1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 31 #include <sys/param.h> 32 #include <sys/t_lock.h> 33 #include <sys/types.h> 34 #include <sys/tuneable.h> 35 #include <sys/sysmacros.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/lgrp.h> 39 #include <sys/user.h> 40 #include <sys/proc.h> 41 #include <sys/callo.h> 42 #include <sys/kmem.h> 43 #include <sys/var.h> 44 #include <sys/cmn_err.h> 45 #include <sys/swap.h> 46 #include <sys/vmsystm.h> 47 #include <sys/class.h> 48 #include <sys/time.h> 49 #include <sys/debug.h> 50 #include <sys/vtrace.h> 51 #include <sys/spl.h> 52 #include <sys/atomic.h> 53 #include <sys/dumphdr.h> 54 #include <sys/archsystm.h> 55 #include <sys/fs/swapnode.h> 56 #include <sys/panic.h> 57 #include <sys/disp.h> 58 #include <sys/msacct.h> 59 #include <sys/mem_cage.h> 60 61 #include <vm/page.h> 62 #include <vm/anon.h> 63 #include <vm/rm.h> 64 #include <sys/cyclic.h> 65 #include <sys/cpupart.h> 66 #include <sys/rctl.h> 67 #include <sys/task.h> 68 #include <sys/sdt.h> 69 #include <sys/ddi_timer.h> 70 71 /* 72 * for NTP support 73 */ 74 #include <sys/timex.h> 75 #include <sys/inttypes.h> 76 77 /* 78 * clock() is called straight from the clock cyclic; see clock_init(). 79 * 80 * Functions: 81 * reprime clock 82 * schedule callouts 83 * maintain date 84 * jab the scheduler 85 */ 86 87 extern kcondvar_t fsflush_cv; 88 extern sysinfo_t sysinfo; 89 extern vminfo_t vminfo; 90 extern int idleswtch; /* flag set while idle in pswtch() */ 91 92 /* 93 * high-precision avenrun values. These are needed to make the 94 * regular avenrun values accurate. 95 */ 96 static uint64_t hp_avenrun[3]; 97 int avenrun[3]; /* FSCALED average run queue lengths */ 98 time_t time; /* time in seconds since 1970 - for compatibility only */ 99 100 static struct loadavg_s loadavg; 101 /* 102 * Phase/frequency-lock loop (PLL/FLL) definitions 103 * 104 * The following variables are read and set by the ntp_adjtime() system 105 * call. 106 * 107 * time_state shows the state of the system clock, with values defined 108 * in the timex.h header file. 109 * 110 * time_status shows the status of the system clock, with bits defined 111 * in the timex.h header file. 112 * 113 * time_offset is used by the PLL/FLL to adjust the system time in small 114 * increments. 115 * 116 * time_constant determines the bandwidth or "stiffness" of the PLL. 117 * 118 * time_tolerance determines maximum frequency error or tolerance of the 119 * CPU clock oscillator and is a property of the architecture; however, 120 * in principle it could change as result of the presence of external 121 * discipline signals, for instance. 122 * 123 * time_precision is usually equal to the kernel tick variable; however, 124 * in cases where a precision clock counter or external clock is 125 * available, the resolution can be much less than this and depend on 126 * whether the external clock is working or not. 127 * 128 * time_maxerror is initialized by a ntp_adjtime() call and increased by 129 * the kernel once each second to reflect the maximum error bound 130 * growth. 131 * 132 * time_esterror is set and read by the ntp_adjtime() call, but 133 * otherwise not used by the kernel. 134 */ 135 int32_t time_state = TIME_OK; /* clock state */ 136 int32_t time_status = STA_UNSYNC; /* clock status bits */ 137 int32_t time_offset = 0; /* time offset (us) */ 138 int32_t time_constant = 0; /* pll time constant */ 139 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 140 int32_t time_precision = 1; /* clock precision (us) */ 141 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 142 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 143 144 /* 145 * The following variables establish the state of the PLL/FLL and the 146 * residual time and frequency offset of the local clock. The scale 147 * factors are defined in the timex.h header file. 148 * 149 * time_phase and time_freq are the phase increment and the frequency 150 * increment, respectively, of the kernel time variable. 151 * 152 * time_freq is set via ntp_adjtime() from a value stored in a file when 153 * the synchronization daemon is first started. Its value is retrieved 154 * via ntp_adjtime() and written to the file about once per hour by the 155 * daemon. 156 * 157 * time_adj is the adjustment added to the value of tick at each timer 158 * interrupt and is recomputed from time_phase and time_freq at each 159 * seconds rollover. 160 * 161 * time_reftime is the second's portion of the system time at the last 162 * call to ntp_adjtime(). It is used to adjust the time_freq variable 163 * and to increase the time_maxerror as the time since last update 164 * increases. 165 */ 166 int32_t time_phase = 0; /* phase offset (scaled us) */ 167 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 168 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 169 int32_t time_reftime = 0; /* time at last adjustment (s) */ 170 171 /* 172 * The scale factors of the following variables are defined in the 173 * timex.h header file. 174 * 175 * pps_time contains the time at each calibration interval, as read by 176 * microtime(). pps_count counts the seconds of the calibration 177 * interval, the duration of which is nominally pps_shift in powers of 178 * two. 179 * 180 * pps_offset is the time offset produced by the time median filter 181 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 182 * this filter. 183 * 184 * pps_freq is the frequency offset produced by the frequency median 185 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 186 * by this filter. 187 * 188 * pps_usec is latched from a high resolution counter or external clock 189 * at pps_time. Here we want the hardware counter contents only, not the 190 * contents plus the time_tv.usec as usual. 191 * 192 * pps_valid counts the number of seconds since the last PPS update. It 193 * is used as a watchdog timer to disable the PPS discipline should the 194 * PPS signal be lost. 195 * 196 * pps_glitch counts the number of seconds since the beginning of an 197 * offset burst more than tick/2 from current nominal offset. It is used 198 * mainly to suppress error bursts due to priority conflicts between the 199 * PPS interrupt and timer interrupt. 200 * 201 * pps_intcnt counts the calibration intervals for use in the interval- 202 * adaptation algorithm. It's just too complicated for words. 203 */ 204 struct timeval pps_time; /* kernel time at last interval */ 205 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 206 int32_t pps_offset = 0; /* pps time offset (us) */ 207 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 208 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 209 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 210 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 211 int32_t pps_usec = 0; /* microsec counter at last interval */ 212 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 213 int32_t pps_glitch = 0; /* pps signal glitch counter */ 214 int32_t pps_count = 0; /* calibration interval counter (s) */ 215 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 216 int32_t pps_intcnt = 0; /* intervals at current duration */ 217 218 /* 219 * PPS signal quality monitors 220 * 221 * pps_jitcnt counts the seconds that have been discarded because the 222 * jitter measured by the time median filter exceeds the limit MAXTIME 223 * (100 us). 224 * 225 * pps_calcnt counts the frequency calibration intervals, which are 226 * variable from 4 s to 256 s. 227 * 228 * pps_errcnt counts the calibration intervals which have been discarded 229 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 230 * calibration interval jitter exceeds two ticks. 