1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Kernel's linker/loader 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/kmem.h> 36 #include <sys/reboot.h> 37 #include <sys/bootconf.h> 38 #include <sys/debug.h> 39 #include <sys/uio.h> 40 #include <sys/file.h> 41 #include <sys/vnode.h> 42 #include <sys/user.h> 43 #include <sys/mman.h> 44 #include <vm/as.h> 45 #include <vm/seg_kp.h> 46 #include <vm/seg_kmem.h> 47 #include <sys/elf.h> 48 #include <sys/elf_notes.h> 49 #include <sys/vmsystm.h> 50 #include <sys/kdi.h> 51 #include <sys/atomic.h> 52 #include <sys/kmdb.h> 53 54 #include <sys/link.h> 55 #include <sys/kobj.h> 56 #include <sys/ksyms.h> 57 #include <sys/disp.h> 58 #include <sys/modctl.h> 59 #include <sys/varargs.h> 60 #include <sys/kstat.h> 61 #include <sys/kobj_impl.h> 62 #include <sys/fs/decomp.h> 63 #include <sys/callb.h> 64 #include <sys/cmn_err.h> 65 #include <sys/tnf_probe.h> 66 #include <sys/zmod.h> 67 68 #include <krtld/reloc.h> 69 #include <krtld/kobj_kdi.h> 70 #include <sys/sha1.h> 71 #include <sys/crypto/elfsign.h> 72 73 #if !defined(_OBP) 74 #include <sys/bootvfs.h> 75 #endif 76 77 /* 78 * do_symbols() error codes 79 */ 80 #define DOSYM_UNDEF -1 /* undefined symbol */ 81 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ 82 83 #if !defined(_OBP) 84 static void synthetic_bootaux(char *, val_t *); 85 #endif 86 87 static struct module *load_exec(val_t *, char *); 88 static void load_linker(val_t *); 89 static struct modctl *add_primary(const char *filename, int); 90 static int bind_primary(val_t *, int); 91 static int load_primary(struct module *, int); 92 static int load_kmdb(val_t *); 93 static int get_progbits(struct module *, struct _buf *); 94 static int get_syms(struct module *, struct _buf *); 95 static int get_ctf(struct module *, struct _buf *); 96 static void get_signature(struct module *, struct _buf *); 97 static int do_common(struct module *); 98 static void add_dependent(struct module *, struct module *); 99 static int do_dependents(struct modctl *, char *, size_t); 100 static int do_symbols(struct module *, Elf64_Addr); 101 static void module_assign(struct modctl *, struct module *); 102 static void free_module_data(struct module *); 103 static char *depends_on(struct module *); 104 static char *getmodpath(const char *); 105 static char *basename(char *); 106 static void attr_val(val_t *); 107 static char *find_libmacro(char *); 108 static char *expand_libmacro(char *, char *, char *); 109 static int read_bootflags(void); 110 static int kobj_comp_setup(struct _buf *, struct compinfo *); 111 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); 112 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); 113 static int kobj_boot_open(char *, int); 114 static int kobj_boot_close(int); 115 static int kobj_boot_seek(int, off_t, off_t); 116 static int kobj_boot_read(int, caddr_t, size_t); 117 static int kobj_boot_fstat(int, struct bootstat *); 118 static int kobj_boot_compinfo(int, struct compinfo *); 119 120 static Sym *lookup_one(struct module *, const char *); 121 static void sym_insert(struct module *, char *, symid_t); 122 static Sym *sym_lookup(struct module *, Sym *); 123 124 static struct kobjopen_tctl *kobjopen_alloc(char *filename); 125 static void kobjopen_free(struct kobjopen_tctl *ltp); 126 static void kobjopen_thread(struct kobjopen_tctl *ltp); 127 static int kobj_is_compressed(intptr_t); 128 129 extern int kcopy(const void *, void *, size_t); 130 extern int elf_mach_ok(Ehdr *); 131 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); 132 133 #if !defined(_OBP) 134 extern int kobj_boot_mountroot(void); 135 #endif 136 137 static void tnf_unsplice_probes(uint_t, struct modctl *); 138 extern tnf_probe_control_t *__tnf_probe_list_head; 139 extern tnf_tag_data_t *__tnf_tag_list_head; 140 141 extern int modrootloaded; 142 extern int swaploaded; 143 extern int bop_io_quiesced; 144 extern int last_module_id; 145 146 extern char stubs_base[]; 147 extern char stubs_end[]; 148 149 #ifdef KOBJ_DEBUG 150 /* 151 * Values that can be or'd in to kobj_debug and their effects: 152 * 153 * D_DEBUG - misc. debugging information. 154 * D_SYMBOLS - list symbols and their values as they are entered 155 * into the hash table 156 * D_RELOCATIONS - display relocation processing information 157 * D_LOADING - display information about each module as it 158 * is loaded. 159 */ 160 int kobj_debug = 0; 161 162 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ 163 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) 164 #else 165 #define KOBJ_MARK(s) /* discard */ 166 #endif 167 168 #define MODPATH_PROPNAME "module-path" 169 170 #ifdef MODDIR_SUFFIX 171 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; 172 #else 173 #define slash_moddir_suffix_slash "" 174 #endif 175 176 #define _moddebug get_weakish_int(&moddebug) 177 #define _modrootloaded get_weakish_int(&modrootloaded) 178 #define _swaploaded get_weakish_int(&swaploaded) 179 #define _ioquiesced get_weakish_int(&bop_io_quiesced) 180 181 #define mod(X) (struct module *)((X)->modl_modp->mod_mp) 182 183 void *romp; /* rom vector (opaque to us) */ 184 struct bootops *ops; /* bootops vector */ 185 void *dbvec; /* debug vector */ 186 187 /* 188 * kobjopen thread control structure 189 */ 190 struct kobjopen_tctl { 191 ksema_t sema; 192 char *name; /* name of file */ 193 struct vnode *vp; /* vnode return from vn_open() */ 194 int Errno; /* error return from vnopen */ 195 }; 196 197 /* 198 * Structure for defining dynamically expandable library macros 199 */ 200 201 struct lib_macro_info { 202 char *lmi_list; /* ptr to list of possible choices */ 203 char *lmi_macroname; /* pointer to macro name */ 204 ushort_t lmi_ba_index; /* index into bootaux vector */ 205 ushort_t lmi_macrolen; /* macro length */ 206 } libmacros[] = { 207 { NULL, "CPU", BA_CPU, 0 }, 208 { NULL, "MMU", BA_MMU, 0 } 209 }; 210 211 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) 212 213 char *boot_cpu_compatible_list; /* make $CPU available */ 214 215 char *kobj_module_path; /* module search path */ 216 vmem_t *text_arena; /* module text arena */ 217 static vmem_t *data_arena; /* module data & bss arena */ 218 static vmem_t *ctf_arena; /* CTF debug data arena */ 219 static struct modctl *kobj_modules = NULL; /* modules loaded */ 220 int kobj_mmu_pagesize; /* system pagesize */ 221 static int lg_pagesize; /* "large" pagesize */ 222 static int kobj_last_module_id = 0; /* id assignment */ 223 static kmutex_t kobj_lock; /* protects mach memory list */ 224 225 /* 226 * The following functions have been implemented by the kernel. 227 * However, many 3rd party drivers provide their own implementations 228 * of these functions. When such drivers are loaded, messages 229 * indicating that these symbols have been multiply defined will be 230 * emitted to the console. To avoid alarming customers for no good 231 * reason, we simply suppress such warnings for the following set of 232 * functions. 233 */ 234 static char *suppress_sym_list[] = 235 { 236 "strstr", 237 "strncat", 238 "strlcat", 239 "strlcpy", 240 "strspn", 241 "memcpy", 242 "memset", 243 "memmove", 244 "memcmp", 245 "memchr", 246 "__udivdi3", 247 "__divdi3", 248 "__umoddi3", 249 "__moddi3", 250 NULL /* This entry must exist */ 251 }; 252 253 /* indexed by KOBJ_NOTIFY_* */ 254 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; 255 256 /* 257 * TNF probe management globals 258 */ 259 tnf_probe_control_t *__tnf_probe_list_head = NULL; 260 tnf_tag_data_t *__tnf_tag_list_head = NULL; 261 int tnf_changed_probe_list = 0; 262 263 /* 264 * Prefix for statically defined tracing (SDT) DTrace probes. 265 */ 266 const char *sdt_prefix = "__dtrace_probe_"; 267 268 /* 269 * Beginning and end of the kernel's dynamic text/data segments. 270 */ 271 static caddr_t _text; 272 static caddr_t _etext; 273 static caddr_t _data; 274 275 /* 276 * The sparc linker doesn't create a memory location 277 * for a variable named _edata, so _edata can only be 278 * referred to, not modified. krtld needs a static 279 * variable to modify it - within krtld, of course - 280 * outside of krtld, e_data is used in all kernels. 281 */ 282 #if defined(__sparc) 283 static caddr_t _edata; 284 #else 285 extern caddr_t _edata; 286 #endif 287 288 Addr dynseg = 0; /* load address of "dynamic" segment */ 289 size_t dynsize; /* "dynamic" segment size */ 290 291 292 int standalone = 1; /* an unwholey kernel? */ 293 int use_iflush; /* iflush after relocations */ 294 295 /* 296 * _kobj_printf() 297 * 298 * Common printf function pointer. Can handle only one conversion 299 * specification in the format string. Some of the functions invoked 300 * through this function pointer cannot handle more that one conversion 301 * specification in the format string. 302 */ 303 void (*_kobj_printf)(void *, const char *, ...); /* printf routine */ 304 305 /* 306 * Standalone function pointers for use within krtld. 307 * Many platforms implement optimized platmod versions of 308 * utilities such as bcopy and any such are not yet available 309 * until the kernel is more completely stitched together. 310 * See kobj_impl.h 311 */ 312 void (*kobj_bcopy)(const void *, void *, size_t); 313 void (*kobj_bzero)(void *, size_t); 314 size_t (*kobj_strlcat)(char *, const char *, size_t); 315 316 static kobj_stat_t kobj_stat; 317 318 #define MINALIGN 8 /* at least a double-word */ 319 320 int 321 get_weakish_int(int *ip) 322 { 323 if (standalone) 324 return (0); 325 return (ip == NULL ? 0 : *ip); 326 } 327 328 static void * 329 get_weakish_pointer(void **ptrp) 330 { 331 if (standalone) 332 return (0); 333 return (ptrp == NULL ? 0 : *ptrp); 334 } 335 336 /* 337 * XXX fix dependencies on "kernel"; this should work 338 * for other standalone binaries as well. 339 * 340 * XXX Fix hashing code to use one pointer to 341 * hash entries. 342 * |----------| 343 * | nbuckets | 344 * |----------| 345 * | nchains | 346 * |----------| 347 * | bucket[] | 348 * |----------| 349 * | chain[] | 350 * |----------| 351 */ 352 353 /* 354 * Load, bind and relocate all modules that 355 * form the primary kernel. At this point, our 356 * externals have not been relocated. 357 */ 358 void 359 kobj_init( 360 void *romvec, 361 void *dvec, 362 struct bootops *bootvec, 363 val_t *bootaux) 364 { 365 struct module *mp; 366 struct modctl *modp; 367 Addr entry; 368 char filename[MAXPATHLEN]; 369 370 /* 371 * Save these to pass on to 372 * the booted standalone. 373 */ 374 romp = romvec; 375 dbvec = dvec; 376 377 ops = bootvec; 378 kobj_setup_standalone_vectors(); 379 380 KOBJ_MARK("Entered kobj_init()"); 381 382 (void) BOP_GETPROP(ops, "whoami", filename); 383 384 /* 385 * We don't support standalone debuggers anymore. The use of kadb 386 * will interfere with the later use of kmdb. Let the user mend 387 * their ways now. Users will reach this message if they still 388 * have the kadb binary on their system (perhaps they used an old 389 * bfu, or maybe they intentionally copied it there) and have 390 * specified its use in a way that eluded our checking in the boot 391 * program. 392 */ 393 if (dvec != NULL) { 394 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " 395 "kadb are no longer supported\n\n"); 396 goto fail; 397 } 398 399 #if defined(_OBP) 400 /* 401 * OBP allows us to read both the ramdisk and 402 * the underlying root fs when root is a disk. 403 * This can lower incidences of unbootable systems 404 * when the archive is out-of-date with the /etc 405 * state files. 406 */ 407 if (BOP_MOUNTROOT() != BOOT_SVC_OK) { 408 _kobj_printf(ops, "can't mount boot fs\n"); 409 goto fail; 410 } 411 #else 412 { 413 /* on x86, we always boot with a ramdisk */ 414 (void) kobj_boot_mountroot(); 415 416 /* 417 * Now that the ramdisk is mounted, finish boot property 418 * initialization. 419 */ 420 boot_prop_finish(); 421 } 422 423 #if !defined(_UNIX_KRTLD) 424 /* 425 * 'unix' is linked together with 'krtld' into one executable and 426 * the early boot code does -not- hand us any of the dynamic metadata 427 * about the executable. In particular, it does not read in, map or 428 * otherwise look at the program headers. We fake all that up now. 429 * 430 * We do this early as DTrace static probes and tnf probes both call 431 * undefined references. We have to process those relocations before 432 * calling any of them. 433 * 434 * OBP tells kobj_start() where the ELF image is in memory, so it 435 * synthesized bootaux before kobj_init() was called 436 */ 437 if (bootaux[BA_PHDR].ba_ptr == NULL) 438 synthetic_bootaux(filename, bootaux); 439 440 #endif /* !_UNIX_KRTLD */ 441 #endif /* _OBP */ 442 443 /* 444 * Save the interesting attribute-values 445 * (scanned by kobj_boot). 446 */ 447 attr_val(bootaux); 448 449 /* 450 * Set the module search path. 451 */ 452 kobj_module_path = getmodpath(filename); 453 454 boot_cpu_compatible_list = find_libmacro("CPU"); 455 456 /* 457 * These two modules have actually been 458 * loaded by boot, but we finish the job 459 * by introducing them into the world of 460 * loadable modules. 461 */ 462 463 mp = load_exec(bootaux, filename); 464 load_linker(bootaux); 465 466 /* 467 * Load all the primary dependent modules. 468 */ 469 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) 470 goto fail; 471 472 /* 473 * Glue it together. 474 */ 475 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) 476 goto fail; 477 478 entry = bootaux[BA_ENTRY].ba_val; 479 480 /* 481 * Get the boot flags 482 */ 483 bootflags(ops); 484 485 if (boothowto & RB_VERBOSE) 486 kobj_lm_dump(KOBJ_LM_PRIMARY); 487 488 kobj_kdi_init(); 489 490 if (boothowto & RB_KMDB) { 491 if (load_kmdb(bootaux) < 0) 492 goto fail; 493 } 494 495 /* 496 * Post setup. 497 */ 498 s_text = _text; 499 e_text = _etext; 500 s_data = _data; 501 e_data = _edata; 502 503 kobj_sync_instruction_memory(s_text, e_text - s_text); 504 505 #ifdef KOBJ_DEBUG 506 if (kobj_debug & D_DEBUG) 507 _kobj_printf(ops, 508 "krtld: transferring control to: 0x%p\n", entry); 509 #endif 510 511 /* 512 * Make sure the mod system knows about the modules already loaded. 513 */ 514 last_module_id = kobj_last_module_id; 515 bcopy(kobj_modules, &modules, sizeof (modules)); 516 modp = &modules; 517 do { 518 if (modp->mod_next == kobj_modules) 519 modp->mod_next = &modules; 520 if (modp->mod_prev == kobj_modules) 521 modp->mod_prev = &modules; 522 } while ((modp = modp->mod_next) != &modules); 523 524 standalone = 0; 525 526 #ifdef KOBJ_DEBUG 527 if (kobj_debug & D_DEBUG) 528 _kobj_printf(ops, 529 "krtld: really transferring control to: 0x%p\n", entry); 530 #endif 531 532 /* restore printf/bcopy/bzero vectors before returning */ 533 kobj_restore_vectors(); 534 535 #if defined(_DBOOT) 536 /* 537 * krtld was called from a dboot ELF section, the embedded 538 * dboot code contains the real entry via bootaux 539 */ 540 exitto((caddr_t)entry); 541 #else 542 /* 543 * krtld was directly called from startup 544 */ 545 return; 546 #endif 547 548 fail: 549 550 _kobj_printf(ops, "krtld: error during initial load/link phase\n"); 551 552 #if !defined(_UNIX_KRTLD) 553 _kobj_printf(ops, "\n"); 554 _kobj_printf(ops, "krtld could neither locate nor resolve symbols" 555 " for:\n"); 556 _kobj_printf(ops, " %s\n", filename); 557 _kobj_printf(ops, "in the boot archive. Please verify that this" 558 " file\n"); 559 _kobj_printf(ops, "matches what is found in the boot archive.\n"); 560 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" 561 " fix this.