1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/types.h> 35 #include <sys/tuneable.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/lgrp.h> 40 #include <sys/user.h> 41 #include <sys/proc.h> 42 #include <sys/callo.h> 43 #include <sys/kmem.h> 44 #include <sys/var.h> 45 #include <sys/cmn_err.h> 46 #include <sys/swap.h> 47 #include <sys/vmsystm.h> 48 #include <sys/class.h> 49 #include <sys/time.h> 50 #include <sys/debug.h> 51 #include <sys/vtrace.h> 52 #include <sys/spl.h> 53 #include <sys/atomic.h> 54 #include <sys/dumphdr.h> 55 #include <sys/archsystm.h> 56 #include <sys/fs/swapnode.h> 57 #include <sys/panic.h> 58 #include <sys/disp.h> 59 #include <sys/msacct.h> 60 #include <sys/mem_cage.h> 61 62 #include <vm/page.h> 63 #include <vm/anon.h> 64 #include <vm/rm.h> 65 #include <sys/cyclic.h> 66 #include <sys/cpupart.h> 67 #include <sys/rctl.h> 68 #include <sys/task.h> 69 #include <sys/sdt.h> 70 71 /* 72 * for NTP support 73 */ 74 #include <sys/timex.h> 75 #include <sys/inttypes.h> 76 77 /* 78 * clock() is called straight from the clock cyclic; see clock_init(). 79 * 80 * Functions: 81 * reprime clock 82 * schedule callouts 83 * maintain date 84 * jab the scheduler 85 */ 86 87 extern kcondvar_t fsflush_cv; 88 extern sysinfo_t sysinfo; 89 extern vminfo_t vminfo; 90 extern int idleswtch; /* flag set while idle in pswtch() */ 91 92 /* 93 * high-precision avenrun values. These are needed to make the 94 * regular avenrun values accurate. 95 */ 96 static uint64_t hp_avenrun[3]; 97 int avenrun[3]; /* FSCALED average run queue lengths */ 98 time_t time; /* time in seconds since 1970 - for compatibility only */ 99 100 static struct loadavg_s loadavg; 101 /* 102 * Phase/frequency-lock loop (PLL/FLL) definitions 103 * 104 * The following variables are read and set by the ntp_adjtime() system 105 * call. 106 * 107 * time_state shows the state of the system clock, with values defined 108 * in the timex.h header file. 109 * 110 * time_status shows the status of the system clock, with bits defined 111 * in the timex.h header file. 112 * 113 * time_offset is used by the PLL/FLL to adjust the system time in small 114 * increments. 115 * 116 * time_constant determines the bandwidth or "stiffness" of the PLL. 117 * 118 * time_tolerance determines maximum frequency error or tolerance of the 119 * CPU clock oscillator and is a property of the architecture; however, 120 * in principle it could change as result of the presence of external 121 * discipline signals, for instance. 122 * 123 * time_precision is usually equal to the kernel tick variable; however, 124 * in cases where a precision clock counter or external clock is 125 * available, the resolution can be much less than this and depend on 126 * whether the external clock is working or not. 127 * 128 * time_maxerror is initialized by a ntp_adjtime() call and increased by 129 * the kernel once each second to reflect the maximum error bound 130 * growth. 131 * 132 * time_esterror is set and read by the ntp_adjtime() call, but 133 * otherwise not used by the kernel. 134 */ 135 int32_t time_state = TIME_OK; /* clock state */ 136 int32_t time_status = STA_UNSYNC; /* clock status bits */ 137 int32_t time_offset = 0; /* time offset (us) */ 138 int32_t time_constant = 0; /* pll time constant */ 139 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 140 int32_t time_precision = 1; /* clock precision (us) */ 141 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 142 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 143 144 /* 145 * The following variables establish the state of the PLL/FLL and the 146 * residual time and frequency offset of the local clock. The scale 147 * factors are defined in the timex.h header file. 148 * 149 * time_phase and time_freq are the phase increment and the frequency 150 * increment, respectively, of the kernel time variable. 151 * 152 * time_freq is set via ntp_adjtime() from a value stored in a file when 153 * the synchronization daemon is first started. Its value is retrieved 154 * via ntp_adjtime() and written to the file about once per hour by the 155 * daemon. 156 * 157 * time_adj is the adjustment added to the value of tick at each timer 158 * interrupt and is recomputed from time_phase and time_freq at each 159 * seconds rollover. 160 * 161 * time_reftime is the second's portion of the system time at the last 162 * call to ntp_adjtime(). It is used to adjust the time_freq variable 163 * and to increase the time_maxerror as the time since last update 164 * increases. 165 */ 166 int32_t time_phase = 0; /* phase offset (scaled us) */ 167 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 168 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 169 int32_t time_reftime = 0; /* time at last adjustment (s) */ 170 171 /* 172 * The scale factors of the following variables are defined in the 173 * timex.h header file. 174 * 175 * pps_time contains the time at each calibration interval, as read by 176 * microtime(). pps_count counts the seconds of the calibration 177 * interval, the duration of which is nominally pps_shift in powers of 178 * two. 179 * 180 * pps_offset is the time offset produced by the time median filter 181 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 182 * this filter. 183 * 184 * pps_freq is the frequency offset produced by the frequency median 185 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 186 * by this filter. 187 * 188 * pps_usec is latched from a high resolution counter or external clock 189 * at pps_time. Here we want the hardware counter contents only, not the 190 * contents plus the time_tv.usec as usual. 191 * 192 * pps_valid counts the number of seconds since the last PPS update. It 193 * is used as a watchdog timer to disable the PPS discipline should the 194 * PPS signal be lost. 195 * 196 * pps_glitch counts the number of seconds since the beginning of an 197 * offset burst more than tick/2 from current nominal offset. It is used 198 * mainly to suppress error bursts due to priority conflicts between the 199 * PPS interrupt and timer interrupt. 200 * 201 * pps_intcnt counts the calibration intervals for use in the interval- 202 * adaptation algorithm. It's just too complicated for words. 203 */ 204 struct timeval pps_time; /* kernel time at last interval */ 205 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 206 int32_t pps_offset = 0; /* pps time offset (us) */ 207 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 208 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 209 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 210 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 211 int32_t pps_usec = 0; /* microsec counter at last interval */ 212 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 213 int32_t pps_glitch = 0; /* pps signal glitch counter */ 214 int32_t pps_count = 0; /* calibration interval counter (s) */ 215 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 216 int32_t pps_intcnt = 0; /* intervals at current duration */ 217 218 /* 219 * PPS signal quality monitors 220 * 221 * pps_jitcnt counts the seconds that have been discarded because the 222 * jitter measured by the time median filter exceeds the limit MAXTIME 223 * (100 us). 224 * 225 * pps_calcnt counts the frequency calibration intervals, which are 226 * variable from 4 s to 256 s. 227 * 228 * pps_errcnt counts the calibration intervals which have been discarded 229 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 230 * calibration interval jitter exceeds two ticks. 