1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Support for determining capacity and utilization of performance relevant 28 * hardware components in a computer 29 * 30 * THEORY 31 * ------ 32 * The capacity and utilization of the performance relevant hardware components 33 * is needed to be able to optimize performance while minimizing the amount of 34 * power used on a system. The idea is to use hardware performance counters 35 * and potentially other means to determine the capacity and utilization of 36 * performance relevant hardware components (eg. execution pipeline, cache, 37 * memory, etc.) and attribute the utilization to the responsible CPU and the 38 * thread running there. 39 * 40 * This will help characterize the utilization of performance relevant 41 * components and how much is used by each CPU and each thread. With 42 * that data, the utilization can be aggregated to all the CPUs sharing each 43 * performance relevant hardware component to calculate the total utilization 44 * of each component and compare that with the component's capacity to 45 * essentially determine the actual hardware load of the component. The 46 * hardware utilization attributed to each running thread can also be 47 * aggregated to determine the total hardware utilization of each component to 48 * a workload. 49 * 50 * Once that is done, one can determine how much of each performance relevant 51 * hardware component is needed by a given thread or set of threads (eg. a 52 * workload) and size up exactly what hardware is needed by the threads and how 53 * much. With this info, we can better place threads among CPUs to match their 54 * exact hardware resource needs and potentially lower or raise the power based 55 * on their utilization or pack threads onto the fewest hardware components 56 * needed and power off any remaining unused components to minimize power 57 * without sacrificing performance. 58 * 59 * IMPLEMENTATION 60 * -------------- 61 * The code has been designed and implemented to make (un)programming and 62 * reading the counters for a given CPU as lightweight and fast as possible. 63 * This is very important because we need to read and potentially (un)program 64 * the counters very often and in performance sensitive code. Specifically, 65 * the counters may need to be (un)programmed during context switch and/or a 66 * cyclic handler when there are more counter events to count than existing 67 * counters. 68 * 69 * Consequently, the code has been split up to allow allocating and 70 * initializing everything needed to program and read the counters on a given 71 * CPU once and make (un)programming and reading the counters for a given CPU 72 * not have to allocate/free memory or grab any locks. To do this, all the 73 * state needed to (un)program and read the counters on a CPU is kept per CPU 74 * and is made lock free by forcing any code that reads or manipulates the 75 * counters or the state needed to (un)program or read the counters to run on 76 * the target CPU and disable preemption while running on the target CPU to 77 * protect any critical sections. All counter manipulation on the target CPU is 78 * happening either from a cross-call to the target CPU or at the same PIL as 79 * used by the cross-call subsystem. This guarantees that counter manipulation 80 * is not interrupted by cross-calls from other CPUs. 81 * 82 * The synchronization has been made lock free or as simple as possible for 83 * performance and to avoid getting the locking all tangled up when we interpose 84 * on the CPC routines that (un)program the counters to manage the counters 85 * between the kernel and user on each CPU. When the user starts using the 86 * counters on a given CPU, the kernel will unprogram the counters that it is 87 * using on that CPU just before they are programmed for the user. Then the 88 * kernel will program the counters on a given CPU for its own use when the user 89 * stops using them. 90 * 91 * There is a special interaction with DTrace cpc provider (dcpc). Before dcpc 92 * enables any probe, it requests to disable and unprogram all counters used for 93 * capacity and utilizations. These counters are never re-programmed back until 94 * dcpc completes. When all DTrace cpc probes are removed, dcpc notifies CU 95 * framework and it re-programs the counters. 96 * 97 * When a CPU is going offline, its CU counters are unprogrammed and disabled, 98 * so that they would not be re-programmed again by some other activity on the 99 * CPU that is going offline. 100 * 101 * The counters are programmed during boot. However, a flag is available to 102 * disable this if necessary (see cu_flag below). A handler is provided to 103 * (un)program the counters during CPU on/offline. Basic routines are provided 104 * to initialize and tear down this module, initialize and tear down any state 105 * needed for a given CPU, and (un)program the counters for a given CPU. 106 * Lastly, a handler is provided to read the counters and attribute the 107 * utilization to the responsible CPU. 108 */ 109 #include <sys/types.h> 110 #include <sys/cmn_err.h> 111 #include <sys/cpuvar.h> 112 #include <sys/ddi.h> 113 #include <sys/systm.h> 114 #include <sys/disp.h> 115 #include <sys/sdt.h> 116 #include <sys/sunddi.h> 117 #include <sys/thread.h> 118 #include <sys/pghw.h> 119 #include <sys/cmt.h> 120 #include <sys/policy.h> 121 #include <sys/x_call.h> 122 #include <sys/cap_util.h> 123 124 #include <sys/archsystm.h> 125 #include <sys/promif.h> 126 127 #if defined(__x86) 128 #include <sys/xc_levels.h> 129 #endif 130 131 132 /* 133 * Default CPU hardware performance counter flags to use for measuring capacity 134 * and utilization 135 */ 136 #define CU_CPC_FLAGS_DEFAULT \ 137 (CPC_COUNT_USER|CPC_COUNT_SYSTEM|CPC_OVF_NOTIFY_EMT) 138 139 /* 140 * Possible Flags for controlling this module. 