xref: /titanic_41/usr/src/uts/common/io/ural/ural.c (revision fc6df3bdbec9a23827d64460d15c987a4497ef35)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2005, 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Ralink Technology RT2500USB chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/types.h>
29 #include <sys/byteorder.h>
30 #include <sys/conf.h>
31 #include <sys/cmn_err.h>
32 #include <sys/stat.h>
33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/strsubr.h>
36 #include <sys/ethernet.h>
37 #include <inet/common.h>
38 #include <inet/nd.h>
39 #include <inet/mi.h>
40 #include <sys/note.h>
41 #include <sys/stream.h>
42 #include <sys/strsun.h>
43 #include <sys/modctl.h>
44 #include <sys/devops.h>
45 #include <sys/dlpi.h>
46 #include <sys/mac.h>
47 #include <sys/mac_wifi.h>
48 #include <sys/net80211.h>
49 #include <sys/net80211_proto.h>
50 #include <sys/varargs.h>
51 #include <sys/policy.h>
52 #include <sys/pci.h>
53 #include <sys/crypto/common.h>
54 #include <sys/crypto/api.h>
55 #include <inet/wifi_ioctl.h>
56 
57 #define	USBDRV_MAJOR_VER	2
58 #define	USBDRV_MINOR_VER	0
59 #include <sys/usb/usba.h>
60 
61 #include "ural_reg.h"
62 #include "ural_var.h"
63 
64 static void *ural_soft_state_p = NULL;
65 
66 #define	RAL_TXBUF_SIZE  	(IEEE80211_MAX_LEN)
67 #define	RAL_RXBUF_SIZE  	(IEEE80211_MAX_LEN)
68 
69 /* quickly determine if a given rate is CCK or OFDM */
70 #define	RAL_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
71 #define	RAL_ACK_SIZE		14	/* 10 + 4(FCS) */
72 #define	RAL_CTS_SIZE		14	/* 10 + 4(FCS) */
73 #define	RAL_SIFS		10	/* us */
74 #define	RAL_RXTX_TURNAROUND	5	/* us */
75 
76 #define	URAL_N(a)		(sizeof (a) / sizeof ((a)[0]))
77 
78 /*
79  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
80  */
81 static const struct ieee80211_rateset ural_rateset_11a =
82 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
83 
84 static const struct ieee80211_rateset ural_rateset_11b =
85 	{ 4, { 2, 4, 11, 22 } };
86 
87 static const struct ieee80211_rateset ural_rateset_11g =
88 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
89 
90 /*
91  * Default values for MAC registers; values taken from the reference driver.
92  */
93 static const struct {
94 	uint16_t	reg;
95 	uint16_t	val;
96 } ural_def_mac[] = {
97 	{ RAL_TXRX_CSR5,  0x8c8d },
98 	{ RAL_TXRX_CSR6,  0x8b8a },
99 	{ RAL_TXRX_CSR7,  0x8687 },
100 	{ RAL_TXRX_CSR8,  0x0085 },
101 	{ RAL_MAC_CSR13,  0x1111 },
102 	{ RAL_MAC_CSR14,  0x1e11 },
103 	{ RAL_TXRX_CSR21, 0xe78f },
104 	{ RAL_MAC_CSR9,   0xff1d },
105 	{ RAL_MAC_CSR11,  0x0002 },
106 	{ RAL_MAC_CSR22,  0x0053 },
107 	{ RAL_MAC_CSR15,  0x0000 },
108 	{ RAL_MAC_CSR8,   0x0780 },
109 	{ RAL_TXRX_CSR19, 0x0000 },
110 	{ RAL_TXRX_CSR18, 0x005a },
111 	{ RAL_PHY_CSR2,   0x0000 },
112 	{ RAL_TXRX_CSR0,  0x1ec0 },
113 	{ RAL_PHY_CSR4,   0x000f }
114 };
115 
116 /*
117  * Default values for BBP registers; values taken from the reference driver.
118  */
119 static const struct {
120 	uint8_t	reg;
121 	uint8_t	val;
122 } ural_def_bbp[] = {
123 	{  3, 0x02 },
124 	{  4, 0x19 },
125 	{ 14, 0x1c },
126 	{ 15, 0x30 },
127 	{ 16, 0xac },
128 	{ 17, 0x48 },
129 	{ 18, 0x18 },
130 	{ 19, 0xff },
131 	{ 20, 0x1e },
132 	{ 21, 0x08 },
133 	{ 22, 0x08 },
134 	{ 23, 0x08 },
135 	{ 24, 0x80 },
136 	{ 25, 0x50 },
137 	{ 26, 0x08 },
138 	{ 27, 0x23 },
139 	{ 30, 0x10 },
140 	{ 31, 0x2b },
141 	{ 32, 0xb9 },
142 	{ 34, 0x12 },
143 	{ 35, 0x50 },
144 	{ 39, 0xc4 },
145 	{ 40, 0x02 },
146 	{ 41, 0x60 },
147 	{ 53, 0x10 },
148 	{ 54, 0x18 },
149 	{ 56, 0x08 },
150 	{ 57, 0x10 },
151 	{ 58, 0x08 },
152 	{ 61, 0x60 },
153 	{ 62, 0x10 },
154 	{ 75, 0xff }
155 };
156 
157 /*
158  * Default values for RF register R2 indexed by channel numbers.
159  */
160 static const uint32_t ural_rf2522_r2[] = {
161 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
162 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
163 };
164 
165 static const uint32_t ural_rf2523_r2[] = {
166 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
167 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
168 };
169 
170 static const uint32_t ural_rf2524_r2[] = {
171 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
172 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
173 };
174 
175 static const uint32_t ural_rf2525_r2[] = {
176 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
177 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
178 };
179 
180 static const uint32_t ural_rf2525_hi_r2[] = {
181 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
182 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
183 };
184 
185 static const uint32_t ural_rf2525e_r2[] = {
186 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
187 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
188 };
189 
190 static const uint32_t ural_rf2526_hi_r2[] = {
191 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
192 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
193 };
194 
195 static const uint32_t ural_rf2526_r2[] = {
196 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
197 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
198 };
199 
200 /*
201  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
202  * values taken from the reference driver.