231 * 232 * pps_stbcnt counts the calibration intervals that have been discarded 233 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 234 */ 235 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 236 int32_t pps_calcnt = 0; /* calibration intervals */ 237 int32_t pps_errcnt = 0; /* calibration errors */ 238 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 239 240 /* The following variables require no explicit locking */ 241 volatile clock_t lbolt; /* time in Hz since last boot */ 242 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 243 244 kcondvar_t lbolt_cv; 245 int one_sec = 1; /* turned on once every second */ 246 static int fsflushcnt; /* counter for t_fsflushr */ 247 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 248 int tod_needsync = 0; /* need to sync tod chip with software time */ 249 static int tod_broken = 0; /* clock chip doesn't work */ 250 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 251 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 252 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 253 cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 254 255 extern void clock_tick_schedule(int); 256 257 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 258 259 /* 260 * for tod fault detection 261 */ 262 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 263 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 264 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 265 #define TOD_FILTER_N 4 266 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 267 static int tod_faulted = TOD_NOFAULT; 268 static int tod_fault_reset_flag = 0; 269 270 /* patchable via /etc/system */ 271 int tod_validate_enable = 1; 272 273 /* 274 * On non-SPARC systems, TOD validation must be deferred until gethrtime 275 * returns non-zero values (after mach_clkinit's execution). 276 * On SPARC systems, it must be deferred until after hrtime_base 277 * and hres_last_tick are set (in the first invocation of hres_tick). 278 * Since in both cases the prerequisites occur before the invocation of 279 * tod_get() in clock(), the deferment is lifted there. 280 */ 281 static boolean_t tod_validate_deferred = B_TRUE; 282 283 /* 284 * tod_fault_table[] must be aligned with 285 * enum tod_fault_type in systm.h 286 */ 287 static char *tod_fault_table[] = { 288 "Reversed", /* TOD_REVERSED */ 289 "Stalled", /* TOD_STALLED */ 290 "Jumped", /* TOD_JUMPED */ 291 "Changed in Clock Rate", /* TOD_RATECHANGED */ 292 "Is Read-Only" /* TOD_RDONLY */ 293 /* 294 * no strings needed for TOD_NOFAULT 295 */ 296 }; 297 298 /* 299 * test hook for tod broken detection in tod_validate 300 */ 301 int tod_unit_test = 0; 302 time_t tod_test_injector; 303 304 #define CLOCK_ADJ_HIST_SIZE 4 305 306 static int adj_hist_entry; 307 308 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 309 310 static void calcloadavg(int, uint64_t *); 311 static int genloadavg(struct loadavg_s *); 312 static void loadavg_update(); 313 314 void (*cmm_clock_callout)() = NULL; 315 void (*cpucaps_clock_callout)() = NULL; 316 317 extern clock_t clock_tick_proc_max; 318 319 static void 320 clock(void) 321 { 322 kthread_t *t; 323 uint_t nrunnable; 324 uint_t w_io; 325 cpu_t *cp; 326 cpupart_t *cpupart; 327 extern void set_anoninfo(); 328 extern void set_freemem(); 329 void (*funcp)(); 330 int32_t ltemp; 331 int64_t lltemp; 332 int s; 333 int do_lgrp_load; 334 int i; 335 336 if (panicstr) 337 return; 338 339 set_anoninfo(); 340 /* 341 * Make sure that 'freemem' do not drift too far from the truth 342 */ 343 set_freemem(); 344 345 346 /* 347 * Before the section which is repeated is executed, we do 348 * the time delta processing which occurs every clock tick 349 * 350 * There is additional processing which happens every time 351 * the nanosecond counter rolls over which is described 352 * below - see the section which begins with : if (one_sec) 353 * 354 * This section marks the beginning of the precision-kernel 355 * code fragment. 356 * 357 * First, compute the phase adjustment. If the low-order bits 358 * (time_phase) of the update overflow, bump the higher order 359 * bits (time_update). 360 */ 361 time_phase += time_adj; 362 if (time_phase <= -FINEUSEC) { 363 ltemp = -time_phase / SCALE_PHASE; 364 time_phase += ltemp * SCALE_PHASE; 365 s = hr_clock_lock(); 366 timedelta -= ltemp * (NANOSEC/MICROSEC); 367 hr_clock_unlock(s); 368 } else if (time_phase >= FINEUSEC) { 369 ltemp = time_phase / SCALE_PHASE; 370 time_phase -= ltemp * SCALE_PHASE; 371 s = hr_clock_lock(); 372 timedelta += ltemp * (NANOSEC/MICROSEC); 373 hr_clock_unlock(s); 374 } 375 376 /* 377 * End of precision-kernel code fragment which is processed 378 * every timer interrupt. 379 * 380 * Continue with the interrupt processing as scheduled. 381 */ 382 /* 383 * Count the number of runnable threads and the number waiting 384 * for some form of I/O to complete -- gets added to 385 * sysinfo.waiting. To know the state of the system, must add 386 * wait counts from all CPUs. Also add up the per-partition 387 * statistics. 388 */ 389 w_io = 0; 390 nrunnable = 0; 391 392 /* 393 * keep track of when to update lgrp/part loads 394 */ 395 396 do_lgrp_load = 0; 397 if (lgrp_ticks++ >= hz / 10) { 398 lgrp_ticks = 0; 399 do_lgrp_load = 1; 400 } 401 402 if (one_sec) 403 loadavg_update(); 404 405 /* 406 * First count the threads waiting on kpreempt queues in each 407 * CPU partition. 408 */ 409 410 cpupart = cp_list_head; 411 do { 412 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 413 414 cpupart->cp_updates++; 415 nrunnable += cpupart_nrunnable; 416 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 417 if (one_sec) { 418 cpupart->cp_nrunning = 0; 419 cpupart->cp_nrunnable = cpupart_nrunnable; 420 } 421 } while ((cpupart = cpupart->cp_next) != cp_list_head); 422 423 424 /* Now count the per-CPU statistics. */ 425 cp = cpu_list; 426 do { 427 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 428 429 nrunnable += cpu_nrunnable; 430 cpupart = cp->cpu_part; 431 cpupart->cp_nrunnable_cum += cpu_nrunnable; 432 if (one_sec) { 433 cpupart->cp_nrunnable += cpu_nrunnable; 434 /* 435 * Update user, system, and idle cpu times. 436 */ 437 cpupart->cp_nrunning++; 438 /* 439 * w_io is used to update sysinfo.waiting during 440 * one_second processing below. Only gather w_io 441 * information when we walk the list of cpus if we're 442 * going to perform one_second processing. 443 */ 444 w_io += CPU_STATS(cp, sys.iowait); 445 } 446 447 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 448 int i, load, change; 449 hrtime_t intracct, intrused; 450 const hrtime_t maxnsec = 1000000000; 451 const int precision = 100; 452 453 /* 454 * Estimate interrupt load on this cpu each second. 455 * Computes cpu_intrload as %utilization (0-99). 456 */ 457 458 /* add up interrupt time from all micro states */ 459 for (intracct = 0, i = 0; i < NCMSTATES; i++) 460 intracct += cp->cpu_intracct[i]; 461 scalehrtime(&intracct); 462 463 /* compute nsec used in the past second */ 464 intrused = intracct - cp->cpu_intrlast; 465 cp->cpu_intrlast = intracct; 466 467 /* limit the value for safety (and the first pass) */ 468 if (intrused >= maxnsec) 469 intrused = maxnsec - 1; 470 471 /* calculate %time in interrupt */ 472 load = (precision * intrused) / maxnsec; 473 ASSERT(load >= 0 && load < precision); 474 change = cp->cpu_intrload - load; 475 476 /* jump to new max, or decay the old max */ 477 if (change < 0) 478 cp->cpu_intrload = load; 479 else if (change > 0) 480 cp->cpu_intrload -= (change + 3) / 4; 481 482 DTRACE_PROBE3(cpu_intrload, 483 cpu_t *, cp, 484 hrtime_t, intracct, 485 hrtime_t, intrused); 486 } 487 488 if (do_lgrp_load && 489 (cp->cpu_flags & CPU_EXISTS)) { 490 /* 491 * When updating the lgroup's load average, 492 * account for the thread running on the CPU. 493 * If the CPU is the current one, then we need 494 * to account for the underlying thread which 495 * got the clock interrupt not the thread that is 496 * handling the interrupt and caculating the load 497 * average 498 */ 499 t = cp->cpu_thread; 500 if (CPU == cp) 501 t = t->t_intr; 502 503 /* 504 * Account for the load average for this thread if 505 * it isn't the idle thread or it is on the interrupt 506 * stack and not the current CPU handling the clock 507 * interrupt 508 */ 509 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 510 CPU_ON_INTR(cp))) { 511 if (t->t_lpl == cp->cpu_lpl) { 512 /* local thread */ 513 cpu_nrunnable++; 514 } else { 515 /* 516 * This is a remote thread, charge it 517 * against its home lgroup. Note that 518 * we notice that a thread is remote 519 * only if it's currently executing. 