1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 31 #include <sys/param.h> 32 #include <sys/t_lock.h> 33 #include <sys/types.h> 34 #include <sys/tuneable.h> 35 #include <sys/sysmacros.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/lgrp.h> 39 #include <sys/user.h> 40 #include <sys/proc.h> 41 #include <sys/callo.h> 42 #include <sys/kmem.h> 43 #include <sys/var.h> 44 #include <sys/cmn_err.h> 45 #include <sys/swap.h> 46 #include <sys/vmsystm.h> 47 #include <sys/class.h> 48 #include <sys/time.h> 49 #include <sys/debug.h> 50 #include <sys/vtrace.h> 51 #include <sys/spl.h> 52 #include <sys/atomic.h> 53 #include <sys/dumphdr.h> 54 #include <sys/archsystm.h> 55 #include <sys/fs/swapnode.h> 56 #include <sys/panic.h> 57 #include <sys/disp.h> 58 #include <sys/msacct.h> 59 #include <sys/mem_cage.h> 60 61 #include <vm/page.h> 62 #include <vm/anon.h> 63 #include <vm/rm.h> 64 #include <sys/cyclic.h> 65 #include <sys/cpupart.h> 66 #include <sys/rctl.h> 67 #include <sys/task.h> 68 #include <sys/sdt.h> 69 #include <sys/ddi_timer.h> 70 71 /* 72 * for NTP support 73 */ 74 #include <sys/timex.h> 75 #include <sys/inttypes.h> 76 77 /* 78 * clock() is called straight from the clock cyclic; see clock_init(). 79 * 80 * Functions: 81 * reprime clock 82 * maintain date 83 * jab the scheduler 84 */ 85 86 extern kcondvar_t fsflush_cv; 87 extern sysinfo_t sysinfo; 88 extern vminfo_t vminfo; 89 extern int idleswtch; /* flag set while idle in pswtch() */ 90 91 /* 92 * high-precision avenrun values. These are needed to make the 93 * regular avenrun values accurate. 94 */ 95 static uint64_t hp_avenrun[3]; 96 int avenrun[3]; /* FSCALED average run queue lengths */ 97 time_t time; /* time in seconds since 1970 - for compatibility only */ 98 99 static struct loadavg_s loadavg; 100 /* 101 * Phase/frequency-lock loop (PLL/FLL) definitions 102 * 103 * The following variables are read and set by the ntp_adjtime() system 104 * call. 105 * 106 * time_state shows the state of the system clock, with values defined 107 * in the timex.h header file. 108 * 109 * time_status shows the status of the system clock, with bits defined 110 * in the timex.h header file. 111 * 112 * time_offset is used by the PLL/FLL to adjust the system time in small 113 * increments. 114 * 115 * time_constant determines the bandwidth or "stiffness" of the PLL. 116 * 117 * time_tolerance determines maximum frequency error or tolerance of the 118 * CPU clock oscillator and is a property of the architecture; however, 119 * in principle it could change as result of the presence of external 120 * discipline signals, for instance. 121 * 122 * time_precision is usually equal to the kernel tick variable; however, 123 * in cases where a precision clock counter or external clock is 124 * available, the resolution can be much less than this and depend on 125 * whether the external clock is working or not. 126 * 127 * time_maxerror is initialized by a ntp_adjtime() call and increased by 128 * the kernel once each second to reflect the maximum error bound 129 * growth. 130 * 131 * time_esterror is set and read by the ntp_adjtime() call, but 132 * otherwise not used by the kernel. 133 */ 134 int32_t time_state = TIME_OK; /* clock state */ 135 int32_t time_status = STA_UNSYNC; /* clock status bits */ 136 int32_t time_offset = 0; /* time offset (us) */ 137 int32_t time_constant = 0; /* pll time constant */ 138 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 139 int32_t time_precision = 1; /* clock precision (us) */ 140 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 141 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 142 143 /* 144 * The following variables establish the state of the PLL/FLL and the 145 * residual time and frequency offset of the local clock. The scale 146 * factors are defined in the timex.h header file. 147 * 148 * time_phase and time_freq are the phase increment and the frequency 149 * increment, respectively, of the kernel time variable. 150 * 151 * time_freq is set via ntp_adjtime() from a value stored in a file when 152 * the synchronization daemon is first started. Its value is retrieved 153 * via ntp_adjtime() and written to the file about once per hour by the 154 * daemon. 155 * 156 * time_adj is the adjustment added to the value of tick at each timer 157 * interrupt and is recomputed from time_phase and time_freq at each 158 * seconds rollover. 159 * 160 * time_reftime is the second's portion of the system time at the last 161 * call to ntp_adjtime(). It is used to adjust the time_freq variable 162 * and to increase the time_maxerror as the time since last update 163 * increases. 164 */ 165 int32_t time_phase = 0; /* phase offset (scaled us) */ 166 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 167 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 168 int32_t time_reftime = 0; /* time at last adjustment (s) */ 169 170 /* 171 * The scale factors of the following variables are defined in the 172 * timex.h header file. 173 * 174 * pps_time contains the time at each calibration interval, as read by 175 * microtime(). pps_count counts the seconds of the calibration 176 * interval, the duration of which is nominally pps_shift in powers of 177 * two. 178 * 179 * pps_offset is the time offset produced by the time median filter 180 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 181 * this filter. 182 * 183 * pps_freq is the frequency offset produced by the frequency median 184 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 185 * by this filter. 186 * 187 * pps_usec is latched from a high resolution counter or external clock 188 * at pps_time. Here we want the hardware counter contents only, not the 189 * contents plus the time_tv.usec as usual. 190 * 191 * pps_valid counts the number of seconds since the last PPS update. It 192 * is used as a watchdog timer to disable the PPS discipline should the 193 * PPS signal be lost. 194 * 195 * pps_glitch counts the number of seconds since the beginning of an 196 * offset burst more than tick/2 from current nominal offset. It is used 197 * mainly to suppress error bursts due to priority conflicts between the 198 * PPS interrupt and timer interrupt. 199 * 200 * pps_intcnt counts the calibration intervals for use in the interval- 201 * adaptation algorithm. It's just too complicated for words. 202 */ 203 struct timeval pps_time; /* kernel time at last interval */ 204 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 205 int32_t pps_offset = 0; /* pps time offset (us) */ 206 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 207 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 208 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 209 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 210 int32_t pps_usec = 0; /* microsec counter at last interval */ 211 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 212 int32_t pps_glitch = 0; /* pps signal glitch counter */ 213 int32_t pps_count = 0; /* calibration interval counter (s) */ 214 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 215 int32_t pps_intcnt = 0; /* intervals at current duration */ 216 217 /* 218 * PPS signal quality monitors 219 * 220 * pps_jitcnt counts the seconds that have been discarded because the 221 * jitter measured by the time median filter exceeds the limit MAXTIME 222 * (100 us). 223 * 224 * pps_calcnt counts the frequency calibration intervals, which are 225 * variable from 4 s to 256 s. 226 * 227 * pps_errcnt counts the calibration intervals which have been discarded 228 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 229 * calibration interval jitter exceeds two ticks. 