231 * 232 * pps_stbcnt counts the calibration intervals that have been discarded 233 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 234 */ 235 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 236 int32_t pps_calcnt = 0; /* calibration intervals */ 237 int32_t pps_errcnt = 0; /* calibration errors */ 238 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 239 240 /* The following variables require no explicit locking */ 241 volatile clock_t lbolt; /* time in Hz since last boot */ 242 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 243 244 kcondvar_t lbolt_cv; 245 int one_sec = 1; /* turned on once every second */ 246 static int fsflushcnt; /* counter for t_fsflushr */ 247 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 248 int tod_needsync = 0; /* need to sync tod chip with software time */ 249 static int tod_broken = 0; /* clock chip doesn't work */ 250 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 251 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 252 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 253 254 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 255 256 /* 257 * for tod fault detection 258 */ 259 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 260 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 261 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 262 #define TOD_FILTER_N 4 263 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 264 static int tod_faulted = TOD_NOFAULT; 265 static int tod_fault_reset_flag = 0; 266 267 /* patchable via /etc/system */ 268 int tod_validate_enable = 1; 269 270 /* 271 * On non-SPARC systems, TOD validation must be deferred until gethrtime 272 * returns non-zero values (after mach_clkinit's execution). 273 * On SPARC systems, it must be deferred until after hrtime_base 274 * and hres_last_tick are set (in the first invocation of hres_tick). 275 * Since in both cases the prerequisites occur before the invocation of 276 * tod_get() in clock(), the deferment is lifted there. 277 */ 278 static boolean_t tod_validate_deferred = B_TRUE; 279 280 /* 281 * tod_fault_table[] must be aligned with 282 * enum tod_fault_type in systm.h 283 */ 284 static char *tod_fault_table[] = { 285 "Reversed", /* TOD_REVERSED */ 286 "Stalled", /* TOD_STALLED */ 287 "Jumped", /* TOD_JUMPED */ 288 "Changed in Clock Rate" /* TOD_RATECHANGED */ 289 /* 290 * no strings needed for TOD_NOFAULT 291 */ 292 }; 293 294 /* 295 * test hook for tod broken detection in tod_validate 296 */ 297 int tod_unit_test = 0; 298 time_t tod_test_injector; 299 300 #define CLOCK_ADJ_HIST_SIZE 4 301 302 static int adj_hist_entry; 303 304 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 305 306 static void clock_tick(kthread_t *); 307 static void calcloadavg(int, uint64_t *); 308 static int genloadavg(struct loadavg_s *); 309 static void loadavg_update(); 310 311 void (*cmm_clock_callout)() = NULL; 312 void (*cpucaps_clock_callout)() = NULL; 313 314 static void 315 clock(void) 316 { 317 kthread_t *t; 318 kmutex_t *plockp; /* pointer to thread's process lock */ 319 int pinned_intr = 0; 320 uint_t nrunnable, nrunning; 321 uint_t w_io; 322 cpu_t *cp; 323 cpupart_t *cpupart; 324 int exiting; 325 extern void set_anoninfo(); 326 extern void set_freemem(); 327 void (*funcp)(); 328 int32_t ltemp; 329 int64_t lltemp; 330 int s; 331 int do_lgrp_load; 332 int i; 333 334 if (panicstr) 335 return; 336 337 set_anoninfo(); 338 /* 339 * Make sure that 'freemem' do not drift too far from the truth 340 */ 341 set_freemem(); 342 343 344 /* 345 * Before the section which is repeated is executed, we do 346 * the time delta processing which occurs every clock tick 347 * 348 * There is additional processing which happens every time 349 * the nanosecond counter rolls over which is described 350 * below - see the section which begins with : if (one_sec) 351 * 352 * This section marks the beginning of the precision-kernel 353 * code fragment. 354 * 355 * First, compute the phase adjustment. If the low-order bits 356 * (time_phase) of the update overflow, bump the higher order 357 * bits (time_update). 358 */ 359 time_phase += time_adj; 360 if (time_phase <= -FINEUSEC) { 361 ltemp = -time_phase / SCALE_PHASE; 362 time_phase += ltemp * SCALE_PHASE; 363 s = hr_clock_lock(); 364 timedelta -= ltemp * (NANOSEC/MICROSEC); 365 hr_clock_unlock(s); 366 } else if (time_phase >= FINEUSEC) { 367 ltemp = time_phase / SCALE_PHASE; 368 time_phase -= ltemp * SCALE_PHASE; 369 s = hr_clock_lock(); 370 timedelta += ltemp * (NANOSEC/MICROSEC); 371 hr_clock_unlock(s); 372 } 373 374 /* 375 * End of precision-kernel code fragment which is processed 376 * every timer interrupt. 377 * 378 * Continue with the interrupt processing as scheduled. 379 * 380 * Did we pin another interrupt thread? Need to check this before 381 * grabbing any adaptive locks, since if we block on a lock the 382 * pinned thread could escape. Note that this is just a heuristic; 383 * if we take multiple laps though clock() without returning from 384 * the interrupt because we have another clock tick pending, then 385 * the pinned interrupt could be released by one of the previous 386 * laps. The only consequence is that the CPU will be counted as 387 * in idle (or wait) state once the pinned interrupt is released. 388 * Since this accounting is inaccurate by nature, this isn't a big 389 * deal --- but we should try to get it right in the common case 390 * where we only call clock() once per interrupt. 391 */ 392 if (curthread->t_intr != NULL) 393 pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 394 395 /* 396 * Count the number of runnable threads and the number waiting 397 * for some form of I/O to complete -- gets added to 398 * sysinfo.waiting. To know the state of the system, must add 399 * wait counts from all CPUs. Also add up the per-partition 400 * statistics. 401 */ 402 w_io = 0; 403 nrunnable = 0; 404 405 /* 406 * keep track of when to update lgrp/part loads 407 */ 408 409 do_lgrp_load = 0; 410 if (lgrp_ticks++ >= hz / 10) { 411 lgrp_ticks = 0; 412 do_lgrp_load = 1; 413 } 414 415 if (one_sec) 416 loadavg_update(); 417 418 /* 419 * First count the threads waiting on kpreempt queues in each 420 * CPU partition. 421 */ 422 423 cpupart = cp_list_head; 424 do { 425 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 426 427 cpupart->cp_updates++; 428 nrunnable += cpupart_nrunnable; 429 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 430 if (one_sec) { 431 cpupart->cp_nrunning = 0; 432 cpupart->cp_nrunnable = cpupart_nrunnable; 433 } 434 } while ((cpupart = cpupart->cp_next) != cp_list_head); 435 436 437 /* Now count the per-CPU statistics. */ 438 cp = cpu_list; 439 do { 440 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 441 442 nrunnable += cpu_nrunnable; 443 cpupart = cp->cpu_part; 444 cpupart->cp_nrunnable_cum += cpu_nrunnable; 445 if (one_sec) { 446 cpupart->cp_nrunnable += cpu_nrunnable; 447 /* 448 * w_io is used to update sysinfo.waiting during 449 * one_second processing below. Only gather w_io 450 * information when we walk the list of cpus if we're 451 * going to perform one_second processing. 452 */ 453 w_io += CPU_STATS(cp, sys.iowait); 454 455 } 456 if (do_lgrp_load && 457 (cp->cpu_flags & CPU_EXISTS)) { 458 /* 459 * When updating the lgroup's load average, 460 * account for the thread running on the CPU. 461 * If the CPU is the current one, then we need 462 * to account for the underlying thread which 463 * got the clock interrupt not the thread that is 464 * handling the interrupt and caculating the load 465 * average 466 */ 467 t = cp->cpu_thread; 468 if (CPU == cp) 469 t = t->t_intr; 470 471 /* 472 * Account for the load average for this thread if 473 * it isn't the idle thread or it is on the interrupt 474 * stack and not the current CPU handling the clock 475 * interrupt 476 */ 477 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 478 CPU_ON_INTR(cp))) { 479 if (t->t_lpl == cp->cpu_lpl) { 480 /* local thread */ 481 cpu_nrunnable++; 482 } else { 483 /* 484 * This is a remote thread, charge it 485 * against its home lgroup. Note that 486 * we notice that a thread is remote 487 * only if it's currently executing. 488 * This is a reasonable approximation, 489 * since queued remote threads are rare. 490 * Note also that if we didn't charge 491 * it to its home lgroup, remote 492 * execution would often make a system 493 * appear balanced even though it was 494 * not, and thread placement/migration 495 * would often not be done correctly. 