203  */
204 static const struct {
205 	uint8_t		chan;
206 	uint32_t	r1;
207 	uint32_t	r2;
208 	uint32_t	r4;
209 } ural_rf5222[] = {
210 	{   1, 0x08808, 0x0044d, 0x00282 },
211 	{   2, 0x08808, 0x0044e, 0x00282 },
212 	{   3, 0x08808, 0x0044f, 0x00282 },
213 	{   4, 0x08808, 0x00460, 0x00282 },
214 	{   5, 0x08808, 0x00461, 0x00282 },
215 	{   6, 0x08808, 0x00462, 0x00282 },
216 	{   7, 0x08808, 0x00463, 0x00282 },
217 	{   8, 0x08808, 0x00464, 0x00282 },
218 	{   9, 0x08808, 0x00465, 0x00282 },
219 	{  10, 0x08808, 0x00466, 0x00282 },
220 	{  11, 0x08808, 0x00467, 0x00282 },
221 	{  12, 0x08808, 0x00468, 0x00282 },
222 	{  13, 0x08808, 0x00469, 0x00282 },
223 	{  14, 0x08808, 0x0046b, 0x00286 },
224 
225 	{  36, 0x08804, 0x06225, 0x00287 },
226 	{  40, 0x08804, 0x06226, 0x00287 },
227 	{  44, 0x08804, 0x06227, 0x00287 },
228 	{  48, 0x08804, 0x06228, 0x00287 },
229 	{  52, 0x08804, 0x06229, 0x00287 },
230 	{  56, 0x08804, 0x0622a, 0x00287 },
231 	{  60, 0x08804, 0x0622b, 0x00287 },
232 	{  64, 0x08804, 0x0622c, 0x00287 },
233 
234 	{ 100, 0x08804, 0x02200, 0x00283 },
235 	{ 104, 0x08804, 0x02201, 0x00283 },
236 	{ 108, 0x08804, 0x02202, 0x00283 },
237 	{ 112, 0x08804, 0x02203, 0x00283 },
238 	{ 116, 0x08804, 0x02204, 0x00283 },
239 	{ 120, 0x08804, 0x02205, 0x00283 },
240 	{ 124, 0x08804, 0x02206, 0x00283 },
241 	{ 128, 0x08804, 0x02207, 0x00283 },
242 	{ 132, 0x08804, 0x02208, 0x00283 },
243 	{ 136, 0x08804, 0x02209, 0x00283 },
244 	{ 140, 0x08804, 0x0220a, 0x00283 },
245 
246 	{ 149, 0x08808, 0x02429, 0x00281 },
247 	{ 153, 0x08808, 0x0242b, 0x00281 },
248 	{ 157, 0x08808, 0x0242d, 0x00281 },
249 	{ 161, 0x08808, 0x0242f, 0x00281 }
250 };
251 
252 /*
253  * device operations
254  */
255 static int ural_attach(dev_info_t *, ddi_attach_cmd_t);
256 static int ural_detach(dev_info_t *, ddi_detach_cmd_t);
257 
258 /*
259  * Module Loading Data & Entry Points
260  */
261 DDI_DEFINE_STREAM_OPS(ural_dev_ops, nulldev, nulldev, ural_attach,
262     ural_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
263 
264 static struct modldrv ural_modldrv = {
265 	&mod_driverops,		/* Type of module.  This one is a driver */
266 	"ural driver",	/* short description */
267 	&ural_dev_ops		/* driver specific ops */
268 };
269 
270 static struct modlinkage modlinkage = {
271 	MODREV_1,
272 	(void *)&ural_modldrv,
273 	NULL
274 };
275 
276 static int	ural_m_stat(void *,  uint_t, uint64_t *);
277 static int	ural_m_start(void *);
278 static void	ural_m_stop(void *);
279 static int	ural_m_promisc(void *, boolean_t);
280 static int	ural_m_multicst(void *, boolean_t, const uint8_t *);
281 static int	ural_m_unicst(void *, const uint8_t *);
282 static mblk_t	*ural_m_tx(void *, mblk_t *);
283 static void	ural_m_ioctl(void *, queue_t *, mblk_t *);
284 
285 static mac_callbacks_t ural_m_callbacks = {
286 	MC_IOCTL,
287 	ural_m_stat,
288 	ural_m_start,
289 	ural_m_stop,
290 	ural_m_promisc,
291 	ural_m_multicst,
292 	ural_m_unicst,
293 	ural_m_tx,
294 	NULL,		/* mc_resources; */
295 	ural_m_ioctl,
296 	NULL		/* mc_getcapab */
297 };
298 
299 extern const char *usb_str_cr(int);
300 static void ural_amrr_start(struct ural_softc *, struct ieee80211_node *);
301 static int  ural_tx_trigger(struct ural_softc *, mblk_t *);
302 static int  ural_rx_trigger(struct ural_softc *);
303 
304 uint32_t ural_dbg_flags = 0;
305 
306 #ifdef DEBUG
307 void
308 ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
309 {
310 	va_list args;
311 
312 	if (dbg_flags & ural_dbg_flags) {
313 		va_start(args, fmt);
314 		vcmn_err(CE_CONT, fmt, args);
315 		va_end(args);
316 	}
317 }
318 #endif
319 
320 static uint16_t
321 ural_read(struct ural_softc *sc, uint16_t reg)
322 {
323 	usb_ctrl_setup_t req;
324 	usb_cr_t cr;
325 	usb_cb_flags_t cf;
326 	mblk_t *mp;
327 	int err;
328 	uint16_t val;
329 
330 	bzero(&req, sizeof (req));
331 	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
332 	req.bRequest = RAL_READ_MAC;
333 	req.wValue = 0;
334 	req.wIndex = reg;
335 	req.wLength = sizeof (uint16_t);
336 
337 	mp = NULL;
338 	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
339 	    &cr, &cf, 0);
340 