230 * 231 * pps_stbcnt counts the calibration intervals that have been discarded 232 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 233 */ 234 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 235 int32_t pps_calcnt = 0; /* calibration intervals */ 236 int32_t pps_errcnt = 0; /* calibration errors */ 237 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 238 239 /* The following variables require no explicit locking */ 240 volatile clock_t lbolt; /* time in Hz since last boot */ 241 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 242 243 kcondvar_t lbolt_cv; 244 int one_sec = 1; /* turned on once every second */ 245 static int fsflushcnt; /* counter for t_fsflushr */ 246 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 247 int tod_needsync = 0; /* need to sync tod chip with software time */ 248 static int tod_broken = 0; /* clock chip doesn't work */ 249 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 250 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 251 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 252 cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 253 254 extern void clock_tick_schedule(int); 255 256 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 257 258 /* 259 * for tod fault detection 260 */ 261 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 262 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 263 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 264 #define TOD_FILTER_N 4 265 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 266 static int tod_faulted = TOD_NOFAULT; 267 static int tod_fault_reset_flag = 0; 268 269 /* patchable via /etc/system */ 270 int tod_validate_enable = 1; 271 272 /* 273 * On non-SPARC systems, TOD validation must be deferred until gethrtime 274 * returns non-zero values (after mach_clkinit's execution). 275 * On SPARC systems, it must be deferred until after hrtime_base 276 * and hres_last_tick are set (in the first invocation of hres_tick). 277 * Since in both cases the prerequisites occur before the invocation of 278 * tod_get() in clock(), the deferment is lifted there. 279 */ 280 static boolean_t tod_validate_deferred = B_TRUE; 281 282 /* 283 * tod_fault_table[] must be aligned with 284 * enum tod_fault_type in systm.h 285 */ 286 static char *tod_fault_table[] = { 287 "Reversed", /* TOD_REVERSED */ 288 "Stalled", /* TOD_STALLED */ 289 "Jumped", /* TOD_JUMPED */ 290 "Changed in Clock Rate", /* TOD_RATECHANGED */ 291 "Is Read-Only" /* TOD_RDONLY */ 292 /* 293 * no strings needed for TOD_NOFAULT 294 */ 295 }; 296 297 /* 298 * test hook for tod broken detection in tod_validate 299 */ 300 int tod_unit_test = 0; 301 time_t tod_test_injector; 302 303 #define CLOCK_ADJ_HIST_SIZE 4 304 305 static int adj_hist_entry; 306 307 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 308 309 static void calcloadavg(int, uint64_t *); 310 static int genloadavg(struct loadavg_s *); 311 static void loadavg_update(); 312 313 void (*cmm_clock_callout)() = NULL; 314 void (*cpucaps_clock_callout)() = NULL; 315 316 extern clock_t clock_tick_proc_max; 317 318 static void 319 clock(void) 320 { 321 kthread_t *t; 322 uint_t nrunnable; 323 uint_t w_io; 324 cpu_t *cp; 325 cpupart_t *cpupart; 326 extern void set_anoninfo(); 327 extern void set_freemem(); 328 void (*funcp)(); 329 int32_t ltemp; 330 int64_t lltemp; 331 int s; 332 int do_lgrp_load; 333 int i; 334 335 if (panicstr) 336 return; 337 338 set_anoninfo(); 339 /* 340 * Make sure that 'freemem' do not drift too far from the truth 341 */ 342 set_freemem(); 343 344 345 /* 346 * Before the section which is repeated is executed, we do 347 * the time delta processing which occurs every clock tick 348 * 349 * There is additional processing which happens every time 350 * the nanosecond counter rolls over which is described 351 * below - see the section which begins with : if (one_sec) 352 * 353 * This section marks the beginning of the precision-kernel 354 * code fragment. 355 * 356 * First, compute the phase adjustment. If the low-order bits 357 * (time_phase) of the update overflow, bump the higher order 358 * bits (time_update). 359 */ 360 time_phase += time_adj; 361 if (time_phase <= -FINEUSEC) { 362 ltemp = -time_phase / SCALE_PHASE; 363 time_phase += ltemp * SCALE_PHASE; 364 s = hr_clock_lock(); 365 timedelta -= ltemp * (NANOSEC/MICROSEC); 366 hr_clock_unlock(s); 367 } else if (time_phase >= FINEUSEC) { 368 ltemp = time_phase / SCALE_PHASE; 369 time_phase -= ltemp * SCALE_PHASE; 370 s = hr_clock_lock(); 371 timedelta += ltemp * (NANOSEC/MICROSEC); 372 hr_clock_unlock(s); 373 } 374 375 /* 376 * End of precision-kernel code fragment which is processed 377 * every timer interrupt. 378 * 379 * Continue with the interrupt processing as scheduled. 380 */ 381 /* 382 * Count the number of runnable threads and the number waiting 383 * for some form of I/O to complete -- gets added to 384 * sysinfo.waiting. To know the state of the system, must add 385 * wait counts from all CPUs. Also add up the per-partition 386 * statistics. 387 */ 388 w_io = 0; 389 nrunnable = 0; 390 391 /* 392 * keep track of when to update lgrp/part loads 393 */ 394 395 do_lgrp_load = 0; 396 if (lgrp_ticks++ >= hz / 10) { 397 lgrp_ticks = 0; 398 do_lgrp_load = 1; 399 } 400 401 if (one_sec) 402 loadavg_update(); 403 404 /* 405 * First count the threads waiting on kpreempt queues in each 406 * CPU partition. 407 */ 408 409 cpupart = cp_list_head; 410 do { 411 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 412 413 cpupart->cp_updates++; 414 nrunnable += cpupart_nrunnable; 415 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 416 if (one_sec) { 417 cpupart->cp_nrunning = 0; 418 cpupart->cp_nrunnable = cpupart_nrunnable; 419 } 420 } while ((cpupart = cpupart->cp_next) != cp_list_head); 421 422 423 /* Now count the per-CPU statistics. */ 424 cp = cpu_list; 425 do { 426 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 427 428 nrunnable += cpu_nrunnable; 429 cpupart = cp->cpu_part; 430 cpupart->cp_nrunnable_cum += cpu_nrunnable; 431 if (one_sec) { 432 cpupart->cp_nrunnable += cpu_nrunnable; 433 /* 434 * Update user, system, and idle cpu times. 435 */ 436 cpupart->cp_nrunning++; 437 /* 438 * w_io is used to update sysinfo.waiting during 439 * one_second processing below. Only gather w_io 440 * information when we walk the list of cpus if we're 441 * going to perform one_second processing. 442 */ 443 w_io += CPU_STATS(cp, sys.iowait); 444 } 445 446 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 447 int i, load, change; 448 hrtime_t intracct, intrused; 449 const hrtime_t maxnsec = 1000000000; 450 const int precision = 100; 451 452 /* 453 * Estimate interrupt load on this cpu each second. 454 * Computes cpu_intrload as %utilization (0-99). 455 */ 456 457 /* add up interrupt time from all micro states */ 458 for (intracct = 0, i = 0; i < NCMSTATES; i++) 459 intracct += cp->cpu_intracct[i]; 460 scalehrtime(&intracct); 461 462 /* compute nsec used in the past second */ 463 intrused = intracct - cp->cpu_intrlast; 464 cp->cpu_intrlast = intracct; 465 466 /* limit the value for safety (and the first pass) */ 467 if (intrused >= maxnsec) 468 intrused = maxnsec - 1; 469 470 /* calculate %time in interrupt */ 471 load = (precision * intrused) / maxnsec; 472 ASSERT(load >= 0 && load < precision); 473 change = cp->cpu_intrload - load; 474 475 /* jump to new max, or decay the old max */ 476 if (change < 0) 477 cp->cpu_intrload = load; 478 else if (change > 0) 479 cp->cpu_intrload -= (change + 3) / 4; 480 481 DTRACE_PROBE3(cpu_intrload, 482 cpu_t *, cp, 483 hrtime_t, intracct, 484 hrtime_t, intrused); 485 } 486 487 if (do_lgrp_load && 488 (cp->cpu_flags & CPU_EXISTS)) { 489 /* 490 * When updating the lgroup's load average, 491 * account for the thread running on the CPU. 492 * If the CPU is the current one, then we need 493 * to account for the underlying thread which 494 * got the clock interrupt not the thread that is 495 * handling the interrupt and caculating the load 496 * average 497 */ 498 t = cp->cpu_thread; 499 if (CPU == cp) 500 t = t->t_intr; 501 502 /* 503 * Account for the load average for this thread if 504 * it isn't the idle thread or it is on the interrupt 505 * stack and not the current CPU handling the clock 506 * interrupt 507 */ 508 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 509 CPU_ON_INTR(cp))) { 510 if (t->t_lpl == cp->cpu_lpl) { 511 /* local thread */ 512 cpu_nrunnable++; 513 } else { 514 /* 515 * This is a remote thread, charge it 516 * against its home lgroup. Note that 517 * we notice that a thread is remote 518 * only if it's currently executing. 