1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 /* 25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 26 */ 27 28 #include <sys/param.h> 29 #include <sys/t_lock.h> 30 #include <sys/types.h> 31 #include <sys/tuneable.h> 32 #include <sys/sysmacros.h> 33 #include <sys/systm.h> 34 #include <sys/cpuvar.h> 35 #include <sys/lgrp.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/callo.h> 39 #include <sys/kmem.h> 40 #include <sys/var.h> 41 #include <sys/cmn_err.h> 42 #include <sys/swap.h> 43 #include <sys/vmsystm.h> 44 #include <sys/class.h> 45 #include <sys/time.h> 46 #include <sys/debug.h> 47 #include <sys/vtrace.h> 48 #include <sys/spl.h> 49 #include <sys/atomic.h> 50 #include <sys/dumphdr.h> 51 #include <sys/archsystm.h> 52 #include <sys/fs/swapnode.h> 53 #include <sys/panic.h> 54 #include <sys/disp.h> 55 #include <sys/msacct.h> 56 #include <sys/mem_cage.h> 57 58 #include <vm/page.h> 59 #include <vm/anon.h> 60 #include <vm/rm.h> 61 #include <sys/cyclic.h> 62 #include <sys/cpupart.h> 63 #include <sys/rctl.h> 64 #include <sys/task.h> 65 #include <sys/sdt.h> 66 #include <sys/ddi_timer.h> 67 #include <sys/random.h> 68 #include <sys/modctl.h> 69 70 /* 71 * for NTP support 72 */ 73 #include <sys/timex.h> 74 #include <sys/inttypes.h> 75 76 #include <sys/sunddi.h> 77 #include <sys/clock_impl.h> 78 79 /* 80 * clock() is called straight from the clock cyclic; see clock_init(). 81 * 82 * Functions: 83 * reprime clock 84 * maintain date 85 * jab the scheduler 86 */ 87 88 extern kcondvar_t fsflush_cv; 89 extern sysinfo_t sysinfo; 90 extern vminfo_t vminfo; 91 extern int idleswtch; /* flag set while idle in pswtch() */ 92 extern hrtime_t volatile devinfo_freeze; 93 94 /* 95 * high-precision avenrun values. These are needed to make the 96 * regular avenrun values accurate. 97 */ 98 static uint64_t hp_avenrun[3]; 99 int avenrun[3]; /* FSCALED average run queue lengths */ 100 time_t time; /* time in seconds since 1970 - for compatibility only */ 101 102 static struct loadavg_s loadavg; 103 /* 104 * Phase/frequency-lock loop (PLL/FLL) definitions 105 * 106 * The following variables are read and set by the ntp_adjtime() system 107 * call. 108 * 109 * time_state shows the state of the system clock, with values defined 110 * in the timex.h header file. 111 * 112 * time_status shows the status of the system clock, with bits defined 113 * in the timex.h header file. 114 * 115 * time_offset is used by the PLL/FLL to adjust the system time in small 116 * increments. 117 * 118 * time_constant determines the bandwidth or "stiffness" of the PLL. 119 * 120 * time_tolerance determines maximum frequency error or tolerance of the 121 * CPU clock oscillator and is a property of the architecture; however, 122 * in principle it could change as result of the presence of external 123 * discipline signals, for instance. 124 * 125 * time_precision is usually equal to the kernel tick variable; however, 126 * in cases where a precision clock counter or external clock is 127 * available, the resolution can be much less than this and depend on 128 * whether the external clock is working or not. 129 * 130 * time_maxerror is initialized by a ntp_adjtime() call and increased by 131 * the kernel once each second to reflect the maximum error bound 132 * growth. 133 * 134 * time_esterror is set and read by the ntp_adjtime() call, but 135 * otherwise not used by the kernel. 136 */ 137 int32_t time_state = TIME_OK; /* clock state */ 138 int32_t time_status = STA_UNSYNC; /* clock status bits */ 139 int32_t time_offset = 0; /* time offset (us) */ 140 int32_t time_constant = 0; /* pll time constant */ 141 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 142 int32_t time_precision = 1; /* clock precision (us) */ 143 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 144 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 145 146 /* 147 * The following variables establish the state of the PLL/FLL and the 148 * residual time and frequency offset of the local clock. The scale 149 * factors are defined in the timex.h header file. 150 * 151 * time_phase and time_freq are the phase increment and the frequency 152 * increment, respectively, of the kernel time variable. 153 * 154 * time_freq is set via ntp_adjtime() from a value stored in a file when 155 * the synchronization daemon is first started. Its value is retrieved 156 * via ntp_adjtime() and written to the file about once per hour by the 157 * daemon. 158 * 159 * time_adj is the adjustment added to the value of tick at each timer 160 * interrupt and is recomputed from time_phase and time_freq at each 161 * seconds rollover. 162 * 163 * time_reftime is the second's portion of the system time at the last 164 * call to ntp_adjtime(). It is used to adjust the time_freq variable 165 * and to increase the time_maxerror as the time since last update 166 * increases. 167 */ 168 int32_t time_phase = 0; /* phase offset (scaled us) */ 169 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 170 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 171 int32_t time_reftime = 0; /* time at last adjustment (s) */ 172 173 /* 174 * The scale factors of the following variables are defined in the 175 * timex.h header file. 176 * 177 * pps_time contains the time at each calibration interval, as read by 178 * microtime(). pps_count counts the seconds of the calibration 179 * interval, the duration of which is nominally pps_shift in powers of 180 * two. 181 * 182 * pps_offset is the time offset produced by the time median filter 183 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 184 * this filter. 185 * 186 * pps_freq is the frequency offset produced by the frequency median 187 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 188 * by this filter. 189 * 190 * pps_usec is latched from a high resolution counter or external clock 191 * at pps_time. Here we want the hardware counter contents only, not the 192 * contents plus the time_tv.usec as usual. 193 * 194 * pps_valid counts the number of seconds since the last PPS update. It 195 * is used as a watchdog timer to disable the PPS discipline should the 196 * PPS signal be lost. 197 * 198 * pps_glitch counts the number of seconds since the beginning of an 199 * offset burst more than tick/2 from current nominal offset. It is used 200 * mainly to suppress error bursts due to priority conflicts between the 201 * PPS interrupt and timer interrupt. 202 * 203 * pps_intcnt counts the calibration intervals for use in the interval- 204 * adaptation algorithm. It's just too complicated for words. 205 */ 206 struct timeval pps_time; /* kernel time at last interval */ 207 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 208 int32_t pps_offset = 0; /* pps time offset (us) */ 209 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 210 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 211 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 212 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 213 int32_t pps_usec = 0; /* microsec counter at last interval */ 214 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 215 int32_t pps_glitch = 0; /* pps signal glitch counter */ 216 int32_t pps_count = 0; /* calibration interval counter (s) */ 217 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 218 int32_t pps_intcnt = 0; /* intervals at current duration */ 219 220 /* 221 * PPS signal quality monitors 222 * 223 * pps_jitcnt counts the seconds that have been discarded because the 224 * jitter measured by the time median filter exceeds the limit MAXTIME 225 * (100 us). 226 * 227 * pps_calcnt counts the frequency calibration intervals, which are 228 * variable from 4 s to 256 s. 229 * 230 * pps_errcnt counts the calibration intervals which have been discarded 231 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 232 * calibration interval jitter exceeds two ticks. 233 * 234 * pps_stbcnt counts the calibration intervals that have been discarded 235 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 236 */ 237 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 238 int32_t pps_calcnt = 0; /* calibration intervals */ 239 int32_t pps_errcnt = 0; /* calibration errors */ 240 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 241 242 kcondvar_t lbolt_cv; 243 244 /* 245 * Hybrid lbolt implementation: 246 * 247 * The service historically provided by the lbolt and lbolt64 variables has 248 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the 249 * original symbols removed from the system. The once clock driven variables are 250 * now implemented in an event driven fashion, backed by gethrtime() coarsed to 251 * the appropriate clock resolution. The default event driven implementation is 252 * complemented by a cyclic driven one, active only during periods of intense 253 * activity around the DDI lbolt routines, when a lbolt specific cyclic is 254 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who 255 * rely on the original low cost of consulting a memory position. 256 * 257 * The implementation uses the number of calls to these routines and the 258 * frequency of these to determine when to transition from event to cyclic 259 * driven and vice-versa. These values are kept on a per CPU basis for 260 * scalability reasons and to prevent CPUs from constantly invalidating a single 261 * cache line when modifying a global variable. The transition from event to 262 * cyclic mode happens once the thresholds are crossed, and activity on any CPU 263 * can cause such transition. 264 * 265 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and 266 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or 267 * lbolt_cyclic_driven() according to the current mode. When the thresholds 268 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to 269 * fire at a nsec_per_tick interval and increment an internal variable at 270 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which 271 * will simply return the value of such variable. lbolt_cyclic() will attempt 272 * to shut itself off at each threshold interval (sampling period for calls 273 * to the DDI lbolt routines), and return to the event driven mode, but will 274 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used. 275 * 276 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait 277 * for the cyclic subsystem to be intialized. 