1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/types.h> 35 #include <sys/tuneable.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/lgrp.h> 40 #include <sys/user.h> 41 #include <sys/proc.h> 42 #include <sys/callo.h> 43 #include <sys/kmem.h> 44 #include <sys/var.h> 45 #include <sys/cmn_err.h> 46 #include <sys/swap.h> 47 #include <sys/vmsystm.h> 48 #include <sys/class.h> 49 #include <sys/time.h> 50 #include <sys/debug.h> 51 #include <sys/vtrace.h> 52 #include <sys/spl.h> 53 #include <sys/atomic.h> 54 #include <sys/dumphdr.h> 55 #include <sys/archsystm.h> 56 #include <sys/fs/swapnode.h> 57 #include <sys/panic.h> 58 #include <sys/disp.h> 59 #include <sys/msacct.h> 60 #include <sys/mem_cage.h> 61 62 #include <vm/page.h> 63 #include <vm/anon.h> 64 #include <vm/rm.h> 65 #include <sys/cyclic.h> 66 #include <sys/cpupart.h> 67 #include <sys/rctl.h> 68 #include <sys/task.h> 69 #include <sys/sdt.h> 70 71 #ifdef __sparc 72 #include <sys/wdt.h> 73 #endif 74 75 /* 76 * for NTP support 77 */ 78 #include <sys/timex.h> 79 #include <sys/inttypes.h> 80 81 /* 82 * clock is called straight from 83 * the real time clock interrupt. 84 * 85 * Functions: 86 * reprime clock 87 * schedule callouts 88 * maintain date 89 * jab the scheduler 90 */ 91 92 extern kcondvar_t fsflush_cv; 93 extern sysinfo_t sysinfo; 94 extern vminfo_t vminfo; 95 extern int idleswtch; /* flag set while idle in pswtch() */ 96 97 /* 98 * high-precision avenrun values. These are needed to make the 99 * regular avenrun values accurate. 100 */ 101 static uint64_t hp_avenrun[3]; 102 int avenrun[3]; /* FSCALED average run queue lengths */ 103 time_t time; /* time in seconds since 1970 - for compatibility only */ 104 105 static struct loadavg_s loadavg; 106 /* 107 * Phase/frequency-lock loop (PLL/FLL) definitions 108 * 109 * The following variables are read and set by the ntp_adjtime() system 110 * call. 111 * 112 * time_state shows the state of the system clock, with values defined 113 * in the timex.h header file. 114 * 115 * time_status shows the status of the system clock, with bits defined 116 * in the timex.h header file. 117 * 118 * time_offset is used by the PLL/FLL to adjust the system time in small 119 * increments. 120 * 121 * time_constant determines the bandwidth or "stiffness" of the PLL. 122 * 123 * time_tolerance determines maximum frequency error or tolerance of the 124 * CPU clock oscillator and is a property of the architecture; however, 125 * in principle it could change as result of the presence of external 126 * discipline signals, for instance. 127 * 128 * time_precision is usually equal to the kernel tick variable; however, 129 * in cases where a precision clock counter or external clock is 130 * available, the resolution can be much less than this and depend on 131 * whether the external clock is working or not. 132 * 133 * time_maxerror is initialized by a ntp_adjtime() call and increased by 134 * the kernel once each second to reflect the maximum error bound 135 * growth. 136 * 137 * time_esterror is set and read by the ntp_adjtime() call, but 138 * otherwise not used by the kernel. 139 */ 140 int32_t time_state = TIME_OK; /* clock state */ 141 int32_t time_status = STA_UNSYNC; /* clock status bits */ 142 int32_t time_offset = 0; /* time offset (us) */ 143 int32_t time_constant = 0; /* pll time constant */ 144 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 145 int32_t time_precision = 1; /* clock precision (us) */ 146 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 147 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 148 149 /* 150 * The following variables establish the state of the PLL/FLL and the 151 * residual time and frequency offset of the local clock. The scale 152 * factors are defined in the timex.h header file. 153 * 154 * time_phase and time_freq are the phase increment and the frequency 155 * increment, respectively, of the kernel time variable. 156 * 157 * time_freq is set via ntp_adjtime() from a value stored in a file when 158 * the synchronization daemon is first started. Its value is retrieved 159 * via ntp_adjtime() and written to the file about once per hour by the 160 * daemon. 161 * 162 * time_adj is the adjustment added to the value of tick at each timer 163 * interrupt and is recomputed from time_phase and time_freq at each 164 * seconds rollover. 165 * 166 * time_reftime is the second's portion of the system time at the last 167 * call to ntp_adjtime(). It is used to adjust the time_freq variable 168 * and to increase the time_maxerror as the time since last update 169 * increases. 170 */ 171 int32_t time_phase = 0; /* phase offset (scaled us) */ 172 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 173 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 174 int32_t time_reftime = 0; /* time at last adjustment (s) */ 175 176 /* 177 * The scale factors of the following variables are defined in the 178 * timex.h header file. 179 * 180 * pps_time contains the time at each calibration interval, as read by 181 * microtime(). pps_count counts the seconds of the calibration 182 * interval, the duration of which is nominally pps_shift in powers of 183 * two. 184 * 185 * pps_offset is the time offset produced by the time median filter 186 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 187 * this filter. 188 * 189 * pps_freq is the frequency offset produced by the frequency median 190 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 191 * by this filter. 192 * 193 * pps_usec is latched from a high resolution counter or external clock 194 * at pps_time. Here we want the hardware counter contents only, not the 195 * contents plus the time_tv.usec as usual. 196 * 197 * pps_valid counts the number of seconds since the last PPS update. It 198 * is used as a watchdog timer to disable the PPS discipline should the 199 * PPS signal be lost. 200 * 201 * pps_glitch counts the number of seconds since the beginning of an 202 * offset burst more than tick/2 from current nominal offset. It is used 203 * mainly to suppress error bursts due to priority conflicts between the 204 * PPS interrupt and timer interrupt. 205 * 206 * pps_intcnt counts the calibration intervals for use in the interval- 207 * adaptation algorithm. It's just too complicated for words. 208 */ 209 struct timeval pps_time; /* kernel time at last interval */ 210 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 211 int32_t pps_offset = 0; /* pps time offset (us) */ 212 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 213 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 214 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 215 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 216 int32_t pps_usec = 0; /* microsec counter at last interval */ 217 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 218 int32_t pps_glitch = 0; /* pps signal glitch counter */ 219 int32_t pps_count = 0; /* calibration interval counter (s) */ 220 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 221 int32_t pps_intcnt = 0; /* intervals at current duration */ 222 223 /* 224 * PPS signal quality monitors 225 * 226 * pps_jitcnt counts the seconds that have been discarded because the 227 * jitter measured by the time median filter exceeds the limit MAXTIME 228 * (100 us). 229 * 230 * pps_calcnt counts the frequency calibration intervals, which are 231 * variable from 4 s to 256 s. 232 * 233 * pps_errcnt counts the calibration intervals which have been discarded 234 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 235 * calibration interval jitter exceeds two ticks. 