341 	if (err != USB_SUCCESS) {
342 		RAL_DEBUG(RAL_DBG_ERR,
343 		    "ural_read(): could not read MAC register:"
344 		    " cr:%s(%d), cf:(%x)\n",
345 		    usb_str_cr(cr), cr, cf);
346 		return (0);
347 	}
348 
349 	bcopy(mp->b_rptr, &val, sizeof (uint16_t));
350 
351 	if (mp)
352 		freemsg(mp);
353 
354 	return (LE_16(val));
355 }
356 
357 static void
358 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
359 {
360 	usb_ctrl_setup_t req;
361 	usb_cr_t cr;
362 	usb_cb_flags_t cf;
363 	mblk_t *mp;
364 	int err;
365 
366 	bzero(&req, sizeof (req));
367 	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
368 	req.bRequest = RAL_READ_MULTI_MAC;
369 	req.wValue = 0;
370 	req.wIndex = reg;
371 	req.wLength = (uint16_t)len;
372 	req.attrs = USB_ATTRS_AUTOCLEARING;
373 
374 	mp = NULL;
375 	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
376 	    &cr, &cf, 0);
377 
378 	if (err != USB_SUCCESS) {
379 		RAL_DEBUG(RAL_DBG_ERR,
380 		    "ural_read_multi(): could not read MAC register:"
381 		    "cr:%s(%d), cf:(%x)\n",
382 		    usb_str_cr(cr), cr, cf);
383 		return;
384 	}
385 
386 	bcopy(mp->b_rptr, buf, len);
387 
388 	if (mp)
389 		freemsg(mp);
390 }
391 
392 static void
393 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
394 {
395 	usb_ctrl_setup_t req;
396 	usb_cr_t cr;
397 	usb_cb_flags_t cf;
398 	int err;
399 
400 	bzero(&req, sizeof (req));
401 	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
402 	req.bRequest = RAL_WRITE_MAC;
403 	req.wValue = val;
404 	req.wIndex = reg;
405 	req.wLength = 0;
406 	req.attrs = USB_ATTRS_NONE;
407 
408 	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
409 	    &cr, &cf, 0);
410 
411 	if (err != USB_SUCCESS) {
412 		RAL_DEBUG(RAL_DBG_ERR,
413 		    "ural_write(): could not write MAC register:"
414 		    "cr:%s(%d), cf:(%x)\n",
415 		    usb_str_cr(cr), cr, cf);
416 	}
417 }
418 
419 /* ARGSUSED */
420 static void
421 ural_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
422 {
423 	struct ural_softc *sc = (struct ural_softc *)req->bulk_client_private;
424 	struct ieee80211com *ic = &sc->sc_ic;
425 
426 	RAL_DEBUG(RAL_DBG_TX,
427 	    "ural_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d",
428 	    usb_str_cr(req->bulk_completion_reason),
429 	    req->bulk_completion_reason,
430 	    req->bulk_cb_flags,
431 	    sc->tx_queued);
432 
433 	if (req->bulk_completion_reason != USB_CR_OK)
434 		sc->sc_tx_err++;
435 
436 	mutex_enter(&sc->tx_lock);
437 
438 	sc->tx_queued--;
439 	sc->sc_tx_timer = 0;
440 
441 	if (sc->sc_need_sched) {
442 		sc->sc_need_sched = 0;
443 		mac_tx_update(ic->ic_mach);
444 	}
445 
446 	mutex_exit(&sc->tx_lock);
447 	usb_free_bulk_req(req);
448 }
449 
450 /* ARGSUSED */
451 static void
452 ural_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
453 {
454 	struct ural_softc *sc = (struct ural_softc *)req->bulk_client_private;
455 	struct ieee80211com *ic = &sc->sc_ic;
456 
457 	struct ural_rx_desc *desc;
458 	struct ieee80211_frame *wh;
459 	struct ieee80211_node *ni;
460 
461 	mblk_t *m, *mp;
462 	int len, pktlen;
463 	char *rxbuf;
464 
465 	mp = req->bulk_data;
466 	req->bulk_data = NULL;
467 
468 	RAL_DEBUG(RAL_DBG_RX,
469 	    "ural_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d",
470 	    usb_str_cr(req->bulk_completion_reason),
471 	    req->bulk_completion_reason,
472 	    req->bulk_cb_flags,
473 	    sc->rx_queued);
474 
475 	if (req->bulk_completion_reason != USB_CR_OK) {
476 		sc->sc_rx_err++;
477 		goto fail;
478 	}
479 
480 	len = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
481 	rxbuf = (char *)mp->b_rptr;
482 
483 	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
484 		RAL_DEBUG(RAL_DBG_ERR,
485 		    "ural_rxeof(): xfer too short %d\n", len);
486 		sc->sc_rx_err++;
487 		goto fail;
488 	}
489 
490 	/* rx descriptor is located at the end */
491 	desc = (struct ural_rx_desc *)(rxbuf + len - RAL_RX_DESC_SIZE);
492 
493 	if ((LE_32(desc->flags) & RAL_RX_PHY_ERROR) ||
494 	    (LE_32(desc->flags) & RAL_RX_CRC_ERROR)) {
495 		/*
496 		 * This should not happen since we did not request to receive
497 		 * those frames when we filled RAL_TXRX_CSR2.
