1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/proc.h> 29 #include <sys/file.h> 30 #include <sys/errno.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/cmn_err.h> 34 #include <sys/systm.h> 35 #include <vm/as.h> 36 #include <vm/page.h> 37 #include <sys/uio.h> 38 #include <sys/kmem.h> 39 #include <sys/debug.h> 40 #include <sys/aio_impl.h> 41 #include <sys/epm.h> 42 #include <sys/fs/snode.h> 43 #include <sys/siginfo.h> 44 #include <sys/cpuvar.h> 45 #include <sys/tnf_probe.h> 46 #include <sys/conf.h> 47 #include <sys/sdt.h> 48 49 int aphysio(int (*)(), int (*)(), dev_t, int, void (*)(), struct aio_req *); 50 void aio_done(struct buf *); 51 void aphysio_unlock(aio_req_t *); 52 void aio_cleanup(int); 53 void aio_cleanup_exit(void); 54 55 /* 56 * private functions 57 */ 58 static void aio_sigev_send(proc_t *, sigqueue_t *); 59 static void aio_hash_delete(aio_t *, aio_req_t *); 60 static void aio_lio_free(aio_t *, aio_lio_t *); 61 static int aio_cleanup_cleanupq(aio_t *, aio_req_t *, int); 62 static int aio_cleanup_notifyq(aio_t *, aio_req_t *, int); 63 static void aio_cleanup_pollq(aio_t *, aio_req_t *, int); 64 static void aio_cleanup_portq(aio_t *, aio_req_t *, int); 65 66 /* 67 * async version of physio() that doesn't wait synchronously 68 * for the driver's strategy routine to complete. 69 */ 70 71 int 72 aphysio( 73 int (*strategy)(struct buf *), 74 int (*cancel)(struct buf *), 75 dev_t dev, 76 int rw, 77 void (*mincnt)(struct buf *), 78 struct aio_req *aio) 79 { 80 struct uio *uio = aio->aio_uio; 81 aio_req_t *reqp = (aio_req_t *)aio->aio_private; 82 struct buf *bp = &reqp->aio_req_buf; 83 struct iovec *iov; 84 struct as *as; 85 char *a; 86 int error; 87 size_t c; 88 struct page **pplist; 89 struct dev_ops *ops = devopsp[getmajor(dev)]; 90 91 if (uio->uio_loffset < 0) 92 return (EINVAL); 93 #ifdef _ILP32 94 /* 95 * For 32-bit kernels, check against SPEC_MAXOFFSET_T which represents 96 * the maximum size that can be supported by the IO subsystem. 97 * XXX this code assumes a D_64BIT driver. 98 */ 99 if (uio->uio_loffset > SPEC_MAXOFFSET_T) 100 return (EINVAL); 101 #endif /* _ILP32 */ 102 103 TNF_PROBE_5(aphysio_start, "kaio", /* CSTYLED */, 104 tnf_opaque, bp, bp, 105 tnf_device, device, dev, 106 tnf_offset, blkno, btodt(uio->uio_loffset), 107 tnf_size, size, uio->uio_iov->iov_len, 108 tnf_bioflags, rw, rw); 109 110 if (rw == B_READ) { 111 CPU_STATS_ADD_K(sys, phread, 1); 112 } else { 113 CPU_STATS_ADD_K(sys, phwrite, 1); 114 } 115 116 iov = uio->uio_iov; 117 sema_init(&bp->b_sem, 0, NULL, SEMA_DEFAULT, NULL); 118 sema_init(&bp->b_io, 0, NULL, SEMA_DEFAULT, NULL); 119 120 bp->b_error = 0; 121 bp->b_flags = B_BUSY | B_PHYS | B_ASYNC | rw; 122 bp->b_edev = dev; 123 bp->b_dev = cmpdev(dev); 124 bp->b_lblkno = btodt(uio->uio_loffset); 125 bp->b_offset = uio->uio_loffset; 126 (void) ops->devo_getinfo(NULL, DDI_INFO_DEVT2DEVINFO, 127 (void *)bp->b_edev, (void **)&bp->b_dip); 128 129 /* 130 * Clustering: Clustering can set the b_iodone, b_forw and 131 * b_proc fields to cluster-specifc values. 132 */ 133 if (bp->b_iodone == NULL) { 134 bp->b_iodone = (int (*)()) aio_done; 135 /* b_forw points at an aio_req_t structure */ 136 bp->b_forw = (struct buf *)reqp; 137 bp->b_proc = curproc; 138 } 139 140 a = bp->b_un.b_addr = iov->iov_base; 141 c = bp->b_bcount = iov->iov_len; 142 143 (*mincnt)(bp); 144 if (bp->b_bcount != iov->iov_len) 145 return (ENOTSUP); 146 147 as = bp->b_proc->p_as; 148 149 error = as_pagelock(as, &pplist, a, 150 c, rw == B_READ? S_WRITE : S_READ); 151 if (error != 0) { 152 bp->b_flags |= B_ERROR; 153 bp->b_error = error; 154 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_SHADOW); 155 return (error); 156 } 157 reqp->aio_req_flags |= AIO_PAGELOCKDONE; 158 bp->b_shadow = pplist; 159 if (pplist != NULL) { 160 bp->b_flags |= B_SHADOW; 161 } 162 163 if (cancel != anocancel) 164 cmn_err(CE_PANIC, 165 "aphysio: cancellation not supported, use anocancel"); 166 167 reqp->aio_req_cancel = cancel; 168 169 DTRACE_IO1(start, struct buf *, bp); 170 171 return ((*strategy)(bp)); 172 } 173 174 /*ARGSUSED*/ 175 int 176 anocancel(struct buf *bp) 177 { 178 return (ENXIO); 179 } 180 181 /* 182 * Called from biodone(). 183 * Notify process that a pending AIO has finished. 184 */ 185 186 /* 187 * Clustering: This function is made non-static as it is used 188 * by clustering s/w as contract private interface. 