278 * 279 */ 280 int64_t lbolt_bootstrap(void); 281 int64_t lbolt_event_driven(void); 282 int64_t lbolt_cyclic_driven(void); 283 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap; 284 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t); 285 286 /* 287 * lbolt's cyclic, installed by clock_init(). 288 */ 289 static void lbolt_cyclic(void); 290 291 /* 292 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system 293 * from switching back to event driven, once it reaches cyclic mode. 294 */ 295 static boolean_t lbolt_cyc_only = B_FALSE; 296 297 /* 298 * Cache aligned, per CPU structure with lbolt usage statistics. 299 */ 300 static lbolt_cpu_t *lb_cpu; 301 302 /* 303 * Single, cache aligned, structure with all the information required by 304 * the lbolt implementation. 305 */ 306 lbolt_info_t *lb_info; 307 308 309 int one_sec = 1; /* turned on once every second */ 310 static int fsflushcnt; /* counter for t_fsflushr */ 311 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 312 int tod_needsync = 0; /* need to sync tod chip with software time */ 313 static int tod_broken = 0; /* clock chip doesn't work */ 314 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 315 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 316 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 317 cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 318 319 extern void clock_tick_schedule(int); 320 321 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 322 323 /* 324 * for tod fault detection 325 */ 326 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 327 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 328 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 329 #define TOD_FILTER_N 4 330 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 331 static int tod_faulted = TOD_NOFAULT; 332 333 static int tod_status_flag = 0; /* used by tod_validate() */ 334 335 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */ 336 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */ 337 338 /* patchable via /etc/system */ 339 int tod_validate_enable = 1; 340 341 /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 342 int delay_from_interrupt_diagnose = 0; 343 volatile uint32_t delay_from_interrupt_msg = 20; 344 345 /* 346 * On non-SPARC systems, TOD validation must be deferred until gethrtime 347 * returns non-zero values (after mach_clkinit's execution). 348 * On SPARC systems, it must be deferred until after hrtime_base 349 * and hres_last_tick are set (in the first invocation of hres_tick). 350 * Since in both cases the prerequisites occur before the invocation of 351 * tod_get() in clock(), the deferment is lifted there. 352 */ 353 static boolean_t tod_validate_deferred = B_TRUE; 354 355 /* 356 * tod_fault_table[] must be aligned with 357 * enum tod_fault_type in systm.h 358 */ 359 static char *tod_fault_table[] = { 360 "Reversed", /* TOD_REVERSED */ 361 "Stalled", /* TOD_STALLED */ 362 "Jumped", /* TOD_JUMPED */ 363 "Changed in Clock Rate", /* TOD_RATECHANGED */ 364 "Is Read-Only" /* TOD_RDONLY */ 365 /* 366 * no strings needed for TOD_NOFAULT 367 */ 368 }; 369 370 /* 371 * test hook for tod broken detection in tod_validate 372 */ 373 int tod_unit_test = 0; 374 time_t tod_test_injector; 375 376 #define CLOCK_ADJ_HIST_SIZE 4 377 378 static int adj_hist_entry; 379 380 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 381 382 static void calcloadavg(int, uint64_t *); 383 static int genloadavg(struct loadavg_s *); 384 static void loadavg_update(); 385 386 void (*cmm_clock_callout)() = NULL; 387 void (*cpucaps_clock_callout)() = NULL; 388 389 extern clock_t clock_tick_proc_max; 390 391 static int64_t deadman_counter = 0; 392 393 static void 394 clock(void) 395 { 396 kthread_t *t; 397 uint_t nrunnable; 398 uint_t w_io; 399 cpu_t *cp; 400 cpupart_t *cpupart; 401 extern void set_freemem(); 402 void (*funcp)(); 403 int32_t ltemp; 404 int64_t lltemp; 405 int s; 406 int do_lgrp_load; 407 int i; 408 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */ 409 410 if (panicstr) 411 return; 412 413 /* 414 * Make sure that 'freemem' do not drift too far from the truth 415 */ 416 set_freemem(); 417 418 419 /* 420 * Before the section which is repeated is executed, we do 421 * the time delta processing which occurs every clock tick 422 * 423 * There is additional processing which happens every time 424 * the nanosecond counter rolls over which is described 425 * below - see the section which begins with : if (one_sec) 426 * 427 * This section marks the beginning of the precision-kernel 428 * code fragment. 429 * 430 * First, compute the phase adjustment. If the low-order bits 431 * (time_phase) of the update overflow, bump the higher order 432 * bits (time_update). 433 */ 434 time_phase += time_adj; 435 if (time_phase <= -FINEUSEC) { 436 ltemp = -time_phase / SCALE_PHASE; 437 time_phase += ltemp * SCALE_PHASE; 438 s = hr_clock_lock(); 439 timedelta -= ltemp * (NANOSEC/MICROSEC); 440 hr_clock_unlock(s); 441 } else if (time_phase >= FINEUSEC) { 442 ltemp = time_phase / SCALE_PHASE; 443 time_phase -= ltemp * SCALE_PHASE; 444 s = hr_clock_lock(); 445 timedelta += ltemp * (NANOSEC/MICROSEC); 446 hr_clock_unlock(s); 447 } 448 449 /* 450 * End of precision-kernel code fragment which is processed 451 * every timer interrupt. 452 * 453 * Continue with the interrupt processing as scheduled. 454 */ 455 /* 456 * Count the number of runnable threads and the number waiting 457 * for some form of I/O to complete -- gets added to 458 * sysinfo.waiting. To know the state of the system, must add 459 * wait counts from all CPUs. Also add up the per-partition 460 * statistics. 461 */ 462 w_io = 0; 463 nrunnable = 0; 464 465 /* 466 * keep track of when to update lgrp/part loads 467 */ 468 469 do_lgrp_load = 0; 470 if (lgrp_ticks++ >= hz / 10) { 471 lgrp_ticks = 0; 472 do_lgrp_load = 1; 473 } 474 475 if (one_sec) { 476 loadavg_update(); 477 deadman_counter++; 478 } 479 480 /* 481 * First count the threads waiting on kpreempt queues in each 482 * CPU partition. 483 */ 484 485 cpupart = cp_list_head; 486 do { 487 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 488 489 cpupart->cp_updates++; 490 nrunnable += cpupart_nrunnable; 491 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 492 if (one_sec) { 493 cpupart->cp_nrunning = 0; 494 cpupart->cp_nrunnable = cpupart_nrunnable; 495 } 496 } while ((cpupart = cpupart->cp_next) != cp_list_head); 497 498 499 /* Now count the per-CPU statistics. */ 500 cp = cpu_list; 501 do { 502 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 503 504 nrunnable += cpu_nrunnable; 505 cpupart = cp->cpu_part; 506 cpupart->cp_nrunnable_cum += cpu_nrunnable; 507 if (one_sec) { 508 cpupart->cp_nrunnable += cpu_nrunnable; 509 /* 510 * Update user, system, and idle cpu times. 511 */ 512 cpupart->cp_nrunning++; 513 /* 514 * w_io is used to update sysinfo.waiting during 515 * one_second processing below. Only gather w_io 516 * information when we walk the list of cpus if we're 517 * going to perform one_second processing. 518 */ 519 w_io += CPU_STATS(cp, sys.iowait); 520 } 521 522 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 523 int i, load, change; 524 hrtime_t intracct, intrused; 525 const hrtime_t maxnsec = 1000000000; 526 const int precision = 100; 527 528 /* 529 * Estimate interrupt load on this cpu each second. 530 * Computes cpu_intrload as %utilization (0-99). 531 */ 532 533 /* add up interrupt time from all micro states */ 534 for (intracct = 0, i = 0; i < NCMSTATES; i++) 535 intracct += cp->cpu_intracct[i]; 536 scalehrtime(&intracct); 537 538 /* compute nsec used in the past second */ 539 intrused = intracct - cp->cpu_intrlast; 540 cp->cpu_intrlast = intracct; 541 542 /* limit the value for safety (and the first pass) */ 543 if (intrused >= maxnsec) 544 intrused = maxnsec - 1; 545 546 /* calculate %time in interrupt */ 547 load = (precision * intrused) / maxnsec; 548 ASSERT(load >= 0 && load < precision); 549 change = cp->cpu_intrload - load; 550 551 /* jump to new max, or decay the old max */ 552 if (change < 0) 553 cp->cpu_intrload = load; 554 else if (change > 0) 555 cp->cpu_intrload -= (change + 3) / 4; 556 557 DTRACE_PROBE3(cpu_intrload, 558 cpu_t *, cp, 559 hrtime_t, intracct, 560 hrtime_t, intrused); 561 } 562 563 if (do_lgrp_load && 564 (cp->cpu_flags & CPU_EXISTS)) { 565 /* 566 * When updating the lgroup's load average, 567 * account for the thread running on the CPU. 568 * If the CPU is the current one, then we need 569 * to account for the underlying thread which 570 * got the clock interrupt not the thread that is 571 * handling the interrupt and caculating the load 572 * average 573 */ 574 t = cp->cpu_thread; 575 if (CPU == cp) 576 t = t->t_intr; 577 578 /* 579 * Account for the load average for this thread if 580 * it isn't the idle thread or it is on the interrupt 581 * stack and not the current CPU handling the clock 582 * interrupt 583 */ 584 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 585 CPU_ON_INTR(cp))) { 586 if (t->t_lpl == cp->cpu_lpl) { 587 /* local thread */ 588 cpu_nrunnable++; 589 } else { 590 /* 591 * This is a remote thread, charge it 592 * against its home lgroup. Note that 593 * we notice that a thread is remote 594 * only if it's currently executing. 595 * This is a reasonable approximation, 596 * since queued remote threads are rare. 597 * Note also that if we didn't charge 598 * it to its home lgroup, remote 599 * execution would often make a system 600 * appear balanced even though it was 601 * not, and thread placement/migration 602 * would often not be done correctly. 