496 */ 497 lgrp_loadavg(t->t_lpl, 498 LGRP_LOADAVG_IN_THREAD_MAX, 0); 499 } 500 } 501 lgrp_loadavg(cp->cpu_lpl, 502 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 503 } 504 } while ((cp = cp->cpu_next) != cpu_list); 505 506 /* 507 * Do tick processing for all the active threads running in 508 * the system. We're trying to be more fair by walking the 509 * list of CPUs starting from a different CPUs each time. 510 */ 511 cp = clock_cpu_list; 512 nrunning = 0; 513 do { 514 klwp_id_t lwp; 515 int intr; 516 int thread_away; 517 518 /* 519 * Don't do any tick processing on CPUs that 520 * aren't even in the system or aren't up yet. 521 */ 522 if ((cp->cpu_flags & CPU_EXISTS) == 0) { 523 continue; 524 } 525 526 /* 527 * The locking here is rather tricky. We use 528 * thread_free_lock to keep the currently running 529 * thread from being freed or recycled while we're 530 * looking at it. We can then check if the thread 531 * is exiting and get the appropriate p_lock if it 532 * is not. We have to be careful, though, because 533 * the _process_ can still be freed while we're 534 * holding thread_free_lock. To avoid touching the 535 * proc structure we put a pointer to the p_lock in the 536 * thread structure. The p_lock is persistent so we 537 * can acquire it even if the process is gone. At that 538 * point we can check (again) if the thread is exiting 539 * and either drop the lock or do the tick processing. 540 */ 541 mutex_enter(&thread_free_lock); 542 /* 543 * We cannot hold the cpu_lock to prevent the 544 * cpu_list from changing in the clock interrupt. 545 * As long as we don't block (or don't get pre-empted) 546 * the cpu_list will not change (all threads are paused 547 * before list modification). If the list does change 548 * any deleted cpu structures will remain with cpu_next 549 * set to NULL, hence the following test. 550 */ 551 if (cp->cpu_next == NULL) { 552 mutex_exit(&thread_free_lock); 553 break; 554 } 555 t = cp->cpu_thread; /* Current running thread */ 556 if (CPU == cp) { 557 /* 558 * 't' will be the clock interrupt thread on this 559 * CPU. Use the pinned thread (if any) on this CPU 560 * as the target of the clock tick. If we pinned 561 * an interrupt, though, just keep using the clock 562 * interrupt thread since the formerly pinned one 563 * may have gone away. One interrupt thread is as 564 * good as another, and this means we don't have 565 * to continue to check pinned_intr in subsequent 566 * code. 567 */ 568 ASSERT(t == curthread); 569 if (t->t_intr != NULL && !pinned_intr) 570 t = t->t_intr; 571 } 572 573 intr = t->t_flag & T_INTR_THREAD; 574 lwp = ttolwp(t); 575 if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 576 /* 577 * Thread is exiting (or uninteresting) so don't 578 * do tick processing or grab p_lock. Once we 579 * drop thread_free_lock we can't look inside the 580 * thread or lwp structure, since the thread may 581 * have gone away. 582 */ 583 exiting = 1; 584 } else { 585 /* 586 * OK, try to grab the process lock. See 587 * comments above for why we're not using 588 * ttoproc(t)->p_lockp here. 589 */ 590 plockp = t->t_plockp; 591 mutex_enter(plockp); 592 /* See above comment. */ 593 if (cp->cpu_next == NULL) { 594 mutex_exit(plockp); 595 mutex_exit(&thread_free_lock); 596 break; 597 } 598 /* 599 * The thread may have exited between when we 600 * checked above, and when we got the p_lock. 601 */ 602 if (t->t_proc_flag & TP_LWPEXIT) { 603 mutex_exit(plockp); 604 exiting = 1; 605 } else { 606 exiting = 0; 607 } 608 } 609 /* 610 * Either we have the p_lock for the thread's process, 611 * or we don't care about the thread structure any more. 612 * Either way we can drop thread_free_lock. 613 */ 614 mutex_exit(&thread_free_lock); 615 616 /* 617 * Update user, system, and idle cpu times. 618 */ 619 if (one_sec) { 620 nrunning++; 621 cp->cpu_part->cp_nrunning++; 622 } 623 /* 624 * If we haven't done tick processing for this 625 * lwp, then do it now. Since we don't hold the 626 * lwp down on a CPU it can migrate and show up 627 * more than once, hence the lbolt check. 628 * 629 * Also, make sure that it's okay to perform the 630 * tick processing before calling clock_tick. 631 * Setting thread_away to a TRUE value (ie. not 0) 632 * results in tick processing not being performed for 633 * that thread. Or, in other words, keeps the thread 634 * away from clock_tick processing. 635 */ 636 thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 637 CPU_ON_INTR(cp) || intr || 638 (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 639 640 if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 641 t->t_lbolt = lbolt; 642 clock_tick(t); 643 } 644 645 if (!exiting) 646 mutex_exit(plockp); 647 } while ((cp = cp->cpu_next) != clock_cpu_list); 648 649 clock_cpu_list = clock_cpu_list->cpu_next; 650 651 /* 652 * bump time in ticks 653 * 654 * We rely on there being only one clock thread and hence 655 * don't need a lock to protect lbolt. 656 */ 657 lbolt++; 658 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 659 660 /* 661 * Check for a callout that needs be called from the clock 662 * thread to support the membership protocol in a clustered 663 * system. Copy the function pointer so that we can reset 664 * this to NULL if needed. 665 */ 666 if ((funcp = cmm_clock_callout) != NULL) 667 (*funcp)(); 668 669 if ((funcp = cpucaps_clock_callout) != NULL) 670 (*funcp)(); 671 672 /* 673 * Wakeup the cageout thread waiters once per second. 674 */ 675 if (one_sec) 676 kcage_tick(); 677 678 /* 679 * Schedule timeout() requests if any are due at this time. 680 */ 681 callout_schedule(); 682 683 if (one_sec) { 684 685 int drift, absdrift; 686 timestruc_t tod; 687 int s; 688 689 /* 690 * Beginning of precision-kernel code fragment executed 691 * every second. 692 * 693 * On rollover of the second the phase adjustment to be 694 * used for the next second is calculated. Also, the 695 * maximum error is increased by the tolerance. If the 696 * PPS frequency discipline code is present, the phase is 697 * increased to compensate for the CPU clock oscillator 698 * frequency error. 699 * 700 * On a 32-bit machine and given parameters in the timex.h 701 * header file, the maximum phase adjustment is +-512 ms 702 * and maximum frequency offset is (a tad less than) 703 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 704 */ 705 time_maxerror += time_tolerance / SCALE_USEC; 706 707 /* 708 * Leap second processing. If in leap-insert state at 709 * the end of the day, the system clock is set back one 710 * second; if in leap-delete state, the system clock is 711 * set ahead one second. The microtime() routine or 712 * external clock driver will insure that reported time 713 * is always monotonic. The ugly divides should be 714 * replaced. 715 */ 716 switch (time_state) { 717 718 case TIME_OK: 719 if (time_status & STA_INS) 720 time_state = TIME_INS; 721 else if (time_status & STA_DEL) 722 time_state = TIME_DEL; 723 break; 724 725 case TIME_INS: 726 if (hrestime.tv_sec % 86400 == 0) { 727 s = hr_clock_lock(); 728 hrestime.tv_sec--; 729 hr_clock_unlock(s); 730 time_state = TIME_OOP; 731 } 732 break; 733 734 case TIME_DEL: 735 if ((hrestime.tv_sec + 1) % 86400 == 0) { 736 s = hr_clock_lock(); 737 hrestime.tv_sec++; 738 hr_clock_unlock(s); 739 time_state = TIME_WAIT; 740 } 741 break; 742 743 case TIME_OOP: 744 time_state = TIME_WAIT; 745 break; 746 747 case TIME_WAIT: 748 if (!(time_status & (STA_INS | STA_DEL))) 749 time_state = TIME_OK; 750 default: 751 break; 752 } 753 754 /* 755 * Compute the phase adjustment for the next second. In 756 * PLL mode, the offset is reduced by a fixed factor 757 * times the time constant. In FLL mode the offset is 758 * used directly. In either mode, the maximum phase 759 * adjustment for each second is clamped so as to spread 760 * the adjustment over not more than the number of 761 * seconds between updates. 762 */ 763 if (time_offset == 0) 764 time_adj = 0; 765 else if (time_offset < 0) { 766 lltemp = -time_offset; 767 if (!