\n"); 562 bop_panic("Unable to boot"); 563 #endif 564 } 565 566 #if !defined(_UNIX_KRTLD) && !defined(_OBP) 567 /* 568 * Synthesize additional metadata that describes the executable if 569 * krtld's caller didn't do it. 570 * 571 * (When the dynamic executable has an interpreter, the boot program 572 * does all this for us. Where we don't have an interpreter, (or a 573 * even a boot program, perhaps) we have to do this for ourselves.) 574 */ 575 static void 576 synthetic_bootaux(char *filename, val_t *bootaux) 577 { 578 Ehdr ehdr; 579 caddr_t phdrbase; 580 struct _buf *file; 581 int i, n; 582 583 /* 584 * Elf header 585 */ 586 KOBJ_MARK("synthetic_bootaux()"); 587 KOBJ_MARK(filename); 588 file = kobj_open_file(filename); 589 if (file == (struct _buf *)-1) { 590 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); 591 return; 592 } 593 KOBJ_MARK("reading program headers"); 594 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { 595 _kobj_printf(ops, "krtld: %s: failed to read ehder\n", 596 filename); 597 return; 598 } 599 600 /* 601 * Program headers 602 */ 603 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; 604 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; 605 n = ehdr.e_phentsize * ehdr.e_phnum; 606 607 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); 608 609 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { 610 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", 611 filename); 612 return; 613 } 614 bootaux[BA_PHDR].ba_ptr = phdrbase; 615 kobj_close_file(file); 616 KOBJ_MARK("closed file"); 617 618 /* 619 * Find the dynamic section address 620 */ 621 for (i = 0; i < ehdr.e_phnum; i++) { 622 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); 623 624 if (phdr->p_type == PT_DYNAMIC) { 625 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; 626 break; 627 } 628 } 629 KOBJ_MARK("synthetic_bootaux() done"); 630 } 631 #endif /* !_UNIX_KRTLD && !_OBP */ 632 633 /* 634 * Set up any global information derived 635 * from attribute/values in the boot or 636 * aux vector. 637 */ 638 static void 639 attr_val(val_t *bootaux) 640 { 641 Phdr *phdr; 642 int phnum, phsize; 643 int i; 644 645 KOBJ_MARK("attr_val()"); 646 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; 647 lg_pagesize = bootaux[BA_LPAGESZ].ba_val; 648 use_iflush = bootaux[BA_IFLUSH].ba_val; 649 650 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; 651 phnum = bootaux[BA_PHNUM].ba_val; 652 phsize = bootaux[BA_PHENT].ba_val; 653 for (i = 0; i < phnum; i++) { 654 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); 655 656 if (phdr->p_type != PT_LOAD) { 657 continue; 658 } 659 /* 660 * Bounds of the various segments. 661 */ 662 if (!(phdr->p_flags & PF_X)) { 663 #if defined(_RELSEG) 664 /* 665 * sparc kernel puts the dynamic info 666 * into a separate segment, which is 667 * free'd in bop_fini() 668 */ 669 ASSERT(phdr->p_vaddr != 0); 670 dynseg = phdr->p_vaddr; 671 dynsize = phdr->p_memsz; 672 #else 673 ASSERT(phdr->p_vaddr == 0); 674 #endif 675 } else { 676 if (phdr->p_flags & PF_W) { 677 _data = (caddr_t)phdr->p_vaddr; 678 _edata = _data + phdr->p_memsz; 679 } else { 680 _text = (caddr_t)phdr->p_vaddr; 681 _etext = _text + phdr->p_memsz; 682 } 683 } 684 } 685 686 /* To do the kobj_alloc, _edata needs to be set. */ 687 for (i = 0; i < NLIBMACROS; i++) { 688 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { 689 libmacros[i].lmi_list = kobj_alloc( 690 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 691 1, KM_WAIT); 692 (void) strcpy(libmacros[i].lmi_list, 693 bootaux[libmacros[i].lmi_ba_index].ba_ptr); 694 } 695 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); 696 } 697 } 698 699 /* 700 * Set up the booted executable. 701 */ 702 static struct module * 703 load_exec(val_t *bootaux, char *filename) 704 { 705 struct modctl *cp; 706 struct module *mp; 707 Dyn *dyn; 708 Sym *sp; 709 int i, lsize, osize, nsize, allocsize; 710 char *libname, *tmp; 711 char path[MAXPATHLEN]; 712 713 #ifdef KOBJ_DEBUG 714 if (kobj_debug & D_DEBUG) 715 _kobj_printf(ops, "module path '%s'\n", kobj_module_path); 716 #endif 717 718 KOBJ_MARK("add_primary"); 719 cp = add_primary(filename, KOBJ_LM_PRIMARY); 720 721 KOBJ_MARK("struct module"); 722 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 723 cp->mod_mp = mp; 724 725 /* 726 * We don't have the following information 727 * since this module is an executable and not 728 * a relocatable .o. 729 */ 730 mp->symtbl_section = 0; 731 mp->shdrs = NULL; 732 mp->strhdr = NULL; 733 734 /* 735 * Since this module is the only exception, 736 * we cons up some section headers. 737 */ 738 KOBJ_MARK("symhdr"); 739 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 740 741 KOBJ_MARK("strhdr"); 742 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); 743 744 mp->symhdr->sh_type = SHT_SYMTAB; 745 mp->strhdr->sh_type = SHT_STRTAB; 746 /* 747 * Scan the dynamic structure. 748 */ 749 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 750 dyn->d_tag != DT_NULL; dyn++) { 751 switch (dyn->d_tag) { 752 case DT_SYMTAB: 753 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; 754 mp->symhdr->sh_addr = dyn->d_un.d_ptr; 755 break; 756 case DT_HASH: 757 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); 758 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; 759 break; 760 case DT_STRTAB: 761 mp->strings = (char *)dyn->d_un.d_ptr; 762 mp->strhdr->sh_addr = dyn->d_un.d_ptr; 763 break; 764 case DT_STRSZ: 765 mp->strhdr->sh_size = dyn->d_un.d_val; 766 break; 767 case DT_SYMENT: 768 mp->symhdr->sh_entsize = dyn->d_un.d_val; 769 break; 770 } 771 } 772 773 /* 774 * Collapse any DT_NEEDED entries into one string. 775 */ 776 nsize = osize = 0; 777 allocsize = MAXPATHLEN; 778 779 KOBJ_MARK("depends_on"); 780 mp->depends_on = kobj_alloc(allocsize, KM_WAIT); 781 782 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; 783 dyn->d_tag != DT_NULL; dyn++) 784 if (dyn->d_tag == DT_NEEDED) { 785 char *_lib; 786 787 libname = mp->strings + dyn->d_un.d_val; 788 if (strchr(libname, '$') != NULL) { 789 if ((_lib = expand_libmacro(libname, 790 path, path)) != NULL) 791 libname = _lib; 792 else 793 _kobj_printf(ops, "krtld: " 794 "load_exec: fail to " 795 "expand %s\n", libname); 796 } 797 lsize = strlen(libname); 798 nsize += lsize; 799 if (nsize + 1 > allocsize) { 800 KOBJ_MARK("grow depends_on"); 801 tmp = kobj_alloc(allocsize + MAXPATHLEN, 802 KM_WAIT); 803 bcopy(mp->depends_on, tmp, osize); 804 kobj_free(mp->depends_on, allocsize); 805 mp->depends_on = tmp; 806 allocsize += MAXPATHLEN; 807 } 808 bcopy(libname, mp->depends_on + osize, lsize); 809 *(mp->depends_on + nsize) = ' '; /* separate */ 810 nsize++; 811 osize = nsize; 812 } 813 if (nsize) { 814 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ 815 /* 816 * alloc with exact size and copy whatever it got over 817 */ 818 KOBJ_MARK("realloc depends_on"); 819 tmp = kobj_alloc(nsize, KM_WAIT); 820 bcopy(mp->depends_on, tmp, nsize); 821 kobj_free(mp->depends_on, allocsize); 822 mp->depends_on = tmp; 823 } else { 824 kobj_free(mp->depends_on, allocsize); 825 mp->depends_on = NULL; 826 } 827 828 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ 829 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; 830 /* 831 * We allocate our own table since we don't 832 * hash undefined references. 833 */ 834 KOBJ_MARK("chains"); 835 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 836 KOBJ_MARK("buckets"); 837 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 838 839 mp->text = _text; 840 mp->data = _data; 841 842 mp->text_size = _etext - _text; 843 mp->data_size = _edata - _data; 844 845 cp->mod_text = mp->text; 846 cp->mod_text_size = mp->text_size; 847 848 mp->filename = cp->mod_filename; 849 850 #ifdef KOBJ_DEBUG 851 if (kobj_debug & D_LOADING) { 852 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 853 _kobj_printf(ops, "\ttext: 0x%p", mp->text); 854 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 855 _kobj_printf(ops, "\tdata: 0x%p", mp->data); 856 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 857 } 858 #endif /* KOBJ_DEBUG */ 859 860 /* 861 * Insert symbols into the hash table. 862 */ 863 for (i = 0; i < mp->nsyms; i++) { 864 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 865 866 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 867 continue; 868 #if defined(__sparc) 869 /* 870 * Register symbols are ignored in the kernel 871 */ 872 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) 873 continue; 874 #endif /* __sparc */ 875 876 sym_insert(mp, mp->strings + sp->st_name, i); 877 } 878 879 KOBJ_MARK("load_exec done"); 880 return (mp); 881 } 882 883 /* 884 * Set up the linker module (if it's compiled in, LDNAME is NULL) 885 */ 886 static void 887 load_linker(val_t *bootaux) 888 { 889 struct module *kmp = (struct module *)kobj_modules->mod_mp; 890 struct module *mp; 891 struct modctl *cp; 892 int i; 893 Shdr *shp; 894 Sym *sp; 895 int shsize; 896 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; 897 898 /* 899 * On some architectures, krtld is compiled into the kernel. 900 */ 901 if (dlname == NULL) 902 return; 903 904 cp = add_primary(dlname, KOBJ_LM_PRIMARY); 905 906 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 907 908 cp->mod_mp = mp; 909 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr; 910 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum; 911 mp->shdrs = kobj_alloc(shsize, KM_WAIT); 912 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); 913 914 for (i = 1; i < (int)mp->hdr.e_shnum; i++) { 915 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); 916 917 if (shp->sh_flags & SHF_ALLOC) { 918 if (shp->sh_flags & SHF_WRITE) { 919 if (mp->data == NULL) 920 mp->data = (char *)shp->sh_addr; 921 } else if (mp->text == NULL) { 922 mp->text = (char *)shp->sh_addr; 923 } 924 } 925 if (shp->sh_type == SHT_SYMTAB) { 926 mp->symtbl_section = i; 927 mp->symhdr = shp; 928 mp->symspace = mp->symtbl = (char *)shp->sh_addr; 929 } 930 } 931 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 932 mp->flags = KOBJ_INTERP|KOBJ_PRIM; 933 mp->strhdr = (Shdr *) 934 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 935 mp->strings = (char *)mp->strhdr->sh_addr; 936 mp->hashsize = kobj_gethashsize(mp->nsyms); 937 938 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + 939 (mp->hashsize + mp->nsyms) * sizeof (symid_t); 940 941 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); 942 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); 943 944 mp->bss = bootaux[BA_BSS].ba_val; 945 mp->bss_align = 0; /* pre-aligned during allocation */ 946 mp->bss_size = (uintptr_t)_edata - mp->bss; 947 mp->text_size = _etext - mp->text; 948 mp->data_size = _edata - mp->data; 949 mp->filename = cp->mod_filename; 950 cp->mod_text = mp->text; 951 cp->mod_text_size = mp->text_size; 952 953 /* 954 * Now that we've figured out where the linker is, 955 * set the limits for the booted object. 956 */ 957 kmp->text_size = (size_t)(mp->text - kmp->text); 958 kmp->data_size = (size_t)(mp->data - kmp->data); 959 kobj_modules->mod_text_size = kmp->text_size; 960 961 #ifdef KOBJ_DEBUG 962 if (kobj_debug & D_LOADING) { 963 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 964 _kobj_printf(ops, "\ttext:0x%p", mp->text); 965 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 966 _kobj_printf(ops, "\tdata:0x%p", mp->data); 967 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 968 } 969 #endif /* KOBJ_DEBUG */ 970 971 /* 972 * Insert the symbols into the hash table. 973 */ 974 for (i = 0; i < mp->nsyms; i++) { 975 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 976 977 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 978 continue; 979 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 980 if (sp->st_shndx == SHN_COMMON) 981 sp->st_shndx = SHN_ABS; 982 } 983 sym_insert(mp, mp->strings + sp->st_name, i); 984 } 985 986 } 987 988 static kobj_notify_list_t ** 989 kobj_notify_lookup(uint_t type) 990 { 991 ASSERT(type != 0 && type < sizeof (kobj_notifiers) / 992 sizeof (kobj_notify_list_t *)); 993 994 return (&kobj_notifiers[type]); 995 } 996 997 int 998 kobj_notify_add(kobj_notify_list_t *knp) 999 { 1000 kobj_notify_list_t **knl; 1001 1002 knl = kobj_notify_lookup(knp->kn_type); 1003 1004 knp->kn_next = NULL; 1005 knp->kn_prev = NULL; 1006 1007 mutex_enter(&kobj_lock); 1008 1009 if (*knl != NULL) { 1010 (*knl)->kn_prev = knp; 1011 knp->kn_next = *knl; 1012 } 1013 (*knl) = knp; 1014 1015 mutex_exit(&kobj_lock); 1016 return (0); 1017 } 1018 1019 int 1020 kobj_notify_remove(kobj_notify_list_t *knp) 1021 { 1022 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); 1023 kobj_notify_list_t *tknp; 1024 1025 mutex_enter(&kobj_lock); 1026 1027 /* LINTED */ 1028 if (tknp = knp->kn_next) 1029 tknp->kn_prev = knp->kn_prev; 1030 1031 /* LINTED */ 1032 if (tknp = knp->kn_prev) 1033 tknp->kn_next = knp->kn_next; 1034 else 1035 *knl = knp->kn_next; 1036 1037 mutex_exit(&kobj_lock); 1038 1039 return (0); 1040 } 1041 1042 /* 1043 * Notify all interested callbacks of a specified change in module state. 1044 */ 1045 static void 1046 kobj_notify(int type, struct modctl *modp) 1047 { 1048 kobj_notify_list_t *knp; 1049 1050 if (modp->mod_loadflags & MOD_NONOTIFY || standalone) 1051 return; 1052 1053 mutex_enter(&kobj_lock); 1054 1055 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) 1056 knp->kn_func(type, modp); 1057 1058 /* 1059 * KDI notification must be last (it has to allow for work done by the 1060 * other notification callbacks), so we call it manually. 1061 */ 1062 kobj_kdi_mod_notify(type, modp); 1063 1064 mutex_exit(&kobj_lock); 1065 } 1066 1067 /* 1068 * Create the module path. 1069 */ 1070 static char * 1071 getmodpath(const char *filename) 1072 { 1073 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); 1074 1075 /* 1076 * Platform code gets first crack, then add 1077 * the default components 1078 */ 1079 mach_modpath(path, filename); 1080 if (*path != '\0') 1081 (void) strcat(path, " "); 1082 return (strcat(path, MOD_DEFPATH)); 1083 } 1084 1085 static struct modctl * 1086 add_primary(const char *filename, int lmid) 1087 { 1088 struct modctl *cp; 1089 1090 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); 1091 1092 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); 1093 1094 /* 1095 * For symbol lookup, we assemble our own 1096 * modctl list of the primary modules. 1097 */ 1098 1099 (void) strcpy(cp->mod_filename, filename); 1100 cp->mod_modname = basename(cp->mod_filename); 1101 1102 /* set values for modinfo assuming that the load will work */ 1103 cp->mod_prim = 1; 1104 cp->mod_loaded = 1; 1105 cp->mod_installed = 1; 1106 cp->mod_loadcnt = 1; 1107 cp->mod_loadflags = MOD_NOAUTOUNLOAD; 1108 1109 cp->mod_id = kobj_last_module_id++; 1110 1111 /* 1112 * Link the module in. We'll pass this info on 1113 * to the mod squad later. 1114 */ 1115 if (kobj_modules == NULL) { 1116 kobj_modules = cp; 1117 cp->mod_prev = cp->mod_next = cp; 1118 } else { 1119 cp->mod_prev = kobj_modules->mod_prev; 1120 cp->mod_next = kobj_modules; 1121 kobj_modules->mod_prev->mod_next = cp; 1122 kobj_modules->mod_prev = cp; 1123 } 1124 1125 kobj_lm_append(lmid, cp); 1126 1127 return (cp); 1128 } 1129 1130 static int 1131 bind_primary(val_t *bootaux, int lmid) 1132 { 1133 struct modctl_list *linkmap = kobj_lm_lookup(lmid); 1134 struct modctl_list *lp; 1135 struct module *mp; 1136 1137 /* 1138 * Do common symbols. 