xref: /titanic_41/usr/src/uts/common/os/clock.c (revision b01c3b58f7eb7fb570f606f96f130fb9b2018b49)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 
25 /*
26  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/param.h>
33 #include <sys/t_lock.h>
34 #include <sys/types.h>
35 #include <sys/tuneable.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/lgrp.h>
40 #include <sys/user.h>
41 #include <sys/proc.h>
42 #include <sys/callo.h>
43 #include <sys/kmem.h>
44 #include <sys/var.h>
45 #include <sys/cmn_err.h>
46 #include <sys/swap.h>
47 #include <sys/vmsystm.h>
48 #include <sys/class.h>
49 #include <sys/time.h>
50 #include <sys/debug.h>
51 #include <sys/vtrace.h>
52 #include <sys/spl.h>
53 #include <sys/atomic.h>
54 #include <sys/dumphdr.h>
55 #include <sys/archsystm.h>
56 #include <sys/fs/swapnode.h>
57 #include <sys/panic.h>
58 #include <sys/disp.h>
59 #include <sys/msacct.h>
60 #include <sys/mem_cage.h>
61 
62 #include <vm/page.h>
63 #include <vm/anon.h>
64 #include <vm/rm.h>
65 #include <sys/cyclic.h>
66 #include <sys/cpupart.h>
67 #include <sys/rctl.h>
68 #include <sys/task.h>
69 #include <sys/sdt.h>
70 #include <sys/ddi_timer.h>
71 
72 /*
73  * for NTP support
74  */
75 #include <sys/timex.h>
76 #include <sys/inttypes.h>
77 
78 /*
79  * clock() is called straight from the clock cyclic; see clock_init().
80  *
81  * Functions:
82  *	reprime clock
83  *	schedule callouts
84  *	maintain date
85  *	jab the scheduler
86  */
87 
88 extern kcondvar_t	fsflush_cv;
89 extern sysinfo_t	sysinfo;
90 extern vminfo_t	vminfo;
91 extern int	idleswtch;	/* flag set while idle in pswtch() */
92 
93 /*
94  * high-precision avenrun values.  These are needed to make the
95  * regular avenrun values accurate.
96  */
97 static uint64_t hp_avenrun[3];
98 int	avenrun[3];		/* FSCALED average run queue lengths */
99 time_t	time;	/* time in seconds since 1970 - for compatibility only */
100 
101 static struct loadavg_s loadavg;
102 /*
103  * Phase/frequency-lock loop (PLL/FLL) definitions
104  *
105  * The following variables are read and set by the ntp_adjtime() system
106  * call.
107  *
108  * time_state shows the state of the system clock, with values defined
109  * in the timex.h header file.
110  *
111  * time_status shows the status of the system clock, with bits defined
112  * in the timex.h header file.
113  *
114  * time_offset is used by the PLL/FLL to adjust the system time in small
115  * increments.
116  *
117  * time_constant determines the bandwidth or "stiffness" of the PLL.
118  *
119  * time_tolerance determines maximum frequency error or tolerance of the
120  * CPU clock oscillator and is a property of the architecture; however,
121  * in principle it could change as result of the presence of external
122  * discipline signals, for instance.
123  *
124  * time_precision is usually equal to the kernel tick variable; however,
125  * in cases where a precision clock counter or external clock is
126  * available, the resolution can be much less than this and depend on
127  * whether the external clock is working or not.
128  *
129  * time_maxerror is initialized by a ntp_adjtime() call and increased by
130  * the kernel once each second to reflect the maximum error bound
131  * growth.
132  *
133  * time_esterror is set and read by the ntp_adjtime() call, but
134  * otherwise not used by the kernel.
135  */
136 int32_t time_state = TIME_OK;	/* clock state */
137 int32_t time_status = STA_UNSYNC;	/* clock status bits */
138 int32_t time_offset = 0;		/* time offset (us) */
139 int32_t time_constant = 0;		/* pll time constant */
140 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
141 int32_t time_precision = 1;	/* clock precision (us) */
142 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
143 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
144 
145 /*
146  * The following variables establish the state of the PLL/FLL and the
147  * residual time and frequency offset of the local clock. The scale
148  * factors are defined in the timex.h header file.
149  *
150  * time_phase and time_freq are the phase increment and the frequency
151  * increment, respectively, of the kernel time variable.
152  *
153  * time_freq is set via ntp_adjtime() from a value stored in a file when
154  * the synchronization daemon is first started. Its value is retrieved
155  * via ntp_adjtime() and written to the file about once per hour by the
156  * daemon.
157  *
158  * time_adj is the adjustment added to the value of tick at each timer
159  * interrupt and is recomputed from time_phase and time_freq at each
160  * seconds rollover.
161  *
162  * time_reftime is the second's portion of the system time at the last
163  * call to ntp_adjtime(). It is used to adjust the time_freq variable
164  * and to increase the time_maxerror as the time since last update
165  * increases.
166  */
167 int32_t time_phase = 0;		/* phase offset (scaled us) */
168 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
169 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
170 int32_t time_reftime = 0;		/* time at last adjustment (s) */
171 
172 /*
173  * The scale factors of the following variables are defined in the
174  * timex.h header file.
175  *
176  * pps_time contains the time at each calibration interval, as read by
177  * microtime(). pps_count counts the seconds of the calibration
178  * interval, the duration of which is nominally pps_shift in powers of
179  * two.
180  *
181  * pps_offset is the time offset produced by the time median filter
182  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
183  * this filter.
184  *
185  * pps_freq is the frequency offset produced by the frequency median
186  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
187  * by this filter.
188  *
189  * pps_usec is latched from a high resolution counter or external clock
190  * at pps_time. Here we want the hardware counter contents only, not the
191  * contents plus the time_tv.usec as usual.
192  *
193  * pps_valid counts the number of seconds since the last PPS update. It
194  * is used as a watchdog timer to disable the PPS discipline should the
195  * PPS signal be lost.
196  *
197  * pps_glitch counts the number of seconds since the beginning of an
198  * offset burst more than tick/2 from current nominal offset. It is used
199  * mainly to suppress error bursts due to priority conflicts between the
200  * PPS interrupt and timer interrupt.
201  *
202  * pps_intcnt counts the calibration intervals for use in the interval-
203  * adaptation algorithm. It's just too complicated for words.
204  */
205 struct timeval pps_time;	/* kernel time at last interval */
206 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
207 int32_t pps_offset = 0;		/* pps time offset (us) */
208 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
209 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
210 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
211 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
212 int32_t pps_usec = 0;		/* microsec counter at last interval */
213 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
214 int32_t pps_glitch = 0;		/* pps signal glitch counter */
215 int32_t pps_count = 0;		/* calibration interval counter (s) */
216 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
217 int32_t pps_intcnt = 0;		/* intervals at current duration */
218 
219 /*
220  * PPS signal quality monitors
221  *
222  * pps_jitcnt counts the seconds that have been discarded because the
223  * jitter measured by the time median filter exceeds the limit MAXTIME
224  * (100 us).
225  *
226  * pps_calcnt counts the frequency calibration intervals, which are
227  * variable from 4 s to 256 s.
228  *
229  * pps_errcnt counts the calibration intervals which have been discarded
230  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
231  * calibration interval jitter exceeds two ticks.
232  *
233  * pps_stbcnt counts the calibration intervals that have been discarded
234  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
235  */
236 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
237 int32_t pps_calcnt = 0;		/* calibration intervals */
238 int32_t pps_errcnt = 0;		/* calibration errors */
239 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
240 
241 /* The following variables require no explicit locking */
242 volatile clock_t lbolt;		/* time in Hz since last boot */
243 volatile int64_t lbolt64;	/* lbolt64 won't wrap for 2.9 billion yrs */
244 
245 kcondvar_t lbolt_cv;
246 int one_sec = 1; /* turned on once every second */
247 static int fsflushcnt;	/* counter for t_fsflushr */
248 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
249 int	tod_needsync = 0;	/* need to sync tod chip with software time */
250 static int tod_broken = 0;	/* clock chip doesn't work */
251 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
252 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
253 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
254 cyclic_id_t ddi_timer_cyclic;	/* cyclic_timer()'s cyclic_id */
255 
256 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
257 
258 /*
259  * for tod fault detection
260  */
261 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
262 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
263 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
264 #define	TOD_FILTER_N		4
265 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
266 static int tod_faulted = TOD_NOFAULT;
267 static int tod_fault_reset_flag = 0;
268 
269 /* patchable via /etc/system */
270 int tod_validate_enable = 1;
271 
272 /*
273  * On non-SPARC systems, TOD validation must be deferred until gethrtime
274  * returns non-zero values (after mach_clkinit's execution).
275  * On SPARC systems, it must be deferred until after hrtime_base
276  * and hres_last_tick are set (in the first invocation of hres_tick).
277  * Since in both cases the prerequisites occur before the invocation of
278  * tod_get() in clock(), the deferment is lifted there.