(time_status & STA_FLL)) { 768 if ((1 << time_constant) >= SCALE_KG) 769 lltemp *= (1 << time_constant) / 770 SCALE_KG; 771 else 772 lltemp = (lltemp / SCALE_KG) >> 773 time_constant; 774 } 775 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 776 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 777 time_offset += lltemp; 778 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 779 } else { 780 lltemp = time_offset; 781 if (!(time_status & STA_FLL)) { 782 if ((1 << time_constant) >= SCALE_KG) 783 lltemp *= (1 << time_constant) / 784 SCALE_KG; 785 else 786 lltemp = (lltemp / SCALE_KG) >> 787 time_constant; 788 } 789 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 790 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 791 time_offset -= lltemp; 792 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 793 } 794 795 /* 796 * Compute the frequency estimate and additional phase 797 * adjustment due to frequency error for the next 798 * second. When the PPS signal is engaged, gnaw on the 799 * watchdog counter and update the frequency computed by 800 * the pll and the PPS signal. 801 */ 802 pps_valid++; 803 if (pps_valid == PPS_VALID) { 804 pps_jitter = MAXTIME; 805 pps_stabil = MAXFREQ; 806 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 807 STA_PPSWANDER | STA_PPSERROR); 808 } 809 lltemp = time_freq + pps_freq; 810 811 if (lltemp) 812 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 813 814 /* 815 * End of precision kernel-code fragment 816 * 817 * The section below should be modified if we are planning 818 * to use NTP for synchronization. 819 * 820 * Note: the clock synchronization code now assumes 821 * the following: 822 * - if dosynctodr is 1, then compute the drift between 823 * the tod chip and software time and adjust one or 824 * the other depending on the circumstances 825 * 826 * - if dosynctodr is 0, then the tod chip is independent 827 * of the software clock and should not be adjusted, 828 * but allowed to free run. this allows NTP to sync. 829 * hrestime without any interference from the tod chip. 830 */ 831 832 tod_validate_deferred = B_FALSE; 833 mutex_enter(&tod_lock); 834 tod = tod_get(); 835 drift = tod.tv_sec - hrestime.tv_sec; 836 absdrift = (drift >= 0) ? drift : -drift; 837 if (tod_needsync || absdrift > 1) { 838 int s; 839 if (absdrift > 2) { 840 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 841 s = hr_clock_lock(); 842 hrestime = tod; 843 membar_enter(); /* hrestime visible */ 844 timedelta = 0; 845 timechanged++; 846 tod_needsync = 0; 847 hr_clock_unlock(s); 848 } 849 } else { 850 if (tod_needsync || !dosynctodr) { 851 gethrestime(&tod); 852 tod_set(tod); 853 s = hr_clock_lock(); 854 if (timedelta == 0) 855 tod_needsync = 0; 856 hr_clock_unlock(s); 857 } else { 858 /* 859 * If the drift is 2 seconds on the 860 * money, then the TOD is adjusting 861 * the clock; record that. 862 */ 863 clock_adj_hist[adj_hist_entry++ % 864 CLOCK_ADJ_HIST_SIZE] = lbolt64; 865 s = hr_clock_lock(); 866 timedelta = (int64_t)drift*NANOSEC; 867 hr_clock_unlock(s); 868 } 869 } 870 } 871 one_sec = 0; 872 time = gethrestime_sec(); /* for crusty old kmem readers */ 873 mutex_exit(&tod_lock); 874 875 /* 876 * Some drivers still depend on this... XXX 877 */ 878 cv_broadcast(&lbolt_cv); 879 880 sysinfo.updates++; 881 vminfo.freemem += freemem; 882 { 883 pgcnt_t maxswap, resv, free; 884 pgcnt_t avail = 885 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 886 887 maxswap = k_anoninfo.ani_mem_resv 888 + k_anoninfo.ani_max +avail; 889 free = k_anoninfo.ani_free + avail; 890 resv = k_anoninfo.ani_phys_resv + 891 k_anoninfo.ani_mem_resv; 892 893 vminfo.swap_resv += resv; 894 /* number of reserved and allocated pages */ 895 #ifdef DEBUG 896 if (maxswap < free) 897 cmn_err(CE_WARN, "clock: maxswap < free"); 898 if (maxswap < resv) 899 cmn_err(CE_WARN, "clock: maxswap < resv"); 900 #endif 901 vminfo.swap_alloc += maxswap - free; 902 vminfo.swap_avail += maxswap - resv; 903 vminfo.swap_free += free; 904 } 905 if (nrunnable) { 906 sysinfo.runque += nrunnable; 907 sysinfo.runocc++; 908 } 909 if (nswapped) { 910 sysinfo.swpque += nswapped; 911 sysinfo.swpocc++; 912 } 913 sysinfo.waiting += w_io; 914 915 /* 916 * Wake up fsflush to write out DELWRI 917 * buffers, dirty pages and other cached 918 * administrative data, e.g. inodes. 919 */ 920 if (--fsflushcnt <= 0) { 921 fsflushcnt = tune.t_fsflushr; 922 cv_signal(&fsflush_cv); 923 } 924 925 vmmeter(); 926 calcloadavg(genloadavg(&loadavg), hp_avenrun); 927 for (i = 0; i < 3; i++) 928 /* 929 * At the moment avenrun[] can only hold 31 930 * bits of load average as it is a signed 931 * int in the API. We need to ensure that 932 * hp_avenrun[i] >> (16 - FSHIFT) will not be 933 * too large. If it is, we put the largest value 934 * that we can use into avenrun[i]. This is 935 * kludgey, but about all we can do until we 936 * avenrun[] is declared as an array of uint64[] 937 */ 938 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 939 avenrun[i] = (int32_t)(hp_avenrun[i] >> 940 (16 - FSHIFT)); 941 else 942 avenrun[i] = 0x7fffffff; 943 944 cpupart = cp_list_head; 945 do { 946 calcloadavg(genloadavg(&cpupart->cp_loadavg), 947 cpupart->cp_hp_avenrun); 948 } while ((cpupart = cpupart->cp_next) != cp_list_head); 949 950 /* 951 * Wake up the swapper thread if necessary. 952 */ 953 if (runin || 954 (runout && (avefree < desfree || wake_sched_sec))) { 955 t = &t0; 956 thread_lock(t); 957 if (t->t_state == TS_STOPPED) { 958 runin = runout = 0; 959 wake_sched_sec = 0; 960 t->t_whystop = 0; 961 t->t_whatstop = 0; 962 t->t_schedflag &= ~TS_ALLSTART; 963 THREAD_TRANSITION(t); 964 setfrontdq(t); 965 } 966 thread_unlock(t); 967 } 968 } 969 970 /* 971 * Wake up the swapper if any high priority swapped-out threads 972 * became runable during the last tick. 973 */ 974 if (wake_sched) { 975 t = &t0; 976 thread_lock(t); 977 if (t->t_state == TS_STOPPED) { 978 runin = runout = 0; 979 wake_sched = 0; 980 t->t_whystop = 0; 981 t->t_whatstop = 0; 982 t->t_schedflag &= ~TS_ALLSTART; 983 THREAD_TRANSITION(t); 984 setfrontdq(t); 985 } 986 thread_unlock(t); 987 } 988 } 989 990 void 991 clock_init(void) 992 { 993 cyc_handler_t hdlr; 994 cyc_time_t when; 995 996 hdlr.cyh_func = (cyc_func_t)clock; 997 hdlr.cyh_level = CY_LOCK_LEVEL; 998 hdlr.cyh_arg = NULL; 999 1000 when.cyt_when = 0; 1001 when.cyt_interval = nsec_per_tick; 1002 1003 mutex_enter(&cpu_lock); 1004 clock_cyclic = cyclic_add(&hdlr, &when); 1005 mutex_exit(&cpu_lock); 1006 } 1007 1008 /* 1009 * Called before calcloadavg to get 10-sec moving loadavg together 1010 */ 1011 1012 static int 1013 genloadavg(struct loadavg_s *avgs) 1014 { 1015 int avg; 1016 int spos; /* starting position */ 1017 int cpos; /* moving current position */ 1018 int i; 1019 int slen; 1020 hrtime_t hr_avg; 1021 1022 /* 10-second snapshot, calculate first positon */ 1023 if (avgs->lg_len == 0) { 1024 return (0); 1025 } 1026 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1027 1028 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1029 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1030 for (i = hr_avg = 0; i < slen; i++) { 1031 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1032 hr_avg += avgs->lg_loads[cpos]; 1033 } 1034 1035 hr_avg = hr_avg / slen; 1036 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1037 1038 return (avg); 1039 } 1040 1041 /* 1042 * Run every second from clock () to update the loadavg count available to the 1043 * system and cpu-partitions. 1044 * 1045 * This works by sampling the previous usr, sys, wait time elapsed, 1046 * computing a delta, and adding that delta to the elapsed usr, sys, 1047 * wait increase. 