1139 */ 1140 for (lp = linkmap; lp; lp = lp->modl_next) { 1141 mp = mod(lp); 1142 1143 /* 1144 * Don't do common section relocations for modules that 1145 * don't need it. 1146 */ 1147 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) 1148 continue; 1149 1150 if (do_common(mp) < 0) 1151 return (-1); 1152 } 1153 1154 /* 1155 * Resolve symbols. 1156 */ 1157 for (lp = linkmap; lp; lp = lp->modl_next) { 1158 mp = mod(lp); 1159 1160 if (do_symbols(mp, 0) < 0) 1161 return (-1); 1162 } 1163 1164 /* 1165 * Do relocations. 1166 */ 1167 for (lp = linkmap; lp; lp = lp->modl_next) { 1168 mp = mod(lp); 1169 1170 if (mp->flags & KOBJ_EXEC) { 1171 Dyn *dyn; 1172 Word relasz = 0, relaent = 0; 1173 Word shtype; 1174 char *rela = NULL; 1175 1176 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; 1177 dyn->d_tag != DT_NULL; dyn++) { 1178 switch (dyn->d_tag) { 1179 case DT_RELASZ: 1180 case DT_RELSZ: 1181 relasz = dyn->d_un.d_val; 1182 break; 1183 case DT_RELAENT: 1184 case DT_RELENT: 1185 relaent = dyn->d_un.d_val; 1186 break; 1187 case DT_RELA: 1188 shtype = SHT_RELA; 1189 rela = (char *)dyn->d_un.d_ptr; 1190 break; 1191 case DT_REL: 1192 shtype = SHT_REL; 1193 rela = (char *)dyn->d_un.d_ptr; 1194 break; 1195 } 1196 } 1197 if (relasz == 0 || 1198 relaent == 0 || rela == NULL) { 1199 _kobj_printf(ops, "krtld: bind_primary(): " 1200 "no relocation information found for " 1201 "module %s\n", mp->filename); 1202 return (-1); 1203 } 1204 #ifdef KOBJ_DEBUG 1205 if (kobj_debug & D_RELOCATIONS) 1206 _kobj_printf(ops, "krtld: relocating: file=%s " 1207 "KOBJ_EXEC\n", mp->filename); 1208 #endif 1209 if (do_relocate(mp, rela, shtype, relasz/relaent, 1210 relaent, (Addr)mp->text) < 0) 1211 return (-1); 1212 } else { 1213 if (do_relocations(mp) < 0) 1214 return (-1); 1215 } 1216 1217 kobj_sync_instruction_memory(mp->text, mp->text_size); 1218 } 1219 1220 for (lp = linkmap; lp; lp = lp->modl_next) { 1221 mp = mod(lp); 1222 1223 /* 1224 * We need to re-read the full symbol table for the boot file, 1225 * since we couldn't use the full one before. We also need to 1226 * load the CTF sections of both the boot file and the 1227 * interpreter (us). 1228 */ 1229 if (mp->flags & KOBJ_EXEC) { 1230 struct _buf *file; 1231 int n; 1232 1233 file = kobj_open_file(mp->filename); 1234 if (file == (struct _buf *)-1) 1235 return (-1); 1236 if (kobj_read_file(file, (char *)&mp->hdr, 1237 sizeof (mp->hdr), 0) < 0) 1238 return (-1); 1239 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1240 mp->shdrs = kobj_alloc(n, KM_WAIT); 1241 if (kobj_read_file(file, mp->shdrs, n, 1242 mp->hdr.e_shoff) < 0) 1243 return (-1); 1244 if (get_syms(mp, file) < 0) 1245 return (-1); 1246 if (get_ctf(mp, file) < 0) 1247 return (-1); 1248 kobj_close_file(file); 1249 mp->flags |= KOBJ_RELOCATED; 1250 1251 } else if (mp->flags & KOBJ_INTERP) { 1252 struct _buf *file; 1253 1254 /* 1255 * The interpreter path fragment in mp->filename 1256 * will already have the module directory suffix 1257 * in it (if appropriate). 1258 */ 1259 file = kobj_open_path(mp->filename, 1, 0); 1260 if (file == (struct _buf *)-1) 1261 return (-1); 1262 if (get_ctf(mp, file) < 0) 1263 return (-1); 1264 kobj_close_file(file); 1265 mp->flags |= KOBJ_RELOCATED; 1266 } 1267 } 1268 1269 return (0); 1270 } 1271 1272 static struct modctl * 1273 mod_already_loaded(char *modname) 1274 { 1275 struct modctl *mctl = kobj_modules; 1276 1277 do { 1278 if (strcmp(modname, mctl->mod_filename) == 0) 1279 return (mctl); 1280 mctl = mctl->mod_next; 1281 1282 } while (mctl != kobj_modules); 1283 1284 return (NULL); 1285 } 1286 1287 /* 1288 * Load all the primary dependent modules. 1289 */ 1290 static int 1291 load_primary(struct module *mp, int lmid) 1292 { 1293 struct modctl *cp; 1294 struct module *dmp; 1295 char *p, *q; 1296 char modname[MODMAXNAMELEN]; 1297 1298 if ((p = mp->depends_on) == NULL) 1299 return (0); 1300 1301 /* CONSTANTCONDITION */ 1302 while (1) { 1303 /* 1304 * Skip space. 1305 */ 1306 while (*p && (*p == ' ' || *p == '\t')) 1307 p++; 1308 /* 1309 * Get module name. 1310 */ 1311 q = modname; 1312 while (*p && *p != ' ' && *p != '\t') 1313 *q++ = *p++; 1314 1315 if (q == modname) 1316 break; 1317 1318 *q = '\0'; 1319 /* 1320 * Check for dup dependencies. 1321 */ 1322 if (strcmp(modname, "dtracestubs") == 0 || 1323 mod_already_loaded(modname) != NULL) 1324 continue; 1325 1326 cp = add_primary(modname, lmid); 1327 cp->mod_busy = 1; 1328 /* 1329 * Load it. 1330 */ 1331 (void) kobj_load_module(cp, 1); 1332 cp->mod_busy = 0; 1333 1334 if ((dmp = cp->mod_mp) == NULL) { 1335 cp->mod_loaded = 0; 1336 cp->mod_installed = 0; 1337 cp->mod_loadcnt = 0; 1338 return (-1); 1339 } 1340 1341 add_dependent(mp, dmp); 1342 dmp->flags |= KOBJ_PRIM; 1343 1344 /* 1345 * Recurse. 1346 */ 1347 if (load_primary(dmp, lmid) == -1) { 1348 cp->mod_loaded = 0; 1349 cp->mod_installed = 0; 1350 cp->mod_loadcnt = 0; 1351 return (-1); 1352 } 1353 } 1354 return (0); 1355 } 1356 1357 static int 1358 console_is_usb_serial(void) 1359 { 1360 char *console; 1361 int len, ret; 1362 1363 if ((len = BOP_GETPROPLEN(ops, "console")) == -1) 1364 return (0); 1365 1366 console = kobj_zalloc(len, KM_WAIT|KM_TMP); 1367 (void) BOP_GETPROP(ops, "console", console); 1368 ret = (strcmp(console, "usb-serial") == 0); 1369 kobj_free(console, len); 1370 1371 return (ret); 1372 } 1373 1374 static int 1375 load_kmdb(val_t *bootaux) 1376 { 1377 struct modctl *mctl; 1378 struct module *mp; 1379 Sym *sym; 1380 1381 if (console_is_usb_serial()) { 1382 _kobj_printf(ops, "kmdb not loaded " 1383 "(unsupported on usb serial console)\n"); 1384 return (0); 1385 } 1386 1387 _kobj_printf(ops, "Loading kmdb...\n"); 1388 1389 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) 1390 return (-1); 1391 1392 mctl->mod_busy = 1; 1393 (void) kobj_load_module(mctl, 1); 1394 mctl->mod_busy = 0; 1395 1396 if ((mp = mctl->mod_mp) == NULL) 1397 return (-1); 1398 1399 mp->flags |= KOBJ_PRIM; 1400 1401 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) 1402 return (-1); 1403 1404 if (boothowto & RB_VERBOSE) 1405 kobj_lm_dump(KOBJ_LM_DEBUGGER); 1406 1407 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) 1408 return (-1); 1409 1410 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) 1411 return (-1); 1412 1413 #ifdef KOBJ_DEBUG 1414 if (kobj_debug & D_DEBUG) { 1415 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", 1416 sym->st_value); 1417 _kobj_printf(ops, "\tops 0x%p\n", ops); 1418 _kobj_printf(ops, "\tromp 0x%p\n", romp); 1419 } 1420 #endif 1421 1422 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, 1423 (const char **)kobj_kmdb_argv) < 0) 1424 return (-1); 1425 1426 return (0); 1427 } 1428 1429 /* 1430 * Return a string listing module dependencies. 1431 */ 1432 static char * 1433 depends_on(struct module *mp) 1434 { 1435 Sym *sp; 1436 char *depstr, *q; 1437 1438 /* 1439 * The module doesn't have a depends_on value, so let's try it the 1440 * old-fashioned way - via "_depends_on" 1441 */ 1442 if ((sp = lookup_one(mp, "_depends_on")) == NULL) 1443 return (NULL); 1444 1445 q = (char *)sp->st_value; 1446 1447 /* 1448 * Idiot checks. Make sure it's 1449 * in-bounds and NULL terminated. 1450 */ 1451 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { 1452 _kobj_printf(ops, "Error processing dependency for %s\n", 1453 mp->filename); 1454 return (NULL); 1455 } 1456 1457 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); 1458 (void) strcpy(depstr, q); 1459 1460 return (depstr); 1461 } 1462 1463 void 1464 kobj_getmodinfo(void *xmp, struct modinfo *modinfo) 1465 { 1466 struct module *mp; 1467 mp = (struct module *)xmp; 1468 1469 modinfo->mi_base = mp->text; 1470 modinfo->mi_size = mp->text_size + mp->data_size; 1471 } 1472 1473 /* 1474 * kobj_export_ksyms() performs the following services: 1475 * 1476 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. 1477 * (2) Removes unneeded symbols to save space. 1478 * (3) Reduces memory footprint by using VM_BESTFIT allocations. 1479 * (4) Makes the symbol table visible to /dev/ksyms. 1480 */ 1481 static void 1482 kobj_export_ksyms(struct module *mp) 1483 { 1484 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); 1485 Sym *sp, *osp; 1486 char *name; 1487 size_t namelen; 1488 struct module *omp; 1489 uint_t nsyms; 1490 size_t symsize = mp->symhdr->sh_entsize; 1491 size_t locals = 1; 1492 size_t strsize; 1493 1494 /* 1495 * Make a copy of the original module structure. 1496 */ 1497 omp = kobj_alloc(sizeof (struct module), KM_WAIT); 1498 bcopy(mp, omp, sizeof (struct module)); 1499 1500 /* 1501 * Compute the sizes of the new symbol table sections. 1502 */ 1503 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1504 if (osp->st_value == 0) 1505 continue; 1506 if (sym_lookup(omp, osp) == NULL) 1507 continue; 1508 name = omp->strings + osp->st_name; 1509 namelen = strlen(name); 1510 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) 1511 locals++; 1512 nsyms++; 1513 strsize += namelen + 1; 1514 } 1515 1516 mp->nsyms = nsyms; 1517 mp->hashsize = kobj_gethashsize(mp->nsyms); 1518 1519 /* 1520 * ksyms_lock must be held as writer during any operation that 1521 * modifies ksyms_arena, including allocation from same, and 1522 * must not be dropped until the arena is vmem_walk()able. 1523 */ 1524 rw_enter(&ksyms_lock, RW_WRITER); 1525 1526 /* 1527 * Allocate space for the new section headers (symtab and strtab), 1528 * symbol table, buckets, chains, and strings. 1529 */ 1530 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + 1531 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; 1532 1533 if (mp->flags & KOBJ_NOKSYMS) { 1534 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); 1535 } else { 1536 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, 1537 VM_BESTFIT | VM_SLEEP); 1538 } 1539 bzero(mp->symspace, mp->symsize); 1540 1541 /* 1542 * Divvy up symspace. 1543 */ 1544 mp->shdrs = mp->symspace; 1545 mp->symhdr = (Shdr *)mp->shdrs; 1546 mp->strhdr = (Shdr *)(mp->symhdr + 1); 1547 mp->symtbl = (char *)(mp->strhdr + 1); 1548 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); 1549 mp->chains = (symid_t *)(mp->buckets + mp->hashsize); 1550 mp->strings = (char *)(mp->chains + nsyms); 1551 1552 /* 1553 * Fill in the new section headers (symtab and strtab). 1554 */ 1555 mp->hdr.e_shnum = 2; 1556 mp->symtbl_section = 0; 1557 1558 mp->symhdr->sh_type = SHT_SYMTAB; 1559 mp->symhdr->sh_addr = (Addr)mp->symtbl; 1560 mp->symhdr->sh_size = nsyms * symsize; 1561 mp->symhdr->sh_link = 1; 1562 mp->symhdr->sh_info = locals; 1563 mp->symhdr->sh_addralign = sizeof (Addr); 1564 mp->symhdr->sh_entsize = symsize; 1565 1566 mp->strhdr->sh_type = SHT_STRTAB; 1567 mp->strhdr->sh_addr = (Addr)mp->strings; 1568 mp->strhdr->sh_size = strsize; 1569 mp->strhdr->sh_addralign = 1; 1570 1571 /* 1572 * Construct the new symbol table. 1573 */ 1574 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { 1575 if (osp->st_value == 0) 1576 continue; 1577 if (sym_lookup(omp, osp) == NULL) 1578 continue; 1579 name = omp->strings + osp->st_name; 1580 namelen = strlen(name); 1581 sp = (Sym *)(mp->symtbl + symsize * nsyms); 1582 bcopy(osp, sp, symsize); 1583 bcopy(name, mp->strings + strsize, namelen); 1584 sp->st_name = strsize; 1585 sym_insert(mp, name, nsyms); 1586 nsyms++; 1587 strsize += namelen + 1; 1588 } 1589 1590 rw_exit(&ksyms_lock); 1591 1592 /* 1593 * Free the old section headers -- we'll never need them again. 1594 */ 1595 if (!(mp->flags & KOBJ_PRIM)) { 1596 uint_t shn; 1597 Shdr *shp; 1598 1599 for (shn = 1; shn < omp->hdr.e_shnum; shn++) { 1600 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); 1601 switch (shp->sh_type) { 1602 case SHT_RELA: 1603 case SHT_REL: 1604 if (shp->sh_addr != 0) { 1605 kobj_free((void *)shp->sh_addr, 1606 shp->sh_size); 1607 } 1608 break; 1609 } 1610 } 1611 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum); 1612 } 1613 /* 1614 * Discard the old symbol table and our copy of the module strucure. 1615 */ 1616 if (!(mp->flags & KOBJ_PRIM)) 1617 kobj_free(omp->symspace, omp->symsize); 1618 kobj_free(omp, sizeof (struct module)); 1619 } 1620 1621 static void 1622 kobj_export_ctf(struct module *mp) 1623 { 1624 char *data = mp->ctfdata; 1625 size_t size = mp->ctfsize; 1626 1627 if (data != NULL) { 1628 if (_moddebug & MODDEBUG_NOCTF) { 1629 mp->ctfdata = NULL; 1630 mp->ctfsize = 0; 1631 } else { 1632 mp->ctfdata = vmem_alloc(ctf_arena, size, 1633 VM_BESTFIT | VM_SLEEP); 1634 bcopy(data, mp->ctfdata, size); 1635 } 1636 1637 if (!(mp->flags & KOBJ_PRIM)) 1638 kobj_free(data, size); 1639 } 1640 } 1641 1642 void 1643 kobj_export_module(struct module *mp) 1644 { 1645 kobj_export_ksyms(mp); 1646 kobj_export_ctf(mp); 1647 1648 mp->flags |= KOBJ_EXPORTED; 1649 } 1650 1651 static int 1652 process_dynamic(struct module *mp, char *dyndata, char *strdata) 1653 { 1654 char *path = NULL, *depstr = NULL; 1655 int allocsize = 0, osize = 0, nsize = 0; 1656 char *libname, *tmp; 1657 int lsize; 1658 Dyn *dynp; 1659 1660 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { 1661 switch (dynp->d_tag) { 1662 case DT_NEEDED: 1663 /* 1664 * Read the DT_NEEDED entries, expanding the macros they 1665 * contain (if any), and concatenating them into a 1666 * single space-separated dependency list. 1667 */ 1668 libname = (ulong_t)dynp->d_un.d_ptr + strdata; 1669 1670 if (strchr(libname, '$') != NULL) { 1671 char *_lib; 1672 1673 if (path == NULL) 1674 path = kobj_alloc(MAXPATHLEN, KM_WAIT); 1675 if ((_lib = expand_libmacro(libname, path, 1676 path)) != NULL) 1677 libname = _lib; 1678 else { 1679 _kobj_printf(ops, "krtld: " 1680 "process_dynamic: failed to expand " 1681 "%s\n", libname); 1682 } 1683 } 1684 1685 lsize = strlen(libname); 1686 nsize += lsize; 1687 if (nsize + 1 > allocsize) { 1688 tmp = kobj_alloc(allocsize + MAXPATHLEN, 1689 KM_WAIT); 1690 if (depstr != NULL) { 1691 bcopy(depstr, tmp, osize); 1692 kobj_free(depstr, allocsize); 1693 } 1694 depstr = tmp; 1695 allocsize += MAXPATHLEN; 1696 } 1697 bcopy(libname, depstr + osize, lsize); 1698 *(depstr + nsize) = ' '; /* separator */ 1699 nsize++; 1700 osize = nsize; 1701 break; 1702 1703 case DT_FLAGS_1: 1704 if (dynp->d_un.d_val & DF_1_IGNMULDEF) 1705 mp->flags |= KOBJ_IGNMULDEF; 1706 if (dynp->d_un.d_val & DF_1_NOKSYMS) 1707 mp->flags |= KOBJ_NOKSYMS; 1708 1709 break; 1710 } 1711 } 1712 1713 /* 1714 * finish up the depends string (if any) 1715 */ 1716 if (depstr != NULL) { 1717 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ 1718 if (path != NULL) 1719 kobj_free(path, MAXPATHLEN); 1720 1721 tmp = kobj_alloc(nsize, KM_WAIT); 1722 bcopy(depstr, tmp, nsize); 1723 kobj_free(depstr, allocsize); 1724 depstr = tmp; 1725 1726 mp->depends_on = depstr; 1727 } 1728 1729 return (0); 1730 } 1731 1732 static int 1733 do_dynamic(struct module *mp, struct _buf *file) 1734 { 1735 Shdr *dshp, *dstrp, *shp; 1736 char *dyndata, *dstrdata; 1737 int dshn, shn, rc; 1738 1739 /* find and validate the dynamic section (if any) */ 1740 1741 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) { 1742 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 1743 switch (shp->sh_type) { 1744 case SHT_DYNAMIC: 1745 if (dshp != NULL) { 1746 _kobj_printf(ops, "krtld: get_dynamic: %s, ", 1747 mp->filename); 1748 _kobj_printf(ops, 1749 "multiple dynamic sections\n"); 1750 return (-1); 1751 } else { 1752 dshp = shp; 1753 dshn = shn; 1754 } 1755 break; 1756 } 1757 } 1758 1759 if (dshp == NULL) 1760 return (0); 1761 1762 if (dshp->sh_link > mp->hdr.e_shnum) { 1763 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1764 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); 1765 return (-1); 1766 } 1767 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); 1768 1769 if (dstrp->sh_type != SHT_STRTAB) { 1770 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1771 _kobj_printf(ops, "sh_link not a string table for section %d\n", 1772 dshn); 1773 return (-1); 1774 } 1775 1776 /* read it from disk */ 1777 1778 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); 1779 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { 1780 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1781 _kobj_printf(ops, "error reading section %d\n", dshn); 1782 1783 kobj_free(dyndata, dshp->sh_size); 1784 return (-1); 1785 } 1786 1787 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); 1788 if (kobj_read_file(file, dstrdata, dstrp->sh_size, 1789 dstrp->sh_offset) < 0) { 1790 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); 1791 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); 1792 1793 kobj_free(dyndata, dshp->sh_size); 1794 kobj_free(dstrdata, dstrp->sh_size); 1795 return (-1); 1796 } 1797 1798 /* pull the interesting pieces out */ 1799 1800 rc = process_dynamic(mp, dyndata, dstrdata); 1801 1802 kobj_free(dyndata, dshp->sh_size); 1803 kobj_free(dstrdata, dstrp->sh_size); 1804 1805 return (rc); 1806 } 1807 1808 void 1809 kobj_set_ctf(struct module *mp, caddr_t data, size_t size) 1810 { 1811 if (!standalone) { 1812 if (mp->ctfdata != NULL) { 1813 if (vmem_contains(ctf_arena, mp->ctfdata, 1814 mp->ctfsize)) { 1815 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 1816 } else { 1817 kobj_free(mp->ctfdata, mp->ctfsize); 1818 } 1819 } 1820 } 1821 1822 /* 1823 * The order is very important here. We need to make sure that 1824 * consumers, at any given instant, see a consistent state. We'd 1825 * rather they see no CTF data than the address of one buffer and the 1826 * size of another. 