519 * This is a reasonable approximation, 520 * since queued remote threads are rare. 521 * Note also that if we didn't charge 522 * it to its home lgroup, remote 523 * execution would often make a system 524 * appear balanced even though it was 525 * not, and thread placement/migration 526 * would often not be done correctly. 527 */ 528 lgrp_loadavg(t->t_lpl, 529 LGRP_LOADAVG_IN_THREAD_MAX, 0); 530 } 531 } 532 lgrp_loadavg(cp->cpu_lpl, 533 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 534 } 535 } while ((cp = cp->cpu_next) != cpu_list); 536 537 clock_tick_schedule(one_sec); 538 539 /* 540 * bump time in ticks 541 * 542 * We rely on there being only one clock thread and hence 543 * don't need a lock to protect lbolt. 544 */ 545 lbolt++; 546 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 547 548 /* 549 * Check for a callout that needs be called from the clock 550 * thread to support the membership protocol in a clustered 551 * system. Copy the function pointer so that we can reset 552 * this to NULL if needed. 553 */ 554 if ((funcp = cmm_clock_callout) != NULL) 555 (*funcp)(); 556 557 if ((funcp = cpucaps_clock_callout) != NULL) 558 (*funcp)(); 559 560 /* 561 * Wakeup the cageout thread waiters once per second. 562 */ 563 if (one_sec) 564 kcage_tick(); 565 566 if (one_sec) { 567 568 int drift, absdrift; 569 timestruc_t tod; 570 int s; 571 572 /* 573 * Beginning of precision-kernel code fragment executed 574 * every second. 575 * 576 * On rollover of the second the phase adjustment to be 577 * used for the next second is calculated. Also, the 578 * maximum error is increased by the tolerance. If the 579 * PPS frequency discipline code is present, the phase is 580 * increased to compensate for the CPU clock oscillator 581 * frequency error. 582 * 583 * On a 32-bit machine and given parameters in the timex.h 584 * header file, the maximum phase adjustment is +-512 ms 585 * and maximum frequency offset is (a tad less than) 586 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 587 */ 588 time_maxerror += time_tolerance / SCALE_USEC; 589 590 /* 591 * Leap second processing. If in leap-insert state at 592 * the end of the day, the system clock is set back one 593 * second; if in leap-delete state, the system clock is 594 * set ahead one second. The microtime() routine or 595 * external clock driver will insure that reported time 596 * is always monotonic. The ugly divides should be 597 * replaced. 598 */ 599 switch (time_state) { 600 601 case TIME_OK: 602 if (time_status & STA_INS) 603 time_state = TIME_INS; 604 else if (time_status & STA_DEL) 605 time_state = TIME_DEL; 606 break; 607 608 case TIME_INS: 609 if (hrestime.tv_sec % 86400 == 0) { 610 s = hr_clock_lock(); 611 hrestime.tv_sec--; 612 hr_clock_unlock(s); 613 time_state = TIME_OOP; 614 } 615 break; 616 617 case TIME_DEL: 618 if ((hrestime.tv_sec + 1) % 86400 == 0) { 619 s = hr_clock_lock(); 620 hrestime.tv_sec++; 621 hr_clock_unlock(s); 622 time_state = TIME_WAIT; 623 } 624 break; 625 626 case TIME_OOP: 627 time_state = TIME_WAIT; 628 break; 629 630 case TIME_WAIT: 631 if (!(time_status & (STA_INS | STA_DEL))) 632 time_state = TIME_OK; 633 default: 634 break; 635 } 636 637 /* 638 * Compute the phase adjustment for the next second. In 639 * PLL mode, the offset is reduced by a fixed factor 640 * times the time constant. In FLL mode the offset is 641 * used directly. In either mode, the maximum phase 642 * adjustment for each second is clamped so as to spread 643 * the adjustment over not more than the number of 644 * seconds between updates. 645 */ 646 if (time_offset == 0) 647 time_adj = 0; 648 else if (time_offset < 0) { 649 lltemp = -time_offset; 650 if (!(time_status & STA_FLL)) { 651 if ((1 << time_constant) >= SCALE_KG) 652 lltemp *= (1 << time_constant) / 653 SCALE_KG; 654 else 655 lltemp = (lltemp / SCALE_KG) >> 656 time_constant; 657 } 658 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 659 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 660 time_offset += lltemp; 661 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 662 } else { 663 lltemp = time_offset; 664 if (!(time_status & STA_FLL)) { 665 if ((1 << time_constant) >= SCALE_KG) 666 lltemp *= (1 << time_constant) / 667 SCALE_KG; 668 else 669 lltemp = (lltemp / SCALE_KG) >> 670 time_constant; 671 } 672 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 673 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 674 time_offset -= lltemp; 675 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 676 } 677 678 /* 679 * Compute the frequency estimate and additional phase 680 * adjustment due to frequency error for the next 681 * second. When the PPS signal is engaged, gnaw on the 682 * watchdog counter and update the frequency computed by 683 * the pll and the PPS signal. 684 */ 685 pps_valid++; 686 if (pps_valid == PPS_VALID) { 687 pps_jitter = MAXTIME; 688 pps_stabil = MAXFREQ; 689 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 690 STA_PPSWANDER | STA_PPSERROR); 691 } 692 lltemp = time_freq + pps_freq; 693 694 if (lltemp) 695 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 696 697 /* 698 * End of precision kernel-code fragment 699 * 700 * The section below should be modified if we are planning 701 * to use NTP for synchronization. 702 * 703 * Note: the clock synchronization code now assumes 704 * the following: 705 * - if dosynctodr is 1, then compute the drift between 706 * the tod chip and software time and adjust one or 707 * the other depending on the circumstances 708 * 709 * - if dosynctodr is 0, then the tod chip is independent 710 * of the software clock and should not be adjusted, 711 * but allowed to free run. this allows NTP to sync. 712 * hrestime without any interference from the tod chip. 713 */ 714 715 tod_validate_deferred = B_FALSE; 716 mutex_enter(&tod_lock); 717 tod = tod_get(); 718 drift = tod.tv_sec - hrestime.tv_sec; 719 absdrift = (drift >= 0) ? drift : -drift; 720 if (tod_needsync || absdrift > 1) { 721 int s; 722 if (absdrift > 2) { 723 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 724 s = hr_clock_lock(); 725 hrestime = tod; 726 membar_enter(); /* hrestime visible */ 727 timedelta = 0; 728 timechanged++; 729 tod_needsync = 0; 730 hr_clock_unlock(s); 731 callout_hrestime(); 732 733 } 734 } else { 735 if (tod_needsync || !dosynctodr) { 736 gethrestime(&tod); 737 tod_set(tod); 738 s = hr_clock_lock(); 739 if (timedelta == 0) 740 tod_needsync = 0; 741 hr_clock_unlock(s); 742 } else { 743 /* 744 * If the drift is 2 seconds on the 745 * money, then the TOD is adjusting 746 * the clock; record that. 747 */ 748 clock_adj_hist[adj_hist_entry++ % 749 CLOCK_ADJ_HIST_SIZE] = lbolt64; 750 s = hr_clock_lock(); 751 timedelta = (int64_t)drift*NANOSEC; 752 hr_clock_unlock(s); 753 } 754 } 755 } 756 one_sec = 0; 757 time = gethrestime_sec(); /* for crusty old kmem readers */ 758 mutex_exit(&tod_lock); 759 760 /* 761 * Some drivers still depend on this... XXX 762 */ 763 cv_broadcast(&lbolt_cv); 764 765 sysinfo.updates++; 766 vminfo.freemem += freemem; 767 { 768 pgcnt_t maxswap, resv, free; 769 pgcnt_t avail = 770 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 771 772 maxswap = k_anoninfo.ani_mem_resv + 773 k_anoninfo.ani_max +avail; 774 free = k_anoninfo.ani_free + avail; 775 resv = k_anoninfo.ani_phys_resv + 776 k_anoninfo.ani_mem_resv; 777 778 vminfo.swap_resv += resv; 779 /* number of reserved and allocated pages */ 780 #ifdef DEBUG 781 if (maxswap < free) 782 cmn_err(CE_WARN, "clock: maxswap < free"); 783 if (maxswap < resv) 784 cmn_err(CE_WARN, "clock: maxswap < resv"); 785 #endif 786 vminfo.swap_alloc += maxswap - free; 787 vminfo.swap_avail += maxswap - resv; 788 vminfo.swap_free += free; 789 } 790 if (nrunnable) { 791 sysinfo.runque += nrunnable; 792 sysinfo.runocc++; 793 } 794 if (nswapped) { 795 sysinfo.swpque += nswapped; 796 sysinfo.swpocc++; 797 } 798 sysinfo.waiting += w_io; 799 800 /* 801 * Wake up fsflush to write out DELWRI 802 * buffers, dirty pages and other cached 803 * administrative data, e.g. inodes. 