t_sobj_ops = &cv_sobj_ops; 153 DTRACE_SCHED(sleep); 154 155 /* 156 * The check for t_intr is to avoid doing the 157 * account for an interrupt thread on the still-pinned 158 * lwp's statistics. 159 */ 160 if (lwp != NULL && t->t_intr == NULL) { 161 lwp->lwp_ru.nvcsw++; 162 (void) new_mstate(t, LMS_SLEEP); 163 } 164 165 sqh = SQHASH(cvp); 166 disp_lock_enter_high(&sqh->sq_lock); 167 if (cvp->cv_waiters < CV_MAX_WAITERS) 168 cvp->cv_waiters++; 169 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 170 THREAD_SLEEP(t, &sqh->sq_lock); 171 sleepq_insert(&sqh->sq_queue, t); 172 /* 173 * THREAD_SLEEP() moves curthread->t_lockp to point to the 174 * lock sqh->sq_lock. This lock is later released by the caller 175 * when it calls thread_unlock() on curthread. 176 */ 177 } 178 179 #define cv_block_sig(t, cvp) \ 180 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 181 182 /* 183 * Block on the indicated condition variable and release the 184 * associated kmutex while blocked. 185 */ 186 void 187 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 188 { 189 if (panicstr) 190 return; 191 192 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 193 thread_lock(curthread); /* lock the thread */ 194 cv_block((condvar_impl_t *)cvp); 195 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 196 mutex_exit(mp); 197 swtch(); 198 mutex_enter(mp); 199 } 200 201 /* 202 * Same as cv_wait except the thread will unblock at 'tim' 203 * (an absolute time) if it hasn't already unblocked. 204 * 205 * Returns the amount of time left from the original 'tim' value 206 * when it was unblocked. 207 */ 208 clock_t 209 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 210 { 211 kthread_t *t = curthread; 212 timeout_id_t id; 213 clock_t timeleft; 214 int signalled; 215 216 if (panicstr) 217 return (-1); 218 219 timeleft = tim - lbolt; 220 if (timeleft <= 0) 221 return (-1); 222 id = realtime_timeout((void (*)(void *))setrun, t, timeleft); 223 thread_lock(t); /* lock the thread */ 224 cv_block((condvar_impl_t *)cvp); 225 thread_unlock_nopreempt(t); 226 mutex_exit(mp); 227 if ((tim - lbolt) <= 0) /* allow for wrap */ 228 setrun(t); 229 swtch(); 230 signalled = (t->t_schedflag & TS_SIGNALLED); 231 /* 232 * Get the time left. untimeout() returns -1 if the timeout has 233 * occured or the time remaining. If the time remaining is zero, 234 * the timeout has occured between when we were awoken and 235 * we called untimeout. We will treat this as if the timeout 236 * has occured and set timeleft to -1. 237 */ 238 timeleft = untimeout(id); 239 mutex_enter(mp); 240 if (timeleft <= 0) { 241 timeleft = -1; 242 if (signalled) /* avoid consuming the cv_signal() */ 243 cv_signal(cvp); 244 } 245 return (timeleft); 246 } 247 248 int 249 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 250 { 251 kthread_t *t = curthread; 252 proc_t *p = ttoproc(t); 253 klwp_t *lwp = ttolwp(t); 254 int cancel_pending; 255 int rval = 1; 256 int signalled = 0; 257 258 if (panicstr) 259 return (rval); 260 261 /* 262 * The check for t_intr is to catch an interrupt thread 263 * that has not yet unpinned the thread underneath. 264 */ 265 if (lwp == NULL || t->t_intr) { 266 cv_wait(cvp, mp); 267 return (rval); 268 } 269 270 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 271 cancel_pending = schedctl_cancel_pending(); 272 lwp->lwp_asleep = 1; 273 lwp->lwp_sysabort = 0; 274 thread_lock(t); 275 cv_block_sig(t, (condvar_impl_t *)cvp); 276 thread_unlock_nopreempt(t); 277 mutex_exit(mp); 278 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 279 setrun(t); 280 /* ASSERT(no locks are held) */ 281 swtch(); 282 signalled = (t->t_schedflag & TS_SIGNALLED); 283 t->t_flag &= ~T_WAKEABLE; 284 mutex_enter(mp); 285 if (ISSIG_PENDING(t, lwp, p)) { 286 mutex_exit(mp); 287 if (issig(FORREAL)) 288 rval = 0; 289 mutex_enter(mp); 290 } 291 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 292 rval = 0; 293 if (rval != 0 && cancel_pending) { 294 schedctl_cancel_eintr(); 295 rval = 0; 296 } 297 lwp->lwp_asleep = 0; 298 lwp->lwp_sysabort = 0; 299 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 300 cv_signal(cvp); 301 return (rval); 302 } 303 304 /* 305 * Returns: 306 * Function result in order of presidence: 307 * 0 if a signal was received 308 * -1 if timeout occured 309 * >0 if awakened via cv_signal() or cv_broadcast(). 