1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/types.h> 35 #include <sys/tuneable.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/lgrp.h> 40 #include <sys/user.h> 41 #include <sys/proc.h> 42 #include <sys/callo.h> 43 #include <sys/kmem.h> 44 #include <sys/var.h> 45 #include <sys/cmn_err.h> 46 #include <sys/swap.h> 47 #include <sys/vmsystm.h> 48 #include <sys/class.h> 49 #include <sys/time.h> 50 #include <sys/debug.h> 51 #include <sys/vtrace.h> 52 #include <sys/spl.h> 53 #include <sys/atomic.h> 54 #include <sys/dumphdr.h> 55 #include <sys/archsystm.h> 56 #include <sys/fs/swapnode.h> 57 #include <sys/panic.h> 58 #include <sys/disp.h> 59 #include <sys/msacct.h> 60 #include <sys/mem_cage.h> 61 62 #include <vm/page.h> 63 #include <vm/anon.h> 64 #include <vm/rm.h> 65 #include <sys/cyclic.h> 66 #include <sys/cpupart.h> 67 #include <sys/rctl.h> 68 #include <sys/task.h> 69 #include <sys/chip.h> 70 #include <sys/sdt.h> 71 72 #ifdef __sparc 73 #include <sys/wdt.h> 74 #endif 75 76 /* 77 * for NTP support 78 */ 79 #include <sys/timex.h> 80 #include <sys/inttypes.h> 81 82 /* 83 * clock is called straight from 84 * the real time clock interrupt. 85 * 86 * Functions: 87 * reprime clock 88 * schedule callouts 89 * maintain date 90 * jab the scheduler 91 */ 92 93 extern kcondvar_t fsflush_cv; 94 extern sysinfo_t sysinfo; 95 extern vminfo_t vminfo; 96 extern int idleswtch; /* flag set while idle in pswtch() */ 97 98 /* 99 * high-precision avenrun values. These are needed to make the 100 * regular avenrun values accurate. 101 */ 102 static uint64_t hp_avenrun[3]; 103 int avenrun[3]; /* FSCALED average run queue lengths */ 104 time_t time; /* time in seconds since 1970 - for compatibility only */ 105 106 static struct loadavg_s loadavg; 107 /* 108 * Phase/frequency-lock loop (PLL/FLL) definitions 109 * 110 * The following variables are read and set by the ntp_adjtime() system 111 * call. 112 * 113 * time_state shows the state of the system clock, with values defined 114 * in the timex.h header file. 115 * 116 * time_status shows the status of the system clock, with bits defined 117 * in the timex.h header file. 118 * 119 * time_offset is used by the PLL/FLL to adjust the system time in small 120 * increments. 121 * 122 * time_constant determines the bandwidth or "stiffness" of the PLL. 123 * 124 * time_tolerance determines maximum frequency error or tolerance of the 125 * CPU clock oscillator and is a property of the architecture; however, 126 * in principle it could change as result of the presence of external 127 * discipline signals, for instance. 128 * 129 * time_precision is usually equal to the kernel tick variable; however, 130 * in cases where a precision clock counter or external clock is 131 * available, the resolution can be much less than this and depend on 132 * whether the external clock is working or not. 133 * 134 * time_maxerror is initialized by a ntp_adjtime() call and increased by 135 * the kernel once each second to reflect the maximum error bound 136 * growth. 137 * 138 * time_esterror is set and read by the ntp_adjtime() call, but 139 * otherwise not used by the kernel. 140 */ 141 int32_t time_state = TIME_OK; /* clock state */ 142 int32_t time_status = STA_UNSYNC; /* clock status bits */ 143 int32_t time_offset = 0; /* time offset (us) */ 144 int32_t time_constant = 0; /* pll time constant */ 145 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 146 int32_t time_precision = 1; /* clock precision (us) */ 147 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 148 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 149 150 /* 151 * The following variables establish the state of the PLL/FLL and the 152 * residual time and frequency offset of the local clock. The scale 153 * factors are defined in the timex.h header file. 154 * 155 * time_phase and time_freq are the phase increment and the frequency 156 * increment, respectively, of the kernel time variable. 157 * 158 * time_freq is set via ntp_adjtime() from a value stored in a file when 159 * the synchronization daemon is first started. Its value is retrieved 160 * via ntp_adjtime() and written to the file about once per hour by the 161 * daemon. 162 * 163 * time_adj is the adjustment added to the value of tick at each timer 164 * interrupt and is recomputed from time_phase and time_freq at each 165 * seconds rollover. 166 * 167 * time_reftime is the second's portion of the system time at the last 168 * call to ntp_adjtime(). It is used to adjust the time_freq variable 169 * and to increase the time_maxerror as the time since last update 170 * increases. 171 */ 172 int32_t time_phase = 0; /* phase offset (scaled us) */ 173 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 174 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 175 int32_t time_reftime = 0; /* time at last adjustment (s) */ 176 177 /* 178 * The scale factors of the following variables are defined in the 179 * timex.h header file. 180 * 181 * pps_time contains the time at each calibration interval, as read by 182 * microtime(). pps_count counts the seconds of the calibration 183 * interval, the duration of which is nominally pps_shift in powers of 184 * two. 185 * 186 * pps_offset is the time offset produced by the time median filter 187 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 188 * this filter. 189 * 190 * pps_freq is the frequency offset produced by the frequency median 191 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 192 * by this filter. 193 * 194 * pps_usec is latched from a high resolution counter or external clock 195 * at pps_time. Here we want the hardware counter contents only, not the 196 * contents plus the time_tv.usec as usual. 197 * 198 * pps_valid counts the number of seconds since the last PPS update. It 199 * is used as a watchdog timer to disable the PPS discipline should the 200 * PPS signal be lost. 201 * 202 * pps_glitch counts the number of seconds since the beginning of an 203 * offset burst more than tick/2 from current nominal offset. It is used 204 * mainly to suppress error bursts due to priority conflicts between the 205 * PPS interrupt and timer interrupt. 206 * 207 * pps_intcnt counts the calibration intervals for use in the interval- 208 * adaptation algorithm. It's just too complicated for words. 209 */ 210 struct timeval pps_time; /* kernel time at last interval */ 211 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 212 int32_t pps_offset = 0; /* pps time offset (us) */ 213 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 214 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 215 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 216 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 217 int32_t pps_usec = 0; /* microsec counter at last interval */ 218 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 219 int32_t pps_glitch = 0; /* pps signal glitch counter */ 220 int32_t pps_count = 0; /* calibration interval counter (s) */ 221 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 222 int32_t pps_intcnt = 0; /* intervals at current duration */ 223 224 /* 225 * PPS signal quality monitors 226 * 227 * pps_jitcnt counts the seconds that have been discarded because the 228 * jitter measured by the time median filter exceeds the limit MAXTIME 229 * (100 us). 230 * 231 * pps_calcnt counts the frequency calibration intervals, which are 232 * variable from 4 s to 256 s. 233 * 234 * pps_errcnt counts the calibration intervals which have been discarded 235 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 236 * calibration interval jitter exceeds two ticks. 