1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 31 #include <sys/param.h> 32 #include <sys/t_lock.h> 33 #include <sys/types.h> 34 #include <sys/tuneable.h> 35 #include <sys/sysmacros.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/lgrp.h> 39 #include <sys/user.h> 40 #include <sys/proc.h> 41 #include <sys/callo.h> 42 #include <sys/kmem.h> 43 #include <sys/var.h> 44 #include <sys/cmn_err.h> 45 #include <sys/swap.h> 46 #include <sys/vmsystm.h> 47 #include <sys/class.h> 48 #include <sys/time.h> 49 #include <sys/debug.h> 50 #include <sys/vtrace.h> 51 #include <sys/spl.h> 52 #include <sys/atomic.h> 53 #include <sys/dumphdr.h> 54 #include <sys/archsystm.h> 55 #include <sys/fs/swapnode.h> 56 #include <sys/panic.h> 57 #include <sys/disp.h> 58 #include <sys/msacct.h> 59 #include <sys/mem_cage.h> 60 61 #include <vm/page.h> 62 #include <vm/anon.h> 63 #include <vm/rm.h> 64 #include <sys/cyclic.h> 65 #include <sys/cpupart.h> 66 #include <sys/rctl.h> 67 #include <sys/task.h> 68 #include <sys/sdt.h> 69 #include <sys/ddi_timer.h> 70 #include <sys/random.h> 71 #include <sys/modctl.h> 72 73 /* 74 * for NTP support 75 */ 76 #include <sys/timex.h> 77 #include <sys/inttypes.h> 78 79 /* 80 * clock() is called straight from the clock cyclic; see clock_init(). 81 * 82 * Functions: 83 * reprime clock 84 * maintain date 85 * jab the scheduler 86 */ 87 88 extern kcondvar_t fsflush_cv; 89 extern sysinfo_t sysinfo; 90 extern vminfo_t vminfo; 91 extern int idleswtch; /* flag set while idle in pswtch() */ 92 extern hrtime_t volatile devinfo_freeze; 93 94 /* 95 * high-precision avenrun values. These are needed to make the 96 * regular avenrun values accurate. 97 */ 98 static uint64_t hp_avenrun[3]; 99 int avenrun[3]; /* FSCALED average run queue lengths */ 100 time_t time; /* time in seconds since 1970 - for compatibility only */ 101 102 static struct loadavg_s loadavg; 103 /* 104 * Phase/frequency-lock loop (PLL/FLL) definitions 105 * 106 * The following variables are read and set by the ntp_adjtime() system 107 * call. 108 * 109 * time_state shows the state of the system clock, with values defined 110 * in the timex.h header file. 111 * 112 * time_status shows the status of the system clock, with bits defined 113 * in the timex.h header file. 114 * 115 * time_offset is used by the PLL/FLL to adjust the system time in small 116 * increments. 117 * 118 * time_constant determines the bandwidth or "stiffness" of the PLL. 119 * 120 * time_tolerance determines maximum frequency error or tolerance of the 121 * CPU clock oscillator and is a property of the architecture; however, 122 * in principle it could change as result of the presence of external 123 * discipline signals, for instance. 124 * 125 * time_precision is usually equal to the kernel tick variable; however, 126 * in cases where a precision clock counter or external clock is 127 * available, the resolution can be much less than this and depend on 128 * whether the external clock is working or not. 129 * 130 * time_maxerror is initialized by a ntp_adjtime() call and increased by 131 * the kernel once each second to reflect the maximum error bound 132 * growth. 133 * 134 * time_esterror is set and read by the ntp_adjtime() call, but 135 * otherwise not used by the kernel. 136 */ 137 int32_t time_state = TIME_OK; /* clock state */ 138 int32_t time_status = STA_UNSYNC; /* clock status bits */ 139 int32_t time_offset = 0; /* time offset (us) */ 140 int32_t time_constant = 0; /* pll time constant */ 141 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 142 int32_t time_precision = 1; /* clock precision (us) */ 143 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 144 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 145 146 /* 147 * The following variables establish the state of the PLL/FLL and the 148 * residual time and frequency offset of the local clock. The scale 149 * factors are defined in the timex.h header file. 150 * 151 * time_phase and time_freq are the phase increment and the frequency 152 * increment, respectively, of the kernel time variable. 153 * 154 * time_freq is set via ntp_adjtime() from a value stored in a file when 155 * the synchronization daemon is first started. Its value is retrieved 156 * via ntp_adjtime() and written to the file about once per hour by the 157 * daemon. 158 * 159 * time_adj is the adjustment added to the value of tick at each timer 160 * interrupt and is recomputed from time_phase and time_freq at each 161 * seconds rollover. 162 * 163 * time_reftime is the second's portion of the system time at the last 164 * call to ntp_adjtime(). It is used to adjust the time_freq variable 165 * and to increase the time_maxerror as the time since last update 166 * increases. 167 */ 168 int32_t time_phase = 0; /* phase offset (scaled us) */ 169 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 170 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 171 int32_t time_reftime = 0; /* time at last adjustment (s) */ 172 173 /* 174 * The scale factors of the following variables are defined in the 175 * timex.h header file. 176 * 177 * pps_time contains the time at each calibration interval, as read by 178 * microtime(). pps_count counts the seconds of the calibration 179 * interval, the duration of which is nominally pps_shift in powers of 180 * two. 181 * 182 * pps_offset is the time offset produced by the time median filter 183 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 184 * this filter. 185 * 186 * pps_freq is the frequency offset produced by the frequency median 187 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 188 * by this filter. 189 * 190 * pps_usec is latched from a high resolution counter or external clock 191 * at pps_time. Here we want the hardware counter contents only, not the 192 * contents plus the time_tv.usec as usual. 193 * 194 * pps_valid counts the number of seconds since the last PPS update. It 195 * is used as a watchdog timer to disable the PPS discipline should the 196 * PPS signal be lost. 197 * 198 * pps_glitch counts the number of seconds since the beginning of an 199 * offset burst more than tick/2 from current nominal offset. It is used 200 * mainly to suppress error bursts due to priority conflicts between the 201 * PPS interrupt and timer interrupt. 202 * 203 * pps_intcnt counts the calibration intervals for use in the interval- 204 * adaptation algorithm. It's just too complicated for words. 205 */ 206 struct timeval pps_time; /* kernel time at last interval */ 207 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 208 int32_t pps_offset = 0; /* pps time offset (us) */ 209 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 210 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 211 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 212 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 213 int32_t pps_usec = 0; /* microsec counter at last interval */ 214 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 215 int32_t pps_glitch = 0; /* pps signal glitch counter */ 216 int32_t pps_count = 0; /* calibration interval counter (s) */ 217 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 218 int32_t pps_intcnt = 0; /* intervals at current duration */ 219 220 /* 221 * PPS signal quality monitors 222 * 223 * pps_jitcnt counts the seconds that have been discarded because the 224 * jitter measured by the time median filter exceeds the limit MAXTIME 225 * (100 us). 226 * 227 * pps_calcnt counts the frequency calibration intervals, which are 228 * variable from 4 s to 256 s. 229 * 230 * pps_errcnt counts the calibration intervals which have been discarded 231 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 232 * calibration interval jitter exceeds two ticks. 