520 * This is a reasonable approximation, 521 * since queued remote threads are rare. 522 * Note also that if we didn't charge 523 * it to its home lgroup, remote 524 * execution would often make a system 525 * appear balanced even though it was 526 * not, and thread placement/migration 527 * would often not be done correctly. 528 */ 529 lgrp_loadavg(t->t_lpl, 530 LGRP_LOADAVG_IN_THREAD_MAX, 0); 531 } 532 } 533 lgrp_loadavg(cp->cpu_lpl, 534 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 535 } 536 } while ((cp = cp->cpu_next) != cpu_list); 537 538 clock_tick_schedule(one_sec); 539 540 /* 541 * bump time in ticks 542 * 543 * We rely on there being only one clock thread and hence 544 * don't need a lock to protect lbolt. 545 */ 546 lbolt++; 547 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 548 549 /* 550 * Check for a callout that needs be called from the clock 551 * thread to support the membership protocol in a clustered 552 * system. Copy the function pointer so that we can reset 553 * this to NULL if needed. 554 */ 555 if ((funcp = cmm_clock_callout) != NULL) 556 (*funcp)(); 557 558 if ((funcp = cpucaps_clock_callout) != NULL) 559 (*funcp)(); 560 561 /* 562 * Wakeup the cageout thread waiters once per second. 563 */ 564 if (one_sec) 565 kcage_tick(); 566 567 /* 568 * Schedule timeout() requests if any are due at this time. 569 */ 570 callout_schedule(); 571 572 if (one_sec) { 573 574 int drift, absdrift; 575 timestruc_t tod; 576 int s; 577 578 /* 579 * Beginning of precision-kernel code fragment executed 580 * every second. 581 * 582 * On rollover of the second the phase adjustment to be 583 * used for the next second is calculated. Also, the 584 * maximum error is increased by the tolerance. If the 585 * PPS frequency discipline code is present, the phase is 586 * increased to compensate for the CPU clock oscillator 587 * frequency error. 588 * 589 * On a 32-bit machine and given parameters in the timex.h 590 * header file, the maximum phase adjustment is +-512 ms 591 * and maximum frequency offset is (a tad less than) 592 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 593 */ 594 time_maxerror += time_tolerance / SCALE_USEC; 595 596 /* 597 * Leap second processing. If in leap-insert state at 598 * the end of the day, the system clock is set back one 599 * second; if in leap-delete state, the system clock is 600 * set ahead one second. The microtime() routine or 601 * external clock driver will insure that reported time 602 * is always monotonic. The ugly divides should be 603 * replaced. 604 */ 605 switch (time_state) { 606 607 case TIME_OK: 608 if (time_status & STA_INS) 609 time_state = TIME_INS; 610 else if (time_status & STA_DEL) 611 time_state = TIME_DEL; 612 break; 613 614 case TIME_INS: 615 if (hrestime.tv_sec % 86400 == 0) { 616 s = hr_clock_lock(); 617 hrestime.tv_sec--; 618 hr_clock_unlock(s); 619 time_state = TIME_OOP; 620 } 621 break; 622 623 case TIME_DEL: 624 if ((hrestime.tv_sec + 1) % 86400 == 0) { 625 s = hr_clock_lock(); 626 hrestime.tv_sec++; 627 hr_clock_unlock(s); 628 time_state = TIME_WAIT; 629 } 630 break; 631 632 case TIME_OOP: 633 time_state = TIME_WAIT; 634 break; 635 636 case TIME_WAIT: 637 if (!(time_status & (STA_INS | STA_DEL))) 638 time_state = TIME_OK; 639 default: 640 break; 641 } 642 643 /* 644 * Compute the phase adjustment for the next second. In 645 * PLL mode, the offset is reduced by a fixed factor 646 * times the time constant. In FLL mode the offset is 647 * used directly. In either mode, the maximum phase 648 * adjustment for each second is clamped so as to spread 649 * the adjustment over not more than the number of 650 * seconds between updates. 651 */ 652 if (time_offset == 0) 653 time_adj = 0; 654 else if (time_offset < 0) { 655 lltemp = -time_offset; 656 if (!(time_status & STA_FLL)) { 657 if ((1 << time_constant) >= SCALE_KG) 658 lltemp *= (1 << time_constant) / 659 SCALE_KG; 660 else 661 lltemp = (lltemp / SCALE_KG) >> 662 time_constant; 663 } 664 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 665 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 666 time_offset += lltemp; 667 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 668 } else { 669 lltemp = time_offset; 670 if (!(time_status & STA_FLL)) { 671 if ((1 << time_constant) >= SCALE_KG) 672 lltemp *= (1 << time_constant) / 673 SCALE_KG; 674 else 675 lltemp = (lltemp / SCALE_KG) >> 676 time_constant; 677 } 678 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 679 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 680 time_offset -= lltemp; 681 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 682 } 683 684 /* 685 * Compute the frequency estimate and additional phase 686 * adjustment due to frequency error for the next 687 * second. When the PPS signal is engaged, gnaw on the 688 * watchdog counter and update the frequency computed by 689 * the pll and the PPS signal. 690 */ 691 pps_valid++; 692 if (pps_valid == PPS_VALID) { 693 pps_jitter = MAXTIME; 694 pps_stabil = MAXFREQ; 695 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 696 STA_PPSWANDER | STA_PPSERROR); 697 } 698 lltemp = time_freq + pps_freq; 699 700 if (lltemp) 701 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 702 703 /* 704 * End of precision kernel-code fragment 705 * 706 * The section below should be modified if we are planning 707 * to use NTP for synchronization. 708 * 709 * Note: the clock synchronization code now assumes 710 * the following: 711 * - if dosynctodr is 1, then compute the drift between 712 * the tod chip and software time and adjust one or 713 * the other depending on the circumstances 714 * 715 * - if dosynctodr is 0, then the tod chip is independent 716 * of the software clock and should not be adjusted, 717 * but allowed to free run. this allows NTP to sync. 718 * hrestime without any interference from the tod chip. 719 */ 720 721 tod_validate_deferred = B_FALSE; 722 mutex_enter(&tod_lock); 723 tod = tod_get(); 724 drift = tod.tv_sec - hrestime.tv_sec; 725 absdrift = (drift >= 0) ? drift : -drift; 726 if (tod_needsync || absdrift > 1) { 727 int s; 728 if (absdrift > 2) { 729 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 730 s = hr_clock_lock(); 731 hrestime = tod; 732 membar_enter(); /* hrestime visible */ 733 timedelta = 0; 734 timechanged++; 735 tod_needsync = 0; 736 hr_clock_unlock(s); 737 } 738 } else { 739 if (tod_needsync || !dosynctodr) { 740 gethrestime(&tod); 741 tod_set(tod); 742 s = hr_clock_lock(); 743 if (timedelta == 0) 744 tod_needsync = 0; 745 hr_clock_unlock(s); 746 } else { 747 /* 748 * If the drift is 2 seconds on the 749 * money, then the TOD is adjusting 750 * the clock; record that. 751 */ 752 clock_adj_hist[adj_hist_entry++ % 753 CLOCK_ADJ_HIST_SIZE] = lbolt64; 754 s = hr_clock_lock(); 755 timedelta = (int64_t)drift*NANOSEC; 756 hr_clock_unlock(s); 757 } 758 } 759 } 760 one_sec = 0; 761 time = gethrestime_sec(); /* for crusty old kmem readers */ 762 mutex_exit(&tod_lock); 763 764 /* 765 * Some drivers still depend on this... XXX 766 */ 767 cv_broadcast(&lbolt_cv); 768 769 sysinfo.updates++; 770 vminfo.freemem += freemem; 771 { 772 pgcnt_t maxswap, resv, free; 773 pgcnt_t avail = 774 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 775 776 maxswap = k_anoninfo.ani_mem_resv + 777 k_anoninfo.ani_max +avail; 778 free = k_anoninfo.ani_free + avail; 779 resv = k_anoninfo.ani_phys_resv + 780 k_anoninfo.ani_mem_resv; 781 782 vminfo.swap_resv += resv; 783 /* number of reserved and allocated pages */ 784 #ifdef DEBUG 785 if (maxswap < free) 786 cmn_err(CE_WARN, "clock: maxswap < free"); 787 if (maxswap < resv) 788 cmn_err(CE_WARN, "clock: maxswap < resv"); 789 #endif 790 vminfo.swap_alloc += maxswap - free; 791 vminfo.swap_avail += maxswap - resv; 792 vminfo.swap_free += free; 793 } 794 if (nrunnable) { 795 sysinfo.runque += nrunnable; 796 sysinfo.runocc++; 797 } 798 if (nswapped) { 799 sysinfo.swpque += nswapped; 800 sysinfo.swpocc++; 801 } 802 sysinfo.waiting += w_io; 803 804 /* 805 * Wake up fsflush to write out DELWRI 806 * buffers, dirty pages and other cached 807 * administrative data, e.g. inodes. 