1827 */ 1828 mp->ctfdata = NULL; 1829 membar_producer(); 1830 mp->ctfsize = size; 1831 mp->ctfdata = data; 1832 membar_producer(); 1833 } 1834 1835 int 1836 kobj_load_module(struct modctl *modp, int use_path) 1837 { 1838 char *filename = modp->mod_filename; 1839 char *modname = modp->mod_modname; 1840 int i; 1841 int n; 1842 struct _buf *file; 1843 struct module *mp = NULL; 1844 #ifdef MODDIR_SUFFIX 1845 int no_suffixdir_drv = 0; 1846 #endif 1847 1848 mp = kobj_zalloc(sizeof (struct module), KM_WAIT); 1849 1850 /* 1851 * We need to prevent kmdb's symbols from leaking into /dev/ksyms. 1852 * kmdb contains a bunch of symbols with well-known names, symbols 1853 * which will mask the real versions, thus causing no end of trouble 1854 * for mdb. 1855 */ 1856 if (strcmp(modp->mod_modname, "kmdbmod") == 0) 1857 mp->flags |= KOBJ_NOKSYMS; 1858 1859 file = kobj_open_path(filename, use_path, 1); 1860 if (file == (struct _buf *)-1) { 1861 #ifdef MODDIR_SUFFIX 1862 file = kobj_open_path(filename, use_path, 0); 1863 #endif 1864 if (file == (struct _buf *)-1) { 1865 kobj_free(mp, sizeof (*mp)); 1866 goto bad; 1867 } 1868 #ifdef MODDIR_SUFFIX 1869 /* 1870 * There is no driver module in the ISA specific (suffix) 1871 * subdirectory but there is a module in the parent directory. 1872 */ 1873 if (strncmp(filename, "drv/", 4) == 0) { 1874 no_suffixdir_drv = 1; 1875 } 1876 #endif 1877 } 1878 1879 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); 1880 (void) strcpy(mp->filename, file->_name); 1881 1882 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { 1883 _kobj_printf(ops, "kobj_load_module: %s read header failed\n", 1884 modname); 1885 kobj_free(mp->filename, strlen(file->_name) + 1); 1886 kobj_free(mp, sizeof (*mp)); 1887 goto bad; 1888 } 1889 for (i = 0; i < SELFMAG; i++) { 1890 if (mp->hdr.e_ident[i] != ELFMAG[i]) { 1891 if (_moddebug & MODDEBUG_ERRMSG) 1892 _kobj_printf(ops, "%s not an elf module\n", 1893 modname); 1894 kobj_free(mp->filename, strlen(file->_name) + 1); 1895 kobj_free(mp, sizeof (*mp)); 1896 goto bad; 1897 } 1898 } 1899 /* 1900 * It's ELF, but is it our ISA? Interpreting the header 1901 * from a file for a byte-swapped ISA could cause a huge 1902 * and unsatisfiable value to be passed to kobj_alloc below 1903 * and therefore hang booting. 1904 */ 1905 if (!elf_mach_ok(&mp->hdr)) { 1906 if (_moddebug & MODDEBUG_ERRMSG) 1907 _kobj_printf(ops, "%s not an elf module for this ISA\n", 1908 modname); 1909 kobj_free(mp->filename, strlen(file->_name) + 1); 1910 kobj_free(mp, sizeof (*mp)); 1911 #ifdef MODDIR_SUFFIX 1912 /* 1913 * The driver mod is not in the ISA specific subdirectory 1914 * and the module in the parent directory is not our ISA. 1915 * If it is our ISA, for now we will silently succeed. 1916 */ 1917 if (no_suffixdir_drv == 1) { 1918 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" 1919 " not found\n", modname); 1920 } 1921 #endif 1922 goto bad; 1923 } 1924 1925 /* 1926 * All modules, save for unix, should be relocatable (as opposed to 1927 * dynamic). Dynamic modules come with PLTs and GOTs, which can't 1928 * currently be processed by krtld. 1929 */ 1930 if (mp->hdr.e_type != ET_REL) { 1931 if (_moddebug & MODDEBUG_ERRMSG) 1932 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " 1933 "module\n", modname); 1934 kobj_free(mp->filename, strlen(file->_name) + 1); 1935 kobj_free(mp, sizeof (*mp)); 1936 goto bad; 1937 } 1938 1939 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 1940 mp->shdrs = kobj_alloc(n, KM_WAIT); 1941 1942 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { 1943 _kobj_printf(ops, "kobj_load_module: %s error reading " 1944 "section headers\n", modname); 1945 kobj_free(mp->shdrs, n); 1946 kobj_free(mp->filename, strlen(file->_name) + 1); 1947 kobj_free(mp, sizeof (*mp)); 1948 goto bad; 1949 } 1950 1951 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); 1952 module_assign(modp, mp); 1953 1954 /* read in sections */ 1955 if (get_progbits(mp, file) < 0) { 1956 _kobj_printf(ops, "%s error reading sections\n", modname); 1957 goto bad; 1958 } 1959 1960 if (do_dynamic(mp, file) < 0) { 1961 _kobj_printf(ops, "%s error reading dynamic section\n", 1962 modname); 1963 goto bad; 1964 } 1965 1966 modp->mod_text = mp->text; 1967 modp->mod_text_size = mp->text_size; 1968 1969 /* read in symbols; adjust values for each section's real address */ 1970 if (get_syms(mp, file) < 0) { 1971 _kobj_printf(ops, "%s error reading symbols\n", 1972 modname); 1973 goto bad; 1974 } 1975 1976 /* 1977 * If we didn't dependency information from the dynamic section, look 1978 * for it the old-fashioned way. 1979 */ 1980 if (mp->depends_on == NULL) 1981 mp->depends_on = depends_on(mp); 1982 1983 if (get_ctf(mp, file) < 0) { 1984 _kobj_printf(ops, "%s debug information will not " 1985 "be available\n", modname); 1986 } 1987 1988 /* primary kernel modules do not have a signature section */ 1989 if (!(mp->flags & KOBJ_PRIM)) 1990 get_signature(mp, file); 1991 1992 #ifdef KOBJ_DEBUG 1993 if (kobj_debug & D_LOADING) { 1994 _kobj_printf(ops, "krtld: file=%s\n", mp->filename); 1995 _kobj_printf(ops, "\ttext:0x%p", mp->text); 1996 _kobj_printf(ops, " size: 0x%x\n", mp->text_size); 1997 _kobj_printf(ops, "\tdata:0x%p", mp->data); 1998 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); 1999 } 2000 #endif /* KOBJ_DEBUG */ 2001 2002 /* 2003 * For primary kernel modules, we defer 2004 * symbol resolution and relocation until 2005 * all primary objects have been loaded. 2006 */ 2007 if (!standalone) { 2008 int ddrval, dcrval; 2009 char *dependent_modname; 2010 /* load all dependents */ 2011 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); 2012 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); 2013 2014 /* 2015 * resolve undefined and common symbols, 2016 * also allocates common space 2017 */ 2018 if ((dcrval = do_common(mp)) < 0) { 2019 switch (dcrval) { 2020 case DOSYM_UNSAFE: 2021 _kobj_printf(ops, "WARNING: mod_load: " 2022 "MT-unsafe module '%s' rejected\n", 2023 modname); 2024 break; 2025 case DOSYM_UNDEF: 2026 _kobj_printf(ops, "WARNING: mod_load: " 2027 "cannot load module '%s'\n", 2028 modname); 2029 if (ddrval == -1) { 2030 _kobj_printf(ops, "WARNING: %s: ", 2031 modname); 2032 _kobj_printf(ops, 2033 "unable to resolve dependency, " 2034 "module '%s' not found\n", 2035 dependent_modname); 2036 } 2037 break; 2038 } 2039 } 2040 kobj_free(dependent_modname, MODMAXNAMELEN); 2041 if (dcrval < 0) 2042 goto bad; 2043 2044 /* process relocation tables */ 2045 if (do_relocations(mp) < 0) { 2046 _kobj_printf(ops, "%s error doing relocations\n", 2047 modname); 2048 goto bad; 2049 } 2050 2051 if (mp->destination) { 2052 off_t off = (uintptr_t)mp->destination & PAGEOFFSET; 2053 caddr_t base = (caddr_t)mp->destination - off; 2054 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2055 2056 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); 2057 vmem_free(heap_arena, base, size); 2058 } 2059 2060 /* sync_instruction_memory */ 2061 kobj_sync_instruction_memory(mp->text, mp->text_size); 2062 kobj_export_module(mp); 2063 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); 2064 } 2065 kobj_close_file(file); 2066 return (0); 2067 bad: 2068 if (file != (struct _buf *)-1) 2069 kobj_close_file(file); 2070 if (modp->mod_mp != NULL) 2071 free_module_data(modp->mod_mp); 2072 2073 module_assign(modp, NULL); 2074 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); 2075 } 2076 2077 int 2078 kobj_load_primary_module(struct modctl *modp) 2079 { 2080 struct modctl *dep; 2081 struct module *mp; 2082 2083 if (kobj_load_module(modp, 0) != 0) 2084 return (-1); 2085 2086 mp = modp->mod_mp; 2087 mp->flags |= KOBJ_PRIM; 2088 2089 /* Bind new module to its dependents */ 2090 if (mp->depends_on != NULL && (dep = 2091 mod_already_loaded(mp->depends_on)) == NULL) { 2092 #ifdef KOBJ_DEBUG 2093 if (kobj_debug & D_DEBUG) { 2094 _kobj_printf(ops, "krtld: failed to resolve deps " 2095 "for primary %s\n", modp->mod_modname); 2096 } 2097 #endif 2098 return (-1); 2099 } 2100 2101 add_dependent(mp, dep->mod_mp); 2102 2103 /* 2104 * Relocate it. This module may not be part of a link map, so we 2105 * can't use bind_primary. 2106 */ 2107 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || 2108 do_relocations(mp) < 0) { 2109 #ifdef KOBJ_DEBUG 2110 if (kobj_debug & D_DEBUG) { 2111 _kobj_printf(ops, "krtld: failed to relocate " 2112 "primary %s\n", modp->mod_modname); 2113 } 2114 #endif 2115 return (-1); 2116 } 2117 2118 return (0); 2119 } 2120 2121 static void 2122 module_assign(struct modctl *cp, struct module *mp) 2123 { 2124 if (standalone) { 2125 cp->mod_mp = mp; 2126 return; 2127 } 2128 mutex_enter(&mod_lock); 2129 cp->mod_mp = mp; 2130 cp->mod_gencount++; 2131 mutex_exit(&mod_lock); 2132 } 2133 2134 void 2135 kobj_unload_module(struct modctl *modp) 2136 { 2137 struct module *mp = modp->mod_mp; 2138 2139 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { 2140 _kobj_printf(ops, "text for %s ", mp->filename); 2141 _kobj_printf(ops, "was at %p\n", mp->text); 2142 mp->text = NULL; /* don't actually free it */ 2143 } 2144 2145 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); 2146 2147 /* 2148 * Null out mod_mp first, so consumers (debuggers) know not to look 2149 * at the module structure any more. 2150 */ 2151 mutex_enter(&mod_lock); 2152 modp->mod_mp = NULL; 2153 mutex_exit(&mod_lock); 2154 2155 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); 2156 free_module_data(mp); 2157 } 2158 2159 static void 2160 free_module_data(struct module *mp) 2161 { 2162 struct module_list *lp, *tmp; 2163 int ksyms_exported = 0; 2164 2165 lp = mp->head; 2166 while (lp) { 2167 tmp = lp; 2168 lp = lp->next; 2169 kobj_free((char *)tmp, sizeof (*tmp)); 2170 } 2171 2172 rw_enter(&ksyms_lock, RW_WRITER); 2173 if (mp->symspace) { 2174 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { 2175 vmem_free(ksyms_arena, mp->symspace, mp->symsize); 2176 ksyms_exported = 1; 2177 } else { 2178 if (mp->flags & KOBJ_NOKSYMS) 2179 ksyms_exported = 1; 2180 kobj_free(mp->symspace, mp->symsize); 2181 } 2182 } 2183 rw_exit(&ksyms_lock); 2184 2185 if (mp->ctfdata) { 2186 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) 2187 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); 2188 else 2189 kobj_free(mp->ctfdata, mp->ctfsize); 2190 } 2191 2192 if (mp->sigdata) 2193 kobj_free(mp->sigdata, mp->sigsize); 2194 2195 /* 2196 * We did not get far enough into kobj_export_ksyms() to free allocated 2197 * buffers because we encounted error conditions. Free the buffers. 2198 */ 2199 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { 2200 uint_t shn; 2201 Shdr *shp; 2202 2203 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2204 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2205 switch (shp->sh_type) { 2206 case SHT_RELA: 2207 case SHT_REL: 2208 if (shp->sh_addr != 0) 2209 kobj_free((void *)shp->sh_addr, 2210 shp->sh_size); 2211 break; 2212 } 2213 } 2214 err_free_done: 2215 if (!(mp->flags & KOBJ_PRIM)) { 2216 kobj_free(mp->shdrs, 2217 mp->hdr.e_shentsize * mp->hdr.e_shnum); 2218 } 2219 } 2220 2221 if (mp->bss) 2222 vmem_free(data_arena, (void *)mp->bss, mp->bss_size); 2223 2224 if (mp->fbt_tab) 2225 kobj_texthole_free(mp->fbt_tab, mp->fbt_size); 2226 2227 if (mp->textwin_base) 2228 kobj_textwin_free(mp); 2229 2230 if (mp->sdt_probes != NULL) { 2231 sdt_probedesc_t *sdp = mp->sdt_probes, *next; 2232 2233 while (sdp != NULL) { 2234 next = sdp->sdpd_next; 2235 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); 2236 kobj_free(sdp, sizeof (sdt_probedesc_t)); 2237 sdp = next; 2238 } 2239 } 2240 2241 if (mp->sdt_tab) 2242 kobj_texthole_free(mp->sdt_tab, mp->sdt_size); 2243 if (mp->text) 2244 vmem_free(text_arena, mp->text, mp->text_size); 2245 if (mp->data) 2246 vmem_free(data_arena, mp->data, mp->data_size); 2247 if (mp->depends_on) 2248 kobj_free(mp->depends_on, strlen(mp->depends_on)+1); 2249 if (mp->filename) 2250 kobj_free(mp->filename, strlen(mp->filename)+1); 2251 2252 kobj_free((char *)mp, sizeof (*mp)); 2253 } 2254 2255 static int 2256 get_progbits(struct module *mp, struct _buf *file) 2257 { 2258 struct proginfo *tp, *dp, *sdp; 2259 Shdr *shp; 2260 reloc_dest_t dest = NULL; 2261 uintptr_t bits_ptr; 2262 uintptr_t text = 0, data, textptr; 2263 uint_t shn; 2264 int err = -1; 2265 2266 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2267 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2268 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); 2269 /* 2270 * loop through sections to find out how much space we need 2271 * for text, data, (also bss that is already assigned) 2272 */ 2273 if (get_progbits_size(mp, tp, dp, sdp) < 0) 2274 goto done; 2275 2276 mp->text_size = tp->size; 2277 mp->data_size = dp->size; 2278 2279 if (standalone) { 2280 caddr_t limit = _data; 2281 2282 if (lg_pagesize && _text + lg_pagesize < limit) 2283 limit = _text + lg_pagesize; 2284 2285 mp->text = kobj_segbrk(&_etext, mp->text_size, 2286 tp->align, limit); 2287 /* 2288 * If we can't grow the text segment, try the 2289 * data segment before failing. 2290 */ 2291 if (mp->text == NULL) { 2292 mp->text = kobj_segbrk(&_edata, mp->text_size, 2293 tp->align, 0); 2294 } 2295 2296 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); 2297 2298 if (mp->text == NULL || mp->data == NULL) 2299 goto done; 2300 2301 } else { 2302 if (text_arena == NULL) 2303 kobj_vmem_init(&text_arena, &data_arena); 2304 2305 /* 2306 * some architectures may want to load the module on a 2307 * page that is currently read only. It may not be 2308 * possible for those architectures to remap their page 2309 * on the fly. So we provide a facility for them to hang 2310 * a private hook where the memory they assign the module 2311 * is not the actual place where the module loads. 