1048 */ 1049 1050 static void 1051 loadavg_update() 1052 { 1053 cpu_t *cp; 1054 cpupart_t *cpupart; 1055 hrtime_t cpu_total; 1056 int prev; 1057 1058 cp = cpu_list; 1059 loadavg.lg_total = 0; 1060 1061 /* 1062 * first pass totals up per-cpu statistics for system and cpu 1063 * partitions 1064 */ 1065 1066 do { 1067 struct loadavg_s *lavg; 1068 1069 lavg = &cp->cpu_loadavg; 1070 1071 cpu_total = cp->cpu_acct[CMS_USER] + 1072 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1073 /* compute delta against last total */ 1074 scalehrtime(&cpu_total); 1075 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1076 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1077 if (lavg->lg_loads[prev] <= 0) { 1078 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1079 cpu_total = 0; 1080 } else { 1081 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1082 cpu_total = cpu_total - lavg->lg_loads[prev]; 1083 if (cpu_total < 0) 1084 cpu_total = 0; 1085 } 1086 1087 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1088 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1089 lavg->lg_len + 1 : S_LOADAVG_SZ; 1090 1091 loadavg.lg_total += cpu_total; 1092 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1093 1094 } while ((cp = cp->cpu_next) != cpu_list); 1095 1096 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1097 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1098 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1099 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1100 /* 1101 * Second pass updates counts 1102 */ 1103 cpupart = cp_list_head; 1104 1105 do { 1106 struct loadavg_s *lavg; 1107 1108 lavg = &cpupart->cp_loadavg; 1109 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1110 lavg->lg_total = 0; 1111 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1112 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1113 lavg->lg_len + 1 : S_LOADAVG_SZ; 1114 1115 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1116 1117 } 1118 1119 /* 1120 * clock_update() - local clock update 1121 * 1122 * This routine is called by ntp_adjtime() to update the local clock 1123 * phase and frequency. The implementation is of an 1124 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1125 * routine computes new time and frequency offset estimates for each 1126 * call. The PPS signal itself determines the new time offset, 1127 * instead of the calling argument. Presumably, calls to 1128 * ntp_adjtime() occur only when the caller believes the local clock 1129 * is valid within some bound (+-128 ms with NTP). If the caller's 1130 * time is far different than the PPS time, an argument will ensue, 1131 * and it's not clear who will lose. 1132 * 1133 * For uncompensated quartz crystal oscillatores and nominal update 1134 * intervals less than 1024 s, operation should be in phase-lock mode 1135 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1136 * intervals greater than this, operation should be in frequency-lock 1137 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1138 * 1139 * Note: mutex(&tod_lock) is in effect. 1140 */ 1141 void 1142 clock_update(int offset) 1143 { 1144 int ltemp, mtemp, s; 1145 1146 ASSERT(MUTEX_HELD(&tod_lock)); 1147 1148 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1149 return; 1150 ltemp = offset; 1151 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1152 ltemp = pps_offset; 1153 1154 /* 1155 * Scale the phase adjustment and clamp to the operating range. 1156 */ 1157 if (ltemp > MAXPHASE) 1158 time_offset = MAXPHASE * SCALE_UPDATE; 1159 else if (ltemp < -MAXPHASE) 1160 time_offset = -(MAXPHASE * SCALE_UPDATE); 1161 else 1162 time_offset = ltemp * SCALE_UPDATE; 1163 1164 /* 1165 * Select whether the frequency is to be controlled and in which 1166 * mode (PLL or FLL). Clamp to the operating range. Ugly 1167 * multiply/divide should be replaced someday. 1168 */ 1169 if (time_status & STA_FREQHOLD || time_reftime == 0) 1170 time_reftime = hrestime.tv_sec; 1171 1172 mtemp = hrestime.tv_sec - time_reftime; 1173 time_reftime = hrestime.tv_sec; 1174 1175 if (time_status & STA_FLL) { 1176 if (mtemp >= MINSEC) { 1177 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1178 SCALE_UPDATE)); 1179 if (ltemp) 1180 time_freq += ltemp / SCALE_KH; 1181 } 1182 } else { 1183 if (mtemp < MAXSEC) { 1184 ltemp *= mtemp; 1185 if (ltemp) 1186 time_freq += (int)(((int64_t)ltemp * 1187 SCALE_USEC) / SCALE_KF) 1188 / (1 << (time_constant * 2)); 1189 } 1190 } 1191 if (time_freq > time_tolerance) 1192 time_freq = time_tolerance; 1193 else if (time_freq < -time_tolerance) 1194 time_freq = -time_tolerance; 1195 1196 s = hr_clock_lock(); 1197 tod_needsync = 1; 1198 hr_clock_unlock(s); 1199 } 1200 1201 /* 1202 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1203 * 1204 * This routine is called at each PPS interrupt in order to discipline 1205 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1206 * and leaves it in a handy spot for the clock() routine. It 1207 * integrates successive PPS phase differences and calculates the 1208 * frequency offset. This is used in clock() to discipline the CPU 1209 * clock oscillator so that intrinsic frequency error is cancelled out. 1210 * The code requires the caller to capture the time and hardware counter 1211 * value at the on-time PPS signal transition. 1212 * 1213 * Note that, on some Unix systems, this routine runs at an interrupt 1214 * priority level higher than the timer interrupt routine clock(). 1215 * Therefore, the variables used are distinct from the clock() 1216 * variables, except for certain exceptions: The PPS frequency pps_freq 1217 * and phase pps_offset variables are determined by this routine and 1218 * updated atomically. The time_tolerance variable can be considered a 1219 * constant, since it is infrequently changed, and then only when the 1220 * PPS signal is disabled. The watchdog counter pps_valid is updated 1221 * once per second by clock() and is atomically cleared in this 1222 * routine. 1223 * 1224 * tvp is the time of the last tick; usec is a microsecond count since the 1225 * last tick. 1226 * 1227 * Note: In Solaris systems, the tick value is actually given by 1228 * usec_per_tick. This is called from the serial driver cdintr(), 1229 * or equivalent, at a high PIL. Because the kernel keeps a 1230 * highresolution time, the following code can accept either 1231 * the traditional argument pair, or the current highres timestamp 1232 * in tvp and zero in usec. 1233 */ 1234 void 1235 ddi_hardpps(struct timeval *tvp, int usec) 1236 { 1237 int u_usec, v_usec, bigtick; 1238 time_t cal_sec; 1239 int cal_usec; 1240 1241 /* 1242 * An occasional glitch can be produced when the PPS interrupt 1243 * occurs in the clock() routine before the time variable is 1244 * updated. Here the offset is discarded when the difference 1245 * between it and the last one is greater than tick/2, but not 1246 * if the interval since the first discard exceeds 30 s. 1247 */ 1248 time_status |= STA_PPSSIGNAL; 1249 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1250 pps_valid = 0; 1251 u_usec = -tvp->tv_usec; 1252 if (u_usec < -(MICROSEC/2)) 1253 u_usec += MICROSEC; 1254 v_usec = pps_offset - u_usec; 1255 if (v_usec < 0) 1256 v_usec = -v_usec; 1257 if (v_usec > (usec_per_tick >> 1)) { 1258 if (pps_glitch > MAXGLITCH) { 1259 pps_glitch = 0; 1260 pps_tf[2] = u_usec; 1261 pps_tf[1] = u_usec; 1262 } else { 1263 pps_glitch++; 1264 u_usec = pps_offset; 1265 } 1266 } else 1267 pps_glitch = 0; 1268 1269 /* 1270 * A three-stage median filter is used to help deglitch the pps 1271 * time. The median sample becomes the time offset estimate; the 1272 * difference between the other two samples becomes the time 1273 * dispersion (jitter) estimate. 