233 * 234 * pps_stbcnt counts the calibration intervals that have been discarded 235 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 236 */ 237 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 238 int32_t pps_calcnt = 0; /* calibration intervals */ 239 int32_t pps_errcnt = 0; /* calibration errors */ 240 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 241 242 /* The following variables require no explicit locking */ 243 volatile clock_t lbolt; /* time in Hz since last boot */ 244 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 245 246 kcondvar_t lbolt_cv; 247 int one_sec = 1; /* turned on once every second */ 248 static int fsflushcnt; /* counter for t_fsflushr */ 249 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 250 int tod_needsync = 0; /* need to sync tod chip with software time */ 251 static int tod_broken = 0; /* clock chip doesn't work */ 252 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 253 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 254 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 255 cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 256 257 extern void clock_tick_schedule(int); 258 259 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 260 261 /* 262 * for tod fault detection 263 */ 264 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 265 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 266 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 267 #define TOD_FILTER_N 4 268 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 269 static int tod_faulted = TOD_NOFAULT; 270 static int tod_fault_reset_flag = 0; 271 272 /* patchable via /etc/system */ 273 int tod_validate_enable = 1; 274 275 /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 276 int delay_from_interrupt_diagnose = 0; 277 volatile uint32_t delay_from_interrupt_msg = 20; 278 279 /* 280 * On non-SPARC systems, TOD validation must be deferred until gethrtime 281 * returns non-zero values (after mach_clkinit's execution). 282 * On SPARC systems, it must be deferred until after hrtime_base 283 * and hres_last_tick are set (in the first invocation of hres_tick). 284 * Since in both cases the prerequisites occur before the invocation of 285 * tod_get() in clock(), the deferment is lifted there. 286 */ 287 static boolean_t tod_validate_deferred = B_TRUE; 288 289 /* 290 * tod_fault_table[] must be aligned with 291 * enum tod_fault_type in systm.h 292 */ 293 static char *tod_fault_table[] = { 294 "Reversed", /* TOD_REVERSED */ 295 "Stalled", /* TOD_STALLED */ 296 "Jumped", /* TOD_JUMPED */ 297 "Changed in Clock Rate", /* TOD_RATECHANGED */ 298 "Is Read-Only" /* TOD_RDONLY */ 299 /* 300 * no strings needed for TOD_NOFAULT 301 */ 302 }; 303 304 /* 305 * test hook for tod broken detection in tod_validate 306 */ 307 int tod_unit_test = 0; 308 time_t tod_test_injector; 309 310 #define CLOCK_ADJ_HIST_SIZE 4 311 312 static int adj_hist_entry; 313 314 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 315 316 static void calcloadavg(int, uint64_t *); 317 static int genloadavg(struct loadavg_s *); 318 static void loadavg_update(); 319 320 void (*cmm_clock_callout)() = NULL; 321 void (*cpucaps_clock_callout)() = NULL; 322 323 extern clock_t clock_tick_proc_max; 324 325 static void 326 clock(void) 327 { 328 kthread_t *t; 329 uint_t nrunnable; 330 uint_t w_io; 331 cpu_t *cp; 332 cpupart_t *cpupart; 333 extern void set_anoninfo(); 334 extern void set_freemem(); 335 void (*funcp)(); 336 int32_t ltemp; 337 int64_t lltemp; 338 int s; 339 int do_lgrp_load; 340 int i; 341 342 if (panicstr) 343 return; 344 345 set_anoninfo(); 346 /* 347 * Make sure that 'freemem' do not drift too far from the truth 348 */ 349 set_freemem(); 350 351 352 /* 353 * Before the section which is repeated is executed, we do 354 * the time delta processing which occurs every clock tick 355 * 356 * There is additional processing which happens every time 357 * the nanosecond counter rolls over which is described 358 * below - see the section which begins with : if (one_sec) 359 * 360 * This section marks the beginning of the precision-kernel 361 * code fragment. 362 * 363 * First, compute the phase adjustment. If the low-order bits 364 * (time_phase) of the update overflow, bump the higher order 365 * bits (time_update). 366 */ 367 time_phase += time_adj; 368 if (time_phase <= -FINEUSEC) { 369 ltemp = -time_phase / SCALE_PHASE; 370 time_phase += ltemp * SCALE_PHASE; 371 s = hr_clock_lock(); 372 timedelta -= ltemp * (NANOSEC/MICROSEC); 373 hr_clock_unlock(s); 374 } else if (time_phase >= FINEUSEC) { 375 ltemp = time_phase / SCALE_PHASE; 376 time_phase -= ltemp * SCALE_PHASE; 377 s = hr_clock_lock(); 378 timedelta += ltemp * (NANOSEC/MICROSEC); 379 hr_clock_unlock(s); 380 } 381 382 /* 383 * End of precision-kernel code fragment which is processed 384 * every timer interrupt. 385 * 386 * Continue with the interrupt processing as scheduled. 387 */ 388 /* 389 * Count the number of runnable threads and the number waiting 390 * for some form of I/O to complete -- gets added to 391 * sysinfo.waiting. To know the state of the system, must add 392 * wait counts from all CPUs. Also add up the per-partition 393 * statistics. 394 */ 395 w_io = 0; 396 nrunnable = 0; 397 398 /* 399 * keep track of when to update lgrp/part loads 400 */ 401 402 do_lgrp_load = 0; 403 if (lgrp_ticks++ >= hz / 10) { 404 lgrp_ticks = 0; 405 do_lgrp_load = 1; 406 } 407 408 if (one_sec) 409 loadavg_update(); 410 411 /* 412 * First count the threads waiting on kpreempt queues in each 413 * CPU partition. 414 */ 415 416 cpupart = cp_list_head; 417 do { 418 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 419 420 cpupart->cp_updates++; 421 nrunnable += cpupart_nrunnable; 422 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 423 if (one_sec) { 424 cpupart->cp_nrunning = 0; 425 cpupart->cp_nrunnable = cpupart_nrunnable; 426 } 427 } while ((cpupart = cpupart->cp_next) != cp_list_head); 428 429 430 /* Now count the per-CPU statistics. */ 431 cp = cpu_list; 432 do { 433 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 434 435 nrunnable += cpu_nrunnable; 436 cpupart = cp->cpu_part; 437 cpupart->cp_nrunnable_cum += cpu_nrunnable; 438 if (one_sec) { 439 cpupart->cp_nrunnable += cpu_nrunnable; 440 /* 441 * Update user, system, and idle cpu times. 442 */ 443 cpupart->cp_nrunning++; 444 /* 445 * w_io is used to update sysinfo.waiting during 446 * one_second processing below. Only gather w_io 447 * information when we walk the list of cpus if we're 448 * going to perform one_second processing. 449 */ 450 w_io += CPU_STATS(cp, sys.iowait); 451 } 452 453 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 454 int i, load, change; 455 hrtime_t intracct, intrused; 456 const hrtime_t maxnsec = 1000000000; 457 const int precision = 100; 458 459 /* 460 * Estimate interrupt load on this cpu each second. 461 * Computes cpu_intrload as %utilization (0-99). 462 */ 463 464 /* add up interrupt time from all micro states */ 465 for (intracct = 0, i = 0; i < NCMSTATES; i++) 466 intracct += cp->cpu_intracct[i]; 467 scalehrtime(&intracct); 468 469 /* compute nsec used in the past second */ 470 intrused = intracct - cp->cpu_intrlast; 471 cp->cpu_intrlast = intracct; 472 473 /* limit the value for safety (and the first pass) */ 474 if (intrused >= maxnsec) 475 intrused = maxnsec - 1; 476 477 /* calculate %time in interrupt */ 478 load = (precision * intrused) / maxnsec; 479 ASSERT(load >= 0 && load < precision); 480 change = cp->cpu_intrload - load; 481 482 /* jump to new max, or decay the old max */ 483 if (change < 0) 484 cp->cpu_intrload = load; 485 else if (change > 0) 486 cp->cpu_intrload -= (change + 3) / 4; 487 488 DTRACE_PROBE3(cpu_intrload, 489 cpu_t *, cp, 490 hrtime_t, intracct, 491 hrtime_t, intrused); 492 } 493 494 if (do_lgrp_load && 495 (cp->cpu_flags & CPU_EXISTS)) { 496 /* 497 * When updating the lgroup's load average, 498 * account for the thread running on the CPU. 499 * If the CPU is the current one, then we need 500 * to account for the underlying thread which 501 * got the clock interrupt not the thread that is 502 * handling the interrupt and caculating the load 503 * average 504 */ 505 t = cp->cpu_thread; 506 if (CPU == cp) 507 t = t->t_intr; 508 509 /* 510 * Account for the load average for this thread if 511 * it isn't the idle thread or it is on the interrupt 512 * stack and not the current CPU handling the clock 513 * interrupt 514 */ 515 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 516 CPU_ON_INTR(cp))) { 517 if (t->t_lpl == cp->cpu_lpl) { 518 /* local thread */ 519 cpu_nrunnable++; 520 } else { 521 /* 522 * This is a remote thread, charge it 523 * against its home lgroup. Note that 524 * we notice that a thread is remote 525 * only if it's currently executing. 