2312 * 2313 * In this case there are two addresses that deal with the 2314 * modload. 2315 * 1) the final destination of the module 2316 * 2) the address that is used to view the newly 2317 * loaded module until all the relocations relative to 1 2318 * above are completed. 2319 * 2320 * That is what dest is used for below. 2321 */ 2322 mp->text_size += tp->align; 2323 mp->data_size += dp->align; 2324 2325 mp->text = kobj_text_alloc(text_arena, mp->text_size); 2326 2327 /* 2328 * a remap is taking place. Align the text ptr relative 2329 * to the secondary mapping. That is where the bits will 2330 * be read in. 2331 */ 2332 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, 2333 mp->text, mp->text_size)) { 2334 off_t off = (uintptr_t)mp->text & PAGEOFFSET; 2335 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); 2336 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); 2337 caddr_t orig = mp->text - off; 2338 pgcnt_t pages = size / PAGESIZE; 2339 2340 dest = (reloc_dest_t)(map + off); 2341 text = ALIGN((uintptr_t)dest, tp->align); 2342 2343 while (pages--) { 2344 hat_devload(kas.a_hat, map, PAGESIZE, 2345 hat_getpfnum(kas.a_hat, orig), 2346 PROT_READ | PROT_WRITE | PROT_EXEC, 2347 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 2348 map += PAGESIZE; 2349 orig += PAGESIZE; 2350 } 2351 /* 2352 * Since we set up a non-cacheable mapping, we need 2353 * to flush any old entries in the cache that might 2354 * be left around from the read-only mapping. 2355 */ 2356 dcache_flushall(); 2357 } 2358 if (mp->data_size) 2359 mp->data = vmem_alloc(data_arena, mp->data_size, 2360 VM_SLEEP | VM_BESTFIT); 2361 } 2362 textptr = (uintptr_t)mp->text; 2363 textptr = ALIGN(textptr, tp->align); 2364 mp->destination = dest; 2365 2366 /* 2367 * This is the case where a remap is not being done. 2368 */ 2369 if (text == 0) 2370 text = ALIGN((uintptr_t)mp->text, tp->align); 2371 data = ALIGN((uintptr_t)mp->data, dp->align); 2372 2373 /* now loop though sections assigning addresses and loading the data */ 2374 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2375 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2376 if (!(shp->sh_flags & SHF_ALLOC)) 2377 continue; 2378 2379 if ((shp->sh_flags & SHF_WRITE) == 0) 2380 bits_ptr = text; 2381 else 2382 bits_ptr = data; 2383 2384 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); 2385 2386 if (shp->sh_type == SHT_NOBITS) { 2387 /* 2388 * Zero bss. 2389 */ 2390 bzero((caddr_t)bits_ptr, shp->sh_size); 2391 shp->sh_type = SHT_PROGBITS; 2392 } else { 2393 if (kobj_read_file(file, (char *)bits_ptr, 2394 shp->sh_size, shp->sh_offset) < 0) 2395 goto done; 2396 } 2397 2398 if (shp->sh_flags & SHF_WRITE) { 2399 shp->sh_addr = bits_ptr; 2400 } else { 2401 textptr = ALIGN(textptr, shp->sh_addralign); 2402 shp->sh_addr = textptr; 2403 textptr += shp->sh_size; 2404 } 2405 2406 bits_ptr += shp->sh_size; 2407 if ((shp->sh_flags & SHF_WRITE) == 0) 2408 text = bits_ptr; 2409 else 2410 data = bits_ptr; 2411 } 2412 2413 err = 0; 2414 done: 2415 /* 2416 * Free and mark as freed the section headers here so that 2417 * free_module_data() does not have to worry about this buffer. 2418 * 2419 * This buffer is freed here because one of the possible reasons 2420 * for error is a section with non-zero sh_addr and in that case 2421 * free_module_data() would have no way of recognizing that this 2422 * buffer was unallocated. 2423 */ 2424 if (err != 0) { 2425 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 2426 mp->shdrs = NULL; 2427 } 2428 2429 (void) kobj_free(tp, sizeof (struct proginfo)); 2430 (void) kobj_free(dp, sizeof (struct proginfo)); 2431 (void) kobj_free(sdp, sizeof (struct proginfo)); 2432 2433 return (err); 2434 } 2435 2436 /* 2437 * Go through suppress_sym_list to see if "multiply defined" 2438 * warning of this symbol should be suppressed. Return 1 if 2439 * warning should be suppressed, 0 otherwise. 2440 */ 2441 static int 2442 kobj_suppress_warning(char *symname) 2443 { 2444 int i; 2445 2446 for (i = 0; suppress_sym_list[i] != NULL; i++) { 2447 if (strcmp(suppress_sym_list[i], symname) == 0) 2448 return (1); 2449 } 2450 2451 return (0); 2452 } 2453 2454 static int 2455 get_syms(struct module *mp, struct _buf *file) 2456 { 2457 uint_t shn; 2458 Shdr *shp; 2459 uint_t i; 2460 Sym *sp, *ksp; 2461 char *symname; 2462 int dosymtab = 0; 2463 2464 /* 2465 * Find the interesting sections. 2466 */ 2467 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2468 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2469 switch (shp->sh_type) { 2470 case SHT_SYMTAB: 2471 mp->symtbl_section = shn; 2472 mp->symhdr = shp; 2473 dosymtab++; 2474 break; 2475 2476 case SHT_RELA: 2477 case SHT_REL: 2478 /* 2479 * Already loaded. 2480 */ 2481 if (shp->sh_addr) 2482 continue; 2483 2484 /* KM_TMP since kobj_free'd in do_relocations */ 2485 shp->sh_addr = (Addr) 2486 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); 2487 2488 if (kobj_read_file(file, (char *)shp->sh_addr, 2489 shp->sh_size, shp->sh_offset) < 0) { 2490 _kobj_printf(ops, "krtld: get_syms: %s, ", 2491 mp->filename); 2492 _kobj_printf(ops, "error reading section %d\n", 2493 shn); 2494 return (-1); 2495 } 2496 break; 2497 } 2498 } 2499 2500 /* 2501 * This is true for a stripped executable. In the case of 2502 * 'unix' it can be stripped but it still contains the SHT_DYNSYM, 2503 * and since that symbol information is still present everything 2504 * is just fine. 2505 */ 2506 if (!dosymtab) { 2507 if (mp->flags & KOBJ_EXEC) 2508 return (0); 2509 _kobj_printf(ops, "krtld: get_syms: %s ", 2510 mp->filename); 2511 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); 2512 return (-1); 2513 } 2514 2515 /* 2516 * get the associated string table header 2517 */ 2518 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum)) 2519 return (-1); 2520 mp->strhdr = (Shdr *) 2521 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 2522 2523 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 2524 mp->hashsize = kobj_gethashsize(mp->nsyms); 2525 2526 /* 2527 * Allocate space for the symbol table, buckets, chains, and strings. 2528 */ 2529 mp->symsize = mp->symhdr->sh_size + 2530 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; 2531 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); 2532 2533 mp->symtbl = mp->symspace; 2534 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); 2535 mp->chains = mp->buckets + mp->hashsize; 2536 mp->strings = (char *)(mp->chains + mp->nsyms); 2537 2538 if (kobj_read_file(file, mp->symtbl, 2539 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 || 2540 kobj_read_file(file, mp->strings, 2541 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) 2542 return (-1); 2543 2544 /* 2545 * loop through the symbol table adjusting values to account 2546 * for where each section got loaded into memory. Also 2547 * fill in the hash table. 2548 */ 2549 for (i = 1; i < mp->nsyms; i++) { 2550 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); 2551 if (sp->st_shndx < SHN_LORESERVE) { 2552 if (sp->st_shndx >= mp->hdr.e_shnum) { 2553 _kobj_printf(ops, "%s bad shndx ", 2554 file->_name); 2555 _kobj_printf(ops, "in symbol %d\n", i); 2556 return (-1); 2557 } 2558 shp = (Shdr *) 2559 (mp->shdrs + 2560 sp->st_shndx * mp->hdr.e_shentsize); 2561 if (!(mp->flags & KOBJ_EXEC)) 2562 sp->st_value += shp->sh_addr; 2563 } 2564 2565 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) 2566 continue; 2567 if (sp->st_name >= mp->strhdr->sh_size) 2568 return (-1); 2569 2570 symname = mp->strings + sp->st_name; 2571 2572 if (!(mp->flags & KOBJ_EXEC) && 2573 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { 2574 ksp = kobj_lookup_all(mp, symname, 0); 2575 2576 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && 2577 !kobj_suppress_warning(symname) && 2578 sp->st_shndx != SHN_UNDEF && 2579 sp->st_shndx != SHN_COMMON && 2580 ksp->st_shndx != SHN_UNDEF && 2581 ksp->st_shndx != SHN_COMMON) { 2582 /* 2583 * Unless this symbol is a stub, it's multiply 2584 * defined. Multiply-defined symbols are 2585 * usually bad, but some objects (kmdb) have 2586 * a legitimate need to have their own 2587 * copies of common functions. 2588 */ 2589 if ((standalone || 2590 ksp->st_value < (uintptr_t)stubs_base || 2591 ksp->st_value >= (uintptr_t)stubs_end) && 2592 !(mp->flags & KOBJ_IGNMULDEF)) { 2593 _kobj_printf(ops, 2594 "%s symbol ", file->_name); 2595 _kobj_printf(ops, 2596 "%s multiply defined\n", symname); 2597 } 2598 } 2599 } 2600 2601 sym_insert(mp, symname, i); 2602 } 2603 2604 return (0); 2605 } 2606 2607 static int 2608 get_ctf(struct module *mp, struct _buf *file) 2609 { 2610 char *shstrtab, *ctfdata; 2611 size_t shstrlen; 2612 Shdr *shp; 2613 uint_t i; 2614 2615 if (_moddebug & MODDEBUG_NOCTF) 2616 return (0); /* do not attempt to even load CTF data */ 2617 2618 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2619 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2620 mp->filename); 2621 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2622 mp->hdr.e_shstrndx); 2623 return (-1); 2624 } 2625 2626 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2627 shstrlen = shp->sh_size; 2628 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2629 2630 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2631 _kobj_printf(ops, "krtld: get_ctf: %s, ", 2632 mp->filename); 2633 _kobj_printf(ops, "error reading section %u\n", 2634 mp->hdr.e_shstrndx); 2635 kobj_free(shstrtab, shstrlen); 2636 return (-1); 2637 } 2638 2639 for (i = 0; i < mp->hdr.e_shnum; i++) { 2640 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2641 2642 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2643 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { 2644 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); 2645 2646 if (kobj_read_file(file, ctfdata, shp->sh_size, 2647 shp->sh_offset) < 0) { 2648 _kobj_printf(ops, "krtld: get_ctf: %s, error " 2649 "reading .SUNW_ctf data\n", mp->filename); 2650 kobj_free(ctfdata, shp->sh_size); 2651 kobj_free(shstrtab, shstrlen); 2652 return (-1); 2653 } 2654 2655 mp->ctfdata = ctfdata; 2656 mp->ctfsize = shp->sh_size; 2657 break; 2658 } 2659 } 2660 2661 kobj_free(shstrtab, shstrlen); 2662 return (0); 2663 } 2664 2665 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ 2666 2667 /* 2668 * Return the hash of the ELF sections that are memory resident. 2669 * i.e. text and data. We skip a SHT_NOBITS section since it occupies 2670 * no space in the file. We use SHA1 here since libelfsign uses 2671 * it and both places need to use the same algorithm. 2672 */ 2673 static void 2674 crypto_es_hash(struct module *mp, char *hash, char *shstrtab) 2675 { 2676 uint_t shn; 2677 Shdr *shp; 2678 SHA1_CTX ctx; 2679 2680 SHA1Init(&ctx); 2681 2682 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 2683 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 2684 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) 2685 continue; 2686 2687 /* 2688 * The check should ideally be shp->sh_type == SHT_NOBITS. 2689 * However, we can't do that check here as get_progbits() 2690 * resets the type. 2691 */ 2692 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) 2693 continue; 2694 #ifdef KOBJ_DEBUG 2695 if (kobj_debug & D_DEBUG) 2696 _kobj_printf(ops, 2697 "krtld: crypto_es_hash: updating hash with" 2698 " %s data size=%d\n", shstrtab + shp->sh_name, 2699 shp->sh_size); 2700 #endif 2701 ASSERT(shp->sh_addr != NULL); 2702 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); 2703 } 2704 2705 SHA1Final((uchar_t *)hash, &ctx); 2706 } 2707 2708 /* 2709 * Get the .SUNW_signature section for the module, it it exists. 2710 * 2711 * This section exists only for crypto modules. None of the 2712 * primary modules have this section currently. 2713 */ 2714 static void 2715 get_signature(struct module *mp, struct _buf *file) 2716 { 2717 char *shstrtab, *sigdata = NULL; 2718 size_t shstrlen; 2719 Shdr *shp; 2720 uint_t i; 2721 2722 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { 2723 _kobj_printf(ops, "krtld: get_signature: %s, ", 2724 mp->filename); 2725 _kobj_printf(ops, "corrupt e_shstrndx %u\n", 2726 mp->hdr.e_shstrndx); 2727 return; 2728 } 2729 2730 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 2731 shstrlen = shp->sh_size; 2732 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); 2733 2734 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { 2735 _kobj_printf(ops, "krtld: get_signature: %s, ", 2736 mp->filename); 2737 _kobj_printf(ops, "error reading section %u\n", 2738 mp->hdr.e_shstrndx); 2739 kobj_free(shstrtab, shstrlen); 2740 return; 2741 } 2742 2743 for (i = 0; i < mp->hdr.e_shnum; i++) { 2744 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); 2745 if (shp->sh_size != 0 && shp->sh_name < shstrlen && 2746 strcmp(shstrtab + shp->sh_name, 2747 ELF_SIGNATURE_SECTION) == 0) { 2748 filesig_vers_t filesig_version; 2749 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; 2750 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); 2751 2752 if (kobj_read_file(file, sigdata, shp->sh_size, 2753 shp->sh_offset) < 0) { 2754 _kobj_printf(ops, "krtld: get_signature: %s," 2755 " error reading .SUNW_signature data\n", 2756 mp->filename); 2757 kobj_free(sigdata, sigsize); 2758 kobj_free(shstrtab, shstrlen); 2759 return; 2760 } 2761 filesig_version = ((struct filesignatures *)sigdata)-> 2762 filesig_sig.filesig_version; 2763 if (!(filesig_version == FILESIG_VERSION1 || 2764 filesig_version == FILESIG_VERSION3)) { 2765 /* skip versions we don't understand */ 2766 kobj_free(sigdata, sigsize); 2767 kobj_free(shstrtab, shstrlen); 2768 return; 2769 } 2770 2771 mp->sigdata = sigdata; 2772 mp->sigsize = sigsize; 2773 break; 2774 } 2775 } 2776 2777 if (sigdata != NULL) { 2778 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); 2779 } 2780 2781 kobj_free(shstrtab, shstrlen); 2782 } 2783 2784 static void 2785 add_dependent(struct module *mp, struct module *dep) 2786 { 2787 struct module_list *lp; 2788 2789 for (lp = mp->head; lp; lp = lp->next) { 2790 if (lp->mp == dep) 2791 return; /* already on the list */ 2792 } 2793 2794 if (lp == NULL) { 2795 lp = kobj_zalloc(sizeof (*lp), KM_WAIT); 2796 2797 lp->mp = dep; 2798 lp->next = NULL; 2799 if (mp->tail) 2800 mp->tail->next = lp; 2801 else 2802 mp->head = lp; 2803 mp->tail = lp; 2804 } 2805 } 2806 2807 static int 2808 do_dependents(struct modctl *modp, char *modname, size_t modnamelen) 2809 { 2810 struct module *mp; 2811 struct modctl *req; 2812 char *d, *p, *q; 2813 int c; 2814 char *err_modname = NULL; 2815 2816 mp = modp->mod_mp; 2817 2818 if ((p = mp->depends_on) == NULL) 2819 return (0); 2820 2821 for (;;) { 2822 /* 2823 * Skip space. 