236 * 237 * pps_stbcnt counts the calibration intervals that have been discarded 238 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 239 */ 240 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 241 int32_t pps_calcnt = 0; /* calibration intervals */ 242 int32_t pps_errcnt = 0; /* calibration errors */ 243 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 244 245 /* The following variables require no explicit locking */ 246 volatile clock_t lbolt; /* time in Hz since last boot */ 247 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 248 249 kcondvar_t lbolt_cv; 250 int one_sec = 1; /* turned on once every second */ 251 static int fsflushcnt; /* counter for t_fsflushr */ 252 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 253 int tod_needsync = 0; /* need to sync tod chip with software time */ 254 static int tod_broken = 0; /* clock chip doesn't work */ 255 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 256 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 257 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 258 259 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 260 261 /* 262 * for tod fault detection 263 */ 264 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 265 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 266 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 267 #define TOD_FILTER_N 4 268 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 269 static int tod_faulted = TOD_NOFAULT; 270 static int tod_fault_reset_flag = 0; 271 272 /* patchable via /etc/system */ 273 int tod_validate_enable = 1; 274 275 /* 276 * On non-SPARC systems, TOD validation must be deferred until gethrtime 277 * returns non-zero values (after mach_clkinit's execution). 278 * On SPARC systems, it must be deferred until after hrtime_base 279 * and hres_last_tick are set (in the first invocation of hres_tick). 280 * Since in both cases the prerequisites occur before the invocation of 281 * tod_get() in clock(), the deferment is lifted there. 282 */ 283 static boolean_t tod_validate_deferred = B_TRUE; 284 285 /* 286 * tod_fault_table[] must be aligned with 287 * enum tod_fault_type in systm.h 288 */ 289 static char *tod_fault_table[] = { 290 "Reversed", /* TOD_REVERSED */ 291 "Stalled", /* TOD_STALLED */ 292 "Jumped", /* TOD_JUMPED */ 293 "Changed in Clock Rate" /* TOD_RATECHANGED */ 294 /* 295 * no strings needed for TOD_NOFAULT 296 */ 297 }; 298 299 /* 300 * test hook for tod broken detection in tod_validate 301 */ 302 int tod_unit_test = 0; 303 time_t tod_test_injector; 304 305 #define CLOCK_ADJ_HIST_SIZE 4 306 307 static int adj_hist_entry; 308 309 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 310 311 static void clock_tick(kthread_t *); 312 static void calcloadavg(int, uint64_t *); 313 static int genloadavg(struct loadavg_s *); 314 static void loadavg_update(); 315 316 void (*cmm_clock_callout)() = NULL; 317 318 #ifdef KSLICE 319 int kslice = KSLICE; 320 #endif 321 322 static void 323 clock(void) 324 { 325 kthread_t *t; 326 kmutex_t *plockp; /* pointer to thread's process lock */ 327 int pinned_intr = 0; 328 uint_t nrunnable, nrunning; 329 uint_t w_io; 330 cpu_t *cp; 331 cpupart_t *cpupart; 332 int exiting; 333 extern void set_anoninfo(); 334 extern void set_freemem(); 335 void (*funcp)(); 336 int32_t ltemp; 337 int64_t lltemp; 338 int s; 339 int do_lgrp_load; 340 int i; 341 342 if (panicstr) 343 return; 344 345 set_anoninfo(); 346 /* 347 * Make sure that 'freemem' do not drift too far from the truth 348 */ 349 set_freemem(); 350 351 352 /* 353 * Before the section which is repeated is executed, we do 354 * the time delta processing which occurs every clock tick 355 * 356 * There is additional processing which happens every time 357 * the nanosecond counter rolls over which is described 358 * below - see the section which begins with : if (one_sec) 359 * 360 * This section marks the beginning of the precision-kernel 361 * code fragment. 362 * 363 * First, compute the phase adjustment. If the low-order bits 364 * (time_phase) of the update overflow, bump the higher order 365 * bits (time_update). 366 */ 367 time_phase += time_adj; 368 if (time_phase <= -FINEUSEC) { 369 ltemp = -time_phase / SCALE_PHASE; 370 time_phase += ltemp * SCALE_PHASE; 371 s = hr_clock_lock(); 372 timedelta -= ltemp * (NANOSEC/MICROSEC); 373 hr_clock_unlock(s); 374 } else if (time_phase >= FINEUSEC) { 375 ltemp = time_phase / SCALE_PHASE; 376 time_phase -= ltemp * SCALE_PHASE; 377 s = hr_clock_lock(); 378 timedelta += ltemp * (NANOSEC/MICROSEC); 379 hr_clock_unlock(s); 380 } 381 382 /* 383 * End of precision-kernel code fragment which is processed 384 * every timer interrupt. 385 * 386 * Continue with the interrupt processing as scheduled. 387 * 388 * Did we pin another interrupt thread? Need to check this before 389 * grabbing any adaptive locks, since if we block on a lock the 390 * pinned thread could escape. Note that this is just a heuristic; 391 * if we take multiple laps though clock() without returning from 392 * the interrupt because we have another clock tick pending, then 393 * the pinned interrupt could be released by one of the previous 394 * laps. The only consequence is that the CPU will be counted as 395 * in idle (or wait) state once the pinned interrupt is released. 396 * Since this accounting is inaccurate by nature, this isn't a big 397 * deal --- but we should try to get it right in the common case 398 * where we only call clock() once per interrupt. 399 */ 400 if (curthread->t_intr != NULL) 401 pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 402 403 /* 404 * Count the number of runnable threads and the number waiting 405 * for some form of I/O to complete -- gets added to 406 * sysinfo.waiting. To know the state of the system, must add 407 * wait counts from all CPUs. Also add up the per-partition 408 * statistics. 409 */ 410 w_io = 0; 411 nrunnable = 0; 412 413 /* 414 * keep track of when to update lgrp/part loads 415 */ 416 417 do_lgrp_load = 0; 418 if (lgrp_ticks++ >= hz / 10) { 419 lgrp_ticks = 0; 420 do_lgrp_load = 1; 421 } 422 423 if (one_sec) 424 loadavg_update(); 425 426 /* 427 * First count the threads waiting on kpreempt queues in each 428 * CPU partition. 429 */ 430 431 cpupart = cp_list_head; 432 do { 433 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 434 435 cpupart->cp_updates++; 436 nrunnable += cpupart_nrunnable; 437 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 438 if (one_sec) { 439 cpupart->cp_nrunning = 0; 440 cpupart->cp_nrunnable = cpupart_nrunnable; 441 } 442 } while ((cpupart = cpupart->cp_next) != cp_list_head); 443 444 445 /* Now count the per-CPU statistics. */ 446 cp = cpu_list; 447 do { 448 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 449 450 nrunnable += cpu_nrunnable; 451 cpupart = cp->cpu_part; 452 cpupart->cp_nrunnable_cum += cpu_nrunnable; 453 if (one_sec) { 454 cpupart->cp_nrunnable += cpu_nrunnable; 455 /* 456 * w_io is used to update sysinfo.waiting during 457 * one_second processing below. Only gather w_io 458 * information when we walk the list of cpus if we're 459 * going to perform one_second processing. 460 */ 461 w_io += CPU_STATS(cp, sys.iowait); 462 463 } 464 if (do_lgrp_load && 465 (cp->cpu_flags & CPU_EXISTS)) { 466 /* 467 * When updating the lgroup's load average, 468 * account for the thread running on the CPU. 469 * If the CPU is the current one, then we need 470 * to account for the underlying thread which 471 * got the clock interrupt not the thread that is 472 * handling the interrupt and caculating the load 473 * average 474 */ 475 t = cp->cpu_thread; 476 if (CPU == cp) 477 t = t->t_intr; 478 479 /* 480 * Account for the load average for this thread if 481 * it isn't the idle thread or it is on the interrupt 482 * stack and not the current CPU handling the clock 483 * interrupt 484 */ 485 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 486 CPU_ON_INTR(cp))) { 487 if (t->t_lpl == cp->cpu_lpl) { 488 /* local thread */ 489 cpu_nrunnable++; 490 } else { 491 /* 492 * This is a remote thread, charge it 493 * against its home lgroup. Note that 494 * we notice that a thread is remote 495 * only if it's currently executing. 496 * This is a reasonable approximation, 497 * since queued remote threads are rare. 498 * Note also that if we didn't charge 499 * it to its home lgroup, remote 500 * execution would often make a system 501 * appear balanced even though it was 502 * not, and thread placement/migration 503 * would often not be done correctly. 