189 */ 190 191 void 192 aio_done(struct buf *bp) 193 { 194 proc_t *p; 195 struct as *as; 196 aio_req_t *reqp; 197 aio_lio_t *head = NULL; 198 aio_t *aiop; 199 sigqueue_t *sigev = NULL; 200 sigqueue_t *lio_sigev = NULL; 201 port_kevent_t *pkevp = NULL; 202 port_kevent_t *lio_pkevp = NULL; 203 int fd; 204 int cleanupqflag; 205 int pollqflag; 206 int portevpend; 207 void (*func)(); 208 int use_port = 0; 209 int reqp_flags = 0; 210 int send_signal = 0; 211 212 p = bp->b_proc; 213 as = p->p_as; 214 reqp = (aio_req_t *)bp->b_forw; 215 fd = reqp->aio_req_fd; 216 217 TNF_PROBE_5(aphysio_end, "kaio", /* CSTYLED */, 218 tnf_opaque, bp, bp, 219 tnf_device, device, bp->b_edev, 220 tnf_offset, blkno, btodt(reqp->aio_req_uio.uio_loffset), 221 tnf_size, size, reqp->aio_req_uio.uio_iov->iov_len, 222 tnf_bioflags, rw, (bp->b_flags & (B_READ|B_WRITE))); 223 224 /* 225 * mapout earlier so that more kmem is available when aio is 226 * heavily used. bug #1262082 227 */ 228 if (bp->b_flags & B_REMAPPED) 229 bp_mapout(bp); 230 231 /* decrement fd's ref count by one, now that aio request is done. */ 232 areleasef(fd, P_FINFO(p)); 233 234 aiop = p->p_aio; 235 ASSERT(aiop != NULL); 236 237 mutex_enter(&aiop->aio_portq_mutex); 238 mutex_enter(&aiop->aio_mutex); 239 ASSERT(aiop->aio_pending > 0); 240 ASSERT(reqp->aio_req_flags & AIO_PENDING); 241 aiop->aio_pending--; 242 reqp->aio_req_flags &= ~AIO_PENDING; 243 reqp_flags = reqp->aio_req_flags; 244 if ((pkevp = reqp->aio_req_portkev) != NULL) { 245 /* Event port notification is desired for this transaction */ 246 if (reqp->aio_req_flags & AIO_CLOSE_PORT) { 247 /* 248 * The port is being closed and it is waiting for 249 * pending asynchronous I/O transactions to complete. 250 */ 251 portevpend = --aiop->aio_portpendcnt; 252 aio_deq(&aiop->aio_portpending, reqp); 253 aio_enq(&aiop->aio_portq, reqp, 0); 254 mutex_exit(&aiop->aio_mutex); 255 mutex_exit(&aiop->aio_portq_mutex); 256 port_send_event(pkevp); 257 if (portevpend == 0) 258 cv_broadcast(&aiop->aio_portcv); 259 return; 260 } 261 262 if (aiop->aio_flags & AIO_CLEANUP) { 263 /* 264 * aio_cleanup_thread() is waiting for completion of 265 * transactions. 266 */ 267 mutex_enter(&as->a_contents); 268 aio_deq(&aiop->aio_portpending, reqp); 269 aio_enq(&aiop->aio_portcleanupq, reqp, 0); 270 cv_signal(&aiop->aio_cleanupcv); 271 mutex_exit(&as->a_contents); 272 mutex_exit(&aiop->aio_mutex); 273 mutex_exit(&aiop->aio_portq_mutex); 274 return; 275 } 276 277 aio_deq(&aiop->aio_portpending, reqp); 278 aio_enq(&aiop->aio_portq, reqp, 0); 279 280 use_port = 1; 281 } else { 282 /* 283 * when the AIO_CLEANUP flag is enabled for this 284 * process, or when the AIO_POLL bit is set for 285 * this request, special handling is required. 286 * otherwise the request is put onto the doneq. 287 */ 288 cleanupqflag = (aiop->aio_flags & AIO_CLEANUP); 289 pollqflag = (reqp->aio_req_flags & AIO_POLL); 290 if (cleanupqflag | pollqflag) { 291 292 if (cleanupqflag) 293 mutex_enter(&as->a_contents); 294 295 /* 296 * requests with their AIO_POLL bit set are put 297 * on the pollq, requests with sigevent structures 298 * or with listio heads are put on the notifyq, and 299 * the remaining requests don't require any special 300 * cleanup handling, so they're put onto the default 301 * cleanupq. 302 */ 303 if (pollqflag) 304 aio_enq(&aiop->aio_pollq, reqp, AIO_POLLQ); 305 else if (reqp->aio_req_sigqp || reqp->aio_req_lio) 306 aio_enq(&aiop->aio_notifyq, reqp, AIO_NOTIFYQ); 307 else 308 aio_enq(&aiop->aio_cleanupq, reqp, 309 AIO_CLEANUPQ); 310 311 if (cleanupqflag) { 312 cv_signal(&aiop->aio_cleanupcv); 313 mutex_exit(&as->a_contents); 314 mutex_exit(&aiop->aio_mutex); 315 mutex_exit(&aiop->aio_portq_mutex); 316 } else { 317 ASSERT(pollqflag); 318 /* block aio_cleanup_exit until we're done */ 319 aiop->aio_flags |= AIO_DONE_ACTIVE; 320 mutex_exit(&aiop->aio_mutex); 321 mutex_exit(&aiop->aio_portq_mutex); 322 /* 323 * let the cleanup processing happen from an AST 324 * set an AST on all threads in this process 325 */ 326 mutex_enter(&p->p_lock); 327 set_proc_ast(p); 328 mutex_exit(&p->p_lock); 329 mutex_enter(&aiop->aio_mutex); 330 /* wakeup anybody waiting in aiowait() */ 331 cv_broadcast(&aiop->aio_waitcv); 332 333 /* wakeup aio_cleanup_exit if needed */ 334 if (aiop->aio_flags & AIO_CLEANUP) 335 cv_signal(&aiop->aio_cleanupcv); 336 aiop->aio_flags &= ~AIO_DONE_ACTIVE; 337 mutex_exit(&aiop->aio_mutex); 338 } 339 return; 