2824 */ 2825 while (*p && (*p == ' ' || *p == '\t')) 2826 p++; 2827 /* 2828 * Get module name. 2829 */ 2830 d = p; 2831 q = modname; 2832 c = 0; 2833 while (*p && *p != ' ' && *p != '\t') { 2834 if (c < modnamelen - 1) { 2835 *q++ = *p; 2836 c++; 2837 } 2838 p++; 2839 } 2840 2841 if (q == modname) 2842 break; 2843 2844 if (c == modnamelen - 1) { 2845 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); 2846 2847 (void) strncpy(dep, d, p - d + 1); 2848 dep[p - d] = '\0'; 2849 2850 _kobj_printf(ops, "%s: dependency ", modp->mod_modname); 2851 _kobj_printf(ops, "'%s' too long ", dep); 2852 _kobj_printf(ops, "(max %d chars)\n", modnamelen); 2853 2854 kobj_free(dep, p - d + 1); 2855 2856 return (-1); 2857 } 2858 2859 *q = '\0'; 2860 if ((req = mod_load_requisite(modp, modname)) == NULL) { 2861 #ifndef KOBJ_DEBUG 2862 if (_moddebug & MODDEBUG_LOADMSG) { 2863 #endif /* KOBJ_DEBUG */ 2864 _kobj_printf(ops, 2865 "%s: unable to resolve dependency, ", 2866 modp->mod_modname); 2867 _kobj_printf(ops, "cannot load module '%s'\n", 2868 modname); 2869 #ifndef KOBJ_DEBUG 2870 } 2871 #endif /* KOBJ_DEBUG */ 2872 if (err_modname == NULL) { 2873 /* 2874 * This must be the same size as the modname 2875 * one. 2876 */ 2877 err_modname = kobj_zalloc(MODMAXNAMELEN, 2878 KM_WAIT); 2879 2880 /* 2881 * We can use strcpy() here without fearing 2882 * the NULL terminator because the size of 2883 * err_modname is the same as one of modname, 2884 * and it's filled with zeros. 2885 */ 2886 (void) strcpy(err_modname, modname); 2887 } 2888 continue; 2889 } 2890 2891 add_dependent(mp, req->mod_mp); 2892 mod_release_mod(req); 2893 2894 } 2895 2896 if (err_modname != NULL) { 2897 /* 2898 * Copy the first module name where you detect an error to keep 2899 * its behavior the same as before. 2900 * This way keeps minimizing the memory use for error 2901 * modules, and this might be important at boot time because 2902 * the memory usage is a crucial factor for booting in most 2903 * cases. You can expect more verbose messages when using 2904 * a debug kernel or setting a bit in moddebug. 2905 */ 2906 bzero(modname, MODMAXNAMELEN); 2907 (void) strcpy(modname, err_modname); 2908 kobj_free(err_modname, MODMAXNAMELEN); 2909 return (-1); 2910 } 2911 2912 return (0); 2913 } 2914 2915 static int 2916 do_common(struct module *mp) 2917 { 2918 int err; 2919 2920 /* 2921 * first time through, assign all symbols defined in other 2922 * modules, and count up how much common space will be needed 2923 * (bss_size and bss_align) 2924 */ 2925 if ((err = do_symbols(mp, 0)) < 0) 2926 return (err); 2927 /* 2928 * increase bss_size by the maximum delta that could be 2929 * computed by the ALIGN below 2930 */ 2931 mp->bss_size += mp->bss_align; 2932 if (mp->bss_size) { 2933 if (standalone) 2934 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, 2935 MINALIGN, 0); 2936 else 2937 mp->bss = (uintptr_t)vmem_alloc(data_arena, 2938 mp->bss_size, VM_SLEEP | VM_BESTFIT); 2939 bzero((void *)mp->bss, mp->bss_size); 2940 /* now assign addresses to all common symbols */ 2941 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) 2942 return (err); 2943 } 2944 return (0); 2945 } 2946 2947 static int 2948 do_symbols(struct module *mp, Elf64_Addr bss_base) 2949 { 2950 int bss_align; 2951 uintptr_t bss_ptr; 2952 int err; 2953 int i; 2954 Sym *sp, *sp1; 2955 char *name; 2956 int assign; 2957 int resolved = 1; 2958 2959 /* 2960 * Nothing left to do (optimization). 2961 */ 2962 if (mp->flags & KOBJ_RESOLVED) 2963 return (0); 2964 2965 assign = (bss_base) ? 1 : 0; 2966 bss_ptr = bss_base; 2967 bss_align = 0; 2968 err = 0; 2969 2970 for (i = 1; i < mp->nsyms; i++) { 2971 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); 2972 /* 2973 * we know that st_name is in bounds, since get_sections 2974 * has already checked all of the symbols 2975 */ 2976 name = mp->strings + sp->st_name; 2977 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) 2978 continue; 2979 #if defined(__sparc) 2980 /* 2981 * Register symbols are ignored in the kernel 2982 */ 2983 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { 2984 if (*name != '\0') { 2985 _kobj_printf(ops, "%s: named REGISTER symbol ", 2986 mp->filename); 2987 _kobj_printf(ops, "not supported '%s'\n", 2988 name); 2989 err = DOSYM_UNDEF; 2990 } 2991 continue; 2992 } 2993 #endif /* __sparc */ 2994 /* 2995 * TLS symbols are ignored in the kernel 2996 */ 2997 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { 2998 _kobj_printf(ops, "%s: TLS symbol ", 2999 mp->filename); 3000 _kobj_printf(ops, "not supported '%s'\n", 3001 name); 3002 err = DOSYM_UNDEF; 3003 continue; 3004 } 3005 3006 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { 3007 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { 3008 sp->st_shndx = SHN_ABS; 3009 sp->st_value = sp1->st_value; 3010 continue; 3011 } 3012 } 3013 3014 if (sp->st_shndx == SHN_UNDEF) { 3015 resolved = 0; 3016 3017 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) 3018 continue; 3019 3020 /* 3021 * If it's not a weak reference and it's 3022 * not a primary object, it's an error. 3023 * (Primary objects may take more than 3024 * one pass to resolve) 3025 */ 3026 if (!(mp->flags & KOBJ_PRIM) && 3027 ELF_ST_BIND(sp->st_info) != STB_WEAK) { 3028 _kobj_printf(ops, "%s: undefined symbol", 3029 mp->filename); 3030 _kobj_printf(ops, " '%s'\n", name); 3031 /* 3032 * Try to determine whether this symbol 3033 * represents a dependency on obsolete 3034 * unsafe driver support. This is just 3035 * to make the warning more informative. 3036 */ 3037 if (strcmp(name, "sleep") == 0 || 3038 strcmp(name, "unsleep") == 0 || 3039 strcmp(name, "wakeup") == 0 || 3040 strcmp(name, "bsd_compat_ioctl") == 0 || 3041 strcmp(name, "unsafe_driver") == 0 || 3042 strncmp(name, "spl", 3) == 0 || 3043 strncmp(name, "i_ddi_spl", 9) == 0) 3044 err = DOSYM_UNSAFE; 3045 if (err == 0) 3046 err = DOSYM_UNDEF; 3047 } 3048 continue; 3049 } 3050 /* 3051 * It's a common symbol - st_value is the 3052 * required alignment. 3053 */ 3054 if (sp->st_value > bss_align) 3055 bss_align = sp->st_value; 3056 bss_ptr = ALIGN(bss_ptr, sp->st_value); 3057 if (assign) { 3058 sp->st_shndx = SHN_ABS; 3059 sp->st_value = bss_ptr; 3060 } 3061 bss_ptr += sp->st_size; 3062 } 3063 if (err) 3064 return (err); 3065 if (assign == 0 && mp->bss == NULL) { 3066 mp->bss_align = bss_align; 3067 mp->bss_size = bss_ptr; 3068 } else if (resolved) { 3069 mp->flags |= KOBJ_RESOLVED; 3070 } 3071 3072 return (0); 3073 } 3074 3075 uint_t 3076 kobj_hash_name(const char *p) 3077 { 3078 uint_t g; 3079 uint_t hval; 3080 3081 hval = 0; 3082 while (*p) { 3083 hval = (hval << 4) + *p++; 3084 if ((g = (hval & 0xf0000000)) != 0) 3085 hval ^= g >> 24; 3086 hval &= ~g; 3087 } 3088 return (hval); 3089 } 3090 3091 /* look for name in all modules */ 3092 uintptr_t 3093 kobj_getsymvalue(char *name, int kernelonly) 3094 { 3095 Sym *sp; 3096 struct modctl *modp; 3097 struct module *mp; 3098 uintptr_t value = 0; 3099 3100 if ((sp = kobj_lookup_kernel(name)) != NULL) 3101 return ((uintptr_t)sp->st_value); 3102 3103 if (kernelonly) 3104 return (0); /* didn't find it in the kernel so give up */ 3105 3106 mutex_enter(&mod_lock); 3107 modp = &modules; 3108 do { 3109 mp = (struct module *)modp->mod_mp; 3110 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3111 (sp = lookup_one(mp, name))) { 3112 value = (uintptr_t)sp->st_value; 3113 break; 3114 } 3115 } while ((modp = modp->mod_next) != &modules); 3116 mutex_exit(&mod_lock); 3117 return (value); 3118 } 3119 3120 /* look for a symbol near value. */ 3121 char * 3122 kobj_getsymname(uintptr_t value, ulong_t *offset) 3123 { 3124 char *name = NULL; 3125 struct modctl *modp; 3126 3127 struct modctl_list *lp; 3128 struct module *mp; 3129 3130 /* 3131 * Loop through the primary kernel modules. 3132 */ 3133 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3134 mp = mod(lp); 3135 3136 if ((name = kobj_searchsym(mp, value, offset)) != NULL) 3137 return (name); 3138 } 3139 3140 mutex_enter(&mod_lock); 3141 modp = &modules; 3142 do { 3143 mp = (struct module *)modp->mod_mp; 3144 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && 3145 (name = kobj_searchsym(mp, value, offset))) 3146 break; 3147 } while ((modp = modp->mod_next) != &modules); 3148 mutex_exit(&mod_lock); 3149 return (name); 3150 } 3151 3152 /* return address of symbol and size */ 3153 3154 uintptr_t 3155 kobj_getelfsym(char *name, void *mp, int *size) 3156 { 3157 Sym *sp; 3158 3159 if (mp == NULL) 3160 sp = kobj_lookup_kernel(name); 3161 else 3162 sp = lookup_one(mp, name); 3163 3164 if (sp == NULL) 3165 return (0); 3166 3167 *size = (int)sp->st_size; 3168 return ((uintptr_t)sp->st_value); 3169 } 3170 3171 uintptr_t 3172 kobj_lookup(struct module *mod, const char *name) 3173 { 3174 Sym *sp; 3175 3176 sp = lookup_one(mod, name); 3177 3178 if (sp == NULL) 3179 return (0); 3180 3181 return ((uintptr_t)sp->st_value); 3182 } 3183 3184 char * 3185 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) 3186 { 3187 Sym *symtabptr; 3188 char *strtabptr; 3189 int symnum; 3190 Sym *sym; 3191 Sym *cursym; 3192 uintptr_t curval; 3193 3194 *offset = (ulong_t)-1l; /* assume not found */ 3195 cursym = NULL; 3196 3197 if (kobj_addrcheck(mp, (void *)value) != 0) 3198 return (NULL); /* not in this module */ 3199 3200 strtabptr = mp->strings; 3201 symtabptr = (Sym *)mp->symtbl; 3202 3203 /* 3204 * Scan the module's symbol table for a symbol <= value 3205 */ 3206 for (symnum = 1, sym = symtabptr + 1; 3207 symnum < mp->nsyms; symnum++, sym = (Sym *) 3208 ((uintptr_t)sym + mp->symhdr->sh_entsize)) { 3209 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { 3210 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) 3211 continue; 3212 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && 3213 ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3214 continue; 3215 } 3216 3217 curval = (uintptr_t)sym->st_value; 3218 3219 if (curval > value) 3220 continue; 3221 3222 /* 3223 * If one or both are functions... 3224 */ 3225 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && 3226 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { 3227 /* Ignore if the address is out of the bounds */ 3228 if (value - sym->st_value >= sym->st_size) 3229 continue; 3230 3231 if (cursym != NULL && 3232 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { 3233 /* Prefer the function to the non-function */ 3234 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 3235 continue; 3236 3237 /* Prefer the larger of the two functions */ 3238 if (sym->st_size <= cursym->st_size) 3239 continue; 3240 } 3241 } else if (value - curval >= *offset) { 3242 continue; 3243 } 3244 3245 *offset = (ulong_t)(value - curval); 3246 cursym = sym; 3247 } 3248 if (cursym == NULL) 3249 return (NULL); 3250 3251 return (strtabptr + cursym->st_name); 3252 } 3253 3254 Sym * 3255 kobj_lookup_all(struct module *mp, char *name, int include_self) 3256 { 3257 Sym *sp; 3258 struct module_list *mlp; 3259 struct modctl_list *clp; 3260 struct module *mmp; 3261 3262 if (include_self && (sp = lookup_one(mp, name)) != NULL) 3263 return (sp); 3264 3265 for (mlp = mp->head; mlp; mlp = mlp->next) { 3266 if ((sp = lookup_one(mlp->mp, name)) != NULL && 3267 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3268 return (sp); 3269 } 3270 3271 /* 3272 * Loop through the primary kernel modules. 3273 */ 3274 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { 3275 mmp = mod(clp); 3276 3277 if (mmp == NULL || mp == mmp) 3278 continue; 3279 3280 if ((sp = lookup_one(mmp, name)) != NULL && 3281 ELF_ST_BIND(sp->st_info) != STB_LOCAL) 3282 return (sp); 3283 } 3284 return (NULL); 3285 } 3286 3287 Sym * 3288 kobj_lookup_kernel(const char *name) 3289 { 3290 struct modctl_list *lp; 3291 struct module *mp; 3292 Sym *sp; 3293 3294 /* 3295 * Loop through the primary kernel modules. 3296 */ 3297 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { 3298 mp = mod(lp); 3299 3300 if (mp == NULL) 3301 continue; 3302 3303 if ((sp = lookup_one(mp, name)) != NULL) 3304 return (sp); 3305 } 3306 return (NULL); 3307 } 3308 3309 static Sym * 3310 lookup_one(struct module *mp, const char *name) 3311 { 3312 symid_t *ip; 3313 char *name1; 3314 Sym *sp; 3315 3316 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3317 ip = &mp->chains[*ip]) { 3318 sp = (Sym *)(mp->symtbl + 3319 mp->symhdr->sh_entsize * *ip); 3320 name1 = mp->strings + sp->st_name; 3321 if (strcmp(name, name1) == 0 && 3322 ELF_ST_TYPE(sp->st_info) != STT_FILE && 3323 sp->st_shndx != SHN_UNDEF && 3324 sp->st_shndx != SHN_COMMON) 3325 return (sp); 3326 } 3327 return (NULL); 3328 } 3329 3330 /* 3331 * Lookup a given symbol pointer in the module's symbol hash. If the symbol 3332 * is hashed, return the symbol pointer; otherwise return NULL. 3333 */ 3334 static Sym * 3335 sym_lookup(struct module *mp, Sym *ksp) 3336 { 3337 char *name = mp->strings + ksp->st_name; 3338 symid_t *ip; 3339 Sym *sp; 3340 3341 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3342 ip = &mp->chains[*ip]) { 3343 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); 3344 if (sp == ksp) 3345 return (ksp); 3346 } 3347 return (NULL); 3348 } 3349 3350 static void 3351 sym_insert(struct module *mp, char *name, symid_t index) 3352 { 3353 symid_t *ip; 3354 3355 #ifdef KOBJ_DEBUG 3356 if (kobj_debug & D_SYMBOLS) { 3357 static struct module *lastmp = NULL; 3358 Sym *sp; 3359 if (lastmp != mp) { 3360 _kobj_printf(ops, 3361 "krtld: symbol entry: file=%s\n", 3362 mp->filename); 3363 _kobj_printf(ops, 3364 "krtld:\tsymndx\tvalue\t\t" 3365 "symbol name\n"); 3366 lastmp = mp; 3367 } 3368 sp = (Sym *)(mp->symtbl + 3369 index * mp->symhdr->sh_entsize); 3370 _kobj_printf(ops, "krtld:\t[%3d]", index); 3371 _kobj_printf(ops, "\t0x%lx", sp->st_value); 3372 _kobj_printf(ops, "\t%s\n", name); 3373 } 3374 3375 #endif 3376 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; 3377 ip = &mp->chains[*ip]) { 3378 ; 3379 } 3380 *ip = index; 3381 } 3382 3383 struct modctl * 3384 kobj_boot_mod_lookup(const char *modname) 3385 { 3386 struct modctl *mctl = kobj_modules; 3387 3388 do { 3389 if (strcmp(modname, mctl->mod_modname) == 0) 3390 return (mctl); 3391 } while ((mctl = mctl->mod_next) != kobj_modules); 3392 3393 return (NULL); 3394 } 3395 3396 /* 3397 * Determine if the module exists. 3398 */ 3399 int 3400 kobj_path_exists(char *name, int use_path) 3401 { 3402 struct _buf *file; 3403 3404 file = kobj_open_path(name, use_path, 1); 3405 #ifdef MODDIR_SUFFIX 3406 if (file == (struct _buf *)-1) 3407 file = kobj_open_path(name, use_path, 0); 3408 #endif /* MODDIR_SUFFIX */ 3409 if (file == (struct _buf *)-1) 3410 return (0); 3411 kobj_close_file(file); 3412 return (1); 3413 } 3414 3415 /* 3416 * fullname is dynamically allocated to be able to hold the 3417 * maximum size string that can be constructed from name. 3418 * path is exactly like the shell PATH variable. 3419 */ 3420 struct _buf * 3421 kobj_open_path(char *name, int use_path, int use_moddir_suffix) 3422 { 3423 char *p, *q; 3424 char *pathp; 3425 char *pathpsave; 3426 char *fullname; 3427 int maxpathlen; 3428 struct _buf *file; 3429 3430 #if !defined(MODDIR_SUFFIX) 3431 use_moddir_suffix = B_FALSE; 3432 #endif 3433 3434 if (!use_path) 3435 pathp = ""; /* use name as specified */ 3436 else 3437 pathp = kobj_module_path; 3438 /* use configured default path */ 3439 3440 pathpsave = pathp; /* keep this for error reporting */ 3441 3442 /* 3443 * Allocate enough space for the largest possible fullname. 3444 * since path is of the form <directory> : <directory> : ... 3445 * we're potentially allocating a little more than we need to 3446 * but we'll allocate the exact amount when we find the right directory. 