504 */ 505 lgrp_loadavg(t->t_lpl, 506 LGRP_LOADAVG_IN_THREAD_MAX, 0); 507 } 508 } 509 lgrp_loadavg(cp->cpu_lpl, 510 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 511 } 512 } while ((cp = cp->cpu_next) != cpu_list); 513 514 /* 515 * Do tick processing for all the active threads running in 516 * the system. 517 */ 518 cp = cpu_list; 519 nrunning = 0; 520 do { 521 klwp_id_t lwp; 522 int intr; 523 int thread_away; 524 525 /* 526 * Don't do any tick processing on CPUs that 527 * aren't even in the system or aren't up yet. 528 */ 529 if ((cp->cpu_flags & CPU_EXISTS) == 0) { 530 continue; 531 } 532 533 /* 534 * The locking here is rather tricky. We use 535 * thread_free_lock to keep the currently running 536 * thread from being freed or recycled while we're 537 * looking at it. We can then check if the thread 538 * is exiting and get the appropriate p_lock if it 539 * is not. We have to be careful, though, because 540 * the _process_ can still be freed while we're 541 * holding thread_free_lock. To avoid touching the 542 * proc structure we put a pointer to the p_lock in the 543 * thread structure. The p_lock is persistent so we 544 * can acquire it even if the process is gone. At that 545 * point we can check (again) if the thread is exiting 546 * and either drop the lock or do the tick processing. 547 */ 548 mutex_enter(&thread_free_lock); 549 /* 550 * We cannot hold the cpu_lock to prevent the 551 * cpu_list from changing in the clock interrupt. 552 * As long as we don't block (or don't get pre-empted) 553 * the cpu_list will not change (all threads are paused 554 * before list modification). If the list does change 555 * any deleted cpu structures will remain with cpu_next 556 * set to NULL, hence the following test. 557 */ 558 if (cp->cpu_next == NULL) { 559 mutex_exit(&thread_free_lock); 560 break; 561 } 562 t = cp->cpu_thread; /* Current running thread */ 563 if (CPU == cp) { 564 /* 565 * 't' will be the clock interrupt thread on this 566 * CPU. Use the pinned thread (if any) on this CPU 567 * as the target of the clock tick. If we pinned 568 * an interrupt, though, just keep using the clock 569 * interrupt thread since the formerly pinned one 570 * may have gone away. One interrupt thread is as 571 * good as another, and this means we don't have 572 * to continue to check pinned_intr in subsequent 573 * code. 574 */ 575 ASSERT(t == curthread); 576 if (t->t_intr != NULL && !pinned_intr) 577 t = t->t_intr; 578 } 579 580 intr = t->t_flag & T_INTR_THREAD; 581 lwp = ttolwp(t); 582 if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 583 /* 584 * Thread is exiting (or uninteresting) so don't 585 * do tick processing or grab p_lock. Once we 586 * drop thread_free_lock we can't look inside the 587 * thread or lwp structure, since the thread may 588 * have gone away. 589 */ 590 exiting = 1; 591 } else { 592 /* 593 * OK, try to grab the process lock. See 594 * comments above for why we're not using 595 * ttoproc(t)->p_lockp here. 596 */ 597 plockp = t->t_plockp; 598 mutex_enter(plockp); 599 /* See above comment. */ 600 if (cp->cpu_next == NULL) { 601 mutex_exit(plockp); 602 mutex_exit(&thread_free_lock); 603 break; 604 } 605 /* 606 * The thread may have exited between when we 607 * checked above, and when we got the p_lock. 608 */ 609 if (t->t_proc_flag & TP_LWPEXIT) { 610 mutex_exit(plockp); 611 exiting = 1; 612 } else { 613 exiting = 0; 614 } 615 } 616 /* 617 * Either we have the p_lock for the thread's process, 618 * or we don't care about the thread structure any more. 619 * Either way we can drop thread_free_lock. 620 */ 621 mutex_exit(&thread_free_lock); 622 623 /* 624 * Update user, system, and idle cpu times. 625 */ 626 if (one_sec) { 627 nrunning++; 628 cp->cpu_part->cp_nrunning++; 629 } 630 /* 631 * If we haven't done tick processing for this 632 * lwp, then do it now. Since we don't hold the 633 * lwp down on a CPU it can migrate and show up 634 * more than once, hence the lbolt check. 635 * 636 * Also, make sure that it's okay to perform the 637 * tick processing before calling clock_tick. 638 * Setting thread_away to a TRUE value (ie. not 0) 639 * results in tick processing not being performed for 640 * that thread. Or, in other words, keeps the thread 641 * away from clock_tick processing. 642 */ 643 thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 644 CPU_ON_INTR(cp) || intr || 645 (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 646 647 if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 648 t->t_lbolt = lbolt; 649 clock_tick(t); 650 } 651 652 #ifdef KSLICE 653 /* 654 * Ah what the heck, give this kid a taste of the real 655 * world and yank the rug out from under it. 656 * But, only if we are running UniProcessor. 657 */ 658 if ((kslice) && (ncpus == 1)) { 659 aston(t); 660 cp->cpu_runrun = 1; 661 cp->cpu_kprunrun = 1; 662 } 663 #endif 664 if (!exiting) 665 mutex_exit(plockp); 666 } while ((cp = cp->cpu_next) != cpu_list); 667 668 /* 669 * bump time in ticks 670 * 671 * We rely on there being only one clock thread and hence 672 * don't need a lock to protect lbolt. 673 */ 674 lbolt++; 675 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 676 677 /* 678 * Check for a callout that needs be called from the clock 679 * thread to support the membership protocol in a clustered 680 * system. Copy the function pointer so that we can reset 681 * this to NULL if needed. 682 */ 683 if ((funcp = cmm_clock_callout) != NULL) 684 (*funcp)(); 685 686 /* 687 * Wakeup the cageout thread waiters once per second. 688 */ 689 if (one_sec) 690 kcage_tick(); 691 692 /* 693 * Schedule timeout() requests if any are due at this time. 694 */ 695 callout_schedule(); 696 697 if (one_sec) { 698 699 int drift, absdrift; 700 timestruc_t tod; 701 int s; 702 703 /* 704 * Beginning of precision-kernel code fragment executed 705 * every second. 706 * 707 * On rollover of the second the phase adjustment to be 708 * used for the next second is calculated. Also, the 709 * maximum error is increased by the tolerance. If the 710 * PPS frequency discipline code is present, the phase is 711 * increased to compensate for the CPU clock oscillator 712 * frequency error. 713 * 714 * On a 32-bit machine and given parameters in the timex.h 715 * header file, the maximum phase adjustment is +-512 ms 716 * and maximum frequency offset is (a tad less than) 717 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 718 */ 719 time_maxerror += time_tolerance / SCALE_USEC; 720 721 /* 722 * Leap second processing. If in leap-insert state at 723 * the end of the day, the system clock is set back one 724 * second; if in leap-delete state, the system clock is 725 * set ahead one second. The microtime() routine or 726 * external clock driver will insure that reported time 727 * is always monotonic. The ugly divides should be 728 * replaced. 729 */ 730 switch (time_state) { 731 732 case TIME_OK: 733 if (time_status & STA_INS) 734 time_state = TIME_INS; 735 else if (time_status & STA_DEL) 736 time_state = TIME_DEL; 737 break; 738 739 case TIME_INS: 740 if (hrestime.tv_sec % 86400 == 0) { 741 s = hr_clock_lock(); 742 hrestime.tv_sec--; 743 hr_clock_unlock(s); 744 time_state = TIME_OOP; 745 } 746 break; 747 748 case TIME_DEL: 749 if ((hrestime.tv_sec + 1) % 86400 == 0) { 750 s = hr_clock_lock(); 751 hrestime.tv_sec++; 752 hr_clock_unlock(s); 753 time_state = TIME_WAIT; 754 } 755 break; 756 757 case TIME_OOP: 758 time_state = TIME_WAIT; 759 break; 760 761 case TIME_WAIT: 762 if (!(time_status & (STA_INS | STA_DEL))) 763 time_state = TIME_OK; 764 default: 765 break; 766 } 767 768 /* 769 * Compute the phase adjustment for the next second. In 770 * PLL mode, the offset is reduced by a fixed factor 771 * times the time constant. In FLL mode the offset is 772 * used directly. In either mode, the maximum phase 773 * adjustment for each second is clamped so as to spread 774 * the adjustment over not more than the number of 775 * seconds between updates. 776 */ 777 if (time_offset == 0) 778 time_adj = 0; 779 else if (time_offset < 0) { 780 lltemp = -time_offset; 781 if (!