141 */ 142 #define CU_FLAG_ENABLE 1 /* Enable module */ 143 #define CU_FLAG_READY 2 /* Ready to setup module */ 144 #define CU_FLAG_ON 4 /* Module is on */ 145 146 /* 147 * pg_cpu kstats calculate utilization rate and maximum utilization rate for 148 * some CPUs. The rate is calculated based on data from two subsequent 149 * snapshots. When the time between such two snapshots is too small, the 150 * resulting rate may have low accuracy, so we only consider snapshots which 151 * are separated by SAMPLE_INTERVAL nanoseconds from one another. We do not 152 * update the rate if the interval is smaller than that. 153 * 154 * Use one tenth of a second as the minimum interval for utilization rate 155 * calculation. 156 * 157 * NOTE: The CU_SAMPLE_INTERVAL_MIN should be higher than the scaling factor in 158 * the CU_RATE() macro below to guarantee that we never divide by zero. 159 * 160 * Rate is the number of events per second. The rate is the number of events 161 * divided by time and multiplied by the number of nanoseconds in a second. We 162 * do not want time to be too small since it will cause large errors in 163 * division. 164 * 165 * We do not want to multiply two large numbers (the instruction count and 166 * NANOSEC) either since it may cause integer overflow. So we divide both the 167 * numerator and the denominator by the same value. 168 * 169 * NOTE: The scaling factor below should be less than CU_SAMPLE_INTERVAL_MIN 170 * above to guarantee that time divided by this value is always non-zero. 171 */ 172 #define CU_RATE(val, time) \ 173 (((val) * (NANOSEC / CU_SCALE)) / ((time) / CU_SCALE)) 174 175 #define CU_SAMPLE_INTERVAL_MIN (NANOSEC / 10) 176 177 #define CU_SCALE (CU_SAMPLE_INTERVAL_MIN / 10000) 178 179 /* 180 * When the time between two kstat reads for the same CPU is less than 181 * CU_UPDATE_THRESHOLD use the old counter data and skip updating counter values 182 * for the CPU. This helps reduce cross-calls when kstat consumers read data 183 * very often or when they read PG utilization data and then CPU utilization 184 * data quickly after that. 185 */ 186 #define CU_UPDATE_THRESHOLD (NANOSEC / 10) 187 188 /* 189 * The IS_HIPIL() macro verifies that the code is executed either from a 190 * cross-call or from high-PIL interrupt 191 */ 192 #ifdef DEBUG 193 #define IS_HIPIL() (getpil() >= XCALL_PIL) 194 #else 195 #define IS_HIPIL() 196 #endif /* DEBUG */ 197 198 199 typedef void (*cu_cpu_func_t)(uintptr_t, int *); 200 201 202 /* 203 * Flags to use for programming CPU hardware performance counters to measure 204 * capacity and utilization 205 */ 206 int cu_cpc_flags = CU_CPC_FLAGS_DEFAULT; 207 208 /* 209 * Initial value used for programming hardware counters 210 */ 211 uint64_t cu_cpc_preset_value = 0; 212 213 /* 214 * List of CPC event requests for capacity and utilization. 215 */ 216 static kcpc_request_list_t *cu_cpc_reqs = NULL; 217 218 /* 219 * When a CPU is a member of PG with a sharing relationship that is supported 220 * by the capacity/utilization framework, a kstat is created for that CPU and 221 * sharing relationship. 222 * 223 * These kstats are updated one at a time, so we can have a single scratch 224 * space to fill the data. 225 * 226 * CPU counter kstats fields: 227 * 228 * cu_cpu_id CPU ID for this kstat 229 * 230 * cu_pg_id PG ID for this kstat 231 * 232 * cu_generation Generation value that increases whenever any CPU goes 233 * offline or online. Two kstat snapshots for the same 234 * CPU may only be compared if they have the same 235 * generation. 236 * 237 * cu_pg_id PG ID for the relationship described by this kstat 238 * 239 * cu_cpu_util Running value of CPU utilization for the sharing 240 * relationship 241 * 242 * cu_cpu_time_running Total time spent collecting CU data. The time may be 243 * less than wall time if CU counters were stopped for 244 * some time. 245 * 246 * cu_cpu_time_stopped Total time the CU counters were stopped. 247 * 248 * cu_cpu_rate Utilization rate, expressed in operations per second. 249 * 250 * cu_cpu_rate_max Maximum observed value of utilization rate. 251 * 252 * cu_cpu_relationship Name of sharing relationship for the PG in this kstat 253 */ 254 struct cu_cpu_kstat { 255 kstat_named_t cu_cpu_id; 256 kstat_named_t cu_pg_id; 257 kstat_named_t cu_generation; 258 kstat_named_t cu_cpu_util; 259 kstat_named_t cu_cpu_time_running; 260 kstat_named_t cu_cpu_time_stopped; 261 kstat_named_t cu_cpu_rate; 262 kstat_named_t cu_cpu_rate_max; 263 kstat_named_t cu_cpu_relationship; 264 } cu_cpu_kstat = { 265 { "cpu_id", KSTAT_DATA_UINT32 }, 266 { "pg_id", KSTAT_DATA_INT32 }, 267 { "generation", KSTAT_DATA_UINT32 }, 268 { "hw_util", KSTAT_DATA_UINT64 }, 269 { "hw_util_time_running", KSTAT_DATA_UINT64 }, 270 { "hw_util_time_stopped", KSTAT_DATA_UINT64 }, 271 { "hw_util_rate", KSTAT_DATA_UINT64 }, 272 { "hw_util_rate_max", KSTAT_DATA_UINT64 }, 273 { "relationship", KSTAT_DATA_STRING }, 274 }; 275 276 /* 277 * Flags for controlling this module 278 */ 279 uint_t cu_flags = CU_FLAG_ENABLE; 280 281 /* 282 * Error return value for cu_init() since it can't return anything to be called 283 * from mp_init_tbl[] (:-( 284 */ 285 static int cu_init_error = 0; 286 287 hrtime_t cu_sample_interval_min = CU_SAMPLE_INTERVAL_MIN; 288 289 hrtime_t cu_update_threshold = CU_UPDATE_THRESHOLD; 290 291 static kmutex_t pg_cpu_kstat_lock; 292 293 294 /* 295 * Forward declaration of interface routines 296 */ 297 void cu_disable(void); 298 void cu_enable(void); 299 void cu_init(void); 300 void cu_cpc_program(cpu_t *cp, int *err); 301 void cu_cpc_unprogram(cpu_t *cp, int *err); 302 int cu_cpu_update(struct cpu *cp, boolean_t move_to); 303 void cu_pg_update(pghw_t *pg); 304 305 306 /* 307 * Forward declaration of private routines 308 */ 309 static int cu_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs); 310 static void cu_cpc_program_xcall(uintptr_t arg, int *err); 311 static int cu_cpc_req_add(char *event, kcpc_request_list_t *reqs, 312 int nreqs, cu_cntr_stats_t *stats, int kmem_flags, int *nevents); 313 static int cu_cpu_callback(cpu_setup_t what, int id, void *arg); 314 static void cu_cpu_disable(cpu_t *cp); 315 static void cu_cpu_enable(cpu_t *cp); 316 static int cu_cpu_init(cpu_t *cp, kcpc_request_list_t *reqs); 317 static int cu_cpu_fini(cpu_t *cp); 318 static void cu_cpu_kstat_create(pghw_t *pg, cu_cntr_info_t *cntr_info); 319 static int cu_cpu_kstat_update(kstat_t *ksp, int rw); 320 static int cu_cpu_run(cpu_t *cp, cu_cpu_func_t func, uintptr_t arg); 321 static int cu_cpu_update_stats(cu_cntr_stats_t *stats, 322 uint64_t cntr_value); 323 static void cu_cpu_info_detach_xcall(void); 324 325 /* 326 * Disable or enable Capacity Utilization counters on all CPUs. 327 */ 328 void 329 cu_disable(void) 330 { 331 cpu_t *cp; 332 333 ASSERT(MUTEX_HELD(&cpu_lock)); 334 335 cp = cpu_active; 336 do { 337 if (!