340 } 341 342 /* 343 * save req's sigevent pointer, and check its 344 * value after releasing aio_mutex lock. 345 */ 346 sigev = reqp->aio_req_sigqp; 347 reqp->aio_req_sigqp = NULL; 348 349 /* put request on done queue. */ 350 aio_enq(&aiop->aio_doneq, reqp, AIO_DONEQ); 351 } /* portkevent */ 352 353 /* 354 * when list IO notification is enabled, a notification or 355 * signal is sent only when all entries in the list are done. 356 */ 357 if ((head = reqp->aio_req_lio) != NULL) { 358 ASSERT(head->lio_refcnt > 0); 359 if (--head->lio_refcnt == 0) { 360 /* 361 * save lio's sigevent pointer, and check 362 * its value after releasing aio_mutex lock. 363 */ 364 lio_sigev = head->lio_sigqp; 365 head->lio_sigqp = NULL; 366 cv_signal(&head->lio_notify); 367 if (head->lio_port >= 0 && 368 (lio_pkevp = head->lio_portkev) != NULL) 369 head->lio_port = -1; 370 } 371 } 372 373 /* 374 * if AIO_WAITN set then 375 * send signal only when we reached the 376 * required amount of IO's finished 377 * or when all IO's are done 378 */ 379 if (aiop->aio_flags & AIO_WAITN) { 380 if (aiop->aio_waitncnt > 0) 381 aiop->aio_waitncnt--; 382 if (aiop->aio_pending == 0 || 383 aiop->aio_waitncnt == 0) 384 cv_broadcast(&aiop->aio_waitcv); 385 } else { 386 cv_broadcast(&aiop->aio_waitcv); 387 } 388 389 /* 390 * No need to set this flag for pollq, portq, lio requests. 391 * If this is an old Solaris aio request, and the process has 392 * a SIGIO signal handler enabled, then send a SIGIO signal. 393 */ 394 if (!sigev && !use_port && head == NULL && 395 (reqp->aio_req_flags & AIO_SOLARIS) && 396 (func = PTOU(p)->u_signal[SIGIO - 1]) != SIG_DFL && 397 (func != SIG_IGN)) { 398 send_signal = 1; 399 reqp->aio_req_flags |= AIO_SIGNALLED; 400 } 401 402 mutex_exit(&aiop->aio_mutex); 403 mutex_exit(&aiop->aio_portq_mutex); 404 405 /* 406 * Could the cleanup thread be waiting for AIO with locked 407 * resources to finish? 408 * Ideally in that case cleanup thread should block on cleanupcv, 409 * but there is a window, where it could miss to see a new aio 410 * request that sneaked in. 411 */ 412 mutex_enter(&as->a_contents); 413 if ((reqp_flags & AIO_PAGELOCKDONE) && AS_ISUNMAPWAIT(as)) 414 cv_broadcast(&as->a_cv); 415 mutex_exit(&as->a_contents); 416 417 if (sigev) 418 aio_sigev_send(p, sigev); 419 else if (send_signal) 420 psignal(p, SIGIO); 421 422 if (pkevp) 423 port_send_event(pkevp); 424 if (lio_sigev) 425 aio_sigev_send(p, lio_sigev); 426 if (lio_pkevp) 427 port_send_event(lio_pkevp); 428 } 429 430 /* 431 * send a queued signal to the specified process when 432 * the event signal is non-NULL. A return value of 1 433 * will indicate that a signal is queued, and 0 means that 434 * no signal was specified, nor sent. 435 */ 436 static void 437 aio_sigev_send(proc_t *p, sigqueue_t *sigev) 438 { 439 ASSERT(sigev != NULL); 440 441 mutex_enter(&p->p_lock); 442 sigaddqa(p, NULL, sigev); 443 mutex_exit(&p->p_lock); 444 } 445 446 /* 447 * special case handling for zero length requests. the aio request 448 * short circuits the normal completion path since all that's required 449 * to complete this request is to copyout a zero to the aio request's 450 * return value. 451 */ 452 void 453 aio_zerolen(aio_req_t *reqp) 454 { 455 456 struct buf *bp = &reqp->aio_req_buf; 457 458 reqp->aio_req_flags |= AIO_ZEROLEN; 459 460 bp->b_forw = (struct buf *)reqp; 461 bp->b_proc = curproc; 462 463 bp->b_resid = 0; 464 bp->b_flags = 0; 465 466 aio_done(bp); 467 } 468 469 /* 470 * unlock pages previously locked by as_pagelock 471 */ 472 void 473 aphysio_unlock(aio_req_t *reqp) 474 { 475 struct buf *bp; 476 struct iovec *iov; 477 int flags; 478 479 if (reqp->aio_req_flags & AIO_PHYSIODONE) 480 return; 481 482 reqp->aio_req_flags |= AIO_PHYSIODONE; 483 484 if (reqp->aio_req_flags & AIO_ZEROLEN) 485 return; 486 487 bp = &reqp->aio_req_buf; 488 iov = reqp->aio_req_uio.uio_iov; 489 flags = (((bp->b_flags & B_READ) == B_READ) ? S_WRITE : S_READ); 490 if (reqp->aio_req_flags & AIO_PAGELOCKDONE) { 491 as_pageunlock(bp->b_proc->p_as, 492 bp->b_flags & B_SHADOW ? bp->b_shadow : NULL, 493 iov->iov_base, iov->iov_len, flags); 494 reqp->aio_req_flags &= ~AIO_PAGELOCKDONE; 495 } 496 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_SHADOW); 497 bp->b_flags |= B_DONE; 498 } 499 500 /* 501 * deletes a requests id from the hash table of outstanding io. 502 */ 503 static void 504 aio_hash_delete(aio_t *aiop, struct