526 * This is a reasonable approximation, 527 * since queued remote threads are rare. 528 * Note also that if we didn't charge 529 * it to its home lgroup, remote 530 * execution would often make a system 531 * appear balanced even though it was 532 * not, and thread placement/migration 533 * would often not be done correctly. 534 */ 535 lgrp_loadavg(t->t_lpl, 536 LGRP_LOADAVG_IN_THREAD_MAX, 0); 537 } 538 } 539 lgrp_loadavg(cp->cpu_lpl, 540 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 541 } 542 } while ((cp = cp->cpu_next) != cpu_list); 543 544 clock_tick_schedule(one_sec); 545 546 /* 547 * bump time in ticks 548 * 549 * We rely on there being only one clock thread and hence 550 * don't need a lock to protect lbolt. 551 */ 552 lbolt++; 553 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 554 555 /* 556 * Check for a callout that needs be called from the clock 557 * thread to support the membership protocol in a clustered 558 * system. Copy the function pointer so that we can reset 559 * this to NULL if needed. 560 */ 561 if ((funcp = cmm_clock_callout) != NULL) 562 (*funcp)(); 563 564 if ((funcp = cpucaps_clock_callout) != NULL) 565 (*funcp)(); 566 567 /* 568 * Wakeup the cageout thread waiters once per second. 569 */ 570 if (one_sec) 571 kcage_tick(); 572 573 if (one_sec) { 574 575 int drift, absdrift; 576 timestruc_t tod; 577 int s; 578 579 /* 580 * Beginning of precision-kernel code fragment executed 581 * every second. 582 * 583 * On rollover of the second the phase adjustment to be 584 * used for the next second is calculated. Also, the 585 * maximum error is increased by the tolerance. If the 586 * PPS frequency discipline code is present, the phase is 587 * increased to compensate for the CPU clock oscillator 588 * frequency error. 589 * 590 * On a 32-bit machine and given parameters in the timex.h 591 * header file, the maximum phase adjustment is +-512 ms 592 * and maximum frequency offset is (a tad less than) 593 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 594 */ 595 time_maxerror += time_tolerance / SCALE_USEC; 596 597 /* 598 * Leap second processing. If in leap-insert state at 599 * the end of the day, the system clock is set back one 600 * second; if in leap-delete state, the system clock is 601 * set ahead one second. The microtime() routine or 602 * external clock driver will insure that reported time 603 * is always monotonic. The ugly divides should be 604 * replaced. 605 */ 606 switch (time_state) { 607 608 case TIME_OK: 609 if (time_status & STA_INS) 610 time_state = TIME_INS; 611 else if (time_status & STA_DEL) 612 time_state = TIME_DEL; 613 break; 614 615 case TIME_INS: 616 if (hrestime.tv_sec % 86400 == 0) { 617 s = hr_clock_lock(); 618 hrestime.tv_sec--; 619 hr_clock_unlock(s); 620 time_state = TIME_OOP; 621 } 622 break; 623 624 case TIME_DEL: 625 if ((hrestime.tv_sec + 1) % 86400 == 0) { 626 s = hr_clock_lock(); 627 hrestime.tv_sec++; 628 hr_clock_unlock(s); 629 time_state = TIME_WAIT; 630 } 631 break; 632 633 case TIME_OOP: 634 time_state = TIME_WAIT; 635 break; 636 637 case TIME_WAIT: 638 if (!(time_status & (STA_INS | STA_DEL))) 639 time_state = TIME_OK; 640 default: 641 break; 642 } 643 644 /* 645 * Compute the phase adjustment for the next second. In 646 * PLL mode, the offset is reduced by a fixed factor 647 * times the time constant. In FLL mode the offset is 648 * used directly. In either mode, the maximum phase 649 * adjustment for each second is clamped so as to spread 650 * the adjustment over not more than the number of 651 * seconds between updates. 652 */ 653 if (time_offset == 0) 654 time_adj = 0; 655 else if (time_offset < 0) { 656 lltemp = -time_offset; 657 if (!(time_status & STA_FLL)) { 658 if ((1 << time_constant) >= SCALE_KG) 659 lltemp *= (1 << time_constant) / 660 SCALE_KG; 661 else 662 lltemp = (lltemp / SCALE_KG) >> 663 time_constant; 664 } 665 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 666 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 667 time_offset += lltemp; 668 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 669 } else { 670 lltemp = time_offset; 671 if (!(time_status & STA_FLL)) { 672 if ((1 << time_constant) >= SCALE_KG) 673 lltemp *= (1 << time_constant) / 674 SCALE_KG; 675 else 676 lltemp = (lltemp / SCALE_KG) >> 677 time_constant; 678 } 679 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 680 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 681 time_offset -= lltemp; 682 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 683 } 684 685 /* 686 * Compute the frequency estimate and additional phase 687 * adjustment due to frequency error for the next 688 * second. When the PPS signal is engaged, gnaw on the 689 * watchdog counter and update the frequency computed by 690 * the pll and the PPS signal. 691 */ 692 pps_valid++; 693 if (pps_valid == PPS_VALID) { 694 pps_jitter = MAXTIME; 695 pps_stabil = MAXFREQ; 696 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 697 STA_PPSWANDER | STA_PPSERROR); 698 } 699 lltemp = time_freq + pps_freq; 700 701 if (lltemp) 702 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 703 704 /* 705 * End of precision kernel-code fragment 706 * 707 * The section below should be modified if we are planning 708 * to use NTP for synchronization. 709 * 710 * Note: the clock synchronization code now assumes 711 * the following: 712 * - if dosynctodr is 1, then compute the drift between 713 * the tod chip and software time and adjust one or 714 * the other depending on the circumstances 715 * 716 * - if dosynctodr is 0, then the tod chip is independent 717 * of the software clock and should not be adjusted, 718 * but allowed to free run. this allows NTP to sync. 719 * hrestime without any interference from the tod chip. 720 */ 721 722 tod_validate_deferred = B_FALSE; 723 mutex_enter(&tod_lock); 724 tod = tod_get(); 725 drift = tod.tv_sec - hrestime.tv_sec; 726 absdrift = (drift >= 0) ? drift : -drift; 727 if (tod_needsync || absdrift > 1) { 728 int s; 729 if (absdrift > 2) { 730 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 731 s = hr_clock_lock(); 732 hrestime = tod; 733 membar_enter(); /* hrestime visible */ 734 timedelta = 0; 735 timechanged++; 736 tod_needsync = 0; 737 hr_clock_unlock(s); 738 callout_hrestime(); 739 740 } 741 } else { 742 if (tod_needsync || !dosynctodr) { 743 gethrestime(&tod); 744 tod_set(tod); 745 s = hr_clock_lock(); 746 if (timedelta == 0) 747 tod_needsync = 0; 748 hr_clock_unlock(s); 749 } else { 750 /* 751 * If the drift is 2 seconds on the 752 * money, then the TOD is adjusting 753 * the clock; record that. 754 */ 755 clock_adj_hist[adj_hist_entry++ % 756 CLOCK_ADJ_HIST_SIZE] = lbolt64; 757 s = hr_clock_lock(); 758 timedelta = (int64_t)drift*NANOSEC; 759 hr_clock_unlock(s); 760 } 761 } 762 } 763 one_sec = 0; 764 time = gethrestime_sec(); /* for crusty old kmem readers */ 765 mutex_exit(&tod_lock); 766 767 /* 768 * Some drivers still depend on this... XXX 769 */ 770 cv_broadcast(&lbolt_cv); 771 772 sysinfo.updates++; 773 vminfo.freemem += freemem; 774 { 775 pgcnt_t maxswap, resv, free; 776 pgcnt_t avail = 777 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 778 779 maxswap = k_anoninfo.ani_mem_resv + 780 k_anoninfo.ani_max +avail; 781 free = k_anoninfo.ani_free + avail; 782 resv = k_anoninfo.ani_phys_resv + 783 k_anoninfo.ani_mem_resv; 784 785 vminfo.swap_resv += resv; 786 /* number of reserved and allocated pages */ 787 #ifdef DEBUG 788 if (maxswap < free) 789 cmn_err(CE_WARN, "clock: maxswap < free"); 790 if (maxswap < resv) 791 cmn_err(CE_WARN, "clock: maxswap < resv"); 792 #endif 793 vminfo.swap_alloc += maxswap - free; 794 vminfo.swap_avail += maxswap - resv; 795 vminfo.swap_free += free; 796 } 797 if (nrunnable) { 798 sysinfo.runque += nrunnable; 799 sysinfo.runocc++; 800 } 801 if (nswapped) { 802 sysinfo.swpque += nswapped; 803 sysinfo.swpocc++; 804 } 805 sysinfo.waiting += w_io; 806 807 /* 808 * Wake up fsflush to write out DELWRI 809 * buffers, dirty pages and other cached 810 * administrative data, e.g. inodes. 