(time_status & STA_FLL)) { 782 if ((1 << time_constant) >= SCALE_KG) 783 lltemp *= (1 << time_constant) / 784 SCALE_KG; 785 else 786 lltemp = (lltemp / SCALE_KG) >> 787 time_constant; 788 } 789 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 790 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 791 time_offset += lltemp; 792 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 793 } else { 794 lltemp = time_offset; 795 if (!(time_status & STA_FLL)) { 796 if ((1 << time_constant) >= SCALE_KG) 797 lltemp *= (1 << time_constant) / 798 SCALE_KG; 799 else 800 lltemp = (lltemp / SCALE_KG) >> 801 time_constant; 802 } 803 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 804 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 805 time_offset -= lltemp; 806 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 807 } 808 809 /* 810 * Compute the frequency estimate and additional phase 811 * adjustment due to frequency error for the next 812 * second. When the PPS signal is engaged, gnaw on the 813 * watchdog counter and update the frequency computed by 814 * the pll and the PPS signal. 815 */ 816 pps_valid++; 817 if (pps_valid == PPS_VALID) { 818 pps_jitter = MAXTIME; 819 pps_stabil = MAXFREQ; 820 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 821 STA_PPSWANDER | STA_PPSERROR); 822 } 823 lltemp = time_freq + pps_freq; 824 825 if (lltemp) 826 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 827 828 /* 829 * End of precision kernel-code fragment 830 * 831 * The section below should be modified if we are planning 832 * to use NTP for synchronization. 833 * 834 * Note: the clock synchronization code now assumes 835 * the following: 836 * - if dosynctodr is 1, then compute the drift between 837 * the tod chip and software time and adjust one or 838 * the other depending on the circumstances 839 * 840 * - if dosynctodr is 0, then the tod chip is independent 841 * of the software clock and should not be adjusted, 842 * but allowed to free run. this allows NTP to sync. 843 * hrestime without any interference from the tod chip. 844 */ 845 846 tod_validate_deferred = B_FALSE; 847 mutex_enter(&tod_lock); 848 tod = tod_get(); 849 drift = tod.tv_sec - hrestime.tv_sec; 850 absdrift = (drift >= 0) ? drift : -drift; 851 if (tod_needsync || absdrift > 1) { 852 int s; 853 if (absdrift > 2) { 854 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 855 s = hr_clock_lock(); 856 hrestime = tod; 857 membar_enter(); /* hrestime visible */ 858 timedelta = 0; 859 timechanged++; 860 tod_needsync = 0; 861 hr_clock_unlock(s); 862 } 863 } else { 864 if (tod_needsync || !dosynctodr) { 865 gethrestime(&tod); 866 tod_set(tod); 867 s = hr_clock_lock(); 868 if (timedelta == 0) 869 tod_needsync = 0; 870 hr_clock_unlock(s); 871 } else { 872 /* 873 * If the drift is 2 seconds on the 874 * money, then the TOD is adjusting 875 * the clock; record that. 876 */ 877 clock_adj_hist[adj_hist_entry++ % 878 CLOCK_ADJ_HIST_SIZE] = lbolt64; 879 s = hr_clock_lock(); 880 timedelta = (int64_t)drift*NANOSEC; 881 hr_clock_unlock(s); 882 } 883 } 884 } 885 one_sec = 0; 886 time = gethrestime_sec(); /* for crusty old kmem readers */ 887 mutex_exit(&tod_lock); 888 889 /* 890 * Some drivers still depend on this... XXX 891 */ 892 cv_broadcast(&lbolt_cv); 893 894 sysinfo.updates++; 895 vminfo.freemem += freemem; 896 { 897 pgcnt_t maxswap, resv, free; 898 pgcnt_t avail = 899 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 900 901 maxswap = k_anoninfo.ani_mem_resv 902 + k_anoninfo.ani_max +avail; 903 free = k_anoninfo.ani_free + avail; 904 resv = k_anoninfo.ani_phys_resv + 905 k_anoninfo.ani_mem_resv; 906 907 vminfo.swap_resv += resv; 908 /* number of reserved and allocated pages */ 909 #ifdef DEBUG 910 if (maxswap < free) 911 cmn_err(CE_WARN, "clock: maxswap < free"); 912 if (maxswap < resv) 913 cmn_err(CE_WARN, "clock: maxswap < resv"); 914 #endif 915 vminfo.swap_alloc += maxswap - free; 916 vminfo.swap_avail += maxswap - resv; 917 vminfo.swap_free += free; 918 } 919 if (nrunnable) { 920 sysinfo.runque += nrunnable; 921 sysinfo.runocc++; 922 } 923 if (nswapped) { 924 sysinfo.swpque += nswapped; 925 sysinfo.swpocc++; 926 } 927 sysinfo.waiting += w_io; 928 929 /* 930 * Wake up fsflush to write out DELWRI 931 * buffers, dirty pages and other cached 932 * administrative data, e.g. inodes. 933 */ 934 if (--fsflushcnt <= 0) { 935 fsflushcnt = tune.t_fsflushr; 936 cv_signal(&fsflush_cv); 937 } 938 939 vmmeter(); 940 calcloadavg(genloadavg(&loadavg), hp_avenrun); 941 for (i = 0; i < 3; i++) 942 /* 943 * At the moment avenrun[] can only hold 31 944 * bits of load average as it is a signed 945 * int in the API. We need to ensure that 946 * hp_avenrun[i] >> (16 - FSHIFT) will not be 947 * too large. If it is, we put the largest value 948 * that we can use into avenrun[i]. This is 949 * kludgey, but about all we can do until we 950 * avenrun[] is declared as an array of uint64[] 951 */ 952 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 953 avenrun[i] = (int32_t)(hp_avenrun[i] >> 954 (16 - FSHIFT)); 955 else 956 avenrun[i] = 0x7fffffff; 957 958 cpupart = cp_list_head; 959 do { 960 calcloadavg(genloadavg(&cpupart->cp_loadavg), 961 cpupart->cp_hp_avenrun); 962 } while ((cpupart = cpupart->cp_next) != cp_list_head); 963 964 /* 965 * Wake up the swapper thread if necessary. 966 */ 967 if (runin || 968 (runout && (avefree < desfree || wake_sched_sec))) { 969 t = &t0; 970 thread_lock(t); 971 if (t->t_state == TS_STOPPED) { 972 runin = runout = 0; 973 wake_sched_sec = 0; 974 t->t_whystop = 0; 975 t->t_whatstop = 0; 976 t->t_schedflag &= ~TS_ALLSTART; 977 THREAD_TRANSITION(t); 978 setfrontdq(t); 979 } 980 thread_unlock(t); 981 } 982 } 983 984 /* 985 * Wake up the swapper if any high priority swapped-out threads 986 * became runable during the last tick. 987 */ 988 if (wake_sched) { 989 t = &t0; 990 thread_lock(t); 991 if (t->t_state == TS_STOPPED) { 992 runin = runout = 0; 993 wake_sched = 0; 994 t->t_whystop = 0; 995 t->t_whatstop = 0; 996 t->t_schedflag &= ~TS_ALLSTART; 997 THREAD_TRANSITION(t); 998 setfrontdq(t); 999 } 1000 thread_unlock(t); 1001 } 1002 } 1003 1004 void 1005 clock_init(void) 1006 { 1007 cyc_handler_t hdlr; 1008 cyc_time_t when; 1009 1010 hdlr.cyh_func = (cyc_func_t)clock; 1011 hdlr.cyh_level = CY_LOCK_LEVEL; 1012 hdlr.cyh_arg = NULL; 1013 1014 when.cyt_when = 0; 1015 when.cyt_interval = nsec_per_tick; 1016 1017 mutex_enter(&cpu_lock); 1018 clock_cyclic = cyclic_add(&hdlr, &when); 1019 mutex_exit(&cpu_lock); 1020 } 1021 1022 /* 1023 * Called before calcloadavg to get 10-sec moving loadavg together 1024 */ 1025 1026 static int 1027 genloadavg(struct loadavg_s *avgs) 1028 { 1029 int avg; 1030 int spos; /* starting position */ 1031 int cpos; /* moving current position */ 1032 int i; 1033 int slen; 1034 hrtime_t hr_avg; 1035 1036 /* 10-second snapshot, calculate first positon */ 1037 if (avgs->lg_len == 0) { 1038 return (0); 1039 } 1040 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1041 1042 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1043 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1044 for (i = hr_avg = 0; i < slen; i++) { 1045 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1046 hr_avg += avgs->lg_loads[cpos]; 1047 } 1048 1049 hr_avg = hr_avg / slen; 1050 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1051 1052 return (avg); 1053 } 1054 1055 /* 1056 * Run every second from clock () to update the loadavg count available to the 1057 * system and cpu-partitions. 1058 * 1059 * This works by sampling the previous usr, sys, wait time elapsed, 1060 * computing a delta, and adding that delta to the elapsed usr, sys, 1061 * wait increase. 