(cp->cpu_flags & CPU_OFFLINE)) 338 cu_cpu_disable(cp); 339 } while ((cp = cp->cpu_next_onln) != cpu_active); 340 } 341 342 343 void 344 cu_enable(void) 345 { 346 cpu_t *cp; 347 348 ASSERT(MUTEX_HELD(&cpu_lock)); 349 350 cp = cpu_active; 351 do { 352 if (!(cp->cpu_flags & CPU_OFFLINE)) 353 cu_cpu_enable(cp); 354 } while ((cp = cp->cpu_next_onln) != cpu_active); 355 } 356 357 358 /* 359 * Setup capacity and utilization support 360 */ 361 void 362 cu_init(void) 363 { 364 cpu_t *cp; 365 366 cu_init_error = 0; 367 if (!(cu_flags & CU_FLAG_ENABLE) || (cu_flags & CU_FLAG_ON)) { 368 cu_init_error = -1; 369 return; 370 } 371 372 if (kcpc_init() != 0) { 373 cu_init_error = -2; 374 return; 375 } 376 377 /* 378 * Can't measure hardware capacity and utilization without CPU 379 * hardware performance counters 380 */ 381 if (cpc_ncounters <= 0) { 382 cu_init_error = -3; 383 return; 384 } 385 386 /* 387 * Setup CPC event request queue 388 */ 389 cu_cpc_reqs = kcpc_reqs_init(cpc_ncounters, KM_SLEEP); 390 391 mutex_enter(&cpu_lock); 392 393 /* 394 * Mark flags to say that module is ready to be setup 395 */ 396 cu_flags |= CU_FLAG_READY; 397 398 cp = cpu_active; 399 do { 400 /* 401 * Allocate and setup state needed to measure capacity and 402 * utilization 403 */ 404 if (cu_cpu_init(cp, cu_cpc_reqs) != 0) 405 cu_init_error = -5; 406 407 /* 408 * Reset list of counter event requests so its space can be 409 * reused for a different set of requests for next CPU 410 */ 411 (void) kcpc_reqs_reset(cu_cpc_reqs); 412 413 cp = cp->cpu_next_onln; 414 } while (cp != cpu_active); 415 416 /* 417 * Mark flags to say that module is on now and counters are ready to be 418 * programmed on all active CPUs 419 */ 420 cu_flags |= CU_FLAG_ON; 421 422 /* 423 * Program counters on currently active CPUs 424 */ 425 cp = cpu_active; 426 do { 427 if (cu_cpu_run(cp, cu_cpc_program_xcall, 428 (uintptr_t)B_FALSE) != 0) 429 cu_init_error = -6; 430 431 cp = cp->cpu_next_onln; 432 } while (cp != cpu_active); 433 434 /* 435 * Register callback for CPU state changes to enable and disable 436 * CPC counters as CPUs come on and offline 437 */ 438 register_cpu_setup_func(cu_cpu_callback, NULL); 439 440 mutex_exit(&cpu_lock); 441 } 442 443 444 /* 445 * Return number of counter events needed to measure capacity and utilization 446 * for specified CPU and fill in list of CPC requests with each counter event 447 * needed if list where to add CPC requests is given 448 * 449 * NOTE: Use KM_NOSLEEP for kmem_{,z}alloc() since cpu_lock is held and free 450 * everything that has been successfully allocated if any memory 451 * allocation fails 452 */ 453 static int 454 cu_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs) 455 { 456 group_t *cmt_pgs; 457 cu_cntr_info_t **cntr_info_array; 458 cpu_pg_t *cpu_pgs; 459 cu_cpu_info_t *cu_cpu_info; 460 pg_cmt_t *pg_cmt; 461 pghw_t *pg_hw; 462 cu_cntr_stats_t *stats; 463 int nevents; 464 pghw_type_t pg_hw_type; 465 group_iter_t iter; 466 467 ASSERT(MUTEX_HELD(&cpu_lock)); 468 469 /* 470 * There has to be a target CPU for this 471 */ 472 if (cp == NULL) 473 return (-1); 474 475 /* 476 * Return 0 when CPU doesn't belong to any group 477 */ 478 cpu_pgs = cp->cpu_pg; 479 if (cpu_pgs == NULL || GROUP_SIZE(&cpu_pgs->cmt_pgs) < 1) 480 return (0); 481 482 cmt_pgs = &cpu_pgs->cmt_pgs; 483 cu_cpu_info = cp->cpu_cu_info; 484 485 /* 486 * Grab counter statistics and info 487 */ 488 if (reqs == NULL) { 489 stats = NULL; 490 cntr_info_array = NULL; 491 } else { 492 if (cu_cpu_info == NULL || cu_cpu_info->cu_cntr_stats == NULL) 493 return (-2); 494 495 stats = cu_cpu_info->cu_cntr_stats; 496 cntr_info_array = cu_cpu_info->cu_cntr_info; 497 } 498 499 /* 500 * See whether platform (or processor) specific code knows which CPC 501 * events to request, etc. are needed to measure hardware capacity and 502 * utilization on this machine 503 */ 504 nevents = cu_plat_cpc_init(cp, reqs, nreqs); 505 if (nevents >= 0) 506 return (nevents); 507 508 /* 509 * Let common code decide which CPC events to request, etc. to measure 510 * capacity and utilization since platform (or processor) specific does 511 * not know.... 512 * 513 * Walk CPU's PG lineage and do following: 514 * 515 * - Setup CPC request, counter info, and stats needed for each counter 516 * event to measure capacity and and utilization for each of CPU's PG 517 * hardware sharing relationships 518 * 519 * - Create PG CPU kstats to export capacity and utilization for each PG 520 */ 521 nevents = 0; 522 group_iter_init(&iter); 523 while ((pg_cmt = group_iterate(cmt_pgs, &iter)) != NULL) { 524 cu_cntr_info_t *cntr_info; 525 int nevents_save; 526 int nstats; 527 528 pg_hw = (pghw_t *)pg_cmt; 529 pg_hw_type = pg_hw->pghw_hw; 530 nevents_save = nevents; 531 nstats = 0; 532 533 switch (pg_hw_type) { 534 case PGHW_IPIPE: 535 if (cu_cpc_req_add("PAPI_tot_ins", reqs, nreqs, stats, 536 KM_NOSLEEP, &nevents) != 0) 537 continue; 538 nstats = 1; 539 break; 540 541 case PGHW_FPU: 542 if (cu_cpc_req_add("PAPI_fp_ins", reqs, nreqs, stats, 543 KM_NOSLEEP, &nevents) != 0) 544 continue; 545 nstats = 1; 546 break; 547 548 default: 549 /* 550 * Don't measure capacity and utilization for this kind 551 * of PG hardware relationship so skip to next PG in 552 * CPU's PG lineage 553 */ 554 continue; 555 } 556 557 cntr_info = cntr_info_array[pg_hw_type]; 558 559 /* 560 * Nothing to measure for this hardware sharing relationship 561 */ 562 if (nevents - nevents_save == 0) { 563 if (cntr_info != NULL) 564 kmem_free(cntr_info, sizeof (cu_cntr_info_t)); 565 cntr_info_array[pg_hw_type] = NULL; 566 continue; 567 } 