aio_req_t *reqp) 505 { 506 long index; 507 aio_result_t *resultp = reqp->aio_req_resultp; 508 aio_req_t *current; 509 aio_req_t **nextp; 510 511 index = AIO_HASH(resultp); 512 nextp = (aiop->aio_hash + index); 513 while ((current = *nextp) != NULL) { 514 if (current->aio_req_resultp == resultp) { 515 *nextp = current->aio_hash_next; 516 return; 517 } 518 nextp = ¤t->aio_hash_next; 519 } 520 } 521 522 /* 523 * Put a list head struct onto its free list. 524 */ 525 static void 526 aio_lio_free(aio_t *aiop, aio_lio_t *head) 527 { 528 ASSERT(MUTEX_HELD(&aiop->aio_mutex)); 529 530 if (head->lio_sigqp != NULL) 531 kmem_free(head->lio_sigqp, sizeof (sigqueue_t)); 532 head->lio_next = aiop->aio_lio_free; 533 aiop->aio_lio_free = head; 534 } 535 536 /* 537 * Put a reqp onto the freelist. 538 */ 539 void 540 aio_req_free(aio_t *aiop, aio_req_t *reqp) 541 { 542 aio_lio_t *liop; 543 544 ASSERT(MUTEX_HELD(&aiop->aio_mutex)); 545 546 if (reqp->aio_req_portkev) { 547 port_free_event(reqp->aio_req_portkev); 548 reqp->aio_req_portkev = NULL; 549 } 550 551 if ((liop = reqp->aio_req_lio) != NULL) { 552 if (--liop->lio_nent == 0) 553 aio_lio_free(aiop, liop); 554 reqp->aio_req_lio = NULL; 555 } 556 if (reqp->aio_req_sigqp != NULL) { 557 kmem_free(reqp->aio_req_sigqp, sizeof (sigqueue_t)); 558 reqp->aio_req_sigqp = NULL; 559 } 560 reqp->aio_req_next = aiop->aio_free; 561 reqp->aio_req_prev = NULL; 562 aiop->aio_free = reqp; 563 aiop->aio_outstanding--; 564 if (aiop->aio_outstanding == 0) 565 cv_broadcast(&aiop->aio_waitcv); 566 aio_hash_delete(aiop, reqp); 567 } 568 569 /* 570 * Put a reqp onto the freelist. 571 */ 572 void 573 aio_req_free_port(aio_t *aiop, aio_req_t *reqp) 574 { 575 ASSERT(MUTEX_HELD(&aiop->aio_mutex)); 576 577 reqp->aio_req_next = aiop->aio_free; 578 reqp->aio_req_prev = NULL; 579 aiop->aio_free = reqp; 580 aiop->aio_outstanding--; 581 aio_hash_delete(aiop, reqp); 582 } 583 584 585 /* 586 * Verify the integrity of a queue. 587 */ 588 #if defined(DEBUG) 589 static void 590 aio_verify_queue(aio_req_t *head, 591 aio_req_t *entry_present, aio_req_t *entry_missing) 592 { 593 aio_req_t *reqp; 594 int found = 0; 595 int present = 0; 596 597 if ((reqp = head) != NULL) { 598 do { 599 ASSERT(reqp->aio_req_prev->aio_req_next == reqp); 600 ASSERT(reqp->aio_req_next->aio_req_prev == reqp); 601 if (entry_present == reqp) 602 found++; 603 if (entry_missing == reqp) 604 present++; 605 } while ((reqp = reqp->aio_req_next) != head); 606 } 607 ASSERT(entry_present == NULL || found == 1); 608 ASSERT(entry_missing == NULL || present == 0); 609 } 610 #else 611 #define aio_verify_queue(x, y, z) 612 #endif 613 614 /* 615 * Put a request onto the tail of a queue. 616 */ 617 void 618 aio_enq(aio_req_t **qhead, aio_req_t *reqp, int qflg_new) 619 { 620 aio_req_t *head; 621 aio_req_t *prev; 622 623 aio_verify_queue(*qhead, NULL, reqp); 624 625 if ((head = *qhead) == NULL) { 626 reqp->aio_req_next = reqp; 627 reqp->aio_req_prev = reqp; 628 *qhead = reqp; 629 } else { 630 reqp->aio_req_next = head; 631 reqp->aio_req_prev = prev = head->aio_req_prev; 632 prev->aio_req_next = reqp; 633 head->aio_req_prev = reqp; 634 } 635 reqp->aio_req_flags |= qflg_new; 636 } 637 638 /* 639 * Remove a request from its queue. 640 */ 641 void 642 aio_deq(aio_req_t **qhead, aio_req_t *reqp) 643 { 644 aio_verify_queue(*qhead, reqp, NULL); 645 646 if (reqp->aio_req_next == reqp) { 647 *qhead = NULL; 648 } else { 649 reqp->aio_req_prev->aio_req_next = reqp->aio_req_next; 650 reqp->aio_req_next->aio_req_prev = reqp->aio_req_prev; 651 if (*qhead == reqp) 652 *qhead = reqp->aio_req_next; 653 } 654 reqp->aio_req_next = NULL; 655 reqp->aio_req_prev = NULL; 656 } 657 658 /* 659 * concatenate a specified queue with the cleanupq. the specified 660 * queue is put onto the tail of the cleanupq. all elements on the 661 * specified queue should have their aio_req_flags field cleared. 662 */ 663 /*ARGSUSED*/ 664 void 665 aio_cleanupq_concat(aio_t *aiop, aio_req_t *q2, int qflg) 666 { 667 aio_req_t *cleanupqhead, *q2tail; 668 aio_req_t *reqp = q2; 669 670 do { 671 ASSERT(reqp->aio_req_flags & qflg); 672 reqp->aio_req_flags &= ~qflg; 673 reqp->aio_req_flags |= AIO_CLEANUPQ; 674 } while ((reqp = reqp->aio_req_next) != q2); 675 676 cleanupqhead = aiop->aio_cleanupq; 677 if (cleanupqhead == NULL) 678 aiop->aio_cleanupq = q2; 679 else { 680 cleanupqhead->aio_req_prev->aio_req_next = q2; 681 q2tail = q2->aio_req_prev; 682 q2tail->aio_req_next = cleanupqhead; 683 q2->aio_req_prev = cleanupqhead->aio_req_prev; 684 cleanupqhead->aio_req_prev = q2tail; 685 } 686 } 687 688 /* 689 * cleanup aio requests that are on the per-process poll queue. 