811 */ 812 if (--fsflushcnt <= 0) { 813 fsflushcnt = tune.t_fsflushr; 814 cv_signal(&fsflush_cv); 815 } 816 817 vmmeter(); 818 calcloadavg(genloadavg(&loadavg), hp_avenrun); 819 for (i = 0; i < 3; i++) 820 /* 821 * At the moment avenrun[] can only hold 31 822 * bits of load average as it is a signed 823 * int in the API. We need to ensure that 824 * hp_avenrun[i] >> (16 - FSHIFT) will not be 825 * too large. If it is, we put the largest value 826 * that we can use into avenrun[i]. This is 827 * kludgey, but about all we can do until we 828 * avenrun[] is declared as an array of uint64[] 829 */ 830 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 831 avenrun[i] = (int32_t)(hp_avenrun[i] >> 832 (16 - FSHIFT)); 833 else 834 avenrun[i] = 0x7fffffff; 835 836 cpupart = cp_list_head; 837 do { 838 calcloadavg(genloadavg(&cpupart->cp_loadavg), 839 cpupart->cp_hp_avenrun); 840 } while ((cpupart = cpupart->cp_next) != cp_list_head); 841 842 /* 843 * Wake up the swapper thread if necessary. 844 */ 845 if (runin || 846 (runout && (avefree < desfree || wake_sched_sec))) { 847 t = &t0; 848 thread_lock(t); 849 if (t->t_state == TS_STOPPED) { 850 runin = runout = 0; 851 wake_sched_sec = 0; 852 t->t_whystop = 0; 853 t->t_whatstop = 0; 854 t->t_schedflag &= ~TS_ALLSTART; 855 THREAD_TRANSITION(t); 856 setfrontdq(t); 857 } 858 thread_unlock(t); 859 } 860 } 861 862 /* 863 * Wake up the swapper if any high priority swapped-out threads 864 * became runable during the last tick. 865 */ 866 if (wake_sched) { 867 t = &t0; 868 thread_lock(t); 869 if (t->t_state == TS_STOPPED) { 870 runin = runout = 0; 871 wake_sched = 0; 872 t->t_whystop = 0; 873 t->t_whatstop = 0; 874 t->t_schedflag &= ~TS_ALLSTART; 875 THREAD_TRANSITION(t); 876 setfrontdq(t); 877 } 878 thread_unlock(t); 879 } 880 } 881 882 void 883 clock_init(void) 884 { 885 cyc_handler_t hdlr; 886 cyc_time_t when; 887 888 hdlr.cyh_func = (cyc_func_t)clock; 889 hdlr.cyh_level = CY_LOCK_LEVEL; 890 hdlr.cyh_arg = NULL; 891 892 when.cyt_when = 0; 893 when.cyt_interval = nsec_per_tick; 894 895 mutex_enter(&cpu_lock); 896 clock_cyclic = cyclic_add(&hdlr, &when); 897 mutex_exit(&cpu_lock); 898 899 /* 900 * cyclic_timer is dedicated to the ddi interface, which 901 * uses the same clock resolution as the system one. 902 */ 903 hdlr.cyh_func = (cyc_func_t)cyclic_timer; 904 hdlr.cyh_level = CY_LOCK_LEVEL; 905 hdlr.cyh_arg = NULL; 906 907 mutex_enter(&cpu_lock); 908 ddi_timer_cyclic = cyclic_add(&hdlr, &when); 909 mutex_exit(&cpu_lock); 910 } 911 912 /* 913 * Called before calcloadavg to get 10-sec moving loadavg together 914 */ 915 916 static int 917 genloadavg(struct loadavg_s *avgs) 918 { 919 int avg; 920 int spos; /* starting position */ 921 int cpos; /* moving current position */ 922 int i; 923 int slen; 924 hrtime_t hr_avg; 925 926 /* 10-second snapshot, calculate first positon */ 927 if (avgs->lg_len == 0) { 928 return (0); 929 } 930 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 931 932 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 933 S_LOADAVG_SZ + (avgs->lg_cur - 1); 934 for (i = hr_avg = 0; i < slen; i++) { 935 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 936 hr_avg += avgs->lg_loads[cpos]; 937 } 938 939 hr_avg = hr_avg / slen; 940 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 941 942 return (avg); 943 } 944 945 /* 946 * Run every second from clock () to update the loadavg count available to the 947 * system and cpu-partitions. 948 * 949 * This works by sampling the previous usr, sys, wait time elapsed, 950 * computing a delta, and adding that delta to the elapsed usr, sys, 951 * wait increase. 952 */ 953 954 static void 955 loadavg_update() 956 { 957 cpu_t *cp; 958 cpupart_t *cpupart; 959 hrtime_t cpu_total; 960 int prev; 961 962 cp = cpu_list; 963 loadavg.lg_total = 0; 964 965 /* 966 * first pass totals up per-cpu statistics for system and cpu 967 * partitions 968 */ 969 970 do { 971 struct loadavg_s *lavg; 972 973 lavg = &cp->cpu_loadavg; 974 975 cpu_total = cp->cpu_acct[CMS_USER] + 976 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 977 /* compute delta against last total */ 978 scalehrtime(&cpu_total); 979 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 980 S_LOADAVG_SZ + (lavg->lg_cur - 1); 981 if (lavg->lg_loads[prev] <= 0) { 982 lavg->lg_loads[lavg->lg_cur] = cpu_total; 983 cpu_total = 0; 984 } else { 985 lavg->lg_loads[lavg->lg_cur] = cpu_total; 986 cpu_total = cpu_total - lavg->lg_loads[prev]; 987 if (cpu_total < 0) 988 cpu_total = 0; 989 } 990 991 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 992 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 993 lavg->lg_len + 1 : S_LOADAVG_SZ; 994 995 loadavg.lg_total += cpu_total; 996 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 997 998 } while ((cp = cp->cpu_next) != cpu_list); 999 1000 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1001 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1002 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1003 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1004 /* 1005 * Second pass updates counts 1006 */ 1007 cpupart = cp_list_head; 1008 1009 do { 1010 struct loadavg_s *lavg; 1011 1012 lavg = &cpupart->cp_loadavg; 1013 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1014 lavg->lg_total = 0; 1015 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1016 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1017 lavg->lg_len + 1 : S_LOADAVG_SZ; 1018 1019 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1020 1021 } 1022 1023 /* 1024 * clock_update() - local clock update 1025 * 1026 * This routine is called by ntp_adjtime() to update the local clock 1027 * phase and frequency. The implementation is of an 1028 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1029 * routine computes new time and frequency offset estimates for each 1030 * call. The PPS signal itself determines the new time offset, 1031 * instead of the calling argument. Presumably, calls to 1032 * ntp_adjtime() occur only when the caller believes the local clock 1033 * is valid within some bound (+-128 ms with NTP). If the caller's 1034 * time is far different than the PPS time, an argument will ensue, 1035 * and it's not clear who will lose. 1036 * 1037 * For uncompensated quartz crystal oscillatores and nominal update 1038 * intervals less than 1024 s, operation should be in phase-lock mode 1039 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1040 * intervals greater than this, operation should be in frequency-lock 1041 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1042 * 1043 * Note: mutex(&tod_lock) is in effect. 1044 */ 1045 void 1046 clock_update(int offset) 1047 { 1048 int ltemp, mtemp, s; 1049 1050 ASSERT(MUTEX_HELD(&tod_lock)); 1051 1052 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1053 return; 1054 ltemp = offset; 1055 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1056 ltemp = pps_offset; 1057 1058 /* 1059 * Scale the phase adjustment and clamp to the operating range. 1060 */ 1061 if (ltemp > MAXPHASE) 1062 time_offset = MAXPHASE * SCALE_UPDATE; 1063 else if (ltemp < -MAXPHASE) 1064 time_offset = -(MAXPHASE * SCALE_UPDATE); 1065 else 1066 time_offset = ltemp * SCALE_UPDATE; 1067 1068 /* 1069 * Select whether the frequency is to be controlled and in which 1070 * mode (PLL or FLL). Clamp to the operating range. Ugly 1071 * multiply/divide should be replaced someday. 