603 */ 604 lgrp_loadavg(t->t_lpl, 605 LGRP_LOADAVG_IN_THREAD_MAX, 0); 606 } 607 } 608 lgrp_loadavg(cp->cpu_lpl, 609 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 610 } 611 } while ((cp = cp->cpu_next) != cpu_list); 612 613 clock_tick_schedule(one_sec); 614 615 /* 616 * Check for a callout that needs be called from the clock 617 * thread to support the membership protocol in a clustered 618 * system. Copy the function pointer so that we can reset 619 * this to NULL if needed. 620 */ 621 if ((funcp = cmm_clock_callout) != NULL) 622 (*funcp)(); 623 624 if ((funcp = cpucaps_clock_callout) != NULL) 625 (*funcp)(); 626 627 /* 628 * Wakeup the cageout thread waiters once per second. 629 */ 630 if (one_sec) 631 kcage_tick(); 632 633 if (one_sec) { 634 635 int drift, absdrift; 636 timestruc_t tod; 637 int s; 638 639 /* 640 * Beginning of precision-kernel code fragment executed 641 * every second. 642 * 643 * On rollover of the second the phase adjustment to be 644 * used for the next second is calculated. Also, the 645 * maximum error is increased by the tolerance. If the 646 * PPS frequency discipline code is present, the phase is 647 * increased to compensate for the CPU clock oscillator 648 * frequency error. 649 * 650 * On a 32-bit machine and given parameters in the timex.h 651 * header file, the maximum phase adjustment is +-512 ms 652 * and maximum frequency offset is (a tad less than) 653 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 654 */ 655 time_maxerror += time_tolerance / SCALE_USEC; 656 657 /* 658 * Leap second processing. If in leap-insert state at 659 * the end of the day, the system clock is set back one 660 * second; if in leap-delete state, the system clock is 661 * set ahead one second. The microtime() routine or 662 * external clock driver will insure that reported time 663 * is always monotonic. The ugly divides should be 664 * replaced. 665 */ 666 switch (time_state) { 667 668 case TIME_OK: 669 if (time_status & STA_INS) 670 time_state = TIME_INS; 671 else if (time_status & STA_DEL) 672 time_state = TIME_DEL; 673 break; 674 675 case TIME_INS: 676 if (hrestime.tv_sec % 86400 == 0) { 677 s = hr_clock_lock(); 678 hrestime.tv_sec--; 679 hr_clock_unlock(s); 680 time_state = TIME_OOP; 681 } 682 break; 683 684 case TIME_DEL: 685 if ((hrestime.tv_sec + 1) % 86400 == 0) { 686 s = hr_clock_lock(); 687 hrestime.tv_sec++; 688 hr_clock_unlock(s); 689 time_state = TIME_WAIT; 690 } 691 break; 692 693 case TIME_OOP: 694 time_state = TIME_WAIT; 695 break; 696 697 case TIME_WAIT: 698 if (!(time_status & (STA_INS | STA_DEL))) 699 time_state = TIME_OK; 700 default: 701 break; 702 } 703 704 /* 705 * Compute the phase adjustment for the next second. In 706 * PLL mode, the offset is reduced by a fixed factor 707 * times the time constant. In FLL mode the offset is 708 * used directly. In either mode, the maximum phase 709 * adjustment for each second is clamped so as to spread 710 * the adjustment over not more than the number of 711 * seconds between updates. 712 */ 713 if (time_offset == 0) 714 time_adj = 0; 715 else if (time_offset < 0) { 716 lltemp = -time_offset; 717 if (!(time_status & STA_FLL)) { 718 if ((1 << time_constant) >= SCALE_KG) 719 lltemp *= (1 << time_constant) / 720 SCALE_KG; 721 else 722 lltemp = (lltemp / SCALE_KG) >> 723 time_constant; 724 } 725 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 726 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 727 time_offset += lltemp; 728 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 729 } else { 730 lltemp = time_offset; 731 if (!(time_status & STA_FLL)) { 732 if ((1 << time_constant) >= SCALE_KG) 733 lltemp *= (1 << time_constant) / 734 SCALE_KG; 735 else 736 lltemp = (lltemp / SCALE_KG) >> 737 time_constant; 738 } 739 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 740 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 741 time_offset -= lltemp; 742 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 743 } 744 745 /* 746 * Compute the frequency estimate and additional phase 747 * adjustment due to frequency error for the next 748 * second. When the PPS signal is engaged, gnaw on the 749 * watchdog counter and update the frequency computed by 750 * the pll and the PPS signal. 751 */ 752 pps_valid++; 753 if (pps_valid == PPS_VALID) { 754 pps_jitter = MAXTIME; 755 pps_stabil = MAXFREQ; 756 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 757 STA_PPSWANDER | STA_PPSERROR); 758 } 759 lltemp = time_freq + pps_freq; 760 761 if (lltemp) 762 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 763 764 /* 765 * End of precision kernel-code fragment 766 * 767 * The section below should be modified if we are planning 768 * to use NTP for synchronization. 769 * 770 * Note: the clock synchronization code now assumes 771 * the following: 772 * - if dosynctodr is 1, then compute the drift between 773 * the tod chip and software time and adjust one or 774 * the other depending on the circumstances 775 * 776 * - if dosynctodr is 0, then the tod chip is independent 777 * of the software clock and should not be adjusted, 778 * but allowed to free run. this allows NTP to sync. 779 * hrestime without any interference from the tod chip. 780 */ 781 782 tod_validate_deferred = B_FALSE; 783 mutex_enter(&tod_lock); 784 tod = tod_get(); 785 drift = tod.tv_sec - hrestime.tv_sec; 786 absdrift = (drift >= 0) ? drift : -drift; 787 if (tod_needsync || absdrift > 1) { 788 int s; 789 if (absdrift > 2) { 790 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 791 s = hr_clock_lock(); 792 hrestime = tod; 793 membar_enter(); /* hrestime visible */ 794 timedelta = 0; 795 timechanged++; 796 tod_needsync = 0; 797 hr_clock_unlock(s); 798 callout_hrestime(); 799 800 } 801 } else { 802 if (tod_needsync || !dosynctodr) { 803 gethrestime(&tod); 804 tod_set(tod); 805 s = hr_clock_lock(); 806 if (timedelta == 0) 807 tod_needsync = 0; 808 hr_clock_unlock(s); 809 } else { 810 /* 811 * If the drift is 2 seconds on the 812 * money, then the TOD is adjusting 813 * the clock; record that. 814 */ 815 clock_adj_hist[adj_hist_entry++ % 816 CLOCK_ADJ_HIST_SIZE] = now; 817 s = hr_clock_lock(); 818 timedelta = (int64_t)drift*NANOSEC; 819 hr_clock_unlock(s); 820 } 821 } 822 } 823 one_sec = 0; 824 time = gethrestime_sec(); /* for crusty old kmem readers */ 825 mutex_exit(&tod_lock); 826 827 /* 828 * Some drivers still depend on this... XXX 829 */ 830 cv_broadcast(&lbolt_cv); 831 832 vminfo.freemem += freemem; 833 { 834 pgcnt_t maxswap, resv, free; 835 pgcnt_t avail = 836 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 837 838 maxswap = k_anoninfo.ani_mem_resv + 839 k_anoninfo.ani_max +avail; 840 /* Update ani_free */ 841 set_anoninfo(); 842 free = k_anoninfo.ani_free + avail; 843 resv = k_anoninfo.ani_phys_resv + 844 k_anoninfo.ani_mem_resv; 845 846 vminfo.swap_resv += resv; 847 /* number of reserved and allocated pages */ 848 #ifdef DEBUG 849 if (maxswap < free) 850 cmn_err(CE_WARN, "clock: maxswap < free"); 851 if (maxswap < resv) 852 cmn_err(CE_WARN, "clock: maxswap < resv"); 853 #endif 854 vminfo.swap_alloc += maxswap - free; 855 vminfo.swap_avail += maxswap - resv; 856 vminfo.swap_free += free; 857 } 858 vminfo.updates++; 859 if (nrunnable) { 860 sysinfo.runque += nrunnable; 861 sysinfo.runocc++; 862 } 863 if (nswapped) { 864 sysinfo.swpque += nswapped; 865 sysinfo.swpocc++; 866 } 867 sysinfo.waiting += w_io; 868 sysinfo.updates++; 869 870 /* 871 * Wake up fsflush to write out DELWRI 872 * buffers, dirty pages and other cached 873 * administrative data, e.g. inodes. 874 */ 875 if (--fsflushcnt <= 0) { 876 fsflushcnt = tune.t_fsflushr; 877 cv_signal(&fsflush_cv); 878 } 879 880 vmmeter(); 881 calcloadavg(genloadavg(&loadavg), hp_avenrun); 882 for (i = 0; i < 3; i++) 883 /* 884 * At the moment avenrun[] can only hold 31 885 * bits of load average as it is a signed 886 * int in the API. We need to ensure that 887 * hp_avenrun[i] >> (16 - FSHIFT) will not be 888 * too large. If it is, we put the largest value 889 * that we can use into avenrun[i]. This is 890 * kludgey, but about all we can do until we 891 * avenrun[] is declared as an array of uint64[] 892 */ 893 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 894 avenrun[i] = (int32_t)(hp_avenrun[i] >> 895 (16 - FSHIFT)); 896 else 897 avenrun[i] = 0x7fffffff; 898 899 cpupart = cp_list_head; 900 do { 901 calcloadavg(genloadavg(&cpupart->cp_loadavg), 902 cpupart->cp_hp_avenrun); 903 } while ((cpupart = cpupart->cp_next) != cp_list_head); 904 905 /* 906 * Wake up the swapper thread if necessary. 907 */ 908 if (runin || 909 (runout && (avefree < desfree || wake_sched_sec))) { 910 t = &t0; 911 thread_lock(t); 912 if (t->t_state == TS_STOPPED) { 913 runin = runout = 0; 914 wake_sched_sec = 0; 915 t->t_whystop = 0; 916 t->t_whatstop = 0; 917 t->t_schedflag &= ~TS_ALLSTART; 918 THREAD_TRANSITION(t); 919 setfrontdq(t); 920 } 921 thread_unlock(t); 922 } 923 } 924 925 /* 926 * Wake up the swapper if any high priority swapped-out threads 927 * became runable during the last tick. 928 */ 929 if (wake_sched) { 930 t = &t0; 931 thread_lock(t); 932 if (t->t_state == TS_STOPPED) { 933 runin = runout = 0; 934 wake_sched = 0; 935 t->t_whystop = 0; 936 t->t_whatstop = 0; 937 t->t_schedflag &= ~TS_ALLSTART; 938 THREAD_TRANSITION(t); 939 setfrontdq(t); 940 } 941 thread_unlock(t); 942 } 943 } 944 945 void 946 clock_init(void) 947 { 948 cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr; 949 cyc_time_t clk_when, lbolt_when; 950 int i, sz; 951 intptr_t buf; 952 953 /* 954 * Setup handler and timer for the clock cyclic. 955 */ 956 clk_hdlr.cyh_func = (cyc_func_t)clock; 957 clk_hdlr.cyh_level = CY_LOCK_LEVEL; 958 clk_hdlr.cyh_arg = NULL; 959 960 clk_when.cyt_when = 0; 961 clk_when.cyt_interval = nsec_per_tick; 962 963 /* 964 * cyclic_timer is dedicated to the ddi interface, which 965 * uses the same clock resolution as the system one. 966 */ 967 timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer; 968 timer_hdlr.cyh_level = CY_LOCK_LEVEL; 969 timer_hdlr.cyh_arg = NULL; 970 971 /* 972 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick 973 * interval to satisfy performance needs of the DDI lbolt consumers. 974 * It is off by default. 