808 */ 809 if (--fsflushcnt <= 0) { 810 fsflushcnt = tune.t_fsflushr; 811 cv_signal(&fsflush_cv); 812 } 813 814 vmmeter(); 815 calcloadavg(genloadavg(&loadavg), hp_avenrun); 816 for (i = 0; i < 3; i++) 817 /* 818 * At the moment avenrun[] can only hold 31 819 * bits of load average as it is a signed 820 * int in the API. We need to ensure that 821 * hp_avenrun[i] >> (16 - FSHIFT) will not be 822 * too large. If it is, we put the largest value 823 * that we can use into avenrun[i]. This is 824 * kludgey, but about all we can do until we 825 * avenrun[] is declared as an array of uint64[] 826 */ 827 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 828 avenrun[i] = (int32_t)(hp_avenrun[i] >> 829 (16 - FSHIFT)); 830 else 831 avenrun[i] = 0x7fffffff; 832 833 cpupart = cp_list_head; 834 do { 835 calcloadavg(genloadavg(&cpupart->cp_loadavg), 836 cpupart->cp_hp_avenrun); 837 } while ((cpupart = cpupart->cp_next) != cp_list_head); 838 839 /* 840 * Wake up the swapper thread if necessary. 841 */ 842 if (runin || 843 (runout && (avefree < desfree || wake_sched_sec))) { 844 t = &t0; 845 thread_lock(t); 846 if (t->t_state == TS_STOPPED) { 847 runin = runout = 0; 848 wake_sched_sec = 0; 849 t->t_whystop = 0; 850 t->t_whatstop = 0; 851 t->t_schedflag &= ~TS_ALLSTART; 852 THREAD_TRANSITION(t); 853 setfrontdq(t); 854 } 855 thread_unlock(t); 856 } 857 } 858 859 /* 860 * Wake up the swapper if any high priority swapped-out threads 861 * became runable during the last tick. 862 */ 863 if (wake_sched) { 864 t = &t0; 865 thread_lock(t); 866 if (t->t_state == TS_STOPPED) { 867 runin = runout = 0; 868 wake_sched = 0; 869 t->t_whystop = 0; 870 t->t_whatstop = 0; 871 t->t_schedflag &= ~TS_ALLSTART; 872 THREAD_TRANSITION(t); 873 setfrontdq(t); 874 } 875 thread_unlock(t); 876 } 877 } 878 879 void 880 clock_init(void) 881 { 882 cyc_handler_t hdlr; 883 cyc_time_t when; 884 885 hdlr.cyh_func = (cyc_func_t)clock; 886 hdlr.cyh_level = CY_LOCK_LEVEL; 887 hdlr.cyh_arg = NULL; 888 889 when.cyt_when = 0; 890 when.cyt_interval = nsec_per_tick; 891 892 mutex_enter(&cpu_lock); 893 clock_cyclic = cyclic_add(&hdlr, &when); 894 mutex_exit(&cpu_lock); 895 896 /* 897 * cyclic_timer is dedicated to the ddi interface, which 898 * uses the same clock resolution as the system one. 899 */ 900 hdlr.cyh_func = (cyc_func_t)cyclic_timer; 901 hdlr.cyh_level = CY_LOCK_LEVEL; 902 hdlr.cyh_arg = NULL; 903 904 mutex_enter(&cpu_lock); 905 ddi_timer_cyclic = cyclic_add(&hdlr, &when); 906 mutex_exit(&cpu_lock); 907 } 908 909 /* 910 * Called before calcloadavg to get 10-sec moving loadavg together 911 */ 912 913 static int 914 genloadavg(struct loadavg_s *avgs) 915 { 916 int avg; 917 int spos; /* starting position */ 918 int cpos; /* moving current position */ 919 int i; 920 int slen; 921 hrtime_t hr_avg; 922 923 /* 10-second snapshot, calculate first positon */ 924 if (avgs->lg_len == 0) { 925 return (0); 926 } 927 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 928 929 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 930 S_LOADAVG_SZ + (avgs->lg_cur - 1); 931 for (i = hr_avg = 0; i < slen; i++) { 932 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 933 hr_avg += avgs->lg_loads[cpos]; 934 } 935 936 hr_avg = hr_avg / slen; 937 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 938 939 return (avg); 940 } 941 942 /* 943 * Run every second from clock () to update the loadavg count available to the 944 * system and cpu-partitions. 945 * 946 * This works by sampling the previous usr, sys, wait time elapsed, 947 * computing a delta, and adding that delta to the elapsed usr, sys, 948 * wait increase. 949 */ 950 951 static void 952 loadavg_update() 953 { 954 cpu_t *cp; 955 cpupart_t *cpupart; 956 hrtime_t cpu_total; 957 int prev; 958 959 cp = cpu_list; 960 loadavg.lg_total = 0; 961 962 /* 963 * first pass totals up per-cpu statistics for system and cpu 964 * partitions 965 */ 966 967 do { 968 struct loadavg_s *lavg; 969 970 lavg = &cp->cpu_loadavg; 971 972 cpu_total = cp->cpu_acct[CMS_USER] + 973 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 974 /* compute delta against last total */ 975 scalehrtime(&cpu_total); 976 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 977 S_LOADAVG_SZ + (lavg->lg_cur - 1); 978 if (lavg->lg_loads[prev] <= 0) { 979 lavg->lg_loads[lavg->lg_cur] = cpu_total; 980 cpu_total = 0; 981 } else { 982 lavg->lg_loads[lavg->lg_cur] = cpu_total; 983 cpu_total = cpu_total - lavg->lg_loads[prev]; 984 if (cpu_total < 0) 985 cpu_total = 0; 986 } 987 988 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 989 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 990 lavg->lg_len + 1 : S_LOADAVG_SZ; 991 992 loadavg.lg_total += cpu_total; 993 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 994 995 } while ((cp = cp->cpu_next) != cpu_list); 996 997 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 998 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 999 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1000 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1001 /* 1002 * Second pass updates counts 1003 */ 1004 cpupart = cp_list_head; 1005 1006 do { 1007 struct loadavg_s *lavg; 1008 1009 lavg = &cpupart->cp_loadavg; 1010 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1011 lavg->lg_total = 0; 1012 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1013 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1014 lavg->lg_len + 1 : S_LOADAVG_SZ; 1015 1016 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1017 1018 } 1019 1020 /* 1021 * clock_update() - local clock update 1022 * 1023 * This routine is called by ntp_adjtime() to update the local clock 1024 * phase and frequency. The implementation is of an 1025 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1026 * routine computes new time and frequency offset estimates for each 1027 * call. The PPS signal itself determines the new time offset, 1028 * instead of the calling argument. Presumably, calls to 1029 * ntp_adjtime() occur only when the caller believes the local clock 1030 * is valid within some bound (+-128 ms with NTP). If the caller's 1031 * time is far different than the PPS time, an argument will ensue, 1032 * and it's not clear who will lose. 1033 * 1034 * For uncompensated quartz crystal oscillatores and nominal update 1035 * intervals less than 1024 s, operation should be in phase-lock mode 1036 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1037 * intervals greater than this, operation should be in frequency-lock 1038 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1039 * 1040 * Note: mutex(&tod_lock) is in effect. 