498 		 */
499 		RAL_DEBUG(RAL_DBG_ERR, "PHY or CRC error\n");
500 		sc->sc_rx_err++;
501 		goto fail;
502 	}
503 
504 	pktlen = (LE_32(desc->flags) >> 16) & 0xfff;
505 
506 	if (pktlen > (len - RAL_RX_DESC_SIZE)) {
507 		RAL_DEBUG(RAL_DBG_ERR,
508 		    "ural_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len);
509 		goto fail;
510 	}
511 
512 	/* Strip trailing 802.11 MAC FCS. */
513 	pktlen -= IEEE80211_CRC_LEN;
514 
515 	if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
516 		RAL_DEBUG(RAL_DBG_ERR,
517 		    "ural_rxeof(): allocate mblk failed.\n");
518 		sc->sc_rx_nobuf++;
519 		goto fail;
520 	}
521 
522 	bcopy(rxbuf, m->b_rptr, pktlen);
523 	m->b_wptr += pktlen;
524 
525 	wh = (struct ieee80211_frame *)m->b_rptr;
526 	ni = ieee80211_find_rxnode(ic, wh);
527 
528 	/* send the frame to the 802.11 layer */
529 	(void) ieee80211_input(ic, m, ni, desc->rssi, 0);
530 
531 	/* node is no longer needed */
532 	ieee80211_free_node(ni);
533 fail:
534 	mutex_enter(&sc->rx_lock);
535 	sc->rx_queued--;
536 	mutex_exit(&sc->rx_lock);
537 
538 	freemsg(mp);
539 	usb_free_bulk_req(req);
540 
541 	if (RAL_IS_RUNNING(sc))
542 		(void) ural_rx_trigger(sc);
543 }
544 
545 /*
546  * Return the expected ack rate for a frame transmitted at rate `rate'.
547  * this should depend on the destination node basic rate set.
548  */
549 static int
550 ural_ack_rate(struct ieee80211com *ic, int rate)
551 {
552 	switch (rate) {
553 	/* CCK rates */
554 	case 2:
555 		return (2);
556 	case 4:
557 	case 11:
558 	case 22:
559 		return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
560 
561 	/* OFDM rates */
562 	case 12:
563 	case 18:
564 		return (12);
565 	case 24:
566 	case 36:
567 		return (24);
568 	case 48:
569 	case 72:
570 	case 96:
571 	case 108:
572 		return (48);
573 	}
574 
575 	/* default to 1Mbps */
576 	return (2);
577 }
578 
579 /*
580  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
581  * The function automatically determines the operating mode depending on the
582  * given rate. `flags' indicates whether short preamble is in use or not.
583  */
584 static uint16_t
585 ural_txtime(int len, int rate, uint32_t flags)
586 {
587 	uint16_t txtime;
588 
589 	if (RAL_RATE_IS_OFDM(rate)) {
590 		/* IEEE Std 802.11a-1999, pp. 37 */
591 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
592 		txtime = 16 + 4 + 4 * txtime + 6;
593 	} else {
594 		/* IEEE Std 802.11b-1999, pp. 28 */
595 		txtime = (16 * len + rate - 1) / rate;
596 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
597 			txtime +=  72 + 24;
598 		else
599 			txtime += 144 + 48;
600 	}
601 	return (txtime);
602 }
603 
604 static uint8_t
605 ural_plcp_signal(int rate)
606 {
607 	switch (rate) {
608 	/* CCK rates (returned values are device-dependent) */
609 	case 2:		return (0x0);
610 	case 4:		return (0x1);
611 	case 11:	return (0x2);
612 	case 22:	return (0x3);
613 
614 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
615 	case 12:	return (0xb);
616 	case 18:	return (0xf);
617 	case 24:	return (0xa);
618 	case 36:	return (0xe);
619 	case 48:	return (0x9);
620 	case 72:	return (0xd);
621 	case 96:	return (0x8);
622 	case 108:	return (0xc);
623 
624 	/* unsupported rates (should not get there) */
625 	default:	return (0xff);
626 	}
627 }
628 
629 static void
630 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
631     uint32_t flags, int len, int rate)
632 {
633 	struct ieee80211com *ic = &sc->sc_ic;
634 	uint16_t plcp_length;
635 	int remainder;
636 
637 	desc->flags = LE_32(flags);
638 	desc->flags |= LE_32(RAL_TX_NEWSEQ);
639 	desc->flags |= LE_32(len << 16);
640 
641 	desc->wme = LE_16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
642 	desc->wme |= LE_16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
643 
644 	/* setup PLCP fields */
645 	desc->plcp_signal  = ural_plcp_signal(rate);
646 	desc->plcp_service = 4;
647 
648 	len += IEEE80211_CRC_LEN;
649 	if (RAL_RATE_IS_OFDM(rate)) {
650 		desc->flags |= LE_32(RAL_TX_OFDM);
651 
652 		plcp_length = len & 0xfff;
653 		desc->plcp_length_hi = plcp_length >> 6;
654 		desc->plcp_length_lo = plcp_length & 0x3f;
655 	} else {
656 		plcp_length = (16 * len + rate - 1) / rate;
657 		if (rate == 22) {
658 			remainder = (16 * len) % 22;
659 			if (remainder != 0 && remainder < 7)
660 				desc->plcp_service |= RAL_PLCP_LENGEXT;
661 		}
662 		desc->plcp_length_hi = plcp_length >> 8;
663 		desc->plcp_length_lo = plcp_length & 0xff;
664 
665 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
666 			desc->plcp_signal |= 0x08;
667 	}
668 
669 	desc->iv = 0;
670 	desc->eiv = 0;
671 }
672 
673 #define	RAL_TX_TIMEOUT		5
674 
675 static int
676 ural_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