975 */ 976 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic; 977 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL; 978 lbolt_hdlr.cyh_arg = NULL; 979 980 lbolt_when.cyt_interval = nsec_per_tick; 981 982 /* 983 * Allocate cache line aligned space for the per CPU lbolt data and 984 * lbolt info structures, and initialize them with their default 985 * values. Note that these structures are also cache line sized. 986 */ 987 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE; 988 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 989 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 990 991 if (hz != HZ_DEFAULT) 992 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL * 993 hz/HZ_DEFAULT; 994 else 995 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL; 996 997 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS; 998 999 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE; 1000 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 1001 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 1002 1003 for (i = 0; i < max_ncpus; i++) 1004 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls; 1005 1006 /* 1007 * Install the softint used to switch between event and cyclic driven 1008 * lbolt. We use a soft interrupt to make sure the context of the 1009 * cyclic reprogram call is safe. 1010 */ 1011 lbolt_softint_add(); 1012 1013 /* 1014 * Since the hybrid lbolt implementation is based on a hardware counter 1015 * that is reset at every hardware reboot and that we'd like to have 1016 * the lbolt value starting at zero after both a hardware and a fast 1017 * reboot, we calculate the number of clock ticks the system's been up 1018 * and store it in the lbi_debug_time field of the lbolt info structure. 1019 * The value of this field will be subtracted from lbolt before 1020 * returning it. 1021 */ 1022 lb_info->lbi_internal = lb_info->lbi_debug_time = 1023 (gethrtime()/nsec_per_tick); 1024 1025 /* 1026 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros 1027 * and lbolt_debug_{enter,return} use this value as an indication that 1028 * the initializaion above hasn't been completed. Setting lbolt_hybrid 1029 * to either lbolt_{cyclic,event}_driven here signals those code paths 1030 * that the lbolt related structures can be used. 1031 */ 1032 if (lbolt_cyc_only) { 1033 lbolt_when.cyt_when = 0; 1034 lbolt_hybrid = lbolt_cyclic_driven; 1035 } else { 1036 lbolt_when.cyt_when = CY_INFINITY; 1037 lbolt_hybrid = lbolt_event_driven; 1038 } 1039 1040 /* 1041 * Grab cpu_lock and install all three cyclics. 1042 */ 1043 mutex_enter(&cpu_lock); 1044 1045 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when); 1046 ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when); 1047 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when); 1048 1049 mutex_exit(&cpu_lock); 1050 } 1051 1052 /* 1053 * Called before calcloadavg to get 10-sec moving loadavg together 1054 */ 1055 1056 static int 1057 genloadavg(struct loadavg_s *avgs) 1058 { 1059 int avg; 1060 int spos; /* starting position */ 1061 int cpos; /* moving current position */ 1062 int i; 1063 int slen; 1064 hrtime_t hr_avg; 1065 1066 /* 10-second snapshot, calculate first positon */ 1067 if (avgs->lg_len == 0) { 1068 return (0); 1069 } 1070 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1071 1072 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1073 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1074 for (i = hr_avg = 0; i < slen; i++) { 1075 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1076 hr_avg += avgs->lg_loads[cpos]; 1077 } 1078 1079 hr_avg = hr_avg / slen; 1080 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1081 1082 return (avg); 1083 } 1084 1085 /* 1086 * Run every second from clock () to update the loadavg count available to the 1087 * system and cpu-partitions. 1088 * 1089 * This works by sampling the previous usr, sys, wait time elapsed, 1090 * computing a delta, and adding that delta to the elapsed usr, sys, 1091 * wait increase. 1092 */ 1093 1094 static void 1095 loadavg_update() 1096 { 1097 cpu_t *cp; 1098 cpupart_t *cpupart; 1099 hrtime_t cpu_total; 1100 int prev; 1101 1102 cp = cpu_list; 1103 loadavg.lg_total = 0; 1104 1105 /* 1106 * first pass totals up per-cpu statistics for system and cpu 1107 * partitions 1108 */ 1109 1110 do { 1111 struct loadavg_s *lavg; 1112 1113 lavg = &cp->cpu_loadavg; 1114 1115 cpu_total = cp->cpu_acct[CMS_USER] + 1116 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1117 /* compute delta against last total */ 1118 scalehrtime(&cpu_total); 1119 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1120 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1121 if (lavg->lg_loads[prev] <= 0) { 1122 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1123 cpu_total = 0; 1124 } else { 1125 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1126 cpu_total = cpu_total - lavg->lg_loads[prev]; 1127 if (cpu_total < 0) 1128 cpu_total = 0; 1129 } 1130 1131 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1132 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1133 lavg->lg_len + 1 : S_LOADAVG_SZ; 1134 1135 loadavg.lg_total += cpu_total; 1136 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1137 1138 } while ((cp = cp->cpu_next) != cpu_list); 1139 1140 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1141 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1142 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1143 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1144 /* 1145 * Second pass updates counts 1146 */ 1147 cpupart = cp_list_head; 1148 1149 do { 1150 struct loadavg_s *lavg; 1151 1152 lavg = &cpupart->cp_loadavg; 1153 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1154 lavg->lg_total = 0; 1155 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1156 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1157 lavg->lg_len + 1 : S_LOADAVG_SZ; 1158 1159 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1160 1161 } 1162 1163 /* 1164 * clock_update() - local clock update 1165 * 1166 * This routine is called by ntp_adjtime() to update the local clock 1167 * phase and frequency. The implementation is of an 1168 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1169 * routine computes new time and frequency offset estimates for each 1170 * call. The PPS signal itself determines the new time offset, 1171 * instead of the calling argument. Presumably, calls to 1172 * ntp_adjtime() occur only when the caller believes the local clock 1173 * is valid within some bound (+-128 ms with NTP). If the caller's 1174 * time is far different than the PPS time, an argument will ensue, 1175 * and it's not clear who will lose. 1176 * 1177 * For uncompensated quartz crystal oscillatores and nominal update 1178 * intervals less than 1024 s, operation should be in phase-lock mode 1179 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1180 * intervals greater than this, operation should be in frequency-lock 1181 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1182 * 1183 * Note: mutex(&tod_lock) is in effect. 1184 */ 1185 void 1186 clock_update(int offset) 1187 { 1188 int ltemp, mtemp, s; 1189 1190 ASSERT(MUTEX_HELD(&tod_lock)); 1191 1192 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1193 return; 1194 ltemp = offset; 1195 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1196 ltemp = pps_offset; 1197 1198 /* 1199 * Scale the phase adjustment and clamp to the operating range. 1200 */ 1201 if (ltemp > MAXPHASE) 1202 time_offset = MAXPHASE * SCALE_UPDATE; 1203 else if (ltemp < -MAXPHASE) 1204 time_offset = -(MAXPHASE * SCALE_UPDATE); 1205 else 1206 time_offset = ltemp * SCALE_UPDATE; 1207 1208 /* 1209 * Select whether the frequency is to be controlled and in which 1210 * mode (PLL or FLL). Clamp to the operating range. Ugly 1211 * multiply/divide should be replaced someday. 1212 */ 1213 if (time_status & STA_FREQHOLD || time_reftime == 0) 1214 time_reftime = hrestime.tv_sec; 1215 1216 mtemp = hrestime.tv_sec - time_reftime; 1217 time_reftime = hrestime.tv_sec; 1218 1219 if (time_status & STA_FLL) { 1220 if (mtemp >= MINSEC) { 1221 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1222 SCALE_UPDATE)); 1223 if (ltemp) 1224 time_freq += ltemp / SCALE_KH; 1225 } 1226 } else { 1227 if (mtemp < MAXSEC) { 1228 ltemp *= mtemp; 1229 if (ltemp) 1230 time_freq += (int)(((int64_t)ltemp * 1231 SCALE_USEC) / SCALE_KF) 1232 / (1 << (time_constant * 2)); 1233 } 1234 } 1235 if (time_freq > time_tolerance) 1236 time_freq = time_tolerance; 1237 else if (time_freq < -time_tolerance) 1238 time_freq = -time_tolerance; 1239 1240 s = hr_clock_lock(); 1241 tod_needsync = 1; 1242 hr_clock_unlock(s); 1243 } 1244 1245 /* 1246 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1247 * 1248 * This routine is called at each PPS interrupt in order to discipline 1249 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1250 * and leaves it in a handy spot for the clock() routine. It 1251 * integrates successive PPS phase differences and calculates the 1252 * frequency offset. This is used in clock() to discipline the CPU 1253 * clock oscillator so that intrinsic frequency error is cancelled out. 1254 * The code requires the caller to capture the time and hardware counter 1255 * value at the on-time PPS signal transition. 1256 * 1257 * Note that, on some Unix systems, this routine runs at an interrupt 1258 * priority level higher than the timer interrupt routine clock(). 1259 * Therefore, the variables used are distinct from the clock() 1260 * variables, except for certain exceptions: The PPS frequency pps_freq 1261 * and phase pps_offset variables are determined by this routine and 1262 * updated atomically. The time_tolerance variable can be considered a 1263 * constant, since it is infrequently changed, and then only when the 1264 * PPS signal is disabled. The watchdog counter pps_valid is updated 1265 * once per second by clock() and is atomically cleared in this 1266 * routine. 