1072 */ 1073 if (time_status & STA_FREQHOLD || time_reftime == 0) 1074 time_reftime = hrestime.tv_sec; 1075 1076 mtemp = hrestime.tv_sec - time_reftime; 1077 time_reftime = hrestime.tv_sec; 1078 1079 if (time_status & STA_FLL) { 1080 if (mtemp >= MINSEC) { 1081 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1082 SCALE_UPDATE)); 1083 if (ltemp) 1084 time_freq += ltemp / SCALE_KH; 1085 } 1086 } else { 1087 if (mtemp < MAXSEC) { 1088 ltemp *= mtemp; 1089 if (ltemp) 1090 time_freq += (int)(((int64_t)ltemp * 1091 SCALE_USEC) / SCALE_KF) 1092 / (1 << (time_constant * 2)); 1093 } 1094 } 1095 if (time_freq > time_tolerance) 1096 time_freq = time_tolerance; 1097 else if (time_freq < -time_tolerance) 1098 time_freq = -time_tolerance; 1099 1100 s = hr_clock_lock(); 1101 tod_needsync = 1; 1102 hr_clock_unlock(s); 1103 } 1104 1105 /* 1106 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1107 * 1108 * This routine is called at each PPS interrupt in order to discipline 1109 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1110 * and leaves it in a handy spot for the clock() routine. It 1111 * integrates successive PPS phase differences and calculates the 1112 * frequency offset. This is used in clock() to discipline the CPU 1113 * clock oscillator so that intrinsic frequency error is cancelled out. 1114 * The code requires the caller to capture the time and hardware counter 1115 * value at the on-time PPS signal transition. 1116 * 1117 * Note that, on some Unix systems, this routine runs at an interrupt 1118 * priority level higher than the timer interrupt routine clock(). 1119 * Therefore, the variables used are distinct from the clock() 1120 * variables, except for certain exceptions: The PPS frequency pps_freq 1121 * and phase pps_offset variables are determined by this routine and 1122 * updated atomically. The time_tolerance variable can be considered a 1123 * constant, since it is infrequently changed, and then only when the 1124 * PPS signal is disabled. The watchdog counter pps_valid is updated 1125 * once per second by clock() and is atomically cleared in this 1126 * routine. 1127 * 1128 * tvp is the time of the last tick; usec is a microsecond count since the 1129 * last tick. 1130 * 1131 * Note: In Solaris systems, the tick value is actually given by 1132 * usec_per_tick. This is called from the serial driver cdintr(), 1133 * or equivalent, at a high PIL. Because the kernel keeps a 1134 * highresolution time, the following code can accept either 1135 * the traditional argument pair, or the current highres timestamp 1136 * in tvp and zero in usec. 1137 */ 1138 void 1139 ddi_hardpps(struct timeval *tvp, int usec) 1140 { 1141 int u_usec, v_usec, bigtick; 1142 time_t cal_sec; 1143 int cal_usec; 1144 1145 /* 1146 * An occasional glitch can be produced when the PPS interrupt 1147 * occurs in the clock() routine before the time variable is 1148 * updated. Here the offset is discarded when the difference 1149 * between it and the last one is greater than tick/2, but not 1150 * if the interval since the first discard exceeds 30 s. 1151 */ 1152 time_status |= STA_PPSSIGNAL; 1153 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1154 pps_valid = 0; 1155 u_usec = -tvp->tv_usec; 1156 if (u_usec < -(MICROSEC/2)) 1157 u_usec += MICROSEC; 1158 v_usec = pps_offset - u_usec; 1159 if (v_usec < 0) 1160 v_usec = -v_usec; 1161 if (v_usec > (usec_per_tick >> 1)) { 1162 if (pps_glitch > MAXGLITCH) { 1163 pps_glitch = 0; 1164 pps_tf[2] = u_usec; 1165 pps_tf[1] = u_usec; 1166 } else { 1167 pps_glitch++; 1168 u_usec = pps_offset; 1169 } 1170 } else 1171 pps_glitch = 0; 1172 1173 /* 1174 * A three-stage median filter is used to help deglitch the pps 1175 * time. The median sample becomes the time offset estimate; the 1176 * difference between the other two samples becomes the time 1177 * dispersion (jitter) estimate. 1178 */ 1179 pps_tf[2] = pps_tf[1]; 1180 pps_tf[1] = pps_tf[0]; 1181 pps_tf[0] = u_usec; 1182 if (pps_tf[0] > pps_tf[1]) { 1183 if (pps_tf[1] > pps_tf[2]) { 1184 pps_offset = pps_tf[1]; /* 0 1 2 */ 1185 v_usec = pps_tf[0] - pps_tf[2]; 1186 } else if (pps_tf[2] > pps_tf[0]) { 1187 pps_offset = pps_tf[0]; /* 2 0 1 */ 1188 v_usec = pps_tf[2] - pps_tf[1]; 1189 } else { 1190 pps_offset = pps_tf[2]; /* 0 2 1 */ 1191 v_usec = pps_tf[0] - pps_tf[1]; 1192 } 1193 } else { 1194 if (pps_tf[1] < pps_tf[2]) { 1195 pps_offset = pps_tf[1]; /* 2 1 0 */ 1196 v_usec = pps_tf[2] - pps_tf[0]; 1197 } else if (pps_tf[2] < pps_tf[0]) { 1198 pps_offset = pps_tf[0]; /* 1 0 2 */ 1199 v_usec = pps_tf[1] - pps_tf[2]; 1200 } else { 1201 pps_offset = pps_tf[2]; /* 1 2 0 */ 1202 v_usec = pps_tf[1] - pps_tf[0]; 1203 } 1204 } 1205 if (v_usec > MAXTIME) 1206 pps_jitcnt++; 1207 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1208 pps_jitter += v_usec / (1 << PPS_AVG); 1209 if (pps_jitter > (MAXTIME >> 1)) 1210 time_status |= STA_PPSJITTER; 1211 1212 /* 1213 * During the calibration interval adjust the starting time when 1214 * the tick overflows. At the end of the interval compute the 1215 * duration of the interval and the difference of the hardware 1216 * counters at the beginning and end of the interval. This code 1217 * is deliciously complicated by the fact valid differences may 1218 * exceed the value of tick when using long calibration 1219 * intervals and small ticks. Note that the counter can be 1220 * greater than tick if caught at just the wrong instant, but 1221 * the values returned and used here are correct. 1222 */ 1223 bigtick = (int)usec_per_tick * SCALE_USEC; 1224 pps_usec -= pps_freq; 1225 if (pps_usec >= bigtick) 1226 pps_usec -= bigtick; 1227 if (pps_usec < 0) 1228 pps_usec += bigtick; 1229 pps_time.tv_sec++; 1230 pps_count++; 1231 if (pps_count < (1 << pps_shift)) 1232 return; 1233 pps_count = 0; 1234 pps_calcnt++; 1235 u_usec = usec * SCALE_USEC; 1236 v_usec = pps_usec - u_usec; 1237 if (v_usec >= bigtick >> 1) 1238 v_usec -= bigtick; 1239 if (v_usec < -(bigtick >> 1)) 1240 v_usec += bigtick; 1241 if (v_usec < 0) 1242 v_usec = -(-v_usec >> pps_shift); 1243 else 1244 v_usec = v_usec >> pps_shift; 1245 pps_usec = u_usec; 1246 cal_sec = tvp->tv_sec; 1247 cal_usec = tvp->tv_usec; 1248 cal_sec -= pps_time.tv_sec; 1249 cal_usec -= pps_time.tv_usec; 1250 if (cal_usec < 0) { 1251 cal_usec += MICROSEC; 1252 cal_sec--; 1253 } 1254 pps_time = *tvp; 1255 1256 /* 1257 * Check for lost interrupts, noise, excessive jitter and 1258 * excessive frequency error. The number of timer ticks during 1259 * the interval may vary +-1 tick. Add to this a margin of one 1260 * tick for the PPS signal jitter and maximum frequency 1261 * deviation. If the limits are exceeded, the calibration 1262 * interval is reset to the minimum and we start over. 1263 */ 1264 u_usec = (int)usec_per_tick << 1; 1265 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1266 (cal_sec == 0 && cal_usec < u_usec)) || 1267 v_usec > time_tolerance || v_usec < -time_tolerance) { 1268 pps_errcnt++; 1269 pps_shift = PPS_SHIFT; 1270 pps_intcnt = 0; 1271 time_status |= STA_PPSERROR; 1272 return; 1273 } 1274 1275 /* 1276 * A three-stage median filter is used to help deglitch the pps 1277 * frequency. The median sample becomes the frequency offset 1278 * estimate; the difference between the other two samples 1279 * becomes the frequency dispersion (stability) estimate. 1280 */ 1281 pps_ff[2] = pps_ff[1]; 1282 pps_ff[1] = pps_ff[0]; 1283 pps_ff[0] = v_usec; 1284 if (pps_ff[0] > pps_ff[1]) { 1285 if (pps_ff[1] > pps_ff[2]) { 1286 u_usec = pps_ff[1]; /* 0 1 2 */ 1287 v_usec = pps_ff[0] - pps_ff[2]; 1288 } else if (pps_ff[2] > pps_ff[0]) { 1289 u_usec = pps_ff[0]; /* 2 0 1 */ 1290 v_usec = pps_ff[2] - pps_ff[1]; 1291 } else { 1292 u_usec = pps_ff[2]; /* 0 2 1 */ 1293 v_usec = pps_ff[0] - pps_ff[1]; 1294 } 1295 } else { 1296 if (pps_ff[1] < pps_ff[2]) { 1297 u_usec = pps_ff[1]; /* 2 1 0 */ 1298 v_usec = pps_ff[2] - pps_ff[0]; 1299 } else if (pps_ff[2] < pps_ff[0]) { 1300 u_usec = pps_ff[0]; /* 1 0 2 */ 1301 v_usec = pps_ff[1] - pps_ff[2]; 1302 } else { 1303 u_usec = pps_ff[2]; /* 1 2 0 */ 1304 v_usec = pps_ff[1] - pps_ff[0]; 1305 } 1306 } 1307 1308 /* 1309 * Here the frequency dispersion (stability) is updated. If it 1310 * is less than one-fourth the maximum (MAXFREQ), the frequency 1311 * offset is updated as well, but clamped to the tolerance. It 1312 * will be processed later by the clock() routine. 