690 */ 691 void 692 aio_cleanup(int flag) 693 { 694 aio_t *aiop = curproc->p_aio; 695 aio_req_t *pollqhead, *cleanupqhead, *notifyqhead; 696 aio_req_t *cleanupport; 697 aio_req_t *portq = NULL; 698 void (*func)(); 699 int signalled = 0; 700 int qflag = 0; 701 int exitflg; 702 703 ASSERT(aiop != NULL); 704 705 if (flag == AIO_CLEANUP_EXIT) 706 exitflg = AIO_CLEANUP_EXIT; 707 else 708 exitflg = 0; 709 710 /* 711 * We need to get the aio_cleanupq_mutex because we are calling 712 * aio_cleanup_cleanupq() 713 */ 714 mutex_enter(&aiop->aio_cleanupq_mutex); 715 /* 716 * take all the requests off the cleanupq, the notifyq, 717 * and the pollq. 718 */ 719 mutex_enter(&aiop->aio_mutex); 720 if ((cleanupqhead = aiop->aio_cleanupq) != NULL) { 721 aiop->aio_cleanupq = NULL; 722 qflag++; 723 } 724 if ((notifyqhead = aiop->aio_notifyq) != NULL) { 725 aiop->aio_notifyq = NULL; 726 qflag++; 727 } 728 if ((pollqhead = aiop->aio_pollq) != NULL) { 729 aiop->aio_pollq = NULL; 730 qflag++; 731 } 732 if (flag) { 733 if ((portq = aiop->aio_portq) != NULL) 734 qflag++; 735 736 if ((cleanupport = aiop->aio_portcleanupq) != NULL) { 737 aiop->aio_portcleanupq = NULL; 738 qflag++; 739 } 740 } 741 mutex_exit(&aiop->aio_mutex); 742 743 /* 744 * return immediately if cleanupq, pollq, and 745 * notifyq are all empty. someone else must have 746 * emptied them. 747 */ 748 if (!qflag) { 749 mutex_exit(&aiop->aio_cleanupq_mutex); 750 return; 751 } 752 753 /* 754 * do cleanup for the various queues. 755 */ 756 if (cleanupqhead) 757 signalled = aio_cleanup_cleanupq(aiop, cleanupqhead, exitflg); 758 mutex_exit(&aiop->aio_cleanupq_mutex); 759 if (notifyqhead) 760 signalled = aio_cleanup_notifyq(aiop, notifyqhead, exitflg); 761 if (pollqhead) 762 aio_cleanup_pollq(aiop, pollqhead, exitflg); 763 if (flag && (cleanupport || portq)) 764 aio_cleanup_portq(aiop, cleanupport, exitflg); 765 766 if (exitflg) 767 return; 768 769 /* 770 * If we have an active aio_cleanup_thread it's possible for 771 * this routine to push something on to the done queue after 772 * an aiowait/aiosuspend thread has already decided to block. 773 * This being the case, we need a cv_broadcast here to wake 774 * these threads up. It is simpler and cleaner to do this 775 * broadcast here than in the individual cleanup routines. 776 */ 777 778 mutex_enter(&aiop->aio_mutex); 779 /* 780 * If there has never been an old solaris aio request 781 * issued by this process, then do not send a SIGIO signal. 782 */ 783 if (!(aiop->aio_flags & AIO_SOLARIS_REQ)) 784 signalled = 1; 785 cv_broadcast(&aiop->aio_waitcv); 786 mutex_exit(&aiop->aio_mutex); 787 788 /* 789 * Only if the process wasn't already signalled, 790 * determine if a SIGIO signal should be delievered. 791 */ 792 if (!signalled && 793 (func = PTOU(curproc)->u_signal[SIGIO - 1]) != SIG_DFL && 794 func != SIG_IGN) 795 psignal(curproc, SIGIO); 796 } 797 798 799 /* 800 * Do cleanup for every element of the port cleanup queue. 801 */ 802 static void 803 aio_cleanup_portq(aio_t *aiop, aio_req_t *cleanupq, int exitflag) 804 { 805 aio_req_t *reqp; 806 aio_req_t *next; 807 aio_req_t *headp; 808 aio_lio_t *liop; 809 810 /* first check the portq */ 811 if (exitflag || ((aiop->aio_flags & AIO_CLEANUP_PORT) == 0)) { 812 mutex_enter(&aiop->aio_mutex); 813 if (aiop->aio_flags & AIO_CLEANUP) 814 aiop->aio_flags |= AIO_CLEANUP_PORT; 815 mutex_exit(&aiop->aio_mutex); 816 817 /* 818 * It is not allowed to hold locks during aphysio_unlock(). 819 * The aio_done() interrupt function will try to acquire 820 * aio_mutex and aio_portq_mutex. Therefore we disconnect 821 * the portq list from the aiop for the duration of the 822 * aphysio_unlock() loop below. 