1267 * 1268 * tvp is the time of the last tick; usec is a microsecond count since the 1269 * last tick. 1270 * 1271 * Note: In Solaris systems, the tick value is actually given by 1272 * usec_per_tick. This is called from the serial driver cdintr(), 1273 * or equivalent, at a high PIL. Because the kernel keeps a 1274 * highresolution time, the following code can accept either 1275 * the traditional argument pair, or the current highres timestamp 1276 * in tvp and zero in usec. 1277 */ 1278 void 1279 ddi_hardpps(struct timeval *tvp, int usec) 1280 { 1281 int u_usec, v_usec, bigtick; 1282 time_t cal_sec; 1283 int cal_usec; 1284 1285 /* 1286 * An occasional glitch can be produced when the PPS interrupt 1287 * occurs in the clock() routine before the time variable is 1288 * updated. Here the offset is discarded when the difference 1289 * between it and the last one is greater than tick/2, but not 1290 * if the interval since the first discard exceeds 30 s. 1291 */ 1292 time_status |= STA_PPSSIGNAL; 1293 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1294 pps_valid = 0; 1295 u_usec = -tvp->tv_usec; 1296 if (u_usec < -(MICROSEC/2)) 1297 u_usec += MICROSEC; 1298 v_usec = pps_offset - u_usec; 1299 if (v_usec < 0) 1300 v_usec = -v_usec; 1301 if (v_usec > (usec_per_tick >> 1)) { 1302 if (pps_glitch > MAXGLITCH) { 1303 pps_glitch = 0; 1304 pps_tf[2] = u_usec; 1305 pps_tf[1] = u_usec; 1306 } else { 1307 pps_glitch++; 1308 u_usec = pps_offset; 1309 } 1310 } else 1311 pps_glitch = 0; 1312 1313 /* 1314 * A three-stage median filter is used to help deglitch the pps 1315 * time. The median sample becomes the time offset estimate; the 1316 * difference between the other two samples becomes the time 1317 * dispersion (jitter) estimate. 1318 */ 1319 pps_tf[2] = pps_tf[1]; 1320 pps_tf[1] = pps_tf[0]; 1321 pps_tf[0] = u_usec; 1322 if (pps_tf[0] > pps_tf[1]) { 1323 if (pps_tf[1] > pps_tf[2]) { 1324 pps_offset = pps_tf[1]; /* 0 1 2 */ 1325 v_usec = pps_tf[0] - pps_tf[2]; 1326 } else if (pps_tf[2] > pps_tf[0]) { 1327 pps_offset = pps_tf[0]; /* 2 0 1 */ 1328 v_usec = pps_tf[2] - pps_tf[1]; 1329 } else { 1330 pps_offset = pps_tf[2]; /* 0 2 1 */ 1331 v_usec = pps_tf[0] - pps_tf[1]; 1332 } 1333 } else { 1334 if (pps_tf[1] < pps_tf[2]) { 1335 pps_offset = pps_tf[1]; /* 2 1 0 */ 1336 v_usec = pps_tf[2] - pps_tf[0]; 1337 } else if (pps_tf[2] < pps_tf[0]) { 1338 pps_offset = pps_tf[0]; /* 1 0 2 */ 1339 v_usec = pps_tf[1] - pps_tf[2]; 1340 } else { 1341 pps_offset = pps_tf[2]; /* 1 2 0 */ 1342 v_usec = pps_tf[1] - pps_tf[0]; 1343 } 1344 } 1345 if (v_usec > MAXTIME) 1346 pps_jitcnt++; 1347 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1348 pps_jitter += v_usec / (1 << PPS_AVG); 1349 if (pps_jitter > (MAXTIME >> 1)) 1350 time_status |= STA_PPSJITTER; 1351 1352 /* 1353 * During the calibration interval adjust the starting time when 1354 * the tick overflows. At the end of the interval compute the 1355 * duration of the interval and the difference of the hardware 1356 * counters at the beginning and end of the interval. This code 1357 * is deliciously complicated by the fact valid differences may 1358 * exceed the value of tick when using long calibration 1359 * intervals and small ticks. Note that the counter can be 1360 * greater than tick if caught at just the wrong instant, but 1361 * the values returned and used here are correct. 1362 */ 1363 bigtick = (int)usec_per_tick * SCALE_USEC; 1364 pps_usec -= pps_freq; 1365 if (pps_usec >= bigtick) 1366 pps_usec -= bigtick; 1367 if (pps_usec < 0) 1368 pps_usec += bigtick; 1369 pps_time.tv_sec++; 1370 pps_count++; 1371 if (pps_count < (1 << pps_shift)) 1372 return; 1373 pps_count = 0; 1374 pps_calcnt++; 1375 u_usec = usec * SCALE_USEC; 1376 v_usec = pps_usec - u_usec; 1377 if (v_usec >= bigtick >> 1) 1378 v_usec -= bigtick; 1379 if (v_usec < -(bigtick >> 1)) 1380 v_usec += bigtick; 1381 if (v_usec < 0) 1382 v_usec = -(-v_usec >> pps_shift); 1383 else 1384 v_usec = v_usec >> pps_shift; 1385 pps_usec = u_usec; 1386 cal_sec = tvp->tv_sec; 1387 cal_usec = tvp->tv_usec; 1388 cal_sec -= pps_time.tv_sec; 1389 cal_usec -= pps_time.tv_usec; 1390 if (cal_usec < 0) { 1391 cal_usec += MICROSEC; 1392 cal_sec--; 1393 } 1394 pps_time = *tvp; 1395 1396 /* 1397 * Check for lost interrupts, noise, excessive jitter and 1398 * excessive frequency error. The number of timer ticks during 1399 * the interval may vary +-1 tick. Add to this a margin of one 1400 * tick for the PPS signal jitter and maximum frequency 1401 * deviation. If the limits are exceeded, the calibration 1402 * interval is reset to the minimum and we start over. 1403 */ 1404 u_usec = (int)usec_per_tick << 1; 1405 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1406 (cal_sec == 0 && cal_usec < u_usec)) || 1407 v_usec > time_tolerance || v_usec < -time_tolerance) { 1408 pps_errcnt++; 1409 pps_shift = PPS_SHIFT; 1410 pps_intcnt = 0; 1411 time_status |= STA_PPSERROR; 1412 return; 1413 } 1414 1415 /* 1416 * A three-stage median filter is used to help deglitch the pps 1417 * frequency. The median sample becomes the frequency offset 1418 * estimate; the difference between the other two samples 1419 * becomes the frequency dispersion (stability) estimate. 1420 */ 1421 pps_ff[2] = pps_ff[1]; 1422 pps_ff[1] = pps_ff[0]; 1423 pps_ff[0] = v_usec; 1424 if (pps_ff[0] > pps_ff[1]) { 1425 if (pps_ff[1] > pps_ff[2]) { 1426 u_usec = pps_ff[1]; /* 0 1 2 */ 1427 v_usec = pps_ff[0] - pps_ff[2]; 1428 } else if (pps_ff[2] > pps_ff[0]) { 1429 u_usec = pps_ff[0]; /* 2 0 1 */ 1430 v_usec = pps_ff[2] - pps_ff[1]; 1431 } else { 1432 u_usec = pps_ff[2]; /* 0 2 1 */ 1433 v_usec = pps_ff[0] - pps_ff[1]; 1434 } 1435 } else { 1436 if (pps_ff[1] < pps_ff[2]) { 1437 u_usec = pps_ff[1]; /* 2 1 0 */ 1438 v_usec = pps_ff[2] - pps_ff[0]; 1439 } else if (pps_ff[2] < pps_ff[0]) { 1440 u_usec = pps_ff[0]; /* 1 0 2 */ 1441 v_usec = pps_ff[1] - pps_ff[2]; 1442 } else { 1443 u_usec = pps_ff[2]; /* 1 2 0 */ 1444 v_usec = pps_ff[1] - pps_ff[0]; 1445 } 1446 } 1447 1448 /* 1449 * Here the frequency dispersion (stability) is updated. If it 1450 * is less than one-fourth the maximum (MAXFREQ), the frequency 1451 * offset is updated as well, but clamped to the tolerance. It 1452 * will be processed later by the clock() routine. 1453 */ 1454 v_usec = (v_usec >> 1) - pps_stabil; 1455 if (v_usec < 0) 1456 pps_stabil -= -v_usec >> PPS_AVG; 1457 else 1458 pps_stabil += v_usec >> PPS_AVG; 1459 if (pps_stabil > MAXFREQ >> 2) { 1460 pps_stbcnt++; 1461 time_status |= STA_PPSWANDER; 1462 return; 1463 } 1464 if (time_status & STA_PPSFREQ) { 1465 if (u_usec < 0) { 1466 pps_freq -= -u_usec >> PPS_AVG; 1467 if (pps_freq < -time_tolerance) 1468 pps_freq = -time_tolerance; 1469 u_usec = -u_usec; 1470 } else { 1471 pps_freq += u_usec >> PPS_AVG; 1472 if (pps_freq > time_tolerance) 1473 pps_freq = time_tolerance; 1474 } 1475 } 1476 1477 /* 1478 * Here the calibration interval is adjusted. If the maximum 1479 * time difference is greater than tick / 4, reduce the interval 1480 * by half. If this is not the case for four consecutive 1481 * intervals, double the interval. 1482 */ 1483 if (u_usec << pps_shift > bigtick >> 2) { 1484 pps_intcnt = 0; 1485 if (pps_shift > PPS_SHIFT) 1486 pps_shift--; 1487 } else if (pps_intcnt >= 4) { 1488 pps_intcnt = 0; 1489 if (pps_shift < PPS_SHIFTMAX) 1490 pps_shift++; 1491 } else 1492 pps_intcnt++; 1493 1494 /* 1495 * If recovering from kmdb, then make sure the tod chip gets resynced. 1496 * If we took an early exit above, then we don't yet have a stable 1497 * calibration signal to lock onto, so don't mark the tod for sync 1498 * until we get all the way here. 1499 */ 1500 { 1501 int s = hr_clock_lock(); 1502 1503 tod_needsync = 1; 1504 hr_clock_unlock(s); 1505 } 1506 } 1507 1508 /* 1509 * Handle clock tick processing for a thread. 1510 * Check for timer action, enforce CPU rlimit, do profiling etc. 1511 */ 1512 void 1513 clock_tick(kthread_t *t, int pending) 1514 { 1515 struct proc *pp; 1516 klwp_id_t lwp; 1517 struct as *as; 1518 clock_t ticks; 1519 int poke = 0; /* notify another CPU */ 1520 int user_mode; 1521 size_t rss; 1522 int i, total_usec, usec; 1523 rctl_qty_t secs; 1524 1525 ASSERT(pending > 0); 1526 1527 /* Must be operating on a lwp/thread */ 1528 if ((lwp = ttolwp(t)) == NULL) { 1529 panic("clock_tick: no lwp"); 1530 /*NOTREACHED*/ 1531 } 1532 1533 for (i = 0; i < pending; i++) { 1534 CL_TICK(t); /* Class specific tick processing */ 1535 DTRACE_SCHED1(tick, kthread_t *, t); 1536 } 1537 1538 pp = ttoproc(t); 1539 1540 /* pp->p_lock makes sure that the thread does not exit */ 1541 ASSERT(MUTEX_HELD(&pp->p_lock)); 1542 1543 user_mode = (lwp->lwp_state == LWP_USER); 1544 1545 ticks = (pp->p_utime + pp->p_stime) % hz; 1546 /* 1547 * Update process times. Should use high res clock and state 1548 * changes instead of statistical sampling method. XXX 1549 */ 1550 if (user_mode) { 1551 pp->p_utime += pending; 1552 } else { 1553 pp->p_stime += pending; 1554 } 1555 1556 pp->p_ttime += pending; 1557 as = pp->p_as; 1558 1559 /* 1560 * Update user profiling statistics. Get the pc from the 1561 * lwp when the AST happens. 1562 */ 1563 if (pp->p_prof.pr_scale) { 1564 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1565 if (user_mode) { 1566 poke = 1; 1567 aston(t); 1568 } 1569 } 1570 1571 /* 1572 * If CPU was in user state, process lwp-virtual time 1573 * interval timer. The value passed to itimerdecr() has to be 1574 * in microseconds and has to be less than one second. Hence 1575 * this loop. 1576 */ 1577 total_usec = usec_per_tick * pending; 1578 while (total_usec > 0) { 1579 usec = MIN(total_usec, (MICROSEC - 1)); 1580 if (user_mode && 1581 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1582 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1583 poke = 1; 1584 sigtoproc(pp, t, SIGVTALRM); 1585 } 1586 total_usec -= usec; 1587 } 1588 1589 /* 1590 * If CPU was in user state, process lwp-profile 1591 * interval timer. 1592 */ 1593 total_usec = usec_per_tick * pending; 1594 while (total_usec > 0) { 1595 usec = MIN(total_usec, (MICROSEC - 1)); 1596 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1597 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1598 poke = 1; 1599 sigtoproc(pp, t, SIGPROF); 1600 } 1601 total_usec -= usec; 1602 } 1603 1604 /* 1605 * Enforce CPU resource controls: 1606 * (a) process.max-cpu-time resource control 1607 * 1608 * Perform the check only if we have accumulated more a second. 