568 569 /* 570 * Fill in counter info for this PG hardware relationship 571 */ 572 if (cntr_info == NULL) { 573 cntr_info = kmem_zalloc(sizeof (cu_cntr_info_t), 574 KM_NOSLEEP); 575 if (cntr_info == NULL) 576 continue; 577 cntr_info_array[pg_hw_type] = cntr_info; 578 } 579 cntr_info->ci_cpu = cp; 580 cntr_info->ci_pg = pg_hw; 581 cntr_info->ci_stats = &stats[nevents_save]; 582 cntr_info->ci_nstats = nstats; 583 584 /* 585 * Create PG CPU kstats for this hardware relationship 586 */ 587 cu_cpu_kstat_create(pg_hw, cntr_info); 588 } 589 590 return (nevents); 591 } 592 593 594 /* 595 * Program counters for capacity and utilization on given CPU 596 * 597 * If any of the following conditions is true, the counters are not programmed: 598 * 599 * - CU framework is disabled 600 * - The cpu_cu_info field of the cpu structure is NULL 601 * - DTrace is active 602 * - Counters are programmed already 603 * - Counters are disabled (by calls to cu_cpu_disable()) 604 */ 605 void 606 cu_cpc_program(cpu_t *cp, int *err) 607 { 608 cu_cpc_ctx_t *cpu_ctx; 609 kcpc_ctx_t *ctx; 610 cu_cpu_info_t *cu_cpu_info; 611 612 ASSERT(IS_HIPIL()); 613 /* 614 * Should be running on given CPU. We disable preemption to keep CPU 615 * from disappearing and make sure flags and CPC context don't change 616 * from underneath us 617 */ 618 kpreempt_disable(); 619 ASSERT(cp == CPU); 620 621 /* 622 * Module not ready to program counters 623 */ 624 if (!(cu_flags & CU_FLAG_ON)) { 625 *err = -1; 626 kpreempt_enable(); 627 return; 628 } 629 630 if (cp == NULL) { 631 *err = -2; 632 kpreempt_enable(); 633 return; 634 } 635 636 cu_cpu_info = cp->cpu_cu_info; 637 if (cu_cpu_info == NULL) { 638 *err = -3; 639 kpreempt_enable(); 640 return; 641 } 642 643 /* 644 * If DTrace CPC is active or counters turned on already or are 645 * disabled, just return. 646 */ 647 if (dtrace_cpc_in_use || (cu_cpu_info->cu_flag & CU_CPU_CNTRS_ON) || 648 cu_cpu_info->cu_disabled) { 649 *err = 1; 650 kpreempt_enable(); 651 return; 652 } 653 654 if ((CPU->cpu_cpc_ctx != NULL) && 655 !(CPU->cpu_cpc_ctx->kc_flags & KCPC_CTX_INVALID_STOPPED)) { 656 *err = -4; 657 kpreempt_enable(); 658 return; 659 } 660 661 /* 662 * Get CPU's CPC context needed for capacity and utilization 663 */ 664 cpu_ctx = &cu_cpu_info->cu_cpc_ctx; 665 ASSERT(cpu_ctx != NULL); 666 ASSERT(cpu_ctx->nctx >= 0); 667 668 ASSERT(cpu_ctx->ctx_ptr_array == NULL || cpu_ctx->ctx_ptr_array_sz > 0); 669 ASSERT(cpu_ctx->nctx <= cpu_ctx->ctx_ptr_array_sz); 670 if (cpu_ctx->nctx <= 0 || cpu_ctx->ctx_ptr_array == NULL || 671 cpu_ctx->ctx_ptr_array_sz <= 0) { 672 *err = -5; 673 kpreempt_enable(); 674 return; 675 } 676 677 /* 678 * Increment index in CPU's CPC context info to point at next context 679 * to program 680 * 681 * NOTE: Do this now instead of after programming counters to ensure 682 * that index will always point at *current* context so we will 683 * always be able to unprogram *current* context if necessary 684 */ 685 cpu_ctx->cur_index = (cpu_ctx->cur_index + 1) % cpu_ctx->nctx; 686 687 ctx = cpu_ctx->ctx_ptr_array[cpu_ctx->cur_index]; 688 689 /* 690 * Clear KCPC_CTX_INVALID and KCPC_CTX_INVALID_STOPPED from CPU's CPC 691 * context before programming counters 692 * 693 * Context is marked with KCPC_CTX_INVALID_STOPPED when context is 694 * unprogrammed and may be marked with KCPC_CTX_INVALID when 695 * kcpc_invalidate_all() is called by cpustat(1M) and dtrace CPC to 696 * invalidate all CPC contexts before they take over all the counters. 697 * 698 * This isn't necessary since these flags are only used for thread bound 699 * CPC contexts not CPU bound CPC contexts like ones used for capacity 700 * and utilization. 701 * 702 * There is no need to protect the flag update since no one is using 703 * this context now. 704 */ 705 ctx->kc_flags &= ~(KCPC_CTX_INVALID | KCPC_CTX_INVALID_STOPPED); 706 707 /* 708 * Program counters on this CPU 709 */ 710 kcpc_program(ctx, B_FALSE, B_FALSE); 711 712 cp->cpu_cpc_ctx = ctx; 713 714 /* 715 * Set state in CPU structure to say that CPU's counters are programmed 716 * for capacity and utilization now and that they are transitioning from 717 * off to on state. This will cause cu_cpu_update to update stop times 718 * for all programmed counters. 719 */ 720 cu_cpu_info->cu_flag |= CU_CPU_CNTRS_ON | CU_CPU_CNTRS_OFF_ON; 721 722 /* 723 * Update counter statistics 724 */ 725 (void) cu_cpu_update(cp, B_FALSE); 726 727 cu_cpu_info->cu_flag &= ~CU_CPU_CNTRS_OFF_ON; 728 729 *err = 0; 730 kpreempt_enable(); 731 } 732 733 734 /* 735 * Cross call wrapper routine for cu_cpc_program() 736 * 737 * Checks to make sure that counters on CPU aren't being used by someone else 738 * before calling cu_cpc_program() since cu_cpc_program() needs to assert that 739 * nobody else is using the counters to catch and prevent any broken code. 740 * Also, this check needs to happen on the target CPU since the CPU's CPC 741 * context can only be changed while running on the CPU. 742 * 743 * If the first argument is TRUE, cu_cpc_program_xcall also checks that there is 744 * no valid thread bound cpc context. This is important to check to prevent 745 * re-programming thread counters with CU counters when CPU is coming on-line. 746 */ 747 static void 748 cu_cpc_program_xcall(uintptr_t arg, int *err) 749 { 750 boolean_t avoid_thread_context = (boolean_t)arg; 751 752 kpreempt_disable(); 753 754 if (CPU->cpu_cpc_ctx != NULL && 755 !(CPU->cpu_cpc_ctx->kc_flags & KCPC_CTX_INVALID_STOPPED)) { 756 *err = -100; 757 kpreempt_enable(); 758 return; 759 } 760 761 if (avoid_thread_context && (curthread->t_cpc_ctx != NULL) && 762 !(curthread->t_cpc_ctx->kc_flags & KCPC_CTX_INVALID_STOPPED)) { 763 *err = -200; 764 kpreempt_enable(); 765 return; 766 } 767 768 cu_cpc_program(CPU, err); 769 kpreempt_enable(); 770 } 771 772 773 /* 774 * Unprogram counters for capacity and utilization on given CPU 775 * This function should be always executed on the target CPU at high PIL 776 */ 777 void 778 cu_cpc_unprogram(cpu_t *cp, int *err) 779 { 780 cu_cpc_ctx_t *cpu_ctx; 781 kcpc_ctx_t *ctx; 782 cu_cpu_info_t *cu_cpu_info; 783 784 ASSERT(IS_HIPIL()); 785 /* 786 * Should be running on given CPU with preemption disabled to keep CPU 787 * from disappearing and make sure flags and CPC context don't change 788 * from underneath us 789 */ 790 kpreempt_disable(); 791 ASSERT(cp == CPU); 792 793 /* 794 * Module not on 795 */ 796 if (!