1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/types.h> 35 #include <sys/tuneable.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/lgrp.h> 40 #include <sys/user.h> 41 #include <sys/proc.h> 42 #include <sys/callo.h> 43 #include <sys/kmem.h> 44 #include <sys/var.h> 45 #include <sys/cmn_err.h> 46 #include <sys/swap.h> 47 #include <sys/vmsystm.h> 48 #include <sys/class.h> 49 #include <sys/time.h> 50 #include <sys/debug.h> 51 #include <sys/vtrace.h> 52 #include <sys/spl.h> 53 #include <sys/atomic.h> 54 #include <sys/dumphdr.h> 55 #include <sys/archsystm.h> 56 #include <sys/fs/swapnode.h> 57 #include <sys/panic.h> 58 #include <sys/disp.h> 59 #include <sys/msacct.h> 60 #include <sys/mem_cage.h> 61 62 #include <vm/page.h> 63 #include <vm/anon.h> 64 #include <vm/rm.h> 65 #include <sys/cyclic.h> 66 #include <sys/cpupart.h> 67 #include <sys/rctl.h> 68 #include <sys/task.h> 69 #include <sys/sdt.h> 70 #include <sys/ddi_timer.h> 71 72 /* 73 * for NTP support 74 */ 75 #include <sys/timex.h> 76 #include <sys/inttypes.h> 77 78 /* 79 * clock() is called straight from the clock cyclic; see clock_init(). 80 * 81 * Functions: 82 * reprime clock 83 * schedule callouts 84 * maintain date 85 * jab the scheduler 86 */ 87 88 extern kcondvar_t fsflush_cv; 89 extern sysinfo_t sysinfo; 90 extern vminfo_t vminfo; 91 extern int idleswtch; /* flag set while idle in pswtch() */ 92 93 /* 94 * high-precision avenrun values. These are needed to make the 95 * regular avenrun values accurate. 96 */ 97 static uint64_t hp_avenrun[3]; 98 int avenrun[3]; /* FSCALED average run queue lengths */ 99 time_t time; /* time in seconds since 1970 - for compatibility only */ 100 101 static struct loadavg_s loadavg; 102 /* 103 * Phase/frequency-lock loop (PLL/FLL) definitions 104 * 105 * The following variables are read and set by the ntp_adjtime() system 106 * call. 107 * 108 * time_state shows the state of the system clock, with values defined 109 * in the timex.h header file. 110 * 111 * time_status shows the status of the system clock, with bits defined 112 * in the timex.h header file. 113 * 114 * time_offset is used by the PLL/FLL to adjust the system time in small 115 * increments. 116 * 117 * time_constant determines the bandwidth or "stiffness" of the PLL. 118 * 119 * time_tolerance determines maximum frequency error or tolerance of the 120 * CPU clock oscillator and is a property of the architecture; however, 121 * in principle it could change as result of the presence of external 122 * discipline signals, for instance. 123 * 124 * time_precision is usually equal to the kernel tick variable; however, 125 * in cases where a precision clock counter or external clock is 126 * available, the resolution can be much less than this and depend on 127 * whether the external clock is working or not. 128 * 129 * time_maxerror is initialized by a ntp_adjtime() call and increased by 130 * the kernel once each second to reflect the maximum error bound 131 * growth. 132 * 133 * time_esterror is set and read by the ntp_adjtime() call, but 134 * otherwise not used by the kernel. 135 */ 136 int32_t time_state = TIME_OK; /* clock state */ 137 int32_t time_status = STA_UNSYNC; /* clock status bits */ 138 int32_t time_offset = 0; /* time offset (us) */ 139 int32_t time_constant = 0; /* pll time constant */ 140 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 141 int32_t time_precision = 1; /* clock precision (us) */ 142 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 143 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 144 145 /* 146 * The following variables establish the state of the PLL/FLL and the 147 * residual time and frequency offset of the local clock. The scale 148 * factors are defined in the timex.h header file. 149 * 150 * time_phase and time_freq are the phase increment and the frequency 151 * increment, respectively, of the kernel time variable. 152 * 153 * time_freq is set via ntp_adjtime() from a value stored in a file when 154 * the synchronization daemon is first started. Its value is retrieved 155 * via ntp_adjtime() and written to the file about once per hour by the 156 * daemon. 157 * 158 * time_adj is the adjustment added to the value of tick at each timer 159 * interrupt and is recomputed from time_phase and time_freq at each 160 * seconds rollover. 161 * 162 * time_reftime is the second's portion of the system time at the last 163 * call to ntp_adjtime(). It is used to adjust the time_freq variable 164 * and to increase the time_maxerror as the time since last update 165 * increases. 166 */ 167 int32_t time_phase = 0; /* phase offset (scaled us) */ 168 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 169 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 170 int32_t time_reftime = 0; /* time at last adjustment (s) */ 171 172 /* 173 * The scale factors of the following variables are defined in the 174 * timex.h header file. 175 * 176 * pps_time contains the time at each calibration interval, as read by 177 * microtime(). pps_count counts the seconds of the calibration 178 * interval, the duration of which is nominally pps_shift in powers of 179 * two. 180 * 181 * pps_offset is the time offset produced by the time median filter 182 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 183 * this filter. 184 * 185 * pps_freq is the frequency offset produced by the frequency median 186 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 187 * by this filter. 188 * 189 * pps_usec is latched from a high resolution counter or external clock 190 * at pps_time. Here we want the hardware counter contents only, not the 191 * contents plus the time_tv.usec as usual. 192 * 193 * pps_valid counts the number of seconds since the last PPS update. It 194 * is used as a watchdog timer to disable the PPS discipline should the 195 * PPS signal be lost. 196 * 197 * pps_glitch counts the number of seconds since the beginning of an 198 * offset burst more than tick/2 from current nominal offset. It is used 199 * mainly to suppress error bursts due to priority conflicts between the 200 * PPS interrupt and timer interrupt. 201 * 202 * pps_intcnt counts the calibration intervals for use in the interval- 203 * adaptation algorithm. It's just too complicated for words. 204 */ 205 struct timeval pps_time; /* kernel time at last interval */ 206 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 207 int32_t pps_offset = 0; /* pps time offset (us) */ 208 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 209 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 210 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 211 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 212 int32_t pps_usec = 0; /* microsec counter at last interval */ 213 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 214 int32_t pps_glitch = 0; /* pps signal glitch counter */ 215 int32_t pps_count = 0; /* calibration interval counter (s) */ 216 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 217 int32_t pps_intcnt = 0; /* intervals at current duration */ 218 219 /* 220 * PPS signal quality monitors 221 * 222 * pps_jitcnt counts the seconds that have been discarded because the 223 * jitter measured by the time median filter exceeds the limit MAXTIME 224 * (100 us). 225 * 226 * pps_calcnt counts the frequency calibration intervals, which are 227 * variable from 4 s to 256 s. 228 * 229 * pps_errcnt counts the calibration intervals which have been discarded 230 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 231 * calibration interval jitter exceeds two ticks. 