823 */ 824 mutex_enter(&aiop->aio_portq_mutex); 825 headp = aiop->aio_portq; 826 aiop->aio_portq = NULL; 827 mutex_exit(&aiop->aio_portq_mutex); 828 if ((reqp = headp) != NULL) { 829 do { 830 next = reqp->aio_req_next; 831 aphysio_unlock(reqp); 832 if (exitflag) { 833 mutex_enter(&aiop->aio_mutex); 834 aio_req_free(aiop, reqp); 835 mutex_exit(&aiop->aio_mutex); 836 } 837 } while ((reqp = next) != headp); 838 } 839 840 if (headp != NULL && exitflag == 0) { 841 /* move unlocked requests back to the port queue */ 842 aio_req_t *newq; 843 844 mutex_enter(&aiop->aio_portq_mutex); 845 if ((newq = aiop->aio_portq) != NULL) { 846 aio_req_t *headprev = headp->aio_req_prev; 847 aio_req_t *newqprev = newq->aio_req_prev; 848 849 headp->aio_req_prev = newqprev; 850 newq->aio_req_prev = headprev; 851 headprev->aio_req_next = newq; 852 newqprev->aio_req_next = headp; 853 } 854 aiop->aio_portq = headp; 855 cv_broadcast(&aiop->aio_portcv); 856 mutex_exit(&aiop->aio_portq_mutex); 857 } 858 } 859 860 /* now check the port cleanup queue */ 861 if ((reqp = cleanupq) == NULL) 862 return; 863 do { 864 next = reqp->aio_req_next; 865 aphysio_unlock(reqp); 866 if (exitflag) { 867 mutex_enter(&aiop->aio_mutex); 868 aio_req_free(aiop, reqp); 869 mutex_exit(&aiop->aio_mutex); 870 } else { 871 mutex_enter(&aiop->aio_portq_mutex); 872 aio_enq(&aiop->aio_portq, reqp, 0); 873 mutex_exit(&aiop->aio_portq_mutex); 874 port_send_event(reqp->aio_req_portkev); 875 if ((liop = reqp->aio_req_lio) != NULL) { 876 int send_event = 0; 877 878 mutex_enter(&aiop->aio_mutex); 879 ASSERT(liop->lio_refcnt > 0); 880 if (--liop->lio_refcnt == 0) { 881 if (liop->lio_port >= 0 && 882 liop->lio_portkev) { 883 liop->lio_port = -1; 884 send_event = 1; 885 } 886 } 887 mutex_exit(&aiop->aio_mutex); 888 if (send_event) 889 port_send_event(liop->lio_portkev); 890 } 891 } 892 } while ((reqp = next) != cleanupq); 893 } 894 895 /* 896 * Do cleanup for every element of the cleanupq. 897 */ 898 static int 899 aio_cleanup_cleanupq(aio_t *aiop, aio_req_t *qhead, int exitflg) 900 { 901 aio_req_t *reqp, *next; 902 int signalled = 0; 903 904 ASSERT(MUTEX_HELD(&aiop->aio_cleanupq_mutex)); 905 906 /* 907 * Since aio_req_done() or aio_req_find() use the HASH list to find 908 * the required requests, they could potentially take away elements 909 * if they are already done (AIO_DONEQ is set). 910 * The aio_cleanupq_mutex protects the queue for the duration of the 911 * loop from aio_req_done() and aio_req_find(). 912 */ 913 if ((reqp = qhead) == NULL) 914 return (0); 915 do { 916 ASSERT(reqp->aio_req_flags & AIO_CLEANUPQ); 917 ASSERT(reqp->aio_req_portkev == NULL); 918 next = reqp->aio_req_next; 919 aphysio_unlock(reqp); 920 mutex_enter(&aiop->aio_mutex); 921 if (exitflg) 922 aio_req_free(aiop, reqp); 923 else 924 aio_enq(&aiop->aio_doneq, reqp, AIO_DONEQ); 925 if (!exitflg) { 926 if (reqp->aio_req_flags & AIO_SIGNALLED) 927 signalled++; 928 else 929 reqp->aio_req_flags |= AIO_SIGNALLED; 930 } 931 mutex_exit(&aiop->aio_mutex); 932 } while ((reqp = next) != qhead); 933 return (signalled); 934 } 935 936 /* 937 * do cleanup for every element of the notify queue. 938 */ 939 static int 940 aio_cleanup_notifyq(aio_t *aiop, aio_req_t *qhead, int exitflg) 941 { 942 aio_req_t *reqp, *next; 943 aio_lio_t *liohead; 944 sigqueue_t *sigev, *lio_sigev = NULL; 945 int signalled = 0; 946 947 if ((reqp = qhead) == NULL) 948 return (0); 949 do { 950 ASSERT(reqp->aio_req_flags & AIO_NOTIFYQ); 951 next = reqp->aio_req_next; 952 aphysio_unlock(reqp); 953 if (exitflg) { 954 mutex_enter(&aiop->aio_mutex); 955 aio_req_free(aiop, reqp); 956 mutex_exit(&aiop->aio_mutex); 957 } else { 958 mutex_enter(&aiop->aio_mutex); 959 aio_enq(&aiop->aio_doneq, reqp, AIO_DONEQ); 960 sigev = reqp->aio_req_sigqp; 961 reqp->aio_req_sigqp = NULL; 962 if ((liohead = reqp->aio_req_lio) != NULL) { 963 ASSERT(liohead->lio_refcnt > 0); 964 if (--liohead->lio_refcnt == 0) { 965 cv_signal(&liohead->lio_notify); 966 lio_sigev = liohead->lio_sigqp; 967 liohead->lio_sigqp = NULL; 968 } 969 } 970 mutex_exit(&aiop->aio_mutex); 971 if (sigev) { 972 signalled++; 973 aio_sigev_send(reqp->aio_req_buf.b_proc, 974 sigev); 975 } 976 if (lio_sigev) { 977 signalled++; 978 aio_sigev_send(reqp->aio_req_buf.b_proc, 979 lio_sigev); 980 } 981 } 982 } while ((reqp = next) != qhead); 983 984 return (signalled); 985 } 986 987 /* 988 * Do cleanup for every element of the poll queue. 989 */ 990 static void 991 aio_cleanup_pollq(aio_t *aiop, aio_req_t *qhead, int exitflg) 992 { 993 aio_req_t *reqp, *next; 994 995 /* 996 * As no other threads should be accessing the queue at this point, 997 * it isn't necessary to hold aio_mutex while we traverse its elements. 