1041 */ 1042 void 1043 clock_update(int offset) 1044 { 1045 int ltemp, mtemp, s; 1046 1047 ASSERT(MUTEX_HELD(&tod_lock)); 1048 1049 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1050 return; 1051 ltemp = offset; 1052 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1053 ltemp = pps_offset; 1054 1055 /* 1056 * Scale the phase adjustment and clamp to the operating range. 1057 */ 1058 if (ltemp > MAXPHASE) 1059 time_offset = MAXPHASE * SCALE_UPDATE; 1060 else if (ltemp < -MAXPHASE) 1061 time_offset = -(MAXPHASE * SCALE_UPDATE); 1062 else 1063 time_offset = ltemp * SCALE_UPDATE; 1064 1065 /* 1066 * Select whether the frequency is to be controlled and in which 1067 * mode (PLL or FLL). Clamp to the operating range. Ugly 1068 * multiply/divide should be replaced someday. 1069 */ 1070 if (time_status & STA_FREQHOLD || time_reftime == 0) 1071 time_reftime = hrestime.tv_sec; 1072 1073 mtemp = hrestime.tv_sec - time_reftime; 1074 time_reftime = hrestime.tv_sec; 1075 1076 if (time_status & STA_FLL) { 1077 if (mtemp >= MINSEC) { 1078 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1079 SCALE_UPDATE)); 1080 if (ltemp) 1081 time_freq += ltemp / SCALE_KH; 1082 } 1083 } else { 1084 if (mtemp < MAXSEC) { 1085 ltemp *= mtemp; 1086 if (ltemp) 1087 time_freq += (int)(((int64_t)ltemp * 1088 SCALE_USEC) / SCALE_KF) 1089 / (1 << (time_constant * 2)); 1090 } 1091 } 1092 if (time_freq > time_tolerance) 1093 time_freq = time_tolerance; 1094 else if (time_freq < -time_tolerance) 1095 time_freq = -time_tolerance; 1096 1097 s = hr_clock_lock(); 1098 tod_needsync = 1; 1099 hr_clock_unlock(s); 1100 } 1101 1102 /* 1103 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1104 * 1105 * This routine is called at each PPS interrupt in order to discipline 1106 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1107 * and leaves it in a handy spot for the clock() routine. It 1108 * integrates successive PPS phase differences and calculates the 1109 * frequency offset. This is used in clock() to discipline the CPU 1110 * clock oscillator so that intrinsic frequency error is cancelled out. 1111 * The code requires the caller to capture the time and hardware counter 1112 * value at the on-time PPS signal transition. 1113 * 1114 * Note that, on some Unix systems, this routine runs at an interrupt 1115 * priority level higher than the timer interrupt routine clock(). 1116 * Therefore, the variables used are distinct from the clock() 1117 * variables, except for certain exceptions: The PPS frequency pps_freq 1118 * and phase pps_offset variables are determined by this routine and 1119 * updated atomically. The time_tolerance variable can be considered a 1120 * constant, since it is infrequently changed, and then only when the 1121 * PPS signal is disabled. The watchdog counter pps_valid is updated 1122 * once per second by clock() and is atomically cleared in this 1123 * routine. 1124 * 1125 * tvp is the time of the last tick; usec is a microsecond count since the 1126 * last tick. 1127 * 1128 * Note: In Solaris systems, the tick value is actually given by 1129 * usec_per_tick. This is called from the serial driver cdintr(), 1130 * or equivalent, at a high PIL. Because the kernel keeps a 1131 * highresolution time, the following code can accept either 1132 * the traditional argument pair, or the current highres timestamp 1133 * in tvp and zero in usec. 1134 */ 1135 void 1136 ddi_hardpps(struct timeval *tvp, int usec) 1137 { 1138 int u_usec, v_usec, bigtick; 1139 time_t cal_sec; 1140 int cal_usec; 1141 1142 /* 1143 * An occasional glitch can be produced when the PPS interrupt 1144 * occurs in the clock() routine before the time variable is 1145 * updated. Here the offset is discarded when the difference 1146 * between it and the last one is greater than tick/2, but not 1147 * if the interval since the first discard exceeds 30 s. 1148 */ 1149 time_status |= STA_PPSSIGNAL; 1150 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1151 pps_valid = 0; 1152 u_usec = -tvp->tv_usec; 1153 if (u_usec < -(MICROSEC/2)) 1154 u_usec += MICROSEC; 1155 v_usec = pps_offset - u_usec; 1156 if (v_usec < 0) 1157 v_usec = -v_usec; 1158 if (v_usec > (usec_per_tick >> 1)) { 1159 if (pps_glitch > MAXGLITCH) { 1160 pps_glitch = 0; 1161 pps_tf[2] = u_usec; 1162 pps_tf[1] = u_usec; 1163 } else { 1164 pps_glitch++; 1165 u_usec = pps_offset; 1166 } 1167 } else 1168 pps_glitch = 0; 1169 1170 /* 1171 * A three-stage median filter is used to help deglitch the pps 1172 * time. The median sample becomes the time offset estimate; the 1173 * difference between the other two samples becomes the time 1174 * dispersion (jitter) estimate. 1175 */ 1176 pps_tf[2] = pps_tf[1]; 1177 pps_tf[1] = pps_tf[0]; 1178 pps_tf[0] = u_usec; 1179 if (pps_tf[0] > pps_tf[1]) { 1180 if (pps_tf[1] > pps_tf[2]) { 1181 pps_offset = pps_tf[1]; /* 0 1 2 */ 1182 v_usec = pps_tf[0] - pps_tf[2]; 1183 } else if (pps_tf[2] > pps_tf[0]) { 1184 pps_offset = pps_tf[0]; /* 2 0 1 */ 1185 v_usec = pps_tf[2] - pps_tf[1]; 1186 } else { 1187 pps_offset = pps_tf[2]; /* 0 2 1 */ 1188 v_usec = pps_tf[0] - pps_tf[1]; 1189 } 1190 } else { 1191 if (pps_tf[1] < pps_tf[2]) { 1192 pps_offset = pps_tf[1]; /* 2 1 0 */ 1193 v_usec = pps_tf[2] - pps_tf[0]; 1194 } else if (pps_tf[2] < pps_tf[0]) { 1195 pps_offset = pps_tf[0]; /* 1 0 2 */ 1196 v_usec = pps_tf[1] - pps_tf[2]; 1197 } else { 1198 pps_offset = pps_tf[2]; /* 1 2 0 */ 1199 v_usec = pps_tf[1] - pps_tf[0]; 1200 } 1201 } 1202 if (v_usec > MAXTIME) 1203 pps_jitcnt++; 1204 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1205 pps_jitter += v_usec / (1 << PPS_AVG); 1206 if (pps_jitter > (MAXTIME >> 1)) 1207 time_status |= STA_PPSJITTER; 1208 1209 /* 1210 * During the calibration interval adjust the starting time when 1211 * the tick overflows. At the end of the interval compute the 1212 * duration of the interval and the difference of the hardware 1213 * counters at the beginning and end of the interval. This code 1214 * is deliciously complicated by the fact valid differences may 1215 * exceed the value of tick when using long calibration 1216 * intervals and small ticks. Note that the counter can be 1217 * greater than tick if caught at just the wrong instant, but 1218 * the values returned and used here are correct. 1219 */ 1220 bigtick = (int)usec_per_tick * SCALE_USEC; 1221 pps_usec -= pps_freq; 1222 if (pps_usec >= bigtick) 1223 pps_usec -= bigtick; 1224 if (pps_usec < 0) 1225 pps_usec += bigtick; 1226 pps_time.tv_sec++; 1227 pps_count++; 1228 if (pps_count < (1 << pps_shift)) 1229 return; 1230 pps_count = 0; 1231 pps_calcnt++; 1232 u_usec = usec * SCALE_USEC; 1233 v_usec = pps_usec - u_usec; 1234 if (v_usec >= bigtick >> 1) 1235 v_usec -= bigtick; 1236 if (v_usec < -(bigtick >> 1)) 1237 v_usec += bigtick; 1238 if (v_usec < 0) 1239 v_usec = -(-v_usec >> pps_shift); 1240 else 1241 v_usec = v_usec >> pps_shift; 1242 pps_usec = u_usec; 1243 cal_sec = tvp->tv_sec; 1244 cal_usec = tvp->tv_usec; 1245 cal_sec -= pps_time.tv_sec; 1246 cal_usec -= pps_time.tv_usec; 1247 if (cal_usec < 0) { 1248 cal_usec += MICROSEC; 1249 cal_sec--; 1250 } 1251 pps_time = *tvp; 1252 1253 /* 1254 * Check for lost interrupts, noise, excessive jitter and 1255 * excessive frequency error. The number of timer ticks during 1256 * the interval may vary +-1 tick. Add to this a margin of one 1257 * tick for the PPS signal jitter and maximum frequency 1258 * deviation. If the limits are exceeded, the calibration 1259 * interval is reset to the minimum and we start over. 1260 */ 1261 u_usec = (int)usec_per_tick << 1; 1262 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1263 (cal_sec == 0 && cal_usec < u_usec)) || 1264 v_usec > time_tolerance || v_usec < -time_tolerance) { 1265 pps_errcnt++; 1266 pps_shift = PPS_SHIFT; 1267 pps_intcnt = 0; 1268 time_status |= STA_PPSERROR; 1269 return; 1270 } 1271 1272 /* 1273 * A three-stage median filter is used to help deglitch the pps 1274 * frequency. The median sample becomes the frequency offset 1275 * estimate; the difference between the other two samples 1276 * becomes the frequency dispersion (stability) estimate. 