1313 */ 1314 v_usec = (v_usec >> 1) - pps_stabil; 1315 if (v_usec < 0) 1316 pps_stabil -= -v_usec >> PPS_AVG; 1317 else 1318 pps_stabil += v_usec >> PPS_AVG; 1319 if (pps_stabil > MAXFREQ >> 2) { 1320 pps_stbcnt++; 1321 time_status |= STA_PPSWANDER; 1322 return; 1323 } 1324 if (time_status & STA_PPSFREQ) { 1325 if (u_usec < 0) { 1326 pps_freq -= -u_usec >> PPS_AVG; 1327 if (pps_freq < -time_tolerance) 1328 pps_freq = -time_tolerance; 1329 u_usec = -u_usec; 1330 } else { 1331 pps_freq += u_usec >> PPS_AVG; 1332 if (pps_freq > time_tolerance) 1333 pps_freq = time_tolerance; 1334 } 1335 } 1336 1337 /* 1338 * Here the calibration interval is adjusted. If the maximum 1339 * time difference is greater than tick / 4, reduce the interval 1340 * by half. If this is not the case for four consecutive 1341 * intervals, double the interval. 1342 */ 1343 if (u_usec << pps_shift > bigtick >> 2) { 1344 pps_intcnt = 0; 1345 if (pps_shift > PPS_SHIFT) 1346 pps_shift--; 1347 } else if (pps_intcnt >= 4) { 1348 pps_intcnt = 0; 1349 if (pps_shift < PPS_SHIFTMAX) 1350 pps_shift++; 1351 } else 1352 pps_intcnt++; 1353 1354 /* 1355 * If recovering from kmdb, then make sure the tod chip gets resynced. 1356 * If we took an early exit above, then we don't yet have a stable 1357 * calibration signal to lock onto, so don't mark the tod for sync 1358 * until we get all the way here. 1359 */ 1360 { 1361 int s = hr_clock_lock(); 1362 1363 tod_needsync = 1; 1364 hr_clock_unlock(s); 1365 } 1366 } 1367 1368 /* 1369 * Handle clock tick processing for a thread. 1370 * Check for timer action, enforce CPU rlimit, do profiling etc. 1371 */ 1372 void 1373 clock_tick(kthread_t *t, int pending) 1374 { 1375 struct proc *pp; 1376 klwp_id_t lwp; 1377 struct as *as; 1378 clock_t ticks; 1379 int poke = 0; /* notify another CPU */ 1380 int user_mode; 1381 size_t rss; 1382 int i, total_usec, usec; 1383 rctl_qty_t secs; 1384 1385 ASSERT(pending > 0); 1386 1387 /* Must be operating on a lwp/thread */ 1388 if ((lwp = ttolwp(t)) == NULL) { 1389 panic("clock_tick: no lwp"); 1390 /*NOTREACHED*/ 1391 } 1392 1393 for (i = 0; i < pending; i++) { 1394 CL_TICK(t); /* Class specific tick processing */ 1395 DTRACE_SCHED1(tick, kthread_t *, t); 1396 } 1397 1398 pp = ttoproc(t); 1399 1400 /* pp->p_lock makes sure that the thread does not exit */ 1401 ASSERT(MUTEX_HELD(&pp->p_lock)); 1402 1403 user_mode = (lwp->lwp_state == LWP_USER); 1404 1405 ticks = (pp->p_utime + pp->p_stime) % hz; 1406 /* 1407 * Update process times. Should use high res clock and state 1408 * changes instead of statistical sampling method. XXX 1409 */ 1410 if (user_mode) { 1411 pp->p_utime += pending; 1412 } else { 1413 pp->p_stime += pending; 1414 } 1415 1416 pp->p_ttime += pending; 1417 as = pp->p_as; 1418 1419 /* 1420 * Update user profiling statistics. Get the pc from the 1421 * lwp when the AST happens. 1422 */ 1423 if (pp->p_prof.pr_scale) { 1424 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1425 if (user_mode) { 1426 poke = 1; 1427 aston(t); 1428 } 1429 } 1430 1431 /* 1432 * If CPU was in user state, process lwp-virtual time 1433 * interval timer. The value passed to itimerdecr() has to be 1434 * in microseconds and has to be less than one second. Hence 1435 * this loop. 1436 */ 1437 total_usec = usec_per_tick * pending; 1438 while (total_usec > 0) { 1439 usec = MIN(total_usec, (MICROSEC - 1)); 1440 if (user_mode && 1441 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1442 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1443 poke = 1; 1444 sigtoproc(pp, t, SIGVTALRM); 1445 } 1446 total_usec -= usec; 1447 } 1448 1449 /* 1450 * If CPU was in user state, process lwp-profile 1451 * interval timer. 1452 */ 1453 total_usec = usec_per_tick * pending; 1454 while (total_usec > 0) { 1455 usec = MIN(total_usec, (MICROSEC - 1)); 1456 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1457 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1458 poke = 1; 1459 sigtoproc(pp, t, SIGPROF); 1460 } 1461 total_usec -= usec; 1462 } 1463 1464 /* 1465 * Enforce CPU resource controls: 1466 * (a) process.max-cpu-time resource control 1467 * 1468 * Perform the check only if we have accumulated more a second. 1469 */ 1470 if ((ticks + pending) >= hz) { 1471 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1472 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1473 } 1474 1475 /* 1476 * (b) task.max-cpu-time resource control 1477 * 1478 * If we have accumulated enough ticks, increment the task CPU 1479 * time usage and test for the resource limit. This minimizes the 1480 * number of calls to the rct_test(). The task CPU time mutex 1481 * is highly contentious as many processes can be sharing a task. 1482 */ 1483 if (pp->p_ttime >= clock_tick_proc_max) { 1484 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1485 pp->p_ttime = 0; 1486 if (secs) { 1487 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1488 pp, secs, RCA_UNSAFE_SIGINFO); 1489 } 1490 } 1491 1492 /* 1493 * Update memory usage for the currently running process. 1494 */ 1495 rss = rm_asrss(as); 1496 PTOU(pp)->u_mem += rss; 1497 if (rss > PTOU(pp)->u_mem_max) 1498 PTOU(pp)->u_mem_max = rss; 1499 1500 /* 1501 * Notify the CPU the thread is running on. 1502 */ 1503 if (poke && t->t_cpu != CPU) 1504 poke_cpu(t->t_cpu->cpu_id); 1505 } 1506 1507 void 1508 profil_tick(uintptr_t upc) 1509 { 1510 int ticks; 1511 proc_t *p = ttoproc(curthread); 1512 klwp_t *lwp = ttolwp(curthread); 1513 struct prof *pr = &p->p_prof; 1514 1515 do { 1516 ticks = lwp->lwp_oweupc; 1517 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1518 1519 mutex_enter(&p->p_pflock); 1520 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1521 /* 1522 * Old-style profiling 1523 */ 1524 uint16_t *slot = pr->pr_base; 1525 uint16_t old, new; 1526 if (pr->pr_scale != 2) { 1527 uintptr_t delta = upc - pr->pr_off; 1528 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1529 (((delta & 0xffff) * pr->pr_scale) >> 16); 1530 if (byteoff >= (uintptr_t)pr->pr_size) { 1531 mutex_exit(&p->p_pflock); 1532 return; 1533 } 1534 slot += byteoff / sizeof (uint16_t); 1535 } 1536 if (fuword16(slot, &old) < 0 || 1537 (new = old + ticks) > SHRT_MAX || 1538 suword16(slot, new) < 0) { 1539 pr->pr_scale = 0; 1540 } 1541 } else if (pr->pr_scale == 1) { 1542 /* 1543 * PC Sampling 1544 */ 1545 model_t model = lwp_getdatamodel(lwp); 1546 int result; 1547 #ifdef __lint 1548 model = model; 1549 #endif 1550 while (ticks-- > 0) { 1551 if (pr->pr_samples == pr->pr_size) { 1552 /* buffer full, turn off sampling */ 1553 pr->pr_scale = 0; 1554 break; 1555 } 1556 switch (SIZEOF_PTR(model)) { 1557 case sizeof (uint32_t): 1558 result = suword32(pr->pr_base, (uint32_t)upc); 1559 break; 1560 #ifdef _LP64 1561 case sizeof (uint64_t): 1562 result = suword64(pr->pr_base, (uint64_t)upc); 1563 break; 1564 #endif 1565 default: 1566 cmn_err(CE_WARN, "profil_tick: unexpected " 1567 "data model"); 1568 result = -1; 1569 break; 1570 } 1571 if (result != 0) { 1572 pr->pr_scale = 0; 1573 break; 1574 } 1575 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1576 pr->pr_samples++; 1577 } 1578 } 1579 mutex_exit(&p->p_pflock); 1580 } 1581 1582 static void 1583 delay_wakeup(void *arg) 1584 { 1585 kthread_t *t = arg; 1586 1587 mutex_enter(&t->t_delay_lock); 1588 cv_signal(&t->t_delay_cv); 1589 mutex_exit(&t->t_delay_lock); 1590 } 1591 1592 /* 1593 * The delay(9F) man page indicates that it can only be called from user or 1594 * kernel context - detect and diagnose bad calls. The following macro will 1595 * produce a limited number of messages identifying bad callers. This is done 1596 * in a macro so that caller() is meaningful. When a bad caller is identified, 1597 