1062 */ 1063 1064 static void 1065 loadavg_update() 1066 { 1067 cpu_t *cp; 1068 cpupart_t *cpupart; 1069 hrtime_t cpu_total; 1070 int prev; 1071 1072 cp = cpu_list; 1073 loadavg.lg_total = 0; 1074 1075 /* 1076 * first pass totals up per-cpu statistics for system and cpu 1077 * partitions 1078 */ 1079 1080 do { 1081 struct loadavg_s *lavg; 1082 1083 lavg = &cp->cpu_loadavg; 1084 1085 cpu_total = cp->cpu_acct[CMS_USER] + 1086 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1087 /* compute delta against last total */ 1088 scalehrtime(&cpu_total); 1089 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1090 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1091 if (lavg->lg_loads[prev] <= 0) { 1092 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1093 cpu_total = 0; 1094 } else { 1095 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1096 cpu_total = cpu_total - lavg->lg_loads[prev]; 1097 if (cpu_total < 0) 1098 cpu_total = 0; 1099 } 1100 1101 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1102 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1103 lavg->lg_len + 1 : S_LOADAVG_SZ; 1104 1105 loadavg.lg_total += cpu_total; 1106 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1107 1108 } while ((cp = cp->cpu_next) != cpu_list); 1109 1110 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1111 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1112 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1113 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1114 /* 1115 * Second pass updates counts 1116 */ 1117 cpupart = cp_list_head; 1118 1119 do { 1120 struct loadavg_s *lavg; 1121 1122 lavg = &cpupart->cp_loadavg; 1123 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1124 lavg->lg_total = 0; 1125 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1126 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1127 lavg->lg_len + 1 : S_LOADAVG_SZ; 1128 1129 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1130 1131 } 1132 1133 /* 1134 * clock_update() - local clock update 1135 * 1136 * This routine is called by ntp_adjtime() to update the local clock 1137 * phase and frequency. The implementation is of an 1138 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1139 * routine computes new time and frequency offset estimates for each 1140 * call. The PPS signal itself determines the new time offset, 1141 * instead of the calling argument. Presumably, calls to 1142 * ntp_adjtime() occur only when the caller believes the local clock 1143 * is valid within some bound (+-128 ms with NTP). If the caller's 1144 * time is far different than the PPS time, an argument will ensue, 1145 * and it's not clear who will lose. 1146 * 1147 * For uncompensated quartz crystal oscillatores and nominal update 1148 * intervals less than 1024 s, operation should be in phase-lock mode 1149 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1150 * intervals greater than this, operation should be in frequency-lock 1151 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1152 * 1153 * Note: mutex(&tod_lock) is in effect. 1154 */ 1155 void 1156 clock_update(int offset) 1157 { 1158 int ltemp, mtemp, s; 1159 1160 ASSERT(MUTEX_HELD(&tod_lock)); 1161 1162 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1163 return; 1164 ltemp = offset; 1165 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1166 ltemp = pps_offset; 1167 1168 /* 1169 * Scale the phase adjustment and clamp to the operating range. 1170 */ 1171 if (ltemp > MAXPHASE) 1172 time_offset = MAXPHASE * SCALE_UPDATE; 1173 else if (ltemp < -MAXPHASE) 1174 time_offset = -(MAXPHASE * SCALE_UPDATE); 1175 else 1176 time_offset = ltemp * SCALE_UPDATE; 1177 1178 /* 1179 * Select whether the frequency is to be controlled and in which 1180 * mode (PLL or FLL). Clamp to the operating range. Ugly 1181 * multiply/divide should be replaced someday. 1182 */ 1183 if (time_status & STA_FREQHOLD || time_reftime == 0) 1184 time_reftime = hrestime.tv_sec; 1185 1186 mtemp = hrestime.tv_sec - time_reftime; 1187 time_reftime = hrestime.tv_sec; 1188 1189 if (time_status & STA_FLL) { 1190 if (mtemp >= MINSEC) { 1191 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1192 SCALE_UPDATE)); 1193 if (ltemp) 1194 time_freq += ltemp / SCALE_KH; 1195 } 1196 } else { 1197 if (mtemp < MAXSEC) { 1198 ltemp *= mtemp; 1199 if (ltemp) 1200 time_freq += (int)(((int64_t)ltemp * 1201 SCALE_USEC) / SCALE_KF) 1202 / (1 << (time_constant * 2)); 1203 } 1204 } 1205 if (time_freq > time_tolerance) 1206 time_freq = time_tolerance; 1207 else if (time_freq < -time_tolerance) 1208 time_freq = -time_tolerance; 1209 1210 s = hr_clock_lock(); 1211 tod_needsync = 1; 1212 hr_clock_unlock(s); 1213 } 1214 1215 /* 1216 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1217 * 1218 * This routine is called at each PPS interrupt in order to discipline 1219 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1220 * and leaves it in a handy spot for the clock() routine. It 1221 * integrates successive PPS phase differences and calculates the 1222 * frequency offset. This is used in clock() to discipline the CPU 1223 * clock oscillator so that intrinsic frequency error is cancelled out. 1224 * The code requires the caller to capture the time and hardware counter 1225 * value at the on-time PPS signal transition. 1226 * 1227 * Note that, on some Unix systems, this routine runs at an interrupt 1228 * priority level higher than the timer interrupt routine clock(). 1229 * Therefore, the variables used are distinct from the clock() 1230 * variables, except for certain exceptions: The PPS frequency pps_freq 1231 * and phase pps_offset variables are determined by this routine and 1232 * updated atomically. The time_tolerance variable can be considered a 1233 * constant, since it is infrequently changed, and then only when the 1234 * PPS signal is disabled. The watchdog counter pps_valid is updated 1235 * once per second by clock() and is atomically cleared in this 1236 * routine. 1237 * 1238 * tvp is the time of the last tick; usec is a microsecond count since the 1239 * last tick. 1240 * 1241 * Note: In Solaris systems, the tick value is actually given by 1242 * usec_per_tick. This is called from the serial driver cdintr(), 1243 * or equivalent, at a high PIL. Because the kernel keeps a 1244 * highresolution time, the following code can accept either 1245 * the traditional argument pair, or the current highres timestamp 1246 * in tvp and zero in usec. 1247 */ 1248 void 1249 ddi_hardpps(struct timeval *tvp, int usec) 1250 { 1251 int u_usec, v_usec, bigtick; 1252 time_t cal_sec; 1253 int cal_usec; 1254 1255 /* 1256 * An occasional glitch can be produced when the PPS interrupt 1257 * occurs in the clock() routine before the time variable is 1258 * updated. Here the offset is discarded when the difference 1259 * between it and the last one is greater than tick/2, but not 1260 * if the interval since the first discard exceeds 30 s. 1261 */ 1262 time_status |= STA_PPSSIGNAL; 1263 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1264 pps_valid = 0; 1265 u_usec = -tvp->tv_usec; 1266 if (u_usec < -(MICROSEC/2)) 1267 u_usec += MICROSEC; 1268 v_usec = pps_offset - u_usec; 1269 if (v_usec < 0) 1270 v_usec = -v_usec; 1271 if (v_usec > (usec_per_tick >> 1)) { 1272 if (pps_glitch > MAXGLITCH) { 1273 pps_glitch = 0; 1274 pps_tf[2] = u_usec; 1275 pps_tf[1] = u_usec; 1276 } else { 1277 pps_glitch++; 1278 u_usec = pps_offset; 1279 } 1280 } else 1281 pps_glitch = 0; 1282 1283 /* 1284 * A three-stage median filter is used to help deglitch the pps 1285 * time. The median sample becomes the time offset estimate; the 1286 * difference between the other two samples becomes the time 1287 * dispersion (jitter) estimate. 