1277 */ 1278 pps_ff[2] = pps_ff[1]; 1279 pps_ff[1] = pps_ff[0]; 1280 pps_ff[0] = v_usec; 1281 if (pps_ff[0] > pps_ff[1]) { 1282 if (pps_ff[1] > pps_ff[2]) { 1283 u_usec = pps_ff[1]; /* 0 1 2 */ 1284 v_usec = pps_ff[0] - pps_ff[2]; 1285 } else if (pps_ff[2] > pps_ff[0]) { 1286 u_usec = pps_ff[0]; /* 2 0 1 */ 1287 v_usec = pps_ff[2] - pps_ff[1]; 1288 } else { 1289 u_usec = pps_ff[2]; /* 0 2 1 */ 1290 v_usec = pps_ff[0] - pps_ff[1]; 1291 } 1292 } else { 1293 if (pps_ff[1] < pps_ff[2]) { 1294 u_usec = pps_ff[1]; /* 2 1 0 */ 1295 v_usec = pps_ff[2] - pps_ff[0]; 1296 } else if (pps_ff[2] < pps_ff[0]) { 1297 u_usec = pps_ff[0]; /* 1 0 2 */ 1298 v_usec = pps_ff[1] - pps_ff[2]; 1299 } else { 1300 u_usec = pps_ff[2]; /* 1 2 0 */ 1301 v_usec = pps_ff[1] - pps_ff[0]; 1302 } 1303 } 1304 1305 /* 1306 * Here the frequency dispersion (stability) is updated. If it 1307 * is less than one-fourth the maximum (MAXFREQ), the frequency 1308 * offset is updated as well, but clamped to the tolerance. It 1309 * will be processed later by the clock() routine. 1310 */ 1311 v_usec = (v_usec >> 1) - pps_stabil; 1312 if (v_usec < 0) 1313 pps_stabil -= -v_usec >> PPS_AVG; 1314 else 1315 pps_stabil += v_usec >> PPS_AVG; 1316 if (pps_stabil > MAXFREQ >> 2) { 1317 pps_stbcnt++; 1318 time_status |= STA_PPSWANDER; 1319 return; 1320 } 1321 if (time_status & STA_PPSFREQ) { 1322 if (u_usec < 0) { 1323 pps_freq -= -u_usec >> PPS_AVG; 1324 if (pps_freq < -time_tolerance) 1325 pps_freq = -time_tolerance; 1326 u_usec = -u_usec; 1327 } else { 1328 pps_freq += u_usec >> PPS_AVG; 1329 if (pps_freq > time_tolerance) 1330 pps_freq = time_tolerance; 1331 } 1332 } 1333 1334 /* 1335 * Here the calibration interval is adjusted. If the maximum 1336 * time difference is greater than tick / 4, reduce the interval 1337 * by half. If this is not the case for four consecutive 1338 * intervals, double the interval. 1339 */ 1340 if (u_usec << pps_shift > bigtick >> 2) { 1341 pps_intcnt = 0; 1342 if (pps_shift > PPS_SHIFT) 1343 pps_shift--; 1344 } else if (pps_intcnt >= 4) { 1345 pps_intcnt = 0; 1346 if (pps_shift < PPS_SHIFTMAX) 1347 pps_shift++; 1348 } else 1349 pps_intcnt++; 1350 1351 /* 1352 * If recovering from kmdb, then make sure the tod chip gets resynced. 1353 * If we took an early exit above, then we don't yet have a stable 1354 * calibration signal to lock onto, so don't mark the tod for sync 1355 * until we get all the way here. 1356 */ 1357 { 1358 int s = hr_clock_lock(); 1359 1360 tod_needsync = 1; 1361 hr_clock_unlock(s); 1362 } 1363 } 1364 1365 /* 1366 * Handle clock tick processing for a thread. 1367 * Check for timer action, enforce CPU rlimit, do profiling etc. 1368 */ 1369 void 1370 clock_tick(kthread_t *t, int pending) 1371 { 1372 struct proc *pp; 1373 klwp_id_t lwp; 1374 struct as *as; 1375 clock_t ticks; 1376 int poke = 0; /* notify another CPU */ 1377 int user_mode; 1378 size_t rss; 1379 int i, total_usec, usec; 1380 rctl_qty_t secs; 1381 1382 ASSERT(pending > 0); 1383 1384 /* Must be operating on a lwp/thread */ 1385 if ((lwp = ttolwp(t)) == NULL) { 1386 panic("clock_tick: no lwp"); 1387 /*NOTREACHED*/ 1388 } 1389 1390 for (i = 0; i < pending; i++) { 1391 CL_TICK(t); /* Class specific tick processing */ 1392 DTRACE_SCHED1(tick, kthread_t *, t); 1393 } 1394 1395 pp = ttoproc(t); 1396 1397 /* pp->p_lock makes sure that the thread does not exit */ 1398 ASSERT(MUTEX_HELD(&pp->p_lock)); 1399 1400 user_mode = (lwp->lwp_state == LWP_USER); 1401 1402 ticks = (pp->p_utime + pp->p_stime) % hz; 1403 /* 1404 * Update process times. Should use high res clock and state 1405 * changes instead of statistical sampling method. XXX 1406 */ 1407 if (user_mode) { 1408 pp->p_utime += pending; 1409 } else { 1410 pp->p_stime += pending; 1411 } 1412 1413 pp->p_ttime += pending; 1414 as = pp->p_as; 1415 1416 /* 1417 * Update user profiling statistics. Get the pc from the 1418 * lwp when the AST happens. 1419 */ 1420 if (pp->p_prof.pr_scale) { 1421 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1422 if (user_mode) { 1423 poke = 1; 1424 aston(t); 1425 } 1426 } 1427 1428 /* 1429 * If CPU was in user state, process lwp-virtual time 1430 * interval timer. The value passed to itimerdecr() has to be 1431 * in microseconds and has to be less than one second. Hence 1432 * this loop. 1433 */ 1434 total_usec = usec_per_tick * pending; 1435 while (total_usec > 0) { 1436 usec = MIN(total_usec, (MICROSEC - 1)); 1437 if (user_mode && 1438 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1439 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1440 poke = 1; 1441 sigtoproc(pp, t, SIGVTALRM); 1442 } 1443 total_usec -= usec; 1444 } 1445 1446 /* 1447 * If CPU was in user state, process lwp-profile 1448 * interval timer. 1449 */ 1450 total_usec = usec_per_tick * pending; 1451 while (total_usec > 0) { 1452 usec = MIN(total_usec, (MICROSEC - 1)); 1453 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1454 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1455 poke = 1; 1456 sigtoproc(pp, t, SIGPROF); 1457 } 1458 total_usec -= usec; 1459 } 1460 1461 /* 1462 * Enforce CPU resource controls: 1463 * (a) process.max-cpu-time resource control 1464 * 1465 * Perform the check only if we have accumulated more a second. 1466 */ 1467 if ((ticks + pending) >= hz) { 1468 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1469 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1470 } 1471 1472 /* 1473 * (b) task.max-cpu-time resource control 1474 * 1475 * If we have accumulated enough ticks, increment the task CPU 1476 * time usage and test for the resource limit. This minimizes the 1477 * number of calls to the rct_test(). The task CPU time mutex 1478 * is highly contentious as many processes can be sharing a task. 1479 */ 1480 if (pp->p_ttime >= clock_tick_proc_max) { 1481 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1482 pp->p_ttime = 0; 1483 if (secs) { 1484 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1485 pp, secs, RCA_UNSAFE_SIGINFO); 1486 } 1487 } 1488 1489 /* 1490 * Update memory usage for the currently running process. 1491 */ 1492 rss = rm_asrss(as); 1493 PTOU(pp)->u_mem += rss; 1494 if (rss > PTOU(pp)->u_mem_max) 1495 PTOU(pp)->u_mem_max = rss; 1496 1497 /* 1498 * Notify the CPU the thread is running on. 1499 */ 1500 if (poke && t->t_cpu != CPU) 1501 poke_cpu(t->t_cpu->cpu_id); 1502 } 1503 1504 void 1505 profil_tick(uintptr_t upc) 1506 { 1507 int ticks; 1508 proc_t *p = ttoproc(curthread); 1509 klwp_t *lwp = ttolwp(curthread); 1510 struct prof *pr = &p->p_prof; 1511 1512 do { 1513 ticks = lwp->lwp_oweupc; 1514 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1515 1516 mutex_enter(&p->p_pflock); 1517 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1518 /* 1519 * Old-style profiling 1520 */ 1521 uint16_t *slot = pr->pr_base; 1522 uint16_t old, new; 1523 if (pr->pr_scale != 2) { 1524 uintptr_t delta = upc - pr->pr_off; 1525 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1526 (((delta & 0xffff) * pr->pr_scale) >> 16); 1527 if (byteoff >= (uintptr_t)pr->pr_size) { 1528 mutex_exit(&p->p_pflock); 1529 return; 1530 } 1531 slot += byteoff / sizeof (uint16_t); 1532 } 1533 if (fuword16(slot, &old) < 0 || 1534 (new = old + ticks) > SHRT_MAX || 1535 suword16(slot, new) < 0) { 1536 pr->pr_scale = 0; 1537 } 1538 } else if (pr->pr_scale == 1) { 1539 /* 1540 * PC Sampling 1541 */ 1542 model_t model = lwp_getdatamodel(lwp); 1543 int result; 1544 #ifdef __lint 1545 model = model; 1546 #endif 1547 while (ticks-- > 0) { 1548 if (pr->pr_samples == pr->pr_size) { 1549 /* buffer full, turn off sampling */ 1550 pr->pr_scale = 0; 1551 break; 1552 } 1553 switch (SIZEOF_PTR(model)) { 1554 case sizeof (uint32_t): 1555 result = suword32(pr->pr_base, (uint32_t)upc); 1556 break; 1557 #ifdef _LP64 1558 case sizeof (uint64_t): 1559 result = suword64(pr->pr_base, (uint64_t)upc); 1560 break; 1561 #endif 1562 default: 1563 cmn_err(CE_WARN, "profil_tick: unexpected " 1564 "data model"); 1565 result = -1; 1566 break; 1567 } 1568 if (result != 0) { 1569 pr->pr_scale = 0; 1570 break; 1571 } 1572 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1573 pr->pr_samples++; 1574 } 1575 } 1576 mutex_exit(&p->p_pflock); 1577 } 1578 1579 static void 1580 delay_wakeup(void *arg) 1581 { 1582 kthread_t *t = arg; 1583 1584 mutex_enter(&t->t_delay_lock); 1585 cv_signal(&t->t_delay_cv); 1586 mutex_exit(&t->t_delay_lock); 1587 } 1588 1589 void 1590 delay(clock_t ticks) 1591 { 1592 kthread_t *t = curthread; 1593 clock_t deadline = lbolt + ticks; 1594 clock_t timeleft; 1595 timeout_id_t id; 1596 extern hrtime_t volatile devinfo_freeze; 1597 1598 if ((panicstr || devinfo_freeze) && ticks > 0) { 1599 /* 1600 * Timeouts aren't running, so all we can do is spin. 1601 */ 1602 drv_usecwait(TICK_TO_USEC(ticks)); 1603 return; 1604 } 1605 1606 while ((timeleft = deadline - lbolt) > 0) { 1607 mutex_enter(&t->t_delay_lock); 1608 id = timeout(delay_wakeup, t, timeleft); 1609 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1610 mutex_exit(&t->t_delay_lock); 1611 (void) untimeout(id); 1612 } 1613 } 1614 1615 /* 1616 * Like delay, but interruptible by a signal. 1617 */ 1618 int 1619 delay_sig(clock_t ticks) 1620 { 1621 clock_t deadline = lbolt + ticks; 1622 clock_t rc; 1623 1624 mutex_enter(&curthread->t_delay_lock); 1625 do { 1626 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1627 &curthread->t_delay_lock, deadline); 1628 } while (rc > 0); 1629 mutex_exit(&curthread->t_delay_lock); 1630 if (rc == 0) 1631 return (EINTR); 1632 return (0); 1633 } 1634 1635 #define SECONDS_PER_DAY 86400 1636 1637 /* 1638 * Initialize the system time based on the TOD chip. approx is used as 1639 * an approximation of time (e.g. from the filesystem) in the event that 1640 * the TOD chip has been cleared or is unresponsive. An approx of -1 1641 * means the filesystem doesn't keep time. 1642 */ 1643 void 1644 clkset(time_t approx) 1645 { 1646 timestruc_t ts; 1647 int spl; 1648 int set_clock = 0; 1649 1650 mutex_enter(&tod_lock); 1651 ts = tod_get(); 1652 1653 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1654 /* 1655 * If the TOD chip is reporting some time after 1971, 1656 * then it probably didn't lose power or become otherwise 1657 * cleared in the recent past; check to assure that 1658 * the time coming from the filesystem isn't in the future 1659 * according to the TOD chip. 1660 */ 1661 if (approx != -1 && approx > ts.tv_sec) { 1662 cmn_err(CE_WARN, "Last shutdown is later " 1663 "than time on time-of-day chip; check date."); 1664 } 1665 } else { 1666 /* 1667 * If the TOD chip isn't giving correct time, then set it to 1668 * the time that was passed in as a rough estimate. If we 1669 * don't have an estimate, then set the clock back to a time 1670 * when Oliver North, ALF and Dire Straits were all on the 1671 * collective brain: 1987. 1672 */ 1673 timestruc_t tmp; 1674 if (approx == -1) 1675 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1676 else 1677 ts.tv_sec = approx; 1678 ts.tv_nsec = 0; 1679 1680 /* 1681 * Attempt to write the new time to the TOD chip. Set spl high 1682 * to avoid getting preempted between the tod_set and tod_get. 1683 */ 1684 spl = splhi(); 1685 tod_set(ts); 1686 tmp = tod_get(); 1687 splx(spl); 1688 1689 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1690 tod_broken = 1; 1691 dosynctodr = 0; 1692 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1693 " dead batteries?"); 1694 } else { 1695 cmn_err(CE_WARN, "Time-of-day chip had " 1696 "incorrect date; check and reset."); 1697 } 1698 set_clock = 1; 1699 } 1700 1701 if (!boot_time) { 1702 boot_time = ts.tv_sec; 1703 set_clock = 1; 1704 } 1705 1706 if (set_clock) 1707 set_hrestime(&ts); 1708 1709 mutex_exit(&tod_lock); 1710 } 1711 1712 int timechanged; /* for testing if the system time has been reset */ 1713 1714 void 1715 set_hrestime(timestruc_t *ts) 1716 { 1717 int spl = hr_clock_lock(); 1718 hrestime = *ts; 1719 membar_enter(); /* hrestime must be visible before timechanged++ */ 1720 timedelta = 0; 1721 timechanged++; 1722 hr_clock_unlock(spl); 1723 } 1724 1725 static uint_t deadman_seconds; 1726 static uint32_t deadman_panics; 1727 static int deadman_enabled = 0; 1728 static int deadman_panic_timers = 1; 1729 1730 static void 1731 deadman(void) 1732 { 1733 if (panicstr) { 1734 /* 1735 * During panic, other CPUs besides the panic 1736 * master continue to handle cyclics and some other 1737 * interrupts. The code below is intended to be 1738 * single threaded, so any CPU other than the master 1739 * must keep out. 1740 */ 1741 if (CPU->cpu_id != panic_cpu.cpu_id) 1742 return; 1743 1744 /* 1745 * If we're panicking, the deadman cyclic continues to increase 1746 * lbolt in case the dump device driver relies on this for 1747 * timeouts. Note that we rely on deadman() being invoked once 1748 * per second, and credit lbolt and lbolt64 with hz ticks each. 1749 */ 1750 lbolt += hz; 1751 lbolt64 += hz; 1752 1753 if (!deadman_panic_timers) 1754 return; /* allow all timers to be manually disabled */ 1755 1756 /* 1757 * If we are generating a crash dump or syncing filesystems and 1758 * the corresponding timer is set, decrement it and re-enter 1759 * the panic code to abort it and advance to the next state. 1760 * The panic states and triggers are explained in panic.c. 1761 */ 1762 if (panic_dump) { 1763 if (dump_timeleft && (--dump_timeleft == 0)) { 1764 panic("panic dump timeout"); 1765 /*NOTREACHED*/ 1766 } 1767 } else if (panic_sync) { 1768 if (sync_timeleft && (--sync_timeleft == 0)) { 1769 panic("panic sync timeout"); 1770 /*NOTREACHED*/ 1771 } 1772 } 1773 1774 return; 1775 } 1776 1777 if (lbolt != CPU->cpu_deadman_lbolt) { 1778 CPU->cpu_deadman_lbolt = lbolt; 1779 CPU->cpu_deadman_countdown = deadman_seconds; 1780 return; 1781 } 1782 1783 if (--CPU->cpu_deadman_countdown > 0) 1784 return; 1785 1786 /* 1787 * Regardless of whether or not we actually bring the system down, 1788 * bump the deadman_panics variable. 1789 * 1790 * N.B. deadman_panics is incremented once for each CPU that 1791 * passes through here. It's expected that all the CPUs will 1792 * detect this condition within one second of each other, so 1793 * when deadman_enabled is off, deadman_panics will 1794 * typically be a multiple of the total number of CPUs in 1795 * the system. 1796 */ 1797 atomic_add_32(&deadman_panics, 1); 1798 1799 if (!deadman_enabled) { 1800 CPU->cpu_deadman_countdown = deadman_seconds; 1801 return; 1802 } 1803 1804 /* 1805 * If we're here, we want to bring the system down. 1806 */ 1807 panic("deadman: timed out after %d seconds of clock " 1808 "inactivity", deadman_seconds); 1809 /*NOTREACHED*/ 1810 } 1811 1812 /*ARGSUSED*/ 1813 static void 1814 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1815 { 1816 cpu->cpu_deadman_lbolt = 0; 1817 cpu->cpu_deadman_countdown = deadman_seconds; 1818 1819 hdlr->cyh_func = (cyc_func_t)deadman; 1820 hdlr->cyh_level = CY_HIGH_LEVEL; 1821 hdlr->cyh_arg = NULL; 1822 1823 /* 1824 * Stagger the CPUs so that they don't all run deadman() at 1825 * the same time. Simplest reason to do this is to make it 1826 * more likely that only one CPU will panic in case of a 1827 * timeout. This is (strictly speaking) an aesthetic, not a 1828 * technical consideration. 