237 * 238 * pps_stbcnt counts the calibration intervals that have been discarded 239 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 240 */ 241 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 242 int32_t pps_calcnt = 0; /* calibration intervals */ 243 int32_t pps_errcnt = 0; /* calibration errors */ 244 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 245 246 /* The following variables require no explicit locking */ 247 volatile clock_t lbolt; /* time in Hz since last boot */ 248 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 249 250 kcondvar_t lbolt_cv; 251 int one_sec = 1; /* turned on once every second */ 252 static int fsflushcnt; /* counter for t_fsflushr */ 253 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 254 int tod_needsync = 0; /* need to sync tod chip with software time */ 255 static int tod_broken = 0; /* clock chip doesn't work */ 256 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 257 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 258 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 259 260 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 261 262 /* 263 * rechoose_interval_history is used to detect when rechoose_interval's 264 * value has changed (via hotpatching for example), so that the 265 * cached values in the cpu structures may be updated. 266 */ 267 static int rechoose_interval_history = RECHOOSE_INTERVAL; 268 269 /* 270 * for tod fault detection 271 */ 272 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 273 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 274 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 275 #define TOD_FILTER_N 4 276 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 277 static int tod_faulted = TOD_NOFAULT; 278 static int tod_fault_reset_flag = 0; 279 280 /* patchable via /etc/system */ 281 int tod_validate_enable = 1; 282 283 /* 284 * On non-SPARC systems, TOD validation must be deferred until gethrtime 285 * returns non-zero values (after mach_clkinit's execution). 286 * On SPARC systems, it must be deferred until after hrtime_base 287 * and hres_last_tick are set (in the first invocation of hres_tick). 288 * Since in both cases the prerequisites occur before the invocation of 289 * tod_get() in clock(), the deferment is lifted there. 290 */ 291 static boolean_t tod_validate_deferred = B_TRUE; 292 293 /* 294 * tod_fault_table[] must be aligned with 295 * enum tod_fault_type in systm.h 296 */ 297 static char *tod_fault_table[] = { 298 "Reversed", /* TOD_REVERSED */ 299 "Stalled", /* TOD_STALLED */ 300 "Jumped", /* TOD_JUMPED */ 301 "Changed in Clock Rate" /* TOD_RATECHANGED */ 302 /* 303 * no strings needed for TOD_NOFAULT 304 */ 305 }; 306 307 /* 308 * test hook for tod broken detection in tod_validate 309 */ 310 int tod_unit_test = 0; 311 time_t tod_test_injector; 312 313 #define CLOCK_ADJ_HIST_SIZE 4 314 315 static int adj_hist_entry; 316 317 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 318 319 static void clock_tick(kthread_t *); 320 static void calcloadavg(int, uint64_t *); 321 static int genloadavg(struct loadavg_s *); 322 static void loadavg_update(); 323 324 void (*cmm_clock_callout)() = NULL; 325 326 #ifdef KSLICE 327 int kslice = KSLICE; 328 #endif 329 330 static void 331 clock(void) 332 { 333 kthread_t *t; 334 kmutex_t *plockp; /* pointer to thread's process lock */ 335 int pinned_intr = 0; 336 uint_t nrunnable, nrunning; 337 uint_t w_io; 338 cpu_t *cp; 339 cpupart_t *cpupart; 340 int exiting; 341 extern void set_anoninfo(); 342 extern void set_freemem(); 343 void (*funcp)(); 344 int32_t ltemp; 345 int64_t lltemp; 346 int s; 347 int do_lgrp_load; 348 int rechoose_update = 0; 349 int rechoose; 350 int i; 351 352 if (panicstr) 353 return; 354 355 set_anoninfo(); 356 /* 357 * Make sure that 'freemem' do not drift too far from the truth 358 */ 359 set_freemem(); 360 361 362 /* 363 * Before the section which is repeated is executed, we do 364 * the time delta processing which occurs every clock tick 365 * 366 * There is additional processing which happens every time 367 * the nanosecond counter rolls over which is described 368 * below - see the section which begins with : if (one_sec) 369 * 370 * This section marks the beginning of the precision-kernel 371 * code fragment. 372 * 373 * First, compute the phase adjustment. If the low-order bits 374 * (time_phase) of the update overflow, bump the higher order 375 * bits (time_update). 376 */ 377 time_phase += time_adj; 378 if (time_phase <= -FINEUSEC) { 379 ltemp = -time_phase / SCALE_PHASE; 380 time_phase += ltemp * SCALE_PHASE; 381 s = hr_clock_lock(); 382 timedelta -= ltemp * (NANOSEC/MICROSEC); 383 hr_clock_unlock(s); 384 } else if (time_phase >= FINEUSEC) { 385 ltemp = time_phase / SCALE_PHASE; 386 time_phase -= ltemp * SCALE_PHASE; 387 s = hr_clock_lock(); 388 timedelta += ltemp * (NANOSEC/MICROSEC); 389 hr_clock_unlock(s); 390 } 391 392 /* 393 * End of precision-kernel code fragment which is processed 394 * every timer interrupt. 395 * 396 * Continue with the interrupt processing as scheduled. 397 * 398 * Did we pin another interrupt thread? Need to check this before 399 * grabbing any adaptive locks, since if we block on a lock the 400 * pinned thread could escape. Note that this is just a heuristic; 401 * if we take multiple laps though clock() without returning from 402 * the interrupt because we have another clock tick pending, then 403 * the pinned interrupt could be released by one of the previous 404 * laps. The only consequence is that the CPU will be counted as 405 * in idle (or wait) state once the pinned interrupt is released. 406 * Since this accounting is inaccurate by nature, this isn't a big 407 * deal --- but we should try to get it right in the common case 408 * where we only call clock() once per interrupt. 409 */ 410 if (curthread->t_intr != NULL) 411 pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 412 413 /* 414 * Count the number of runnable threads and the number waiting 415 * for some form of I/O to complete -- gets added to 416 * sysinfo.waiting. To know the state of the system, must add 417 * wait counts from all CPUs. Also add up the per-partition 418 * statistics. 419 */ 420 w_io = 0; 421 nrunnable = 0; 422 423 /* 424 * keep track of when to update lgrp/part loads 425 */ 426 427 do_lgrp_load = 0; 428 if (lgrp_ticks++ >= hz / 10) { 429 lgrp_ticks = 0; 430 do_lgrp_load = 1; 431 } 432 433 /* 434 * The dispatcher tunable rechoose_interval may be hot-patched. 435 * Note if it has a new value. If so, the effective rechoose_interval 436 * cached in the cpu structures needs to be updated. 437 * If needed we'll do this during the walk of the cpu_list below. 438 */ 439 if (rechoose_interval != rechoose_interval_history) { 440 rechoose_interval_history = rechoose_interval; 441 rechoose_update = 1; 442 } 443 444 if (one_sec) 445 loadavg_update(); 446 447 448 /* 449 * First count the threads waiting on kpreempt queues in each 450 * CPU partition. 451 */ 452 453 cpupart = cp_list_head; 454 do { 455 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 456 457 cpupart->cp_updates++; 458 nrunnable += cpupart_nrunnable; 459 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 460 if (one_sec) { 461 cpupart->cp_nrunning = 0; 462 cpupart->cp_nrunnable = cpupart_nrunnable; 463 } 464 } while ((cpupart = cpupart->cp_next) != cp_list_head); 465 466 467 /* Now count the per-CPU statistics. */ 468 cp = cpu_list; 469 do { 470 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 471 472 nrunnable += cpu_nrunnable; 473 cpupart = cp->cpu_part; 474 cpupart->cp_nrunnable_cum += cpu_nrunnable; 475 if (one_sec) 476 cpupart->cp_nrunnable += cpu_nrunnable; 477 if (do_lgrp_load && 478 (cp->cpu_flags & CPU_EXISTS)) { 479 /* 480 * When updating the lgroup's load average, 481 * account for the thread running on the CPU. 482 * If the CPU is the current one, then we need 483 * to account for the underlying thread which 484 * got the clock interrupt not the thread that is 485 * handling the interrupt and caculating the load 486 * average 487 */ 488 t = cp->cpu_thread; 489 if (CPU == cp) 490 t = t->t_intr; 491 492 /* 493 * Account for the load average for this thread if 494 * it isn't the idle thread or it is on the interrupt 495 * stack and not the current CPU handling the clock 496 * interrupt 497 */ 498 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 499 CPU_ON_INTR(cp))) { 500 if (t->t_lpl == cp->cpu_lpl) { 501 /* local thread */ 502 cpu_nrunnable++; 503 } else { 504 /* 505 * This is a remote thread, charge it 506 * against its home lgroup. Note that 507 * we notice that a thread is remote 508 * only if it's currently executing. 