998 */ 999 if ((reqp = qhead) == NULL) 1000 return; 1001 do { 1002 ASSERT(reqp->aio_req_flags & AIO_POLLQ); 1003 next = reqp->aio_req_next; 1004 aphysio_unlock(reqp); 1005 if (exitflg) { 1006 mutex_enter(&aiop->aio_mutex); 1007 aio_req_free(aiop, reqp); 1008 mutex_exit(&aiop->aio_mutex); 1009 } else { 1010 aio_copyout_result(reqp); 1011 mutex_enter(&aiop->aio_mutex); 1012 aio_enq(&aiop->aio_doneq, reqp, AIO_DONEQ); 1013 mutex_exit(&aiop->aio_mutex); 1014 } 1015 } while ((reqp = next) != qhead); 1016 } 1017 1018 /* 1019 * called by exit(). waits for all outstanding kaio to finish 1020 * before the kaio resources are freed. 1021 */ 1022 void 1023 aio_cleanup_exit(void) 1024 { 1025 proc_t *p = curproc; 1026 aio_t *aiop = p->p_aio; 1027 aio_req_t *reqp, *next, *head; 1028 aio_lio_t *nxtlio, *liop; 1029 1030 /* 1031 * wait for all outstanding kaio to complete. process 1032 * is now single-threaded; no other kaio requests can 1033 * happen once aio_pending is zero. 1034 */ 1035 mutex_enter(&aiop->aio_mutex); 1036 aiop->aio_flags |= AIO_CLEANUP; 1037 while ((aiop->aio_pending != 0) || (aiop->aio_flags & AIO_DONE_ACTIVE)) 1038 cv_wait(&aiop->aio_cleanupcv, &aiop->aio_mutex); 1039 mutex_exit(&aiop->aio_mutex); 1040 1041 /* cleanup the cleanup-thread queues. */ 1042 aio_cleanup(AIO_CLEANUP_EXIT); 1043 1044 /* 1045 * Although this process is now single-threaded, we 1046 * still need to protect ourselves against a race with 1047 * aio_cleanup_dr_delete_memory(). 1048 */ 1049 mutex_enter(&p->p_lock); 1050 1051 /* 1052 * free up the done queue's resources. 1053 */ 1054 if ((head = aiop->aio_doneq) != NULL) { 1055 aiop->aio_doneq = NULL; 1056 reqp = head; 1057 do { 1058 next = reqp->aio_req_next; 1059 aphysio_unlock(reqp); 1060 kmem_free(reqp, sizeof (struct aio_req_t)); 1061 } while ((reqp = next) != head); 1062 } 1063 /* 1064 * release aio request freelist. 1065 */ 1066 for (reqp = aiop->aio_free; reqp != NULL; reqp = next) { 1067 next = reqp->aio_req_next; 1068 kmem_free(reqp, sizeof (struct aio_req_t)); 1069 } 1070 1071 /* 1072 * release io list head freelist. 1073 */ 1074 for (liop = aiop->aio_lio_free; liop != NULL; liop = nxtlio) { 1075 nxtlio = liop->lio_next; 1076 kmem_free(liop, sizeof (aio_lio_t)); 1077 } 1078 1079 if (aiop->aio_iocb) 1080 kmem_free(aiop->aio_iocb, aiop->aio_iocbsz); 1081 1082 mutex_destroy(&aiop->aio_mutex); 1083 mutex_destroy(&aiop->aio_portq_mutex); 1084 mutex_destroy(&aiop->aio_cleanupq_mutex); 1085 p->p_aio = NULL; 1086 mutex_exit(&p->p_lock); 1087 kmem_free(aiop, sizeof (struct aio)); 1088 } 1089 1090 /* 1091 * copy out aio request's result to a user-level result_t buffer. 1092 */ 1093 void 1094 aio_copyout_result(aio_req_t *reqp) 1095 { 1096 struct buf *bp; 1097 struct iovec *iov; 1098 void *resultp; 1099 int error; 1100 size_t retval; 1101 1102 if (reqp->aio_req_flags & AIO_COPYOUTDONE) 1103 return; 1104 1105 reqp->aio_req_flags |= AIO_COPYOUTDONE; 1106 1107 iov = reqp->aio_req_uio.uio_iov; 1108 bp = &reqp->aio_req_buf; 1109 /* "resultp" points to user-level result_t buffer */ 1110 resultp = (void *)reqp->aio_req_resultp; 1111 if (bp->b_flags & B_ERROR) { 1112 if (bp->b_error) 1113 error = bp->b_error; 1114 else 1115 error = EIO; 1116 retval = (size_t)-1; 1117 } else { 1118 error = 0; 1119 retval = iov->iov_len - bp->b_resid; 1120 } 1121 #ifdef _SYSCALL32_IMPL 1122 if (get_udatamodel() == DATAMODEL_NATIVE) { 1123 (void) sulword(&((aio_result_t *)resultp)->aio_return, retval); 1124 (void) suword32(&((aio_result_t *)resultp)->aio_errno, error); 1125 } else { 1126 (void) suword32(&((aio_result32_t *)resultp)->aio_return, 1127 (int)retval); 1128 (void) suword32(&((aio_result32_t *)resultp)->aio_errno, error); 1129 } 1130 #else 1131 (void) suword32(&((aio_result_t *)resultp)->aio_return, retval); 1132 (void) suword32(&((aio_result_t *)resultp)->aio_errno, error); 1133 #endif 1134 } 1135 1136 1137 void 1138 aio_copyout_result_port(struct iovec *iov, struct buf *bp, void *resultp) 1139 { 1140 int errno; 1141 size_t retval; 1142 1143 if (bp->b_flags & B_ERROR) { 1144 if (bp->b_error) 1145 errno = bp->b_error; 1146 else 1147 errno = EIO; 1148 retval = (size_t)-1; 1149 } else { 1150 errno = 0; 1151 retval = iov->iov_len - bp->b_resid; 1152 } 1153 #ifdef _SYSCALL32_IMPL 1154 if (get_udatamodel() == DATAMODEL_NATIVE) { 1155 (void) sulword(&((aio_result_t *)resultp)->aio_return, retval); 1156 (void) suword32(&((aio_result_t *)resultp)->aio_errno, errno); 1157 } else { 1158 (void) suword32(&((aio_result32_t *)resultp)->aio_return, 1159 (int)retval); 1160 (void) suword32(&((aio_result32_t *)resultp)->aio_errno, errno); 1161 } 1162 #else 1163 (void) suword32(&((aio_result_t *)resultp)->aio_return, retval); 1164 (void) suword32(&((aio_result_t *)resultp)->aio_errno, errno); 1165 #endif 1166 } 1167 1168 /* 1169 * This function is used to remove a request from the done queue. 