677 {
678 	struct ural_softc *sc = (struct ural_softc *)ic;
679 	struct ural_tx_desc *desc;
680 
681 	struct ieee80211_frame *wh;
682 	struct ieee80211_key *k;
683 
684 	uint16_t dur;
685 	uint32_t flags = 0;
686 	int rate, err = DDI_SUCCESS;
687 
688 	struct ieee80211_node *ni = NULL;
689 	mblk_t *m, *m0;
690 	int off, mblen, pktlen, xferlen;
691 
692 	mutex_enter(&sc->tx_lock);
693 
694 	if (sc->tx_queued > RAL_TX_LIST_COUNT) {
695 		RAL_DEBUG(RAL_DBG_TX, "ural_send(): "
696 		    "no TX buffer available!\n");
697 		if ((type & IEEE80211_FC0_TYPE_MASK) ==
698 		    IEEE80211_FC0_TYPE_DATA) {
699 			sc->sc_need_sched = 1;
700 		}
701 		sc->sc_tx_nobuf++;
702 		err = ENOMEM;
703 		goto fail;
704 	}
705 
706 	m = allocb(RAL_TXBUF_SIZE + RAL_TX_DESC_SIZE, BPRI_MED);
707 	if (m == NULL) {
708 		RAL_DEBUG(RAL_DBG_ERR, "ural_send(): can't alloc mblk.\n");
709 		err = DDI_FAILURE;
710 		goto fail;
711 	}
712 
713 	m->b_rptr += RAL_TX_DESC_SIZE;	/* skip TX descriptor */
714 	m->b_wptr += RAL_TX_DESC_SIZE;
715 
716 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
717 		mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
718 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
719 		off += mblen;
720 	}
721 	m->b_wptr += off;
722 
723 	wh = (struct ieee80211_frame *)m->b_rptr;
724 
725 	ni = ieee80211_find_txnode(ic, wh->i_addr1);
726 	if (ni == NULL) {
727 		err = DDI_FAILURE;
728 		sc->sc_tx_err++;
729 		freemsg(m);
730 		goto fail;
731 	}
732 
733 	if ((type & IEEE80211_FC0_TYPE_MASK) ==
734 	    IEEE80211_FC0_TYPE_DATA) {
735 		(void) ieee80211_encap(ic, m, ni);
736 	}
737 
738 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
739 		k = ieee80211_crypto_encap(ic, m);
740 		if (k == NULL) {
741 			sc->sc_tx_err++;
742 			freemsg(m);
743 			err = DDI_FAILURE;
744 			goto fail;
745 		}
746 		/* packet header may have moved, reset our local pointer */
747 		wh = (struct ieee80211_frame *)m->b_rptr;
748 	}
749 
750 	m->b_rptr -= RAL_TX_DESC_SIZE;	/* restore */
751 	desc = (struct ural_tx_desc *)m->b_rptr;
752 
753 	if ((type & IEEE80211_FC0_TYPE_MASK) ==
754 	    IEEE80211_FC0_TYPE_DATA) {	/* DATA */
755 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
756 			rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate];
757 		else
758 			rate = ni->in_rates.ir_rates[ni->in_txrate];
759 
760 		rate &= IEEE80211_RATE_VAL;
761 		if (rate <= 0) {
762 			rate = 2;	/* basic rate */
763 		}
764 
765 		if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
766 			flags |= RAL_TX_ACK;
767 			flags |= RAL_TX_RETRY(7);
768 
769 			dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
770 			    ic->ic_flags) + RAL_SIFS;
771 			*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
772 		}
773 	} else {	/* MGMT */
774 		rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
775 
776 		if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
777 			flags |= RAL_TX_ACK;
778 
779 			dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags)
780 			    + RAL_SIFS;
781 			*(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
782 
783 			/* tell hardware to add timestamp for probe responses */
784 			if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
785 			    IEEE80211_FC0_TYPE_MGT &&
786 			    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
787 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
788 				flags |= RAL_TX_TIMESTAMP;
789 		}
790 	}
791 
792 	pktlen = (uintptr_t)m->b_wptr - (uintptr_t)m->b_rptr - RAL_TX_DESC_SIZE;
793 	ural_setup_tx_desc(sc, desc, flags, pktlen, rate);
794 
795 	/* align end on a 2-bytes boundary */
796 	xferlen = (RAL_TX_DESC_SIZE + pktlen + 1) & ~1;
797 
798 	/*
799 	 * No space left in the last URB to store the extra 2 bytes, force
800 	 * sending of another URB.
801 	 */
802 	if ((xferlen % 64) == 0)
803 		xferlen += 2;
804 
805 	m->b_wptr = m->b_rptr + xferlen;
806 
807 	RAL_DEBUG(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n",
808 	    pktlen, rate, xferlen);
809 
810 	(void) ural_tx_trigger(sc, m);
811 
812 	ic->ic_stats.is_tx_frags++;
813 	ic->ic_stats.is_tx_bytes += pktlen;
814 
815 fail:
816 	if (ni != NULL)
817 		ieee80211_free_node(ni);
818 
819 	if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
820 	    err == 0) {
821 		freemsg(mp);
822 	}
823 
824 	mutex_exit(&sc->tx_lock);
825 
826 	return (err);
827 }
828 
829 static mblk_t *
830 ural_m_tx(void *arg, mblk_t *mp)
831 {
832 	struct ural_softc *sc = (struct ural_softc *)arg;
833 	struct ieee80211com *ic = &sc->sc_ic;
834 	mblk_t *next;
835 
836 	/*
837 	 * No data frames go out unless we're associated; this
838 	 * should not happen as the 802.11 layer does not enable
839 	 * the xmit queue until we enter the RUN state.