(cu_flags & CU_FLAG_ON)) { 797 *err = -1; 798 kpreempt_enable(); 799 return; 800 } 801 802 cu_cpu_info = cp->cpu_cu_info; 803 if (cu_cpu_info == NULL) { 804 *err = -3; 805 kpreempt_enable(); 806 return; 807 } 808 809 /* 810 * Counters turned off already 811 */ 812 if (!(cu_cpu_info->cu_flag & CU_CPU_CNTRS_ON)) { 813 *err = 1; 814 kpreempt_enable(); 815 return; 816 } 817 818 /* 819 * Update counter statistics 820 */ 821 (void) cu_cpu_update(cp, B_FALSE); 822 823 /* 824 * Get CPU's CPC context needed for capacity and utilization 825 */ 826 cpu_ctx = &cu_cpu_info->cu_cpc_ctx; 827 if (cpu_ctx->nctx <= 0 || cpu_ctx->ctx_ptr_array == NULL || 828 cpu_ctx->ctx_ptr_array_sz <= 0) { 829 *err = -5; 830 kpreempt_enable(); 831 return; 832 } 833 ctx = cpu_ctx->ctx_ptr_array[cpu_ctx->cur_index]; 834 835 /* 836 * CPU's CPC context should be current capacity and utilization CPC 837 * context 838 */ 839 ASSERT(cp->cpu_cpc_ctx == ctx); 840 if (cp->cpu_cpc_ctx != ctx) { 841 *err = -6; 842 kpreempt_enable(); 843 return; 844 } 845 846 /* 847 * Unprogram counters on CPU. 848 */ 849 kcpc_unprogram(ctx, B_FALSE); 850 851 ASSERT(ctx->kc_flags & KCPC_CTX_INVALID_STOPPED); 852 853 /* 854 * Unset state in CPU structure saying that CPU's counters are 855 * programmed 856 */ 857 cp->cpu_cpc_ctx = NULL; 858 cu_cpu_info->cu_flag &= ~CU_CPU_CNTRS_ON; 859 860 *err = 0; 861 kpreempt_enable(); 862 } 863 864 865 /* 866 * Add given counter event to list of CPC requests 867 */ 868 static int 869 cu_cpc_req_add(char *event, kcpc_request_list_t *reqs, int nreqs, 870 cu_cntr_stats_t *stats, int kmem_flags, int *nevents) 871 { 872 int n; 873 int retval; 874 uint_t flags; 875 876 /* 877 * Return error when no counter event specified, counter event not 878 * supported by CPC's PCBE, or number of events not given 879 */ 880 if (event == NULL || kcpc_event_supported(event) == B_FALSE || 881 nevents == NULL) 882 return (-1); 883 884 n = *nevents; 885 886 /* 887 * Only count number of counter events needed if list 888 * where to add CPC requests not given 889 */ 890 if (reqs == NULL) { 891 n++; 892 *nevents = n; 893 return (-3); 894 } 895 896 /* 897 * Return error when stats not given or not enough room on list of CPC 898 * requests for more counter events 899 */ 900 if (stats == NULL || (nreqs <= 0 && n >= nreqs)) 901 return (-4); 902 903 /* 904 * Use flags in cu_cpc_flags to program counters and enable overflow 905 * interrupts/traps (unless PCBE can't handle overflow interrupts) so 906 * PCBE can catch counters before they wrap to hopefully give us an 907 * accurate (64-bit) virtualized counter 908 */ 909 flags = cu_cpc_flags; 910 if ((kcpc_pcbe_capabilities() & CPC_CAP_OVERFLOW_INTERRUPT) == 0) 911 flags &= ~CPC_OVF_NOTIFY_EMT; 912 913 /* 914 * Add CPC request to list 915 */ 916 retval = kcpc_reqs_add(reqs, event, cu_cpc_preset_value, 917 flags, 0, NULL, &stats[n], kmem_flags); 918 919 if (retval != 0) 920 return (-5); 921 922 n++; 923 *nevents = n; 924 return (0); 925 } 926 927 static void 928 cu_cpu_info_detach_xcall(void) 929 { 930 ASSERT(IS_HIPIL()); 931 932 CPU->cpu_cu_info = NULL; 933 } 934 935 936 /* 937 * Enable or disable collection of capacity/utilization data for a current CPU. 938 * Counters are enabled if 'on' argument is True and disabled if it is False. 939 * This function should be always executed at high PIL 940 */ 941 static void 942 cu_cpc_trigger(uintptr_t arg1, uintptr_t arg2) 943 { 944 cpu_t *cp = (cpu_t *)arg1; 945 boolean_t on = (boolean_t)arg2; 946 int error; 947 cu_cpu_info_t *cu_cpu_info; 948 949 ASSERT(IS_HIPIL()); 950 kpreempt_disable(); 951 ASSERT(cp == CPU); 952 953 if (!(cu_flags & CU_FLAG_ON)) { 954 kpreempt_enable(); 955 return; 956 } 957 958 cu_cpu_info = cp->cpu_cu_info; 959 if (cu_cpu_info == NULL) { 960 kpreempt_enable(); 961 return; 962 } 963 964 ASSERT(!cu_cpu_info->cu_disabled || 965 !(cu_cpu_info->cu_flag & CU_CPU_CNTRS_ON)); 966 967 if (on) { 968 /* 969 * Decrement the cu_disabled counter. 970 * Once it drops to zero, call cu_cpc_program. 971 */ 972 if (cu_cpu_info->cu_disabled > 0) 973 cu_cpu_info->cu_disabled--; 974 if (cu_cpu_info->cu_disabled == 0) 975 cu_cpc_program(CPU, &error); 976 } else if (cu_cpu_info->cu_disabled++ == 0) { 977 /* 978 * This is the first attempt to disable CU, so turn it off 979 */ 980 cu_cpc_unprogram(cp, &error); 981 ASSERT(!(cu_cpu_info->cu_flag & CU_CPU_CNTRS_ON)); 982 } 983 984 kpreempt_enable(); 985 } 986 987 988 /* 989 * Callback for changes in CPU states 990 * Used to enable or disable hardware performance counters on CPUs that are 991 * turned on or off 992 * 993 * NOTE: cpc should be programmed/unprogrammed while running on the target CPU. 994 * We have to use thread_affinity_set to hop to the right CPU because these 995 * routines expect cpu_lock held, so we can't cross-call other CPUs while 996 * holding CPU lock. 997 */ 998 static int 999 /* LINTED E_FUNC_ARG_UNUSED */ 1000 cu_cpu_callback(cpu_setup_t what, int id, void *arg) 1001 { 1002 cpu_t *cp; 1003 int retval = 0; 1004 1005 ASSERT(MUTEX_HELD(&cpu_lock)); 1006 1007 if (!(cu_flags & CU_FLAG_ON)) 1008 return (-1); 1009 1010 cp = cpu_get(id); 1011 if (cp == NULL) 1012 return (-2); 1013 1014 switch (what) { 1015 case CPU_ON: 1016 /* 1017 * Setup counters on CPU being turned on 1018 */ 1019 retval = cu_cpu_init(cp, cu_cpc_reqs); 1020 1021 /* 1022 * Reset list of counter event requests so its space can be 1023 * reused for a different set of requests for next CPU 1024 */ 1025 (void) kcpc_reqs_reset(cu_cpc_reqs); 1026 break; 1027 case CPU_INTR_ON: 1028 /* 1029 * Setup counters on CPU being turned on. 1030 */ 1031 retval = cu_cpu_run(cp, cu_cpc_program_xcall, 1032 (uintptr_t)B_TRUE); 1033 break; 1034 case CPU_OFF: 1035 /* 1036 * Disable counters on CPU being turned off. Counters will not 1037 * be re-enabled on this CPU until it comes back online. 