310 * (returns time remaining) 311 * 312 * cv_timedwait_sig() is now part of the DDI. 313 */ 314 clock_t 315 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 316 { 317 kthread_t *t = curthread; 318 proc_t *p = ttoproc(t); 319 klwp_t *lwp = ttolwp(t); 320 int cancel_pending = 0; 321 timeout_id_t id; 322 clock_t rval = 1; 323 clock_t timeleft; 324 int signalled = 0; 325 326 if (panicstr) 327 return (rval); 328 329 /* 330 * If there is no lwp, then we don't need to wait for a signal. 331 * The check for t_intr is to catch an interrupt thread 332 * that has not yet unpinned the thread underneath. 333 */ 334 if (lwp == NULL || t->t_intr) 335 return (cv_timedwait(cvp, mp, tim)); 336 337 /* 338 * If tim is less than or equal to lbolt, then the timeout 339 * has already occured. So just check to see if there is a signal 340 * pending. If so return 0 indicating that there is a signal pending. 341 * Else return -1 indicating that the timeout occured. No need to 342 * wait on anything. 343 */ 344 timeleft = tim - lbolt; 345 if (timeleft <= 0) { 346 lwp->lwp_asleep = 1; 347 lwp->lwp_sysabort = 0; 348 rval = -1; 349 goto out; 350 } 351 352 /* 353 * Set the timeout and wait. 354 */ 355 cancel_pending = schedctl_cancel_pending(); 356 id = realtime_timeout((void (*)(void *))setrun, t, timeleft); 357 lwp->lwp_asleep = 1; 358 lwp->lwp_sysabort = 0; 359 thread_lock(t); 360 cv_block_sig(t, (condvar_impl_t *)cvp); 361 thread_unlock_nopreempt(t); 362 mutex_exit(mp); 363 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending || 364 (tim - lbolt <= 0)) 365 setrun(t); 366 /* ASSERT(no locks are held) */ 367 swtch(); 368 signalled = (t->t_schedflag & TS_SIGNALLED); 369 t->t_flag &= ~T_WAKEABLE; 370 mutex_enter(mp); 371 372 /* 373 * Untimeout the thread. untimeout() returns -1 if the timeout has 374 * occured or the time remaining. If the time remaining is zero, 375 * the timeout has occured between when we were awoken and 376 * we called untimeout. We will treat this as if the timeout 377 * has occured and set rval to -1. 378 */ 379 rval = untimeout(id); 380 if (rval <= 0) 381 rval = -1; 382 383 /* 384 * Check to see if a signal is pending. If so, regardless of whether 385 * or not we were awoken due to the signal, the signal is now pending 386 * and a return of 0 has the highest priority. 387 */ 388 out: 389 if (ISSIG_PENDING(t, lwp, p)) { 390 mutex_exit(mp); 391 if (issig(FORREAL)) 392 rval = 0; 393 mutex_enter(mp); 394 } 395 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 396 rval = 0; 397 if (rval != 0 && cancel_pending) { 398 schedctl_cancel_eintr(); 399 rval = 0; 400 } 401 lwp->lwp_asleep = 0; 402 lwp->lwp_sysabort = 0; 403 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 404 cv_signal(cvp); 405 return (rval); 406 } 407 408 /* 409 * Like cv_wait_sig_swap but allows the caller to indicate (with a 410 * non-NULL sigret) that they will take care of signalling the cv 411 * after wakeup, if necessary. This is a vile hack that should only 412 * be used when no other option is available; almost all callers 413 * should just use cv_wait_sig_swap (which takes care of the cv_signal 414 * stuff automatically) instead. 415 */ 416 int 417 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 418 { 419 kthread_t *t = curthread; 420 proc_t *p = ttoproc(t); 421 klwp_t *lwp = ttolwp(t); 422 int cancel_pending; 423 int rval = 1; 424 int signalled = 0; 425 426 if (panicstr) 427 return (rval); 428 429 /* 430 * The check for t_intr is to catch an interrupt thread 431 * that has not yet unpinned the thread underneath. 