804 */ 805 if (--fsflushcnt <= 0) { 806 fsflushcnt = tune.t_fsflushr; 807 cv_signal(&fsflush_cv); 808 } 809 810 vmmeter(); 811 calcloadavg(genloadavg(&loadavg), hp_avenrun); 812 for (i = 0; i < 3; i++) 813 /* 814 * At the moment avenrun[] can only hold 31 815 * bits of load average as it is a signed 816 * int in the API. We need to ensure that 817 * hp_avenrun[i] >> (16 - FSHIFT) will not be 818 * too large. If it is, we put the largest value 819 * that we can use into avenrun[i]. This is 820 * kludgey, but about all we can do until we 821 * avenrun[] is declared as an array of uint64[] 822 */ 823 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 824 avenrun[i] = (int32_t)(hp_avenrun[i] >> 825 (16 - FSHIFT)); 826 else 827 avenrun[i] = 0x7fffffff; 828 829 cpupart = cp_list_head; 830 do { 831 calcloadavg(genloadavg(&cpupart->cp_loadavg), 832 cpupart->cp_hp_avenrun); 833 } while ((cpupart = cpupart->cp_next) != cp_list_head); 834 835 /* 836 * Wake up the swapper thread if necessary. 837 */ 838 if (runin || 839 (runout && (avefree < desfree || wake_sched_sec))) { 840 t = &t0; 841 thread_lock(t); 842 if (t->t_state == TS_STOPPED) { 843 runin = runout = 0; 844 wake_sched_sec = 0; 845 t->t_whystop = 0; 846 t->t_whatstop = 0; 847 t->t_schedflag &= ~TS_ALLSTART; 848 THREAD_TRANSITION(t); 849 setfrontdq(t); 850 } 851 thread_unlock(t); 852 } 853 } 854 855 /* 856 * Wake up the swapper if any high priority swapped-out threads 857 * became runable during the last tick. 858 */ 859 if (wake_sched) { 860 t = &t0; 861 thread_lock(t); 862 if (t->t_state == TS_STOPPED) { 863 runin = runout = 0; 864 wake_sched = 0; 865 t->t_whystop = 0; 866 t->t_whatstop = 0; 867 t->t_schedflag &= ~TS_ALLSTART; 868 THREAD_TRANSITION(t); 869 setfrontdq(t); 870 } 871 thread_unlock(t); 872 } 873 } 874 875 void 876 clock_init(void) 877 { 878 cyc_handler_t hdlr; 879 cyc_time_t when; 880 881 hdlr.cyh_func = (cyc_func_t)clock; 882 hdlr.cyh_level = CY_LOCK_LEVEL; 883 hdlr.cyh_arg = NULL; 884 885 when.cyt_when = 0; 886 when.cyt_interval = nsec_per_tick; 887 888 mutex_enter(&cpu_lock); 889 clock_cyclic = cyclic_add(&hdlr, &when); 890 mutex_exit(&cpu_lock); 891 892 /* 893 * cyclic_timer is dedicated to the ddi interface, which 894 * uses the same clock resolution as the system one. 895 */ 896 hdlr.cyh_func = (cyc_func_t)cyclic_timer; 897 hdlr.cyh_level = CY_LOCK_LEVEL; 898 hdlr.cyh_arg = NULL; 899 900 mutex_enter(&cpu_lock); 901 ddi_timer_cyclic = cyclic_add(&hdlr, &when); 902 mutex_exit(&cpu_lock); 903 } 904 905 /* 906 * Called before calcloadavg to get 10-sec moving loadavg together 907 */ 908 909 static int 910 genloadavg(struct loadavg_s *avgs) 911 { 912 int avg; 913 int spos; /* starting position */ 914 int cpos; /* moving current position */ 915 int i; 916 int slen; 917 hrtime_t hr_avg; 918 919 /* 10-second snapshot, calculate first positon */ 920 if (avgs->lg_len == 0) { 921 return (0); 922 } 923 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 924 925 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 926 S_LOADAVG_SZ + (avgs->lg_cur - 1); 927 for (i = hr_avg = 0; i < slen; i++) { 928 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 929 hr_avg += avgs->lg_loads[cpos]; 930 } 931 932 hr_avg = hr_avg / slen; 933 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 934 935 return (avg); 936 } 937 938 /* 939 * Run every second from clock () to update the loadavg count available to the 940 * system and cpu-partitions. 941 * 942 * This works by sampling the previous usr, sys, wait time elapsed, 943 * computing a delta, and adding that delta to the elapsed usr, sys, 944 * wait increase. 945 */ 946 947 static void 948 loadavg_update() 949 { 950 cpu_t *cp; 951 cpupart_t *cpupart; 952 hrtime_t cpu_total; 953 int prev; 954 955 cp = cpu_list; 956 loadavg.lg_total = 0; 957 958 /* 959 * first pass totals up per-cpu statistics for system and cpu 960 * partitions 961 */ 962 963 do { 964 struct loadavg_s *lavg; 965 966 lavg = &cp->cpu_loadavg; 967 968 cpu_total = cp->cpu_acct[CMS_USER] + 969 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 970 /* compute delta against last total */ 971 scalehrtime(&cpu_total); 972 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 973 S_LOADAVG_SZ + (lavg->lg_cur - 1); 974 if (lavg->lg_loads[prev] <= 0) { 975 lavg->lg_loads[lavg->lg_cur] = cpu_total; 976 cpu_total = 0; 977 } else { 978 lavg->lg_loads[lavg->lg_cur] = cpu_total; 979 cpu_total = cpu_total - lavg->lg_loads[prev]; 980 if (cpu_total < 0) 981 cpu_total = 0; 982 } 983 984 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 985 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 986 lavg->lg_len + 1 : S_LOADAVG_SZ; 987 988 loadavg.lg_total += cpu_total; 989 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 990 991 } while ((cp = cp->cpu_next) != cpu_list); 992 993 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 994 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 995 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 996 loadavg.lg_len + 1 : S_LOADAVG_SZ; 997 /* 998 * Second pass updates counts 999 */ 1000 cpupart = cp_list_head; 1001 1002 do { 1003 struct loadavg_s *lavg; 1004 1005 lavg = &cpupart->cp_loadavg; 1006 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1007 lavg->lg_total = 0; 1008 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1009 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1010 lavg->lg_len + 1 : S_LOADAVG_SZ; 1011 1012 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1013 1014 } 1015 1016 /* 1017 * clock_update() - local clock update 1018 * 1019 * This routine is called by ntp_adjtime() to update the local clock 1020 * phase and frequency. The implementation is of an 1021 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1022 * routine computes new time and frequency offset estimates for each 1023 * call. The PPS signal itself determines the new time offset, 1024 * instead of the calling argument. Presumably, calls to 1025 * ntp_adjtime() occur only when the caller believes the local clock 1026 * is valid within some bound (+-128 ms with NTP). If the caller's 1027 * time is far different than the PPS time, an argument will ensue, 1028 * and it's not clear who will lose. 1029 * 1030 * For uncompensated quartz crystal oscillatores and nominal update 1031 * intervals less than 1024 s, operation should be in phase-lock mode 1032 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1033 * intervals greater than this, operation should be in frequency-lock 1034 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1035 * 1036 * Note: mutex(&tod_lock) is in effect. 