1038 */ 1039 cu_cpu_disable(cp); 1040 ASSERT(!CU_CPC_ON(cp)); 1041 retval = cu_cpu_fini(cp); 1042 break; 1043 default: 1044 break; 1045 } 1046 return (retval); 1047 } 1048 1049 1050 /* 1051 * Disable or enable Capacity Utilization counters on a given CPU. This function 1052 * can be called from any CPU to disable counters on the given CPU. 1053 */ 1054 static void 1055 cu_cpu_disable(cpu_t *cp) 1056 { 1057 cpu_call(cp, cu_cpc_trigger, (uintptr_t)cp, (uintptr_t)B_FALSE); 1058 } 1059 1060 1061 static void 1062 cu_cpu_enable(cpu_t *cp) 1063 { 1064 cpu_call(cp, cu_cpc_trigger, (uintptr_t)cp, (uintptr_t)B_TRUE); 1065 } 1066 1067 1068 /* 1069 * Setup capacity and utilization support for given CPU 1070 * 1071 * NOTE: Use KM_NOSLEEP for kmem_{,z}alloc() since cpu_lock is held and free 1072 * everything that has been successfully allocated including cpu_cu_info 1073 * if any memory allocation fails 1074 */ 1075 static int 1076 cu_cpu_init(cpu_t *cp, kcpc_request_list_t *reqs) 1077 { 1078 kcpc_ctx_t **ctx_ptr_array; 1079 size_t ctx_ptr_array_sz; 1080 cu_cpc_ctx_t *cpu_ctx; 1081 cu_cpu_info_t *cu_cpu_info; 1082 int n; 1083 1084 /* 1085 * cpu_lock should be held and protect against CPU going away and races 1086 * with cu_{init,fini,cpu_fini}() 1087 */ 1088 ASSERT(MUTEX_HELD(&cpu_lock)); 1089 1090 /* 1091 * Return if not ready to setup counters yet 1092 */ 1093 if (!(cu_flags & CU_FLAG_READY)) 1094 return (-1); 1095 1096 if (cp->cpu_cu_info == NULL) { 1097 cp->cpu_cu_info = kmem_zalloc(sizeof (cu_cpu_info_t), 1098 KM_NOSLEEP); 1099 if (cp->cpu_cu_info == NULL) 1100 return (-2); 1101 } 1102 1103 /* 1104 * Get capacity and utilization CPC context for CPU and check to see 1105 * whether it has been setup already 1106 */ 1107 cu_cpu_info = cp->cpu_cu_info; 1108 cu_cpu_info->cu_cpu = cp; 1109 cu_cpu_info->cu_disabled = dtrace_cpc_in_use ? 1 : 0; 1110 1111 cpu_ctx = &cu_cpu_info->cu_cpc_ctx; 1112 if (cpu_ctx->nctx > 0 && cpu_ctx->ctx_ptr_array != NULL && 1113 cpu_ctx->ctx_ptr_array_sz > 0) { 1114 return (1); 1115 } 1116 1117 /* 1118 * Should have no contexts since it hasn't been setup already 1119 */ 1120 ASSERT(cpu_ctx->nctx == 0 && cpu_ctx->ctx_ptr_array == NULL && 1121 cpu_ctx->ctx_ptr_array_sz == 0); 1122 1123 /* 1124 * Determine how many CPC events needed to measure capacity and 1125 * utilization for this CPU, allocate space for counter statistics for 1126 * each event, and fill in list of CPC event requests with corresponding 1127 * counter stats for each request to make attributing counter data 1128 * easier later.... 1129 */ 1130 n = cu_cpc_init(cp, NULL, 0); 1131 if (n <= 0) { 1132 (void) cu_cpu_fini(cp); 1133 return (-3); 1134 } 1135 1136 cu_cpu_info->cu_cntr_stats = kmem_zalloc(n * sizeof (cu_cntr_stats_t), 1137 KM_NOSLEEP); 1138 if (cu_cpu_info->cu_cntr_stats == NULL) { 1139 (void) cu_cpu_fini(cp); 1140 return (-4); 1141 } 1142 1143 cu_cpu_info->cu_ncntr_stats = n; 1144 1145 n = cu_cpc_init(cp, reqs, n); 1146 if (n <= 0) { 1147 (void) cu_cpu_fini(cp); 1148 return (-5); 1149 } 1150 1151 /* 1152 * Create CPC context with given requests 1153 */ 1154 ctx_ptr_array = NULL; 1155 ctx_ptr_array_sz = 0; 1156 n = kcpc_cpu_ctx_create(cp, reqs, KM_NOSLEEP, &ctx_ptr_array, 1157 &ctx_ptr_array_sz); 1158 if (n <= 0) { 1159 (void) cu_cpu_fini(cp); 1160 return (-6); 1161 } 1162 1163 /* 1164 * Should have contexts 1165 */ 1166 ASSERT(n > 0 && ctx_ptr_array != NULL && ctx_ptr_array_sz > 0); 1167 if (ctx_ptr_array == NULL || ctx_ptr_array_sz <= 0) { 1168 (void) cu_cpu_fini(cp); 1169 return (-7); 1170 } 1171 1172 /* 1173 * Fill in CPC context info for CPU needed for capacity and utilization 1174 */ 1175 cpu_ctx->cur_index = 0; 1176 cpu_ctx->nctx = n; 1177 cpu_ctx->ctx_ptr_array = ctx_ptr_array; 1178 cpu_ctx->ctx_ptr_array_sz = ctx_ptr_array_sz; 1179 return (0); 1180 } 1181 1182 /* 1183 * Tear down capacity and utilization support for given CPU 1184 */ 1185 static int 1186 cu_cpu_fini(cpu_t *cp) 1187 { 1188 kcpc_ctx_t *ctx; 1189 cu_cpc_ctx_t *cpu_ctx; 1190 cu_cpu_info_t *cu_cpu_info; 1191 int i; 1192 pghw_type_t pg_hw_type; 1193 1194 /* 1195 * cpu_lock should be held and protect against CPU going away and races 1196 * with cu_{init,fini,cpu_init}() 1197 */ 1198 ASSERT(MUTEX_HELD(&cpu_lock)); 1199 1200 /* 1201 * Have to at least be ready to setup counters to have allocated 1202 * anything that needs to be deallocated now 1203 */ 1204 if (!(cu_flags & CU_FLAG_READY)) 1205 return (-1); 1206 1207 /* 1208 * Nothing to do if CPU's capacity and utilization info doesn't exist 1209 */ 1210 cu_cpu_info = cp->cpu_cu_info; 1211 if (cu_cpu_info == NULL) 1212 return (1); 1213 1214 /* 1215 * Tear down any existing kstats and counter info for each hardware 1216 * sharing relationship 1217 */ 1218 for (pg_hw_type = PGHW_START; pg_hw_type < PGHW_NUM_COMPONENTS; 1219 pg_hw_type++) { 1220 cu_cntr_info_t *cntr_info; 1221 1222 cntr_info = cu_cpu_info->cu_cntr_info[pg_hw_type]; 1223 if (cntr_info == NULL) 1224 continue; 1225 1226 if (cntr_info->ci_kstat != NULL) { 1227 kstat_delete(cntr_info->ci_kstat); 1228 cntr_info->ci_kstat = NULL; 1229 } 1230 kmem_free(cntr_info, sizeof (cu_cntr_info_t)); 1231 } 1232 1233 /* 1234 * Free counter statistics for CPU 1235 */ 1236 ASSERT(cu_cpu_info->cu_cntr_stats == NULL || 1237 cu_cpu_info->cu_ncntr_stats > 0); 1238 if (cu_cpu_info->cu_cntr_stats != NULL && 1239 cu_cpu_info->cu_ncntr_stats > 0) { 1240 kmem_free(cu_cpu_info->cu_cntr_stats, 1241 cu_cpu_info->cu_ncntr_stats * sizeof (cu_cntr_stats_t)); 1242 cu_cpu_info->cu_cntr_stats = NULL; 1243 cu_cpu_info->cu_ncntr_stats = 0; 1244 } 1245 1246 /* 1247 * Get capacity and utilization CPC contexts for given CPU and check to 1248 * see whether they have been freed already 1249 */ 1250 cpu_ctx = &cu_cpu_info->cu_cpc_ctx; 1251 if (cpu_ctx != NULL && cpu_ctx->ctx_ptr_array != NULL && 1252 cpu_ctx->ctx_ptr_array_sz > 0) { 1253 /* 1254 * Free CPC contexts for given CPU 1255 */ 1256 for (i = 0; i < cpu_ctx->nctx; i++) { 1257 ctx = cpu_ctx->ctx_ptr_array[i]; 1258 if (ctx == NULL) 1259 continue; 1260 kcpc_free(ctx, 0); 1261 } 1262 1263 /* 1264 * Free CPC context pointer array 1265 */ 1266 kmem_free(cpu_ctx->ctx_ptr_array, cpu_ctx->ctx_ptr_array_sz); 1267 1268 /* 1269 * Zero CPC info for CPU 1270 */ 1271 bzero(cpu_ctx, sizeof (cu_cpc_ctx_t)); 1272 } 1273 1274 /* 1275 * Set cp->cpu_cu_info pointer to NULL. Go through cross-call to ensure 1276 * that no one is going to access the cpu_cu_info whicch we are going to 1277 * free. 1278 */ 1279 if (cpu_is_online(cp)) 1280 cpu_call(cp, (cpu_call_func_t)cu_cpu_info_detach_xcall, 0, 0); 1281 else 1282 cp->cpu_cu_info = NULL; 1283 1284 /* 1285 * Free CPU's capacity and utilization info 1286 */ 1287 kmem_free(cu_cpu_info, sizeof (cu_cpu_info_t)); 1288 1289 return (0); 1290 } 1291 1292 /* 1293 * Create capacity & utilization kstats for given PG CPU hardware sharing 1294 * relationship 1295 */ 1296 static void 1297 cu_cpu_kstat_create(pghw_t *pg, cu_cntr_info_t *cntr_info) 1298 { 1299 kstat_t *ks; 1300 char *sharing = pghw_type_string(pg->pghw_hw); 1301 char name[KSTAT_STRLEN + 1]; 1302 1303 /* 1304 * Just return when no counter info or CPU 1305 */ 1306 if (cntr_info == NULL || cntr_info->ci_cpu == NULL) 1307 return; 1308 1309 /* 1310 * Canonify PG name to conform to kstat name rules 1311 */ 1312 (void) strncpy(name, pghw_type_string(pg->pghw_hw), KSTAT_STRLEN + 1); 1313 strident_canon(name, TASKQ_NAMELEN + 1); 1314 1315 if ((ks = kstat_create_zone("pg_hw_perf_cpu", 1316 cntr_info->ci_cpu->cpu_id, 1317 name, "processor_group", KSTAT_TYPE_NAMED, 1318 sizeof (cu_cpu_kstat) / sizeof (kstat_named_t), 1319 KSTAT_FLAG_VIRTUAL, GLOBAL_ZONEID)) == NULL) 1320 return; 1321 1322 ks->ks_lock = &pg_cpu_kstat_lock; 1323 ks->ks_data = &cu_cpu_kstat; 1324 ks->ks_update = cu_cpu_kstat_update; 1325 ks->ks_data_size += strlen(sharing) + 1; 1326 1327 ks->ks_private = cntr_info; 1328 cntr_info->ci_kstat = ks; 1329 kstat_install(cntr_info->ci_kstat); 1330 } 1331 1332 1333 /* 1334 * Propagate values from CPU capacity & utilization stats to kstats 1335 */ 1336 static int 1337 cu_cpu_kstat_update(kstat_t *ksp, int rw) 1338 { 1339 cpu_t *cp; 1340 cu_cntr_info_t *cntr_info = ksp->ks_private; 1341 struct cu_cpu_kstat *kstat = &cu_cpu_kstat; 1342 pghw_t *pg; 1343 cu_cntr_stats_t *stats; 1344 1345 if (rw == KSTAT_WRITE) 1346 return (EACCES); 1347 1348 cp = cntr_info->ci_cpu; 1349 pg = cntr_info->ci_pg; 1350 kstat->cu_cpu_id.value.ui32 = cp->cpu_id; 1351 kstat->cu_pg_id.value.i32 = ((pg_t *)pg)->pg_id; 1352 1353 /* 1354 * The caller should have priv_cpc_cpu privilege to get utilization 1355 * data. Callers who do not have the privilege will see zeroes as the 1356 * values. 1357 */ 1358 if (secpolicy_cpc_cpu(crgetcred()) != 0) { 1359 kstat->cu_generation.value.ui32 = cp->cpu_generation; 1360 kstat_named_setstr(&kstat->cu_cpu_relationship, 1361 pghw_type_string(pg->pghw_hw)); 1362 1363 kstat->cu_cpu_util.value.ui64 = 0; 1364 kstat->cu_cpu_rate.value.ui64 = 0; 1365 kstat->cu_cpu_rate_max.value.ui64 = 0; 1366 kstat->cu_cpu_time_running.value.ui64 = 0; 1367 kstat->cu_cpu_time_stopped.value.ui64 = 0; 1368 1369 return (0); 1370 } 1371 1372 kpreempt_disable(); 1373 1374 /* 1375 * Update capacity and utilization statistics needed for CPU's PG (CPU) 1376 * kstats 1377 */ 1378 1379 (void) cu_cpu_update(cp, B_TRUE); 1380 1381 stats = cntr_info->ci_stats; 1382 kstat->cu_generation.value.ui32 = cp->cpu_generation; 1383 kstat_named_setstr(&kstat->cu_cpu_relationship, 1384 pghw_type_string(pg->pghw_hw)); 1385 1386 kstat->cu_cpu_util.value.ui64 = stats->cs_value_total; 1387 kstat->cu_cpu_rate.value.ui64 = stats->cs_rate; 1388 kstat->cu_cpu_rate_max.value.ui64 = stats->cs_rate_max; 1389 kstat->cu_cpu_time_running.value.ui64 = stats->cs_time_running; 1390 kstat->cu_cpu_time_stopped.value.ui64 = stats->cs_time_stopped; 1391 1392 /* 1393 * Counters are stopped now, so the cs_time_stopped was last 1394 * updated at cs_time_start time. Add the time passed since then 1395 * to the stopped time. 1396 */ 1397 if (!(cp->cpu_cu_info->cu_flag & CU_CPU_CNTRS_ON)) 1398 kstat->cu_cpu_time_stopped.value.ui64 += 1399 gethrtime() - stats->cs_time_start; 1400 1401 kpreempt_enable(); 1402 1403 return (0); 1404 } 1405 1406 /* 1407 * Run specified function with specified argument on a given CPU and return 1408 * whatever the function returns 1409 */ 1410 static int 1411 cu_cpu_run(cpu_t *cp, cu_cpu_func_t func, uintptr_t arg) 1412 { 1413 int error = 0; 1414 1415 /* 1416 * cpu_call() will call func on the CPU specified with given argument 1417 * and return func's return value in last argument 1418 */ 1419 cpu_call(cp, (cpu_call_func_t)func, arg, (uintptr_t)&error); 1420 return (error); 1421 } 1422 1423 1424 /* 1425 * Update counter statistics on a given CPU. 1426 * 1427 * If move_to argument is True, execute the function on the CPU specified 1428 * Otherwise, assume that it is already runninng on the right CPU 1429 * 1430 * If move_to is specified, the caller should hold cpu_lock or have preemption 1431 * disabled. Otherwise it is up to the caller to guarantee that things do not 1432 * change in the process. 1433 */ 1434 int 1435 cu_cpu_update(struct cpu *cp, boolean_t move_to) 1436 { 1437 int retval; 1438 cu_cpu_info_t *cu_cpu_info = cp->cpu_cu_info; 1439 hrtime_t time_snap; 1440 1441 ASSERT(!move_to || MUTEX_HELD(&cpu_lock) || curthread->t_preempt > 0); 1442 1443 /* 1444 * Nothing to do if counters are not programmed 1445 */ 1446 if (!(cu_flags & CU_FLAG_ON) || 1447 (cu_cpu_info == NULL) || 1448 !(cu_cpu_info->cu_flag & CU_CPU_CNTRS_ON)) 1449 return (0); 1450 1451 /* 1452 * Don't update CPU statistics if it was updated recently 1453 * and provide old results instead 1454 */ 1455 time_snap = gethrtime(); 1456 if ((time_snap - cu_cpu_info->cu_sample_time) < cu_update_threshold) { 1457 DTRACE_PROBE1(cu__drop__sample, cpu_t *, cp); 1458 return (0); 1459 } 1460 1461 cu_cpu_info->cu_sample_time = time_snap; 1462 1463 /* 1464 * CPC counter should be read on the CPU that is running the counter. We 1465 * either have to move ourselves to the target CPU or insure that we 1466 * already run there. 1467 * 1468 * We use cross-call to the target CPU to execute kcpc_read() and 1469 * cu_cpu_update_stats() there. 