432 */ 433 if (lwp == NULL || t->t_intr) { 434 cv_wait(cvp, mp); 435 return (rval); 436 } 437 438 cancel_pending = schedctl_cancel_pending(); 439 lwp->lwp_asleep = 1; 440 lwp->lwp_sysabort = 0; 441 thread_lock(t); 442 t->t_kpri_req = 0; /* don't need kernel priority */ 443 cv_block_sig(t, (condvar_impl_t *)cvp); 444 /* I can be swapped now */ 445 curthread->t_schedflag &= ~TS_DONT_SWAP; 446 thread_unlock_nopreempt(t); 447 mutex_exit(mp); 448 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 449 setrun(t); 450 /* ASSERT(no locks are held) */ 451 swtch(); 452 signalled = (t->t_schedflag & TS_SIGNALLED); 453 t->t_flag &= ~T_WAKEABLE; 454 /* TS_DONT_SWAP set by disp() */ 455 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 456 mutex_enter(mp); 457 if (ISSIG_PENDING(t, lwp, p)) { 458 mutex_exit(mp); 459 if (issig(FORREAL)) 460 rval = 0; 461 mutex_enter(mp); 462 } 463 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 464 rval = 0; 465 if (rval != 0 && cancel_pending) { 466 schedctl_cancel_eintr(); 467 rval = 0; 468 } 469 lwp->lwp_asleep = 0; 470 lwp->lwp_sysabort = 0; 471 if (rval == 0) { 472 if (sigret != NULL) 473 *sigret = signalled; /* just tell the caller */ 474 else if (signalled) 475 cv_signal(cvp); /* avoid consuming the cv_signal() */ 476 } 477 return (rval); 478 } 479 480 /* 481 * Same as cv_wait_sig but the thread can be swapped out while waiting. 482 * This should only be used when we know we aren't holding any locks. 483 */ 484 int 485 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 486 { 487 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 488 } 489 490 void 491 cv_signal(kcondvar_t *cvp) 492 { 493 condvar_impl_t *cp = (condvar_impl_t *)cvp; 494 495 /* make sure the cv_waiters field looks sane */ 496 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 497 if (cp->cv_waiters > 0) { 498 sleepq_head_t *sqh = SQHASH(cp); 499 disp_lock_enter(&sqh->sq_lock); 500 ASSERT(CPU_ON_INTR(CPU) == 0); 501 if (cp->cv_waiters & CV_WAITERS_MASK) { 502 kthread_t *t; 503 cp->cv_waiters--; 504 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 505 /* 506 * If cv_waiters is non-zero (and less than 507 * CV_MAX_WAITERS) there should be a thread 508 * in the queue. 509 */ 510 ASSERT(t != NULL); 511 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 512 cp->cv_waiters = 0; 513 } 514 disp_lock_exit(&sqh->sq_lock); 515 } 516 } 517 518 void 519 cv_broadcast(kcondvar_t *cvp) 520 { 521 condvar_impl_t *cp = (condvar_impl_t *)cvp; 522 523 /* make sure the cv_waiters field looks sane */ 524 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 525 if (cp->cv_waiters > 0) { 526 sleepq_head_t *sqh = SQHASH(cp); 527 disp_lock_enter(&sqh->sq_lock); 528 ASSERT(CPU_ON_INTR(CPU) == 0); 529 sleepq_wakeall_chan(&sqh->sq_queue, cp); 530 cp->cv_waiters = 0; 531 disp_lock_exit(&sqh->sq_lock); 532 } 533 } 534 535 /* 536 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 537 * for requests to stop, like cv_wait_sig() but without dealing with signals. 538 * This is a horrible kludge. It is evil. It is vile. It is swill. 539 * If your code has to call this function then your code is the same. 540 */ 541 void 542 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 543 { 544 kthread_t *t = curthread; 545 klwp_t *lwp = ttolwp(t); 546 proc_t *p = ttoproc(t); 547 timeout_id_t id; 548 clock_t tim; 549 550 if (panicstr) 551 return; 552 553 /* 554 * If there is no lwp, then we don't need to eventually stop it 555 * The check for t_intr is to catch an interrupt thread 556 * that has not yet unpinned the thread underneath. 