509 * This is a reasonable approximation, 510 * since queued remote threads are rare. 511 * Note also that if we didn't charge 512 * it to its home lgroup, remote 513 * execution would often make a system 514 * appear balanced even though it was 515 * not, and thread placement/migration 516 * would often not be done correctly. 517 */ 518 lgrp_loadavg(t->t_lpl, 519 LGRP_LOADAVG_IN_THREAD_MAX, 0); 520 } 521 } 522 lgrp_loadavg(cp->cpu_lpl, 523 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 524 } 525 /* 526 * The platform may define a per physical processor 527 * adjustment of rechoose_interval. The effective 528 * (base + adjustment) rechoose_interval is cached 529 * in the cpu structures for efficiency. Above we detect 530 * if the cached values need updating, and here is where 531 * the update happens. 532 */ 533 if (rechoose_update) { 534 rechoose = rechoose_interval + 535 cp->cpu_chip->chip_rechoose_adj; 536 cp->cpu_rechoose = (rechoose < 0) ? 0 : rechoose; 537 } 538 } while ((cp = cp->cpu_next) != cpu_list); 539 540 /* 541 * Do tick processing for all the active threads running in 542 * the system. 543 */ 544 cp = cpu_list; 545 nrunning = 0; 546 do { 547 klwp_id_t lwp; 548 int intr; 549 int thread_away; 550 551 /* 552 * Don't do any tick processing on CPUs that 553 * aren't even in the system or aren't up yet. 554 */ 555 if ((cp->cpu_flags & CPU_EXISTS) == 0) { 556 continue; 557 } 558 559 /* 560 * The locking here is rather tricky. We use 561 * thread_free_lock to keep the currently running 562 * thread from being freed or recycled while we're 563 * looking at it. We can then check if the thread 564 * is exiting and get the appropriate p_lock if it 565 * is not. We have to be careful, though, because 566 * the _process_ can still be freed while we're 567 * holding thread_free_lock. To avoid touching the 568 * proc structure we put a pointer to the p_lock in the 569 * thread structure. The p_lock is persistent so we 570 * can acquire it even if the process is gone. At that 571 * point we can check (again) if the thread is exiting 572 * and either drop the lock or do the tick processing. 573 */ 574 mutex_enter(&thread_free_lock); 575 /* 576 * We cannot hold the cpu_lock to prevent the 577 * cpu_list from changing in the clock interrupt. 578 * As long as we don't block (or don't get pre-empted) 579 * the cpu_list will not change (all threads are paused 580 * before list modification). If the list does change 581 * any deleted cpu structures will remain with cpu_next 582 * set to NULL, hence the following test. 583 */ 584 if (cp->cpu_next == NULL) { 585 mutex_exit(&thread_free_lock); 586 break; 587 } 588 t = cp->cpu_thread; /* Current running thread */ 589 if (CPU == cp) { 590 /* 591 * 't' will be the clock interrupt thread on this 592 * CPU. Use the pinned thread (if any) on this CPU 593 * as the target of the clock tick. If we pinned 594 * an interrupt, though, just keep using the clock 595 * interrupt thread since the formerly pinned one 596 * may have gone away. One interrupt thread is as 597 * good as another, and this means we don't have 598 * to continue to check pinned_intr in subsequent 599 * code. 600 */ 601 ASSERT(t == curthread); 602 if (t->t_intr != NULL && !pinned_intr) 603 t = t->t_intr; 604 } 605 606 intr = t->t_flag & T_INTR_THREAD; 607 lwp = ttolwp(t); 608 if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 609 /* 610 * Thread is exiting (or uninteresting) so don't 611 * do tick processing or grab p_lock. Once we 612 * drop thread_free_lock we can't look inside the 613 * thread or lwp structure, since the thread may 614 * have gone away. 615 */ 616 exiting = 1; 617 } else { 618 /* 619 * OK, try to grab the process lock. See 620 * comments above for why we're not using 621 * ttoproc(t)->p_lockp here. 622 */ 623 plockp = t->t_plockp; 624 mutex_enter(plockp); 625 /* See above comment. */ 626 if (cp->cpu_next == NULL) { 627 mutex_exit(plockp); 628 mutex_exit(&thread_free_lock); 629 break; 630 } 631 /* 632 * The thread may have exited between when we 633 * checked above, and when we got the p_lock. 634 */ 635 if (t->t_proc_flag & TP_LWPEXIT) { 636 mutex_exit(plockp); 637 exiting = 1; 638 } else { 639 exiting = 0; 640 } 641 } 642 /* 643 * Either we have the p_lock for the thread's process, 644 * or we don't care about the thread structure any more. 645 * Either way we can drop thread_free_lock. 646 */ 647 mutex_exit(&thread_free_lock); 648 649 /* 650 * Update user, system, and idle cpu times. 651 */ 652 if (one_sec) { 653 nrunning++; 654 cp->cpu_part->cp_nrunning++; 655 } 656 /* 657 * If we haven't done tick processing for this 658 * lwp, then do it now. Since we don't hold the 659 * lwp down on a CPU it can migrate and show up 660 * more than once, hence the lbolt check. 661 * 662 * Also, make sure that it's okay to perform the 663 * tick processing before calling clock_tick. 664 * Setting thread_away to a TRUE value (ie. not 0) 665 * results in tick processing not being performed for 666 * that thread. Or, in other words, keeps the thread 667 * away from clock_tick processing. 668 */ 669 thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 670 CPU_ON_INTR(cp) || intr || 671 (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 672 673 if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 674 t->t_lbolt = lbolt; 675 clock_tick(t); 676 } 677 678 #ifdef KSLICE 679 /* 680 * Ah what the heck, give this kid a taste of the real 681 * world and yank the rug out from under it. 682 * But, only if we are running UniProcessor. 683 */ 684 if ((kslice) && (ncpus == 1)) { 685 aston(t); 686 cp->cpu_runrun = 1; 687 cp->cpu_kprunrun = 1; 688 } 689 #endif 690 if (!exiting) 691 mutex_exit(plockp); 692 } while ((cp = cp->cpu_next) != cpu_list); 693 694 /* 695 * bump time in ticks 696 * 697 * We rely on there being only one clock thread and hence 698 * don't need a lock to protect lbolt. 699 */ 700 lbolt++; 701 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 702 703 /* 704 * Check for a callout that needs be called from the clock 705 * thread to support the membership protocol in a clustered 706 * system. Copy the function pointer so that we can reset 707 * this to NULL if needed. 708 */ 709 if ((funcp = cmm_clock_callout) != NULL) 710 (*funcp)(); 711 712 /* 713 * Wakeup the cageout thread waiters once per second. 714 */ 715 if (one_sec) 716 kcage_tick(); 717 718 /* 719 * Schedule timeout() requests if any are due at this time. 720 */ 721 callout_schedule(); 722 723 if (one_sec) { 724 725 int drift, absdrift; 726 timestruc_t tod; 727 int s; 728 729 /* 730 * Beginning of precision-kernel code fragment executed 731 * every second. 732 * 733 * On rollover of the second the phase adjustment to be 734 * used for the next second is calculated. Also, the 735 * maximum error is increased by the tolerance. If the 736 * PPS frequency discipline code is present, the phase is 737 * increased to compensate for the CPU clock oscillator 738 * frequency error. 739 * 740 * On a 32-bit machine and given parameters in the timex.h 741 * header file, the maximum phase adjustment is +-512 ms 742 * and maximum frequency offset is (a tad less than) 743 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 744 */ 745 time_maxerror += time_tolerance / SCALE_USEC; 746 747 /* 748 * Leap second processing. If in leap-insert state at 749 * the end of the day, the system clock is set back one 750 * second; if in leap-delete state, the system clock is 751 * set ahead one second. The microtime() routine or 752 * external clock driver will insure that reported time 753 * is always monotonic. The ugly divides should be 754 * replaced. 755 */ 756 switch (time_state) { 757 758 case TIME_OK: 759 if (time_status & STA_INS) 760 time_state = TIME_INS; 761 else if (time_status & STA_DEL) 762 time_state = TIME_DEL; 763 break; 764 765 case TIME_INS: 766 if (hrestime.tv_sec % 86400 == 0) { 767 s = hr_clock_lock(); 768 hrestime.tv_sec--; 769 hr_clock_unlock(s); 770 time_state = TIME_OOP; 771 } 772 break; 773 774 case TIME_DEL: 775 if ((hrestime.tv_sec + 1) % 86400 == 0) { 776 s = hr_clock_lock(); 777 hrestime.tv_sec++; 778 hr_clock_unlock(s); 779 time_state = TIME_WAIT; 780 } 781 break; 782 783 case TIME_OOP: 784 time_state = TIME_WAIT; 785 break; 786 787 case TIME_WAIT: 788 if (!