1288 */ 1289 pps_tf[2] = pps_tf[1]; 1290 pps_tf[1] = pps_tf[0]; 1291 pps_tf[0] = u_usec; 1292 if (pps_tf[0] > pps_tf[1]) { 1293 if (pps_tf[1] > pps_tf[2]) { 1294 pps_offset = pps_tf[1]; /* 0 1 2 */ 1295 v_usec = pps_tf[0] - pps_tf[2]; 1296 } else if (pps_tf[2] > pps_tf[0]) { 1297 pps_offset = pps_tf[0]; /* 2 0 1 */ 1298 v_usec = pps_tf[2] - pps_tf[1]; 1299 } else { 1300 pps_offset = pps_tf[2]; /* 0 2 1 */ 1301 v_usec = pps_tf[0] - pps_tf[1]; 1302 } 1303 } else { 1304 if (pps_tf[1] < pps_tf[2]) { 1305 pps_offset = pps_tf[1]; /* 2 1 0 */ 1306 v_usec = pps_tf[2] - pps_tf[0]; 1307 } else if (pps_tf[2] < pps_tf[0]) { 1308 pps_offset = pps_tf[0]; /* 1 0 2 */ 1309 v_usec = pps_tf[1] - pps_tf[2]; 1310 } else { 1311 pps_offset = pps_tf[2]; /* 1 2 0 */ 1312 v_usec = pps_tf[1] - pps_tf[0]; 1313 } 1314 } 1315 if (v_usec > MAXTIME) 1316 pps_jitcnt++; 1317 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1318 pps_jitter += v_usec / (1 << PPS_AVG); 1319 if (pps_jitter > (MAXTIME >> 1)) 1320 time_status |= STA_PPSJITTER; 1321 1322 /* 1323 * During the calibration interval adjust the starting time when 1324 * the tick overflows. At the end of the interval compute the 1325 * duration of the interval and the difference of the hardware 1326 * counters at the beginning and end of the interval. This code 1327 * is deliciously complicated by the fact valid differences may 1328 * exceed the value of tick when using long calibration 1329 * intervals and small ticks. Note that the counter can be 1330 * greater than tick if caught at just the wrong instant, but 1331 * the values returned and used here are correct. 1332 */ 1333 bigtick = (int)usec_per_tick * SCALE_USEC; 1334 pps_usec -= pps_freq; 1335 if (pps_usec >= bigtick) 1336 pps_usec -= bigtick; 1337 if (pps_usec < 0) 1338 pps_usec += bigtick; 1339 pps_time.tv_sec++; 1340 pps_count++; 1341 if (pps_count < (1 << pps_shift)) 1342 return; 1343 pps_count = 0; 1344 pps_calcnt++; 1345 u_usec = usec * SCALE_USEC; 1346 v_usec = pps_usec - u_usec; 1347 if (v_usec >= bigtick >> 1) 1348 v_usec -= bigtick; 1349 if (v_usec < -(bigtick >> 1)) 1350 v_usec += bigtick; 1351 if (v_usec < 0) 1352 v_usec = -(-v_usec >> pps_shift); 1353 else 1354 v_usec = v_usec >> pps_shift; 1355 pps_usec = u_usec; 1356 cal_sec = tvp->tv_sec; 1357 cal_usec = tvp->tv_usec; 1358 cal_sec -= pps_time.tv_sec; 1359 cal_usec -= pps_time.tv_usec; 1360 if (cal_usec < 0) { 1361 cal_usec += MICROSEC; 1362 cal_sec--; 1363 } 1364 pps_time = *tvp; 1365 1366 /* 1367 * Check for lost interrupts, noise, excessive jitter and 1368 * excessive frequency error. The number of timer ticks during 1369 * the interval may vary +-1 tick. Add to this a margin of one 1370 * tick for the PPS signal jitter and maximum frequency 1371 * deviation. If the limits are exceeded, the calibration 1372 * interval is reset to the minimum and we start over. 1373 */ 1374 u_usec = (int)usec_per_tick << 1; 1375 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1376 (cal_sec == 0 && cal_usec < u_usec)) || 1377 v_usec > time_tolerance || v_usec < -time_tolerance) { 1378 pps_errcnt++; 1379 pps_shift = PPS_SHIFT; 1380 pps_intcnt = 0; 1381 time_status |= STA_PPSERROR; 1382 return; 1383 } 1384 1385 /* 1386 * A three-stage median filter is used to help deglitch the pps 1387 * frequency. The median sample becomes the frequency offset 1388 * estimate; the difference between the other two samples 1389 * becomes the frequency dispersion (stability) estimate. 1390 */ 1391 pps_ff[2] = pps_ff[1]; 1392 pps_ff[1] = pps_ff[0]; 1393 pps_ff[0] = v_usec; 1394 if (pps_ff[0] > pps_ff[1]) { 1395 if (pps_ff[1] > pps_ff[2]) { 1396 u_usec = pps_ff[1]; /* 0 1 2 */ 1397 v_usec = pps_ff[0] - pps_ff[2]; 1398 } else if (pps_ff[2] > pps_ff[0]) { 1399 u_usec = pps_ff[0]; /* 2 0 1 */ 1400 v_usec = pps_ff[2] - pps_ff[1]; 1401 } else { 1402 u_usec = pps_ff[2]; /* 0 2 1 */ 1403 v_usec = pps_ff[0] - pps_ff[1]; 1404 } 1405 } else { 1406 if (pps_ff[1] < pps_ff[2]) { 1407 u_usec = pps_ff[1]; /* 2 1 0 */ 1408 v_usec = pps_ff[2] - pps_ff[0]; 1409 } else if (pps_ff[2] < pps_ff[0]) { 1410 u_usec = pps_ff[0]; /* 1 0 2 */ 1411 v_usec = pps_ff[1] - pps_ff[2]; 1412 } else { 1413 u_usec = pps_ff[2]; /* 1 2 0 */ 1414 v_usec = pps_ff[1] - pps_ff[0]; 1415 } 1416 } 1417 1418 /* 1419 * Here the frequency dispersion (stability) is updated. If it 1420 * is less than one-fourth the maximum (MAXFREQ), the frequency 1421 * offset is updated as well, but clamped to the tolerance. It 1422 * will be processed later by the clock() routine. 1423 */ 1424 v_usec = (v_usec >> 1) - pps_stabil; 1425 if (v_usec < 0) 1426 pps_stabil -= -v_usec >> PPS_AVG; 1427 else 1428 pps_stabil += v_usec >> PPS_AVG; 1429 if (pps_stabil > MAXFREQ >> 2) { 1430 pps_stbcnt++; 1431 time_status |= STA_PPSWANDER; 1432 return; 1433 } 1434 if (time_status & STA_PPSFREQ) { 1435 if (u_usec < 0) { 1436 pps_freq -= -u_usec >> PPS_AVG; 1437 if (pps_freq < -time_tolerance) 1438 pps_freq = -time_tolerance; 1439 u_usec = -u_usec; 1440 } else { 1441 pps_freq += u_usec >> PPS_AVG; 1442 if (pps_freq > time_tolerance) 1443 pps_freq = time_tolerance; 1444 } 1445 } 1446 1447 /* 1448 * Here the calibration interval is adjusted. If the maximum 1449 * time difference is greater than tick / 4, reduce the interval 1450 * by half. If this is not the case for four consecutive 1451 * intervals, double the interval. 1452 */ 1453 if (u_usec << pps_shift > bigtick >> 2) { 1454 pps_intcnt = 0; 1455 if (pps_shift > PPS_SHIFT) 1456 pps_shift--; 1457 } else if (pps_intcnt >= 4) { 1458 pps_intcnt = 0; 1459 if (pps_shift < PPS_SHIFTMAX) 1460 pps_shift++; 1461 } else 1462 pps_intcnt++; 1463 1464 /* 1465 * If recovering from kmdb, then make sure the tod chip gets resynced. 1466 * If we took an early exit above, then we don't yet have a stable 1467 * calibration signal to lock onto, so don't mark the tod for sync 1468 * until we get all the way here. 1469 */ 1470 { 1471 int s = hr_clock_lock(); 1472 1473 tod_needsync = 1; 1474 hr_clock_unlock(s); 1475 } 1476 } 1477 1478 /* 1479 * Handle clock tick processing for a thread. 1480 * Check for timer action, enforce CPU rlimit, do profiling etc. 1481 */ 1482 void 1483 clock_tick(kthread_t *t) 1484 { 1485 struct proc *pp; 1486 klwp_id_t lwp; 1487 struct as *as; 1488 clock_t utime; 1489 clock_t stime; 1490 int poke = 0; /* notify another CPU */ 1491 int user_mode; 1492 size_t rss; 1493 1494 /* Must be operating on a lwp/thread */ 1495 if ((lwp = ttolwp(t)) == NULL) { 1496 panic("clock_tick: no lwp"); 1497 /*NOTREACHED*/ 1498 } 1499 1500 CL_TICK(t); /* Class specific tick processing */ 1501 DTRACE_SCHED1(tick, kthread_t *, t); 1502 1503 pp = ttoproc(t); 1504 1505 /* pp->p_lock makes sure that the thread does not exit */ 1506 ASSERT(MUTEX_HELD(&pp->p_lock)); 1507 1508 user_mode = (lwp->lwp_state == LWP_USER); 1509 1510 /* 1511 * Update process times. Should use high res clock and state 1512 * changes instead of statistical sampling method. XXX 1513 */ 1514 if (user_mode) { 1515 pp->p_utime++; 1516 pp->p_task->tk_cpu_time++; 1517 } else { 1518 pp->p_stime++; 1519 pp->p_task->tk_cpu_time++; 1520 } 1521 as = pp->p_as; 1522 1523 /* 1524 * Update user profiling statistics. Get the pc from the 1525 * lwp when the AST happens. 1526 */ 1527 if (pp->p_prof.pr_scale) { 1528 atomic_add_32(&lwp->lwp_oweupc, 1); 1529 if (user_mode) { 1530 poke = 1; 1531 aston(t); 1532 } 1533 } 1534 1535 utime = pp->p_utime; 1536 stime = pp->p_stime; 1537 1538 /* 1539 * If CPU was in user state, process lwp-virtual time 1540 * interval timer. 1541 */ 1542 if (user_mode && 1543 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1544 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 1545 poke = 1; 1546 sigtoproc(pp, t, SIGVTALRM); 1547 } 1548 1549 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1550 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 1551 poke = 1; 1552 sigtoproc(pp, t, SIGPROF); 1553 } 1554 1555 /* 1556 * Enforce CPU resource controls: 1557 * (a) process.max-cpu-time resource control 1558 */ 1559 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1560 (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 1561 1562 /* 1563 * (b) task.max-cpu-time resource control 1564 */ 1565 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 1566 RCA_UNSAFE_SIGINFO); 1567 1568 /* 1569 * Update memory usage for the currently running process. 