232 * 233 * pps_stbcnt counts the calibration intervals that have been discarded 234 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 235 */ 236 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 237 int32_t pps_calcnt = 0; /* calibration intervals */ 238 int32_t pps_errcnt = 0; /* calibration errors */ 239 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 240 241 /* The following variables require no explicit locking */ 242 volatile clock_t lbolt; /* time in Hz since last boot */ 243 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 244 245 kcondvar_t lbolt_cv; 246 int one_sec = 1; /* turned on once every second */ 247 static int fsflushcnt; /* counter for t_fsflushr */ 248 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 249 int tod_needsync = 0; /* need to sync tod chip with software time */ 250 static int tod_broken = 0; /* clock chip doesn't work */ 251 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 252 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 253 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 254 cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 255 256 extern void clock_tick_schedule(int); 257 258 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 259 260 /* 261 * for tod fault detection 262 */ 263 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 264 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 265 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 266 #define TOD_FILTER_N 4 267 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 268 static int tod_faulted = TOD_NOFAULT; 269 static int tod_fault_reset_flag = 0; 270 271 /* patchable via /etc/system */ 272 int tod_validate_enable = 1; 273 274 /* 275 * On non-SPARC systems, TOD validation must be deferred until gethrtime 276 * returns non-zero values (after mach_clkinit's execution). 277 * On SPARC systems, it must be deferred until after hrtime_base 278 * and hres_last_tick are set (in the first invocation of hres_tick). 279 * Since in both cases the prerequisites occur before the invocation of 280 * tod_get() in clock(), the deferment is lifted there. 281 */ 282 static boolean_t tod_validate_deferred = B_TRUE; 283 284 /* 285 * tod_fault_table[] must be aligned with 286 * enum tod_fault_type in systm.h 287 */ 288 static char *tod_fault_table[] = { 289 "Reversed", /* TOD_REVERSED */ 290 "Stalled", /* TOD_STALLED */ 291 "Jumped", /* TOD_JUMPED */ 292 "Changed in Clock Rate", /* TOD_RATECHANGED */ 293 "Is Read-Only" /* TOD_RDONLY */ 294 /* 295 * no strings needed for TOD_NOFAULT 296 */ 297 }; 298 299 /* 300 * test hook for tod broken detection in tod_validate 301 */ 302 int tod_unit_test = 0; 303 time_t tod_test_injector; 304 305 #define CLOCK_ADJ_HIST_SIZE 4 306 307 static int adj_hist_entry; 308 309 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 310 311 static void calcloadavg(int, uint64_t *); 312 static int genloadavg(struct loadavg_s *); 313 static void loadavg_update(); 314 315 void (*cmm_clock_callout)() = NULL; 316 void (*cpucaps_clock_callout)() = NULL; 317 318 extern clock_t clock_tick_proc_max; 319 320 static void 321 clock(void) 322 { 323 kthread_t *t; 324 uint_t nrunnable; 325 uint_t w_io; 326 cpu_t *cp; 327 cpupart_t *cpupart; 328 extern void set_anoninfo(); 329 extern void set_freemem(); 330 void (*funcp)(); 331 int32_t ltemp; 332 int64_t lltemp; 333 int s; 334 int do_lgrp_load; 335 int i; 336 337 if (panicstr) 338 return; 339 340 set_anoninfo(); 341 /* 342 * Make sure that 'freemem' do not drift too far from the truth 343 */ 344 set_freemem(); 345 346 347 /* 348 * Before the section which is repeated is executed, we do 349 * the time delta processing which occurs every clock tick 350 * 351 * There is additional processing which happens every time 352 * the nanosecond counter rolls over which is described 353 * below - see the section which begins with : if (one_sec) 354 * 355 * This section marks the beginning of the precision-kernel 356 * code fragment. 357 * 358 * First, compute the phase adjustment. If the low-order bits 359 * (time_phase) of the update overflow, bump the higher order 360 * bits (time_update). 361 */ 362 time_phase += time_adj; 363 if (time_phase <= -FINEUSEC) { 364 ltemp = -time_phase / SCALE_PHASE; 365 time_phase += ltemp * SCALE_PHASE; 366 s = hr_clock_lock(); 367 timedelta -= ltemp * (NANOSEC/MICROSEC); 368 hr_clock_unlock(s); 369 } else if (time_phase >= FINEUSEC) { 370 ltemp = time_phase / SCALE_PHASE; 371 time_phase -= ltemp * SCALE_PHASE; 372 s = hr_clock_lock(); 373 timedelta += ltemp * (NANOSEC/MICROSEC); 374 hr_clock_unlock(s); 375 } 376 377 /* 378 * End of precision-kernel code fragment which is processed 379 * every timer interrupt. 380 * 381 * Continue with the interrupt processing as scheduled. 382 */ 383 /* 384 * Count the number of runnable threads and the number waiting 385 * for some form of I/O to complete -- gets added to 386 * sysinfo.waiting. To know the state of the system, must add 387 * wait counts from all CPUs. Also add up the per-partition 388 * statistics. 389 */ 390 w_io = 0; 391 nrunnable = 0; 392 393 /* 394 * keep track of when to update lgrp/part loads 395 */ 396 397 do_lgrp_load = 0; 398 if (lgrp_ticks++ >= hz / 10) { 399 lgrp_ticks = 0; 400 do_lgrp_load = 1; 401 } 402 403 if (one_sec) 404 loadavg_update(); 405 406 /* 407 * First count the threads waiting on kpreempt queues in each 408 * CPU partition. 409 */ 410 411 cpupart = cp_list_head; 412 do { 413 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 414 415 cpupart->cp_updates++; 416 nrunnable += cpupart_nrunnable; 417 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 418 if (one_sec) { 419 cpupart->cp_nrunning = 0; 420 cpupart->cp_nrunnable = cpupart_nrunnable; 421 } 422 } while ((cpupart = cpupart->cp_next) != cp_list_head); 423 424 425 /* Now count the per-CPU statistics. */ 426 cp = cpu_list; 427 do { 428 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 429 430 nrunnable += cpu_nrunnable; 431 cpupart = cp->cpu_part; 432 cpupart->cp_nrunnable_cum += cpu_nrunnable; 433 if (one_sec) { 434 cpupart->cp_nrunnable += cpu_nrunnable; 435 /* 436 * Update user, system, and idle cpu times. 437 */ 438 cpupart->cp_nrunning++; 439 /* 440 * w_io is used to update sysinfo.waiting during 441 * one_second processing below. Only gather w_io 442 * information when we walk the list of cpus if we're 443 * going to perform one_second processing. 444 */ 445 w_io += CPU_STATS(cp, sys.iowait); 446 } 447 448 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 449 int i, load, change; 450 hrtime_t intracct, intrused; 451 const hrtime_t maxnsec = 1000000000; 452 const int precision = 100; 453 454 /* 455 * Estimate interrupt load on this cpu each second. 456 * Computes cpu_intrload as %utilization (0-99). 457 */ 458 459 /* add up interrupt time from all micro states */ 460 for (intracct = 0, i = 0; i < NCMSTATES; i++) 461 intracct += cp->cpu_intracct[i]; 462 scalehrtime(&intracct); 463 464 /* compute nsec used in the past second */ 465 intrused = intracct - cp->cpu_intrlast; 466 cp->cpu_intrlast = intracct; 467 468 /* limit the value for safety (and the first pass) */ 469 if (intrused >= maxnsec) 470 intrused = maxnsec - 1; 471 472 /* calculate %time in interrupt */ 473 load = (precision * intrused) / maxnsec; 474 ASSERT(load >= 0 && load < precision); 475 change = cp->cpu_intrload - load; 476 477 /* jump to new max, or decay the old max */ 478 if (change < 0) 479 cp->cpu_intrload = load; 480 else if (change > 0) 481 cp->cpu_intrload -= (change + 3) / 4; 482 483 DTRACE_PROBE3(cpu_intrload, 484 cpu_t *, cp, 485 hrtime_t, intracct, 486 hrtime_t, intrused); 487 } 488 489 if (do_lgrp_load && 490 (cp->cpu_flags & CPU_EXISTS)) { 491 /* 492 * When updating the lgroup's load average, 493 * account for the thread running on the CPU. 494 * If the CPU is the current one, then we need 495 * to account for the underlying thread which 496 * got the clock interrupt not the thread that is 497 * handling the interrupt and caculating the load 498 * average 499 */ 500 t = cp->cpu_thread; 501 if (CPU == cp) 502 t = t->t_intr; 503 504 /* 505 * Account for the load average for this thread if 506 * it isn't the idle thread or it is on the interrupt 507 * stack and not the current CPU handling the clock 508 * interrupt 509 */ 510 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 511 CPU_ON_INTR(cp))) { 512 if (t->t_lpl == cp->cpu_lpl) { 513 /* local thread */ 514 cpu_nrunnable++; 515 } else { 516 /* 517 * This is a remote thread, charge it 518 * against its home lgroup. Note that 519 * we notice that a thread is remote 520 * only if it's currently executing. 