3447 * (The + 3 below is one for NULL terminator and one for the '/' 3448 * we might have to add at the beginning of path and one for 3449 * the '/' between path and name.) 3450 */ 3451 maxpathlen = strlen(pathp) + strlen(name) + 3; 3452 /* sizeof includes null */ 3453 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; 3454 fullname = kobj_zalloc(maxpathlen, KM_WAIT); 3455 3456 for (;;) { 3457 p = fullname; 3458 if (*pathp != '\0' && *pathp != '/') 3459 *p++ = '/'; /* path must start with '/' */ 3460 while (*pathp && *pathp != ':' && *pathp != ' ') 3461 *p++ = *pathp++; 3462 if (p != fullname && p[-1] != '/') 3463 *p++ = '/'; 3464 if (use_moddir_suffix) { 3465 char *b = basename(name); 3466 char *s; 3467 3468 /* copy everything up to the base name */ 3469 q = name; 3470 while (q != b && *q) 3471 *p++ = *q++; 3472 s = slash_moddir_suffix_slash; 3473 while (*s) 3474 *p++ = *s++; 3475 /* copy the rest */ 3476 while (*b) 3477 *p++ = *b++; 3478 } else { 3479 q = name; 3480 while (*q) 3481 *p++ = *q++; 3482 } 3483 *p = 0; 3484 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { 3485 kobj_free(fullname, maxpathlen); 3486 return (file); 3487 } 3488 if (*pathp == 0) 3489 break; 3490 pathp++; 3491 } 3492 kobj_free(fullname, maxpathlen); 3493 if (_moddebug & MODDEBUG_ERRMSG) { 3494 _kobj_printf(ops, "can't open %s,", name); 3495 _kobj_printf(ops, " path is %s\n", pathpsave); 3496 } 3497 return ((struct _buf *)-1); 3498 } 3499 3500 intptr_t 3501 kobj_open(char *filename) 3502 { 3503 struct vnode *vp; 3504 int fd; 3505 3506 if (_modrootloaded) { 3507 struct kobjopen_tctl *ltp = kobjopen_alloc(filename); 3508 int Errno; 3509 3510 /* 3511 * Hand off the open to a thread who has a 3512 * stack size capable handling the request. 3513 */ 3514 if (curthread != &t0) { 3515 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3516 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); 3517 sema_p(<p->sema); 3518 Errno = ltp->Errno; 3519 vp = ltp->vp; 3520 } else { 3521 /* 3522 * 1098067: module creds should not be those of the 3523 * caller 3524 */ 3525 cred_t *saved_cred = curthread->t_cred; 3526 curthread->t_cred = kcred; 3527 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 3528 0, 0, rootdir, -1); 3529 curthread->t_cred = saved_cred; 3530 } 3531 kobjopen_free(ltp); 3532 3533 if (Errno) { 3534 if (_moddebug & MODDEBUG_ERRMSG) { 3535 _kobj_printf(ops, 3536 "kobj_open: vn_open of %s fails, ", 3537 filename); 3538 _kobj_printf(ops, "Errno = %d\n", Errno); 3539 } 3540 return (-1); 3541 } else { 3542 if (_moddebug & MODDEBUG_ERRMSG) { 3543 _kobj_printf(ops, "kobj_open: '%s'", filename); 3544 _kobj_printf(ops, " vp = %p\n", vp); 3545 } 3546 return ((intptr_t)vp); 3547 } 3548 } else { 3549 fd = kobj_boot_open(filename, 0); 3550 3551 if (_moddebug & MODDEBUG_ERRMSG) { 3552 if (fd < 0) 3553 _kobj_printf(ops, 3554 "kobj_open: can't open %s\n", filename); 3555 else { 3556 _kobj_printf(ops, "kobj_open: '%s'", filename); 3557 _kobj_printf(ops, " descr = 0x%x\n", fd); 3558 } 3559 } 3560 return ((intptr_t)fd); 3561 } 3562 } 3563 3564 /* 3565 * Calls to kobj_open() are handled off to this routine as a separate thread. 3566 */ 3567 static void 3568 kobjopen_thread(struct kobjopen_tctl *ltp) 3569 { 3570 kmutex_t cpr_lk; 3571 callb_cpr_t cpr_i; 3572 3573 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 3574 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); 3575 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 3576 0, 0); 3577 sema_v(<p->sema); 3578 mutex_enter(&cpr_lk); 3579 CALLB_CPR_EXIT(&cpr_i); 3580 mutex_destroy(&cpr_lk); 3581 thread_exit(); 3582 } 3583 3584 /* 3585 * allocate and initialize a kobjopen thread structure 3586 */ 3587 static struct kobjopen_tctl * 3588 kobjopen_alloc(char *filename) 3589 { 3590 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); 3591 3592 ASSERT(filename != NULL); 3593 3594 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); 3595 bcopy(filename, ltp->name, strlen(filename) + 1); 3596 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); 3597 return (ltp); 3598 } 3599 3600 /* 3601 * free a kobjopen thread control structure 3602 */ 3603 static void 3604 kobjopen_free(struct kobjopen_tctl *ltp) 3605 { 3606 sema_destroy(<p->sema); 3607 kmem_free(ltp->name, strlen(ltp->name) + 1); 3608 kmem_free(ltp, sizeof (*ltp)); 3609 } 3610 3611 int 3612 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) 3613 { 3614 int stat; 3615 ssize_t resid; 3616 3617 if (_modrootloaded) { 3618 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, 3619 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3620 &resid)) != 0) { 3621 _kobj_printf(ops, 3622 "vn_rdwr failed with error 0x%x\n", stat); 3623 return (-1); 3624 } 3625 return (size - resid); 3626 } else { 3627 int count = 0; 3628 3629 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { 3630 _kobj_printf(ops, 3631 "kobj_read: seek 0x%x failed\n", offset); 3632 return (-1); 3633 } 3634 3635 count = kobj_boot_read((int)descr, buf, size); 3636 if (count < size) { 3637 if (_moddebug & MODDEBUG_ERRMSG) { 3638 _kobj_printf(ops, 3639 "kobj_read: req %d bytes, ", size); 3640 _kobj_printf(ops, "got %d\n", count); 3641 } 3642 } 3643 return (count); 3644 } 3645 } 3646 3647 void 3648 kobj_close(intptr_t descr) 3649 { 3650 if (_moddebug & MODDEBUG_ERRMSG) 3651 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); 3652 3653 if (_modrootloaded) { 3654 struct vnode *vp = (struct vnode *)descr; 3655 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 3656 VN_RELE(vp); 3657 } else 3658 (void) kobj_boot_close((int)descr); 3659 } 3660 3661 int 3662 kobj_fstat(intptr_t descr, struct bootstat *buf) 3663 { 3664 if (buf == NULL) 3665 return (-1); 3666 3667 if (_modrootloaded) { 3668 vattr_t vattr; 3669 struct vnode *vp = (struct vnode *)descr; 3670 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3671 return (-1); 3672 3673 /* 3674 * The vattr and bootstat structures are similar, but not 3675 * identical. We do our best to fill in the bootstat structure 3676 * from the contents of vattr (transfering only the ones that 3677 * are obvious. 3678 */ 3679 3680 buf->st_mode = (uint32_t)vattr.va_mode; 3681 buf->st_nlink = (uint32_t)vattr.va_nlink; 3682 buf->st_uid = (int32_t)vattr.va_uid; 3683 buf->st_gid = (int32_t)vattr.va_gid; 3684 buf->st_rdev = (uint64_t)vattr.va_rdev; 3685 buf->st_size = (uint64_t)vattr.va_size; 3686 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; 3687 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; 3688 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; 3689 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; 3690 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; 3691 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; 3692 buf->st_blksize = (int32_t)vattr.va_blksize; 3693 buf->st_blocks = (int64_t)vattr.va_nblocks; 3694 3695 return (0); 3696 } 3697 3698 return (kobj_boot_fstat((int)descr, buf)); 3699 } 3700 3701 3702 struct _buf * 3703 kobj_open_file(char *name) 3704 { 3705 struct _buf *file; 3706 struct compinfo cbuf; 3707 intptr_t fd; 3708 3709 if ((fd = kobj_open(name)) == -1) { 3710 return ((struct _buf *)-1); 3711 } 3712 3713 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); 3714 file->_fd = fd; 3715 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); 3716 file->_cnt = file->_size = file->_off = 0; 3717 file->_ln = 1; 3718 file->_ptr = file->_base; 3719 (void) strcpy(file->_name, name); 3720 3721 /* 3722 * Before root is mounted, we must check 3723 * for a compressed file and do our own 3724 * buffering. 3725 */ 3726 if (_modrootloaded) { 3727 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); 3728 file->_bsize = MAXBSIZE; 3729 3730 /* Check if the file is compressed */ 3731 file->_iscmp = kobj_is_compressed(fd); 3732 } else { 3733 if (kobj_boot_compinfo(fd, &cbuf) != 0) { 3734 kobj_close_file(file); 3735 return ((struct _buf *)-1); 3736 } 3737 file->_iscmp = cbuf.iscmp; 3738 if (file->_iscmp) { 3739 if (kobj_comp_setup(file, &cbuf) != 0) { 3740 kobj_close_file(file); 3741 return ((struct _buf *)-1); 3742 } 3743 } else { 3744 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); 3745 file->_bsize = cbuf.blksize; 3746 } 3747 } 3748 return (file); 3749 } 3750 3751 static int 3752 kobj_comp_setup(struct _buf *file, struct compinfo *cip) 3753 { 3754 struct comphdr *hdr; 3755 3756 /* 3757 * read the compressed image into memory, 3758 * so we can deompress from there 3759 */ 3760 file->_dsize = cip->fsize; 3761 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); 3762 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { 3763 kobj_free(file->_dbuf, cip->fsize); 3764 return (-1); 3765 } 3766 3767 hdr = kobj_comphdr(file); 3768 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION || 3769 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || 3770 (hdr->ch_blksize & (hdr->ch_blksize - 1)) != 0) { 3771 kobj_free(file->_dbuf, cip->fsize); 3772 return (-1); 3773 } 3774 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); 3775 file->_bsize = hdr->ch_blksize; 3776 return (0); 3777 } 3778 3779 void 3780 kobj_close_file(struct _buf *file) 3781 { 3782 kobj_close(file->_fd); 3783 if (file->_base != NULL) 3784 kobj_free(file->_base, file->_bsize); 3785 if (file->_dbuf != NULL) 3786 kobj_free(file->_dbuf, file->_dsize); 3787 kobj_free(file->_name, strlen(file->_name)+1); 3788 kobj_free(file, sizeof (struct _buf)); 3789 } 3790 3791 int 3792 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) 3793 { 3794 int b_size, c_size; 3795 int b_off; /* Offset into buffer for start of bcopy */ 3796 int count = 0; 3797 int page_addr; 3798 3799 if (_moddebug & MODDEBUG_ERRMSG) { 3800 _kobj_printf(ops, "kobj_read_file: size=%x,", size); 3801 _kobj_printf(ops, " offset=%x at", off); 3802 _kobj_printf(ops, " buf=%x\n", buf); 3803 } 3804 3805 /* 3806 * Handle compressed (gzip for now) file here. First get the 3807 * compressed size, then read the image into memory and finally 3808 * call zlib to decompress the image at the supplied memory buffer. 3809 */ 3810 if (file->_iscmp == CH_MAGIC_GZIP) { 3811 ulong_t dlen; 3812 vattr_t vattr; 3813 struct vnode *vp = (struct vnode *)file->_fd; 3814 ssize_t resid; 3815 int err = 0; 3816 3817 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) 3818 return (-1); 3819 3820 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP); 3821 file->_dsize = vattr.va_size; 3822 3823 /* Read the compressed file into memory */ 3824 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size, 3825 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), 3826 &resid)) != 0) { 3827 3828 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, " 3829 "error code 0x%x\n", err); 3830 return (-1); 3831 } 3832 3833 dlen = size; 3834 3835 /* Decompress the image at the supplied memory buffer */ 3836 if ((err = z_uncompress(buf, &dlen, file->_dbuf, 3837 vattr.va_size)) != Z_OK) { 3838 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3839 "failed, error code : 0x%x\n", err); 3840 return (-1); 3841 } 3842 3843 if (dlen != size) { 3844 _kobj_printf(ops, "kobj_read_file: z_uncompress " 3845 "failed to uncompress (size returned 0x%x , " 3846 "expected size: 0x%x)\n", dlen, size); 3847 return (-1); 3848 } 3849 3850 return (0); 3851 } 3852 3853 while (size) { 3854 page_addr = F_PAGE(file, off); 3855 b_size = file->_size; 3856 /* 3857 * If we have the filesystem page the caller's referring to 3858 * and we have something in the buffer, 3859 * satisfy as much of the request from the buffer as we can. 3860 */ 3861 if (page_addr == file->_off && b_size > 0) { 3862 b_off = B_OFFSET(file, off); 3863 c_size = b_size - b_off; 3864 /* 3865 * If there's nothing to copy, we're at EOF. 3866 */ 3867 if (c_size <= 0) 3868 break; 3869 if (c_size > size) 3870 c_size = size; 3871 if (buf) { 3872 if (_moddebug & MODDEBUG_ERRMSG) 3873 _kobj_printf(ops, "copying %x bytes\n", 3874 c_size); 3875 bcopy(file->_base+b_off, buf, c_size); 3876 size -= c_size; 3877 off += c_size; 3878 buf += c_size; 3879 count += c_size; 3880 } else { 3881 _kobj_printf(ops, "kobj_read: system error"); 3882 count = -1; 3883 break; 3884 } 3885 } else { 3886 /* 3887 * If the caller's offset is page aligned and 3888 * the caller want's at least a filesystem page and 3889 * the caller provided a buffer, 3890 * read directly into the caller's buffer. 3891 */ 3892 if (page_addr == off && 3893 (c_size = F_BLKS(file, size)) && buf) { 3894 c_size = kobj_read_blks(file, buf, c_size, 3895 page_addr); 3896 if (c_size < 0) { 3897 count = -1; 3898 break; 3899 } 3900 count += c_size; 3901 if (c_size != F_BLKS(file, size)) 3902 break; 3903 size -= c_size; 3904 off += c_size; 3905 buf += c_size; 3906 /* 3907 * Otherwise, read into our buffer and copy next time 3908 * around the loop. 3909 */ 3910 } else { 3911 file->_off = page_addr; 3912 c_size = kobj_read_blks(file, file->_base, 3913 file->_bsize, page_addr); 3914 file->_ptr = file->_base; 3915 file->_cnt = c_size; 3916 file->_size = c_size; 3917 /* 3918 * If a _filbuf call or nothing read, break. 3919 */ 3920 if (buf == NULL || c_size <= 0) { 3921 count = c_size; 3922 break; 3923 } 3924 } 3925 if (_moddebug & MODDEBUG_ERRMSG) 3926 _kobj_printf(ops, "read %x bytes\n", c_size); 3927 } 3928 } 3929 if (_moddebug & MODDEBUG_ERRMSG) 3930 _kobj_printf(ops, "count = %x\n", count); 3931 3932 return (count); 3933 } 3934 3935 static int 3936 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) 3937 { 3938 int ret; 3939 3940 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); 3941 if (file->_iscmp) { 3942 uint_t blks; 3943 int nret; 3944 3945 ret = 0; 3946 for (blks = size / file->_bsize; blks != 0; blks--) { 3947 nret = kobj_uncomp_blk(file, buf, off); 3948 if (nret == -1) 3949 return (-1); 3950 buf += nret; 3951 off += nret; 3952 ret += nret; 3953 if (nret < file->_bsize) 3954 break; 3955 } 3956 } else 3957 ret = kobj_read(file->_fd, buf, size, off); 3958 return (ret); 3959 } 3960 3961 static int 3962 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) 3963 { 3964 struct comphdr *hdr = kobj_comphdr(file); 3965 ulong_t dlen, slen; 3966 caddr_t src; 3967 int i; 3968 3969 dlen = file->_bsize; 3970 i = off / file->_bsize; 3971 src = file->_dbuf + hdr->ch_blkmap[i]; 3972 if (i == hdr->ch_fsize / file->_bsize) 3973 slen = file->_dsize - hdr->ch_blkmap[i]; 3974 else 3975 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; 3976 if (z_uncompress(buf, &dlen, src, slen) != Z_OK) 3977 return (-1); 3978 return (dlen); 3979 } 3980 3981 int 3982 kobj_filbuf(struct _buf *f) 3983 { 3984 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) 3985 return (kobj_getc(f)); 3986 return (-1); 3987 } 3988 3989 void 3990 kobj_free(void *address, size_t size) 3991 { 3992 if (standalone) 3993 return; 3994 3995 kmem_free(address, size); 3996 kobj_stat.nfree_calls++; 3997 kobj_stat.nfree += size; 3998 } 3999 4000 void * 4001 kobj_zalloc(size_t size, int flag) 4002 { 4003 void *v; 4004 4005 if ((v = kobj_alloc(size, flag)) != 0) { 4006 bzero(v, size); 4007 } 4008 4009 return (v); 4010 } 4011 4012 void * 4013 kobj_alloc(size_t size, int flag) 4014 { 4015 /* 4016 * If we are running standalone in the 4017 * linker, we ask boot for memory. 4018 * Either it's temporary memory that we lose 4019 * once boot is mapped out or we allocate it 4020 * permanently using the dynamic data segment. 