1037 */ 1038 void 1039 clock_update(int offset) 1040 { 1041 int ltemp, mtemp, s; 1042 1043 ASSERT(MUTEX_HELD(&tod_lock)); 1044 1045 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1046 return; 1047 ltemp = offset; 1048 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1049 ltemp = pps_offset; 1050 1051 /* 1052 * Scale the phase adjustment and clamp to the operating range. 1053 */ 1054 if (ltemp > MAXPHASE) 1055 time_offset = MAXPHASE * SCALE_UPDATE; 1056 else if (ltemp < -MAXPHASE) 1057 time_offset = -(MAXPHASE * SCALE_UPDATE); 1058 else 1059 time_offset = ltemp * SCALE_UPDATE; 1060 1061 /* 1062 * Select whether the frequency is to be controlled and in which 1063 * mode (PLL or FLL). Clamp to the operating range. Ugly 1064 * multiply/divide should be replaced someday. 1065 */ 1066 if (time_status & STA_FREQHOLD || time_reftime == 0) 1067 time_reftime = hrestime.tv_sec; 1068 1069 mtemp = hrestime.tv_sec - time_reftime; 1070 time_reftime = hrestime.tv_sec; 1071 1072 if (time_status & STA_FLL) { 1073 if (mtemp >= MINSEC) { 1074 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1075 SCALE_UPDATE)); 1076 if (ltemp) 1077 time_freq += ltemp / SCALE_KH; 1078 } 1079 } else { 1080 if (mtemp < MAXSEC) { 1081 ltemp *= mtemp; 1082 if (ltemp) 1083 time_freq += (int)(((int64_t)ltemp * 1084 SCALE_USEC) / SCALE_KF) 1085 / (1 << (time_constant * 2)); 1086 } 1087 } 1088 if (time_freq > time_tolerance) 1089 time_freq = time_tolerance; 1090 else if (time_freq < -time_tolerance) 1091 time_freq = -time_tolerance; 1092 1093 s = hr_clock_lock(); 1094 tod_needsync = 1; 1095 hr_clock_unlock(s); 1096 } 1097 1098 /* 1099 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1100 * 1101 * This routine is called at each PPS interrupt in order to discipline 1102 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1103 * and leaves it in a handy spot for the clock() routine. It 1104 * integrates successive PPS phase differences and calculates the 1105 * frequency offset. This is used in clock() to discipline the CPU 1106 * clock oscillator so that intrinsic frequency error is cancelled out. 1107 * The code requires the caller to capture the time and hardware counter 1108 * value at the on-time PPS signal transition. 1109 * 1110 * Note that, on some Unix systems, this routine runs at an interrupt 1111 * priority level higher than the timer interrupt routine clock(). 1112 * Therefore, the variables used are distinct from the clock() 1113 * variables, except for certain exceptions: The PPS frequency pps_freq 1114 * and phase pps_offset variables are determined by this routine and 1115 * updated atomically. The time_tolerance variable can be considered a 1116 * constant, since it is infrequently changed, and then only when the 1117 * PPS signal is disabled. The watchdog counter pps_valid is updated 1118 * once per second by clock() and is atomically cleared in this 1119 * routine. 1120 * 1121 * tvp is the time of the last tick; usec is a microsecond count since the 1122 * last tick. 1123 * 1124 * Note: In Solaris systems, the tick value is actually given by 1125 * usec_per_tick. This is called from the serial driver cdintr(), 1126 * or equivalent, at a high PIL. Because the kernel keeps a 1127 * highresolution time, the following code can accept either 1128 * the traditional argument pair, or the current highres timestamp 1129 * in tvp and zero in usec. 1130 */ 1131 void 1132 ddi_hardpps(struct timeval *tvp, int usec) 1133 { 1134 int u_usec, v_usec, bigtick; 1135 time_t cal_sec; 1136 int cal_usec; 1137 1138 /* 1139 * An occasional glitch can be produced when the PPS interrupt 1140 * occurs in the clock() routine before the time variable is 1141 * updated. Here the offset is discarded when the difference 1142 * between it and the last one is greater than tick/2, but not 1143 * if the interval since the first discard exceeds 30 s. 1144 */ 1145 time_status |= STA_PPSSIGNAL; 1146 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1147 pps_valid = 0; 1148 u_usec = -tvp->tv_usec; 1149 if (u_usec < -(MICROSEC/2)) 1150 u_usec += MICROSEC; 1151 v_usec = pps_offset - u_usec; 1152 if (v_usec < 0) 1153 v_usec = -v_usec; 1154 if (v_usec > (usec_per_tick >> 1)) { 1155 if (pps_glitch > MAXGLITCH) { 1156 pps_glitch = 0; 1157 pps_tf[2] = u_usec; 1158 pps_tf[1] = u_usec; 1159 } else { 1160 pps_glitch++; 1161 u_usec = pps_offset; 1162 } 1163 } else 1164 pps_glitch = 0; 1165 1166 /* 1167 * A three-stage median filter is used to help deglitch the pps 1168 * time. The median sample becomes the time offset estimate; the 1169 * difference between the other two samples becomes the time 1170 * dispersion (jitter) estimate. 1171 */ 1172 pps_tf[2] = pps_tf[1]; 1173 pps_tf[1] = pps_tf[0]; 1174 pps_tf[0] = u_usec; 1175 if (pps_tf[0] > pps_tf[1]) { 1176 if (pps_tf[1] > pps_tf[2]) { 1177 pps_offset = pps_tf[1]; /* 0 1 2 */ 1178 v_usec = pps_tf[0] - pps_tf[2]; 1179 } else if (pps_tf[2] > pps_tf[0]) { 1180 pps_offset = pps_tf[0]; /* 2 0 1 */ 1181 v_usec = pps_tf[2] - pps_tf[1]; 1182 } else { 1183 pps_offset = pps_tf[2]; /* 0 2 1 */ 1184 v_usec = pps_tf[0] - pps_tf[1]; 1185 } 1186 } else { 1187 if (pps_tf[1] < pps_tf[2]) { 1188 pps_offset = pps_tf[1]; /* 2 1 0 */ 1189 v_usec = pps_tf[2] - pps_tf[0]; 1190 } else if (pps_tf[2] < pps_tf[0]) { 1191 pps_offset = pps_tf[0]; /* 1 0 2 */ 1192 v_usec = pps_tf[1] - pps_tf[2]; 1193 } else { 1194 pps_offset = pps_tf[2]; /* 1 2 0 */ 1195 v_usec = pps_tf[1] - pps_tf[0]; 1196 } 1197 } 1198 if (v_usec > MAXTIME) 1199 pps_jitcnt++; 1200 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1201 pps_jitter += v_usec / (1 << PPS_AVG); 1202 if (pps_jitter > (MAXTIME >> 1)) 1203 time_status |= STA_PPSJITTER; 1204 1205 /* 1206 * During the calibration interval adjust the starting time when 1207 * the tick overflows. At the end of the interval compute the 1208 * duration of the interval and the difference of the hardware 1209 * counters at the beginning and end of the interval. This code 1210 * is deliciously complicated by the fact valid differences may 1211 * exceed the value of tick when using long calibration 1212 * intervals and small ticks. Note that the counter can be 1213 * greater than tick if caught at just the wrong instant, but 1214 * the values returned and used here are correct. 1215 */ 1216 bigtick = (int)usec_per_tick * SCALE_USEC; 1217 pps_usec -= pps_freq; 1218 if (pps_usec >= bigtick) 1219 pps_usec -= bigtick; 1220 if (pps_usec < 0) 1221 pps_usec += bigtick; 1222 pps_time.tv_sec++; 1223 pps_count++; 1224 if (pps_count < (1 << pps_shift)) 1225 return; 1226 pps_count = 0; 1227 pps_calcnt++; 1228 u_usec = usec * SCALE_USEC; 1229 v_usec = pps_usec - u_usec; 1230 if (v_usec >= bigtick >> 1) 1231 v_usec -= bigtick; 1232 if (v_usec < -(bigtick >> 1)) 1233 v_usec += bigtick; 1234 if (v_usec < 0) 1235 v_usec = -(-v_usec >> pps_shift); 1236 else 1237 v_usec = v_usec >> pps_shift; 1238 pps_usec = u_usec; 1239 cal_sec = tvp->tv_sec; 1240 cal_usec = tvp->tv_usec; 1241 cal_sec -= pps_time.tv_sec; 1242 cal_usec -= pps_time.tv_usec; 1243 if (cal_usec < 0) { 1244 cal_usec += MICROSEC; 1245 cal_sec--; 1246 } 1247 pps_time = *tvp; 1248 1249 /* 1250 * Check for lost interrupts, noise, excessive jitter and 1251 * excessive frequency error. The number of timer ticks during 1252 * the interval may vary +-1 tick. Add to this a margin of one 1253 * tick for the PPS signal jitter and maximum frequency 1254 * deviation. If the limits are exceeded, the calibration 1255 * interval is reset to the minimum and we start over. 1256 */ 1257 u_usec = (int)usec_per_tick << 1; 1258 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1259 (cal_sec == 0 && cal_usec < u_usec)) || 1260 v_usec > time_tolerance || v_usec < -time_tolerance) { 1261 pps_errcnt++; 1262 pps_shift = PPS_SHIFT; 1263 pps_intcnt = 0; 1264 time_status |= STA_PPSERROR; 1265 return; 1266 } 1267 1268 /* 1269 * A three-stage median filter is used to help deglitch the pps 1270 * frequency. The median sample becomes the frequency offset 1271 * estimate; the difference between the other two samples 1272 * becomes the frequency dispersion (stability) estimate. 