521 * This is a reasonable approximation, 522 * since queued remote threads are rare. 523 * Note also that if we didn't charge 524 * it to its home lgroup, remote 525 * execution would often make a system 526 * appear balanced even though it was 527 * not, and thread placement/migration 528 * would often not be done correctly. 529 */ 530 lgrp_loadavg(t->t_lpl, 531 LGRP_LOADAVG_IN_THREAD_MAX, 0); 532 } 533 } 534 lgrp_loadavg(cp->cpu_lpl, 535 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 536 } 537 } while ((cp = cp->cpu_next) != cpu_list); 538 539 clock_tick_schedule(one_sec); 540 541 /* 542 * bump time in ticks 543 * 544 * We rely on there being only one clock thread and hence 545 * don't need a lock to protect lbolt. 546 */ 547 lbolt++; 548 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 549 550 /* 551 * Check for a callout that needs be called from the clock 552 * thread to support the membership protocol in a clustered 553 * system. Copy the function pointer so that we can reset 554 * this to NULL if needed. 555 */ 556 if ((funcp = cmm_clock_callout) != NULL) 557 (*funcp)(); 558 559 if ((funcp = cpucaps_clock_callout) != NULL) 560 (*funcp)(); 561 562 /* 563 * Wakeup the cageout thread waiters once per second. 564 */ 565 if (one_sec) 566 kcage_tick(); 567 568 /* 569 * Schedule timeout() requests if any are due at this time. 570 */ 571 callout_schedule(); 572 573 if (one_sec) { 574 575 int drift, absdrift; 576 timestruc_t tod; 577 int s; 578 579 /* 580 * Beginning of precision-kernel code fragment executed 581 * every second. 582 * 583 * On rollover of the second the phase adjustment to be 584 * used for the next second is calculated. Also, the 585 * maximum error is increased by the tolerance. If the 586 * PPS frequency discipline code is present, the phase is 587 * increased to compensate for the CPU clock oscillator 588 * frequency error. 589 * 590 * On a 32-bit machine and given parameters in the timex.h 591 * header file, the maximum phase adjustment is +-512 ms 592 * and maximum frequency offset is (a tad less than) 593 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 594 */ 595 time_maxerror += time_tolerance / SCALE_USEC; 596 597 /* 598 * Leap second processing. If in leap-insert state at 599 * the end of the day, the system clock is set back one 600 * second; if in leap-delete state, the system clock is 601 * set ahead one second. The microtime() routine or 602 * external clock driver will insure that reported time 603 * is always monotonic. The ugly divides should be 604 * replaced. 605 */ 606 switch (time_state) { 607 608 case TIME_OK: 609 if (time_status & STA_INS) 610 time_state = TIME_INS; 611 else if (time_status & STA_DEL) 612 time_state = TIME_DEL; 613 break; 614 615 case TIME_INS: 616 if (hrestime.tv_sec % 86400 == 0) { 617 s = hr_clock_lock(); 618 hrestime.tv_sec--; 619 hr_clock_unlock(s); 620 time_state = TIME_OOP; 621 } 622 break; 623 624 case TIME_DEL: 625 if ((hrestime.tv_sec + 1) % 86400 == 0) { 626 s = hr_clock_lock(); 627 hrestime.tv_sec++; 628 hr_clock_unlock(s); 629 time_state = TIME_WAIT; 630 } 631 break; 632 633 case TIME_OOP: 634 time_state = TIME_WAIT; 635 break; 636 637 case TIME_WAIT: 638 if (!(time_status & (STA_INS | STA_DEL))) 639 time_state = TIME_OK; 640 default: 641 break; 642 } 643 644 /* 645 * Compute the phase adjustment for the next second. In 646 * PLL mode, the offset is reduced by a fixed factor 647 * times the time constant. In FLL mode the offset is 648 * used directly. In either mode, the maximum phase 649 * adjustment for each second is clamped so as to spread 650 * the adjustment over not more than the number of 651 * seconds between updates. 652 */ 653 if (time_offset == 0) 654 time_adj = 0; 655 else if (time_offset < 0) { 656 lltemp = -time_offset; 657 if (!(time_status & STA_FLL)) { 658 if ((1 << time_constant) >= SCALE_KG) 659 lltemp *= (1 << time_constant) / 660 SCALE_KG; 661 else 662 lltemp = (lltemp / SCALE_KG) >> 663 time_constant; 664 } 665 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 666 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 667 time_offset += lltemp; 668 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 669 } else { 670 lltemp = time_offset; 671 if (!(time_status & STA_FLL)) { 672 if ((1 << time_constant) >= SCALE_KG) 673 lltemp *= (1 << time_constant) / 674 SCALE_KG; 675 else 676 lltemp = (lltemp / SCALE_KG) >> 677 time_constant; 678 } 679 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 680 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 681 time_offset -= lltemp; 682 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 683 } 684 685 /* 686 * Compute the frequency estimate and additional phase 687 * adjustment due to frequency error for the next 688 * second. When the PPS signal is engaged, gnaw on the 689 * watchdog counter and update the frequency computed by 690 * the pll and the PPS signal. 691 */ 692 pps_valid++; 693 if (pps_valid == PPS_VALID) { 694 pps_jitter = MAXTIME; 695 pps_stabil = MAXFREQ; 696 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 697 STA_PPSWANDER | STA_PPSERROR); 698 } 699 lltemp = time_freq + pps_freq; 700 701 if (lltemp) 702 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 703 704 /* 705 * End of precision kernel-code fragment 706 * 707 * The section below should be modified if we are planning 708 * to use NTP for synchronization. 709 * 710 * Note: the clock synchronization code now assumes 711 * the following: 712 * - if dosynctodr is 1, then compute the drift between 713 * the tod chip and software time and adjust one or 714 * the other depending on the circumstances 715 * 716 * - if dosynctodr is 0, then the tod chip is independent 717 * of the software clock and should not be adjusted, 718 * but allowed to free run. this allows NTP to sync. 719 * hrestime without any interference from the tod chip. 720 */ 721 722 tod_validate_deferred = B_FALSE; 723 mutex_enter(&tod_lock); 724 tod = tod_get(); 725 drift = tod.tv_sec - hrestime.tv_sec; 726 absdrift = (drift >= 0) ? drift : -drift; 727 if (tod_needsync || absdrift > 1) { 728 int s; 729 if (absdrift > 2) { 730 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 731 s = hr_clock_lock(); 732 hrestime = tod; 733 membar_enter(); /* hrestime visible */ 734 timedelta = 0; 735 timechanged++; 736 tod_needsync = 0; 737 hr_clock_unlock(s); 738 } 739 } else { 740 if (tod_needsync || !dosynctodr) { 741 gethrestime(&tod); 742 tod_set(tod); 743 s = hr_clock_lock(); 744 if (timedelta == 0) 745 tod_needsync = 0; 746 hr_clock_unlock(s); 747 } else { 748 /* 749 * If the drift is 2 seconds on the 750 * money, then the TOD is adjusting 751 * the clock; record that. 752 */ 753 clock_adj_hist[adj_hist_entry++ % 754 CLOCK_ADJ_HIST_SIZE] = lbolt64; 755 s = hr_clock_lock(); 756 timedelta = (int64_t)drift*NANOSEC; 757 hr_clock_unlock(s); 758 } 759 } 760 } 761 one_sec = 0; 762 time = gethrestime_sec(); /* for crusty old kmem readers */ 763 mutex_exit(&tod_lock); 764 765 /* 766 * Some drivers still depend on this... XXX 767 */ 768 cv_broadcast(&lbolt_cv); 769 770 sysinfo.updates++; 771 vminfo.freemem += freemem; 772 { 773 pgcnt_t maxswap, resv, free; 774 pgcnt_t avail = 775 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 776 777 maxswap = k_anoninfo.ani_mem_resv + 778 k_anoninfo.ani_max +avail; 779 free = k_anoninfo.ani_free + avail; 780 resv = k_anoninfo.ani_phys_resv + 781 k_anoninfo.ani_mem_resv; 782 783 vminfo.swap_resv += resv; 784 /* number of reserved and allocated pages */ 785 #ifdef DEBUG 786 if (maxswap < free) 787 cmn_err(CE_WARN, "clock: maxswap < free"); 788 if (maxswap < resv) 789 cmn_err(CE_WARN, "clock: maxswap < resv"); 790 #endif 791 vminfo.swap_alloc += maxswap - free; 792 vminfo.swap_avail += maxswap - resv; 793 vminfo.swap_free += free; 794 } 795 if (nrunnable) { 796 sysinfo.runque += nrunnable; 797 sysinfo.runocc++; 798 } 799 if (nswapped) { 800 sysinfo.swpque += nswapped; 801 sysinfo.swpocc++; 802 } 803 sysinfo.waiting += w_io; 804 805 /* 806 * Wake up fsflush to write out DELWRI 807 * buffers, dirty pages and other cached 808 * administrative data, e.g. inodes. 