1609 */ 1610 if ((ticks + pending) >= hz) { 1611 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1612 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1613 } 1614 1615 /* 1616 * (b) task.max-cpu-time resource control 1617 * 1618 * If we have accumulated enough ticks, increment the task CPU 1619 * time usage and test for the resource limit. This minimizes the 1620 * number of calls to the rct_test(). The task CPU time mutex 1621 * is highly contentious as many processes can be sharing a task. 1622 */ 1623 if (pp->p_ttime >= clock_tick_proc_max) { 1624 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1625 pp->p_ttime = 0; 1626 if (secs) { 1627 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1628 pp, secs, RCA_UNSAFE_SIGINFO); 1629 } 1630 } 1631 1632 /* 1633 * Update memory usage for the currently running process. 1634 */ 1635 rss = rm_asrss(as); 1636 PTOU(pp)->u_mem += rss; 1637 if (rss > PTOU(pp)->u_mem_max) 1638 PTOU(pp)->u_mem_max = rss; 1639 1640 /* 1641 * Notify the CPU the thread is running on. 1642 */ 1643 if (poke && t->t_cpu != CPU) 1644 poke_cpu(t->t_cpu->cpu_id); 1645 } 1646 1647 void 1648 profil_tick(uintptr_t upc) 1649 { 1650 int ticks; 1651 proc_t *p = ttoproc(curthread); 1652 klwp_t *lwp = ttolwp(curthread); 1653 struct prof *pr = &p->p_prof; 1654 1655 do { 1656 ticks = lwp->lwp_oweupc; 1657 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1658 1659 mutex_enter(&p->p_pflock); 1660 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1661 /* 1662 * Old-style profiling 1663 */ 1664 uint16_t *slot = pr->pr_base; 1665 uint16_t old, new; 1666 if (pr->pr_scale != 2) { 1667 uintptr_t delta = upc - pr->pr_off; 1668 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1669 (((delta & 0xffff) * pr->pr_scale) >> 16); 1670 if (byteoff >= (uintptr_t)pr->pr_size) { 1671 mutex_exit(&p->p_pflock); 1672 return; 1673 } 1674 slot += byteoff / sizeof (uint16_t); 1675 } 1676 if (fuword16(slot, &old) < 0 || 1677 (new = old + ticks) > SHRT_MAX || 1678 suword16(slot, new) < 0) { 1679 pr->pr_scale = 0; 1680 } 1681 } else if (pr->pr_scale == 1) { 1682 /* 1683 * PC Sampling 1684 */ 1685 model_t model = lwp_getdatamodel(lwp); 1686 int result; 1687 #ifdef __lint 1688 model = model; 1689 #endif 1690 while (ticks-- > 0) { 1691 if (pr->pr_samples == pr->pr_size) { 1692 /* buffer full, turn off sampling */ 1693 pr->pr_scale = 0; 1694 break; 1695 } 1696 switch (SIZEOF_PTR(model)) { 1697 case sizeof (uint32_t): 1698 result = suword32(pr->pr_base, (uint32_t)upc); 1699 break; 1700 #ifdef _LP64 1701 case sizeof (uint64_t): 1702 result = suword64(pr->pr_base, (uint64_t)upc); 1703 break; 1704 #endif 1705 default: 1706 cmn_err(CE_WARN, "profil_tick: unexpected " 1707 "data model"); 1708 result = -1; 1709 break; 1710 } 1711 if (result != 0) { 1712 pr->pr_scale = 0; 1713 break; 1714 } 1715 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1716 pr->pr_samples++; 1717 } 1718 } 1719 mutex_exit(&p->p_pflock); 1720 } 1721 1722 static void 1723 delay_wakeup(void *arg) 1724 { 1725 kthread_t *t = arg; 1726 1727 mutex_enter(&t->t_delay_lock); 1728 cv_signal(&t->t_delay_cv); 1729 mutex_exit(&t->t_delay_lock); 1730 } 1731 1732 /* 1733 * The delay(9F) man page indicates that it can only be called from user or 1734 * kernel context - detect and diagnose bad calls. The following macro will 1735 * produce a limited number of messages identifying bad callers. This is done 1736 * in a macro so that caller() is meaningful. When a bad caller is identified, 1737 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 1738 */ 1739 #define DELAY_CONTEXT_CHECK() { \ 1740 uint32_t m; \ 1741 char *f; \ 1742 ulong_t off; \ 1743 \ 1744 m = delay_from_interrupt_msg; \ 1745 if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 1746 !panicstr && !devinfo_freeze && \ 1747 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 1748 f = modgetsymname((uintptr_t)caller(), &off); \ 1749 cmn_err(CE_WARN, "delay(9F) called from " \ 1750 "interrupt context: %s`%s", \ 1751 mod_containing_pc(caller()), f ? f : "..."); \ 1752 } \ 1753 } 1754 1755 /* 1756 * delay_common: common delay code. 1757 */ 1758 static void 1759 delay_common(clock_t ticks) 1760 { 1761 kthread_t *t = curthread; 1762 clock_t deadline; 1763 clock_t timeleft; 1764 callout_id_t id; 1765 1766 /* If timeouts aren't running all we can do is spin. */ 1767 if (panicstr || devinfo_freeze) { 1768 /* Convert delay(9F) call into drv_usecwait(9F) call. */ 1769 if (ticks > 0) 1770 drv_usecwait(TICK_TO_USEC(ticks)); 1771 return; 1772 } 1773 1774 deadline = ddi_get_lbolt() + ticks; 1775 while ((timeleft = deadline - ddi_get_lbolt()) > 0) { 1776 mutex_enter(&t->t_delay_lock); 1777 id = timeout_default(delay_wakeup, t, timeleft); 1778 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1779 mutex_exit(&t->t_delay_lock); 1780 (void) untimeout_default(id, 0); 1781 } 1782 } 1783 1784 /* 1785 * Delay specified number of clock ticks. 1786 */ 1787 void 1788 delay(clock_t ticks) 1789 { 1790 DELAY_CONTEXT_CHECK(); 1791 1792 delay_common(ticks); 1793 } 1794 1795 /* 1796 * Delay a random number of clock ticks between 1 and ticks. 1797 */ 1798 void 1799 delay_random(clock_t ticks) 1800 { 1801 int r; 1802 1803 DELAY_CONTEXT_CHECK(); 1804 1805 (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 1806 if (ticks == 0) 1807 ticks = 1; 1808 ticks = (r % ticks) + 1; 1809 delay_common(ticks); 1810 } 1811 1812 /* 1813 * Like delay, but interruptible by a signal. 1814 */ 1815 int 1816 delay_sig(clock_t ticks) 1817 { 1818 kthread_t *t = curthread; 1819 clock_t deadline; 1820 clock_t rc; 1821 1822 /* If timeouts aren't running all we can do is spin. */ 1823 if (panicstr || devinfo_freeze) { 1824 if (ticks > 0) 1825 drv_usecwait(TICK_TO_USEC(ticks)); 1826 return (0); 1827 } 1828 1829 deadline = ddi_get_lbolt() + ticks; 1830 mutex_enter(&t->t_delay_lock); 1831 do { 1832 rc = cv_timedwait_sig(&t->t_delay_cv, 1833 &t->t_delay_lock, deadline); 1834 /* loop until past deadline or signaled */ 1835 } while (rc > 0); 1836 mutex_exit(&t->t_delay_lock); 1837 if (rc == 0) 1838 return (EINTR); 1839 return (0); 1840 } 1841 1842 1843 #define SECONDS_PER_DAY 86400 1844 1845 /* 1846 * Initialize the system time based on the TOD chip. approx is used as 1847 * an approximation of time (e.g. from the filesystem) in the event that 1848 * the TOD chip has been cleared or is unresponsive. An approx of -1 1849 * means the filesystem doesn't keep time. 1850 */ 1851 void 1852 clkset(time_t approx) 1853 { 1854 timestruc_t ts; 1855 int spl; 1856 int set_clock = 0; 1857 1858 mutex_enter(&tod_lock); 1859 ts = tod_get(); 1860 1861 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1862 /* 1863 * If the TOD chip is reporting some time after 1971, 1864 * then it probably didn't lose power or become otherwise 1865 * cleared in the recent past; check to assure that 1866 * the time coming from the filesystem isn't in the future 1867 * according to the TOD chip. 1868 */ 1869 if (approx != -1 && approx > ts.tv_sec) { 1870 cmn_err(CE_WARN, "Last shutdown is later " 1871 "than time on time-of-day chip; check date."); 1872 } 1873 } else { 1874 /* 1875 * If the TOD chip isn't giving correct time, set it to the 1876 * greater of i) approx and ii) 1987. That way if approx 1877 * is negative or is earlier than 1987, we set the clock 1878 * back to a time when Oliver North, ALF and Dire Straits 1879 * were all on the collective brain: 1987. 1880 */ 1881 timestruc_t tmp; 1882 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1883 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1884 ts.tv_nsec = 0; 1885 1886 /* 1887 * Attempt to write the new time to the TOD chip. Set spl high 1888 * to avoid getting preempted between the tod_set and tod_get. 1889 */ 1890 spl = splhi(); 1891 tod_set(ts); 1892 tmp = tod_get(); 1893 splx(spl); 1894 1895 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1896 tod_broken = 1; 1897 dosynctodr = 0; 1898 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1899 } else { 1900 cmn_err(CE_WARN, "Time-of-day chip had " 1901 "incorrect date; check and reset."); 1902 } 1903 set_clock = 1; 1904 } 1905 1906 if (!boot_time) { 1907 boot_time = ts.tv_sec; 1908 set_clock = 1; 1909 } 1910 1911 if (set_clock) 1912 set_hrestime(&ts); 1913 1914 mutex_exit(&tod_lock); 1915 } 1916 1917 int timechanged; /* for testing if the system time has been reset */ 1918 1919 void 1920 set_hrestime(timestruc_t *ts) 1921 { 1922 int spl = hr_clock_lock(); 1923 hrestime = *ts; 1924 membar_enter(); /* hrestime must be visible before timechanged++ */ 1925 timedelta = 0; 1926 timechanged++; 1927 hr_clock_unlock(spl); 1928 callout_hrestime(); 1929 } 1930 1931 static uint_t deadman_seconds; 1932 static uint32_t deadman_panics; 1933 static int deadman_enabled = 0; 1934 static int deadman_panic_timers = 1; 1935 1936 static void 1937 deadman(void) 1938 { 1939 if (panicstr) { 1940 /* 1941 * During panic, other CPUs besides the panic 1942 * master continue to handle cyclics and some other 1943 * interrupts. The code below is intended to be 1944 * single threaded, so any CPU other than the master 1945 * must keep out. 1946 */ 1947 if (CPU->cpu_id != panic_cpu.cpu_id) 1948 return; 1949 1950 if (!deadman_panic_timers) 1951 return; /* allow all timers to be manually disabled */ 1952 1953 /* 1954 * If we are generating a crash dump or syncing filesystems and 1955 * the corresponding timer is set, decrement it and re-enter 1956 * the panic code to abort it and advance to the next state. 