1273 */ 1274 pps_ff[2] = pps_ff[1]; 1275 pps_ff[1] = pps_ff[0]; 1276 pps_ff[0] = v_usec; 1277 if (pps_ff[0] > pps_ff[1]) { 1278 if (pps_ff[1] > pps_ff[2]) { 1279 u_usec = pps_ff[1]; /* 0 1 2 */ 1280 v_usec = pps_ff[0] - pps_ff[2]; 1281 } else if (pps_ff[2] > pps_ff[0]) { 1282 u_usec = pps_ff[0]; /* 2 0 1 */ 1283 v_usec = pps_ff[2] - pps_ff[1]; 1284 } else { 1285 u_usec = pps_ff[2]; /* 0 2 1 */ 1286 v_usec = pps_ff[0] - pps_ff[1]; 1287 } 1288 } else { 1289 if (pps_ff[1] < pps_ff[2]) { 1290 u_usec = pps_ff[1]; /* 2 1 0 */ 1291 v_usec = pps_ff[2] - pps_ff[0]; 1292 } else if (pps_ff[2] < pps_ff[0]) { 1293 u_usec = pps_ff[0]; /* 1 0 2 */ 1294 v_usec = pps_ff[1] - pps_ff[2]; 1295 } else { 1296 u_usec = pps_ff[2]; /* 1 2 0 */ 1297 v_usec = pps_ff[1] - pps_ff[0]; 1298 } 1299 } 1300 1301 /* 1302 * Here the frequency dispersion (stability) is updated. If it 1303 * is less than one-fourth the maximum (MAXFREQ), the frequency 1304 * offset is updated as well, but clamped to the tolerance. It 1305 * will be processed later by the clock() routine. 1306 */ 1307 v_usec = (v_usec >> 1) - pps_stabil; 1308 if (v_usec < 0) 1309 pps_stabil -= -v_usec >> PPS_AVG; 1310 else 1311 pps_stabil += v_usec >> PPS_AVG; 1312 if (pps_stabil > MAXFREQ >> 2) { 1313 pps_stbcnt++; 1314 time_status |= STA_PPSWANDER; 1315 return; 1316 } 1317 if (time_status & STA_PPSFREQ) { 1318 if (u_usec < 0) { 1319 pps_freq -= -u_usec >> PPS_AVG; 1320 if (pps_freq < -time_tolerance) 1321 pps_freq = -time_tolerance; 1322 u_usec = -u_usec; 1323 } else { 1324 pps_freq += u_usec >> PPS_AVG; 1325 if (pps_freq > time_tolerance) 1326 pps_freq = time_tolerance; 1327 } 1328 } 1329 1330 /* 1331 * Here the calibration interval is adjusted. If the maximum 1332 * time difference is greater than tick / 4, reduce the interval 1333 * by half. If this is not the case for four consecutive 1334 * intervals, double the interval. 1335 */ 1336 if (u_usec << pps_shift > bigtick >> 2) { 1337 pps_intcnt = 0; 1338 if (pps_shift > PPS_SHIFT) 1339 pps_shift--; 1340 } else if (pps_intcnt >= 4) { 1341 pps_intcnt = 0; 1342 if (pps_shift < PPS_SHIFTMAX) 1343 pps_shift++; 1344 } else 1345 pps_intcnt++; 1346 1347 /* 1348 * If recovering from kmdb, then make sure the tod chip gets resynced. 1349 * If we took an early exit above, then we don't yet have a stable 1350 * calibration signal to lock onto, so don't mark the tod for sync 1351 * until we get all the way here. 1352 */ 1353 { 1354 int s = hr_clock_lock(); 1355 1356 tod_needsync = 1; 1357 hr_clock_unlock(s); 1358 } 1359 } 1360 1361 /* 1362 * Handle clock tick processing for a thread. 1363 * Check for timer action, enforce CPU rlimit, do profiling etc. 1364 */ 1365 void 1366 clock_tick(kthread_t *t, int pending) 1367 { 1368 struct proc *pp; 1369 klwp_id_t lwp; 1370 struct as *as; 1371 clock_t ticks; 1372 int poke = 0; /* notify another CPU */ 1373 int user_mode; 1374 size_t rss; 1375 int i, total_usec, usec; 1376 rctl_qty_t secs; 1377 1378 ASSERT(pending > 0); 1379 1380 /* Must be operating on a lwp/thread */ 1381 if ((lwp = ttolwp(t)) == NULL) { 1382 panic("clock_tick: no lwp"); 1383 /*NOTREACHED*/ 1384 } 1385 1386 for (i = 0; i < pending; i++) { 1387 CL_TICK(t); /* Class specific tick processing */ 1388 DTRACE_SCHED1(tick, kthread_t *, t); 1389 } 1390 1391 pp = ttoproc(t); 1392 1393 /* pp->p_lock makes sure that the thread does not exit */ 1394 ASSERT(MUTEX_HELD(&pp->p_lock)); 1395 1396 user_mode = (lwp->lwp_state == LWP_USER); 1397 1398 ticks = (pp->p_utime + pp->p_stime) % hz; 1399 /* 1400 * Update process times. Should use high res clock and state 1401 * changes instead of statistical sampling method. XXX 1402 */ 1403 if (user_mode) { 1404 pp->p_utime += pending; 1405 } else { 1406 pp->p_stime += pending; 1407 } 1408 1409 pp->p_ttime += pending; 1410 as = pp->p_as; 1411 1412 /* 1413 * Update user profiling statistics. Get the pc from the 1414 * lwp when the AST happens. 1415 */ 1416 if (pp->p_prof.pr_scale) { 1417 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1418 if (user_mode) { 1419 poke = 1; 1420 aston(t); 1421 } 1422 } 1423 1424 /* 1425 * If CPU was in user state, process lwp-virtual time 1426 * interval timer. The value passed to itimerdecr() has to be 1427 * in microseconds and has to be less than one second. Hence 1428 * this loop. 1429 */ 1430 total_usec = usec_per_tick * pending; 1431 while (total_usec > 0) { 1432 usec = MIN(total_usec, (MICROSEC - 1)); 1433 if (user_mode && 1434 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1435 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1436 poke = 1; 1437 sigtoproc(pp, t, SIGVTALRM); 1438 } 1439 total_usec -= usec; 1440 } 1441 1442 /* 1443 * If CPU was in user state, process lwp-profile 1444 * interval timer. 1445 */ 1446 total_usec = usec_per_tick * pending; 1447 while (total_usec > 0) { 1448 usec = MIN(total_usec, (MICROSEC - 1)); 1449 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1450 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1451 poke = 1; 1452 sigtoproc(pp, t, SIGPROF); 1453 } 1454 total_usec -= usec; 1455 } 1456 1457 /* 1458 * Enforce CPU resource controls: 1459 * (a) process.max-cpu-time resource control 1460 * 1461 * Perform the check only if we have accumulated more a second. 1462 */ 1463 if ((ticks + pending) >= hz) { 1464 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1465 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1466 } 1467 1468 /* 1469 * (b) task.max-cpu-time resource control 1470 * 1471 * If we have accumulated enough ticks, increment the task CPU 1472 * time usage and test for the resource limit. This minimizes the 1473 * number of calls to the rct_test(). The task CPU time mutex 1474 * is highly contentious as many processes can be sharing a task. 1475 */ 1476 if (pp->p_ttime >= clock_tick_proc_max) { 1477 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1478 pp->p_ttime = 0; 1479 if (secs) { 1480 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1481 pp, secs, RCA_UNSAFE_SIGINFO); 1482 } 1483 } 1484 1485 /* 1486 * Update memory usage for the currently running process. 1487 */ 1488 rss = rm_asrss(as); 1489 PTOU(pp)->u_mem += rss; 1490 if (rss > PTOU(pp)->u_mem_max) 1491 PTOU(pp)->u_mem_max = rss; 1492 1493 /* 1494 * Notify the CPU the thread is running on. 1495 */ 1496 if (poke && t->t_cpu != CPU) 1497 poke_cpu(t->t_cpu->cpu_id); 1498 } 1499 1500 void 1501 profil_tick(uintptr_t upc) 1502 { 1503 int ticks; 1504 proc_t *p = ttoproc(curthread); 1505 klwp_t *lwp = ttolwp(curthread); 1506 struct prof *pr = &p->p_prof; 1507 1508 do { 1509 ticks = lwp->lwp_oweupc; 1510 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1511 1512 mutex_enter(&p->p_pflock); 1513 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1514 /* 1515 * Old-style profiling 1516 */ 1517 uint16_t *slot = pr->pr_base; 1518 uint16_t old, new; 1519 if (pr->pr_scale != 2) { 1520 uintptr_t delta = upc - pr->pr_off; 1521 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1522 (((delta & 0xffff) * pr->pr_scale) >> 16); 1523 if (byteoff >= (uintptr_t)pr->pr_size) { 1524 mutex_exit(&p->p_pflock); 1525 return; 1526 } 1527 slot += byteoff / sizeof (uint16_t); 1528 } 1529 if (fuword16(slot, &old) < 0 || 1530 (new = old + ticks) > SHRT_MAX || 1531 suword16(slot, new) < 0) { 1532 pr->pr_scale = 0; 1533 } 1534 } else if (pr->pr_scale == 1) { 1535 /* 1536 * PC Sampling 1537 */ 1538 model_t model = lwp_getdatamodel(lwp); 1539 int result; 1540 #ifdef __lint 1541 model = model; 