809 */ 810 if (--fsflushcnt <= 0) { 811 fsflushcnt = tune.t_fsflushr; 812 cv_signal(&fsflush_cv); 813 } 814 815 vmmeter(); 816 calcloadavg(genloadavg(&loadavg), hp_avenrun); 817 for (i = 0; i < 3; i++) 818 /* 819 * At the moment avenrun[] can only hold 31 820 * bits of load average as it is a signed 821 * int in the API. We need to ensure that 822 * hp_avenrun[i] >> (16 - FSHIFT) will not be 823 * too large. If it is, we put the largest value 824 * that we can use into avenrun[i]. This is 825 * kludgey, but about all we can do until we 826 * avenrun[] is declared as an array of uint64[] 827 */ 828 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 829 avenrun[i] = (int32_t)(hp_avenrun[i] >> 830 (16 - FSHIFT)); 831 else 832 avenrun[i] = 0x7fffffff; 833 834 cpupart = cp_list_head; 835 do { 836 calcloadavg(genloadavg(&cpupart->cp_loadavg), 837 cpupart->cp_hp_avenrun); 838 } while ((cpupart = cpupart->cp_next) != cp_list_head); 839 840 /* 841 * Wake up the swapper thread if necessary. 842 */ 843 if (runin || 844 (runout && (avefree < desfree || wake_sched_sec))) { 845 t = &t0; 846 thread_lock(t); 847 if (t->t_state == TS_STOPPED) { 848 runin = runout = 0; 849 wake_sched_sec = 0; 850 t->t_whystop = 0; 851 t->t_whatstop = 0; 852 t->t_schedflag &= ~TS_ALLSTART; 853 THREAD_TRANSITION(t); 854 setfrontdq(t); 855 } 856 thread_unlock(t); 857 } 858 } 859 860 /* 861 * Wake up the swapper if any high priority swapped-out threads 862 * became runable during the last tick. 863 */ 864 if (wake_sched) { 865 t = &t0; 866 thread_lock(t); 867 if (t->t_state == TS_STOPPED) { 868 runin = runout = 0; 869 wake_sched = 0; 870 t->t_whystop = 0; 871 t->t_whatstop = 0; 872 t->t_schedflag &= ~TS_ALLSTART; 873 THREAD_TRANSITION(t); 874 setfrontdq(t); 875 } 876 thread_unlock(t); 877 } 878 } 879 880 void 881 clock_init(void) 882 { 883 cyc_handler_t hdlr; 884 cyc_time_t when; 885 886 hdlr.cyh_func = (cyc_func_t)clock; 887 hdlr.cyh_level = CY_LOCK_LEVEL; 888 hdlr.cyh_arg = NULL; 889 890 when.cyt_when = 0; 891 when.cyt_interval = nsec_per_tick; 892 893 mutex_enter(&cpu_lock); 894 clock_cyclic = cyclic_add(&hdlr, &when); 895 mutex_exit(&cpu_lock); 896 897 /* 898 * cyclic_timer is dedicated to the ddi interface, which 899 * uses the same clock resolution as the system one. 900 */ 901 hdlr.cyh_func = (cyc_func_t)cyclic_timer; 902 hdlr.cyh_level = CY_LOCK_LEVEL; 903 hdlr.cyh_arg = NULL; 904 905 mutex_enter(&cpu_lock); 906 ddi_timer_cyclic = cyclic_add(&hdlr, &when); 907 mutex_exit(&cpu_lock); 908 } 909 910 /* 911 * Called before calcloadavg to get 10-sec moving loadavg together 912 */ 913 914 static int 915 genloadavg(struct loadavg_s *avgs) 916 { 917 int avg; 918 int spos; /* starting position */ 919 int cpos; /* moving current position */ 920 int i; 921 int slen; 922 hrtime_t hr_avg; 923 924 /* 10-second snapshot, calculate first positon */ 925 if (avgs->lg_len == 0) { 926 return (0); 927 } 928 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 929 930 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 931 S_LOADAVG_SZ + (avgs->lg_cur - 1); 932 for (i = hr_avg = 0; i < slen; i++) { 933 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 934 hr_avg += avgs->lg_loads[cpos]; 935 } 936 937 hr_avg = hr_avg / slen; 938 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 939 940 return (avg); 941 } 942 943 /* 944 * Run every second from clock () to update the loadavg count available to the 945 * system and cpu-partitions. 946 * 947 * This works by sampling the previous usr, sys, wait time elapsed, 948 * computing a delta, and adding that delta to the elapsed usr, sys, 949 * wait increase. 950 */ 951 952 static void 953 loadavg_update() 954 { 955 cpu_t *cp; 956 cpupart_t *cpupart; 957 hrtime_t cpu_total; 958 int prev; 959 960 cp = cpu_list; 961 loadavg.lg_total = 0; 962 963 /* 964 * first pass totals up per-cpu statistics for system and cpu 965 * partitions 966 */ 967 968 do { 969 struct loadavg_s *lavg; 970 971 lavg = &cp->cpu_loadavg; 972 973 cpu_total = cp->cpu_acct[CMS_USER] + 974 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 975 /* compute delta against last total */ 976 scalehrtime(&cpu_total); 977 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 978 S_LOADAVG_SZ + (lavg->lg_cur - 1); 979 if (lavg->lg_loads[prev] <= 0) { 980 lavg->lg_loads[lavg->lg_cur] = cpu_total; 981 cpu_total = 0; 982 } else { 983 lavg->lg_loads[lavg->lg_cur] = cpu_total; 984 cpu_total = cpu_total - lavg->lg_loads[prev]; 985 if (cpu_total < 0) 986 cpu_total = 0; 987 } 988 989 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 990 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 991 lavg->lg_len + 1 : S_LOADAVG_SZ; 992 993 loadavg.lg_total += cpu_total; 994 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 995 996 } while ((cp = cp->cpu_next) != cpu_list); 997 998 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 999 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1000 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1001 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1002 /* 1003 * Second pass updates counts 1004 */ 1005 cpupart = cp_list_head; 1006 1007 do { 1008 struct loadavg_s *lavg; 1009 1010 lavg = &cpupart->cp_loadavg; 1011 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1012 lavg->lg_total = 0; 1013 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1014 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1015 lavg->lg_len + 1 : S_LOADAVG_SZ; 1016 1017 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1018 1019 } 1020 1021 /* 1022 * clock_update() - local clock update 1023 * 1024 * This routine is called by ntp_adjtime() to update the local clock 1025 * phase and frequency. The implementation is of an 1026 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1027 * routine computes new time and frequency offset estimates for each 1028 * call. The PPS signal itself determines the new time offset, 1029 * instead of the calling argument. Presumably, calls to 1030 * ntp_adjtime() occur only when the caller believes the local clock 1031 * is valid within some bound (+-128 ms with NTP). If the caller's 1032 * time is far different than the PPS time, an argument will ensue, 1033 * and it's not clear who will lose. 1034 * 1035 * For uncompensated quartz crystal oscillatores and nominal update 1036 * intervals less than 1024 s, operation should be in phase-lock mode 1037 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1038 * intervals greater than this, operation should be in frequency-lock 1039 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1040 * 1041 * Note: mutex(&tod_lock) is in effect. 