279  */
280 static boolean_t tod_validate_deferred = B_TRUE;
281 
282 /*
283  * tod_fault_table[] must be aligned with
284  * enum tod_fault_type in systm.h
285  */
286 static char *tod_fault_table[] = {
287 	"Reversed",			/* TOD_REVERSED */
288 	"Stalled",			/* TOD_STALLED */
289 	"Jumped",			/* TOD_JUMPED */
290 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
291 	"Is Read-Only"			/* TOD_RDONLY */
292 	/*
293 	 * no strings needed for TOD_NOFAULT
294 	 */
295 };
296 
297 /*
298  * test hook for tod broken detection in tod_validate
299  */
300 int tod_unit_test = 0;
301 time_t tod_test_injector;
302 
303 #define	CLOCK_ADJ_HIST_SIZE	4
304 
305 static int	adj_hist_entry;
306 
307 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
308 
309 static void clock_tick(kthread_t *);
310 static void calcloadavg(int, uint64_t *);
311 static int genloadavg(struct loadavg_s *);
312 static void loadavg_update();
313 
314 void (*cmm_clock_callout)() = NULL;
315 void (*cpucaps_clock_callout)() = NULL;
316 
317 static void
318 clock(void)
319 {
320 	kthread_t	*t;
321 	kmutex_t	*plockp;	/* pointer to thread's process lock */
322 	int	pinned_intr = 0;
323 	uint_t	nrunnable, nrunning;
324 	uint_t	w_io;
325 	cpu_t	*cp;
326 	cpupart_t *cpupart;
327 	int	exiting;
328 	extern void set_anoninfo();
329 	extern	void	set_freemem();
330 	void	(*funcp)();
331 	int32_t ltemp;
332 	int64_t lltemp;
333 	int s;
334 	int do_lgrp_load;
335 	int i;
336 
337 	if (panicstr)
338 		return;
339 
340 	set_anoninfo();
341 	/*
342 	 * Make sure that 'freemem' do not drift too far from the truth
343 	 */
344 	set_freemem();
345 
346 
347 	/*
348 	 * Before the section which is repeated is executed, we do
349 	 * the time delta processing which occurs every clock tick
350 	 *
351 	 * There is additional processing which happens every time
352 	 * the nanosecond counter rolls over which is described
353 	 * below - see the section which begins with : if (one_sec)
354 	 *
355 	 * This section marks the beginning of the precision-kernel
356 	 * code fragment.
357 	 *
358 	 * First, compute the phase adjustment. If the low-order bits
359 	 * (time_phase) of the update overflow, bump the higher order
360 	 * bits (time_update).
361 	 */
362 	time_phase += time_adj;
363 	if (time_phase <= -FINEUSEC) {
364 		ltemp = -time_phase / SCALE_PHASE;
365 		time_phase += ltemp * SCALE_PHASE;
366 		s = hr_clock_lock();
367 		timedelta -= ltemp * (NANOSEC/MICROSEC);
368 		hr_clock_unlock(s);
369 	} else if (time_phase >= FINEUSEC) {
370 		ltemp = time_phase / SCALE_PHASE;
371 		time_phase -= ltemp * SCALE_PHASE;
372 		s = hr_clock_lock();
373 		timedelta += ltemp * (NANOSEC/MICROSEC);
374 		hr_clock_unlock(s);
375 	}
376 
377 	/*
378 	 * End of precision-kernel code fragment which is processed
379 	 * every timer interrupt.
380 	 *
381 	 * Continue with the interrupt processing as scheduled.
382 	 *
383 	 * Did we pin another interrupt thread?  Need to check this before
384 	 * grabbing any adaptive locks, since if we block on a lock the
385 	 * pinned thread could escape.  Note that this is just a heuristic;
386 	 * if we take multiple laps though clock() without returning from
387 	 * the interrupt because we have another clock tick pending, then
388 	 * the pinned interrupt could be released by one of the previous
389 	 * laps.  The only consequence is that the CPU will be counted as
390 	 * in idle (or wait) state once the pinned interrupt is released.
391 	 * Since this accounting is inaccurate by nature, this isn't a big
392 	 * deal --- but we should try to get it right in the common case
393 	 * where we only call clock() once per interrupt.
394 	 */
395 	if (curthread->t_intr != NULL)
396 		pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD);
397 
398 	/*
399 	 * Count the number of runnable threads and the number waiting
400 	 * for some form of I/O to complete -- gets added to
401 	 * sysinfo.waiting.  To know the state of the system, must add
402 	 * wait counts from all CPUs.  Also add up the per-partition
403 	 * statistics.
404 	 */
405 	w_io = 0;
406 	nrunnable = 0;
407 
408 	/*
409 	 * keep track of when to update lgrp/part loads
410 	 */
411 
412 	do_lgrp_load = 0;
413 	if (lgrp_ticks++ >= hz / 10) {
414 		lgrp_ticks = 0;
415 		do_lgrp_load = 1;
416 	}
417 
418 	if (one_sec)
419 		loadavg_update();
420 
421 	/*
422 	 * First count the threads waiting on kpreempt queues in each
423 	 * CPU partition.
424 	 */
425 
426 	cpupart = cp_list_head;
427 	do {
428 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
429 
430 		cpupart->cp_updates++;
431 		nrunnable += cpupart_nrunnable;
432 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
433 		if (one_sec) {
434 			cpupart->cp_nrunning = 0;
435 			cpupart->cp_nrunnable = cpupart_nrunnable;
436 		}
437 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
438 
439 
440 	/* Now count the per-CPU statistics. */
441 	cp = cpu_list;
442 	do {
443 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
444 
445 		nrunnable += cpu_nrunnable;
446 		cpupart = cp->cpu_part;
447 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
448 		if (one_sec) {
449 			cpupart->cp_nrunnable += cpu_nrunnable;
450 			/*
451 			 * w_io is used to update sysinfo.waiting during
452 			 * one_second processing below.  Only gather w_io
453 			 * information when we walk the list of cpus if we're
454 			 * going to perform one_second processing.
455 			 */
456 			w_io += CPU_STATS(cp, sys.iowait);
457 		}
458 
459 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
460 			int i, load, change;
461 			hrtime_t intracct, intrused;
462 			const hrtime_t maxnsec = 1000000000;
463 			const int precision = 100;
464 
465 			/*
466 			 * Estimate interrupt load on this cpu each second.
467 			 * Computes cpu_intrload as %utilization (0-99).
468 			 */
469 
470 			/* add up interrupt time from all micro states */
471 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
472 				intracct += cp->cpu_intracct[i];
473 			scalehrtime(&intracct);
474 
475 			/* compute nsec used in the past second */
476 			intrused = intracct - cp->cpu_intrlast;
477 			cp->cpu_intrlast = intracct;
478 
479 			/* limit the value for safety (and the first pass) */
480 			if (intrused >= maxnsec)
481 				intrused = maxnsec - 1;
482 
483 			/* calculate %time in interrupt */
484 			load = (precision * intrused) / maxnsec;
485 			ASSERT(load >= 0 && load < precision);
486 			change = cp->cpu_intrload - load;
487 
488 			/* jump to new max, or decay the old max */
489 			if (change < 0)
490 				cp->cpu_intrload = load;
491 			else if (change > 0)
492 				cp->cpu_intrload -= (change + 3) / 4;
493 
494 			DTRACE_PROBE3(cpu_intrload,
495 			    cpu_t *, cp,
496 			    hrtime_t, intracct,
497 			    hrtime_t, intrused);
498 		}
499 
500 		if (do_lgrp_load &&
501 		    (cp->cpu_flags & CPU_EXISTS)) {
502 			/*
503 			 * When updating the lgroup's load average,
504 			 * account for the thread running on the CPU.
505 			 * If the CPU is the current one, then we need
506 			 * to account for the underlying thread which
507 			 * got the clock interrupt not the thread that is
508 			 * handling the interrupt and caculating the load
509 			 * average
510 			 */
511 			t = cp->cpu_thread;
512 			if (CPU == cp)
513 				t = t->t_intr;
514 
515 			/*
516 			 * Account for the load average for this thread if
517 			 * it isn't the idle thread or it is on the interrupt
518 			 * stack and not the current CPU handling the clock
519 			 * interrupt
520 			 */
521 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
522 			    CPU_ON_INTR(cp))) {
523 				if (t->t_lpl == cp->cpu_lpl) {
524 					/* local thread */
525 					cpu_nrunnable++;
526 				} else {
527 					/*
528 					 * This is a remote thread, charge it
529 					 * against its home lgroup.  Note that
530 					 * we notice that a thread is remote
531 					 * only if it's currently executing.
532 					 * This is a reasonable approximation,
533 					 * since queued remote threads are rare.
534 					 * Note also that if we didn't charge
535 					 * it to its home lgroup, remote
536 					 * execution would often make a system
537 					 * appear balanced even though it was
538 					 * not, and thread placement/migration
539 					 * would often not be done correctly.
540 					 */
541 					lgrp_loadavg(t->t_lpl,
542 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
543 				}
544 			}
545 			lgrp_loadavg(cp->cpu_lpl,
546 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
547 		}
548 	} while ((cp = cp->cpu_next) != cpu_list);
549 
550 	/*
551 	 * Do tick processing for all the active threads running in
552 	 * the system.  We're trying to be more fair by walking the
553 	 * list of CPUs starting from a different CPUs each time.
554 	 */
555 	cp = clock_cpu_list;
556 	nrunning = 0;
557 	do {
558 		klwp_id_t lwp;
559 		int intr;
560 		int thread_away;
561 
562 		/*
563 		 * Don't do any tick processing on CPUs that
564 		 * aren't even in the system or aren't up yet.
565 		 */
566 		if ((cp->cpu_flags & CPU_EXISTS) == 0) {
567 			continue;
568 		}
569 
570 		/*
571 		 * The locking here is rather tricky.  We use
572 		 * thread_free_lock to keep the currently running
573 		 * thread from being freed or recycled while we're
574 		 * looking at it.  We can then check if the thread
575 		 * is exiting and get the appropriate p_lock if it
576 		 * is not.  We have to be careful, though, because
577 		 * the _process_ can still be freed while we're
578 		 * holding thread_free_lock.  To avoid touching the
579 		 * proc structure we put a pointer to the p_lock in the
580 		 * thread structure.  The p_lock is persistent so we
581 		 * can acquire it even if the process is gone.  At that
582 		 * point we can check (again) if the thread is exiting
583 		 * and either drop the lock or do the tick processing.
584 		 */
585 		mutex_enter(&thread_free_lock);
586 		/*
587 		 * We cannot hold the cpu_lock to prevent the
588 		 * cpu_list from changing in the clock interrupt.