1170 */ 1171 1172 void 1173 aio_req_remove_portq(aio_t *aiop, aio_req_t *reqp) 1174 { 1175 ASSERT(MUTEX_HELD(&aiop->aio_portq_mutex)); 1176 while (aiop->aio_portq == NULL) { 1177 /* 1178 * aio_portq is set to NULL when aio_cleanup_portq() 1179 * is working with the event queue. 1180 * The aio_cleanup_thread() uses aio_cleanup_portq() 1181 * to unlock all AIO buffers with completed transactions. 1182 * Wait here until aio_cleanup_portq() restores the 1183 * list of completed transactions in aio_portq. 1184 */ 1185 cv_wait(&aiop->aio_portcv, &aiop->aio_portq_mutex); 1186 } 1187 aio_deq(&aiop->aio_portq, reqp); 1188 } 1189 1190 /* ARGSUSED */ 1191 void 1192 aio_close_port(void *arg, int port, pid_t pid, int lastclose) 1193 { 1194 aio_t *aiop; 1195 aio_req_t *reqp; 1196 aio_req_t *next; 1197 aio_req_t *headp; 1198 int counter; 1199 1200 if (arg == NULL) 1201 aiop = curproc->p_aio; 1202 else 1203 aiop = (aio_t *)arg; 1204 1205 /* 1206 * The PORT_SOURCE_AIO source is always associated with every new 1207 * created port by default. 1208 * If no asynchronous I/O transactions were associated with the port 1209 * then the aiop pointer will still be set to NULL. 1210 */ 1211 if (aiop == NULL) 1212 return; 1213 1214 /* 1215 * Within a process event ports can be used to collect events other 1216 * than PORT_SOURCE_AIO events. At the same time the process can submit 1217 * asynchronous I/Os transactions which are not associated with the 1218 * current port. 1219 * The current process oriented model of AIO uses a sigle queue for 1220 * pending events. On close the pending queue (queue of asynchronous 1221 * I/O transactions using event port notification) must be scanned 1222 * to detect and handle pending I/Os using the current port. 1223 */ 1224 mutex_enter(&aiop->aio_portq_mutex); 1225 mutex_enter(&aiop->aio_mutex); 1226 counter = 0; 1227 if ((headp = aiop->aio_portpending) != NULL) { 1228 reqp = headp; 1229 do { 1230 if (reqp->aio_req_portkev && 1231 reqp->aio_req_port == port) { 1232 reqp->aio_req_flags |= AIO_CLOSE_PORT; 1233 counter++; 1234 } 1235 } while ((reqp = reqp->aio_req_next) != headp); 1236 } 1237 if (counter == 0) { 1238 /* no AIOs pending */ 1239 mutex_exit(&aiop->aio_mutex); 1240 mutex_exit(&aiop->aio_portq_mutex); 1241 return; 1242 } 1243 aiop->aio_portpendcnt += counter; 1244 mutex_exit(&aiop->aio_mutex); 1245 while (aiop->aio_portpendcnt) 1246 cv_wait(&aiop->aio_portcv, &aiop->aio_portq_mutex); 1247 1248 /* 1249 * all pending AIOs are completed. 1250 * check port doneq 1251 */ 1252 headp = NULL; 1253 if ((reqp = aiop->aio_portq) != NULL) { 1254 do { 1255 next = reqp->aio_req_next; 1256 if (reqp->aio_req_port == port) { 1257 /* dequeue request and discard event */ 1258 aio_req_remove_portq(aiop, reqp); 1259 port_free_event(reqp->aio_req_portkev); 1260 /* put request in temporary queue */ 1261 reqp->aio_req_next = headp; 1262 headp = reqp; 1263 } 1264 } while ((reqp = next) != aiop->aio_portq); 1265 } 1266 mutex_exit(&aiop->aio_portq_mutex); 1267 1268 /* headp points to the list of requests to be discarded */ 1269 for (reqp = headp; reqp != NULL; reqp = next) { 1270 next = reqp->aio_req_next; 1271 aphysio_unlock(reqp); 1272 mutex_enter(&aiop->aio_mutex); 1273 aio_req_free_port(aiop, reqp); 1274 mutex_exit(&aiop->aio_mutex); 1275 } 1276 1277 if (aiop->aio_flags & AIO_CLEANUP) 1278 cv_broadcast(&aiop->aio_waitcv); 1279 } 1280 1281 /* 1282 * aio_cleanup_dr_delete_memory is used by dr's delete_memory_thread 1283 * to kick start the aio_cleanup_thread for the give process to do the 1284 * necessary cleanup. 1285 * This is needed so that delete_memory_thread can obtain writer locks 1286 * on pages that need to be relocated during a dr memory delete operation, 1287 * otherwise a deadly embrace may occur. 1288 */ 1289 int 1290 aio_cleanup_dr_delete_memory(proc_t *procp) 1291 { 1292 struct aio *aiop = procp->p_aio; 1293 struct as *as = procp->p_as; 1294 int ret = 0; 1295 1296 ASSERT(MUTEX_HELD(&procp->p_lock)); 1297 1298 mutex_enter(&as->a_contents); 1299 1300 if (aiop != NULL) { 1301 aiop->aio_rqclnup = 1; 1302 cv_broadcast(&as->a_cv); 1303 ret = 1; 1304 } 1305 mutex_exit(&as->a_contents); 1306 return (ret); 1307 } 1308