1042 */ 1043 void 1044 clock_update(int offset) 1045 { 1046 int ltemp, mtemp, s; 1047 1048 ASSERT(MUTEX_HELD(&tod_lock)); 1049 1050 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1051 return; 1052 ltemp = offset; 1053 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1054 ltemp = pps_offset; 1055 1056 /* 1057 * Scale the phase adjustment and clamp to the operating range. 1058 */ 1059 if (ltemp > MAXPHASE) 1060 time_offset = MAXPHASE * SCALE_UPDATE; 1061 else if (ltemp < -MAXPHASE) 1062 time_offset = -(MAXPHASE * SCALE_UPDATE); 1063 else 1064 time_offset = ltemp * SCALE_UPDATE; 1065 1066 /* 1067 * Select whether the frequency is to be controlled and in which 1068 * mode (PLL or FLL). Clamp to the operating range. Ugly 1069 * multiply/divide should be replaced someday. 1070 */ 1071 if (time_status & STA_FREQHOLD || time_reftime == 0) 1072 time_reftime = hrestime.tv_sec; 1073 1074 mtemp = hrestime.tv_sec - time_reftime; 1075 time_reftime = hrestime.tv_sec; 1076 1077 if (time_status & STA_FLL) { 1078 if (mtemp >= MINSEC) { 1079 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1080 SCALE_UPDATE)); 1081 if (ltemp) 1082 time_freq += ltemp / SCALE_KH; 1083 } 1084 } else { 1085 if (mtemp < MAXSEC) { 1086 ltemp *= mtemp; 1087 if (ltemp) 1088 time_freq += (int)(((int64_t)ltemp * 1089 SCALE_USEC) / SCALE_KF) 1090 / (1 << (time_constant * 2)); 1091 } 1092 } 1093 if (time_freq > time_tolerance) 1094 time_freq = time_tolerance; 1095 else if (time_freq < -time_tolerance) 1096 time_freq = -time_tolerance; 1097 1098 s = hr_clock_lock(); 1099 tod_needsync = 1; 1100 hr_clock_unlock(s); 1101 } 1102 1103 /* 1104 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1105 * 1106 * This routine is called at each PPS interrupt in order to discipline 1107 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1108 * and leaves it in a handy spot for the clock() routine. It 1109 * integrates successive PPS phase differences and calculates the 1110 * frequency offset. This is used in clock() to discipline the CPU 1111 * clock oscillator so that intrinsic frequency error is cancelled out. 1112 * The code requires the caller to capture the time and hardware counter 1113 * value at the on-time PPS signal transition. 1114 * 1115 * Note that, on some Unix systems, this routine runs at an interrupt 1116 * priority level higher than the timer interrupt routine clock(). 1117 * Therefore, the variables used are distinct from the clock() 1118 * variables, except for certain exceptions: The PPS frequency pps_freq 1119 * and phase pps_offset variables are determined by this routine and 1120 * updated atomically. The time_tolerance variable can be considered a 1121 * constant, since it is infrequently changed, and then only when the 1122 * PPS signal is disabled. The watchdog counter pps_valid is updated 1123 * once per second by clock() and is atomically cleared in this 1124 * routine. 1125 * 1126 * tvp is the time of the last tick; usec is a microsecond count since the 1127 * last tick. 1128 * 1129 * Note: In Solaris systems, the tick value is actually given by 1130 * usec_per_tick. This is called from the serial driver cdintr(), 1131 * or equivalent, at a high PIL. Because the kernel keeps a 1132 * highresolution time, the following code can accept either 1133 * the traditional argument pair, or the current highres timestamp 1134 * in tvp and zero in usec. 1135 */ 1136 void 1137 ddi_hardpps(struct timeval *tvp, int usec) 1138 { 1139 int u_usec, v_usec, bigtick; 1140 time_t cal_sec; 1141 int cal_usec; 1142 1143 /* 1144 * An occasional glitch can be produced when the PPS interrupt 1145 * occurs in the clock() routine before the time variable is 1146 * updated. Here the offset is discarded when the difference 1147 * between it and the last one is greater than tick/2, but not 1148 * if the interval since the first discard exceeds 30 s. 1149 */ 1150 time_status |= STA_PPSSIGNAL; 1151 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1152 pps_valid = 0; 1153 u_usec = -tvp->tv_usec; 1154 if (u_usec < -(MICROSEC/2)) 1155 u_usec += MICROSEC; 1156 v_usec = pps_offset - u_usec; 1157 if (v_usec < 0) 1158 v_usec = -v_usec; 1159 if (v_usec > (usec_per_tick >> 1)) { 1160 if (pps_glitch > MAXGLITCH) { 1161 pps_glitch = 0; 1162 pps_tf[2] = u_usec; 1163 pps_tf[1] = u_usec; 1164 } else { 1165 pps_glitch++; 1166 u_usec = pps_offset; 1167 } 1168 } else 1169 pps_glitch = 0; 1170 1171 /* 1172 * A three-stage median filter is used to help deglitch the pps 1173 * time. The median sample becomes the time offset estimate; the 1174 * difference between the other two samples becomes the time 1175 * dispersion (jitter) estimate. 1176 */ 1177 pps_tf[2] = pps_tf[1]; 1178 pps_tf[1] = pps_tf[0]; 1179 pps_tf[0] = u_usec; 1180 if (pps_tf[0] > pps_tf[1]) { 1181 if (pps_tf[1] > pps_tf[2]) { 1182 pps_offset = pps_tf[1]; /* 0 1 2 */ 1183 v_usec = pps_tf[0] - pps_tf[2]; 1184 } else if (pps_tf[2] > pps_tf[0]) { 1185 pps_offset = pps_tf[0]; /* 2 0 1 */ 1186 v_usec = pps_tf[2] - pps_tf[1]; 1187 } else { 1188 pps_offset = pps_tf[2]; /* 0 2 1 */ 1189 v_usec = pps_tf[0] - pps_tf[1]; 1190 } 1191 } else { 1192 if (pps_tf[1] < pps_tf[2]) { 1193 pps_offset = pps_tf[1]; /* 2 1 0 */ 1194 v_usec = pps_tf[2] - pps_tf[0]; 1195 } else if (pps_tf[2] < pps_tf[0]) { 1196 pps_offset = pps_tf[0]; /* 1 0 2 */ 1197 v_usec = pps_tf[1] - pps_tf[2]; 1198 } else { 1199 pps_offset = pps_tf[2]; /* 1 2 0 */ 1200 v_usec = pps_tf[1] - pps_tf[0]; 1201 } 1202 } 1203 if (v_usec > MAXTIME) 1204 pps_jitcnt++; 1205 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1206 pps_jitter += v_usec / (1 << PPS_AVG); 1207 if (pps_jitter > (MAXTIME >> 1)) 1208 time_status |= STA_PPSJITTER; 1209 1210 /* 1211 * During the calibration interval adjust the starting time when 1212 * the tick overflows. At the end of the interval compute the 1213 * duration of the interval and the difference of the hardware 1214 * counters at the beginning and end of the interval. This code 1215 * is deliciously complicated by the fact valid differences may 1216 * exceed the value of tick when using long calibration 1217 * intervals and small ticks. Note that the counter can be 1218 * greater than tick if caught at just the wrong instant, but 1219 * the values returned and used here are correct. 1220 */ 1221 bigtick = (int)usec_per_tick * SCALE_USEC; 1222 pps_usec -= pps_freq; 1223 if (pps_usec >= bigtick) 1224 pps_usec -= bigtick; 1225 if (pps_usec < 0) 1226 pps_usec += bigtick; 1227 pps_time.tv_sec++; 1228 pps_count++; 1229 if (pps_count < (1 << pps_shift)) 1230 return; 1231 pps_count = 0; 1232 pps_calcnt++; 1233 u_usec = usec * SCALE_USEC; 1234 v_usec = pps_usec - u_usec; 1235 if (v_usec >= bigtick >> 1) 1236 v_usec -= bigtick; 1237 if (v_usec < -(bigtick >> 1)) 1238 v_usec += bigtick; 1239 if (v_usec < 0) 1240 v_usec = -(-v_usec >> pps_shift); 1241 else 1242 v_usec = v_usec >> pps_shift; 1243 pps_usec = u_usec; 1244 cal_sec = tvp->tv_sec; 1245 cal_usec = tvp->tv_usec; 1246 cal_sec -= pps_time.tv_sec; 1247 cal_usec -= pps_time.tv_usec; 1248 if (cal_usec < 0) { 1249 cal_usec += MICROSEC; 1250 cal_sec--; 1251 } 1252 pps_time = *tvp; 1253 1254 /* 1255 * Check for lost interrupts, noise, excessive jitter and 1256 * excessive frequency error. The number of timer ticks during 1257 * the interval may vary +-1 tick. Add to this a margin of one 1258 * tick for the PPS signal jitter and maximum frequency 1259 * deviation. If the limits are exceeded, the calibration 1260 * interval is reset to the minimum and we start over. 1261 */ 1262 u_usec = (int)usec_per_tick << 1; 1263 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1264 (cal_sec == 0 && cal_usec < u_usec)) || 1265 v_usec > time_tolerance || v_usec < -time_tolerance) { 1266 pps_errcnt++; 1267 pps_shift = PPS_SHIFT; 1268 pps_intcnt = 0; 1269 time_status |= STA_PPSERROR; 1270 return; 1271 } 1272 1273 /* 1274 * A three-stage median filter is used to help deglitch the pps 1275 * frequency. The median sample becomes the frequency offset 1276 * estimate; the difference between the other two samples 1277 * becomes the frequency dispersion (stability) estimate. 