589 		 * As long as we don't block (or don't get pre-empted)
590 		 * the cpu_list will not change (all threads are paused
591 		 * before list modification). If the list does change
592 		 * any deleted cpu structures will remain with cpu_next
593 		 * set to NULL, hence the following test.
594 		 */
595 		if (cp->cpu_next == NULL) {
596 			mutex_exit(&thread_free_lock);
597 			break;
598 		}
599 		t = cp->cpu_thread;	/* Current running thread */
600 		if (CPU == cp) {
601 			/*
602 			 * 't' will be the clock interrupt thread on this
603 			 * CPU.  Use the pinned thread (if any) on this CPU
604 			 * as the target of the clock tick.  If we pinned
605 			 * an interrupt, though, just keep using the clock
606 			 * interrupt thread since the formerly pinned one
607 			 * may have gone away.  One interrupt thread is as
608 			 * good as another, and this means we don't have
609 			 * to continue to check pinned_intr in subsequent
610 			 * code.
611 			 */
612 			ASSERT(t == curthread);
613 			if (t->t_intr != NULL && !pinned_intr)
614 				t = t->t_intr;
615 		}
616 
617 		intr = t->t_flag & T_INTR_THREAD;
618 		lwp = ttolwp(t);
619 		if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) {
620 			/*
621 			 * Thread is exiting (or uninteresting) so don't
622 			 * do tick processing or grab p_lock.  Once we
623 			 * drop thread_free_lock we can't look inside the
624 			 * thread or lwp structure, since the thread may
625 			 * have gone away.
626 			 */
627 			exiting = 1;
628 		} else {
629 			/*
630 			 * OK, try to grab the process lock.  See
631 			 * comments above for why we're not using
632 			 * ttoproc(t)->p_lockp here.
633 			 */
634 			plockp = t->t_plockp;
635 			mutex_enter(plockp);
636 			/* See above comment. */
637 			if (cp->cpu_next == NULL) {
638 				mutex_exit(plockp);
639 				mutex_exit(&thread_free_lock);
640 				break;
641 			}
642 			/*
643 			 * The thread may have exited between when we
644 			 * checked above, and when we got the p_lock.
645 			 */
646 			if (t->t_proc_flag & TP_LWPEXIT) {
647 				mutex_exit(plockp);
648 				exiting = 1;
649 			} else {
650 				exiting = 0;
651 			}
652 		}
653 		/*
654 		 * Either we have the p_lock for the thread's process,
655 		 * or we don't care about the thread structure any more.
656 		 * Either way we can drop thread_free_lock.
657 		 */
658 		mutex_exit(&thread_free_lock);
659 
660 		/*
661 		 * Update user, system, and idle cpu times.
662 		 */
663 		if (one_sec) {
664 			nrunning++;
665 			cp->cpu_part->cp_nrunning++;
666 		}
667 		/*
668 		 * If we haven't done tick processing for this
669 		 * lwp, then do it now. Since we don't hold the
670 		 * lwp down on a CPU it can migrate and show up
671 		 * more than once, hence the lbolt check.
672 		 *
673 		 * Also, make sure that it's okay to perform the
674 		 * tick processing before calling clock_tick.
675 		 * Setting thread_away to a TRUE value (ie. not 0)
676 		 * results in tick processing not being performed for
677 		 * that thread.  Or, in other words, keeps the thread
678 		 * away from clock_tick processing.
679 		 */
680 		thread_away = ((cp->cpu_flags & CPU_QUIESCED) ||
681 		    CPU_ON_INTR(cp) || intr ||
682 		    (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting);
683 
684 		if ((!thread_away) && (lbolt - t->t_lbolt != 0)) {
685 			t->t_lbolt = lbolt;
686 			clock_tick(t);
687 		}
688 
689 		if (!exiting)
690 			mutex_exit(plockp);
691 	} while ((cp = cp->cpu_next) != clock_cpu_list);
692 
693 	clock_cpu_list = clock_cpu_list->cpu_next;
694 
695 	/*
696 	 * bump time in ticks
697 	 *
698 	 * We rely on there being only one clock thread and hence
699 	 * don't need a lock to protect lbolt.
700 	 */
701 	lbolt++;
702 	atomic_add_64((uint64_t *)&lbolt64, (int64_t)1);
703 
704 	/*
705 	 * Check for a callout that needs be called from the clock
706 	 * thread to support the membership protocol in a clustered
707 	 * system.  Copy the function pointer so that we can reset
708 	 * this to NULL if needed.
709 	 */
710 	if ((funcp = cmm_clock_callout) != NULL)
711 		(*funcp)();
712 
713 	if ((funcp = cpucaps_clock_callout) != NULL)
714 		(*funcp)();
715 
716 	/*
717 	 * Wakeup the cageout thread waiters once per second.
718 	 */
719 	if (one_sec)
720 		kcage_tick();
721 
722 	/*
723 	 * Schedule timeout() requests if any are due at this time.
724 	 */
725 	callout_schedule();
726 
727 	if (one_sec) {
728 
729 		int drift, absdrift;
730 		timestruc_t tod;
731 		int s;
732 
733 		/*
734 		 * Beginning of precision-kernel code fragment executed
735 		 * every second.
736 		 *
737 		 * On rollover of the second the phase adjustment to be
738 		 * used for the next second is calculated.  Also, the
739 		 * maximum error is increased by the tolerance.  If the
740 		 * PPS frequency discipline code is present, the phase is
741 		 * increased to compensate for the CPU clock oscillator
742 		 * frequency error.
743 		 *
744 		 * On a 32-bit machine and given parameters in the timex.h
745 		 * header file, the maximum phase adjustment is +-512 ms
746 		 * and maximum frequency offset is (a tad less than)
747 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
748 		 */
749 		time_maxerror += time_tolerance / SCALE_USEC;
750 
751 		/*
752 		 * Leap second processing. If in leap-insert state at
753 		 * the end of the day, the system clock is set back one
754 		 * second; if in leap-delete state, the system clock is
755 		 * set ahead one second. The microtime() routine or
756 		 * external clock driver will insure that reported time
757 		 * is always monotonic. The ugly divides should be
758 		 * replaced.
759 		 */
760 		switch (time_state) {
761 
762 		case TIME_OK:
763 			if (time_status & STA_INS)
764 				time_state = TIME_INS;
765 			else if (time_status & STA_DEL)
766 				time_state = TIME_DEL;
767 			break;
768 
769 		case TIME_INS:
770 			if (hrestime.tv_sec % 86400 == 0) {
771 				s = hr_clock_lock();
772 				hrestime.tv_sec--;
773 				hr_clock_unlock(s);
774 				time_state = TIME_OOP;
775 			}
776 			break;
777 
778 		case TIME_DEL:
779 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
780 				s = hr_clock_lock();
781 				hrestime.tv_sec++;
782 				hr_clock_unlock(s);
783 				time_state = TIME_WAIT;
784 			}
785 			break;
786 
787 		case TIME_OOP:
788 			time_state = TIME_WAIT;
789 			break;
790 
791 		case TIME_WAIT:
792 			if (!(time_status & (STA_INS | STA_DEL)))
793 				time_state = TIME_OK;
794 		default:
795 			break;
796 		}
797 
798 		/*
799 		 * Compute the phase adjustment for the next second. In
800 		 * PLL mode, the offset is reduced by a fixed factor
801 		 * times the time constant. In FLL mode the offset is
802 		 * used directly. In either mode, the maximum phase
803 		 * adjustment for each second is clamped so as to spread
804 		 * the adjustment over not more than the number of
805 		 * seconds between updates.
806 		 */
807 		if (time_offset == 0)
808 			time_adj = 0;
809 		else if (time_offset < 0) {
810 			lltemp = -time_offset;
811 			if (!(time_status & STA_FLL)) {
812 				if ((1 << time_constant) >= SCALE_KG)
813 					lltemp *= (1 << time_constant) /
814 					    SCALE_KG;
815 				else
816 					lltemp = (lltemp / SCALE_KG) >>
817 					    time_constant;
818 			}
819 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
820 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
821 			time_offset += lltemp;
822 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
823 		} else {
824 			lltemp = time_offset;
825 			if (!(time_status & STA_FLL)) {
826 				if ((1 << time_constant) >= SCALE_KG)
827 					lltemp *= (1 << time_constant) /
828 					    SCALE_KG;
829 				else
830 					lltemp = (lltemp / SCALE_KG) >>
831 					    time_constant;
832 			}
833 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
834 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
835 			time_offset -= lltemp;
836 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
837 		}
838 
839 		/*
840 		 * Compute the frequency estimate and additional phase
841 		 * adjustment due to frequency error for the next
842 		 * second. When the PPS signal is engaged, gnaw on the
843 		 * watchdog counter and update the frequency computed by
844 		 * the pll and the PPS signal.
845 		 */
846 		pps_valid++;
847 		if (pps_valid == PPS_VALID) {
848 			pps_jitter = MAXTIME;
849 			pps_stabil = MAXFREQ;
850 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
851 			    STA_PPSWANDER | STA_PPSERROR);
852 		}
853 		lltemp = time_freq + pps_freq;
854 
855 		if (lltemp)
856 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
857 
858 		/*
859 		 * End of precision kernel-code fragment
860 		 *
861 		 * The section below should be modified if we are planning
862 		 * to use NTP for synchronization.
863 		 *
864 		 * Note: the clock synchronization code now assumes
865 		 * the following:
866 		 *   - if dosynctodr is 1, then compute the drift between
867 		 *	the tod chip and software time and adjust one or
868 		 *	the other depending on the circumstances
869 		 *
870 		 *   - if dosynctodr is 0, then the tod chip is independent
871 		 *	of the software clock and should not be adjusted,
872 		 *	but allowed to free run.  this allows NTP to sync.