1957 * The panic states and triggers are explained in panic.c. 1958 */ 1959 if (panic_dump) { 1960 if (dump_timeleft && (--dump_timeleft == 0)) { 1961 panic("panic dump timeout"); 1962 /*NOTREACHED*/ 1963 } 1964 } else if (panic_sync) { 1965 if (sync_timeleft && (--sync_timeleft == 0)) { 1966 panic("panic sync timeout"); 1967 /*NOTREACHED*/ 1968 } 1969 } 1970 1971 return; 1972 } 1973 1974 if (deadman_counter != CPU->cpu_deadman_counter) { 1975 CPU->cpu_deadman_counter = deadman_counter; 1976 CPU->cpu_deadman_countdown = deadman_seconds; 1977 return; 1978 } 1979 1980 if (--CPU->cpu_deadman_countdown > 0) 1981 return; 1982 1983 /* 1984 * Regardless of whether or not we actually bring the system down, 1985 * bump the deadman_panics variable. 1986 * 1987 * N.B. deadman_panics is incremented once for each CPU that 1988 * passes through here. It's expected that all the CPUs will 1989 * detect this condition within one second of each other, so 1990 * when deadman_enabled is off, deadman_panics will 1991 * typically be a multiple of the total number of CPUs in 1992 * the system. 1993 */ 1994 atomic_add_32(&deadman_panics, 1); 1995 1996 if (!deadman_enabled) { 1997 CPU->cpu_deadman_countdown = deadman_seconds; 1998 return; 1999 } 2000 2001 /* 2002 * If we're here, we want to bring the system down. 2003 */ 2004 panic("deadman: timed out after %d seconds of clock " 2005 "inactivity", deadman_seconds); 2006 /*NOTREACHED*/ 2007 } 2008 2009 /*ARGSUSED*/ 2010 static void 2011 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 2012 { 2013 cpu->cpu_deadman_counter = 0; 2014 cpu->cpu_deadman_countdown = deadman_seconds; 2015 2016 hdlr->cyh_func = (cyc_func_t)deadman; 2017 hdlr->cyh_level = CY_HIGH_LEVEL; 2018 hdlr->cyh_arg = NULL; 2019 2020 /* 2021 * Stagger the CPUs so that they don't all run deadman() at 2022 * the same time. Simplest reason to do this is to make it 2023 * more likely that only one CPU will panic in case of a 2024 * timeout. This is (strictly speaking) an aesthetic, not a 2025 * technical consideration. 2026 */ 2027 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 2028 when->cyt_interval = NANOSEC; 2029 } 2030 2031 2032 void 2033 deadman_init(void) 2034 { 2035 cyc_omni_handler_t hdlr; 2036 2037 if (deadman_seconds == 0) 2038 deadman_seconds = snoop_interval / MICROSEC; 2039 2040 if (snooping) 2041 deadman_enabled = 1; 2042 2043 hdlr.cyo_online = deadman_online; 2044 hdlr.cyo_offline = NULL; 2045 hdlr.cyo_arg = NULL; 2046 2047 mutex_enter(&cpu_lock); 2048 deadman_cyclic = cyclic_add_omni(&hdlr); 2049 mutex_exit(&cpu_lock); 2050 } 2051 2052 /* 2053 * tod_fault() is for updating tod validate mechanism state: 2054 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 2055 * currently used for debugging only 2056 * (2) The following four cases detected by tod validate mechanism: 2057 * TOD_REVERSED: current tod value is less than previous value. 2058 * TOD_STALLED: current tod value hasn't advanced. 2059 * TOD_JUMPED: current tod value advanced too far from previous value. 2060 * TOD_RATECHANGED: the ratio between average tod delta and 2061 * average tick delta has changed. 2062 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 2063 * a virtual TOD provided by a hypervisor. 2064 */ 2065 enum tod_fault_type 2066 tod_fault(enum tod_fault_type ftype, int off) 2067 { 2068 ASSERT(MUTEX_HELD(&tod_lock)); 2069 2070 if (tod_faulted != ftype) { 2071 switch (ftype) { 2072 case TOD_NOFAULT: 2073 plat_tod_fault(TOD_NOFAULT); 2074 cmn_err(CE_NOTE, "Restarted tracking " 2075 "Time of Day clock."); 2076 tod_faulted = ftype; 2077 break; 2078 case TOD_REVERSED: 2079 case TOD_JUMPED: 2080 if (tod_faulted == TOD_NOFAULT) { 2081 plat_tod_fault(ftype); 2082 cmn_err(CE_WARN, "Time of Day clock error: " 2083 "reason [%s by 0x%x]. -- " 2084 " Stopped tracking Time Of Day clock.", 2085 tod_fault_table[ftype], off); 2086 tod_faulted = ftype; 2087 } 2088 break; 2089 case TOD_STALLED: 2090 case TOD_RATECHANGED: 2091 if (tod_faulted == TOD_NOFAULT) { 2092 plat_tod_fault(ftype); 2093 cmn_err(CE_WARN, "Time of Day clock error: " 2094 "reason [%s]. -- " 2095 " Stopped tracking Time Of Day clock.", 2096 tod_fault_table[ftype]); 2097 tod_faulted = ftype; 2098 } 2099 break; 2100 case TOD_RDONLY: 2101 if (tod_faulted == TOD_NOFAULT) { 2102 plat_tod_fault(ftype); 2103 cmn_err(CE_NOTE, "!Time of Day clock is " 2104 "Read-Only; set of Date/Time will not " 2105 "persist across reboot."); 2106 tod_faulted = ftype; 2107 } 2108 break; 2109 default: 2110 break; 2111 } 2112 } 2113 return (tod_faulted); 2114 } 2115 2116 /* 2117 * Two functions that allow tod_status_flag to be manipulated by functions 2118 * external to this file. 2119 */ 2120 2121 void 2122 tod_status_set(int tod_flag) 2123 { 2124 tod_status_flag |= tod_flag; 2125 } 2126 2127 void 2128 tod_status_clear(int tod_flag) 2129 { 2130 tod_status_flag &= ~tod_flag; 2131 } 2132 2133 /* 2134 * Record a timestamp and the value passed to tod_set(). The next call to 2135 * tod_validate() can use these values, prev_set_tick and prev_set_tod, 2136 * when checking the timestruc_t returned by tod_get(). Ordinarily, 2137 * tod_validate() will use prev_tick and prev_tod for this task but these 2138 * become obsolete, and will be re-assigned with the prev_set_* values, 2139 * in the case when the TOD is re-written. 2140 */ 2141 void 2142 tod_set_prev(timestruc_t ts) 2143 { 2144 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2145 tod_validate_deferred) { 2146 return; 2147 } 2148 prev_set_tick = gethrtime(); 2149 /* 2150 * A negative value will be set to zero in utc_to_tod() so we fake 2151 * a zero here in such a case. This would need to change if the 2152 * behavior of utc_to_tod() changes. 2153 */ 2154 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec; 2155 } 2156 2157 /* 2158 * tod_validate() is used for checking values returned by tod_get(). 2159 * Four error cases can be detected by this routine: 2160 * TOD_REVERSED: current tod value is less than previous. 2161 * TOD_STALLED: current tod value hasn't advanced. 2162 * TOD_JUMPED: current tod value advanced too far from previous value. 2163 * TOD_RATECHANGED: the ratio between average tod delta and 2164 * average tick delta has changed. 2165 */ 2166 time_t 2167 tod_validate(time_t tod) 2168 { 2169 time_t diff_tod; 2170 hrtime_t diff_tick; 2171 2172 long dtick; 2173 int dtick_delta; 2174 2175 int off = 0; 2176 enum tod_fault_type tod_bad = TOD_NOFAULT; 2177 2178 static int firsttime = 1; 2179 2180 static time_t prev_tod = 0; 2181 static hrtime_t prev_tick = 0; 2182 static long dtick_avg = TOD_REF_FREQ; 2183 2184 int cpr_resume_done = 0; 2185 int dr_resume_done = 0; 2186 2187 hrtime_t tick = gethrtime(); 2188 2189 ASSERT(MUTEX_HELD(&tod_lock)); 2190 2191 /* 2192 * tod_validate_enable is patchable via /etc/system. 2193 * If TOD is already faulted, or if TOD validation is deferred, 2194 * there is nothing to do. 2195 */ 2196 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2197 tod_validate_deferred) { 2198 return (tod); 2199 } 2200 2201 /* 2202 * If this is the first time through, we just need to save the tod 2203 * we were called with and hrtime so we can use them next time to 2204 * validate tod_get(). 2205 */ 2206 if (firsttime) { 2207 firsttime = 0; 2208 prev_tod = tod; 2209 prev_tick = tick; 2210 return (tod); 2211 } 2212 2213 /* 2214 * Handle any flags that have been turned on by tod_status_set(). 2215 * In the case where a tod_set() is done and then a subsequent 2216 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are 2217 * true), we treat the TOD_GET_FAILED with precedence by switching 2218 * off the flag, returning tod and leaving TOD_SET_DONE asserted 2219 * until such time as tod_get() completes successfully. 2220 */ 2221 if (tod_status_flag & TOD_GET_FAILED) { 2222 /* 2223 * tod_get() has encountered an issue, possibly transitory, 2224 * when reading TOD. We'll just return the incoming tod 2225 * value (which is actually hrestime.tv_sec in this case) 2226 * and when we get a genuine tod, following a successful 2227 * tod_get(), we can validate using prev_tod and prev_tick. 2228 */ 2229 tod_status_flag &= ~TOD_GET_FAILED; 2230 return (tod); 2231 } else if (tod_status_flag & TOD_SET_DONE) { 2232 /* 2233 * TOD has been modified. Just before the TOD was written, 2234 * tod_set_prev() saved tod and hrtime; we can now use 2235 * those values, prev_set_tod and prev_set_tick, to validate 2236 * the incoming tod that's just been read. 2237 */ 2238 prev_tod = prev_set_tod; 2239 prev_tick = prev_set_tick; 2240 dtick_avg = TOD_REF_FREQ; 2241 tod_status_flag &= ~TOD_SET_DONE; 2242 /* 2243 * If a tod_set() preceded a cpr_suspend() without an 2244 * intervening tod_validate(), we need to ensure that a 2245 * TOD_JUMPED condition is ignored. 2246 * Note this isn't a concern in the case of DR as we've 2247 * just reassigned dtick_avg, above. 2248 */ 2249 if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2250 cpr_resume_done = 1; 2251 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2252 } 2253 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2254 /* 2255 * The system's coming back from a checkpoint resume. 2256 */ 2257 cpr_resume_done = 1; 2258 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2259 /* 2260 * We need to handle the possibility of a CPR suspend 2261 * operation having been initiated whilst a DR event was 2262 * in-flight. 2263 */ 2264 if (tod_status_flag & TOD_DR_RESUME_DONE) { 2265 dr_resume_done = 1; 2266 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2267 } 2268 } else if (tod_status_flag & TOD_DR_RESUME_DONE) { 2269 /* 2270 * A Dynamic Reconfiguration event has taken place. 