(time_status & (STA_INS | STA_DEL))) 789 time_state = TIME_OK; 790 default: 791 break; 792 } 793 794 /* 795 * Compute the phase adjustment for the next second. In 796 * PLL mode, the offset is reduced by a fixed factor 797 * times the time constant. In FLL mode the offset is 798 * used directly. In either mode, the maximum phase 799 * adjustment for each second is clamped so as to spread 800 * the adjustment over not more than the number of 801 * seconds between updates. 802 */ 803 if (time_offset == 0) 804 time_adj = 0; 805 else if (time_offset < 0) { 806 lltemp = -time_offset; 807 if (!(time_status & STA_FLL)) { 808 if ((1 << time_constant) >= SCALE_KG) 809 lltemp *= (1 << time_constant) / 810 SCALE_KG; 811 else 812 lltemp = (lltemp / SCALE_KG) >> 813 time_constant; 814 } 815 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 816 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 817 time_offset += lltemp; 818 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 819 } else { 820 lltemp = time_offset; 821 if (!(time_status & STA_FLL)) { 822 if ((1 << time_constant) >= SCALE_KG) 823 lltemp *= (1 << time_constant) / 824 SCALE_KG; 825 else 826 lltemp = (lltemp / SCALE_KG) >> 827 time_constant; 828 } 829 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 830 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 831 time_offset -= lltemp; 832 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 833 } 834 835 /* 836 * Compute the frequency estimate and additional phase 837 * adjustment due to frequency error for the next 838 * second. When the PPS signal is engaged, gnaw on the 839 * watchdog counter and update the frequency computed by 840 * the pll and the PPS signal. 841 */ 842 pps_valid++; 843 if (pps_valid == PPS_VALID) { 844 pps_jitter = MAXTIME; 845 pps_stabil = MAXFREQ; 846 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 847 STA_PPSWANDER | STA_PPSERROR); 848 } 849 lltemp = time_freq + pps_freq; 850 851 if (lltemp) 852 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 853 854 /* 855 * End of precision kernel-code fragment 856 * 857 * The section below should be modified if we are planning 858 * to use NTP for synchronization. 859 * 860 * Note: the clock synchronization code now assumes 861 * the following: 862 * - if dosynctodr is 1, then compute the drift between 863 * the tod chip and software time and adjust one or 864 * the other depending on the circumstances 865 * 866 * - if dosynctodr is 0, then the tod chip is independent 867 * of the software clock and should not be adjusted, 868 * but allowed to free run. this allows NTP to sync. 869 * hrestime without any interference from the tod chip. 870 */ 871 872 tod_validate_deferred = B_FALSE; 873 mutex_enter(&tod_lock); 874 tod = tod_get(); 875 drift = tod.tv_sec - hrestime.tv_sec; 876 absdrift = (drift >= 0) ? drift : -drift; 877 if (tod_needsync || absdrift > 1) { 878 int s; 879 if (absdrift > 2) { 880 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 881 s = hr_clock_lock(); 882 hrestime = tod; 883 membar_enter(); /* hrestime visible */ 884 timedelta = 0; 885 timechanged++; 886 tod_needsync = 0; 887 hr_clock_unlock(s); 888 } 889 } else { 890 if (tod_needsync || !dosynctodr) { 891 gethrestime(&tod); 892 tod_set(tod); 893 s = hr_clock_lock(); 894 if (timedelta == 0) 895 tod_needsync = 0; 896 hr_clock_unlock(s); 897 } else { 898 /* 899 * If the drift is 2 seconds on the 900 * money, then the TOD is adjusting 901 * the clock; record that. 902 */ 903 clock_adj_hist[adj_hist_entry++ % 904 CLOCK_ADJ_HIST_SIZE] = lbolt64; 905 s = hr_clock_lock(); 906 timedelta = (int64_t)drift*NANOSEC; 907 hr_clock_unlock(s); 908 } 909 } 910 } 911 one_sec = 0; 912 time = gethrestime_sec(); /* for crusty old kmem readers */ 913 mutex_exit(&tod_lock); 914 915 /* 916 * Some drivers still depend on this... XXX 917 */ 918 cv_broadcast(&lbolt_cv); 919 920 sysinfo.updates++; 921 vminfo.freemem += freemem; 922 { 923 pgcnt_t maxswap, resv, free; 924 pgcnt_t avail = 925 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 926 927 maxswap = k_anoninfo.ani_mem_resv 928 + k_anoninfo.ani_max +avail; 929 free = k_anoninfo.ani_free + avail; 930 resv = k_anoninfo.ani_phys_resv + 931 k_anoninfo.ani_mem_resv; 932 933 vminfo.swap_resv += resv; 934 /* number of reserved and allocated pages */ 935 #ifdef DEBUG 936 if (maxswap < free) 937 cmn_err(CE_WARN, "clock: maxswap < free"); 938 if (maxswap < resv) 939 cmn_err(CE_WARN, "clock: maxswap < resv"); 940 #endif 941 vminfo.swap_alloc += maxswap - free; 942 vminfo.swap_avail += maxswap - resv; 943 vminfo.swap_free += free; 944 } 945 if (nrunnable) { 946 sysinfo.runque += nrunnable; 947 sysinfo.runocc++; 948 } 949 if (nswapped) { 950 sysinfo.swpque += nswapped; 951 sysinfo.swpocc++; 952 } 953 sysinfo.waiting += w_io; 954 955 /* 956 * Wake up fsflush to write out DELWRI 957 * buffers, dirty pages and other cached 958 * administrative data, e.g. inodes. 959 */ 960 if (--fsflushcnt <= 0) { 961 fsflushcnt = tune.t_fsflushr; 962 cv_signal(&fsflush_cv); 963 } 964 965 vmmeter(); 966 calcloadavg(genloadavg(&loadavg), hp_avenrun); 967 for (i = 0; i < 3; i++) 968 /* 969 * At the moment avenrun[] can only hold 31 970 * bits of load average as it is a signed 971 * int in the API. We need to ensure that 972 * hp_avenrun[i] >> (16 - FSHIFT) will not be 973 * too large. If it is, we put the largest value 974 * that we can use into avenrun[i]. This is 975 * kludgey, but about all we can do until we 976 * avenrun[] is declared as an array of uint64[] 977 */ 978 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 979 avenrun[i] = (int32_t)(hp_avenrun[i] >> 980 (16 - FSHIFT)); 981 else 982 avenrun[i] = 0x7fffffff; 983 984 cpupart = cp_list_head; 985 do { 986 calcloadavg(genloadavg(&cpupart->cp_loadavg), 987 cpupart->cp_hp_avenrun); 988 } while ((cpupart = cpupart->cp_next) != cp_list_head); 989 990 /* 991 * Wake up the swapper thread if necessary. 992 */ 993 if (runin || 994 (runout && (avefree < desfree || wake_sched_sec))) { 995 t = &t0; 996 thread_lock(t); 997 if (t->t_state == TS_STOPPED) { 998 runin = runout = 0; 999 wake_sched_sec = 0; 1000 t->t_whystop = 0; 1001 t->t_whatstop = 0; 1002 t->t_schedflag &= ~TS_ALLSTART; 1003 THREAD_TRANSITION(t); 1004 setfrontdq(t); 1005 } 1006 thread_unlock(t); 1007 } 1008 } 1009 1010 /* 1011 * Wake up the swapper if any high priority swapped-out threads 1012 * became runable during the last tick. 1013 */ 1014 if (wake_sched) { 1015 t = &t0; 1016 thread_lock(t); 1017 if (t->t_state == TS_STOPPED) { 1018 runin = runout = 0; 1019 wake_sched = 0; 1020 t->t_whystop = 0; 1021 t->t_whatstop = 0; 1022 t->t_schedflag &= ~TS_ALLSTART; 1023 THREAD_TRANSITION(t); 1024 setfrontdq(t); 1025 } 1026 thread_unlock(t); 1027 } 1028 } 1029 1030 void 1031 clock_init(void) 1032 { 1033 cyc_handler_t hdlr; 1034 cyc_time_t when; 1035 1036 hdlr.cyh_func = (cyc_func_t)clock; 1037 hdlr.cyh_level = CY_LOCK_LEVEL; 1038 hdlr.cyh_arg = NULL; 1039 1040 when.cyt_when = 0; 1041 when.cyt_interval = nsec_per_tick; 1042 1043 mutex_enter(&cpu_lock); 1044 clock_cyclic = cyclic_add(&hdlr, &when); 1045 mutex_exit(&cpu_lock); 1046 } 1047 1048 /* 1049 * Called before calcloadavg to get 10-sec moving loadavg together 1050 */ 1051 1052 static int 1053 genloadavg(struct loadavg_s *avgs) 1054 { 1055 int avg; 1056 int spos; /* starting position */ 1057 int cpos; /* moving current position */ 1058 int i; 1059 int slen; 1060 hrtime_t hr_avg; 1061 1062 /* 10-second snapshot, calculate first positon */ 1063 if (avgs->lg_len == 0) { 1064 return (0); 1065 } 1066 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1067 1068 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1069 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1070 for (i = hr_avg = 0; i < slen; i++) { 1071 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1072 hr_avg += avgs->lg_loads[cpos]; 1073 } 1074 1075 hr_avg = hr_avg / slen; 1076 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1077 1078 return (avg); 1079 } 1080 1081 /* 1082 * Run every second from clock () to update the loadavg count available to the 1083 * system and cpu-partitions. 