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 1598 */ 1599 #define DELAY_CONTEXT_CHECK() { \ 1600 uint32_t m; \ 1601 char *f; \ 1602 ulong_t off; \ 1603 \ 1604 m = delay_from_interrupt_msg; \ 1605 if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 1606 !panicstr && !devinfo_freeze && \ 1607 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 1608 f = modgetsymname((uintptr_t)caller(), &off); \ 1609 cmn_err(CE_WARN, "delay(9F) called from " \ 1610 "interrupt context: %s`%s", \ 1611 mod_containing_pc(caller()), f ? f : "..."); \ 1612 } \ 1613 } 1614 1615 /* 1616 * delay_common: common delay code. 1617 */ 1618 static void 1619 delay_common(clock_t ticks) 1620 { 1621 kthread_t *t = curthread; 1622 clock_t deadline; 1623 clock_t timeleft; 1624 callout_id_t id; 1625 1626 /* If timeouts aren't running all we can do is spin. */ 1627 if (panicstr || devinfo_freeze) { 1628 /* Convert delay(9F) call into drv_usecwait(9F) call. */ 1629 if (ticks > 0) 1630 drv_usecwait(TICK_TO_USEC(ticks)); 1631 return; 1632 } 1633 1634 deadline = lbolt + ticks; 1635 while ((timeleft = deadline - lbolt) > 0) { 1636 mutex_enter(&t->t_delay_lock); 1637 id = timeout_default(delay_wakeup, t, timeleft); 1638 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1639 mutex_exit(&t->t_delay_lock); 1640 (void) untimeout_default(id, 0); 1641 } 1642 } 1643 1644 /* 1645 * Delay specified number of clock ticks. 1646 */ 1647 void 1648 delay(clock_t ticks) 1649 { 1650 DELAY_CONTEXT_CHECK(); 1651 1652 delay_common(ticks); 1653 } 1654 1655 /* 1656 * Delay a random number of clock ticks between 1 and ticks. 1657 */ 1658 void 1659 delay_random(clock_t ticks) 1660 { 1661 int r; 1662 1663 DELAY_CONTEXT_CHECK(); 1664 1665 (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 1666 if (ticks == 0) 1667 ticks = 1; 1668 ticks = (r % ticks) + 1; 1669 delay_common(ticks); 1670 } 1671 1672 /* 1673 * Like delay, but interruptible by a signal. 1674 */ 1675 int 1676 delay_sig(clock_t ticks) 1677 { 1678 kthread_t *t = curthread; 1679 clock_t deadline; 1680 clock_t rc; 1681 1682 /* If timeouts aren't running all we can do is spin. */ 1683 if (panicstr || devinfo_freeze) { 1684 if (ticks > 0) 1685 drv_usecwait(TICK_TO_USEC(ticks)); 1686 return (0); 1687 } 1688 1689 deadline = lbolt + ticks; 1690 mutex_enter(&t->t_delay_lock); 1691 do { 1692 rc = cv_timedwait_sig(&t->t_delay_cv, 1693 &t->t_delay_lock, deadline); 1694 /* loop until past deadline or signaled */ 1695 } while (rc > 0); 1696 mutex_exit(&t->t_delay_lock); 1697 if (rc == 0) 1698 return (EINTR); 1699 return (0); 1700 } 1701 1702 1703 #define SECONDS_PER_DAY 86400 1704 1705 /* 1706 * Initialize the system time based on the TOD chip. approx is used as 1707 * an approximation of time (e.g. from the filesystem) in the event that 1708 * the TOD chip has been cleared or is unresponsive. An approx of -1 1709 * means the filesystem doesn't keep time. 1710 */ 1711 void 1712 clkset(time_t approx) 1713 { 1714 timestruc_t ts; 1715 int spl; 1716 int set_clock = 0; 1717 1718 mutex_enter(&tod_lock); 1719 ts = tod_get(); 1720 1721 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1722 /* 1723 * If the TOD chip is reporting some time after 1971, 1724 * then it probably didn't lose power or become otherwise 1725 * cleared in the recent past; check to assure that 1726 * the time coming from the filesystem isn't in the future 1727 * according to the TOD chip. 1728 */ 1729 if (approx != -1 && approx > ts.tv_sec) { 1730 cmn_err(CE_WARN, "Last shutdown is later " 1731 "than time on time-of-day chip; check date."); 1732 } 1733 } else { 1734 /* 1735 * If the TOD chip isn't giving correct time, set it to the 1736 * greater of i) approx and ii) 1987. That way if approx 1737 * is negative or is earlier than 1987, we set the clock 1738 * back to a time when Oliver North, ALF and Dire Straits 1739 * were all on the collective brain: 1987. 1740 */ 1741 timestruc_t tmp; 1742 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1743 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1744 ts.tv_nsec = 0; 1745 1746 /* 1747 * Attempt to write the new time to the TOD chip. Set spl high 1748 * to avoid getting preempted between the tod_set and tod_get. 1749 */ 1750 spl = splhi(); 1751 tod_set(ts); 1752 tmp = tod_get(); 1753 splx(spl); 1754 1755 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1756 tod_broken = 1; 1757 dosynctodr = 0; 1758 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1759 } else { 1760 cmn_err(CE_WARN, "Time-of-day chip had " 1761 "incorrect date; check and reset."); 1762 } 1763 set_clock = 1; 1764 } 1765 1766 if (!boot_time) { 1767 boot_time = ts.tv_sec; 1768 set_clock = 1; 1769 } 1770 1771 if (set_clock) 1772 set_hrestime(&ts); 1773 1774 mutex_exit(&tod_lock); 1775 } 1776 1777 int timechanged; /* for testing if the system time has been reset */ 1778 1779 void 1780 set_hrestime(timestruc_t *ts) 1781 { 1782 int spl = hr_clock_lock(); 1783 hrestime = *ts; 1784 membar_enter(); /* hrestime must be visible before timechanged++ */ 1785 timedelta = 0; 1786 timechanged++; 1787 hr_clock_unlock(spl); 1788 callout_hrestime(); 1789 } 1790 1791 static uint_t deadman_seconds; 1792 static uint32_t deadman_panics; 1793 static int deadman_enabled = 0; 1794 static int deadman_panic_timers = 1; 1795 1796 static void 1797 deadman(void) 1798 { 1799 if (panicstr) { 1800 /* 1801 * During panic, other CPUs besides the panic 1802 * master continue to handle cyclics and some other 1803 * interrupts. The code below is intended to be 1804 * single threaded, so any CPU other than the master 1805 * must keep out. 1806 */ 1807 if (CPU->cpu_id != panic_cpu.cpu_id) 1808 return; 1809 1810 /* 1811 * If we're panicking, the deadman cyclic continues to increase 1812 * lbolt in case the dump device driver relies on this for 1813 * timeouts. Note that we rely on deadman() being invoked once 1814 * per second, and credit lbolt and lbolt64 with hz ticks each. 1815 */ 1816 lbolt += hz; 1817 lbolt64 += hz; 1818 1819 if (!deadman_panic_timers) 1820 return; /* allow all timers to be manually disabled */ 1821 1822 /* 1823 * If we are generating a crash dump or syncing filesystems and 1824 * the corresponding timer is set, decrement it and re-enter 1825 * the panic code to abort it and advance to the next state. 1826 * The panic states and triggers are explained in panic.c. 1827 */ 1828 if (panic_dump) { 1829 if (dump_timeleft && (--dump_timeleft == 0)) { 1830 panic("panic dump timeout"); 1831 /*NOTREACHED*/ 1832 } 1833 } else if (panic_sync) { 1834 if (sync_timeleft && (--sync_timeleft == 0)) { 1835 panic("panic sync timeout"); 1836 /*NOTREACHED*/ 1837 } 1838 } 1839 1840 return; 1841 } 1842 1843 if (lbolt != CPU->cpu_deadman_lbolt) { 1844 CPU->cpu_deadman_lbolt = lbolt; 1845 CPU->cpu_deadman_countdown = deadman_seconds; 1846 return; 1847 } 1848 1849 if (--CPU->cpu_deadman_countdown > 0) 1850 return; 1851 1852 /* 1853 * Regardless of whether or not we actually bring the system down, 1854 * bump the deadman_panics variable. 1855 * 1856 * N.B. deadman_panics is incremented once for each CPU that 1857 * passes through here. It's expected that all the CPUs will 1858 * detect this condition within one second of each other, so 1859 * when deadman_enabled is off, deadman_panics will 1860 * typically be a multiple of the total number of CPUs in 1861 * the system. 1862 */ 1863 atomic_add_32(&deadman_panics, 1); 1864 1865 if (!deadman_enabled) { 1866 CPU->cpu_deadman_countdown = deadman_seconds; 1867 return; 1868 } 1869 1870 /* 1871 * If we're here, we want to bring the system down. 1872 */ 1873 panic("deadman: timed out after %d seconds of clock " 1874 "inactivity", deadman_seconds); 1875 /*NOTREACHED*/ 1876 } 1877 1878 /*ARGSUSED*/ 1879 static void 1880 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1881 { 1882 cpu->cpu_deadman_lbolt = 0; 1883 cpu->cpu_deadman_countdown = deadman_seconds; 1884 1885 hdlr->cyh_func = (cyc_func_t)deadman; 1886 hdlr->cyh_level = CY_HIGH_LEVEL; 1887 hdlr->cyh_arg = NULL; 1888 1889 /* 1890 * Stagger the CPUs so that they don't all run deadman() at 1891 * the same time. Simplest reason to do this is to make it 1892 * more likely that only one CPU will panic in case of a 1893 * timeout. This is (strictly speaking) an aesthetic, not a 1894 * technical consideration. 