840 	 */
841 	if (ic->ic_state != IEEE80211_S_RUN) {
842 		RAL_DEBUG(RAL_DBG_ERR, "ural_m_tx(): "
843 		    "discard, state %u\n", ic->ic_state);
844 		freemsgchain(mp);
845 		return (NULL);
846 	}
847 
848 	while (mp != NULL) {
849 		next = mp->b_next;
850 		mp->b_next = NULL;
851 		if (ural_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
852 			mp->b_next = next;
853 			freemsgchain(mp);
854 			return (NULL);
855 		}
856 		mp = next;
857 	}
858 	return (mp);
859 }
860 
861 static void
862 ural_set_testmode(struct ural_softc *sc)
863 {
864 	usb_ctrl_setup_t req;
865 	usb_cr_t cr;
866 	usb_cb_flags_t cf;
867 	int err;
868 
869 	bzero(&req, sizeof (req));
870 	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
871 	req.bRequest = RAL_VENDOR_REQUEST;
872 	req.wValue = 4;
873 	req.wIndex = 1;
874 	req.wLength = 0;
875 	req.attrs = USB_ATTRS_NONE;
876 
877 	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
878 	    &cr, &cf, 0);
879 
880 	if (err != USB_SUCCESS) {
881 		RAL_DEBUG(RAL_DBG_USB,
882 		    "ural_set_testmode(): could not set test mode:"
883 		    "cr:%s(%d), cf:%(x)\n",
884 		    usb_str_cr(cr), cr, cf);
885 	}
886 }
887 
888 static void
889 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
890 {
891 	usb_ctrl_setup_t req;
892 	usb_cr_t cr;
893 	usb_cb_flags_t cf;
894 	mblk_t *mp;
895 	int err;
896 
897 	bzero(&req, sizeof (req));
898 	req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
899 	req.bRequest = RAL_READ_EEPROM;
900 	req.wValue = 0;
901 	req.wIndex = addr;
902 	req.wLength = (uint16_t)len;
903 
904 	mp = NULL;
905 	err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
906 	    &cr, &cf, 0);
907 
908 	if (err != USB_SUCCESS) {
909 		RAL_DEBUG(RAL_DBG_USB,
910 		    "ural_eeprom_read(): could not read EEPROM:"
911 		    "cr:%s(%d), cf:(%x)\n",
912 		    usb_str_cr(cr), cr, cf);
913 		return;
914 	}
915 
916 	bcopy(mp->b_rptr, buf, len);
917 
918 	if (mp)
919 		freemsg(mp);
920 }
921 
922 static void
923 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
924 {
925 	uint16_t tmp;
926 	int ntries;
927 
928 	for (ntries = 0; ntries < 5; ntries++) {
929 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
930 			break;
931 	}
932 	if (ntries == 5) {
933 		RAL_DEBUG(RAL_DBG_ERR,
934 		    "ural_bbp_write(): could not write to BBP\n");
935 		return;
936 	}
937 
938 	tmp = reg << 8 | val;
939 	ural_write(sc, RAL_PHY_CSR7, tmp);
940 }
941 
942 static uint8_t
943 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
944 {
945 	uint16_t val;
946 	int ntries;
947 
948 	val = RAL_BBP_WRITE | reg << 8;
949 	ural_write(sc, RAL_PHY_CSR7, val);
950 
951 	for (ntries = 0; ntries < 5; ntries++) {
952 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
953 			break;
954 	}
955 	if (ntries == 5) {
956 		RAL_DEBUG(RAL_DBG_ERR, "ural_bbp_read(): could not read BBP\n");
957 		return (0);
958 	}
959 
960 	return (ural_read(sc, RAL_PHY_CSR7) & 0xff);
961 }
962 
963 static void
964 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
965 {
966 	uint32_t tmp;
967 	int ntries;
968 
969 	for (ntries = 0; ntries < 5; ntries++) {
970 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
971 			break;
972 	}
973 	if (ntries == 5) {
974 		RAL_DEBUG(RAL_DBG_ERR,
975 		    "ural_rf_write(): could not write to RF\n");
976 		return;
977 	}
978 
979 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xffff) << 2 | (reg & 0x3);
980 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
981 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
982 
983 	/* remember last written value in sc */
984 	sc->rf_regs[reg] = val;
985 
986 	RAL_DEBUG(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
987 }
988 
989 /*
990  * Disable RF auto-tuning.
991  */
992 static void
993 ural_disable_rf_tune(struct ural_softc *sc)
994 {
995 	uint32_t tmp;
996 
997 	if (sc->rf_rev != RAL_RF_2523) {
998 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
999 		ural_rf_write(sc, RAL_RF1, tmp);
1000 	}
1001 
1002 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1003 	ural_rf_write(sc, RAL_RF3, tmp);
1004 
1005 	RAL_DEBUG(RAL_DBG_HW, "disabling RF autotune\n");
1006 }
1007 
1008 
1009 static void
1010 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1011 {
1012 	struct ieee80211com *ic = &sc->sc_ic;
1013 	uint8_t power, tmp;
1014 	uint_t i, chan;
1015 
1016 	chan = ieee80211_chan2ieee(ic, c);
1017 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1018 		return;
1019 
1020 	if (IEEE80211_IS_CHAN_2GHZ(c))
1021 		power = min(sc->txpow[chan - 1], 31);
1022 	else
1023 		power = 31;
1024 
1025 	/* adjust txpower using ifconfig settings */
1026 	power -= (100 - ic->ic_txpowlimit) / 8;
1027 
1028 	RAL_DEBUG(RAL_DBG_HW, "setting channel to %u, txpower to %u\n",
1029 	    chan, power);
1030 
1031 	switch (sc->rf_rev) {
1032 	case RAL_RF_2522:
1033 		ural_rf_write(sc, RAL_RF1, 0x00814);
1034 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1035 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1036 		break;
1037 
1038 	case RAL_RF_2523:
1039 		ural_rf_write(sc, RAL_RF1, 0x08804);
1040 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1041 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1042 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1043 		break;
1044 
1045 	case RAL_RF_2524:
1046 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1047 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1048 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1049 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1050 		break;
1051 
1052 	case RAL_RF_2525:
1053 		ural_rf_write(sc, RAL_RF1, 0x08808);
1054 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1055 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1056 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1057 
1058 		ural_rf_write(sc, RAL_RF1, 0x08808);
1059 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1060 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1061 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1062 		break;
1063 
1064 	case RAL_RF_2525E:
1065 		ural_rf_write(sc, RAL_RF1, 0x08808);
1066 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1067 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1068 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1069 		break;
1070 
1071 	case RAL_RF_2526:
1072 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1073 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1074 		ural_rf_write(sc, RAL_RF1, 0x08804);
1075 
1076 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1077 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1078 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1079 		break;
1080 
1081 	/* dual-band RF */
1082 	case RAL_RF_5222:
1083 		for (i = 0; ural_rf5222[i].chan != chan; i++) {
1084 			if (i > URAL_N(ural_rf5222)) break;
1085 		}
1086 
1087 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1088 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1089 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1090 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1091 		break;
1092 	}
1093 
1094 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1095 	    ic->ic_state != IEEE80211_S_SCAN) {
1096 		/* set Japan filter bit for channel 14 */
1097 		tmp = ural_bbp_read(sc, 70);
1098 
1099 		tmp &= ~RAL_JAPAN_FILTER;
1100 		if (chan == 14)
1101 			tmp |= RAL_JAPAN_FILTER;
1102 
1103 		ural_bbp_write(sc, 70, tmp);
1104 
1105 		/* clear CRC errs */
1106 		(void) ural_read(sc, RAL_STA_CSR0);
1107 
1108 		drv_usecwait(10000);
1109 		ural_disable_rf_tune(sc);
1110 	}
1111 }
1112 
1113 /*
1114  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1115  * synchronization.