873 		 *	hrestime without any interference from the tod chip.
874 		 */
875 
876 		tod_validate_deferred = B_FALSE;
877 		mutex_enter(&tod_lock);
878 		tod = tod_get();
879 		drift = tod.tv_sec - hrestime.tv_sec;
880 		absdrift = (drift >= 0) ? drift : -drift;
881 		if (tod_needsync || absdrift > 1) {
882 			int s;
883 			if (absdrift > 2) {
884 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
885 					s = hr_clock_lock();
886 					hrestime = tod;
887 					membar_enter();	/* hrestime visible */
888 					timedelta = 0;
889 					timechanged++;
890 					tod_needsync = 0;
891 					hr_clock_unlock(s);
892 				}
893 			} else {
894 				if (tod_needsync || !dosynctodr) {
895 					gethrestime(&tod);
896 					tod_set(tod);
897 					s = hr_clock_lock();
898 					if (timedelta == 0)
899 						tod_needsync = 0;
900 					hr_clock_unlock(s);
901 				} else {
902 					/*
903 					 * If the drift is 2 seconds on the
904 					 * money, then the TOD is adjusting
905 					 * the clock;  record that.
906 					 */
907 					clock_adj_hist[adj_hist_entry++ %
908 					    CLOCK_ADJ_HIST_SIZE] = lbolt64;
909 					s = hr_clock_lock();
910 					timedelta = (int64_t)drift*NANOSEC;
911 					hr_clock_unlock(s);
912 				}
913 			}
914 		}
915 		one_sec = 0;
916 		time = gethrestime_sec();  /* for crusty old kmem readers */
917 		mutex_exit(&tod_lock);
918 
919 		/*
920 		 * Some drivers still depend on this... XXX
921 		 */
922 		cv_broadcast(&lbolt_cv);
923 
924 		sysinfo.updates++;
925 		vminfo.freemem += freemem;
926 		{
927 			pgcnt_t maxswap, resv, free;
928 			pgcnt_t avail =
929 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
930 
931 			maxswap = k_anoninfo.ani_mem_resv +
932 			    k_anoninfo.ani_max +avail;
933 			free = k_anoninfo.ani_free + avail;
934 			resv = k_anoninfo.ani_phys_resv +
935 			    k_anoninfo.ani_mem_resv;
936 
937 			vminfo.swap_resv += resv;
938 			/* number of reserved and allocated pages */
939 #ifdef	DEBUG
940 			if (maxswap < free)
941 				cmn_err(CE_WARN, "clock: maxswap < free");
942 			if (maxswap < resv)
943 				cmn_err(CE_WARN, "clock: maxswap < resv");
944 #endif
945 			vminfo.swap_alloc += maxswap - free;
946 			vminfo.swap_avail += maxswap - resv;
947 			vminfo.swap_free += free;
948 		}
949 		if (nrunnable) {
950 			sysinfo.runque += nrunnable;
951 			sysinfo.runocc++;
952 		}
953 		if (nswapped) {
954 			sysinfo.swpque += nswapped;
955 			sysinfo.swpocc++;
956 		}
957 		sysinfo.waiting += w_io;
958 
959 		/*
960 		 * Wake up fsflush to write out DELWRI
961 		 * buffers, dirty pages and other cached
962 		 * administrative data, e.g. inodes.
963 		 */
964 		if (--fsflushcnt <= 0) {
965 			fsflushcnt = tune.t_fsflushr;
966 			cv_signal(&fsflush_cv);
967 		}
968 
969 		vmmeter();
970 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
971 		for (i = 0; i < 3; i++)
972 			/*
973 			 * At the moment avenrun[] can only hold 31
974 			 * bits of load average as it is a signed
975 			 * int in the API. We need to ensure that
976 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
977 			 * too large. If it is, we put the largest value
978 			 * that we can use into avenrun[i]. This is
979 			 * kludgey, but about all we can do until we
980 			 * avenrun[] is declared as an array of uint64[]
981 			 */
982 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
983 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
984 				    (16 - FSHIFT));
985 			else
986 				avenrun[i] = 0x7fffffff;
987 
988 		cpupart = cp_list_head;
989 		do {
990 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
991 			    cpupart->cp_hp_avenrun);
992 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
993 
994 		/*
995 		 * Wake up the swapper thread if necessary.
996 		 */
997 		if (runin ||
998 		    (runout && (avefree < desfree || wake_sched_sec))) {
999 			t = &t0;
1000 			thread_lock(t);
1001 			if (t->t_state == TS_STOPPED) {
1002 				runin = runout = 0;
1003 				wake_sched_sec = 0;
1004 				t->t_whystop = 0;
1005 				t->t_whatstop = 0;
1006 				t->t_schedflag &= ~TS_ALLSTART;
1007 				THREAD_TRANSITION(t);
1008 				setfrontdq(t);
1009 			}
1010 			thread_unlock(t);
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Wake up the swapper if any high priority swapped-out threads
1016 	 * became runable during the last tick.
1017 	 */
1018 	if (wake_sched) {
1019 		t = &t0;
1020 		thread_lock(t);
1021 		if (t->t_state == TS_STOPPED) {
1022 			runin = runout = 0;
1023 			wake_sched = 0;
1024 			t->t_whystop = 0;
1025 			t->t_whatstop = 0;
1026 			t->t_schedflag &= ~TS_ALLSTART;
1027 			THREAD_TRANSITION(t);
1028 			setfrontdq(t);
1029 		}
1030 		thread_unlock(t);
1031 	}
1032 }
1033 
1034 void
1035 clock_init(void)
1036 {
1037 	cyc_handler_t hdlr;
1038 	cyc_time_t when;
1039 
1040 	hdlr.cyh_func = (cyc_func_t)clock;
1041 	hdlr.cyh_level = CY_LOCK_LEVEL;
1042 	hdlr.cyh_arg = NULL;
1043 
1044 	when.cyt_when = 0;
1045 	when.cyt_interval = nsec_per_tick;
1046 
1047 	mutex_enter(&cpu_lock);
1048 	clock_cyclic = cyclic_add(&hdlr, &when);
1049 	mutex_exit(&cpu_lock);
1050 
1051 	/*
1052 	 * cyclic_timer is dedicated to the ddi interface, which
1053 	 * uses the same clock resolution as the system one.
1054 	 */
1055 	hdlr.cyh_func = (cyc_func_t)cyclic_timer;
1056 	hdlr.cyh_level = CY_LOCK_LEVEL;
1057 	hdlr.cyh_arg = NULL;
1058 
1059 	mutex_enter(&cpu_lock);
1060 	ddi_timer_cyclic = cyclic_add(&hdlr, &when);
1061 	mutex_exit(&cpu_lock);
1062 }
1063 
1064 /*
1065  * Called before calcloadavg to get 10-sec moving loadavg together
1066  */
1067 
1068 static int
1069 genloadavg(struct loadavg_s *avgs)
1070 {
1071 	int avg;
1072 	int spos; /* starting position */
1073 	int cpos; /* moving current position */
1074 	int i;
1075 	int slen;
1076 	hrtime_t hr_avg;
1077 
1078 	/* 10-second snapshot, calculate first positon */
1079 	if (avgs->lg_len == 0) {
1080 		return (0);
1081 	}
1082 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1083 
1084 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1085 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1086 	for (i = hr_avg = 0; i < slen; i++) {
1087 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1088 		hr_avg += avgs->lg_loads[cpos];
1089 	}
1090 
1091 	hr_avg = hr_avg / slen;
1092 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1093 
1094 	return (avg);
1095 }
1096 
1097 /*
1098  * Run every second from clock () to update the loadavg count available to the
1099  * system and cpu-partitions.
1100  *
1101  * This works by sampling the previous usr, sys, wait time elapsed,
1102  * computing a delta, and adding that delta to the elapsed usr, sys,
1103  * wait increase.
1104  */
1105 
1106 static void
1107 loadavg_update()
1108 {
1109 	cpu_t *cp;
1110 	cpupart_t *cpupart;
1111 	hrtime_t cpu_total;
1112 	int prev;
1113 
1114 	cp = cpu_list;
1115 	loadavg.lg_total = 0;
1116 
1117 	/*
1118 	 * first pass totals up per-cpu statistics for system and cpu
1119 	 * partitions
1120 	 */
1121 
1122 	do {
1123 		struct loadavg_s *lavg;
1124 
1125 		lavg = &cp->cpu_loadavg;
1126 
1127 		cpu_total = cp->cpu_acct[CMS_USER] +
1128 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1129 		/* compute delta against last total */
1130 		scalehrtime(&cpu_total);
1131 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1132 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1133 		if (lavg->lg_loads[prev] <= 0) {
1134 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1135 			cpu_total = 0;
1136 		} else {
1137 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1138 			cpu_total = cpu_total - lavg->lg_loads[prev];
1139 			if (cpu_total < 0)
1140 				cpu_total = 0;
1141 		}
1142 
1143 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1144 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1145 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1146 
1147 		loadavg.lg_total += cpu_total;
1148 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1149 
1150 	} while ((cp = cp->cpu_next) != cpu_list);
1151 
1152 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1153 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1154 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1155 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1156 	/*
1157 	 * Second pass updates counts
1158 	 */
1159 	cpupart = cp_list_head;
1160 
1161 	do {
1162 		struct loadavg_s *lavg;
1163 
1164 		lavg = &cpupart->cp_loadavg;
1165 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1166 		lavg->lg_total = 0;
1167 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1168 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1169 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1170 
1171 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1172 
1173 }
1174 
1175 /*
1176  * clock_update() - local clock update
1177  *
1178  * This routine is called by ntp_adjtime() to update the local clock
1179  * phase and frequency. The implementation is of an
1180  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1181  * routine computes new time and frequency offset estimates for each
1182  * call.  The PPS signal itself determines the new time offset,
1183  * instead of the calling argument.  Presumably, calls to
1184  * ntp_adjtime() occur only when the caller believes the local clock
1185  * is valid within some bound (+-128 ms with NTP). If the caller's
1186  * time is far different than the PPS time, an argument will ensue,
1187  * and it's not clear who will lose.