1274 */ 1275 pps_tf[2] = pps_tf[1]; 1276 pps_tf[1] = pps_tf[0]; 1277 pps_tf[0] = u_usec; 1278 if (pps_tf[0] > pps_tf[1]) { 1279 if (pps_tf[1] > pps_tf[2]) { 1280 pps_offset = pps_tf[1]; /* 0 1 2 */ 1281 v_usec = pps_tf[0] - pps_tf[2]; 1282 } else if (pps_tf[2] > pps_tf[0]) { 1283 pps_offset = pps_tf[0]; /* 2 0 1 */ 1284 v_usec = pps_tf[2] - pps_tf[1]; 1285 } else { 1286 pps_offset = pps_tf[2]; /* 0 2 1 */ 1287 v_usec = pps_tf[0] - pps_tf[1]; 1288 } 1289 } else { 1290 if (pps_tf[1] < pps_tf[2]) { 1291 pps_offset = pps_tf[1]; /* 2 1 0 */ 1292 v_usec = pps_tf[2] - pps_tf[0]; 1293 } else if (pps_tf[2] < pps_tf[0]) { 1294 pps_offset = pps_tf[0]; /* 1 0 2 */ 1295 v_usec = pps_tf[1] - pps_tf[2]; 1296 } else { 1297 pps_offset = pps_tf[2]; /* 1 2 0 */ 1298 v_usec = pps_tf[1] - pps_tf[0]; 1299 } 1300 } 1301 if (v_usec > MAXTIME) 1302 pps_jitcnt++; 1303 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1304 pps_jitter += v_usec / (1 << PPS_AVG); 1305 if (pps_jitter > (MAXTIME >> 1)) 1306 time_status |= STA_PPSJITTER; 1307 1308 /* 1309 * During the calibration interval adjust the starting time when 1310 * the tick overflows. At the end of the interval compute the 1311 * duration of the interval and the difference of the hardware 1312 * counters at the beginning and end of the interval. This code 1313 * is deliciously complicated by the fact valid differences may 1314 * exceed the value of tick when using long calibration 1315 * intervals and small ticks. Note that the counter can be 1316 * greater than tick if caught at just the wrong instant, but 1317 * the values returned and used here are correct. 1318 */ 1319 bigtick = (int)usec_per_tick * SCALE_USEC; 1320 pps_usec -= pps_freq; 1321 if (pps_usec >= bigtick) 1322 pps_usec -= bigtick; 1323 if (pps_usec < 0) 1324 pps_usec += bigtick; 1325 pps_time.tv_sec++; 1326 pps_count++; 1327 if (pps_count < (1 << pps_shift)) 1328 return; 1329 pps_count = 0; 1330 pps_calcnt++; 1331 u_usec = usec * SCALE_USEC; 1332 v_usec = pps_usec - u_usec; 1333 if (v_usec >= bigtick >> 1) 1334 v_usec -= bigtick; 1335 if (v_usec < -(bigtick >> 1)) 1336 v_usec += bigtick; 1337 if (v_usec < 0) 1338 v_usec = -(-v_usec >> pps_shift); 1339 else 1340 v_usec = v_usec >> pps_shift; 1341 pps_usec = u_usec; 1342 cal_sec = tvp->tv_sec; 1343 cal_usec = tvp->tv_usec; 1344 cal_sec -= pps_time.tv_sec; 1345 cal_usec -= pps_time.tv_usec; 1346 if (cal_usec < 0) { 1347 cal_usec += MICROSEC; 1348 cal_sec--; 1349 } 1350 pps_time = *tvp; 1351 1352 /* 1353 * Check for lost interrupts, noise, excessive jitter and 1354 * excessive frequency error. The number of timer ticks during 1355 * the interval may vary +-1 tick. Add to this a margin of one 1356 * tick for the PPS signal jitter and maximum frequency 1357 * deviation. If the limits are exceeded, the calibration 1358 * interval is reset to the minimum and we start over. 1359 */ 1360 u_usec = (int)usec_per_tick << 1; 1361 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1362 (cal_sec == 0 && cal_usec < u_usec)) || 1363 v_usec > time_tolerance || v_usec < -time_tolerance) { 1364 pps_errcnt++; 1365 pps_shift = PPS_SHIFT; 1366 pps_intcnt = 0; 1367 time_status |= STA_PPSERROR; 1368 return; 1369 } 1370 1371 /* 1372 * A three-stage median filter is used to help deglitch the pps 1373 * frequency. The median sample becomes the frequency offset 1374 * estimate; the difference between the other two samples 1375 * becomes the frequency dispersion (stability) estimate. 1376 */ 1377 pps_ff[2] = pps_ff[1]; 1378 pps_ff[1] = pps_ff[0]; 1379 pps_ff[0] = v_usec; 1380 if (pps_ff[0] > pps_ff[1]) { 1381 if (pps_ff[1] > pps_ff[2]) { 1382 u_usec = pps_ff[1]; /* 0 1 2 */ 1383 v_usec = pps_ff[0] - pps_ff[2]; 1384 } else if (pps_ff[2] > pps_ff[0]) { 1385 u_usec = pps_ff[0]; /* 2 0 1 */ 1386 v_usec = pps_ff[2] - pps_ff[1]; 1387 } else { 1388 u_usec = pps_ff[2]; /* 0 2 1 */ 1389 v_usec = pps_ff[0] - pps_ff[1]; 1390 } 1391 } else { 1392 if (pps_ff[1] < pps_ff[2]) { 1393 u_usec = pps_ff[1]; /* 2 1 0 */ 1394 v_usec = pps_ff[2] - pps_ff[0]; 1395 } else if (pps_ff[2] < pps_ff[0]) { 1396 u_usec = pps_ff[0]; /* 1 0 2 */ 1397 v_usec = pps_ff[1] - pps_ff[2]; 1398 } else { 1399 u_usec = pps_ff[2]; /* 1 2 0 */ 1400 v_usec = pps_ff[1] - pps_ff[0]; 1401 } 1402 } 1403 1404 /* 1405 * Here the frequency dispersion (stability) is updated. If it 1406 * is less than one-fourth the maximum (MAXFREQ), the frequency 1407 * offset is updated as well, but clamped to the tolerance. It 1408 * will be processed later by the clock() routine. 1409 */ 1410 v_usec = (v_usec >> 1) - pps_stabil; 1411 if (v_usec < 0) 1412 pps_stabil -= -v_usec >> PPS_AVG; 1413 else 1414 pps_stabil += v_usec >> PPS_AVG; 1415 if (pps_stabil > MAXFREQ >> 2) { 1416 pps_stbcnt++; 1417 time_status |= STA_PPSWANDER; 1418 return; 1419 } 1420 if (time_status & STA_PPSFREQ) { 1421 if (u_usec < 0) { 1422 pps_freq -= -u_usec >> PPS_AVG; 1423 if (pps_freq < -time_tolerance) 1424 pps_freq = -time_tolerance; 1425 u_usec = -u_usec; 1426 } else { 1427 pps_freq += u_usec >> PPS_AVG; 1428 if (pps_freq > time_tolerance) 1429 pps_freq = time_tolerance; 1430 } 1431 } 1432 1433 /* 1434 * Here the calibration interval is adjusted. If the maximum 1435 * time difference is greater than tick / 4, reduce the interval 1436 * by half. If this is not the case for four consecutive 1437 * intervals, double the interval. 1438 */ 1439 if (u_usec << pps_shift > bigtick >> 2) { 1440 pps_intcnt = 0; 1441 if (pps_shift > PPS_SHIFT) 1442 pps_shift--; 1443 } else if (pps_intcnt >= 4) { 1444 pps_intcnt = 0; 1445 if (pps_shift < PPS_SHIFTMAX) 1446 pps_shift++; 1447 } else 1448 pps_intcnt++; 1449 1450 /* 1451 * If recovering from kmdb, then make sure the tod chip gets resynced. 1452 * If we took an early exit above, then we don't yet have a stable 1453 * calibration signal to lock onto, so don't mark the tod for sync 1454 * until we get all the way here. 1455 */ 1456 { 1457 int s = hr_clock_lock(); 1458 1459 tod_needsync = 1; 1460 hr_clock_unlock(s); 1461 } 1462 } 1463 1464 /* 1465 * Handle clock tick processing for a thread. 1466 * Check for timer action, enforce CPU rlimit, do profiling etc. 1467 */ 1468 void 1469 clock_tick(kthread_t *t) 1470 { 1471 struct proc *pp; 1472 klwp_id_t lwp; 1473 struct as *as; 1474 clock_t utime; 1475 clock_t stime; 1476 int poke = 0; /* notify another CPU */ 1477 int user_mode; 1478 size_t rss; 1479 1480 /* Must be operating on a lwp/thread */ 1481 if ((lwp = ttolwp(t)) == NULL) { 1482 panic("clock_tick: no lwp"); 1483 /*NOTREACHED*/ 1484 } 1485 1486 CL_TICK(t); /* Class specific tick processing */ 1487 DTRACE_SCHED1(tick, kthread_t *, t); 1488 1489 pp = ttoproc(t); 1490 1491 /* pp->p_lock makes sure that the thread does not exit */ 1492 ASSERT(MUTEX_HELD(&pp->p_lock)); 1493 1494 user_mode = (lwp->lwp_state == LWP_USER); 1495 1496 /* 1497 * Update process times. Should use high res clock and state 1498 * changes instead of statistical sampling method. XXX 1499 */ 1500 if (user_mode) { 1501 pp->p_utime++; 1502 pp->p_task->tk_cpu_time++; 1503 } else { 1504 pp->p_stime++; 1505 pp->p_task->tk_cpu_time++; 1506 } 1507 as = pp->p_as; 1508 1509 /* 1510 * Update user profiling statistics. Get the pc from the 1511 * lwp when the AST happens. 1512 */ 1513 if (pp->p_prof.pr_scale) { 1514 atomic_add_32(&lwp->lwp_oweupc, 1); 1515 if (user_mode) { 1516 poke = 1; 1517 aston(t); 1518 } 1519 } 1520 1521 utime = pp->p_utime; 1522 stime = pp->p_stime; 1523 1524 /* 1525 * If CPU was in user state, process lwp-virtual time 1526 * interval timer. 1527 */ 1528 if (user_mode && 1529 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1530 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 1531 poke = 1; 1532 sigtoproc(pp, t, SIGVTALRM); 1533 } 1534 1535 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1536 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 1537 poke = 1; 1538 sigtoproc(pp, t, SIGPROF); 1539 } 1540 1541 /* 1542 * Enforce CPU resource controls: 1543 * (a) process.max-cpu-time resource control 1544 */ 1545 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1546 (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 1547 1548 /* 1549 * (b) task.max-cpu-time resource control 1550 */ 1551 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 1552 RCA_UNSAFE_SIGINFO); 1553 1554 /* 1555 * Update memory usage for the currently running process. 