1116  */
1117 static void
1118 ural_enable_tsf_sync(struct ural_softc *sc)
1119 {
1120 	struct ieee80211com *ic = &sc->sc_ic;
1121 	uint16_t logcwmin, preload, tmp;
1122 
1123 	/* first, disable TSF synchronization */
1124 	ural_write(sc, RAL_TXRX_CSR19, 0);
1125 
1126 	tmp = (16 * ic->ic_bss->in_intval) << 4;
1127 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1128 
1129 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1130 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1131 	tmp = logcwmin << 12 | preload;
1132 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1133 
1134 	/* finally, enable TSF synchronization */
1135 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1136 	if (ic->ic_opmode == IEEE80211_M_STA)
1137 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1138 	else
1139 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1140 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1141 
1142 	RAL_DEBUG(RAL_DBG_HW, "enabling TSF synchronization\n");
1143 }
1144 
1145 /*
1146  * This function can be called by ieee80211_set_shortslottime(). Refer to
1147  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
1148  */
1149 /* ARGSUSED */
1150 static void
1151 ural_update_slot(struct ieee80211com *ic, int onoff)
1152 {
1153 	struct ural_softc *sc = (struct ural_softc *)ic;
1154 	uint16_t slottime, sifs, eifs;
1155 
1156 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1157 	/* slottime = (onoff ? 9 : 20); */
1158 
1159 	/*
1160 	 * These settings may sound a bit inconsistent but this is what the
1161 	 * reference driver does.
1162 	 */
1163 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1164 		sifs = 16 - RAL_RXTX_TURNAROUND;
1165 		eifs = 364;
1166 	} else {
1167 		sifs = 10 - RAL_RXTX_TURNAROUND;
1168 		eifs = 64;
1169 	}
1170 
1171 	ural_write(sc, RAL_MAC_CSR10, slottime);
1172 	ural_write(sc, RAL_MAC_CSR11, sifs);
1173 	ural_write(sc, RAL_MAC_CSR12, eifs);
1174 }
1175 
1176 static void
1177 ural_set_txpreamble(struct ural_softc *sc)
1178 {
1179 	uint16_t tmp;
1180 
1181 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1182 
1183 	tmp &= ~RAL_SHORT_PREAMBLE;
1184 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1185 		tmp |= RAL_SHORT_PREAMBLE;
1186 
1187 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1188 }
1189 
1190 static void
1191 ural_set_basicrates(struct ural_softc *sc)
1192 {
1193 	struct ieee80211com *ic = &sc->sc_ic;
1194 
1195 	/* update basic rate set */
1196 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1197 		/* 11b basic rates: 1, 2Mbps */
1198 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1199 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) {
1200 		/* 11a basic rates: 6, 12, 24Mbps */
1201 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1202 	} else {
1203 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1204 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1205 	}
1206 }
1207 
1208 static void
1209 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1210 {
1211 	uint16_t tmp;
1212 
1213 	tmp = bssid[0] | bssid[1] << 8;
1214 	ural_write(sc, RAL_MAC_CSR5, tmp);
1215 
1216 	tmp = bssid[2] | bssid[3] << 8;
1217 	ural_write(sc, RAL_MAC_CSR6, tmp);
1218 
1219 	tmp = bssid[4] | bssid[5] << 8;
1220 	ural_write(sc, RAL_MAC_CSR7, tmp);
1221 
1222 	RAL_DEBUG(RAL_DBG_HW, "setting BSSID to " MACSTR "\n", MAC2STR(bssid));
1223 }
1224 
1225 static void
1226 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1227 {
1228 	uint16_t tmp;
1229 
1230 	tmp = addr[0] | addr[1] << 8;
1231 	ural_write(sc, RAL_MAC_CSR2, tmp);
1232 
1233 	tmp = addr[2] | addr[3] << 8;
1234 	ural_write(sc, RAL_MAC_CSR3, tmp);
1235 
1236 	tmp = addr[4] | addr[5] << 8;
1237 	ural_write(sc, RAL_MAC_CSR4, tmp);
1238 
1239 	RAL_DEBUG(RAL_DBG_HW,
1240 	    "setting MAC address to " MACSTR "\n", MAC2STR(addr));
1241 }
1242 
1243 static void
1244 ural_update_promisc(struct ural_softc *sc)
1245 {
1246 	uint32_t tmp;
1247 
1248 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1249 
1250 	tmp &= ~RAL_DROP_NOT_TO_ME;
1251 	if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1252 		tmp |= RAL_DROP_NOT_TO_ME;
1253 
1254 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1255 
1256 	RAL_DEBUG(RAL_DBG_HW, "%s promiscuous mode\n",
1257 	    (sc->sc_rcr & RAL_RCR_PROMISC) ?  "entering" : "leaving");
1258 }
1259 
1260 static const char *
1261 ural_get_rf(int rev)
1262 {
1263 	switch (rev) {
1264 	case RAL_RF_2522:	return ("RT2522");
1265 	case RAL_RF_2523:	return ("RT2523");
1266 	case RAL_RF_2524:	return ("RT2524");
1267 	case RAL_RF_2525:	return ("RT2525");
1268 	case RAL_RF_2525E:	return ("RT2525e");
1269 	case RAL_RF_2526:	return ("RT2526");
1270 	case RAL_RF_5222:	return ("RT5222");
1271 	default:		return ("unknown");
1272 	}
1273 }
1274 
1275 static void
1276 ural_read_eeprom(struct ural_softc *sc)
1277 {
1278 	struct ieee80211com *ic = &sc->sc_ic;
1279 	uint16_t val;
1280 
1281 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1282 	val = LE_16(val);
1283 	sc->rf_rev =   (val >> 11) & 0x7;
1284 	sc->hw_radio = (val >> 10) & 0x1;