1570 */ 1571 rss = rm_asrss(as); 1572 PTOU(pp)->u_mem += rss; 1573 if (rss > PTOU(pp)->u_mem_max) 1574 PTOU(pp)->u_mem_max = rss; 1575 1576 /* 1577 * Notify the CPU the thread is running on. 1578 */ 1579 if (poke && t->t_cpu != CPU) 1580 poke_cpu(t->t_cpu->cpu_id); 1581 } 1582 1583 void 1584 profil_tick(uintptr_t upc) 1585 { 1586 int ticks; 1587 proc_t *p = ttoproc(curthread); 1588 klwp_t *lwp = ttolwp(curthread); 1589 struct prof *pr = &p->p_prof; 1590 1591 do { 1592 ticks = lwp->lwp_oweupc; 1593 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1594 1595 mutex_enter(&p->p_pflock); 1596 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1597 /* 1598 * Old-style profiling 1599 */ 1600 uint16_t *slot = pr->pr_base; 1601 uint16_t old, new; 1602 if (pr->pr_scale != 2) { 1603 uintptr_t delta = upc - pr->pr_off; 1604 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1605 (((delta & 0xffff) * pr->pr_scale) >> 16); 1606 if (byteoff >= (uintptr_t)pr->pr_size) { 1607 mutex_exit(&p->p_pflock); 1608 return; 1609 } 1610 slot += byteoff / sizeof (uint16_t); 1611 } 1612 if (fuword16(slot, &old) < 0 || 1613 (new = old + ticks) > SHRT_MAX || 1614 suword16(slot, new) < 0) { 1615 pr->pr_scale = 0; 1616 } 1617 } else if (pr->pr_scale == 1) { 1618 /* 1619 * PC Sampling 1620 */ 1621 model_t model = lwp_getdatamodel(lwp); 1622 int result; 1623 #ifdef __lint 1624 model = model; 1625 #endif 1626 while (ticks-- > 0) { 1627 if (pr->pr_samples == pr->pr_size) { 1628 /* buffer full, turn off sampling */ 1629 pr->pr_scale = 0; 1630 break; 1631 } 1632 switch (SIZEOF_PTR(model)) { 1633 case sizeof (uint32_t): 1634 result = suword32(pr->pr_base, (uint32_t)upc); 1635 break; 1636 #ifdef _LP64 1637 case sizeof (uint64_t): 1638 result = suword64(pr->pr_base, (uint64_t)upc); 1639 break; 1640 #endif 1641 default: 1642 cmn_err(CE_WARN, "profil_tick: unexpected " 1643 "data model"); 1644 result = -1; 1645 break; 1646 } 1647 if (result != 0) { 1648 pr->pr_scale = 0; 1649 break; 1650 } 1651 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1652 pr->pr_samples++; 1653 } 1654 } 1655 mutex_exit(&p->p_pflock); 1656 } 1657 1658 static void 1659 delay_wakeup(void *arg) 1660 { 1661 kthread_t *t = arg; 1662 1663 mutex_enter(&t->t_delay_lock); 1664 cv_signal(&t->t_delay_cv); 1665 mutex_exit(&t->t_delay_lock); 1666 } 1667 1668 void 1669 delay(clock_t ticks) 1670 { 1671 kthread_t *t = curthread; 1672 clock_t deadline = lbolt + ticks; 1673 clock_t timeleft; 1674 timeout_id_t id; 1675 1676 if (panicstr && ticks > 0) { 1677 /* 1678 * Timeouts aren't running, so all we can do is spin. 1679 */ 1680 drv_usecwait(TICK_TO_USEC(ticks)); 1681 return; 1682 } 1683 1684 while ((timeleft = deadline - lbolt) > 0) { 1685 mutex_enter(&t->t_delay_lock); 1686 id = timeout(delay_wakeup, t, timeleft); 1687 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1688 mutex_exit(&t->t_delay_lock); 1689 (void) untimeout(id); 1690 } 1691 } 1692 1693 /* 1694 * Like delay, but interruptible by a signal. 1695 */ 1696 int 1697 delay_sig(clock_t ticks) 1698 { 1699 clock_t deadline = lbolt + ticks; 1700 clock_t rc; 1701 1702 mutex_enter(&curthread->t_delay_lock); 1703 do { 1704 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1705 &curthread->t_delay_lock, deadline); 1706 } while (rc > 0); 1707 mutex_exit(&curthread->t_delay_lock); 1708 if (rc == 0) 1709 return (EINTR); 1710 return (0); 1711 } 1712 1713 #define SECONDS_PER_DAY 86400 1714 1715 /* 1716 * Initialize the system time based on the TOD chip. approx is used as 1717 * an approximation of time (e.g. from the filesystem) in the event that 1718 * the TOD chip has been cleared or is unresponsive. An approx of -1 1719 * means the filesystem doesn't keep time. 1720 */ 1721 void 1722 clkset(time_t approx) 1723 { 1724 timestruc_t ts; 1725 int spl; 1726 int set_clock = 0; 1727 1728 mutex_enter(&tod_lock); 1729 ts = tod_get(); 1730 1731 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1732 /* 1733 * If the TOD chip is reporting some time after 1971, 1734 * then it probably didn't lose power or become otherwise 1735 * cleared in the recent past; check to assure that 1736 * the time coming from the filesystem isn't in the future 1737 * according to the TOD chip. 1738 */ 1739 if (approx != -1 && approx > ts.tv_sec) { 1740 cmn_err(CE_WARN, "Last shutdown is later " 1741 "than time on time-of-day chip; check date."); 1742 } 1743 } else { 1744 /* 1745 * If the TOD chip isn't giving correct time, then set it to 1746 * the time that was passed in as a rough estimate. If we 1747 * don't have an estimate, then set the clock back to a time 1748 * when Oliver North, ALF and Dire Straits were all on the 1749 * collective brain: 1987. 1750 */ 1751 timestruc_t tmp; 1752 if (approx == -1) 1753 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1754 else 1755 ts.tv_sec = approx; 1756 ts.tv_nsec = 0; 1757 1758 /* 1759 * Attempt to write the new time to the TOD chip. Set spl high 1760 * to avoid getting preempted between the tod_set and tod_get. 1761 */ 1762 spl = splhi(); 1763 tod_set(ts); 1764 tmp = tod_get(); 1765 splx(spl); 1766 1767 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1768 tod_broken = 1; 1769 dosynctodr = 0; 1770 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1771 " dead batteries?"); 1772 } else { 1773 cmn_err(CE_WARN, "Time-of-day chip had " 1774 "incorrect date; check and reset."); 1775 } 1776 set_clock = 1; 1777 } 1778 1779 if (!boot_time) { 1780 boot_time = ts.tv_sec; 1781 set_clock = 1; 1782 } 1783 1784 if (set_clock) 1785 set_hrestime(&ts); 1786 1787 mutex_exit(&tod_lock); 1788 } 1789 1790 int timechanged; /* for testing if the system time has been reset */ 1791 1792 void 1793 set_hrestime(timestruc_t *ts) 1794 { 1795 int spl = hr_clock_lock(); 1796 hrestime = *ts; 1797 membar_enter(); /* hrestime must be visible before timechanged++ */ 1798 timedelta = 0; 1799 timechanged++; 1800 hr_clock_unlock(spl); 1801 } 1802 1803 static uint_t deadman_seconds; 1804 static uint32_t deadman_panics; 1805 static int deadman_enabled = 0; 1806 static int deadman_panic_timers = 1; 1807 1808 static void 1809 deadman(void) 1810 { 1811 if (panicstr) { 1812 /* 1813 * During panic, other CPUs besides the panic 1814 * master continue to handle cyclics and some other 1815 * interrupts. The code below is intended to be 1816 * single threaded, so any CPU other than the master 1817 * must keep out. 1818 */ 1819 if (CPU->cpu_id != panic_cpu.cpu_id) 1820 return; 1821 1822 /* 1823 * If we're panicking, the deadman cyclic continues to increase 1824 * lbolt in case the dump device driver relies on this for 1825 * timeouts. Note that we rely on deadman() being invoked once 1826 * per second, and credit lbolt and lbolt64 with hz ticks each. 1827 */ 1828 lbolt += hz; 1829 lbolt64 += hz; 1830 1831 #ifdef __sparc 1832 watchdog_pat(); 1833 #endif 1834 1835 if (!deadman_panic_timers) 1836 return; /* allow all timers to be manually disabled */ 1837 1838 /* 1839 * If we are generating a crash dump or syncing filesystems and 1840 * the corresponding timer is set, decrement it and re-enter 1841 * the panic code to abort it and advance to the next state. 1842 * The panic states and triggers are explained in panic.c. 1843 */ 1844 if (panic_dump) { 1845 if (dump_timeleft && (--dump_timeleft == 0)) { 1846 panic("panic dump timeout"); 1847 /*NOTREACHED*/ 1848 } 1849 } else if (panic_sync) { 1850 if (sync_timeleft && (--sync_timeleft == 0)) { 1851 panic("panic sync timeout"); 1852 /*NOTREACHED*/ 1853 } 1854 } 1855 1856 return; 1857 } 1858 1859 if (lbolt != CPU->cpu_deadman_lbolt) { 1860 CPU->cpu_deadman_lbolt = lbolt; 1861 CPU->cpu_deadman_countdown = deadman_seconds; 1862 return; 1863 } 1864 1865 if (CPU->cpu_deadman_countdown-- > 0) 1866 return; 1867 1868 /* 1869 * Regardless of whether or not we actually bring the system down, 1870 * bump the deadman_panics variable. 1871 * 1872 * N.B. deadman_panics is incremented once for each CPU that 1873 * passes through here. It's expected that all the CPUs will 1874 * detect this condition within one second of each other, so 1875 * when deadman_enabled is off, deadman_panics will 1876 * typically be a multiple of the total number of CPUs in 1877 * the system. 