1084 * 1085 * This works by sampling the previous usr, sys, wait time elapsed, 1086 * computing a delta, and adding that delta to the elapsed usr, sys, 1087 * wait increase. 1088 */ 1089 1090 static void 1091 loadavg_update() 1092 { 1093 cpu_t *cp; 1094 cpupart_t *cpupart; 1095 hrtime_t cpu_total; 1096 int prev; 1097 1098 cp = cpu_list; 1099 loadavg.lg_total = 0; 1100 1101 /* 1102 * first pass totals up per-cpu statistics for system and cpu 1103 * partitions 1104 */ 1105 1106 do { 1107 struct loadavg_s *lavg; 1108 1109 lavg = &cp->cpu_loadavg; 1110 1111 cpu_total = cp->cpu_acct[CMS_USER] + 1112 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1113 /* compute delta against last total */ 1114 scalehrtime(&cpu_total); 1115 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1116 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1117 if (lavg->lg_loads[prev] <= 0) { 1118 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1119 cpu_total = 0; 1120 } else { 1121 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1122 cpu_total = cpu_total - lavg->lg_loads[prev]; 1123 if (cpu_total < 0) 1124 cpu_total = 0; 1125 } 1126 1127 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1128 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1129 lavg->lg_len + 1 : S_LOADAVG_SZ; 1130 1131 loadavg.lg_total += cpu_total; 1132 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1133 1134 } while ((cp = cp->cpu_next) != cpu_list); 1135 1136 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1137 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1138 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1139 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1140 /* 1141 * Second pass updates counts 1142 */ 1143 cpupart = cp_list_head; 1144 1145 do { 1146 struct loadavg_s *lavg; 1147 1148 lavg = &cpupart->cp_loadavg; 1149 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1150 lavg->lg_total = 0; 1151 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1152 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1153 lavg->lg_len + 1 : S_LOADAVG_SZ; 1154 1155 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1156 1157 } 1158 1159 /* 1160 * clock_update() - local clock update 1161 * 1162 * This routine is called by ntp_adjtime() to update the local clock 1163 * phase and frequency. The implementation is of an 1164 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1165 * routine computes new time and frequency offset estimates for each 1166 * call. The PPS signal itself determines the new time offset, 1167 * instead of the calling argument. Presumably, calls to 1168 * ntp_adjtime() occur only when the caller believes the local clock 1169 * is valid within some bound (+-128 ms with NTP). If the caller's 1170 * time is far different than the PPS time, an argument will ensue, 1171 * and it's not clear who will lose. 1172 * 1173 * For uncompensated quartz crystal oscillatores and nominal update 1174 * intervals less than 1024 s, operation should be in phase-lock mode 1175 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1176 * intervals greater than this, operation should be in frequency-lock 1177 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1178 * 1179 * Note: mutex(&tod_lock) is in effect. 1180 */ 1181 void 1182 clock_update(int offset) 1183 { 1184 int ltemp, mtemp, s; 1185 1186 ASSERT(MUTEX_HELD(&tod_lock)); 1187 1188 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1189 return; 1190 ltemp = offset; 1191 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1192 ltemp = pps_offset; 1193 1194 /* 1195 * Scale the phase adjustment and clamp to the operating range. 1196 */ 1197 if (ltemp > MAXPHASE) 1198 time_offset = MAXPHASE * SCALE_UPDATE; 1199 else if (ltemp < -MAXPHASE) 1200 time_offset = -(MAXPHASE * SCALE_UPDATE); 1201 else 1202 time_offset = ltemp * SCALE_UPDATE; 1203 1204 /* 1205 * Select whether the frequency is to be controlled and in which 1206 * mode (PLL or FLL). Clamp to the operating range. Ugly 1207 * multiply/divide should be replaced someday. 1208 */ 1209 if (time_status & STA_FREQHOLD || time_reftime == 0) 1210 time_reftime = hrestime.tv_sec; 1211 1212 mtemp = hrestime.tv_sec - time_reftime; 1213 time_reftime = hrestime.tv_sec; 1214 1215 if (time_status & STA_FLL) { 1216 if (mtemp >= MINSEC) { 1217 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1218 SCALE_UPDATE)); 1219 if (ltemp) 1220 time_freq += ltemp / SCALE_KH; 1221 } 1222 } else { 1223 if (mtemp < MAXSEC) { 1224 ltemp *= mtemp; 1225 if (ltemp) 1226 time_freq += (int)(((int64_t)ltemp * 1227 SCALE_USEC) / SCALE_KF) 1228 / (1 << (time_constant * 2)); 1229 } 1230 } 1231 if (time_freq > time_tolerance) 1232 time_freq = time_tolerance; 1233 else if (time_freq < -time_tolerance) 1234 time_freq = -time_tolerance; 1235 1236 s = hr_clock_lock(); 1237 tod_needsync = 1; 1238 hr_clock_unlock(s); 1239 } 1240 1241 /* 1242 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1243 * 1244 * This routine is called at each PPS interrupt in order to discipline 1245 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1246 * and leaves it in a handy spot for the clock() routine. It 1247 * integrates successive PPS phase differences and calculates the 1248 * frequency offset. This is used in clock() to discipline the CPU 1249 * clock oscillator so that intrinsic frequency error is cancelled out. 1250 * The code requires the caller to capture the time and hardware counter 1251 * value at the on-time PPS signal transition. 1252 * 1253 * Note that, on some Unix systems, this routine runs at an interrupt 1254 * priority level higher than the timer interrupt routine clock(). 1255 * Therefore, the variables used are distinct from the clock() 1256 * variables, except for certain exceptions: The PPS frequency pps_freq 1257 * and phase pps_offset variables are determined by this routine and 1258 * updated atomically. The time_tolerance variable can be considered a 1259 * constant, since it is infrequently changed, and then only when the 1260 * PPS signal is disabled. The watchdog counter pps_valid is updated 1261 * once per second by clock() and is atomically cleared in this 1262 * routine. 1263 * 1264 * tvp is the time of the last tick; usec is a microsecond count since the 1265 * last tick. 1266 * 1267 * Note: In Solaris systems, the tick value is actually given by 1268 * usec_per_tick. This is called from the serial driver cdintr(), 1269 * or equivalent, at a high PIL. Because the kernel keeps a 1270 * highresolution time, the following code can accept either 1271 * the traditional argument pair, or the current highres timestamp 1272 * in tvp and zero in usec. 1273 */ 1274 void 1275 ddi_hardpps(struct timeval *tvp, int usec) 1276 { 1277 int u_usec, v_usec, bigtick; 1278 time_t cal_sec; 1279 int cal_usec; 1280 1281 /* 1282 * An occasional glitch can be produced when the PPS interrupt 1283 * occurs in the clock() routine before the time variable is 1284 * updated. Here the offset is discarded when the difference 1285 * between it and the last one is greater than tick/2, but not 1286 * if the interval since the first discard exceeds 30 s. 1287 */ 1288 time_status |= STA_PPSSIGNAL; 1289 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1290 pps_valid = 0; 1291 u_usec = -tvp->tv_usec; 1292 if (u_usec < -(MICROSEC/2)) 1293 u_usec += MICROSEC; 1294 v_usec = pps_offset - u_usec; 1295 if (v_usec < 0) 1296 v_usec = -v_usec; 1297 if (v_usec > (usec_per_tick >> 1)) { 1298 if (pps_glitch > MAXGLITCH) { 1299 pps_glitch = 0; 1300 pps_tf[2] = u_usec; 1301 pps_tf[1] = u_usec; 1302 } else { 1303 pps_glitch++; 1304 u_usec = pps_offset; 1305 } 1306 } else 1307 pps_glitch = 0; 1308 1309 /* 1310 * A three-stage median filter is used to help deglitch the pps 1311 * time. The median sample becomes the time offset estimate; the 1312 * difference between the other two samples becomes the time 1313 * dispersion (jitter) estimate. 