1278 */ 1279 pps_ff[2] = pps_ff[1]; 1280 pps_ff[1] = pps_ff[0]; 1281 pps_ff[0] = v_usec; 1282 if (pps_ff[0] > pps_ff[1]) { 1283 if (pps_ff[1] > pps_ff[2]) { 1284 u_usec = pps_ff[1]; /* 0 1 2 */ 1285 v_usec = pps_ff[0] - pps_ff[2]; 1286 } else if (pps_ff[2] > pps_ff[0]) { 1287 u_usec = pps_ff[0]; /* 2 0 1 */ 1288 v_usec = pps_ff[2] - pps_ff[1]; 1289 } else { 1290 u_usec = pps_ff[2]; /* 0 2 1 */ 1291 v_usec = pps_ff[0] - pps_ff[1]; 1292 } 1293 } else { 1294 if (pps_ff[1] < pps_ff[2]) { 1295 u_usec = pps_ff[1]; /* 2 1 0 */ 1296 v_usec = pps_ff[2] - pps_ff[0]; 1297 } else if (pps_ff[2] < pps_ff[0]) { 1298 u_usec = pps_ff[0]; /* 1 0 2 */ 1299 v_usec = pps_ff[1] - pps_ff[2]; 1300 } else { 1301 u_usec = pps_ff[2]; /* 1 2 0 */ 1302 v_usec = pps_ff[1] - pps_ff[0]; 1303 } 1304 } 1305 1306 /* 1307 * Here the frequency dispersion (stability) is updated. If it 1308 * is less than one-fourth the maximum (MAXFREQ), the frequency 1309 * offset is updated as well, but clamped to the tolerance. It 1310 * will be processed later by the clock() routine. 1311 */ 1312 v_usec = (v_usec >> 1) - pps_stabil; 1313 if (v_usec < 0) 1314 pps_stabil -= -v_usec >> PPS_AVG; 1315 else 1316 pps_stabil += v_usec >> PPS_AVG; 1317 if (pps_stabil > MAXFREQ >> 2) { 1318 pps_stbcnt++; 1319 time_status |= STA_PPSWANDER; 1320 return; 1321 } 1322 if (time_status & STA_PPSFREQ) { 1323 if (u_usec < 0) { 1324 pps_freq -= -u_usec >> PPS_AVG; 1325 if (pps_freq < -time_tolerance) 1326 pps_freq = -time_tolerance; 1327 u_usec = -u_usec; 1328 } else { 1329 pps_freq += u_usec >> PPS_AVG; 1330 if (pps_freq > time_tolerance) 1331 pps_freq = time_tolerance; 1332 } 1333 } 1334 1335 /* 1336 * Here the calibration interval is adjusted. If the maximum 1337 * time difference is greater than tick / 4, reduce the interval 1338 * by half. If this is not the case for four consecutive 1339 * intervals, double the interval. 1340 */ 1341 if (u_usec << pps_shift > bigtick >> 2) { 1342 pps_intcnt = 0; 1343 if (pps_shift > PPS_SHIFT) 1344 pps_shift--; 1345 } else if (pps_intcnt >= 4) { 1346 pps_intcnt = 0; 1347 if (pps_shift < PPS_SHIFTMAX) 1348 pps_shift++; 1349 } else 1350 pps_intcnt++; 1351 1352 /* 1353 * If recovering from kmdb, then make sure the tod chip gets resynced. 1354 * If we took an early exit above, then we don't yet have a stable 1355 * calibration signal to lock onto, so don't mark the tod for sync 1356 * until we get all the way here. 1357 */ 1358 { 1359 int s = hr_clock_lock(); 1360 1361 tod_needsync = 1; 1362 hr_clock_unlock(s); 1363 } 1364 } 1365 1366 /* 1367 * Handle clock tick processing for a thread. 1368 * Check for timer action, enforce CPU rlimit, do profiling etc. 1369 */ 1370 void 1371 clock_tick(kthread_t *t, int pending) 1372 { 1373 struct proc *pp; 1374 klwp_id_t lwp; 1375 struct as *as; 1376 clock_t ticks; 1377 int poke = 0; /* notify another CPU */ 1378 int user_mode; 1379 size_t rss; 1380 int i, total_usec, usec; 1381 rctl_qty_t secs; 1382 1383 ASSERT(pending > 0); 1384 1385 /* Must be operating on a lwp/thread */ 1386 if ((lwp = ttolwp(t)) == NULL) { 1387 panic("clock_tick: no lwp"); 1388 /*NOTREACHED*/ 1389 } 1390 1391 for (i = 0; i < pending; i++) { 1392 CL_TICK(t); /* Class specific tick processing */ 1393 DTRACE_SCHED1(tick, kthread_t *, t); 1394 } 1395 1396 pp = ttoproc(t); 1397 1398 /* pp->p_lock makes sure that the thread does not exit */ 1399 ASSERT(MUTEX_HELD(&pp->p_lock)); 1400 1401 user_mode = (lwp->lwp_state == LWP_USER); 1402 1403 ticks = (pp->p_utime + pp->p_stime) % hz; 1404 /* 1405 * Update process times. Should use high res clock and state 1406 * changes instead of statistical sampling method. XXX 1407 */ 1408 if (user_mode) { 1409 pp->p_utime += pending; 1410 } else { 1411 pp->p_stime += pending; 1412 } 1413 1414 pp->p_ttime += pending; 1415 as = pp->p_as; 1416 1417 /* 1418 * Update user profiling statistics. Get the pc from the 1419 * lwp when the AST happens. 1420 */ 1421 if (pp->p_prof.pr_scale) { 1422 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1423 if (user_mode) { 1424 poke = 1; 1425 aston(t); 1426 } 1427 } 1428 1429 /* 1430 * If CPU was in user state, process lwp-virtual time 1431 * interval timer. The value passed to itimerdecr() has to be 1432 * in microseconds and has to be less than one second. Hence 1433 * this loop. 1434 */ 1435 total_usec = usec_per_tick * pending; 1436 while (total_usec > 0) { 1437 usec = MIN(total_usec, (MICROSEC - 1)); 1438 if (user_mode && 1439 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1440 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1441 poke = 1; 1442 sigtoproc(pp, t, SIGVTALRM); 1443 } 1444 total_usec -= usec; 1445 } 1446 1447 /* 1448 * If CPU was in user state, process lwp-profile 1449 * interval timer. 1450 */ 1451 total_usec = usec_per_tick * pending; 1452 while (total_usec > 0) { 1453 usec = MIN(total_usec, (MICROSEC - 1)); 1454 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1455 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1456 poke = 1; 1457 sigtoproc(pp, t, SIGPROF); 1458 } 1459 total_usec -= usec; 1460 } 1461 1462 /* 1463 * Enforce CPU resource controls: 1464 * (a) process.max-cpu-time resource control 1465 * 1466 * Perform the check only if we have accumulated more a second. 1467 */ 1468 if ((ticks + pending) >= hz) { 1469 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1470 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1471 } 1472 1473 /* 1474 * (b) task.max-cpu-time resource control 1475 * 1476 * If we have accumulated enough ticks, increment the task CPU 1477 * time usage and test for the resource limit. This minimizes the 1478 * number of calls to the rct_test(). The task CPU time mutex 1479 * is highly contentious as many processes can be sharing a task. 1480 */ 1481 if (pp->p_ttime >= clock_tick_proc_max) { 1482 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1483 pp->p_ttime = 0; 1484 if (secs) { 1485 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1486 pp, secs, RCA_UNSAFE_SIGINFO); 1487 } 1488 } 1489 1490 /* 1491 * Update memory usage for the currently running process. 1492 */ 1493 rss = rm_asrss(as); 1494 PTOU(pp)->u_mem += rss; 1495 if (rss > PTOU(pp)->u_mem_max) 1496 PTOU(pp)->u_mem_max = rss; 1497 1498 /* 1499 * Notify the CPU the thread is running on. 1500 */ 1501 if (poke && t->t_cpu != CPU) 1502 poke_cpu(t->t_cpu->cpu_id); 1503 } 1504 1505 void 1506 profil_tick(uintptr_t upc) 1507 { 1508 int ticks; 1509 proc_t *p = ttoproc(curthread); 1510 klwp_t *lwp = ttolwp(curthread); 1511 struct prof *pr = &p->p_prof; 1512 1513 do { 1514 ticks = lwp->lwp_oweupc; 1515 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1516 1517 mutex_enter(&p->p_pflock); 1518 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1519 /* 1520 * Old-style profiling 1521 */ 1522 uint16_t *slot = pr->pr_base; 1523 uint16_t old, new; 1524 if (pr->pr_scale != 2) { 1525 uintptr_t delta = upc - pr->pr_off; 1526 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1527 (((delta & 0xffff) * pr->pr_scale) >> 16); 1528 if (byteoff >= (uintptr_t)pr->pr_size) { 1529 mutex_exit(&p->p_pflock); 1530 return; 1531 } 1532 slot += byteoff / sizeof (uint16_t); 1533 } 1534 if (fuword16(slot, &old) < 0 || 1535 (new = old + ticks) > SHRT_MAX || 1536 suword16(slot, new) < 0) { 1537 pr->pr_scale = 0; 1538 } 1539 } else if (pr->pr_scale == 1) { 1540 /* 1541 * PC Sampling 1542 */ 1543 model_t model = lwp_getdatamodel(lwp); 