1556 */ 1557 rss = rm_asrss(as); 1558 PTOU(pp)->u_mem += rss; 1559 if (rss > PTOU(pp)->u_mem_max) 1560 PTOU(pp)->u_mem_max = rss; 1561 1562 /* 1563 * Notify the CPU the thread is running on. 1564 */ 1565 if (poke && t->t_cpu != CPU) 1566 poke_cpu(t->t_cpu->cpu_id); 1567 } 1568 1569 void 1570 profil_tick(uintptr_t upc) 1571 { 1572 int ticks; 1573 proc_t *p = ttoproc(curthread); 1574 klwp_t *lwp = ttolwp(curthread); 1575 struct prof *pr = &p->p_prof; 1576 1577 do { 1578 ticks = lwp->lwp_oweupc; 1579 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1580 1581 mutex_enter(&p->p_pflock); 1582 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1583 /* 1584 * Old-style profiling 1585 */ 1586 uint16_t *slot = pr->pr_base; 1587 uint16_t old, new; 1588 if (pr->pr_scale != 2) { 1589 uintptr_t delta = upc - pr->pr_off; 1590 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1591 (((delta & 0xffff) * pr->pr_scale) >> 16); 1592 if (byteoff >= (uintptr_t)pr->pr_size) { 1593 mutex_exit(&p->p_pflock); 1594 return; 1595 } 1596 slot += byteoff / sizeof (uint16_t); 1597 } 1598 if (fuword16(slot, &old) < 0 || 1599 (new = old + ticks) > SHRT_MAX || 1600 suword16(slot, new) < 0) { 1601 pr->pr_scale = 0; 1602 } 1603 } else if (pr->pr_scale == 1) { 1604 /* 1605 * PC Sampling 1606 */ 1607 model_t model = lwp_getdatamodel(lwp); 1608 int result; 1609 #ifdef __lint 1610 model = model; 1611 #endif 1612 while (ticks-- > 0) { 1613 if (pr->pr_samples == pr->pr_size) { 1614 /* buffer full, turn off sampling */ 1615 pr->pr_scale = 0; 1616 break; 1617 } 1618 switch (SIZEOF_PTR(model)) { 1619 case sizeof (uint32_t): 1620 result = suword32(pr->pr_base, (uint32_t)upc); 1621 break; 1622 #ifdef _LP64 1623 case sizeof (uint64_t): 1624 result = suword64(pr->pr_base, (uint64_t)upc); 1625 break; 1626 #endif 1627 default: 1628 cmn_err(CE_WARN, "profil_tick: unexpected " 1629 "data model"); 1630 result = -1; 1631 break; 1632 } 1633 if (result != 0) { 1634 pr->pr_scale = 0; 1635 break; 1636 } 1637 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1638 pr->pr_samples++; 1639 } 1640 } 1641 mutex_exit(&p->p_pflock); 1642 } 1643 1644 static void 1645 delay_wakeup(void *arg) 1646 { 1647 kthread_t *t = arg; 1648 1649 mutex_enter(&t->t_delay_lock); 1650 cv_signal(&t->t_delay_cv); 1651 mutex_exit(&t->t_delay_lock); 1652 } 1653 1654 void 1655 delay(clock_t ticks) 1656 { 1657 kthread_t *t = curthread; 1658 clock_t deadline = lbolt + ticks; 1659 clock_t timeleft; 1660 timeout_id_t id; 1661 1662 if (panicstr && ticks > 0) { 1663 /* 1664 * Timeouts aren't running, so all we can do is spin. 1665 */ 1666 drv_usecwait(TICK_TO_USEC(ticks)); 1667 return; 1668 } 1669 1670 while ((timeleft = deadline - lbolt) > 0) { 1671 mutex_enter(&t->t_delay_lock); 1672 id = timeout(delay_wakeup, t, timeleft); 1673 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1674 mutex_exit(&t->t_delay_lock); 1675 (void) untimeout(id); 1676 } 1677 } 1678 1679 /* 1680 * Like delay, but interruptible by a signal. 1681 */ 1682 int 1683 delay_sig(clock_t ticks) 1684 { 1685 clock_t deadline = lbolt + ticks; 1686 clock_t rc; 1687 1688 mutex_enter(&curthread->t_delay_lock); 1689 do { 1690 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1691 &curthread->t_delay_lock, deadline); 1692 } while (rc > 0); 1693 mutex_exit(&curthread->t_delay_lock); 1694 if (rc == 0) 1695 return (EINTR); 1696 return (0); 1697 } 1698 1699 #define SECONDS_PER_DAY 86400 1700 1701 /* 1702 * Initialize the system time based on the TOD chip. approx is used as 1703 * an approximation of time (e.g. from the filesystem) in the event that 1704 * the TOD chip has been cleared or is unresponsive. An approx of -1 1705 * means the filesystem doesn't keep time. 1706 */ 1707 void 1708 clkset(time_t approx) 1709 { 1710 timestruc_t ts; 1711 int spl; 1712 int set_clock = 0; 1713 1714 mutex_enter(&tod_lock); 1715 ts = tod_get(); 1716 1717 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1718 /* 1719 * If the TOD chip is reporting some time after 1971, 1720 * then it probably didn't lose power or become otherwise 1721 * cleared in the recent past; check to assure that 1722 * the time coming from the filesystem isn't in the future 1723 * according to the TOD chip. 1724 */ 1725 if (approx != -1 && approx > ts.tv_sec) { 1726 cmn_err(CE_WARN, "Last shutdown is later " 1727 "than time on time-of-day chip; check date."); 1728 } 1729 } else { 1730 /* 1731 * If the TOD chip isn't giving correct time, then set it to 1732 * the time that was passed in as a rough estimate. If we 1733 * don't have an estimate, then set the clock back to a time 1734 * when Oliver North, ALF and Dire Straits were all on the 1735 * collective brain: 1987. 1736 */ 1737 timestruc_t tmp; 1738 if (approx == -1) 1739 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1740 else 1741 ts.tv_sec = approx; 1742 ts.tv_nsec = 0; 1743 1744 /* 1745 * Attempt to write the new time to the TOD chip. Set spl high 1746 * to avoid getting preempted between the tod_set and tod_get. 1747 */ 1748 spl = splhi(); 1749 tod_set(ts); 1750 tmp = tod_get(); 1751 splx(spl); 1752 1753 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1754 tod_broken = 1; 1755 dosynctodr = 0; 1756 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1757 " dead batteries?"); 1758 } else { 1759 cmn_err(CE_WARN, "Time-of-day chip had " 1760 "incorrect date; check and reset."); 1761 } 1762 set_clock = 1; 1763 } 1764 1765 if (!boot_time) { 1766 boot_time = ts.tv_sec; 1767 set_clock = 1; 1768 } 1769 1770 if (set_clock) 1771 set_hrestime(&ts); 1772 1773 mutex_exit(&tod_lock); 1774 } 1775 1776 int timechanged; /* for testing if the system time has been reset */ 1777 1778 void 1779 set_hrestime(timestruc_t *ts) 1780 { 1781 int spl = hr_clock_lock(); 1782 hrestime = *ts; 1783 membar_enter(); /* hrestime must be visible before timechanged++ */ 1784 timedelta = 0; 1785 timechanged++; 1786 hr_clock_unlock(spl); 1787 } 1788 1789 static uint_t deadman_seconds; 1790 static uint32_t deadman_panics; 1791 static int deadman_enabled = 0; 1792 static int deadman_panic_timers = 1; 1793 1794 static void 1795 deadman(void) 1796 { 1797 if (panicstr) { 1798 /* 1799 * During panic, other CPUs besides the panic 1800 * master continue to handle cyclics and some other 1801 * interrupts. The code below is intended to be 1802 * single threaded, so any CPU other than the master 1803 * must keep out. 1804 */ 1805 if (CPU->cpu_id != panic_cpu.cpu_id) 1806 return; 1807 1808 /* 1809 * If we're panicking, the deadman cyclic continues to increase 1810 * lbolt in case the dump device driver relies on this for 1811 * timeouts. Note that we rely on deadman() being invoked once 1812 * per second, and credit lbolt and lbolt64 with hz ticks each. 1813 */ 1814 lbolt += hz; 1815 lbolt64 += hz; 1816 1817 if (!deadman_panic_timers) 1818 return; /* allow all timers to be manually disabled */ 1819 1820 /* 1821 * If we are generating a crash dump or syncing filesystems and 1822 * the corresponding timer is set, decrement it and re-enter 1823 * the panic code to abort it and advance to the next state. 1824 * The panic states and triggers are explained in panic.c. 1825 */ 1826 if (panic_dump) { 1827 if (dump_timeleft && (--dump_timeleft == 0)) { 1828 panic("panic dump timeout"); 1829 /*NOTREACHED*/ 1830 } 1831 } else if (panic_sync) { 1832 if (sync_timeleft && (--sync_timeleft == 0)) { 1833 panic("panic sync timeout"); 1834 /*NOTREACHED*/ 1835 } 1836 } 1837 1838 return; 1839 } 1840 1841 if (lbolt != CPU->cpu_deadman_lbolt) { 1842 CPU->cpu_deadman_lbolt = lbolt; 1843 CPU->cpu_deadman_countdown = deadman_seconds; 1844 return; 1845 } 1846 1847 if (CPU->cpu_deadman_countdown-- > 0) 1848 return; 1849 1850 /* 1851 * Regardless of whether or not we actually bring the system down, 1852 * bump the deadman_panics variable. 1853 * 1854 * N.B. deadman_panics is incremented once for each CPU that 1855 * passes through here. It's expected that all the CPUs will 1856 * detect this condition within one second of each other, so 1857 * when deadman_enabled is off, deadman_panics will 1858 * typically be a multiple of the total number of CPUs in 1859 * the system. 