1314 */ 1315 pps_tf[2] = pps_tf[1]; 1316 pps_tf[1] = pps_tf[0]; 1317 pps_tf[0] = u_usec; 1318 if (pps_tf[0] > pps_tf[1]) { 1319 if (pps_tf[1] > pps_tf[2]) { 1320 pps_offset = pps_tf[1]; /* 0 1 2 */ 1321 v_usec = pps_tf[0] - pps_tf[2]; 1322 } else if (pps_tf[2] > pps_tf[0]) { 1323 pps_offset = pps_tf[0]; /* 2 0 1 */ 1324 v_usec = pps_tf[2] - pps_tf[1]; 1325 } else { 1326 pps_offset = pps_tf[2]; /* 0 2 1 */ 1327 v_usec = pps_tf[0] - pps_tf[1]; 1328 } 1329 } else { 1330 if (pps_tf[1] < pps_tf[2]) { 1331 pps_offset = pps_tf[1]; /* 2 1 0 */ 1332 v_usec = pps_tf[2] - pps_tf[0]; 1333 } else if (pps_tf[2] < pps_tf[0]) { 1334 pps_offset = pps_tf[0]; /* 1 0 2 */ 1335 v_usec = pps_tf[1] - pps_tf[2]; 1336 } else { 1337 pps_offset = pps_tf[2]; /* 1 2 0 */ 1338 v_usec = pps_tf[1] - pps_tf[0]; 1339 } 1340 } 1341 if (v_usec > MAXTIME) 1342 pps_jitcnt++; 1343 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1344 pps_jitter += v_usec / (1 << PPS_AVG); 1345 if (pps_jitter > (MAXTIME >> 1)) 1346 time_status |= STA_PPSJITTER; 1347 1348 /* 1349 * During the calibration interval adjust the starting time when 1350 * the tick overflows. At the end of the interval compute the 1351 * duration of the interval and the difference of the hardware 1352 * counters at the beginning and end of the interval. This code 1353 * is deliciously complicated by the fact valid differences may 1354 * exceed the value of tick when using long calibration 1355 * intervals and small ticks. Note that the counter can be 1356 * greater than tick if caught at just the wrong instant, but 1357 * the values returned and used here are correct. 1358 */ 1359 bigtick = (int)usec_per_tick * SCALE_USEC; 1360 pps_usec -= pps_freq; 1361 if (pps_usec >= bigtick) 1362 pps_usec -= bigtick; 1363 if (pps_usec < 0) 1364 pps_usec += bigtick; 1365 pps_time.tv_sec++; 1366 pps_count++; 1367 if (pps_count < (1 << pps_shift)) 1368 return; 1369 pps_count = 0; 1370 pps_calcnt++; 1371 u_usec = usec * SCALE_USEC; 1372 v_usec = pps_usec - u_usec; 1373 if (v_usec >= bigtick >> 1) 1374 v_usec -= bigtick; 1375 if (v_usec < -(bigtick >> 1)) 1376 v_usec += bigtick; 1377 if (v_usec < 0) 1378 v_usec = -(-v_usec >> pps_shift); 1379 else 1380 v_usec = v_usec >> pps_shift; 1381 pps_usec = u_usec; 1382 cal_sec = tvp->tv_sec; 1383 cal_usec = tvp->tv_usec; 1384 cal_sec -= pps_time.tv_sec; 1385 cal_usec -= pps_time.tv_usec; 1386 if (cal_usec < 0) { 1387 cal_usec += MICROSEC; 1388 cal_sec--; 1389 } 1390 pps_time = *tvp; 1391 1392 /* 1393 * Check for lost interrupts, noise, excessive jitter and 1394 * excessive frequency error. The number of timer ticks during 1395 * the interval may vary +-1 tick. Add to this a margin of one 1396 * tick for the PPS signal jitter and maximum frequency 1397 * deviation. If the limits are exceeded, the calibration 1398 * interval is reset to the minimum and we start over. 1399 */ 1400 u_usec = (int)usec_per_tick << 1; 1401 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1402 (cal_sec == 0 && cal_usec < u_usec)) || 1403 v_usec > time_tolerance || v_usec < -time_tolerance) { 1404 pps_errcnt++; 1405 pps_shift = PPS_SHIFT; 1406 pps_intcnt = 0; 1407 time_status |= STA_PPSERROR; 1408 return; 1409 } 1410 1411 /* 1412 * A three-stage median filter is used to help deglitch the pps 1413 * frequency. The median sample becomes the frequency offset 1414 * estimate; the difference between the other two samples 1415 * becomes the frequency dispersion (stability) estimate. 1416 */ 1417 pps_ff[2] = pps_ff[1]; 1418 pps_ff[1] = pps_ff[0]; 1419 pps_ff[0] = v_usec; 1420 if (pps_ff[0] > pps_ff[1]) { 1421 if (pps_ff[1] > pps_ff[2]) { 1422 u_usec = pps_ff[1]; /* 0 1 2 */ 1423 v_usec = pps_ff[0] - pps_ff[2]; 1424 } else if (pps_ff[2] > pps_ff[0]) { 1425 u_usec = pps_ff[0]; /* 2 0 1 */ 1426 v_usec = pps_ff[2] - pps_ff[1]; 1427 } else { 1428 u_usec = pps_ff[2]; /* 0 2 1 */ 1429 v_usec = pps_ff[0] - pps_ff[1]; 1430 } 1431 } else { 1432 if (pps_ff[1] < pps_ff[2]) { 1433 u_usec = pps_ff[1]; /* 2 1 0 */ 1434 v_usec = pps_ff[2] - pps_ff[0]; 1435 } else if (pps_ff[2] < pps_ff[0]) { 1436 u_usec = pps_ff[0]; /* 1 0 2 */ 1437 v_usec = pps_ff[1] - pps_ff[2]; 1438 } else { 1439 u_usec = pps_ff[2]; /* 1 2 0 */ 1440 v_usec = pps_ff[1] - pps_ff[0]; 1441 } 1442 } 1443 1444 /* 1445 * Here the frequency dispersion (stability) is updated. If it 1446 * is less than one-fourth the maximum (MAXFREQ), the frequency 1447 * offset is updated as well, but clamped to the tolerance. It 1448 * will be processed later by the clock() routine. 1449 */ 1450 v_usec = (v_usec >> 1) - pps_stabil; 1451 if (v_usec < 0) 1452 pps_stabil -= -v_usec >> PPS_AVG; 1453 else 1454 pps_stabil += v_usec >> PPS_AVG; 1455 if (pps_stabil > MAXFREQ >> 2) { 1456 pps_stbcnt++; 1457 time_status |= STA_PPSWANDER; 1458 return; 1459 } 1460 if (time_status & STA_PPSFREQ) { 1461 if (u_usec < 0) { 1462 pps_freq -= -u_usec >> PPS_AVG; 1463 if (pps_freq < -time_tolerance) 1464 pps_freq = -time_tolerance; 1465 u_usec = -u_usec; 1466 } else { 1467 pps_freq += u_usec >> PPS_AVG; 1468 if (pps_freq > time_tolerance) 1469 pps_freq = time_tolerance; 1470 } 1471 } 1472 1473 /* 1474 * Here the calibration interval is adjusted. If the maximum 1475 * time difference is greater than tick / 4, reduce the interval 1476 * by half. If this is not the case for four consecutive 1477 * intervals, double the interval. 1478 */ 1479 if (u_usec << pps_shift > bigtick >> 2) { 1480 pps_intcnt = 0; 1481 if (pps_shift > PPS_SHIFT) 1482 pps_shift--; 1483 } else if (pps_intcnt >= 4) { 1484 pps_intcnt = 0; 1485 if (pps_shift < PPS_SHIFTMAX) 1486 pps_shift++; 1487 } else 1488 pps_intcnt++; 1489 1490 /* 1491 * If recovering from kmdb, then make sure the tod chip gets resynced. 1492 * If we took an early exit above, then we don't yet have a stable 1493 * calibration signal to lock onto, so don't mark the tod for sync 1494 * until we get all the way here. 1495 */ 1496 { 1497 int s = hr_clock_lock(); 1498 1499 tod_needsync = 1; 1500 hr_clock_unlock(s); 1501 } 1502 } 1503 1504 /* 1505 * Handle clock tick processing for a thread. 1506 * Check for timer action, enforce CPU rlimit, do profiling etc. 1507 */ 1508 void 1509 clock_tick(kthread_t *t) 1510 { 1511 struct proc *pp; 1512 klwp_id_t lwp; 1513 struct as *as; 1514 clock_t utime; 1515 clock_t stime; 1516 int poke = 0; /* notify another CPU */ 1517 int user_mode; 1518 size_t rss; 1519 1520 /* Must be operating on a lwp/thread */ 1521 if ((lwp = ttolwp(t)) == NULL) { 1522 panic("clock_tick: no lwp"); 1523 /*NOTREACHED*/ 1524 } 1525 1526 CL_TICK(t); /* Class specific tick processing */ 1527 DTRACE_SCHED1(tick, kthread_t *, t); 1528 1529 pp = ttoproc(t); 1530 1531 /* pp->p_lock makes sure that the thread does not exit */ 1532 ASSERT(MUTEX_HELD(&pp->p_lock)); 1533 1534 user_mode = (lwp->lwp_state == LWP_USER); 1535 1536 /* 1537 * Update process times. Should use high res clock and state 1538 * changes instead of statistical sampling method. XXX 1539 */ 1540 if (user_mode) { 1541 pp->p_utime++; 1542 pp->p_task->tk_cpu_time++; 1543 } else { 1544 pp->p_stime++; 1545 pp->p_task->tk_cpu_time++; 1546 } 1547 as = pp->p_as; 1548 1549 /* 1550 * Update user profiling statistics. Get the pc from the 1551 * lwp when the AST happens. 1552 */ 1553 if (pp->p_prof.pr_scale) { 1554 atomic_add_32(&lwp->lwp_oweupc, 1); 1555 if (user_mode) { 1556 poke = 1; 1557 aston(t); 1558 } 1559 } 1560 1561 utime = pp->p_utime; 1562 stime = pp->p_stime; 1563 1564 /* 1565 * If CPU was in user state, process lwp-virtual time 1566 * interval timer. 1567 */ 1568 if (user_mode && 1569 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1570 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 1571 poke = 1; 1572 sigtoproc(pp, t, SIGVTALRM); 1573 } 1574 1575 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1576 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 1577 poke = 1; 1578 sigtoproc(pp, t, SIGPROF); 1579 } 1580 1581 /* 1582 * Enforce CPU resource controls: 1583 * (a) process.max-cpu-time resource control 1584 */ 1585 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1586 (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 1587 1588 /* 1589 * (b) task.max-cpu-time resource control 1590 */ 1591 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 1592 RCA_UNSAFE_SIGINFO); 1593 1594 /* 1595 * Update memory usage for the currently running process. 