1188  *
1189  * For uncompensated quartz crystal oscillatores and nominal update
1190  * intervals less than 1024 s, operation should be in phase-lock mode
1191  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1192  * intervals greater than this, operation should be in frequency-lock
1193  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1194  *
1195  * Note: mutex(&tod_lock) is in effect.
1196  */
1197 void
1198 clock_update(int offset)
1199 {
1200 	int ltemp, mtemp, s;
1201 
1202 	ASSERT(MUTEX_HELD(&tod_lock));
1203 
1204 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1205 		return;
1206 	ltemp = offset;
1207 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1208 		ltemp = pps_offset;
1209 
1210 	/*
1211 	 * Scale the phase adjustment and clamp to the operating range.
1212 	 */
1213 	if (ltemp > MAXPHASE)
1214 		time_offset = MAXPHASE * SCALE_UPDATE;
1215 	else if (ltemp < -MAXPHASE)
1216 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1217 	else
1218 		time_offset = ltemp * SCALE_UPDATE;
1219 
1220 	/*
1221 	 * Select whether the frequency is to be controlled and in which
1222 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1223 	 * multiply/divide should be replaced someday.
1224 	 */
1225 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1226 		time_reftime = hrestime.tv_sec;
1227 
1228 	mtemp = hrestime.tv_sec - time_reftime;
1229 	time_reftime = hrestime.tv_sec;
1230 
1231 	if (time_status & STA_FLL) {
1232 		if (mtemp >= MINSEC) {
1233 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1234 			    SCALE_UPDATE));
1235 			if (ltemp)
1236 				time_freq += ltemp / SCALE_KH;
1237 		}
1238 	} else {
1239 		if (mtemp < MAXSEC) {
1240 			ltemp *= mtemp;
1241 			if (ltemp)
1242 				time_freq += (int)(((int64_t)ltemp *
1243 				    SCALE_USEC) / SCALE_KF)
1244 				    / (1 << (time_constant * 2));
1245 		}
1246 	}
1247 	if (time_freq > time_tolerance)
1248 		time_freq = time_tolerance;
1249 	else if (time_freq < -time_tolerance)
1250 		time_freq = -time_tolerance;
1251 
1252 	s = hr_clock_lock();
1253 	tod_needsync = 1;
1254 	hr_clock_unlock(s);
1255 }
1256 
1257 /*
1258  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1259  *
1260  * This routine is called at each PPS interrupt in order to discipline
1261  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1262  * and leaves it in a handy spot for the clock() routine. It
1263  * integrates successive PPS phase differences and calculates the
1264  * frequency offset. This is used in clock() to discipline the CPU
1265  * clock oscillator so that intrinsic frequency error is cancelled out.
1266  * The code requires the caller to capture the time and hardware counter
1267  * value at the on-time PPS signal transition.
1268  *
1269  * Note that, on some Unix systems, this routine runs at an interrupt
1270  * priority level higher than the timer interrupt routine clock().
1271  * Therefore, the variables used are distinct from the clock()
1272  * variables, except for certain exceptions: The PPS frequency pps_freq
1273  * and phase pps_offset variables are determined by this routine and
1274  * updated atomically. The time_tolerance variable can be considered a
1275  * constant, since it is infrequently changed, and then only when the
1276  * PPS signal is disabled. The watchdog counter pps_valid is updated
1277  * once per second by clock() and is atomically cleared in this
1278  * routine.
1279  *
1280  * tvp is the time of the last tick; usec is a microsecond count since the
1281  * last tick.
1282  *
1283  * Note: In Solaris systems, the tick value is actually given by
1284  *       usec_per_tick.  This is called from the serial driver cdintr(),
1285  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1286  *	 highresolution time, the following code can accept either
1287  *	 the traditional argument pair, or the current highres timestamp
1288  *       in tvp and zero in usec.
1289  */
1290 void
1291 ddi_hardpps(struct timeval *tvp, int usec)
1292 {
1293 	int u_usec, v_usec, bigtick;
1294 	time_t cal_sec;
1295 	int cal_usec;
1296 
1297 	/*
1298 	 * An occasional glitch can be produced when the PPS interrupt
1299 	 * occurs in the clock() routine before the time variable is
1300 	 * updated. Here the offset is discarded when the difference
1301 	 * between it and the last one is greater than tick/2, but not
1302 	 * if the interval since the first discard exceeds 30 s.
1303 	 */
1304 	time_status |= STA_PPSSIGNAL;
1305 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1306 	pps_valid = 0;
1307 	u_usec = -tvp->tv_usec;
1308 	if (u_usec < -(MICROSEC/2))
1309 		u_usec += MICROSEC;
1310 	v_usec = pps_offset - u_usec;
1311 	if (v_usec < 0)
1312 		v_usec = -v_usec;
1313 	if (v_usec > (usec_per_tick >> 1)) {
1314 		if (pps_glitch > MAXGLITCH) {
1315 			pps_glitch = 0;
1316 			pps_tf[2] = u_usec;
1317 			pps_tf[1] = u_usec;
1318 		} else {
1319 			pps_glitch++;
1320 			u_usec = pps_offset;
1321 		}
1322 	} else
1323 		pps_glitch = 0;
1324 
1325 	/*
1326 	 * A three-stage median filter is used to help deglitch the pps
1327 	 * time. The median sample becomes the time offset estimate; the
1328 	 * difference between the other two samples becomes the time
1329 	 * dispersion (jitter) estimate.
1330 	 */
1331 	pps_tf[2] = pps_tf[1];
1332 	pps_tf[1] = pps_tf[0];
1333 	pps_tf[0] = u_usec;
1334 	if (pps_tf[0] > pps_tf[1]) {
1335 		if (pps_tf[1] > pps_tf[2]) {
1336 			pps_offset = pps_tf[1];		/* 0 1 2 */
1337 			v_usec = pps_tf[0] - pps_tf[2];
1338 		} else if (pps_tf[2] > pps_tf[0]) {
1339 			pps_offset = pps_tf[0];		/* 2 0 1 */
1340 			v_usec = pps_tf[2] - pps_tf[1];
1341 		} else {
1342 			pps_offset = pps_tf[2];		/* 0 2 1 */
1343 			v_usec = pps_tf[0] - pps_tf[1];
1344 		}
1345 	} else {
1346 		if (pps_tf[1] < pps_tf[2]) {
1347 			pps_offset = pps_tf[1];		/* 2 1 0 */
1348 			v_usec = pps_tf[2] - pps_tf[0];
1349 		} else  if (pps_tf[2] < pps_tf[0]) {
1350 			pps_offset = pps_tf[0];		/* 1 0 2 */
1351 			v_usec = pps_tf[1] - pps_tf[2];
1352 		} else {
1353 			pps_offset = pps_tf[2];		/* 1 2 0 */
1354 			v_usec = pps_tf[1] - pps_tf[0];
1355 		}
1356 	}
1357 	if (v_usec > MAXTIME)
1358 		pps_jitcnt++;
1359 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1360 	pps_jitter += v_usec / (1 << PPS_AVG);
1361 	if (pps_jitter > (MAXTIME >> 1))
1362 		time_status |= STA_PPSJITTER;
1363 
1364 	/*
1365 	 * During the calibration interval adjust the starting time when
1366 	 * the tick overflows. At the end of the interval compute the
1367 	 * duration of the interval and the difference of the hardware
1368 	 * counters at the beginning and end of the interval. This code
1369 	 * is deliciously complicated by the fact valid differences may
1370 	 * exceed the value of tick when using long calibration
1371 	 * intervals and small ticks. Note that the counter can be
1372 	 * greater than tick if caught at just the wrong instant, but
1373 	 * the values returned and used here are correct.
1374 	 */
1375 	bigtick = (int)usec_per_tick * SCALE_USEC;
1376 	pps_usec -= pps_freq;
1377 	if (pps_usec >= bigtick)
1378 		pps_usec -= bigtick;
1379 	if (pps_usec < 0)
1380 		pps_usec += bigtick;
1381 	pps_time.tv_sec++;
1382 	pps_count++;
1383 	if (pps_count < (1 << pps_shift))
1384 		return;
1385 	pps_count = 0;
1386 	pps_calcnt++;
1387 	u_usec = usec * SCALE_USEC;
1388 	v_usec = pps_usec - u_usec;
1389 	if (v_usec >= bigtick >> 1)
1390 		v_usec -= bigtick;
1391 	if (v_usec < -(bigtick >> 1))
1392 		v_usec += bigtick;
1393 	if (v_usec < 0)
1394 		v_usec = -(-v_usec >> pps_shift);
1395 	else
1396 		v_usec = v_usec >> pps_shift;
1397 	pps_usec = u_usec;
1398 	cal_sec = tvp->tv_sec;
1399 	cal_usec = tvp->tv_usec;
1400 	cal_sec -= pps_time.tv_sec;
1401 	cal_usec -= pps_time.tv_usec;
1402 	if (cal_usec < 0) {
1403 		cal_usec += MICROSEC;
1404 		cal_sec--;
1405 	}
1406 	pps_time = *tvp;
1407 
1408 	/*
1409 	 * Check for lost interrupts, noise, excessive jitter and
1410 	 * excessive frequency error. The number of timer ticks during
1411 	 * the interval may vary +-1 tick. Add to this a margin of one
1412 	 * tick for the PPS signal jitter and maximum frequency
1413 	 * deviation. If the limits are exceeded, the calibration
1414 	 * interval is reset to the minimum and we start over.