1470 */ 1471 retval = 0; 1472 if (move_to) 1473 (void) cu_cpu_run(cp, (cu_cpu_func_t)kcpc_read, 1474 (uintptr_t)cu_cpu_update_stats); 1475 else { 1476 retval = kcpc_read((kcpc_update_func_t)cu_cpu_update_stats); 1477 /* 1478 * Offset negative return value by -10 so we can distinguish it 1479 * from error return values of this routine vs kcpc_read() 1480 */ 1481 if (retval < 0) 1482 retval -= 10; 1483 } 1484 1485 return (retval); 1486 } 1487 1488 1489 /* 1490 * Update CPU counter statistics for current CPU. 1491 * This function may be called from a cross-call 1492 */ 1493 static int 1494 cu_cpu_update_stats(cu_cntr_stats_t *stats, uint64_t cntr_value) 1495 { 1496 cu_cpu_info_t *cu_cpu_info = CPU->cpu_cu_info; 1497 uint_t flags; 1498 uint64_t delta; 1499 hrtime_t time_delta; 1500 hrtime_t time_snap; 1501 1502 if (stats == NULL) 1503 return (-1); 1504 1505 /* 1506 * Nothing to do if counters are not programmed. This should not happen, 1507 * but we check just in case. 1508 */ 1509 ASSERT(cu_flags & CU_FLAG_ON); 1510 ASSERT(cu_cpu_info != NULL); 1511 if (!(cu_flags & CU_FLAG_ON) || 1512 (cu_cpu_info == NULL)) 1513 return (-2); 1514 1515 flags = cu_cpu_info->cu_flag; 1516 ASSERT(flags & CU_CPU_CNTRS_ON); 1517 if (!(flags & CU_CPU_CNTRS_ON)) 1518 return (-2); 1519 1520 /* 1521 * Take snapshot of high resolution timer 1522 */ 1523 time_snap = gethrtime(); 1524 1525 /* 1526 * CU counters have just been programmed. We cannot assume that the new 1527 * cntr_value continues from where we left off, so use the cntr_value as 1528 * the new initial value. 1529 */ 1530 if (flags & CU_CPU_CNTRS_OFF_ON) 1531 stats->cs_value_start = cntr_value; 1532 1533 /* 1534 * Calculate delta in counter values between start of sampling period 1535 * and now 1536 */ 1537 delta = cntr_value - stats->cs_value_start; 1538 1539 /* 1540 * Calculate time between start of sampling period and now 1541 */ 1542 time_delta = stats->cs_time_start ? 1543 time_snap - stats->cs_time_start : 1544 0; 1545 stats->cs_time_start = time_snap; 1546 stats->cs_value_start = cntr_value; 1547 1548 if (time_delta > 0) { /* wrap shouldn't happen */ 1549 /* 1550 * Update either running or stopped time based on the transition 1551 * state 1552 */ 1553 if (flags & CU_CPU_CNTRS_OFF_ON) 1554 stats->cs_time_stopped += time_delta; 1555 else 1556 stats->cs_time_running += time_delta; 1557 } 1558 1559 /* 1560 * Update rest of counter statistics if counter value didn't wrap 1561 */ 1562 if (delta > 0) { 1563 /* 1564 * Update utilization rate if the interval between samples is 1565 * sufficient. 1566 */ 1567 ASSERT(cu_sample_interval_min > CU_SCALE); 1568 if (time_delta > cu_sample_interval_min) 1569 stats->cs_rate = CU_RATE(delta, time_delta); 1570 if (stats->cs_rate_max < stats->cs_rate) 1571 stats->cs_rate_max = stats->cs_rate; 1572 1573 stats->cs_value_last = delta; 1574 stats->cs_value_total += delta; 1575 } 1576 1577 return (0); 1578 } 1579 1580 /* 1581 * Update CMT PG utilization data. 1582 * 1583 * This routine computes the running total utilization and times for the 1584 * specified PG by adding up the total utilization and counter running and 1585 * stopped times of all CPUs in the PG and calculates the utilization rate and 1586 * maximum rate for all CPUs in the PG. 1587 */ 1588 void 1589 cu_pg_update(pghw_t *pg) 1590 { 1591 pg_cpu_itr_t cpu_iter; 1592 pghw_type_t pg_hwtype; 1593 cpu_t *cpu; 1594 pghw_util_t *hw_util = &pg->pghw_stats; 1595 uint64_t old_utilization = hw_util->pghw_util; 1596 hrtime_t now; 1597 hrtime_t time_delta; 1598 uint64_t utilization_delta; 1599 1600 ASSERT(MUTEX_HELD(&cpu_lock)); 1601 1602 now = gethrtime(); 1603 1604 pg_hwtype = pg->pghw_hw; 1605 1606 /* 1607 * Initialize running total utilization and times for PG to 0 1608 */ 1609 hw_util->pghw_util = 0; 1610 hw_util->pghw_time_running = 0; 1611 hw_util->pghw_time_stopped = 0; 1612 1613 /* 1614 * Iterate over all CPUs in the PG and aggregate utilization, running 1615 * time and stopped time. 1616 */ 1617 PG_CPU_ITR_INIT(pg, cpu_iter); 1618 while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 1619 cu_cpu_info_t *cu_cpu_info = cpu->cpu_cu_info; 1620 cu_cntr_info_t *cntr_info; 1621 cu_cntr_stats_t *stats; 1622 1623 if (cu_cpu_info == NULL) 1624 continue; 1625 1626 /* 1627 * Update utilization data for the CPU and then 1628 * aggregate per CPU running totals for PG 1629 */ 1630 (void) cu_cpu_update(cpu, B_TRUE); 1631 cntr_info = cu_cpu_info->cu_cntr_info[pg_hwtype]; 1632 1633 if (cntr_info == NULL || (stats = cntr_info->ci_stats) == NULL) 1634 continue; 1635 1636 hw_util->pghw_util += stats->cs_value_total; 1637 hw_util->pghw_time_running += stats->cs_time_running; 1638 hw_util->pghw_time_stopped += stats->cs_time_stopped; 1639 1640 /* 1641 * If counters are stopped now, the pg_time_stopped was last 1642 * updated at cs_time_start time. Add the time passed since then 1643 * to the stopped time. 1644 */ 1645 if (!(cu_cpu_info->cu_flag & CU_CPU_CNTRS_ON)) 1646 hw_util->pghw_time_stopped += 1647 now - stats->cs_time_start; 1648 } 1649 1650 /* 1651 * Compute per PG instruction rate and maximum rate 1652 */ 1653 time_delta = now - hw_util->pghw_time_stamp; 1654 hw_util->pghw_time_stamp = now; 1655 1656 if (old_utilization == 0) 1657 return; 1658 1659 /* 1660 * Calculate change in utilization over sampling period and set this to 1661 * 0 if the delta would be 0 or negative which may happen if any CPUs go 1662 * offline during the sampling period 1663 */ 1664 if (hw_util->pghw_util > old_utilization) 1665 utilization_delta = hw_util->pghw_util - old_utilization; 1666 else 1667 utilization_delta = 0; 1668 1669 /* 1670 * Update utilization rate if the interval between samples is 1671 * sufficient. 1672 */ 1673 ASSERT(cu_sample_interval_min > CU_SCALE); 1674 if (time_delta > CU_SAMPLE_INTERVAL_MIN) 1675 hw_util->pghw_rate = CU_RATE(utilization_delta, time_delta); 1676 1677 /* 1678 * Update the maximum observed rate 1679 */ 1680 if (hw_util->pghw_rate_max < hw_util->pghw_rate) 1681 hw_util->pghw_rate_max = hw_util->pghw_rate; 1682 } 1683