1596 */ 1597 rss = rm_asrss(as); 1598 PTOU(pp)->u_mem += rss; 1599 if (rss > PTOU(pp)->u_mem_max) 1600 PTOU(pp)->u_mem_max = rss; 1601 1602 /* 1603 * Notify the CPU the thread is running on. 1604 */ 1605 if (poke && t->t_cpu != CPU) 1606 poke_cpu(t->t_cpu->cpu_id); 1607 } 1608 1609 void 1610 profil_tick(uintptr_t upc) 1611 { 1612 int ticks; 1613 proc_t *p = ttoproc(curthread); 1614 klwp_t *lwp = ttolwp(curthread); 1615 struct prof *pr = &p->p_prof; 1616 1617 do { 1618 ticks = lwp->lwp_oweupc; 1619 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1620 1621 mutex_enter(&p->p_pflock); 1622 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1623 /* 1624 * Old-style profiling 1625 */ 1626 uint16_t *slot = pr->pr_base; 1627 uint16_t old, new; 1628 if (pr->pr_scale != 2) { 1629 uintptr_t delta = upc - pr->pr_off; 1630 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1631 (((delta & 0xffff) * pr->pr_scale) >> 16); 1632 if (byteoff >= (uintptr_t)pr->pr_size) { 1633 mutex_exit(&p->p_pflock); 1634 return; 1635 } 1636 slot += byteoff / sizeof (uint16_t); 1637 } 1638 if (fuword16(slot, &old) < 0 || 1639 (new = old + ticks) > SHRT_MAX || 1640 suword16(slot, new) < 0) { 1641 pr->pr_scale = 0; 1642 } 1643 } else if (pr->pr_scale == 1) { 1644 /* 1645 * PC Sampling 1646 */ 1647 model_t model = lwp_getdatamodel(lwp); 1648 int result; 1649 #ifdef __lint 1650 model = model; 1651 #endif 1652 while (ticks-- > 0) { 1653 if (pr->pr_samples == pr->pr_size) { 1654 /* buffer full, turn off sampling */ 1655 pr->pr_scale = 0; 1656 break; 1657 } 1658 switch (SIZEOF_PTR(model)) { 1659 case sizeof (uint32_t): 1660 result = suword32(pr->pr_base, (uint32_t)upc); 1661 break; 1662 #ifdef _LP64 1663 case sizeof (uint64_t): 1664 result = suword64(pr->pr_base, (uint64_t)upc); 1665 break; 1666 #endif 1667 default: 1668 cmn_err(CE_WARN, "profil_tick: unexpected " 1669 "data model"); 1670 result = -1; 1671 break; 1672 } 1673 if (result != 0) { 1674 pr->pr_scale = 0; 1675 break; 1676 } 1677 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1678 pr->pr_samples++; 1679 } 1680 } 1681 mutex_exit(&p->p_pflock); 1682 } 1683 1684 static void 1685 delay_wakeup(void *arg) 1686 { 1687 kthread_t *t = arg; 1688 1689 mutex_enter(&t->t_delay_lock); 1690 cv_signal(&t->t_delay_cv); 1691 mutex_exit(&t->t_delay_lock); 1692 } 1693 1694 void 1695 delay(clock_t ticks) 1696 { 1697 kthread_t *t = curthread; 1698 clock_t deadline = lbolt + ticks; 1699 clock_t timeleft; 1700 timeout_id_t id; 1701 1702 if (panicstr && ticks > 0) { 1703 /* 1704 * Timeouts aren't running, so all we can do is spin. 1705 */ 1706 drv_usecwait(TICK_TO_USEC(ticks)); 1707 return; 1708 } 1709 1710 while ((timeleft = deadline - lbolt) > 0) { 1711 mutex_enter(&t->t_delay_lock); 1712 id = timeout(delay_wakeup, t, timeleft); 1713 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1714 mutex_exit(&t->t_delay_lock); 1715 (void) untimeout(id); 1716 } 1717 } 1718 1719 /* 1720 * Like delay, but interruptible by a signal. 1721 */ 1722 int 1723 delay_sig(clock_t ticks) 1724 { 1725 clock_t deadline = lbolt + ticks; 1726 clock_t rc; 1727 1728 mutex_enter(&curthread->t_delay_lock); 1729 do { 1730 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1731 &curthread->t_delay_lock, deadline); 1732 } while (rc > 0); 1733 mutex_exit(&curthread->t_delay_lock); 1734 if (rc == 0) 1735 return (EINTR); 1736 return (0); 1737 } 1738 1739 #define SECONDS_PER_DAY 86400 1740 1741 /* 1742 * Initialize the system time based on the TOD chip. approx is used as 1743 * an approximation of time (e.g. from the filesystem) in the event that 1744 * the TOD chip has been cleared or is unresponsive. An approx of -1 1745 * means the filesystem doesn't keep time. 1746 */ 1747 void 1748 clkset(time_t approx) 1749 { 1750 timestruc_t ts; 1751 int spl; 1752 int set_clock = 0; 1753 1754 mutex_enter(&tod_lock); 1755 ts = tod_get(); 1756 1757 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1758 /* 1759 * If the TOD chip is reporting some time after 1971, 1760 * then it probably didn't lose power or become otherwise 1761 * cleared in the recent past; check to assure that 1762 * the time coming from the filesystem isn't in the future 1763 * according to the TOD chip. 1764 */ 1765 if (approx != -1 && approx > ts.tv_sec) { 1766 cmn_err(CE_WARN, "Last shutdown is later " 1767 "than time on time-of-day chip; check date."); 1768 } 1769 } else { 1770 /* 1771 * If the TOD chip isn't giving correct time, then set it to 1772 * the time that was passed in as a rough estimate. If we 1773 * don't have an estimate, then set the clock back to a time 1774 * when Oliver North, ALF and Dire Straits were all on the 1775 * collective brain: 1987. 1776 */ 1777 timestruc_t tmp; 1778 if (approx == -1) 1779 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1780 else 1781 ts.tv_sec = approx; 1782 ts.tv_nsec = 0; 1783 1784 /* 1785 * Attempt to write the new time to the TOD chip. Set spl high 1786 * to avoid getting preempted between the tod_set and tod_get. 1787 */ 1788 spl = splhi(); 1789 tod_set(ts); 1790 tmp = tod_get(); 1791 splx(spl); 1792 1793 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1794 tod_broken = 1; 1795 dosynctodr = 0; 1796 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1797 " dead batteries?"); 1798 } else { 1799 cmn_err(CE_WARN, "Time-of-day chip had " 1800 "incorrect date; check and reset."); 1801 } 1802 set_clock = 1; 1803 } 1804 1805 if (!boot_time) { 1806 boot_time = ts.tv_sec; 1807 set_clock = 1; 1808 } 1809 1810 if (set_clock) 1811 set_hrestime(&ts); 1812 1813 mutex_exit(&tod_lock); 1814 } 1815 1816 int timechanged; /* for testing if the system time has been reset */ 1817 1818 void 1819 set_hrestime(timestruc_t *ts) 1820 { 1821 int spl = hr_clock_lock(); 1822 hrestime = *ts; 1823 membar_enter(); /* hrestime must be visible before timechanged++ */ 1824 timedelta = 0; 1825 timechanged++; 1826 hr_clock_unlock(spl); 1827 } 1828 1829 static uint_t deadman_seconds; 1830 static uint32_t deadman_panics; 1831 static int deadman_enabled = 0; 1832 static int deadman_panic_timers = 1; 1833 1834 static void 1835 deadman(void) 1836 { 1837 if (panicstr) { 1838 /* 1839 * During panic, other CPUs besides the panic 1840 * master continue to handle cyclics and some other 1841 * interrupts. The code below is intended to be 1842 * single threaded, so any CPU other than the master 1843 * must keep out. 1844 */ 1845 if (CPU->cpu_id != panic_cpu.cpu_id) 1846 return; 1847 1848 /* 1849 * If we're panicking, the deadman cyclic continues to increase 1850 * lbolt in case the dump device driver relies on this for 1851 * timeouts. Note that we rely on deadman() being invoked once 1852 * per second, and credit lbolt and lbolt64 with hz ticks each. 1853 */ 1854 lbolt += hz; 1855 lbolt64 += hz; 1856 1857 #ifdef __sparc 1858 watchdog_pat(); 1859 #endif 1860 1861 if (!deadman_panic_timers) 1862 return; /* allow all timers to be manually disabled */ 1863 1864 /* 1865 * If we are generating a crash dump or syncing filesystems and 1866 * the corresponding timer is set, decrement it and re-enter 1867 * the panic code to abort it and advance to the next state. 1868 * The panic states and triggers are explained in panic.c. 1869 */ 1870 if (panic_dump) { 1871 if (dump_timeleft && (--dump_timeleft == 0)) { 1872 panic("panic dump timeout"); 1873 /*NOTREACHED*/ 1874 } 1875 } else if (panic_sync) { 1876 if (sync_timeleft && (--sync_timeleft == 0)) { 1877 panic("panic sync timeout"); 1878 /*NOTREACHED*/ 1879 } 1880 } 1881 1882 return; 1883 } 1884 1885 if (lbolt != CPU->cpu_deadman_lbolt) { 1886 CPU->cpu_deadman_lbolt = lbolt; 1887 CPU->cpu_deadman_countdown = deadman_seconds; 1888 return; 1889 } 1890 1891 if (CPU->cpu_deadman_countdown-- > 0) 1892 return; 1893 1894 /* 1895 * Regardless of whether or not we actually bring the system down, 1896 * bump the deadman_panics variable. 1897 * 1898 * N.B. deadman_panics is incremented once for each CPU that 1899 * passes through here. It's expected that all the CPUs will 1900 * detect this condition within one second of each other, so 1901 * when deadman_enabled is off, deadman_panics will 1902 * typically be a multiple of the total number of CPUs in 1903 * the system. 