557 */ 558 if (lwp == NULL || t->t_intr) { 559 cv_wait(cvp, mp); 560 return; 561 } 562 563 /* 564 * Wakeup in wakeup_time milliseconds, i.e., human time. 565 */ 566 tim = lbolt + MSEC_TO_TICK(wakeup_time); 567 id = realtime_timeout((void (*)(void *))setrun, t, tim - lbolt); 568 thread_lock(t); /* lock the thread */ 569 cv_block((condvar_impl_t *)cvp); 570 thread_unlock_nopreempt(t); 571 mutex_exit(mp); 572 /* ASSERT(no locks are held); */ 573 if ((tim - lbolt) <= 0) /* allow for wrap */ 574 setrun(t); 575 swtch(); 576 (void) untimeout(id); 577 578 /* 579 * Check for reasons to stop, if lwp_nostop is not true. 580 * See issig_forreal() for explanations of the various stops. 581 */ 582 mutex_enter(&p->p_lock); 583 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 584 /* 585 * Hold the lwp here for watchpoint manipulation. 586 */ 587 if (t->t_proc_flag & TP_PAUSE) { 588 stop(PR_SUSPENDED, SUSPEND_PAUSE); 589 continue; 590 } 591 /* 592 * System checkpoint. 593 */ 594 if (t->t_proc_flag & TP_CHKPT) { 595 stop(PR_CHECKPOINT, 0); 596 continue; 597 } 598 /* 599 * Honor fork1(), watchpoint activity (remapping a page), 600 * and lwp_suspend() requests. 601 */ 602 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 603 (t->t_proc_flag & TP_HOLDLWP)) { 604 stop(PR_SUSPENDED, SUSPEND_NORMAL); 605 continue; 606 } 607 /* 608 * Honor /proc requested stop. 609 */ 610 if (t->t_proc_flag & TP_PRSTOP) { 611 stop(PR_REQUESTED, 0); 612 } 613 /* 614 * If some lwp in the process has already stopped 615 * showing PR_JOBCONTROL, stop in sympathy with it. 616 */ 617 if (p->p_stopsig && t != p->p_agenttp) { 618 stop(PR_JOBCONTROL, p->p_stopsig); 619 continue; 620 } 621 break; 622 } 623 mutex_exit(&p->p_lock); 624 mutex_enter(mp); 625 } 626 627 /* 628 * Like cv_timedwait_sig(), but takes an absolute hires future time 629 * rather than a future time in clock ticks. Will not return showing 630 * that a timeout occurred until the future time is passed. 631 * If 'when' is a NULL pointer, no timeout will occur. 632 * Returns: 633 * Function result in order of presidence: 634 * 0 if a signal was received 635 * -1 if timeout occured 636 * >0 if awakened via cv_signal() or cv_broadcast() 637 * or by a spurious wakeup. 638 * (might return time remaining) 639 * As a special test, if someone abruptly resets the system time 640 * (but not through adjtime(2); drifting of the clock is allowed and 641 * expected [see timespectohz_adj()]), then we force a return of -1 642 * so the caller can return a premature timeout to the calling process 643 * so it can reevaluate the situation in light of the new system time. 644 * (The system clock has been reset if timecheck != timechanged.) 645 */ 646 int 647 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 648 timestruc_t *when, int timecheck) 649 { 650 timestruc_t now; 651 timestruc_t delta; 652 int rval; 653 654 if (when == NULL) 655 return (cv_wait_sig_swap(cvp, mp)); 656 657 gethrestime_lasttick(&now); 658 delta = *when; 659 timespecsub(&delta, &now); 660 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 661 /* 662 * We have already reached the absolute future time. 663 * Call cv_timedwait_sig() just to check for signals. 664 * We will return immediately with either 0 or -1. 665 */ 666 rval = cv_timedwait_sig(cvp, mp, lbolt); 667 } else { 668 if (timecheck == timechanged) { 669 rval = cv_timedwait_sig(cvp, mp, 670 lbolt + timespectohz(when, now)); 671 672 } else { 673 /* 674 * Someone reset the system time; 675 * just force an immediate timeout. 676 */ 677 rval = -1; 678 } 679 if (rval == -1 && timecheck == timechanged) { 680 /* 681 * Even though cv_timedwait_sig() returned showing a 682 * timeout, the future time may not have passed yet. 683 * If not, change rval to indicate a normal wakeup. 684 */ 685 gethrestime(&now); 686 delta = *when; 687 timespecsub(&delta, &now); 688 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 689 delta.tv_nsec > 0)) 690 rval = 1; 691 } 692 } 693 return (rval); 694 } 695