1415 	 */
1416 	u_usec = (int)usec_per_tick << 1;
1417 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1418 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1419 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1420 		pps_errcnt++;
1421 		pps_shift = PPS_SHIFT;
1422 		pps_intcnt = 0;
1423 		time_status |= STA_PPSERROR;
1424 		return;
1425 	}
1426 
1427 	/*
1428 	 * A three-stage median filter is used to help deglitch the pps
1429 	 * frequency. The median sample becomes the frequency offset
1430 	 * estimate; the difference between the other two samples
1431 	 * becomes the frequency dispersion (stability) estimate.
1432 	 */
1433 	pps_ff[2] = pps_ff[1];
1434 	pps_ff[1] = pps_ff[0];
1435 	pps_ff[0] = v_usec;
1436 	if (pps_ff[0] > pps_ff[1]) {
1437 		if (pps_ff[1] > pps_ff[2]) {
1438 			u_usec = pps_ff[1];		/* 0 1 2 */
1439 			v_usec = pps_ff[0] - pps_ff[2];
1440 		} else if (pps_ff[2] > pps_ff[0]) {
1441 			u_usec = pps_ff[0];		/* 2 0 1 */
1442 			v_usec = pps_ff[2] - pps_ff[1];
1443 		} else {
1444 			u_usec = pps_ff[2];		/* 0 2 1 */
1445 			v_usec = pps_ff[0] - pps_ff[1];
1446 		}
1447 	} else {
1448 		if (pps_ff[1] < pps_ff[2]) {
1449 			u_usec = pps_ff[1];		/* 2 1 0 */
1450 			v_usec = pps_ff[2] - pps_ff[0];
1451 		} else  if (pps_ff[2] < pps_ff[0]) {
1452 			u_usec = pps_ff[0];		/* 1 0 2 */
1453 			v_usec = pps_ff[1] - pps_ff[2];
1454 		} else {
1455 			u_usec = pps_ff[2];		/* 1 2 0 */
1456 			v_usec = pps_ff[1] - pps_ff[0];
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * Here the frequency dispersion (stability) is updated. If it
1462 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1463 	 * offset is updated as well, but clamped to the tolerance. It
1464 	 * will be processed later by the clock() routine.
1465 	 */
1466 	v_usec = (v_usec >> 1) - pps_stabil;
1467 	if (v_usec < 0)
1468 		pps_stabil -= -v_usec >> PPS_AVG;
1469 	else
1470 		pps_stabil += v_usec >> PPS_AVG;
1471 	if (pps_stabil > MAXFREQ >> 2) {
1472 		pps_stbcnt++;
1473 		time_status |= STA_PPSWANDER;
1474 		return;
1475 	}
1476 	if (time_status & STA_PPSFREQ) {
1477 		if (u_usec < 0) {
1478 			pps_freq -= -u_usec >> PPS_AVG;
1479 			if (pps_freq < -time_tolerance)
1480 				pps_freq = -time_tolerance;
1481 			u_usec = -u_usec;
1482 		} else {
1483 			pps_freq += u_usec >> PPS_AVG;
1484 			if (pps_freq > time_tolerance)
1485 				pps_freq = time_tolerance;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * Here the calibration interval is adjusted. If the maximum
1491 	 * time difference is greater than tick / 4, reduce the interval
1492 	 * by half. If this is not the case for four consecutive
1493 	 * intervals, double the interval.
1494 	 */
1495 	if (u_usec << pps_shift > bigtick >> 2) {
1496 		pps_intcnt = 0;
1497 		if (pps_shift > PPS_SHIFT)
1498 			pps_shift--;
1499 	} else if (pps_intcnt >= 4) {
1500 		pps_intcnt = 0;
1501 		if (pps_shift < PPS_SHIFTMAX)
1502 			pps_shift++;
1503 	} else
1504 		pps_intcnt++;
1505 
1506 	/*
1507 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1508 	 * If we took an early exit above, then we don't yet have a stable
1509 	 * calibration signal to lock onto, so don't mark the tod for sync
1510 	 * until we get all the way here.
1511 	 */
1512 	{
1513 		int s = hr_clock_lock();
1514 
1515 		tod_needsync = 1;
1516 		hr_clock_unlock(s);
1517 	}
1518 }
1519 
1520 /*
1521  * Handle clock tick processing for a thread.
1522  * Check for timer action, enforce CPU rlimit, do profiling etc.
1523  */
1524 void
1525 clock_tick(kthread_t *t)
1526 {
1527 	struct proc *pp;
1528 	klwp_id_t    lwp;
1529 	struct as *as;
1530 	clock_t	utime;
1531 	clock_t	stime;
1532 	int	poke = 0;		/* notify another CPU */
1533 	int	user_mode;
1534 	size_t	 rss;
1535 
1536 	/* Must be operating on a lwp/thread */
1537 	if ((lwp = ttolwp(t)) == NULL) {
1538 		panic("clock_tick: no lwp");
1539 		/*NOTREACHED*/
1540 	}
1541 
1542 	CL_TICK(t);	/* Class specific tick processing */
1543 	DTRACE_SCHED1(tick, kthread_t *, t);
1544 
1545 	pp = ttoproc(t);
1546 
1547 	/* pp->p_lock makes sure that the thread does not exit */
1548 	ASSERT(MUTEX_HELD(&pp->p_lock));
1549 
1550 	user_mode = (lwp->lwp_state == LWP_USER);
1551 
1552 	/*
1553 	 * Update process times. Should use high res clock and state
1554 	 * changes instead of statistical sampling method. XXX
1555 	 */
1556 	if (user_mode) {
1557 		pp->p_utime++;
1558 		pp->p_task->tk_cpu_time++;
1559 	} else {
1560 		pp->p_stime++;
1561 		pp->p_task->tk_cpu_time++;
1562 	}
1563 	as = pp->p_as;
1564 
1565 	/*
1566 	 * Update user profiling statistics. Get the pc from the
1567 	 * lwp when the AST happens.
1568 	 */
1569 	if (pp->p_prof.pr_scale) {
1570 		atomic_add_32(&lwp->lwp_oweupc, 1);
1571 		if (user_mode) {
1572 			poke = 1;
1573 			aston(t);
1574 		}
1575 	}
1576 
1577 	utime = pp->p_utime;
1578 	stime = pp->p_stime;
1579 
1580 	/*
1581 	 * If CPU was in user state, process lwp-virtual time
1582 	 * interval timer.
1583 	 */
1584 	if (user_mode &&
1585 	    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1586 	    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) {
1587 		poke = 1;
1588 		sigtoproc(pp, t, SIGVTALRM);
1589 	}
1590 
1591 	if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1592 	    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) {
1593 		poke = 1;
1594 		sigtoproc(pp, t, SIGPROF);
1595 	}
1596 
1597 	/*
1598 	 * Enforce CPU resource controls:
1599 	 *   (a) process.max-cpu-time resource control
1600 	 */
1601 	(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1602 	    (utime + stime)/hz, RCA_UNSAFE_SIGINFO);
1603 
1604 	/*
1605 	 *   (b) task.max-cpu-time resource control
1606 	 */
1607 	(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1,
1608 	    RCA_UNSAFE_SIGINFO);
1609 
1610 	/*
1611 	 * Update memory usage for the currently running process.
1612 	 */
1613 	rss = rm_asrss(as);
1614 	PTOU(pp)->u_mem += rss;
1615 	if (rss > PTOU(pp)->u_mem_max)
1616 		PTOU(pp)->u_mem_max = rss;
1617 
1618 	/*
1619 	 * Notify the CPU the thread is running on.
1620 	 */
1621 	if (poke && t->t_cpu != CPU)
1622 		poke_cpu(t->t_cpu->cpu_id);
1623 }
1624 
1625 void
1626 profil_tick(uintptr_t upc)
1627 {
1628 	int ticks;
1629 	proc_t *p = ttoproc(curthread);
1630 	klwp_t *lwp = ttolwp(curthread);
1631 	struct prof *pr = &p->p_prof;
1632 
1633 	do {
1634 		ticks = lwp->lwp_oweupc;
1635 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1636 
1637 	mutex_enter(&p->p_pflock);
1638 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1639 		/*
1640 		 * Old-style profiling
1641 		 */
1642 		uint16_t *slot = pr->pr_base;
1643 		uint16_t old, new;
1644 		if (pr->pr_scale != 2) {
1645 			uintptr_t delta = upc - pr->pr_off;
1646 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1647 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1648 			if (byteoff >= (uintptr_t)pr->pr_size) {
1649 				mutex_exit(&p->p_pflock);
1650 				return;
1651 			}
1652 			slot += byteoff / sizeof (uint16_t);
1653 		}
1654 		if (fuword16(slot, &old) < 0 ||
1655 		    (new = old + ticks) > SHRT_MAX ||
1656 		    suword16(slot, new) < 0) {
1657 			pr->pr_scale = 0;
1658 		}
1659 	} else if (pr->pr_scale == 1) {
1660 		/*
1661 		 * PC Sampling
1662 		 */
1663 		model_t model = lwp_getdatamodel(lwp);
1664 		int result;
1665 #ifdef __lint
1666 		model = model;
1667 #endif
1668 		while (ticks-- > 0) {
1669 			if (pr->pr_samples == pr->pr_size) {
1670 				/* buffer full, turn off sampling */
1671 				pr->pr_scale = 0;
1672 				break;
1673 			}
1674 			switch (SIZEOF_PTR(model)) {
1675 			case sizeof (uint32_t):
1676 				result = suword32(pr->pr_base, (uint32_t)upc);
1677 				break;
1678 #ifdef _LP64
1679 			case sizeof (uint64_t):
1680 				result = suword64(pr->pr_base, (uint64_t)upc);
1681 				break;
1682 #endif
1683 			default:
1684 				cmn_err(CE_WARN, "profil_tick: unexpected "
1685 				    "data model");
1686 				result = -1;
1687 				break;
1688 			}
1689 			if (result != 0) {
1690 				pr->pr_scale = 0;
1691 				break;
1692 			}
1693 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1694 			pr->pr_samples++;
1695 		}
1696 	}
1697 	mutex_exit(&p->p_pflock);
1698 }
1699 
1700 static void
1701 delay_wakeup(void *arg)
1702 {
1703 	kthread_t *t = arg;
1704 
1705 	mutex_enter(&t->t_delay_lock);
1706 	cv_signal(&t->t_delay_cv);
1707 	mutex_exit(&t->t_delay_lock);
1708 }
1709 
1710 void
1711 delay(clock_t ticks)
1712 {
1713 	kthread_t *t = curthread;
1714 	clock_t deadline = lbolt + ticks;
1715 	clock_t timeleft;
1716 	timeout_id_t id;
1717 
1718 	if (panicstr && ticks > 0) {
1719 		/*
1720 		 * Timeouts aren't running, so all we can do is spin.