1904 */ 1905 atomic_add_32(&deadman_panics, 1); 1906 1907 if (!deadman_enabled) { 1908 CPU->cpu_deadman_countdown = deadman_seconds; 1909 return; 1910 } 1911 1912 /* 1913 * If we're here, we want to bring the system down. 1914 */ 1915 panic("deadman: timed out after %d seconds of clock " 1916 "inactivity", deadman_seconds); 1917 /*NOTREACHED*/ 1918 } 1919 1920 /*ARGSUSED*/ 1921 static void 1922 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1923 { 1924 cpu->cpu_deadman_lbolt = 0; 1925 cpu->cpu_deadman_countdown = deadman_seconds; 1926 1927 hdlr->cyh_func = (cyc_func_t)deadman; 1928 hdlr->cyh_level = CY_HIGH_LEVEL; 1929 hdlr->cyh_arg = NULL; 1930 1931 /* 1932 * Stagger the CPUs so that they don't all run deadman() at 1933 * the same time. Simplest reason to do this is to make it 1934 * more likely that only one CPU will panic in case of a 1935 * timeout. This is (strictly speaking) an aesthetic, not a 1936 * technical consideration. 1937 * 1938 * The interval must be one second in accordance with the 1939 * code in deadman() above to increase lbolt during panic. 1940 */ 1941 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1942 when->cyt_interval = NANOSEC; 1943 } 1944 1945 1946 void 1947 deadman_init(void) 1948 { 1949 cyc_omni_handler_t hdlr; 1950 1951 if (deadman_seconds == 0) 1952 deadman_seconds = snoop_interval / MICROSEC; 1953 1954 if (snooping) 1955 deadman_enabled = 1; 1956 1957 hdlr.cyo_online = deadman_online; 1958 hdlr.cyo_offline = NULL; 1959 hdlr.cyo_arg = NULL; 1960 1961 mutex_enter(&cpu_lock); 1962 deadman_cyclic = cyclic_add_omni(&hdlr); 1963 mutex_exit(&cpu_lock); 1964 } 1965 1966 /* 1967 * tod_fault() is for updating tod validate mechanism state: 1968 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1969 * currently used for debugging only 1970 * (2) The following four cases detected by tod validate mechanism: 1971 * TOD_REVERSED: current tod value is less than previous value. 1972 * TOD_STALLED: current tod value hasn't advanced. 1973 * TOD_JUMPED: current tod value advanced too far from previous value. 1974 * TOD_RATECHANGED: the ratio between average tod delta and 1975 * average tick delta has changed. 1976 */ 1977 enum tod_fault_type 1978 tod_fault(enum tod_fault_type ftype, int off) 1979 { 1980 ASSERT(MUTEX_HELD(&tod_lock)); 1981 1982 if (tod_faulted != ftype) { 1983 switch (ftype) { 1984 case TOD_NOFAULT: 1985 plat_tod_fault(TOD_NOFAULT); 1986 cmn_err(CE_NOTE, "Restarted tracking " 1987 "Time of Day clock."); 1988 tod_faulted = ftype; 1989 break; 1990 case TOD_REVERSED: 1991 case TOD_JUMPED: 1992 if (tod_faulted == TOD_NOFAULT) { 1993 plat_tod_fault(ftype); 1994 cmn_err(CE_WARN, "Time of Day clock error: " 1995 "reason [%s by 0x%x]. -- " 1996 " Stopped tracking Time Of Day clock.", 1997 tod_fault_table[ftype], off); 1998 tod_faulted = ftype; 1999 } 2000 break; 2001 case TOD_STALLED: 2002 case TOD_RATECHANGED: 2003 if (tod_faulted == TOD_NOFAULT) { 2004 plat_tod_fault(ftype); 2005 cmn_err(CE_WARN, "Time of Day clock error: " 2006 "reason [%s]. -- " 2007 " Stopped tracking Time Of Day clock.", 2008 tod_fault_table[ftype]); 2009 tod_faulted = ftype; 2010 } 2011 break; 2012 default: 2013 break; 2014 } 2015 } 2016 return (tod_faulted); 2017 } 2018 2019 void 2020 tod_fault_reset() 2021 { 2022 tod_fault_reset_flag = 1; 2023 } 2024 2025 2026 /* 2027 * tod_validate() is used for checking values returned by tod_get(). 2028 * Four error cases can be detected by this routine: 2029 * TOD_REVERSED: current tod value is less than previous. 2030 * TOD_STALLED: current tod value hasn't advanced. 2031 * TOD_JUMPED: current tod value advanced too far from previous value. 2032 * TOD_RATECHANGED: the ratio between average tod delta and 2033 * average tick delta has changed. 2034 */ 2035 time_t 2036 tod_validate(time_t tod) 2037 { 2038 time_t diff_tod; 2039 hrtime_t diff_tick; 2040 2041 long dtick; 2042 int dtick_delta; 2043 2044 int off = 0; 2045 enum tod_fault_type tod_bad = TOD_NOFAULT; 2046 2047 static int firsttime = 1; 2048 2049 static time_t prev_tod = 0; 2050 static hrtime_t prev_tick = 0; 2051 static long dtick_avg = TOD_REF_FREQ; 2052 2053 hrtime_t tick = gethrtime(); 2054 2055 ASSERT(MUTEX_HELD(&tod_lock)); 2056 2057 /* 2058 * tod_validate_enable is patchable via /etc/system. 2059 * If TOD is already faulted, or if TOD validation is deferred, 2060 * there is nothing to do. 2061 */ 2062 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2063 tod_validate_deferred) { 2064 return (tod); 2065 } 2066 2067 /* 2068 * Update prev_tod and prev_tick values for first run 2069 */ 2070 if (firsttime) { 2071 firsttime = 0; 2072 prev_tod = tod; 2073 prev_tick = tick; 2074 return (tod); 2075 } 2076 2077 /* 2078 * For either of these conditions, we need to reset ourself 2079 * and start validation from zero since each condition 2080 * indicates that the TOD will be updated with new value 2081 * Also, note that tod_needsync will be reset in clock() 2082 */ 2083 if (tod_needsync || tod_fault_reset_flag) { 2084 firsttime = 1; 2085 prev_tod = 0; 2086 prev_tick = 0; 2087 dtick_avg = TOD_REF_FREQ; 2088 2089 if (tod_fault_reset_flag) 2090 tod_fault_reset_flag = 0; 2091 2092 return (tod); 2093 } 2094 2095 /* test hook */ 2096 switch (tod_unit_test) { 2097 case 1: /* for testing jumping tod */ 2098 tod += tod_test_injector; 2099 tod_unit_test = 0; 2100 break; 2101 case 2: /* for testing stuck tod bit */ 2102 tod |= 1 << tod_test_injector; 2103 tod_unit_test = 0; 2104 break; 2105 case 3: /* for testing stalled tod */ 2106 tod = prev_tod; 2107 tod_unit_test = 0; 2108 break; 2109 case 4: /* reset tod fault status */ 2110 (void) tod_fault(TOD_NOFAULT, 0); 2111 tod_unit_test = 0; 2112 break; 2113 default: 2114 break; 2115 } 2116 2117 diff_tod = tod - prev_tod; 2118 diff_tick = tick - prev_tick; 2119 2120 ASSERT(diff_tick >= 0); 2121 2122 if (diff_tod < 0) { 2123 /* ERROR - tod reversed */ 2124 tod_bad = TOD_REVERSED; 2125 off = (int)(prev_tod - tod); 2126 } else if (diff_tod == 0) { 2127 /* tod did not advance */ 2128 if (diff_tick > TOD_STALL_THRESHOLD) { 2129 /* ERROR - tod stalled */ 2130 tod_bad = TOD_STALLED; 2131 } else { 2132 /* 2133 * Make sure we don't update prev_tick 2134 * so that diff_tick is calculated since 2135 * the first diff_tod == 0 2136 */ 2137 return (tod); 2138 } 2139 } else { 2140 /* calculate dtick */ 2141 dtick = diff_tick / diff_tod; 2142 2143 /* update dtick averages */ 2144 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2145 2146 /* 2147 * Calculate dtick_delta as 2148 * variation from reference freq in quartiles 2149 */ 2150 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2151 (TOD_REF_FREQ >> 2); 2152 2153 /* 2154 * Even with a perfectly functioning TOD device, 2155 * when the number of elapsed seconds is low the 2156 * algorithm can calculate a rate that is beyond 2157 * tolerance, causing an error. The algorithm is 2158 * inaccurate when elapsed time is low (less than 2159 * 5 seconds). 2160 */ 2161 if (diff_tod > 4) { 2162 if (dtick < TOD_JUMP_THRESHOLD) { 2163 /* ERROR - tod jumped */ 2164 tod_bad = TOD_JUMPED; 2165 off = (int)diff_tod; 2166 } else if (dtick_delta) { 2167 /* ERROR - change in clock rate */ 2168 tod_bad = TOD_RATECHANGED; 2169 } 2170 } 2171 } 2172 2173 if (tod_bad != TOD_NOFAULT) { 2174 (void) tod_fault(tod_bad, off); 2175 2176 /* 2177 * Disable dosynctodr since we are going to fault 2178 * the TOD chip anyway here 2179 */ 2180 dosynctodr = 0; 2181 2182 /* 2183 * Set tod to the correct value from hrestime 2184 */ 2185 tod = hrestime.tv_sec; 2186 } 2187 2188 prev_tod = tod; 2189 prev_tick = tick; 2190 return (tod); 2191 } 2192 2193 static void 2194 calcloadavg(int nrun, uint64_t *hp_ave) 2195 { 2196 static int64_t f[3] = { 135, 27, 9 }; 2197 uint_t i; 2198 int64_t q, r; 2199 2200 /* 2201 * Compute load average over the last 1, 5, and 15 minutes 2202 * (60, 300, and 900 seconds). The constants in f[3] are for 2203 * exponential decay: 2204 * (1 - exp(-1/60)) << 13 = 135, 2205 * (1 - exp(-1/300)) << 13 = 27, 2206 * (1 - exp(-1/900)) << 13 = 9. 2207 */ 2208 2209 /* 2210 * a little hoop-jumping to avoid integer overflow 2211 */ 2212 for (i = 0; i < 3; i++) { 2213 q = (hp_ave[i] >> 16) << 7; 2214 r = (hp_ave[i] & 0xffff) << 7; 2215 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2216 } 2217 } 2218