1829 * 1830 * The interval must be one second in accordance with the 1831 * code in deadman() above to increase lbolt during panic. 1832 */ 1833 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1834 when->cyt_interval = NANOSEC; 1835 } 1836 1837 1838 void 1839 deadman_init(void) 1840 { 1841 cyc_omni_handler_t hdlr; 1842 1843 if (deadman_seconds == 0) 1844 deadman_seconds = snoop_interval / MICROSEC; 1845 1846 if (snooping) 1847 deadman_enabled = 1; 1848 1849 hdlr.cyo_online = deadman_online; 1850 hdlr.cyo_offline = NULL; 1851 hdlr.cyo_arg = NULL; 1852 1853 mutex_enter(&cpu_lock); 1854 deadman_cyclic = cyclic_add_omni(&hdlr); 1855 mutex_exit(&cpu_lock); 1856 } 1857 1858 /* 1859 * tod_fault() is for updating tod validate mechanism state: 1860 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1861 * currently used for debugging only 1862 * (2) The following four cases detected by tod validate mechanism: 1863 * TOD_REVERSED: current tod value is less than previous value. 1864 * TOD_STALLED: current tod value hasn't advanced. 1865 * TOD_JUMPED: current tod value advanced too far from previous value. 1866 * TOD_RATECHANGED: the ratio between average tod delta and 1867 * average tick delta has changed. 1868 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 1869 * a virtual TOD provided by a hypervisor. 1870 */ 1871 enum tod_fault_type 1872 tod_fault(enum tod_fault_type ftype, int off) 1873 { 1874 ASSERT(MUTEX_HELD(&tod_lock)); 1875 1876 if (tod_faulted != ftype) { 1877 switch (ftype) { 1878 case TOD_NOFAULT: 1879 plat_tod_fault(TOD_NOFAULT); 1880 cmn_err(CE_NOTE, "Restarted tracking " 1881 "Time of Day clock."); 1882 tod_faulted = ftype; 1883 break; 1884 case TOD_REVERSED: 1885 case TOD_JUMPED: 1886 if (tod_faulted == TOD_NOFAULT) { 1887 plat_tod_fault(ftype); 1888 cmn_err(CE_WARN, "Time of Day clock error: " 1889 "reason [%s by 0x%x]. -- " 1890 " Stopped tracking Time Of Day clock.", 1891 tod_fault_table[ftype], off); 1892 tod_faulted = ftype; 1893 } 1894 break; 1895 case TOD_STALLED: 1896 case TOD_RATECHANGED: 1897 if (tod_faulted == TOD_NOFAULT) { 1898 plat_tod_fault(ftype); 1899 cmn_err(CE_WARN, "Time of Day clock error: " 1900 "reason [%s]. -- " 1901 " Stopped tracking Time Of Day clock.", 1902 tod_fault_table[ftype]); 1903 tod_faulted = ftype; 1904 } 1905 break; 1906 case TOD_RDONLY: 1907 if (tod_faulted == TOD_NOFAULT) { 1908 plat_tod_fault(ftype); 1909 cmn_err(CE_NOTE, "!Time of Day clock is " 1910 "Read-Only; set of Date/Time will not " 1911 "persist across reboot."); 1912 tod_faulted = ftype; 1913 } 1914 break; 1915 default: 1916 break; 1917 } 1918 } 1919 return (tod_faulted); 1920 } 1921 1922 void 1923 tod_fault_reset() 1924 { 1925 tod_fault_reset_flag = 1; 1926 } 1927 1928 1929 /* 1930 * tod_validate() is used for checking values returned by tod_get(). 1931 * Four error cases can be detected by this routine: 1932 * TOD_REVERSED: current tod value is less than previous. 1933 * TOD_STALLED: current tod value hasn't advanced. 1934 * TOD_JUMPED: current tod value advanced too far from previous value. 1935 * TOD_RATECHANGED: the ratio between average tod delta and 1936 * average tick delta has changed. 1937 */ 1938 time_t 1939 tod_validate(time_t tod) 1940 { 1941 time_t diff_tod; 1942 hrtime_t diff_tick; 1943 1944 long dtick; 1945 int dtick_delta; 1946 1947 int off = 0; 1948 enum tod_fault_type tod_bad = TOD_NOFAULT; 1949 1950 static int firsttime = 1; 1951 1952 static time_t prev_tod = 0; 1953 static hrtime_t prev_tick = 0; 1954 static long dtick_avg = TOD_REF_FREQ; 1955 1956 hrtime_t tick = gethrtime(); 1957 1958 ASSERT(MUTEX_HELD(&tod_lock)); 1959 1960 /* 1961 * tod_validate_enable is patchable via /etc/system. 1962 * If TOD is already faulted, or if TOD validation is deferred, 1963 * there is nothing to do. 1964 */ 1965 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 1966 tod_validate_deferred) { 1967 return (tod); 1968 } 1969 1970 /* 1971 * Update prev_tod and prev_tick values for first run 1972 */ 1973 if (firsttime) { 1974 firsttime = 0; 1975 prev_tod = tod; 1976 prev_tick = tick; 1977 return (tod); 1978 } 1979 1980 /* 1981 * For either of these conditions, we need to reset ourself 1982 * and start validation from zero since each condition 1983 * indicates that the TOD will be updated with new value 1984 * Also, note that tod_needsync will be reset in clock() 1985 */ 1986 if (tod_needsync || tod_fault_reset_flag) { 1987 firsttime = 1; 1988 prev_tod = 0; 1989 prev_tick = 0; 1990 dtick_avg = TOD_REF_FREQ; 1991 1992 if (tod_fault_reset_flag) 1993 tod_fault_reset_flag = 0; 1994 1995 return (tod); 1996 } 1997 1998 /* test hook */ 1999 switch (tod_unit_test) { 2000 case 1: /* for testing jumping tod */ 2001 tod += tod_test_injector; 2002 tod_unit_test = 0; 2003 break; 2004 case 2: /* for testing stuck tod bit */ 2005 tod |= 1 << tod_test_injector; 2006 tod_unit_test = 0; 2007 break; 2008 case 3: /* for testing stalled tod */ 2009 tod = prev_tod; 2010 tod_unit_test = 0; 2011 break; 2012 case 4: /* reset tod fault status */ 2013 (void) tod_fault(TOD_NOFAULT, 0); 2014 tod_unit_test = 0; 2015 break; 2016 default: 2017 break; 2018 } 2019 2020 diff_tod = tod - prev_tod; 2021 diff_tick = tick - prev_tick; 2022 2023 ASSERT(diff_tick >= 0); 2024 2025 if (diff_tod < 0) { 2026 /* ERROR - tod reversed */ 2027 tod_bad = TOD_REVERSED; 2028 off = (int)(prev_tod - tod); 2029 } else if (diff_tod == 0) { 2030 /* tod did not advance */ 2031 if (diff_tick > TOD_STALL_THRESHOLD) { 2032 /* ERROR - tod stalled */ 2033 tod_bad = TOD_STALLED; 2034 } else { 2035 /* 2036 * Make sure we don't update prev_tick 2037 * so that diff_tick is calculated since 2038 * the first diff_tod == 0 2039 */ 2040 return (tod); 2041 } 2042 } else { 2043 /* calculate dtick */ 2044 dtick = diff_tick / diff_tod; 2045 2046 /* update dtick averages */ 2047 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2048 2049 /* 2050 * Calculate dtick_delta as 2051 * variation from reference freq in quartiles 2052 */ 2053 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2054 (TOD_REF_FREQ >> 2); 2055 2056 /* 2057 * Even with a perfectly functioning TOD device, 2058 * when the number of elapsed seconds is low the 2059 * algorithm can calculate a rate that is beyond 2060 * tolerance, causing an error. The algorithm is 2061 * inaccurate when elapsed time is low (less than 2062 * 5 seconds). 2063 */ 2064 if (diff_tod > 4) { 2065 if (dtick < TOD_JUMP_THRESHOLD) { 2066 /* ERROR - tod jumped */ 2067 tod_bad = TOD_JUMPED; 2068 off = (int)diff_tod; 2069 } else if (dtick_delta) { 2070 /* ERROR - change in clock rate */ 2071 tod_bad = TOD_RATECHANGED; 2072 } 2073 } 2074 } 2075 2076 if (tod_bad != TOD_NOFAULT) { 2077 (void) tod_fault(tod_bad, off); 2078 2079 /* 2080 * Disable dosynctodr since we are going to fault 2081 * the TOD chip anyway here 2082 */ 2083 dosynctodr = 0; 2084 2085 /* 2086 * Set tod to the correct value from hrestime 2087 */ 2088 tod = hrestime.tv_sec; 2089 } 2090 2091 prev_tod = tod; 2092 prev_tick = tick; 2093 return (tod); 2094 } 2095 2096 static void 2097 calcloadavg(int nrun, uint64_t *hp_ave) 2098 { 2099 static int64_t f[3] = { 135, 27, 9 }; 2100 uint_t i; 2101 int64_t q, r; 2102 2103 /* 2104 * Compute load average over the last 1, 5, and 15 minutes 2105 * (60, 300, and 900 seconds). The constants in f[3] are for 2106 * exponential decay: 2107 * (1 - exp(-1/60)) << 13 = 135, 2108 * (1 - exp(-1/300)) << 13 = 27, 2109 * (1 - exp(-1/900)) << 13 = 9. 2110 */ 2111 2112 /* 2113 * a little hoop-jumping to avoid integer overflow 2114 */ 2115 for (i = 0; i < 3; i++) { 2116 q = (hp_ave[i] >> 16) << 7; 2117 r = (hp_ave[i] & 0xffff) << 7; 2118 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2119 } 2120 } 2121