1721 		 */
1722 		drv_usecwait(TICK_TO_USEC(ticks));
1723 		return;
1724 	}
1725 
1726 	while ((timeleft = deadline - lbolt) > 0) {
1727 		mutex_enter(&t->t_delay_lock);
1728 		id = timeout(delay_wakeup, t, timeleft);
1729 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1730 		mutex_exit(&t->t_delay_lock);
1731 		(void) untimeout(id);
1732 	}
1733 }
1734 
1735 /*
1736  * Like delay, but interruptible by a signal.
1737  */
1738 int
1739 delay_sig(clock_t ticks)
1740 {
1741 	clock_t deadline = lbolt + ticks;
1742 	clock_t rc;
1743 
1744 	mutex_enter(&curthread->t_delay_lock);
1745 	do {
1746 		rc = cv_timedwait_sig(&curthread->t_delay_cv,
1747 		    &curthread->t_delay_lock, deadline);
1748 	} while (rc > 0);
1749 	mutex_exit(&curthread->t_delay_lock);
1750 	if (rc == 0)
1751 		return (EINTR);
1752 	return (0);
1753 }
1754 
1755 #define	SECONDS_PER_DAY 86400
1756 
1757 /*
1758  * Initialize the system time based on the TOD chip.  approx is used as
1759  * an approximation of time (e.g. from the filesystem) in the event that
1760  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1761  * means the filesystem doesn't keep time.
1762  */
1763 void
1764 clkset(time_t approx)
1765 {
1766 	timestruc_t ts;
1767 	int spl;
1768 	int set_clock = 0;
1769 
1770 	mutex_enter(&tod_lock);
1771 	ts = tod_get();
1772 
1773 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1774 		/*
1775 		 * If the TOD chip is reporting some time after 1971,
1776 		 * then it probably didn't lose power or become otherwise
1777 		 * cleared in the recent past;  check to assure that
1778 		 * the time coming from the filesystem isn't in the future
1779 		 * according to the TOD chip.
1780 		 */
1781 		if (approx != -1 && approx > ts.tv_sec) {
1782 			cmn_err(CE_WARN, "Last shutdown is later "
1783 			    "than time on time-of-day chip; check date.");
1784 		}
1785 	} else {
1786 		/*
1787 		 * If the TOD chip isn't giving correct time, then set it to
1788 		 * the time that was passed in as a rough estimate.  If we
1789 		 * don't have an estimate, then set the clock back to a time
1790 		 * when Oliver North, ALF and Dire Straits were all on the
1791 		 * collective brain:  1987.
1792 		 */
1793 		timestruc_t tmp;
1794 		if (approx == -1)
1795 			ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1796 		else
1797 			ts.tv_sec = approx;
1798 		ts.tv_nsec = 0;
1799 
1800 		/*
1801 		 * Attempt to write the new time to the TOD chip.  Set spl high
1802 		 * to avoid getting preempted between the tod_set and tod_get.
1803 		 */
1804 		spl = splhi();
1805 		tod_set(ts);
1806 		tmp = tod_get();
1807 		splx(spl);
1808 
1809 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1810 			tod_broken = 1;
1811 			dosynctodr = 0;
1812 			cmn_err(CE_WARN, "Time-of-day chip unresponsive;"
1813 			    " dead batteries?");
1814 		} else {
1815 			cmn_err(CE_WARN, "Time-of-day chip had "
1816 			    "incorrect date; check and reset.");
1817 		}
1818 		set_clock = 1;
1819 	}
1820 
1821 	if (!boot_time) {
1822 		boot_time = ts.tv_sec;
1823 		set_clock = 1;
1824 	}
1825 
1826 	if (set_clock)
1827 		set_hrestime(&ts);
1828 
1829 	mutex_exit(&tod_lock);
1830 }
1831 
1832 int	timechanged;	/* for testing if the system time has been reset */
1833 
1834 void
1835 set_hrestime(timestruc_t *ts)
1836 {
1837 	int spl = hr_clock_lock();
1838 	hrestime = *ts;
1839 	membar_enter();	/* hrestime must be visible before timechanged++ */
1840 	timedelta = 0;
1841 	timechanged++;
1842 	hr_clock_unlock(spl);
1843 }
1844 
1845 static uint_t deadman_seconds;
1846 static uint32_t deadman_panics;
1847 static int deadman_enabled = 0;
1848 static int deadman_panic_timers = 1;
1849 
1850 static void
1851 deadman(void)
1852 {
1853 	if (panicstr) {
1854 		/*
1855 		 * During panic, other CPUs besides the panic
1856 		 * master continue to handle cyclics and some other
1857 		 * interrupts.  The code below is intended to be
1858 		 * single threaded, so any CPU other than the master
1859 		 * must keep out.
1860 		 */
1861 		if (CPU->cpu_id != panic_cpu.cpu_id)
1862 			return;
1863 
1864 		/*
1865 		 * If we're panicking, the deadman cyclic continues to increase
1866 		 * lbolt in case the dump device driver relies on this for
1867 		 * timeouts.  Note that we rely on deadman() being invoked once
1868 		 * per second, and credit lbolt and lbolt64 with hz ticks each.
1869 		 */
1870 		lbolt += hz;
1871 		lbolt64 += hz;
1872 
1873 		if (!deadman_panic_timers)
1874 			return; /* allow all timers to be manually disabled */
1875 
1876 		/*
1877 		 * If we are generating a crash dump or syncing filesystems and
1878 		 * the corresponding timer is set, decrement it and re-enter
1879 		 * the panic code to abort it and advance to the next state.
1880 		 * The panic states and triggers are explained in panic.c.
1881 		 */
1882 		if (panic_dump) {
1883 			if (dump_timeleft && (--dump_timeleft == 0)) {
1884 				panic("panic dump timeout");
1885 				/*NOTREACHED*/
1886 			}
1887 		} else if (panic_sync) {
1888 			if (sync_timeleft && (--sync_timeleft == 0)) {
1889 				panic("panic sync timeout");
1890 				/*NOTREACHED*/
1891 			}
1892 		}
1893 
1894 		return;
1895 	}
1896 
1897 	if (lbolt != CPU->cpu_deadman_lbolt) {
1898 		CPU->cpu_deadman_lbolt = lbolt;
1899 		CPU->cpu_deadman_countdown = deadman_seconds;
1900 		return;
1901 	}
1902 
1903 	if (CPU->cpu_deadman_countdown-- > 0)
1904 		return;
1905 
1906 	/*
1907 	 * Regardless of whether or not we actually bring the system down,
1908 	 * bump the deadman_panics variable.
1909 	 *
1910 	 * N.B. deadman_panics is incremented once for each CPU that
1911 	 * passes through here.  It's expected that all the CPUs will
1912 	 * detect this condition within one second of each other, so
1913 	 * when deadman_enabled is off, deadman_panics will
1914 	 * typically be a multiple of the total number of CPUs in
1915 	 * the system.
1916 	 */
1917 	atomic_add_32(&deadman_panics, 1);
1918 
1919 	if (!deadman_enabled) {
1920 		CPU->cpu_deadman_countdown = deadman_seconds;
1921 		return;
1922 	}
1923 
1924 	/*
1925 	 * If we're here, we want to bring the system down.
1926 	 */
1927 	panic("deadman: timed out after %d seconds of clock "
1928 	    "inactivity", deadman_seconds);
1929 	/*NOTREACHED*/
1930 }
1931 
1932 /*ARGSUSED*/
1933 static void
1934 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
1935 {
1936 	cpu->cpu_deadman_lbolt = 0;
1937 	cpu->cpu_deadman_countdown = deadman_seconds;
1938 
1939 	hdlr->cyh_func = (cyc_func_t)deadman;
1940 	hdlr->cyh_level = CY_HIGH_LEVEL;
1941 	hdlr->cyh_arg = NULL;
1942 
1943 	/*
1944 	 * Stagger the CPUs so that they don't all run deadman() at
1945 	 * the same time.  Simplest reason to do this is to make it
1946 	 * more likely that only one CPU will panic in case of a
1947 	 * timeout.  This is (strictly speaking) an aesthetic, not a
1948 	 * technical consideration.
1949 	 *
1950 	 * The interval must be one second in accordance with the
1951 	 * code in deadman() above to increase lbolt during panic.