4021 */ 4022 if (standalone) { 4023 #if defined(_OBP) 4024 if (flag & (KM_TMP | KM_SCRATCH)) 4025 return (bop_temp_alloc(size, MINALIGN)); 4026 #else 4027 if (flag & (KM_TMP | KM_SCRATCH)) 4028 return (BOP_ALLOC(ops, 0, size, MINALIGN)); 4029 #endif 4030 return (kobj_segbrk(&_edata, size, MINALIGN, 0)); 4031 } 4032 4033 kobj_stat.nalloc_calls++; 4034 kobj_stat.nalloc += size; 4035 4036 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); 4037 } 4038 4039 /* 4040 * Allow the "mod" system to sync up with the work 4041 * already done by kobj during the initial loading 4042 * of the kernel. This also gives us a chance 4043 * to reallocate memory that belongs to boot. 4044 */ 4045 void 4046 kobj_sync(void) 4047 { 4048 struct modctl_list *lp, **lpp; 4049 4050 /* 4051 * The module path can be set in /etc/system via 'moddir' commands 4052 */ 4053 if (default_path != NULL) 4054 kobj_module_path = default_path; 4055 else 4056 default_path = kobj_module_path; 4057 4058 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), 4059 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4060 4061 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), 4062 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4063 4064 /* 4065 * Move symbol tables from boot memory to ksyms_arena. 4066 */ 4067 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { 4068 for (lp = *lpp; lp != NULL; lp = lp->modl_next) 4069 kobj_export_module(mod(lp)); 4070 } 4071 } 4072 4073 caddr_t 4074 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) 4075 { 4076 uintptr_t va, pva; 4077 size_t alloc_pgsz = kobj_mmu_pagesize; 4078 size_t alloc_align = BO_NO_ALIGN; 4079 size_t alloc_size; 4080 4081 /* 4082 * If we are using "large" mappings for the kernel, 4083 * request aligned memory from boot using the 4084 * "large" pagesize. 4085 */ 4086 if (lg_pagesize) { 4087 alloc_align = lg_pagesize; 4088 alloc_pgsz = lg_pagesize; 4089 } 4090 4091 #if defined(__sparc) 4092 /* account for redzone */ 4093 if (limit) 4094 limit -= alloc_pgsz; 4095 #endif /* __sparc */ 4096 4097 va = ALIGN((uintptr_t)*spp, align); 4098 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); 4099 /* 4100 * Need more pages? 4101 */ 4102 if (va + size > pva) { 4103 uintptr_t npva; 4104 4105 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); 4106 /* 4107 * Check for overlapping segments. 4108 */ 4109 if (limit && limit <= *spp + alloc_size) { 4110 return ((caddr_t)0); 4111 } 4112 4113 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, 4114 alloc_size, alloc_align); 4115 4116 if (npva == NULL) { 4117 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", 4118 alloc_size); 4119 _kobj_printf(ops, " aligned %lx", alloc_align); 4120 _kobj_printf(ops, " at 0x%lx\n", pva); 4121 return (NULL); 4122 } 4123 } 4124 *spp = (caddr_t)(va + size); 4125 4126 return ((caddr_t)va); 4127 } 4128 4129 /* 4130 * Calculate the number of output hash buckets. 4131 * We use the next prime larger than n / 4, 4132 * so the average hash chain is about 4 entries. 4133 * More buckets would just be a waste of memory. 4134 */ 4135 uint_t 4136 kobj_gethashsize(uint_t n) 4137 { 4138 int f; 4139 int hsize = MAX(n / 4, 2); 4140 4141 for (f = 2; f * f <= hsize; f++) 4142 if (hsize % f == 0) 4143 hsize += f = 1; 4144 4145 return (hsize); 4146 } 4147 4148 /* 4149 * Get the file size. 4150 * 4151 * Before root is mounted, files are compressed in the boot_archive ramdisk 4152 * (in the memory). kobj_fstat would return the compressed file size. 4153 * In order to get the uncompressed file size, read the file to the end and 4154 * count its size. 4155 */ 4156 int 4157 kobj_get_filesize(struct _buf *file, uint64_t *size) 4158 { 4159 int err = 0; 4160 ssize_t resid; 4161 uint32_t buf; 4162 4163 if (_modrootloaded) { 4164 struct bootstat bst; 4165 4166 if (kobj_fstat(file->_fd, &bst) != 0) 4167 return (EIO); 4168 *size = bst.st_size; 4169 4170 if (file->_iscmp == CH_MAGIC_GZIP) { 4171 /* 4172 * Read the last 4 bytes of the compressed (gzip) 4173 * image to get the size of its uncompressed 4174 * version. 4175 */ 4176 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd, 4177 (char *)(&buf), 4, (offset_t)(*size - 4), 4178 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 4179 != 0) { 4180 _kobj_printf(ops, "kobj_get_filesize: " 4181 "vn_rdwr() failed with error 0x%x\n", err); 4182 return (-1); 4183 } 4184 4185 *size = (uint64_t)buf; 4186 } 4187 } else { 4188 4189 #if defined(_OBP) 4190 struct bootstat bsb; 4191 4192 if (file->_iscmp) { 4193 struct comphdr *hdr = kobj_comphdr(file); 4194 4195 *size = hdr->ch_fsize; 4196 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) 4197 return (EIO); 4198 else 4199 *size = bsb.st_size; 4200 #else 4201 char *buf; 4202 int count; 4203 uint64_t offset = 0; 4204 4205 buf = kmem_alloc(MAXBSIZE, KM_SLEEP); 4206 do { 4207 count = kobj_read_file(file, buf, MAXBSIZE, offset); 4208 if (count < 0) { 4209 kmem_free(buf, MAXBSIZE); 4210 return (EIO); 4211 } 4212 offset += count; 4213 } while (count == MAXBSIZE); 4214 kmem_free(buf, MAXBSIZE); 4215 4216 *size = offset; 4217 #endif 4218 } 4219 4220 return (0); 4221 } 4222 4223 static char * 4224 basename(char *s) 4225 { 4226 char *p, *q; 4227 4228 q = NULL; 4229 p = s; 4230 do { 4231 if (*p == '/') 4232 q = p; 4233 } while (*p++); 4234 return (q ? q + 1 : s); 4235 } 4236 4237 void 4238 kobj_stat_get(kobj_stat_t *kp) 4239 { 4240 *kp = kobj_stat; 4241 } 4242 4243 int 4244 kobj_getpagesize() 4245 { 4246 return (lg_pagesize); 4247 } 4248 4249 void 4250 kobj_textwin_alloc(struct module *mp) 4251 { 4252 ASSERT(MUTEX_HELD(&mod_lock)); 4253 4254 if (mp->textwin != NULL) 4255 return; 4256 4257 /* 4258 * If the text is not contained in the heap, then it is not contained 4259 * by a writable mapping. (Specifically, it's on the nucleus page.) 4260 * We allocate a read/write mapping for this module's text to allow 4261 * the text to be patched without calling hot_patch_kernel_text() 4262 * (which is quite slow). 4263 */ 4264 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { 4265 uintptr_t text = (uintptr_t)mp->text; 4266 uintptr_t size = (uintptr_t)mp->text_size; 4267 uintptr_t i; 4268 caddr_t va; 4269 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - 4270 (text & PAGEMASK); 4271 4272 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); 4273 4274 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { 4275 hat_devload(kas.a_hat, va, PAGESIZE, 4276 hat_getpfnum(kas.a_hat, (caddr_t)i), 4277 PROT_READ | PROT_WRITE, 4278 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4279 va += PAGESIZE; 4280 } 4281 4282 mp->textwin = mp->textwin_base + (text & PAGEOFFSET); 4283 } else { 4284 mp->textwin = mp->text; 4285 } 4286 } 4287 4288 void 4289 kobj_textwin_free(struct module *mp) 4290 { 4291 uintptr_t text = (uintptr_t)mp->text; 4292 uintptr_t tsize = (uintptr_t)mp->text_size; 4293 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - 4294 (text & PAGEMASK)); 4295 4296 mp->textwin = NULL; 4297 4298 if (mp->textwin_base == NULL) 4299 return; 4300 4301 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); 4302 vmem_free(heap_arena, mp->textwin_base, size); 4303 mp->textwin_base = NULL; 4304 } 4305 4306 static char * 4307 find_libmacro(char *name) 4308 { 4309 int lmi; 4310 4311 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4312 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) 4313 return (libmacros[lmi].lmi_list); 4314 } 4315 return (NULL); 4316 } 4317 4318 /* 4319 * Check for $MACRO in tail (string to expand) and expand it in path at pathend 4320 * returns path if successful, else NULL 4321 * Support multiple $MACROs expansion and the first valid path will be returned 4322 * Caller's responsibility to provide enough space in path to expand 4323 */ 4324 char * 4325 expand_libmacro(char *tail, char *path, char *pathend) 4326 { 4327 char c, *p, *p1, *p2, *path2, *endp; 4328 int diff, lmi, macrolen, valid_macro, more_macro; 4329 struct _buf *file; 4330 4331 /* 4332 * check for $MACROS between nulls or slashes 4333 */ 4334 p = strchr(tail, '$'); 4335 if (p == NULL) 4336 return (NULL); 4337 for (lmi = 0; lmi < NLIBMACROS; lmi++) { 4338 macrolen = libmacros[lmi].lmi_macrolen; 4339 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) 4340 break; 4341 } 4342 4343 valid_macro = 0; 4344 if (lmi < NLIBMACROS) { 4345 /* 4346 * The following checks are used to restrict expansion of 4347 * macros to those that form a full directory/file name 4348 * and to keep the behavior same as before. If this 4349 * restriction is removed or no longer valid in the future, 4350 * the checks below can be deleted. 4351 */ 4352 if ((p == tail) || (*(p - 1) == '/')) { 4353 c = *(p + macrolen + 1); 4354 if (c == '/' || c == '\0') 4355 valid_macro = 1; 4356 } 4357 } 4358 4359 if (!valid_macro) { 4360 p2 = strchr(p, '/'); 4361 /* 4362 * if no more macro to expand, then just copy whatever left 4363 * and check whether it exists 4364 */ 4365 if (p2 == NULL || strchr(p2, '$') == NULL) { 4366 (void) strcpy(pathend, tail); 4367 if ((file = kobj_open_path(path, 1, 1)) != 4368 (struct _buf *)-1) { 4369 kobj_close_file(file); 4370 return (path); 4371 } else 4372 return (NULL); 4373 } else { 4374 /* 4375 * copy all chars before '/' and call expand_libmacro() 4376 * again 4377 */ 4378 diff = p2 - tail; 4379 bcopy(tail, pathend, diff); 4380 pathend += diff; 4381 *(pathend) = '\0'; 4382 return (expand_libmacro(p2, path, pathend)); 4383 } 4384 } 4385 4386 more_macro = 0; 4387 if (c != '\0') { 4388 endp = p + macrolen + 1; 4389 if (strchr(endp, '$') != NULL) 4390 more_macro = 1; 4391 } else 4392 endp = NULL; 4393 4394 /* 4395 * copy lmi_list and split it into components. 4396 * then put the part of tail before $MACRO into path 4397 * at pathend 4398 */ 4399 diff = p - tail; 4400 if (diff > 0) 4401 bcopy(tail, pathend, diff); 4402 path2 = pathend + diff; 4403 p1 = libmacros[lmi].lmi_list; 4404 while (p1 && (*p1 != '\0')) { 4405 p2 = strchr(p1, ':'); 4406 if (p2) { 4407 diff = p2 - p1; 4408 bcopy(p1, path2, diff); 4409 *(path2 + diff) = '\0'; 4410 } else { 4411 diff = strlen(p1); 4412 bcopy(p1, path2, diff + 1); 4413 } 4414 /* copy endp only if there isn't any more macro to expand */ 4415 if (!more_macro && (endp != NULL)) 4416 (void) strcat(path2, endp); 4417 file = kobj_open_path(path, 1, 1); 4418 if (file != (struct _buf *)-1) { 4419 kobj_close_file(file); 4420 /* 4421 * if more macros to expand then call expand_libmacro(), 4422 * else return path which has the whole path 4423 */ 4424 if (!more_macro || (expand_libmacro(endp, path, 4425 path2 + diff) != NULL)) { 4426 return (path); 4427 } 4428 } 4429 if (p2) 4430 p1 = ++p2; 4431 else 4432 return (NULL); 4433 } 4434 return (NULL); 4435 } 4436 4437 static void 4438 tnf_add_notifyunload(kobj_notify_f *fp) 4439 { 4440 kobj_notify_list_t *entry; 4441 4442 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT); 4443 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING; 4444 entry->kn_func = fp; 4445 (void) kobj_notify_add(entry); 4446 } 4447 4448 /* ARGSUSED */ 4449 static void 4450 tnf_unsplice_probes(uint_t what, struct modctl *mod) 4451 { 4452 tnf_probe_control_t **p; 4453 tnf_tag_data_t **q; 4454 struct module *mp = mod->mod_mp; 4455 4456 if (!(mp->flags & KOBJ_TNF_PROBE)) 4457 return; 4458 4459 for (p = &__tnf_probe_list_head; *p; ) 4460 if (kobj_addrcheck(mp, (char *)*p) == 0) 4461 *p = (*p)->next; 4462 else 4463 p = &(*p)->next; 4464 4465 for (q = &__tnf_tag_list_head; *q; ) 4466 if (kobj_addrcheck(mp, (char *)*q) == 0) 4467 *q = (tnf_tag_data_t *)(*q)->tag_version; 4468 else 4469 q = (tnf_tag_data_t **)&(*q)->tag_version; 4470 4471 tnf_changed_probe_list = 1; 4472 } 4473 4474 int 4475 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist, 4476 tnf_tag_data_t *tlist) 4477 { 4478 int result = 0; 4479 static int add_notify = 1; 4480 4481 if (plist) { 4482 tnf_probe_control_t *pl; 4483 4484 for (pl = plist; pl->next; ) 4485 pl = pl->next; 4486 4487 if (!boot_load) 4488 mutex_enter(&mod_lock); 4489 tnf_changed_probe_list = 1; 4490 pl->next = __tnf_probe_list_head; 4491 __tnf_probe_list_head = plist; 4492 if (!boot_load) 4493 mutex_exit(&mod_lock); 4494 result = 1; 4495 } 4496 4497 if (tlist) { 4498 tnf_tag_data_t *tl; 4499 4500 for (tl = tlist; tl->tag_version; ) 4501 tl = (tnf_tag_data_t *)tl->tag_version; 4502 4503 if (!boot_load) 4504 mutex_enter(&mod_lock); 4505 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head; 4506 __tnf_tag_list_head = tlist; 4507 if (!boot_load) 4508 mutex_exit(&mod_lock); 4509 result = 1; 4510 } 4511 if (!boot_load && result && add_notify) { 4512 tnf_add_notifyunload(tnf_unsplice_probes); 4513 add_notify = 0; 4514 } 4515 return (result); 4516 } 4517 4518 char *kobj_file_buf; 4519 int kobj_file_bufsize; 4520 4521 /* 4522 * This code is for the purpose of manually recording which files 4523 * needs to go into the boot archive on any given system. 4524 * 4525 * To enable the code, set kobj_file_bufsize in /etc/system 4526 * and reboot the system, then use mdb to look at kobj_file_buf. 4527 */ 4528 static void 4529 kobj_record_file(char *filename) 4530 { 4531 static char *buf; 4532 static int size = 0; 4533 int n; 4534 4535 if (kobj_file_bufsize == 0) /* don't bother */ 4536 return; 4537 4538 if (kobj_file_buf == NULL) { /* allocate buffer */ 4539 size = kobj_file_bufsize; 4540 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); 4541 } 4542 4543 n = snprintf(buf, size, "%s\n", filename); 4544 if (n > size) 4545 n = size; 4546 size -= n; 4547 buf += n; 4548 } 4549 4550 static int 4551 kobj_boot_fstat(int fd, struct bootstat *stp) 4552 { 4553 #if defined(_OBP) 4554 if (!standalone && _ioquiesced) 4555 return (-1); 4556 return (BOP_FSTAT(ops, fd, stp)); 4557 #else 4558 return (BRD_FSTAT(bfs_ops, fd, stp)); 4559 #endif 4560 } 4561 4562 static int 4563 kobj_boot_open(char *filename, int flags) 4564 { 4565 #if defined(_OBP) 4566 4567 /* 4568 * If io via bootops is quiesced, it means boot is no longer 4569 * available to us. We make it look as if we can't open the 4570 * named file - which is reasonably accurate. 4571 */ 4572 if (!standalone && _ioquiesced) 4573 return (-1); 4574 4575 kobj_record_file(filename); 4576 return (BOP_OPEN(filename, flags)); 4577 #else /* x86 */ 4578 kobj_record_file(filename); 4579 return (BRD_OPEN(bfs_ops, filename, flags)); 4580 #endif 4581 } 4582 4583 static int 4584 kobj_boot_close(int fd) 4585 { 4586 #if defined(_OBP) 4587 if (!standalone && _ioquiesced) 4588 return (-1); 4589 4590 return (BOP_CLOSE(fd)); 4591 #else /* x86 */ 4592 return (BRD_CLOSE(bfs_ops, fd)); 4593 #endif 4594 } 4595 4596 /*ARGSUSED*/ 4597 static int 4598 kobj_boot_seek(int fd, off_t hi, off_t lo) 4599 { 4600 #if defined(_OBP) 4601 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); 4602 #else 4603 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); 4604 #endif 4605 } 4606 4607 static int 4608 kobj_boot_read(int fd, caddr_t buf, size_t size) 4609 { 4610 #if defined(_OBP) 4611 return (BOP_READ(fd, buf, size)); 4612 #else 4613 return (BRD_READ(bfs_ops, fd, buf, size)); 4614 #endif 4615 } 4616 4617 static int 4618 kobj_boot_compinfo(int fd, struct compinfo *cb) 4619 { 4620 return (boot_compinfo(fd, cb)); 4621 } 4622 4623 /* 4624 * Check if the file is compressed (for now we handle only gzip). 4625 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise. 4626 */ 4627 static int 4628 kobj_is_compressed(intptr_t fd) 4629 { 4630 struct vnode *vp = (struct vnode *)fd; 4631 ssize_t resid; 4632 uint16_t magic_buf; 4633 int err = 0; 4634 4635 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf), 4636 sizeof (magic_buf), (offset_t)(0), 4637 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 4638 4639 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, " 4640 "error code 0x%x\n", err); 4641 return (0); 4642 } 4643 4644 if (magic_buf == CH_MAGIC_GZIP) 4645 return (CH_MAGIC_GZIP); 4646 4647 return (0); 4648 } 4649