1542 #endif 1543 while (ticks-- > 0) { 1544 if (pr->pr_samples == pr->pr_size) { 1545 /* buffer full, turn off sampling */ 1546 pr->pr_scale = 0; 1547 break; 1548 } 1549 switch (SIZEOF_PTR(model)) { 1550 case sizeof (uint32_t): 1551 result = suword32(pr->pr_base, (uint32_t)upc); 1552 break; 1553 #ifdef _LP64 1554 case sizeof (uint64_t): 1555 result = suword64(pr->pr_base, (uint64_t)upc); 1556 break; 1557 #endif 1558 default: 1559 cmn_err(CE_WARN, "profil_tick: unexpected " 1560 "data model"); 1561 result = -1; 1562 break; 1563 } 1564 if (result != 0) { 1565 pr->pr_scale = 0; 1566 break; 1567 } 1568 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1569 pr->pr_samples++; 1570 } 1571 } 1572 mutex_exit(&p->p_pflock); 1573 } 1574 1575 static void 1576 delay_wakeup(void *arg) 1577 { 1578 kthread_t *t = arg; 1579 1580 mutex_enter(&t->t_delay_lock); 1581 cv_signal(&t->t_delay_cv); 1582 mutex_exit(&t->t_delay_lock); 1583 } 1584 1585 void 1586 delay(clock_t ticks) 1587 { 1588 kthread_t *t = curthread; 1589 clock_t deadline = lbolt + ticks; 1590 clock_t timeleft; 1591 timeout_id_t id; 1592 extern hrtime_t volatile devinfo_freeze; 1593 1594 if ((panicstr || devinfo_freeze) && ticks > 0) { 1595 /* 1596 * Timeouts aren't running, so all we can do is spin. 1597 */ 1598 drv_usecwait(TICK_TO_USEC(ticks)); 1599 return; 1600 } 1601 1602 while ((timeleft = deadline - lbolt) > 0) { 1603 mutex_enter(&t->t_delay_lock); 1604 id = timeout(delay_wakeup, t, timeleft); 1605 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1606 mutex_exit(&t->t_delay_lock); 1607 (void) untimeout(id); 1608 } 1609 } 1610 1611 /* 1612 * Like delay, but interruptible by a signal. 1613 */ 1614 int 1615 delay_sig(clock_t ticks) 1616 { 1617 clock_t deadline = lbolt + ticks; 1618 clock_t rc; 1619 1620 mutex_enter(&curthread->t_delay_lock); 1621 do { 1622 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1623 &curthread->t_delay_lock, deadline); 1624 } while (rc > 0); 1625 mutex_exit(&curthread->t_delay_lock); 1626 if (rc == 0) 1627 return (EINTR); 1628 return (0); 1629 } 1630 1631 #define SECONDS_PER_DAY 86400 1632 1633 /* 1634 * Initialize the system time based on the TOD chip. approx is used as 1635 * an approximation of time (e.g. from the filesystem) in the event that 1636 * the TOD chip has been cleared or is unresponsive. An approx of -1 1637 * means the filesystem doesn't keep time. 1638 */ 1639 void 1640 clkset(time_t approx) 1641 { 1642 timestruc_t ts; 1643 int spl; 1644 int set_clock = 0; 1645 1646 mutex_enter(&tod_lock); 1647 ts = tod_get(); 1648 1649 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1650 /* 1651 * If the TOD chip is reporting some time after 1971, 1652 * then it probably didn't lose power or become otherwise 1653 * cleared in the recent past; check to assure that 1654 * the time coming from the filesystem isn't in the future 1655 * according to the TOD chip. 1656 */ 1657 if (approx != -1 && approx > ts.tv_sec) { 1658 cmn_err(CE_WARN, "Last shutdown is later " 1659 "than time on time-of-day chip; check date."); 1660 } 1661 } else { 1662 /* 1663 * If the TOD chip isn't giving correct time, set it to the 1664 * greater of i) approx and ii) 1987. That way if approx 1665 * is negative or is earlier than 1987, we set the clock 1666 * back to a time when Oliver North, ALF and Dire Straits 1667 * were all on the collective brain: 1987. 1668 */ 1669 timestruc_t tmp; 1670 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1671 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1672 ts.tv_nsec = 0; 1673 1674 /* 1675 * Attempt to write the new time to the TOD chip. Set spl high 1676 * to avoid getting preempted between the tod_set and tod_get. 1677 */ 1678 spl = splhi(); 1679 tod_set(ts); 1680 tmp = tod_get(); 1681 splx(spl); 1682 1683 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1684 tod_broken = 1; 1685 dosynctodr = 0; 1686 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1687 } else { 1688 cmn_err(CE_WARN, "Time-of-day chip had " 1689 "incorrect date; check and reset."); 1690 } 1691 set_clock = 1; 1692 } 1693 1694 if (!boot_time) { 1695 boot_time = ts.tv_sec; 1696 set_clock = 1; 1697 } 1698 1699 if (set_clock) 1700 set_hrestime(&ts); 1701 1702 mutex_exit(&tod_lock); 1703 } 1704 1705 int timechanged; /* for testing if the system time has been reset */ 1706 1707 void 1708 set_hrestime(timestruc_t *ts) 1709 { 1710 int spl = hr_clock_lock(); 1711 hrestime = *ts; 1712 membar_enter(); /* hrestime must be visible before timechanged++ */ 1713 timedelta = 0; 1714 timechanged++; 1715 hr_clock_unlock(spl); 1716 callout_hrestime(); 1717 } 1718 1719 static uint_t deadman_seconds; 1720 static uint32_t deadman_panics; 1721 static int deadman_enabled = 0; 1722 static int deadman_panic_timers = 1; 1723 1724 static void 1725 deadman(void) 1726 { 1727 if (panicstr) { 1728 /* 1729 * During panic, other CPUs besides the panic 1730 * master continue to handle cyclics and some other 1731 * interrupts. The code below is intended to be 1732 * single threaded, so any CPU other than the master 1733 * must keep out. 1734 */ 1735 if (CPU->cpu_id != panic_cpu.cpu_id) 1736 return; 1737 1738 /* 1739 * If we're panicking, the deadman cyclic continues to increase 1740 * lbolt in case the dump device driver relies on this for 1741 * timeouts. Note that we rely on deadman() being invoked once 1742 * per second, and credit lbolt and lbolt64 with hz ticks each. 1743 */ 1744 lbolt += hz; 1745 lbolt64 += hz; 1746 1747 if (!deadman_panic_timers) 1748 return; /* allow all timers to be manually disabled */ 1749 1750 /* 1751 * If we are generating a crash dump or syncing filesystems and 1752 * the corresponding timer is set, decrement it and re-enter 1753 * the panic code to abort it and advance to the next state. 1754 * The panic states and triggers are explained in panic.c. 1755 */ 1756 if (panic_dump) { 1757 if (dump_timeleft && (--dump_timeleft == 0)) { 1758 panic("panic dump timeout"); 1759 /*NOTREACHED*/ 1760 } 1761 } else if (panic_sync) { 1762 if (sync_timeleft && (--sync_timeleft == 0)) { 1763 panic("panic sync timeout"); 1764 /*NOTREACHED*/ 1765 } 1766 } 1767 1768 return; 1769 } 1770 1771 if (lbolt != CPU->cpu_deadman_lbolt) { 1772 CPU->cpu_deadman_lbolt = lbolt; 1773 CPU->cpu_deadman_countdown = deadman_seconds; 1774 return; 1775 } 1776 1777 if (--CPU->cpu_deadman_countdown > 0) 1778 return; 1779 1780 /* 1781 * Regardless of whether or not we actually bring the system down, 1782 * bump the deadman_panics variable. 1783 * 1784 * N.B. deadman_panics is incremented once for each CPU that 1785 * passes through here. It's expected that all the CPUs will 1786 * detect this condition within one second of each other, so 1787 * when deadman_enabled is off, deadman_panics will 1788 * typically be a multiple of the total number of CPUs in 1789 * the system. 1790 */ 1791 atomic_add_32(&deadman_panics, 1); 1792 1793 if (!deadman_enabled) { 1794 CPU->cpu_deadman_countdown = deadman_seconds; 1795 return; 1796 } 1797 1798 /* 1799 * If we're here, we want to bring the system down. 1800 */ 1801 panic("deadman: timed out after %d seconds of clock " 1802 "inactivity", deadman_seconds); 1803 /*NOTREACHED*/ 1804 } 1805 1806 /*ARGSUSED*/ 1807 static void 1808 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1809 { 1810 cpu->cpu_deadman_lbolt = 0; 1811 cpu->cpu_deadman_countdown = deadman_seconds; 1812 1813 hdlr->cyh_func = (cyc_func_t)deadman; 1814 hdlr->cyh_level = CY_HIGH_LEVEL; 1815 hdlr->cyh_arg = NULL; 1816 1817 /* 1818 * Stagger the CPUs so that they don't all run deadman() at 1819 * the same time. Simplest reason to do this is to make it 1820 * more likely that only one CPU will panic in case of a 1821 * timeout. This is (strictly speaking) an aesthetic, not a 1822 * technical consideration. 