1895 * 1896 * The interval must be one second in accordance with the 1897 * code in deadman() above to increase lbolt during panic. 1898 */ 1899 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1900 when->cyt_interval = NANOSEC; 1901 } 1902 1903 1904 void 1905 deadman_init(void) 1906 { 1907 cyc_omni_handler_t hdlr; 1908 1909 if (deadman_seconds == 0) 1910 deadman_seconds = snoop_interval / MICROSEC; 1911 1912 if (snooping) 1913 deadman_enabled = 1; 1914 1915 hdlr.cyo_online = deadman_online; 1916 hdlr.cyo_offline = NULL; 1917 hdlr.cyo_arg = NULL; 1918 1919 mutex_enter(&cpu_lock); 1920 deadman_cyclic = cyclic_add_omni(&hdlr); 1921 mutex_exit(&cpu_lock); 1922 } 1923 1924 /* 1925 * tod_fault() is for updating tod validate mechanism state: 1926 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1927 * currently used for debugging only 1928 * (2) The following four cases detected by tod validate mechanism: 1929 * TOD_REVERSED: current tod value is less than previous value. 1930 * TOD_STALLED: current tod value hasn't advanced. 1931 * TOD_JUMPED: current tod value advanced too far from previous value. 1932 * TOD_RATECHANGED: the ratio between average tod delta and 1933 * average tick delta has changed. 1934 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 1935 * a virtual TOD provided by a hypervisor. 1936 */ 1937 enum tod_fault_type 1938 tod_fault(enum tod_fault_type ftype, int off) 1939 { 1940 ASSERT(MUTEX_HELD(&tod_lock)); 1941 1942 if (tod_faulted != ftype) { 1943 switch (ftype) { 1944 case TOD_NOFAULT: 1945 plat_tod_fault(TOD_NOFAULT); 1946 cmn_err(CE_NOTE, "Restarted tracking " 1947 "Time of Day clock."); 1948 tod_faulted = ftype; 1949 break; 1950 case TOD_REVERSED: 1951 case TOD_JUMPED: 1952 if (tod_faulted == TOD_NOFAULT) { 1953 plat_tod_fault(ftype); 1954 cmn_err(CE_WARN, "Time of Day clock error: " 1955 "reason [%s by 0x%x]. -- " 1956 " Stopped tracking Time Of Day clock.", 1957 tod_fault_table[ftype], off); 1958 tod_faulted = ftype; 1959 } 1960 break; 1961 case TOD_STALLED: 1962 case TOD_RATECHANGED: 1963 if (tod_faulted == TOD_NOFAULT) { 1964 plat_tod_fault(ftype); 1965 cmn_err(CE_WARN, "Time of Day clock error: " 1966 "reason [%s]. -- " 1967 " Stopped tracking Time Of Day clock.", 1968 tod_fault_table[ftype]); 1969 tod_faulted = ftype; 1970 } 1971 break; 1972 case TOD_RDONLY: 1973 if (tod_faulted == TOD_NOFAULT) { 1974 plat_tod_fault(ftype); 1975 cmn_err(CE_NOTE, "!Time of Day clock is " 1976 "Read-Only; set of Date/Time will not " 1977 "persist across reboot."); 1978 tod_faulted = ftype; 1979 } 1980 break; 1981 default: 1982 break; 1983 } 1984 } 1985 return (tod_faulted); 1986 } 1987 1988 void 1989 tod_fault_reset() 1990 { 1991 tod_fault_reset_flag = 1; 1992 } 1993 1994 1995 /* 1996 * tod_validate() is used for checking values returned by tod_get(). 1997 * Four error cases can be detected by this routine: 1998 * TOD_REVERSED: current tod value is less than previous. 1999 * TOD_STALLED: current tod value hasn't advanced. 2000 * TOD_JUMPED: current tod value advanced too far from previous value. 2001 * TOD_RATECHANGED: the ratio between average tod delta and 2002 * average tick delta has changed. 2003 */ 2004 time_t 2005 tod_validate(time_t tod) 2006 { 2007 time_t diff_tod; 2008 hrtime_t diff_tick; 2009 2010 long dtick; 2011 int dtick_delta; 2012 2013 int off = 0; 2014 enum tod_fault_type tod_bad = TOD_NOFAULT; 2015 2016 static int firsttime = 1; 2017 2018 static time_t prev_tod = 0; 2019 static hrtime_t prev_tick = 0; 2020 static long dtick_avg = TOD_REF_FREQ; 2021 2022 hrtime_t tick = gethrtime(); 2023 2024 ASSERT(MUTEX_HELD(&tod_lock)); 2025 2026 /* 2027 * tod_validate_enable is patchable via /etc/system. 2028 * If TOD is already faulted, or if TOD validation is deferred, 2029 * there is nothing to do. 2030 */ 2031 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2032 tod_validate_deferred) { 2033 return (tod); 2034 } 2035 2036 /* 2037 * Update prev_tod and prev_tick values for first run 2038 */ 2039 if (firsttime) { 2040 firsttime = 0; 2041 prev_tod = tod; 2042 prev_tick = tick; 2043 return (tod); 2044 } 2045 2046 /* 2047 * For either of these conditions, we need to reset ourself 2048 * and start validation from zero since each condition 2049 * indicates that the TOD will be updated with new value 2050 * Also, note that tod_needsync will be reset in clock() 2051 */ 2052 if (tod_needsync || tod_fault_reset_flag) { 2053 firsttime = 1; 2054 prev_tod = 0; 2055 prev_tick = 0; 2056 dtick_avg = TOD_REF_FREQ; 2057 2058 if (tod_fault_reset_flag) 2059 tod_fault_reset_flag = 0; 2060 2061 return (tod); 2062 } 2063 2064 /* test hook */ 2065 switch (tod_unit_test) { 2066 case 1: /* for testing jumping tod */ 2067 tod += tod_test_injector; 2068 tod_unit_test = 0; 2069 break; 2070 case 2: /* for testing stuck tod bit */ 2071 tod |= 1 << tod_test_injector; 2072 tod_unit_test = 0; 2073 break; 2074 case 3: /* for testing stalled tod */ 2075 tod = prev_tod; 2076 tod_unit_test = 0; 2077 break; 2078 case 4: /* reset tod fault status */ 2079 (void) tod_fault(TOD_NOFAULT, 0); 2080 tod_unit_test = 0; 2081 break; 2082 default: 2083 break; 2084 } 2085 2086 diff_tod = tod - prev_tod; 2087 diff_tick = tick - prev_tick; 2088 2089 ASSERT(diff_tick >= 0); 2090 2091 if (diff_tod < 0) { 2092 /* ERROR - tod reversed */ 2093 tod_bad = TOD_REVERSED; 2094 off = (int)(prev_tod - tod); 2095 } else if (diff_tod == 0) { 2096 /* tod did not advance */ 2097 if (diff_tick > TOD_STALL_THRESHOLD) { 2098 /* ERROR - tod stalled */ 2099 tod_bad = TOD_STALLED; 2100 } else { 2101 /* 2102 * Make sure we don't update prev_tick 2103 * so that diff_tick is calculated since 2104 * the first diff_tod == 0 2105 */ 2106 return (tod); 2107 } 2108 } else { 2109 /* calculate dtick */ 2110 dtick = diff_tick / diff_tod; 2111 2112 /* update dtick averages */ 2113 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2114 2115 /* 2116 * Calculate dtick_delta as 2117 * variation from reference freq in quartiles 2118 */ 2119 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2120 (TOD_REF_FREQ >> 2); 2121 2122 /* 2123 * Even with a perfectly functioning TOD device, 2124 * when the number of elapsed seconds is low the 2125 * algorithm can calculate a rate that is beyond 2126 * tolerance, causing an error. The algorithm is 2127 * inaccurate when elapsed time is low (less than 2128 * 5 seconds). 2129 */ 2130 if (diff_tod > 4) { 2131 if (dtick < TOD_JUMP_THRESHOLD) { 2132 /* ERROR - tod jumped */ 2133 tod_bad = TOD_JUMPED; 2134 off = (int)diff_tod; 2135 } else if (dtick_delta) { 2136 /* ERROR - change in clock rate */ 2137 tod_bad = TOD_RATECHANGED; 2138 } 2139 } 2140 } 2141 2142 if (tod_bad != TOD_NOFAULT) { 2143 (void) tod_fault(tod_bad, off); 2144 2145 /* 2146 * Disable dosynctodr since we are going to fault 2147 * the TOD chip anyway here 2148 */ 2149 dosynctodr = 0; 2150 2151 /* 2152 * Set tod to the correct value from hrestime 2153 */ 2154 tod = hrestime.tv_sec; 2155 } 2156 2157 prev_tod = tod; 2158 prev_tick = tick; 2159 return (tod); 2160 } 2161 2162 static void 2163 calcloadavg(int nrun, uint64_t *hp_ave) 2164 { 2165 static int64_t f[3] = { 135, 27, 9 }; 2166 uint_t i; 2167 int64_t q, r; 2168 2169 /* 2170 * Compute load average over the last 1, 5, and 15 minutes 2171 * (60, 300, and 900 seconds). The constants in f[3] are for 2172 * exponential decay: 2173 * (1 - exp(-1/60)) << 13 = 135, 2174 * (1 - exp(-1/300)) << 13 = 27, 2175 * (1 - exp(-1/900)) << 13 = 9. 2176 */ 2177 2178 /* 2179 * a little hoop-jumping to avoid integer overflow 2180 */ 2181 for (i = 0; i < 3; i++) { 2182 q = (hp_ave[i] >> 16) << 7; 2183 r = (hp_ave[i] & 0xffff) << 7; 2184 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2185 } 2186 } 2187