1860 */ 1861 atomic_add_32(&deadman_panics, 1); 1862 1863 if (!deadman_enabled) { 1864 CPU->cpu_deadman_countdown = deadman_seconds; 1865 return; 1866 } 1867 1868 /* 1869 * If we're here, we want to bring the system down. 1870 */ 1871 panic("deadman: timed out after %d seconds of clock " 1872 "inactivity", deadman_seconds); 1873 /*NOTREACHED*/ 1874 } 1875 1876 /*ARGSUSED*/ 1877 static void 1878 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1879 { 1880 cpu->cpu_deadman_lbolt = 0; 1881 cpu->cpu_deadman_countdown = deadman_seconds; 1882 1883 hdlr->cyh_func = (cyc_func_t)deadman; 1884 hdlr->cyh_level = CY_HIGH_LEVEL; 1885 hdlr->cyh_arg = NULL; 1886 1887 /* 1888 * Stagger the CPUs so that they don't all run deadman() at 1889 * the same time. Simplest reason to do this is to make it 1890 * more likely that only one CPU will panic in case of a 1891 * timeout. This is (strictly speaking) an aesthetic, not a 1892 * technical consideration. 1893 * 1894 * The interval must be one second in accordance with the 1895 * code in deadman() above to increase lbolt during panic. 1896 */ 1897 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1898 when->cyt_interval = NANOSEC; 1899 } 1900 1901 1902 void 1903 deadman_init(void) 1904 { 1905 cyc_omni_handler_t hdlr; 1906 1907 if (deadman_seconds == 0) 1908 deadman_seconds = snoop_interval / MICROSEC; 1909 1910 if (snooping) 1911 deadman_enabled = 1; 1912 1913 hdlr.cyo_online = deadman_online; 1914 hdlr.cyo_offline = NULL; 1915 hdlr.cyo_arg = NULL; 1916 1917 mutex_enter(&cpu_lock); 1918 deadman_cyclic = cyclic_add_omni(&hdlr); 1919 mutex_exit(&cpu_lock); 1920 } 1921 1922 /* 1923 * tod_fault() is for updating tod validate mechanism state: 1924 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1925 * currently used for debugging only 1926 * (2) The following four cases detected by tod validate mechanism: 1927 * TOD_REVERSED: current tod value is less than previous value. 1928 * TOD_STALLED: current tod value hasn't advanced. 1929 * TOD_JUMPED: current tod value advanced too far from previous value. 1930 * TOD_RATECHANGED: the ratio between average tod delta and 1931 * average tick delta has changed. 1932 */ 1933 enum tod_fault_type 1934 tod_fault(enum tod_fault_type ftype, int off) 1935 { 1936 ASSERT(MUTEX_HELD(&tod_lock)); 1937 1938 if (tod_faulted != ftype) { 1939 switch (ftype) { 1940 case TOD_NOFAULT: 1941 plat_tod_fault(TOD_NOFAULT); 1942 cmn_err(CE_NOTE, "Restarted tracking " 1943 "Time of Day clock."); 1944 tod_faulted = ftype; 1945 break; 1946 case TOD_REVERSED: 1947 case TOD_JUMPED: 1948 if (tod_faulted == TOD_NOFAULT) { 1949 plat_tod_fault(ftype); 1950 cmn_err(CE_WARN, "Time of Day clock error: " 1951 "reason [%s by 0x%x]. -- " 1952 " Stopped tracking Time Of Day clock.", 1953 tod_fault_table[ftype], off); 1954 tod_faulted = ftype; 1955 } 1956 break; 1957 case TOD_STALLED: 1958 case TOD_RATECHANGED: 1959 if (tod_faulted == TOD_NOFAULT) { 1960 plat_tod_fault(ftype); 1961 cmn_err(CE_WARN, "Time of Day clock error: " 1962 "reason [%s]. -- " 1963 " Stopped tracking Time Of Day clock.", 1964 tod_fault_table[ftype]); 1965 tod_faulted = ftype; 1966 } 1967 break; 1968 default: 1969 break; 1970 } 1971 } 1972 return (tod_faulted); 1973 } 1974 1975 void 1976 tod_fault_reset() 1977 { 1978 tod_fault_reset_flag = 1; 1979 } 1980 1981 1982 /* 1983 * tod_validate() is used for checking values returned by tod_get(). 1984 * Four error cases can be detected by this routine: 1985 * TOD_REVERSED: current tod value is less than previous. 1986 * TOD_STALLED: current tod value hasn't advanced. 1987 * TOD_JUMPED: current tod value advanced too far from previous value. 1988 * TOD_RATECHANGED: the ratio between average tod delta and 1989 * average tick delta has changed. 1990 */ 1991 time_t 1992 tod_validate(time_t tod) 1993 { 1994 time_t diff_tod; 1995 hrtime_t diff_tick; 1996 1997 long dtick; 1998 int dtick_delta; 1999 2000 int off = 0; 2001 enum tod_fault_type tod_bad = TOD_NOFAULT; 2002 2003 static int firsttime = 1; 2004 2005 static time_t prev_tod = 0; 2006 static hrtime_t prev_tick = 0; 2007 static long dtick_avg = TOD_REF_FREQ; 2008 2009 hrtime_t tick = gethrtime(); 2010 2011 ASSERT(MUTEX_HELD(&tod_lock)); 2012 2013 /* 2014 * tod_validate_enable is patchable via /etc/system. 2015 * If TOD is already faulted, or if TOD validation is deferred, 2016 * there is nothing to do. 2017 */ 2018 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2019 tod_validate_deferred) { 2020 return (tod); 2021 } 2022 2023 /* 2024 * Update prev_tod and prev_tick values for first run 2025 */ 2026 if (firsttime) { 2027 firsttime = 0; 2028 prev_tod = tod; 2029 prev_tick = tick; 2030 return (tod); 2031 } 2032 2033 /* 2034 * For either of these conditions, we need to reset ourself 2035 * and start validation from zero since each condition 2036 * indicates that the TOD will be updated with new value 2037 * Also, note that tod_needsync will be reset in clock() 2038 */ 2039 if (tod_needsync || tod_fault_reset_flag) { 2040 firsttime = 1; 2041 prev_tod = 0; 2042 prev_tick = 0; 2043 dtick_avg = TOD_REF_FREQ; 2044 2045 if (tod_fault_reset_flag) 2046 tod_fault_reset_flag = 0; 2047 2048 return (tod); 2049 } 2050 2051 /* test hook */ 2052 switch (tod_unit_test) { 2053 case 1: /* for testing jumping tod */ 2054 tod += tod_test_injector; 2055 tod_unit_test = 0; 2056 break; 2057 case 2: /* for testing stuck tod bit */ 2058 tod |= 1 << tod_test_injector; 2059 tod_unit_test = 0; 2060 break; 2061 case 3: /* for testing stalled tod */ 2062 tod = prev_tod; 2063 tod_unit_test = 0; 2064 break; 2065 case 4: /* reset tod fault status */ 2066 (void) tod_fault(TOD_NOFAULT, 0); 2067 tod_unit_test = 0; 2068 break; 2069 default: 2070 break; 2071 } 2072 2073 diff_tod = tod - prev_tod; 2074 diff_tick = tick - prev_tick; 2075 2076 ASSERT(diff_tick >= 0); 2077 2078 if (diff_tod < 0) { 2079 /* ERROR - tod reversed */ 2080 tod_bad = TOD_REVERSED; 2081 off = (int)(prev_tod - tod); 2082 } else if (diff_tod == 0) { 2083 /* tod did not advance */ 2084 if (diff_tick > TOD_STALL_THRESHOLD) { 2085 /* ERROR - tod stalled */ 2086 tod_bad = TOD_STALLED; 2087 } else { 2088 /* 2089 * Make sure we don't update prev_tick 2090 * so that diff_tick is calculated since 2091 * the first diff_tod == 0 2092 */ 2093 return (tod); 2094 } 2095 } else { 2096 /* calculate dtick */ 2097 dtick = diff_tick / diff_tod; 2098 2099 /* update dtick averages */ 2100 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2101 2102 /* 2103 * Calculate dtick_delta as 2104 * variation from reference freq in quartiles 2105 */ 2106 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2107 (TOD_REF_FREQ >> 2); 2108 2109 /* 2110 * Even with a perfectly functioning TOD device, 2111 * when the number of elapsed seconds is low the 2112 * algorithm can calculate a rate that is beyond 2113 * tolerance, causing an error. The algorithm is 2114 * inaccurate when elapsed time is low (less than 2115 * 5 seconds). 2116 */ 2117 if (diff_tod > 4) { 2118 if (dtick < TOD_JUMP_THRESHOLD) { 2119 /* ERROR - tod jumped */ 2120 tod_bad = TOD_JUMPED; 2121 off = (int)diff_tod; 2122 } else if (dtick_delta) { 2123 /* ERROR - change in clock rate */ 2124 tod_bad = TOD_RATECHANGED; 2125 } 2126 } 2127 } 2128 2129 if (tod_bad != TOD_NOFAULT) { 2130 (void) tod_fault(tod_bad, off); 2131 2132 /* 2133 * Disable dosynctodr since we are going to fault 2134 * the TOD chip anyway here 2135 */ 2136 dosynctodr = 0; 2137 2138 /* 2139 * Set tod to the correct value from hrestime 2140 */ 2141 tod = hrestime.tv_sec; 2142 } 2143 2144 prev_tod = tod; 2145 prev_tick = tick; 2146 return (tod); 2147 } 2148 2149 static void 2150 calcloadavg(int nrun, uint64_t *hp_ave) 2151 { 2152 static int64_t f[3] = { 135, 27, 9 }; 2153 uint_t i; 2154 int64_t q, r; 2155 2156 /* 2157 * Compute load average over the last 1, 5, and 15 minutes 2158 * (60, 300, and 900 seconds). The constants in f[3] are for 2159 * exponential decay: 2160 * (1 - exp(-1/60)) << 13 = 135, 2161 * (1 - exp(-1/300)) << 13 = 27, 2162 * (1 - exp(-1/900)) << 13 = 9. 2163 */ 2164 2165 /* 2166 * a little hoop-jumping to avoid integer overflow 2167 */ 2168 for (i = 0; i < 3; i++) { 2169 q = (hp_ave[i] >> 16) << 7; 2170 r = (hp_ave[i] & 0xffff) << 7; 2171 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2172 } 2173 } 2174