1823 * 1824 * The interval must be one second in accordance with the 1825 * code in deadman() above to increase lbolt during panic. 1826 */ 1827 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1828 when->cyt_interval = NANOSEC; 1829 } 1830 1831 1832 void 1833 deadman_init(void) 1834 { 1835 cyc_omni_handler_t hdlr; 1836 1837 if (deadman_seconds == 0) 1838 deadman_seconds = snoop_interval / MICROSEC; 1839 1840 if (snooping) 1841 deadman_enabled = 1; 1842 1843 hdlr.cyo_online = deadman_online; 1844 hdlr.cyo_offline = NULL; 1845 hdlr.cyo_arg = NULL; 1846 1847 mutex_enter(&cpu_lock); 1848 deadman_cyclic = cyclic_add_omni(&hdlr); 1849 mutex_exit(&cpu_lock); 1850 } 1851 1852 /* 1853 * tod_fault() is for updating tod validate mechanism state: 1854 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1855 * currently used for debugging only 1856 * (2) The following four cases detected by tod validate mechanism: 1857 * TOD_REVERSED: current tod value is less than previous value. 1858 * TOD_STALLED: current tod value hasn't advanced. 1859 * TOD_JUMPED: current tod value advanced too far from previous value. 1860 * TOD_RATECHANGED: the ratio between average tod delta and 1861 * average tick delta has changed. 1862 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 1863 * a virtual TOD provided by a hypervisor. 1864 */ 1865 enum tod_fault_type 1866 tod_fault(enum tod_fault_type ftype, int off) 1867 { 1868 ASSERT(MUTEX_HELD(&tod_lock)); 1869 1870 if (tod_faulted != ftype) { 1871 switch (ftype) { 1872 case TOD_NOFAULT: 1873 plat_tod_fault(TOD_NOFAULT); 1874 cmn_err(CE_NOTE, "Restarted tracking " 1875 "Time of Day clock."); 1876 tod_faulted = ftype; 1877 break; 1878 case TOD_REVERSED: 1879 case TOD_JUMPED: 1880 if (tod_faulted == TOD_NOFAULT) { 1881 plat_tod_fault(ftype); 1882 cmn_err(CE_WARN, "Time of Day clock error: " 1883 "reason [%s by 0x%x]. -- " 1884 " Stopped tracking Time Of Day clock.", 1885 tod_fault_table[ftype], off); 1886 tod_faulted = ftype; 1887 } 1888 break; 1889 case TOD_STALLED: 1890 case TOD_RATECHANGED: 1891 if (tod_faulted == TOD_NOFAULT) { 1892 plat_tod_fault(ftype); 1893 cmn_err(CE_WARN, "Time of Day clock error: " 1894 "reason [%s]. -- " 1895 " Stopped tracking Time Of Day clock.", 1896 tod_fault_table[ftype]); 1897 tod_faulted = ftype; 1898 } 1899 break; 1900 case TOD_RDONLY: 1901 if (tod_faulted == TOD_NOFAULT) { 1902 plat_tod_fault(ftype); 1903 cmn_err(CE_NOTE, "!Time of Day clock is " 1904 "Read-Only; set of Date/Time will not " 1905 "persist across reboot."); 1906 tod_faulted = ftype; 1907 } 1908 break; 1909 default: 1910 break; 1911 } 1912 } 1913 return (tod_faulted); 1914 } 1915 1916 void 1917 tod_fault_reset() 1918 { 1919 tod_fault_reset_flag = 1; 1920 } 1921 1922 1923 /* 1924 * tod_validate() is used for checking values returned by tod_get(). 1925 * Four error cases can be detected by this routine: 1926 * TOD_REVERSED: current tod value is less than previous. 1927 * TOD_STALLED: current tod value hasn't advanced. 1928 * TOD_JUMPED: current tod value advanced too far from previous value. 1929 * TOD_RATECHANGED: the ratio between average tod delta and 1930 * average tick delta has changed. 1931 */ 1932 time_t 1933 tod_validate(time_t tod) 1934 { 1935 time_t diff_tod; 1936 hrtime_t diff_tick; 1937 1938 long dtick; 1939 int dtick_delta; 1940 1941 int off = 0; 1942 enum tod_fault_type tod_bad = TOD_NOFAULT; 1943 1944 static int firsttime = 1; 1945 1946 static time_t prev_tod = 0; 1947 static hrtime_t prev_tick = 0; 1948 static long dtick_avg = TOD_REF_FREQ; 1949 1950 hrtime_t tick = gethrtime(); 1951 1952 ASSERT(MUTEX_HELD(&tod_lock)); 1953 1954 /* 1955 * tod_validate_enable is patchable via /etc/system. 1956 * If TOD is already faulted, or if TOD validation is deferred, 1957 * there is nothing to do. 1958 */ 1959 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 1960 tod_validate_deferred) { 1961 return (tod); 1962 } 1963 1964 /* 1965 * Update prev_tod and prev_tick values for first run 1966 */ 1967 if (firsttime) { 1968 firsttime = 0; 1969 prev_tod = tod; 1970 prev_tick = tick; 1971 return (tod); 1972 } 1973 1974 /* 1975 * For either of these conditions, we need to reset ourself 1976 * and start validation from zero since each condition 1977 * indicates that the TOD will be updated with new value 1978 * Also, note that tod_needsync will be reset in clock() 1979 */ 1980 if (tod_needsync || tod_fault_reset_flag) { 1981 firsttime = 1; 1982 prev_tod = 0; 1983 prev_tick = 0; 1984 dtick_avg = TOD_REF_FREQ; 1985 1986 if (tod_fault_reset_flag) 1987 tod_fault_reset_flag = 0; 1988 1989 return (tod); 1990 } 1991 1992 /* test hook */ 1993 switch (tod_unit_test) { 1994 case 1: /* for testing jumping tod */ 1995 tod += tod_test_injector; 1996 tod_unit_test = 0; 1997 break; 1998 case 2: /* for testing stuck tod bit */ 1999 tod |= 1 << tod_test_injector; 2000 tod_unit_test = 0; 2001 break; 2002 case 3: /* for testing stalled tod */ 2003 tod = prev_tod; 2004 tod_unit_test = 0; 2005 break; 2006 case 4: /* reset tod fault status */ 2007 (void) tod_fault(TOD_NOFAULT, 0); 2008 tod_unit_test = 0; 2009 break; 2010 default: 2011 break; 2012 } 2013 2014 diff_tod = tod - prev_tod; 2015 diff_tick = tick - prev_tick; 2016 2017 ASSERT(diff_tick >= 0); 2018 2019 if (diff_tod < 0) { 2020 /* ERROR - tod reversed */ 2021 tod_bad = TOD_REVERSED; 2022 off = (int)(prev_tod - tod); 2023 } else if (diff_tod == 0) { 2024 /* tod did not advance */ 2025 if (diff_tick > TOD_STALL_THRESHOLD) { 2026 /* ERROR - tod stalled */ 2027 tod_bad = TOD_STALLED; 2028 } else { 2029 /* 2030 * Make sure we don't update prev_tick 2031 * so that diff_tick is calculated since 2032 * the first diff_tod == 0 2033 */ 2034 return (tod); 2035 } 2036 } else { 2037 /* calculate dtick */ 2038 dtick = diff_tick / diff_tod; 2039 2040 /* update dtick averages */ 2041 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2042 2043 /* 2044 * Calculate dtick_delta as 2045 * variation from reference freq in quartiles 2046 */ 2047 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2048 (TOD_REF_FREQ >> 2); 2049 2050 /* 2051 * Even with a perfectly functioning TOD device, 2052 * when the number of elapsed seconds is low the 2053 * algorithm can calculate a rate that is beyond 2054 * tolerance, causing an error. The algorithm is 2055 * inaccurate when elapsed time is low (less than 2056 * 5 seconds). 2057 */ 2058 if (diff_tod > 4) { 2059 if (dtick < TOD_JUMP_THRESHOLD) { 2060 /* ERROR - tod jumped */ 2061 tod_bad = TOD_JUMPED; 2062 off = (int)diff_tod; 2063 } else if (dtick_delta) { 2064 /* ERROR - change in clock rate */ 2065 tod_bad = TOD_RATECHANGED; 2066 } 2067 } 2068 } 2069 2070 if (tod_bad != TOD_NOFAULT) { 2071 (void) tod_fault(tod_bad, off); 2072 2073 /* 2074 * Disable dosynctodr since we are going to fault 2075 * the TOD chip anyway here 2076 */ 2077 dosynctodr = 0; 2078 2079 /* 2080 * Set tod to the correct value from hrestime 2081 */ 2082 tod = hrestime.tv_sec; 2083 } 2084 2085 prev_tod = tod; 2086 prev_tick = tick; 2087 return (tod); 2088 } 2089 2090 static void 2091 calcloadavg(int nrun, uint64_t *hp_ave) 2092 { 2093 static int64_t f[3] = { 135, 27, 9 }; 2094 uint_t i; 2095 int64_t q, r; 2096 2097 /* 2098 * Compute load average over the last 1, 5, and 15 minutes 2099 * (60, 300, and 900 seconds). The constants in f[3] are for 2100 * exponential decay: 2101 * (1 - exp(-1/60)) << 13 = 135, 2102 * (1 - exp(-1/300)) << 13 = 27, 2103 * (1 - exp(-1/900)) << 13 = 9. 2104 */ 2105 2106 /* 2107 * a little hoop-jumping to avoid integer overflow 2108 */ 2109 for (i = 0; i < 3; i++) { 2110 q = (hp_ave[i] >> 16) << 7; 2111 r = (hp_ave[i] & 0xffff) << 7; 2112 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2113 } 2114 } 2115