1544 int result; 1545 #ifdef __lint 1546 model = model; 1547 #endif 1548 while (ticks-- > 0) { 1549 if (pr->pr_samples == pr->pr_size) { 1550 /* buffer full, turn off sampling */ 1551 pr->pr_scale = 0; 1552 break; 1553 } 1554 switch (SIZEOF_PTR(model)) { 1555 case sizeof (uint32_t): 1556 result = suword32(pr->pr_base, (uint32_t)upc); 1557 break; 1558 #ifdef _LP64 1559 case sizeof (uint64_t): 1560 result = suword64(pr->pr_base, (uint64_t)upc); 1561 break; 1562 #endif 1563 default: 1564 cmn_err(CE_WARN, "profil_tick: unexpected " 1565 "data model"); 1566 result = -1; 1567 break; 1568 } 1569 if (result != 0) { 1570 pr->pr_scale = 0; 1571 break; 1572 } 1573 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1574 pr->pr_samples++; 1575 } 1576 } 1577 mutex_exit(&p->p_pflock); 1578 } 1579 1580 static void 1581 delay_wakeup(void *arg) 1582 { 1583 kthread_t *t = arg; 1584 1585 mutex_enter(&t->t_delay_lock); 1586 cv_signal(&t->t_delay_cv); 1587 mutex_exit(&t->t_delay_lock); 1588 } 1589 1590 void 1591 delay(clock_t ticks) 1592 { 1593 kthread_t *t = curthread; 1594 clock_t deadline = lbolt + ticks; 1595 clock_t timeleft; 1596 timeout_id_t id; 1597 1598 if (panicstr && ticks > 0) { 1599 /* 1600 * Timeouts aren't running, so all we can do is spin. 1601 */ 1602 drv_usecwait(TICK_TO_USEC(ticks)); 1603 return; 1604 } 1605 1606 while ((timeleft = deadline - lbolt) > 0) { 1607 mutex_enter(&t->t_delay_lock); 1608 id = timeout(delay_wakeup, t, timeleft); 1609 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1610 mutex_exit(&t->t_delay_lock); 1611 (void) untimeout(id); 1612 } 1613 } 1614 1615 /* 1616 * Like delay, but interruptible by a signal. 1617 */ 1618 int 1619 delay_sig(clock_t ticks) 1620 { 1621 clock_t deadline = lbolt + ticks; 1622 clock_t rc; 1623 1624 mutex_enter(&curthread->t_delay_lock); 1625 do { 1626 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1627 &curthread->t_delay_lock, deadline); 1628 } while (rc > 0); 1629 mutex_exit(&curthread->t_delay_lock); 1630 if (rc == 0) 1631 return (EINTR); 1632 return (0); 1633 } 1634 1635 #define SECONDS_PER_DAY 86400 1636 1637 /* 1638 * Initialize the system time based on the TOD chip. approx is used as 1639 * an approximation of time (e.g. from the filesystem) in the event that 1640 * the TOD chip has been cleared or is unresponsive. An approx of -1 1641 * means the filesystem doesn't keep time. 1642 */ 1643 void 1644 clkset(time_t approx) 1645 { 1646 timestruc_t ts; 1647 int spl; 1648 int set_clock = 0; 1649 1650 mutex_enter(&tod_lock); 1651 ts = tod_get(); 1652 1653 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1654 /* 1655 * If the TOD chip is reporting some time after 1971, 1656 * then it probably didn't lose power or become otherwise 1657 * cleared in the recent past; check to assure that 1658 * the time coming from the filesystem isn't in the future 1659 * according to the TOD chip. 1660 */ 1661 if (approx != -1 && approx > ts.tv_sec) { 1662 cmn_err(CE_WARN, "Last shutdown is later " 1663 "than time on time-of-day chip; check date."); 1664 } 1665 } else { 1666 /* 1667 * If the TOD chip isn't giving correct time, then set it to 1668 * the time that was passed in as a rough estimate. If we 1669 * don't have an estimate, then set the clock back to a time 1670 * when Oliver North, ALF and Dire Straits were all on the 1671 * collective brain: 1987. 1672 */ 1673 timestruc_t tmp; 1674 if (approx == -1) 1675 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1676 else 1677 ts.tv_sec = approx; 1678 ts.tv_nsec = 0; 1679 1680 /* 1681 * Attempt to write the new time to the TOD chip. Set spl high 1682 * to avoid getting preempted between the tod_set and tod_get. 1683 */ 1684 spl = splhi(); 1685 tod_set(ts); 1686 tmp = tod_get(); 1687 splx(spl); 1688 1689 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1690 tod_broken = 1; 1691 dosynctodr = 0; 1692 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1693 " dead batteries?"); 1694 } else { 1695 cmn_err(CE_WARN, "Time-of-day chip had " 1696 "incorrect date; check and reset."); 1697 } 1698 set_clock = 1; 1699 } 1700 1701 if (!boot_time) { 1702 boot_time = ts.tv_sec; 1703 set_clock = 1; 1704 } 1705 1706 if (set_clock) 1707 set_hrestime(&ts); 1708 1709 mutex_exit(&tod_lock); 1710 } 1711 1712 int timechanged; /* for testing if the system time has been reset */ 1713 1714 void 1715 set_hrestime(timestruc_t *ts) 1716 { 1717 int spl = hr_clock_lock(); 1718 hrestime = *ts; 1719 membar_enter(); /* hrestime must be visible before timechanged++ */ 1720 timedelta = 0; 1721 timechanged++; 1722 hr_clock_unlock(spl); 1723 } 1724 1725 static uint_t deadman_seconds; 1726 static uint32_t deadman_panics; 1727 static int deadman_enabled = 0; 1728 static int deadman_panic_timers = 1; 1729 1730 static void 1731 deadman(void) 1732 { 1733 if (panicstr) { 1734 /* 1735 * During panic, other CPUs besides the panic 1736 * master continue to handle cyclics and some other 1737 * interrupts. The code below is intended to be 1738 * single threaded, so any CPU other than the master 1739 * must keep out. 1740 */ 1741 if (CPU->cpu_id != panic_cpu.cpu_id) 1742 return; 1743 1744 /* 1745 * If we're panicking, the deadman cyclic continues to increase 1746 * lbolt in case the dump device driver relies on this for 1747 * timeouts. Note that we rely on deadman() being invoked once 1748 * per second, and credit lbolt and lbolt64 with hz ticks each. 1749 */ 1750 lbolt += hz; 1751 lbolt64 += hz; 1752 1753 if (!deadman_panic_timers) 1754 return; /* allow all timers to be manually disabled */ 1755 1756 /* 1757 * If we are generating a crash dump or syncing filesystems and 1758 * the corresponding timer is set, decrement it and re-enter 1759 * the panic code to abort it and advance to the next state. 1760 * The panic states and triggers are explained in panic.c. 1761 */ 1762 if (panic_dump) { 1763 if (dump_timeleft && (--dump_timeleft == 0)) { 1764 panic("panic dump timeout"); 1765 /*NOTREACHED*/ 1766 } 1767 } else if (panic_sync) { 1768 if (sync_timeleft && (--sync_timeleft == 0)) { 1769 panic("panic sync timeout"); 1770 /*NOTREACHED*/ 1771 } 1772 } 1773 1774 return; 1775 } 1776 1777 if (lbolt != CPU->cpu_deadman_lbolt) { 1778 CPU->cpu_deadman_lbolt = lbolt; 1779 CPU->cpu_deadman_countdown = deadman_seconds; 1780 return; 1781 } 1782 1783 if (--CPU->cpu_deadman_countdown > 0) 1784 return; 1785 1786 /* 1787 * Regardless of whether or not we actually bring the system down, 1788 * bump the deadman_panics variable. 1789 * 1790 * N.B. deadman_panics is incremented once for each CPU that 1791 * passes through here. It's expected that all the CPUs will 1792 * detect this condition within one second of each other, so 1793 * when deadman_enabled is off, deadman_panics will 1794 * typically be a multiple of the total number of CPUs in 1795 * the system. 1796 */ 1797 atomic_add_32(&deadman_panics, 1); 1798 1799 if (!deadman_enabled) { 1800 CPU->cpu_deadman_countdown = deadman_seconds; 1801 return; 1802 } 1803 1804 /* 1805 * If we're here, we want to bring the system down. 1806 */ 1807 panic("deadman: timed out after %d seconds of clock " 1808 "inactivity", deadman_seconds); 1809 /*NOTREACHED*/ 1810 } 1811 1812 /*ARGSUSED*/ 1813 static void 1814 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1815 { 1816 cpu->cpu_deadman_lbolt = 0; 1817 cpu->cpu_deadman_countdown = deadman_seconds; 1818 1819 hdlr->cyh_func = (cyc_func_t)deadman; 1820 hdlr->cyh_level = CY_HIGH_LEVEL; 1821 hdlr->cyh_arg = NULL; 1822 1823 /* 1824 * Stagger the CPUs so that they don't all run deadman() at 1825 * the same time. Simplest reason to do this is to make it 1826 * more likely that only one CPU will panic in case of a 1827 * timeout. This is (strictly speaking) an aesthetic, not a 1828 * technical consideration. 