2271 */ 2272 dr_resume_done = 1; 2273 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2274 } 2275 2276 /* test hook */ 2277 switch (tod_unit_test) { 2278 case 1: /* for testing jumping tod */ 2279 tod += tod_test_injector; 2280 tod_unit_test = 0; 2281 break; 2282 case 2: /* for testing stuck tod bit */ 2283 tod |= 1 << tod_test_injector; 2284 tod_unit_test = 0; 2285 break; 2286 case 3: /* for testing stalled tod */ 2287 tod = prev_tod; 2288 tod_unit_test = 0; 2289 break; 2290 case 4: /* reset tod fault status */ 2291 (void) tod_fault(TOD_NOFAULT, 0); 2292 tod_unit_test = 0; 2293 break; 2294 default: 2295 break; 2296 } 2297 2298 diff_tod = tod - prev_tod; 2299 diff_tick = tick - prev_tick; 2300 2301 ASSERT(diff_tick >= 0); 2302 2303 if (diff_tod < 0) { 2304 /* ERROR - tod reversed */ 2305 tod_bad = TOD_REVERSED; 2306 off = (int)(prev_tod - tod); 2307 } else if (diff_tod == 0) { 2308 /* tod did not advance */ 2309 if (diff_tick > TOD_STALL_THRESHOLD) { 2310 /* ERROR - tod stalled */ 2311 tod_bad = TOD_STALLED; 2312 } else { 2313 /* 2314 * Make sure we don't update prev_tick 2315 * so that diff_tick is calculated since 2316 * the first diff_tod == 0 2317 */ 2318 return (tod); 2319 } 2320 } else { 2321 /* calculate dtick */ 2322 dtick = diff_tick / diff_tod; 2323 2324 /* update dtick averages */ 2325 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2326 2327 /* 2328 * Calculate dtick_delta as 2329 * variation from reference freq in quartiles 2330 */ 2331 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2332 (TOD_REF_FREQ >> 2); 2333 2334 /* 2335 * Even with a perfectly functioning TOD device, 2336 * when the number of elapsed seconds is low the 2337 * algorithm can calculate a rate that is beyond 2338 * tolerance, causing an error. The algorithm is 2339 * inaccurate when elapsed time is low (less than 2340 * 5 seconds). 2341 */ 2342 if (diff_tod > 4) { 2343 if (dtick < TOD_JUMP_THRESHOLD) { 2344 /* 2345 * If we've just done a CPR resume, we detect 2346 * a jump in the TOD but, actually, what's 2347 * happened is that the TOD has been increasing 2348 * whilst the system was suspended and the tick 2349 * count hasn't kept up. We consider the first 2350 * occurrence of this after a resume as normal 2351 * and ignore it; otherwise, in a non-resume 2352 * case, we regard it as a TOD problem. 2353 */ 2354 if (!cpr_resume_done) { 2355 /* ERROR - tod jumped */ 2356 tod_bad = TOD_JUMPED; 2357 off = (int)diff_tod; 2358 } 2359 } 2360 if (dtick_delta) { 2361 /* 2362 * If we've just done a DR resume, dtick_avg 2363 * can go a bit askew so we reset it and carry 2364 * on; otherwise, the TOD is in error. 2365 */ 2366 if (dr_resume_done) { 2367 dtick_avg = TOD_REF_FREQ; 2368 } else { 2369 /* ERROR - change in clock rate */ 2370 tod_bad = TOD_RATECHANGED; 2371 } 2372 } 2373 } 2374 } 2375 2376 if (tod_bad != TOD_NOFAULT) { 2377 (void) tod_fault(tod_bad, off); 2378 2379 /* 2380 * Disable dosynctodr since we are going to fault 2381 * the TOD chip anyway here 2382 */ 2383 dosynctodr = 0; 2384 2385 /* 2386 * Set tod to the correct value from hrestime 2387 */ 2388 tod = hrestime.tv_sec; 2389 } 2390 2391 prev_tod = tod; 2392 prev_tick = tick; 2393 return (tod); 2394 } 2395 2396 static void 2397 calcloadavg(int nrun, uint64_t *hp_ave) 2398 { 2399 static int64_t f[3] = { 135, 27, 9 }; 2400 uint_t i; 2401 int64_t q, r; 2402 2403 /* 2404 * Compute load average over the last 1, 5, and 15 minutes 2405 * (60, 300, and 900 seconds). The constants in f[3] are for 2406 * exponential decay: 2407 * (1 - exp(-1/60)) << 13 = 135, 2408 * (1 - exp(-1/300)) << 13 = 27, 2409 * (1 - exp(-1/900)) << 13 = 9. 2410 */ 2411 2412 /* 2413 * a little hoop-jumping to avoid integer overflow 2414 */ 2415 for (i = 0; i < 3; i++) { 2416 q = (hp_ave[i] >> 16) << 7; 2417 r = (hp_ave[i] & 0xffff) << 7; 2418 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2419 } 2420 } 2421 2422 /* 2423 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to 2424 * calculate the value of lbolt according to the current mode. In the event 2425 * driven mode (the default), lbolt is calculated by dividing the current hires 2426 * time by the number of nanoseconds per clock tick. In the cyclic driven mode 2427 * an internal variable is incremented at each firing of the lbolt cyclic 2428 * and returned by lbolt_cyclic_driven(). 2429 * 2430 * The system will transition from event to cyclic driven mode when the number 2431 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a 2432 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to 2433 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is 2434 * causing enough activity to cross the thresholds. 2435 */ 2436 int64_t 2437 lbolt_bootstrap(void) 2438 { 2439 return (0); 2440 } 2441 2442 /* ARGSUSED */ 2443 uint_t 2444 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2) 2445 { 2446 hrtime_t ts, exp; 2447 int ret; 2448 2449 ASSERT(lbolt_hybrid != lbolt_cyclic_driven); 2450 2451 kpreempt_disable(); 2452 2453 ts = gethrtime(); 2454 lb_info->lbi_internal = (ts/nsec_per_tick); 2455 2456 /* 2457 * Align the next expiration to a clock tick boundary. 2458 */ 2459 exp = ts + nsec_per_tick - 1; 2460 exp = (exp/nsec_per_tick) * nsec_per_tick; 2461 2462 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp); 2463 ASSERT(ret); 2464 2465 lbolt_hybrid = lbolt_cyclic_driven; 2466 lb_info->lbi_cyc_deactivate = B_FALSE; 2467 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2468 2469 kpreempt_enable(); 2470 2471 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2472 ASSERT(ret == 0); 2473 2474 return (1); 2475 } 2476 2477 int64_t 2478 lbolt_event_driven(void) 2479 { 2480 hrtime_t ts; 2481 int64_t lb; 2482 int ret, cpu = CPU->cpu_seqid; 2483 2484 ts = gethrtime(); 2485 ASSERT(ts > 0); 2486 2487 ASSERT(nsec_per_tick > 0); 2488 lb = (ts/nsec_per_tick); 2489 2490 /* 2491 * Switch to cyclic mode if the number of calls to this routine 2492 * has reached the threshold within the interval. 2493 */ 2494 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2495 2496 if (--lb_cpu[cpu].lbc_counter == 0) { 2497 /* 2498 * Reached the threshold within the interval, reset 2499 * the usage statistics. 2500 */ 2501 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2502 lb_cpu[cpu].lbc_cnt_start = lb; 2503 2504 /* 2505 * Make sure only one thread reprograms the 2506 * lbolt cyclic and changes the mode. 2507 */ 2508 if (panicstr == NULL && 2509 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2510 2511 if (lbolt_hybrid == lbolt_cyclic_driven) { 2512 ret = atomic_dec_32_nv( 2513 &lb_info->lbi_token); 2514 ASSERT(ret == 0); 2515 } else { 2516 lbolt_softint_post(); 2517 } 2518 } 2519 } 2520 } else { 2521 /* 2522 * Exceeded the interval, reset the usage statistics. 2523 */ 2524 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2525 lb_cpu[cpu].lbc_cnt_start = lb; 2526 } 2527 2528 ASSERT(lb >= lb_info->lbi_debug_time); 2529 2530 return (lb - lb_info->lbi_debug_time); 2531 } 2532 2533 int64_t 2534 lbolt_cyclic_driven(void) 2535 { 2536 int64_t lb = lb_info->lbi_internal; 2537 int cpu; 2538 2539 /* 2540 * If a CPU has already prevented the lbolt cyclic from deactivating 2541 * itself, don't bother tracking the usage. Otherwise check if we're 2542 * within the interval and how the per CPU counter is doing. 2543 */ 2544 if (lb_info->lbi_cyc_deactivate) { 2545 cpu = CPU->cpu_seqid; 2546 if ((lb - lb_cpu[cpu].lbc_cnt_start) < 2547 lb_info->lbi_thresh_interval) { 2548 2549 if (lb_cpu[cpu].lbc_counter == 0) 2550 /* 2551 * Reached the threshold within the interval, 2552 * prevent the lbolt cyclic from turning itself 2553 * off. 2554 */ 2555 lb_info->lbi_cyc_deactivate = B_FALSE; 2556 else 2557 lb_cpu[cpu].lbc_counter--; 2558 } else { 2559 /* 2560 * Only reset the usage statistics when we have 2561 * exceeded the interval. 2562 */ 2563 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2564 lb_cpu[cpu].lbc_cnt_start = lb; 2565 } 2566 } 2567 2568 ASSERT(lb >= lb_info->lbi_debug_time); 2569 2570 return (lb - lb_info->lbi_debug_time); 2571 } 2572 2573 /* 2574 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy 2575 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers. 2576 * It is inactive by default, and will be activated when switching from event 2577 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled 2578 * by lbolt_cyclic_driven(). 2579 */ 2580 static void 2581 lbolt_cyclic(void) 2582 { 2583 int ret; 2584 2585 lb_info->lbi_internal++; 2586 2587 if (!lbolt_cyc_only) { 2588 2589 if (lb_info->lbi_cyc_deactivate) { 2590 /* 2591 * Switching from cyclic to event driven mode. 2592 */ 2593 if (panicstr == NULL && 2594 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2595 2596 if (lbolt_hybrid == lbolt_event_driven) { 2597 ret = atomic_dec_32_nv( 2598 &lb_info->lbi_token); 2599 ASSERT(ret == 0); 2600 return; 2601 } 2602 2603 kpreempt_disable(); 2604 2605 lbolt_hybrid = lbolt_event_driven; 2606 ret = cyclic_reprogram( 2607 lb_info->id.lbi_cyclic_id, 2608 CY_INFINITY); 2609 ASSERT(ret); 2610 2611 kpreempt_enable(); 2612 2613 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2614 ASSERT(ret == 0); 2615 } 2616 } 2617 2618 /* 2619 * The lbolt cyclic should not try to deactivate itself before 2620 * the sampling period has elapsed. 2621 */ 2622 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >= 2623 lb_info->lbi_thresh_interval) { 2624 lb_info->lbi_cyc_deactivate = B_TRUE; 2625 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2626 } 2627 } 2628 } 2629 2630 /* 2631 * Since the lbolt service was historically cyclic driven, it must be 'stopped' 2632 * when the system drops into the kernel debugger. lbolt_debug_entry() is 2633 * called by the KDI system claim callbacks to record a hires timestamp at 2634 * debug enter time. lbolt_debug_return() is called by the sistem release 2635 * callbacks to account for the time spent in the debugger. The value is then 2636 * accumulated in the lb_info structure and used by lbolt_event_driven() and 2637 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine. 2638 */ 2639 void 2640 lbolt_debug_entry(void) 2641 { 2642 if (lbolt_hybrid != lbolt_bootstrap) { 2643 ASSERT(lb_info != NULL); 2644 lb_info->lbi_debug_ts = gethrtime(); 2645 } 2646 } 2647 2648 /* 2649 * Calculate the time spent in the debugger and add it to the lbolt info 2650 * structure. We also update the internal lbolt value in case we were in 2651 * cyclic driven mode going in. 2652 */ 2653 void 2654 lbolt_debug_return(void) 2655 { 2656 hrtime_t ts; 2657 2658 if (lbolt_hybrid != lbolt_bootstrap) { 2659 ASSERT(lb_info != NULL); 2660 ASSERT(nsec_per_tick > 0); 2661 2662 ts = gethrtime(); 2663 lb_info->lbi_internal = (ts/nsec_per_tick); 2664 lb_info->lbi_debug_time += 2665 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick); 2666 2667 lb_info->lbi_debug_ts = 0; 2668 } 2669 } 2670