1952 	 */
1953 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
1954 	when->cyt_interval = NANOSEC;
1955 }
1956 
1957 
1958 void
1959 deadman_init(void)
1960 {
1961 	cyc_omni_handler_t hdlr;
1962 
1963 	if (deadman_seconds == 0)
1964 		deadman_seconds = snoop_interval / MICROSEC;
1965 
1966 	if (snooping)
1967 		deadman_enabled = 1;
1968 
1969 	hdlr.cyo_online = deadman_online;
1970 	hdlr.cyo_offline = NULL;
1971 	hdlr.cyo_arg = NULL;
1972 
1973 	mutex_enter(&cpu_lock);
1974 	deadman_cyclic = cyclic_add_omni(&hdlr);
1975 	mutex_exit(&cpu_lock);
1976 }
1977 
1978 /*
1979  * tod_fault() is for updating tod validate mechanism state:
1980  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
1981  *     currently used for debugging only
1982  * (2) The following four cases detected by tod validate mechanism:
1983  *       TOD_REVERSED: current tod value is less than previous value.
1984  *       TOD_STALLED: current tod value hasn't advanced.
1985  *       TOD_JUMPED: current tod value advanced too far from previous value.
1986  *       TOD_RATECHANGED: the ratio between average tod delta and
1987  *       average tick delta has changed.
1988  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
1989  *     a virtual TOD provided by a hypervisor.
1990  */
1991 enum tod_fault_type
1992 tod_fault(enum tod_fault_type ftype, int off)
1993 {
1994 	ASSERT(MUTEX_HELD(&tod_lock));
1995 
1996 	if (tod_faulted != ftype) {
1997 		switch (ftype) {
1998 		case TOD_NOFAULT:
1999 			plat_tod_fault(TOD_NOFAULT);
2000 			cmn_err(CE_NOTE, "Restarted tracking "
2001 			    "Time of Day clock.");
2002 			tod_faulted = ftype;
2003 			break;
2004 		case TOD_REVERSED:
2005 		case TOD_JUMPED:
2006 			if (tod_faulted == TOD_NOFAULT) {
2007 				plat_tod_fault(ftype);
2008 				cmn_err(CE_WARN, "Time of Day clock error: "
2009 				    "reason [%s by 0x%x]. -- "
2010 				    " Stopped tracking Time Of Day clock.",
2011 				    tod_fault_table[ftype], off);
2012 				tod_faulted = ftype;
2013 			}
2014 			break;
2015 		case TOD_STALLED:
2016 		case TOD_RATECHANGED:
2017 			if (tod_faulted == TOD_NOFAULT) {
2018 				plat_tod_fault(ftype);
2019 				cmn_err(CE_WARN, "Time of Day clock error: "
2020 				    "reason [%s]. -- "
2021 				    " Stopped tracking Time Of Day clock.",
2022 				    tod_fault_table[ftype]);
2023 				tod_faulted = ftype;
2024 			}
2025 			break;
2026 		case TOD_RDONLY:
2027 			if (tod_faulted == TOD_NOFAULT) {
2028 				plat_tod_fault(ftype);
2029 				cmn_err(CE_NOTE, "!Time of Day clock is "
2030 				    "Read-Only; set of Date/Time will not "
2031 				    "persist across reboot.");
2032 				tod_faulted = ftype;
2033 			}
2034 			break;
2035 		default:
2036 			break;
2037 		}
2038 	}
2039 	return (tod_faulted);
2040 }
2041 
2042 void
2043 tod_fault_reset()
2044 {
2045 	tod_fault_reset_flag = 1;
2046 }
2047 
2048 
2049 /*
2050  * tod_validate() is used for checking values returned by tod_get().
2051  * Four error cases can be detected by this routine:
2052  *   TOD_REVERSED: current tod value is less than previous.
2053  *   TOD_STALLED: current tod value hasn't advanced.
2054  *   TOD_JUMPED: current tod value advanced too far from previous value.
2055  *   TOD_RATECHANGED: the ratio between average tod delta and
2056  *   average tick delta has changed.
2057  */
2058 time_t
2059 tod_validate(time_t tod)
2060 {
2061 	time_t diff_tod;
2062 	hrtime_t diff_tick;
2063 
2064 	long dtick;
2065 	int dtick_delta;
2066 
2067 	int off = 0;
2068 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2069 
2070 	static int firsttime = 1;
2071 
2072 	static time_t prev_tod = 0;
2073 	static hrtime_t prev_tick = 0;
2074 	static long dtick_avg = TOD_REF_FREQ;
2075 
2076 	hrtime_t tick = gethrtime();
2077 
2078 	ASSERT(MUTEX_HELD(&tod_lock));
2079 
2080 	/*
2081 	 * tod_validate_enable is patchable via /etc/system.
2082 	 * If TOD is already faulted, or if TOD validation is deferred,
2083 	 * there is nothing to do.
2084 	 */
2085 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2086 	    tod_validate_deferred) {
2087 		return (tod);
2088 	}
2089 
2090 	/*
2091 	 * Update prev_tod and prev_tick values for first run
2092 	 */
2093 	if (firsttime) {
2094 		firsttime = 0;
2095 		prev_tod = tod;
2096 		prev_tick = tick;
2097 		return (tod);
2098 	}
2099 
2100 	/*
2101 	 * For either of these conditions, we need to reset ourself
2102 	 * and start validation from zero since each condition
2103 	 * indicates that the TOD will be updated with new value
2104 	 * Also, note that tod_needsync will be reset in clock()
2105 	 */
2106 	if (tod_needsync || tod_fault_reset_flag) {
2107 		firsttime = 1;
2108 		prev_tod = 0;
2109 		prev_tick = 0;
2110 		dtick_avg = TOD_REF_FREQ;
2111 
2112 		if (tod_fault_reset_flag)
2113 			tod_fault_reset_flag = 0;
2114 
2115 		return (tod);
2116 	}
2117 
2118 	/* test hook */
2119 	switch (tod_unit_test) {
2120 	case 1: /* for testing jumping tod */
2121 		tod += tod_test_injector;
2122 		tod_unit_test = 0;
2123 		break;
2124 	case 2:	/* for testing stuck tod bit */
2125 		tod |= 1 << tod_test_injector;
2126 		tod_unit_test = 0;
2127 		break;
2128 	case 3:	/* for testing stalled tod */
2129 		tod = prev_tod;
2130 		tod_unit_test = 0;
2131 		break;
2132 	case 4:	/* reset tod fault status */
2133 		(void) tod_fault(TOD_NOFAULT, 0);
2134 		tod_unit_test = 0;
2135 		break;
2136 	default:
2137 		break;
2138 	}
2139 
2140 	diff_tod = tod - prev_tod;
2141 	diff_tick = tick - prev_tick;
2142 
2143 	ASSERT(diff_tick >= 0);
2144 
2145 	if (diff_tod < 0) {
2146 		/* ERROR - tod reversed */
2147 		tod_bad = TOD_REVERSED;
2148 		off = (int)(prev_tod - tod);
2149 	} else if (diff_tod == 0) {
2150 		/* tod did not advance */
2151 		if (diff_tick > TOD_STALL_THRESHOLD) {
2152 			/* ERROR - tod stalled */
2153 			tod_bad = TOD_STALLED;
2154 		} else {
2155 			/*
2156 			 * Make sure we don't update prev_tick
2157 			 * so that diff_tick is calculated since
2158 			 * the first diff_tod == 0
2159 			 */
2160 			return (tod);
2161 		}
2162 	} else {
2163 		/* calculate dtick */
2164 		dtick = diff_tick / diff_tod;
2165 
2166 		/* update dtick averages */
2167 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2168 
2169 		/*
2170 		 * Calculate dtick_delta as
2171 		 * variation from reference freq in quartiles
2172 		 */
2173 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2174 		    (TOD_REF_FREQ >> 2);
2175 
2176 		/*
2177 		 * Even with a perfectly functioning TOD device,
2178 		 * when the number of elapsed seconds is low the
2179 		 * algorithm can calculate a rate that is beyond
2180 		 * tolerance, causing an error.  The algorithm is
2181 		 * inaccurate when elapsed time is low (less than
2182 		 * 5 seconds).
2183 		 */
2184 		if (diff_tod > 4) {
2185 			if (dtick < TOD_JUMP_THRESHOLD) {
2186 				/* ERROR - tod jumped */
2187 				tod_bad = TOD_JUMPED;
2188 				off = (int)diff_tod;
2189 			} else if (dtick_delta) {
2190 				/* ERROR - change in clock rate */
2191 				tod_bad = TOD_RATECHANGED;
2192 			}
2193 		}
2194 	}
2195 
2196 	if (tod_bad != TOD_NOFAULT) {
2197 		(void) tod_fault(tod_bad, off);
2198 
2199 		/*
2200 		 * Disable dosynctodr since we are going to fault
2201 		 * the TOD chip anyway here
2202 		 */
2203 		dosynctodr = 0;
2204 
2205 		/*
2206 		 * Set tod to the correct value from hrestime
2207 		 */
2208 		tod = hrestime.tv_sec;
2209 	}
2210 
2211 	prev_tod = tod;
2212 	prev_tick = tick;
2213 	return (tod);
2214 }
2215 
2216 static void
2217 calcloadavg(int nrun, uint64_t *hp_ave)
2218 {
2219 	static int64_t f[3] = { 135, 27, 9 };
2220 	uint_t i;
2221 	int64_t q, r;
2222 
2223 	/*
2224 	 * Compute load average over the last 1, 5, and 15 minutes
2225 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2226 	 * exponential decay:
2227 	 * (1 - exp(-1/60)) << 13 = 135,
2228 	 * (1 - exp(-1/300)) << 13 = 27,
2229 	 * (1 - exp(-1/900)) << 13 = 9.
2230 	 */
2231 
2232 	/*
2233 	 * a little hoop-jumping to avoid integer overflow
2234 	 */
2235 	for (i = 0; i < 3; i++) {
2236 		q = (hp_ave[i]  >> 16) << 7;
2237 		r = (hp_ave[i]  & 0xffff) << 7;
2238 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2239 	}
2240 }
2241