1829 * 1830 * The interval must be one second in accordance with the 1831 * code in deadman() above to increase lbolt during panic. 1832 */ 1833 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1834 when->cyt_interval = NANOSEC; 1835 } 1836 1837 1838 void 1839 deadman_init(void) 1840 { 1841 cyc_omni_handler_t hdlr; 1842 1843 if (deadman_seconds == 0) 1844 deadman_seconds = snoop_interval / MICROSEC; 1845 1846 if (snooping) 1847 deadman_enabled = 1; 1848 1849 hdlr.cyo_online = deadman_online; 1850 hdlr.cyo_offline = NULL; 1851 hdlr.cyo_arg = NULL; 1852 1853 mutex_enter(&cpu_lock); 1854 deadman_cyclic = cyclic_add_omni(&hdlr); 1855 mutex_exit(&cpu_lock); 1856 } 1857 1858 /* 1859 * tod_fault() is for updating tod validate mechanism state: 1860 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1861 * currently used for debugging only 1862 * (2) The following four cases detected by tod validate mechanism: 1863 * TOD_REVERSED: current tod value is less than previous value. 1864 * TOD_STALLED: current tod value hasn't advanced. 1865 * TOD_JUMPED: current tod value advanced too far from previous value. 1866 * TOD_RATECHANGED: the ratio between average tod delta and 1867 * average tick delta has changed. 1868 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 1869 * a virtual TOD provided by a hypervisor. 1870 */ 1871 enum tod_fault_type 1872 tod_fault(enum tod_fault_type ftype, int off) 1873 { 1874 ASSERT(MUTEX_HELD(&tod_lock)); 1875 1876 if (tod_faulted != ftype) { 1877 switch (ftype) { 1878 case TOD_NOFAULT: 1879 plat_tod_fault(TOD_NOFAULT); 1880 cmn_err(CE_NOTE, "Restarted tracking " 1881 "Time of Day clock."); 1882 tod_faulted = ftype; 1883 break; 1884 case TOD_REVERSED: 1885 case TOD_JUMPED: 1886 if (tod_faulted == TOD_NOFAULT) { 1887 plat_tod_fault(ftype); 1888 cmn_err(CE_WARN, "Time of Day clock error: " 1889 "reason [%s by 0x%x]. -- " 1890 " Stopped tracking Time Of Day clock.", 1891 tod_fault_table[ftype], off); 1892 tod_faulted = ftype; 1893 } 1894 break; 1895 case TOD_STALLED: 1896 case TOD_RATECHANGED: 1897 if (tod_faulted == TOD_NOFAULT) { 1898 plat_tod_fault(ftype); 1899 cmn_err(CE_WARN, "Time of Day clock error: " 1900 "reason [%s]. -- " 1901 " Stopped tracking Time Of Day clock.", 1902 tod_fault_table[ftype]); 1903 tod_faulted = ftype; 1904 } 1905 break; 1906 case TOD_RDONLY: 1907 if (tod_faulted == TOD_NOFAULT) { 1908 plat_tod_fault(ftype); 1909 cmn_err(CE_NOTE, "!Time of Day clock is " 1910 "Read-Only; set of Date/Time will not " 1911 "persist across reboot."); 1912 tod_faulted = ftype; 1913 } 1914 break; 1915 default: 1916 break; 1917 } 1918 } 1919 return (tod_faulted); 1920 } 1921 1922 void 1923 tod_fault_reset() 1924 { 1925 tod_fault_reset_flag = 1; 1926 } 1927 1928 1929 /* 1930 * tod_validate() is used for checking values returned by tod_get(). 1931 * Four error cases can be detected by this routine: 1932 * TOD_REVERSED: current tod value is less than previous. 1933 * TOD_STALLED: current tod value hasn't advanced. 1934 * TOD_JUMPED: current tod value advanced too far from previous value. 1935 * TOD_RATECHANGED: the ratio between average tod delta and 1936 * average tick delta has changed. 1937 */ 1938 time_t 1939 tod_validate(time_t tod) 1940 { 1941 time_t diff_tod; 1942 hrtime_t diff_tick; 1943 1944 long dtick; 1945 int dtick_delta; 1946 1947 int off = 0; 1948 enum tod_fault_type tod_bad = TOD_NOFAULT; 1949 1950 static int firsttime = 1; 1951 1952 static time_t prev_tod = 0; 1953 static hrtime_t prev_tick = 0; 1954 static long dtick_avg = TOD_REF_FREQ; 1955 1956 hrtime_t tick = gethrtime(); 1957 1958 ASSERT(MUTEX_HELD(&tod_lock)); 1959 1960 /* 1961 * tod_validate_enable is patchable via /etc/system. 1962 * If TOD is already faulted, or if TOD validation is deferred, 1963 * there is nothing to do. 1964 */ 1965 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 1966 tod_validate_deferred) { 1967 return (tod); 1968 } 1969 1970 /* 1971 * Update prev_tod and prev_tick values for first run 1972 */ 1973 if (firsttime) { 1974 firsttime = 0; 1975 prev_tod = tod; 1976 prev_tick = tick; 1977 return (tod); 1978 } 1979 1980 /* 1981 * For either of these conditions, we need to reset ourself 1982 * and start validation from zero since each condition 1983 * indicates that the TOD will be updated with new value 1984 * Also, note that tod_needsync will be reset in clock() 1985 */ 1986 if (tod_needsync || tod_fault_reset_flag) { 1987 firsttime = 1; 1988 prev_tod = 0; 1989 prev_tick = 0; 1990 dtick_avg = TOD_REF_FREQ; 1991 1992 if (tod_fault_reset_flag) 1993 tod_fault_reset_flag = 0; 1994 1995 return (tod); 1996 } 1997 1998 /* test hook */ 1999 switch (tod_unit_test) { 2000 case 1: /* for testing jumping tod */ 2001 tod += tod_test_injector; 2002 tod_unit_test = 0; 2003 break; 2004 case 2: /* for testing stuck tod bit */ 2005 tod |= 1 << tod_test_injector; 2006 tod_unit_test = 0; 2007 break; 2008 case 3: /* for testing stalled tod */ 2009 tod = prev_tod; 2010 tod_unit_test = 0; 2011 break; 2012 case 4: /* reset tod fault status */ 2013 (void) tod_fault(TOD_NOFAULT, 0); 2014 tod_unit_test = 0; 2015 break; 2016 default: 2017 break; 2018 } 2019 2020 diff_tod = tod - prev_tod; 2021 diff_tick = tick - prev_tick; 2022 2023 ASSERT(diff_tick >= 0); 2024 2025 if (diff_tod < 0) { 2026 /* ERROR - tod reversed */ 2027 tod_bad = TOD_REVERSED; 2028 off = (int)(prev_tod - tod); 2029 } else if (diff_tod == 0) { 2030 /* tod did not advance */ 2031 if (diff_tick > TOD_STALL_THRESHOLD) { 2032 /* ERROR - tod stalled */ 2033 tod_bad = TOD_STALLED; 2034 } else { 2035 /* 2036 * Make sure we don't update prev_tick 2037 * so that diff_tick is calculated since 2038 * the first diff_tod == 0 2039 */ 2040 return (tod); 2041 } 2042 } else { 2043 /* calculate dtick */ 2044 dtick = diff_tick / diff_tod; 2045 2046 /* update dtick averages */ 2047 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2048 2049 /* 2050 * Calculate dtick_delta as 2051 * variation from reference freq in quartiles 2052 */ 2053 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2054 (TOD_REF_FREQ >> 2); 2055 2056 /* 2057 * Even with a perfectly functioning TOD device, 2058 * when the number of elapsed seconds is low the 2059 * algorithm can calculate a rate that is beyond 2060 * tolerance, causing an error. The algorithm is 2061 * inaccurate when elapsed time is low (less than 2062 * 5 seconds). 2063 */ 2064 if (diff_tod > 4) { 2065 if (dtick < TOD_JUMP_THRESHOLD) { 2066 /* ERROR - tod jumped */ 2067 tod_bad = TOD_JUMPED; 2068 off = (int)diff_tod; 2069 } else if (dtick_delta) { 2070 /* ERROR - change in clock rate */ 2071 tod_bad = TOD_RATECHANGED; 2072 } 2073 } 2074 } 2075 2076 if (tod_bad != TOD_NOFAULT) { 2077 (void) tod_fault(tod_bad, off); 2078 2079 /* 2080 * Disable dosynctodr since we are going to fault 2081 * the TOD chip anyway here 2082 */ 2083 dosynctodr = 0; 2084 2085 /* 2086 * Set tod to the correct value from hrestime 2087 */ 2088 tod = hrestime.tv_sec; 2089 } 2090 2091 prev_tod = tod; 2092 prev_tick = tick; 2093 return (tod); 2094 } 2095 2096 static void 2097 calcloadavg(int nrun, uint64_t *hp_ave) 2098 { 2099 static int64_t f[3] = { 135, 27, 9 }; 2100 uint_t i; 2101 int64_t q, r; 2102 2103 /* 2104 * Compute load average over the last 1, 5, and 15 minutes 2105 * (60, 300, and 900 seconds). The constants in f[3] are for 2106 * exponential decay: 2107 * (1 - exp(-1/60)) << 13 = 135, 2108 * (1 - exp(-1/300)) << 13 = 27, 2109 * (1 - exp(-1/900)) << 13 = 9. 2110 */ 2111 2112 /* 2113 * a little hoop-jumping to avoid integer overflow 2114 */ 2115 for (i = 0; i < 3; i++) { 2116 q = (hp_ave[i] >> 16) << 7; 2117 r = (hp_ave[i] & 0xffff) << 7; 2118 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2119 } 2120 } 2121