1878 */ 1879 atomic_add_32(&deadman_panics, 1); 1880 1881 if (!deadman_enabled) { 1882 CPU->cpu_deadman_countdown = deadman_seconds; 1883 return; 1884 } 1885 1886 /* 1887 * If we're here, we want to bring the system down. 1888 */ 1889 panic("deadman: timed out after %d seconds of clock " 1890 "inactivity", deadman_seconds); 1891 /*NOTREACHED*/ 1892 } 1893 1894 /*ARGSUSED*/ 1895 static void 1896 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1897 { 1898 cpu->cpu_deadman_lbolt = 0; 1899 cpu->cpu_deadman_countdown = deadman_seconds; 1900 1901 hdlr->cyh_func = (cyc_func_t)deadman; 1902 hdlr->cyh_level = CY_HIGH_LEVEL; 1903 hdlr->cyh_arg = NULL; 1904 1905 /* 1906 * Stagger the CPUs so that they don't all run deadman() at 1907 * the same time. Simplest reason to do this is to make it 1908 * more likely that only one CPU will panic in case of a 1909 * timeout. This is (strictly speaking) an aesthetic, not a 1910 * technical consideration. 1911 * 1912 * The interval must be one second in accordance with the 1913 * code in deadman() above to increase lbolt during panic. 1914 */ 1915 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1916 when->cyt_interval = NANOSEC; 1917 } 1918 1919 1920 void 1921 deadman_init(void) 1922 { 1923 cyc_omni_handler_t hdlr; 1924 1925 if (deadman_seconds == 0) 1926 deadman_seconds = snoop_interval / MICROSEC; 1927 1928 if (snooping) 1929 deadman_enabled = 1; 1930 1931 hdlr.cyo_online = deadman_online; 1932 hdlr.cyo_offline = NULL; 1933 hdlr.cyo_arg = NULL; 1934 1935 mutex_enter(&cpu_lock); 1936 deadman_cyclic = cyclic_add_omni(&hdlr); 1937 mutex_exit(&cpu_lock); 1938 } 1939 1940 /* 1941 * tod_fault() is for updating tod validate mechanism state: 1942 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1943 * currently used for debugging only 1944 * (2) The following four cases detected by tod validate mechanism: 1945 * TOD_REVERSED: current tod value is less than previous value. 1946 * TOD_STALLED: current tod value hasn't advanced. 1947 * TOD_JUMPED: current tod value advanced too far from previous value. 1948 * TOD_RATECHANGED: the ratio between average tod delta and 1949 * average tick delta has changed. 1950 */ 1951 enum tod_fault_type 1952 tod_fault(enum tod_fault_type ftype, int off) 1953 { 1954 ASSERT(MUTEX_HELD(&tod_lock)); 1955 1956 if (tod_faulted != ftype) { 1957 switch (ftype) { 1958 case TOD_NOFAULT: 1959 plat_tod_fault(TOD_NOFAULT); 1960 cmn_err(CE_NOTE, "Restarted tracking " 1961 "Time of Day clock."); 1962 tod_faulted = ftype; 1963 break; 1964 case TOD_REVERSED: 1965 case TOD_JUMPED: 1966 if (tod_faulted == TOD_NOFAULT) { 1967 plat_tod_fault(ftype); 1968 cmn_err(CE_WARN, "Time of Day clock error: " 1969 "reason [%s by 0x%x]. -- " 1970 " Stopped tracking Time Of Day clock.", 1971 tod_fault_table[ftype], off); 1972 tod_faulted = ftype; 1973 } 1974 break; 1975 case TOD_STALLED: 1976 case TOD_RATECHANGED: 1977 if (tod_faulted == TOD_NOFAULT) { 1978 plat_tod_fault(ftype); 1979 cmn_err(CE_WARN, "Time of Day clock error: " 1980 "reason [%s]. -- " 1981 " Stopped tracking Time Of Day clock.", 1982 tod_fault_table[ftype]); 1983 tod_faulted = ftype; 1984 } 1985 break; 1986 default: 1987 break; 1988 } 1989 } 1990 return (tod_faulted); 1991 } 1992 1993 void 1994 tod_fault_reset() 1995 { 1996 tod_fault_reset_flag = 1; 1997 } 1998 1999 2000 /* 2001 * tod_validate() is used for checking values returned by tod_get(). 2002 * Four error cases can be detected by this routine: 2003 * TOD_REVERSED: current tod value is less than previous. 2004 * TOD_STALLED: current tod value hasn't advanced. 2005 * TOD_JUMPED: current tod value advanced too far from previous value. 2006 * TOD_RATECHANGED: the ratio between average tod delta and 2007 * average tick delta has changed. 2008 */ 2009 time_t 2010 tod_validate(time_t tod) 2011 { 2012 time_t diff_tod; 2013 hrtime_t diff_tick; 2014 2015 long dtick; 2016 int dtick_delta; 2017 2018 int off = 0; 2019 enum tod_fault_type tod_bad = TOD_NOFAULT; 2020 2021 static int firsttime = 1; 2022 2023 static time_t prev_tod = 0; 2024 static hrtime_t prev_tick = 0; 2025 static long dtick_avg = TOD_REF_FREQ; 2026 2027 hrtime_t tick = gethrtime(); 2028 2029 ASSERT(MUTEX_HELD(&tod_lock)); 2030 2031 /* 2032 * tod_validate_enable is patchable via /etc/system. 2033 * If TOD is already faulted, or if TOD validation is deferred, 2034 * there is nothing to do. 2035 */ 2036 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2037 tod_validate_deferred) { 2038 return (tod); 2039 } 2040 2041 /* 2042 * Update prev_tod and prev_tick values for first run 2043 */ 2044 if (firsttime) { 2045 firsttime = 0; 2046 prev_tod = tod; 2047 prev_tick = tick; 2048 return (tod); 2049 } 2050 2051 /* 2052 * For either of these conditions, we need to reset ourself 2053 * and start validation from zero since each condition 2054 * indicates that the TOD will be updated with new value 2055 * Also, note that tod_needsync will be reset in clock() 2056 */ 2057 if (tod_needsync || tod_fault_reset_flag) { 2058 firsttime = 1; 2059 prev_tod = 0; 2060 prev_tick = 0; 2061 dtick_avg = TOD_REF_FREQ; 2062 2063 if (tod_fault_reset_flag) 2064 tod_fault_reset_flag = 0; 2065 2066 return (tod); 2067 } 2068 2069 /* test hook */ 2070 switch (tod_unit_test) { 2071 case 1: /* for testing jumping tod */ 2072 tod += tod_test_injector; 2073 tod_unit_test = 0; 2074 break; 2075 case 2: /* for testing stuck tod bit */ 2076 tod |= 1 << tod_test_injector; 2077 tod_unit_test = 0; 2078 break; 2079 case 3: /* for testing stalled tod */ 2080 tod = prev_tod; 2081 tod_unit_test = 0; 2082 break; 2083 case 4: /* reset tod fault status */ 2084 (void) tod_fault(TOD_NOFAULT, 0); 2085 tod_unit_test = 0; 2086 break; 2087 default: 2088 break; 2089 } 2090 2091 diff_tod = tod - prev_tod; 2092 diff_tick = tick - prev_tick; 2093 2094 ASSERT(diff_tick >= 0); 2095 2096 if (diff_tod < 0) { 2097 /* ERROR - tod reversed */ 2098 tod_bad = TOD_REVERSED; 2099 off = (int)(prev_tod - tod); 2100 } else if (diff_tod == 0) { 2101 /* tod did not advance */ 2102 if (diff_tick > TOD_STALL_THRESHOLD) { 2103 /* ERROR - tod stalled */ 2104 tod_bad = TOD_STALLED; 2105 } else { 2106 /* 2107 * Make sure we don't update prev_tick 2108 * so that diff_tick is calculated since 2109 * the first diff_tod == 0 2110 */ 2111 return (tod); 2112 } 2113 } else { 2114 /* calculate dtick */ 2115 dtick = diff_tick / diff_tod; 2116 2117 /* update dtick averages */ 2118 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2119 2120 /* 2121 * Calculate dtick_delta as 2122 * variation from reference freq in quartiles 2123 */ 2124 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2125 (TOD_REF_FREQ >> 2); 2126 2127 /* 2128 * Even with a perfectly functioning TOD device, 2129 * when the number of elapsed seconds is low the 2130 * algorithm can calculate a rate that is beyond 2131 * tolerance, causing an error. The algorithm is 2132 * inaccurate when elapsed time is low (less than 2133 * 5 seconds). 2134 */ 2135 if (diff_tod > 4) { 2136 if (dtick < TOD_JUMP_THRESHOLD) { 2137 /* ERROR - tod jumped */ 2138 tod_bad = TOD_JUMPED; 2139 off = (int)diff_tod; 2140 } else if (dtick_delta) { 2141 /* ERROR - change in clock rate */ 2142 tod_bad = TOD_RATECHANGED; 2143 } 2144 } 2145 } 2146 2147 if (tod_bad != TOD_NOFAULT) { 2148 (void) tod_fault(tod_bad, off); 2149 2150 /* 2151 * Disable dosynctodr since we are going to fault 2152 * the TOD chip anyway here 2153 */ 2154 dosynctodr = 0; 2155 2156 /* 2157 * Set tod to the correct value from hrestime 2158 */ 2159 tod = hrestime.tv_sec; 2160 } 2161 2162 prev_tod = tod; 2163 prev_tick = tick; 2164 return (tod); 2165 } 2166 2167 static void 2168 calcloadavg(int nrun, uint64_t *hp_ave) 2169 { 2170 static int64_t f[3] = { 135, 27, 9 }; 2171 uint_t i; 2172 int64_t q, r; 2173 2174 /* 2175 * Compute load average over the last 1, 5, and 15 minutes 2176 * (60, 300, and 900 seconds). The constants in f[3] are for 2177 * exponential decay: 2178 * (1 - exp(-1/60)) << 13 = 135, 2179 * (1 - exp(-1/300)) << 13 = 27, 2180 * (1 - exp(-1/900)) << 13 = 9. 2181 */ 2182 2183 /* 2184 * a little hoop-jumping to avoid integer overflow 2185 */ 2186 for (i = 0; i < 3; i++) { 2187 q = (hp_ave[i] >> 16) << 7; 2188 r = (hp_ave[i] & 0xffff) << 7; 2189 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2190 } 2191 } 2192