1285 	sc->led_mode = (val >> 6)  & 0x7;
1286 	sc->rx_ant =   (val >> 4)  & 0x3;
1287 	sc->tx_ant =   (val >> 2)  & 0x3;
1288 	sc->nb_ant =   val & 0x3;
1289 
1290 	/* read MAC address */
1291 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1292 
1293 	/* read default values for BBP registers */
1294 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1295 
1296 	/* read Tx power for all b/g channels */
1297 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1298 }
1299 
1300 static int
1301 ural_bbp_init(struct ural_softc *sc)
1302 {
1303 	int i, ntries;
1304 
1305 	/* wait for BBP to be ready */
1306 	for (ntries = 0; ntries < 100; ntries++) {
1307 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1308 			break;
1309 		drv_usecwait(1000);
1310 	}
1311 	if (ntries == 100) {
1312 		RAL_DEBUG(RAL_DBG_ERR, "timeout waiting for BBP\n");
1313 		return (EIO);
1314 	}
1315 
1316 	/* initialize BBP registers to default values */
1317 	for (i = 0; i < URAL_N(ural_def_bbp); i++)
1318 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1319 
1320 	return (0);
1321 }
1322 
1323 static void
1324 ural_set_txantenna(struct ural_softc *sc, int antenna)
1325 {
1326 	uint16_t tmp;
1327 	uint8_t tx;
1328 
1329 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1330 	if (antenna == 1)
1331 		tx |= RAL_BBP_ANTA;
1332 	else if (antenna == 2)
1333 		tx |= RAL_BBP_ANTB;
1334 	else
1335 		tx |= RAL_BBP_DIVERSITY;
1336 
1337 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1338 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1339 	    sc->rf_rev == RAL_RF_5222)
1340 		tx |= RAL_BBP_FLIPIQ;
1341 
1342 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1343 
1344 	/* update values in PHY_CSR5 and PHY_CSR6 */
1345 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1346 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1347 
1348 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1349 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1350 }
1351 
1352 static void
1353 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1354 {
1355 	uint8_t rx;
1356 
1357 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1358 	if (antenna == 1)
1359 		rx |= RAL_BBP_ANTA;
1360 	else if (antenna == 2)
1361 		rx |= RAL_BBP_ANTB;
1362 	else
1363 		rx |= RAL_BBP_DIVERSITY;
1364 
1365 	/* need to force no I/Q flip for RF 2525e and 2526 */
1366 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
1367 		rx &= ~RAL_BBP_FLIPIQ;
1368 
1369 	ural_bbp_write(sc, RAL_BBP_RX, rx);
1370 }
1371 
1372 /*
1373  * This function is called periodically (every 200ms) during scanning to
1374  * switch from one channel to another.
1375  */
1376 static void
1377 ural_next_scan(void *arg)
1378 {
1379 	struct ural_softc *sc = arg;
1380 	struct ieee80211com *ic = &sc->sc_ic;
1381 
1382 	if (ic->ic_state == IEEE80211_S_SCAN)
1383 		ieee80211_next_scan(ic);
1384 }
1385 
1386 static int
1387 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1388 {
1389 	struct ural_softc *sc = (struct ural_softc *)ic;
1390 	enum ieee80211_state ostate;
1391 	struct ieee80211_node *ni;
1392 	int err;
1393 
1394 	RAL_LOCK(sc);
1395 
1396 	ostate = ic->ic_state;
1397 
1398 	if (sc->sc_scan_id != 0) {
1399 		(void) untimeout(sc->sc_scan_id);
1400 		sc->sc_scan_id = 0;
1401 	}
1402 
1403 	if (sc->sc_amrr_id != 0) {
1404 		(void) untimeout(sc->sc_amrr_id);
1405 		sc->sc_amrr_id = 0;
1406 	}
1407 
1408 	switch (nstate) {
1409 	case IEEE80211_S_INIT:
1410 		if (ostate == IEEE80211_S_RUN) {
1411 			/* abort TSF synchronization */
1412 			ural_write(sc, RAL_TXRX_CSR19, 0);
1413 			/* force tx led to stop blinking */
1414 			ural_write(sc, RAL_MAC_CSR20, 0);
1415 		}
1416 		break;
1417 
1418 	case IEEE80211_S_SCAN:
1419 		ural_set_chan(sc, ic->ic_curchan);
1420 		sc->sc_scan_id = timeout(ural_next_scan, (void *)sc,
1421 		    drv_usectohz(sc->dwelltime * 1000));
1422 		break;
1423 
1424 	case IEEE80211_S_AUTH:
1425 		RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_AUTH ...\n");
1426 		ural_set_chan(sc, ic->ic_curchan);
1427 		break;
1428 
1429 	case IEEE80211_S_ASSOC:
1430 		RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_ASSOC ...\n");
1431 		ural_set_chan(sc, ic->ic_curchan);
1432 		break;
1433 
1434 	case IEEE80211_S_RUN:
1435 		RAL_DEBUG(RAL_DBG_MSG, "-> IEEE80211_S_RUN ...\n");
1436 		ural_set_chan(sc, ic->ic_curchan);
1437 
1438 		ni = ic->ic_bss;
1439 
1440 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1441 			ural_update_slot(ic, 1);
1442 			ural_set_txpreamble(sc);
1443 			ural_set_basicrates(sc);
1444 			ural_set_bssid(sc, ni->in_bssid);
1445 		}
1446 
1447 
1448 		/* make tx led blink on tx (controlled by ASIC) */
1449 		ural_write(sc, RAL_MAC_CSR20, 1);
1450 
1451 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1452 			ural_enable_tsf_sync(sc);
1453 
1454 		/* enable automatic rate adaptation in STA mode */
1455 		if (ic->ic_opmode == IEEE80211_M_STA &&
1456 		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
1457 			ural_amrr_start(sc, ni);
1458 
1459 		break;
1460 	}
1461 
1462 	RAL_UNLOCK(sc);
1463 
1464 	err = sc->sc_newstate(ic, nstate, arg);
1465 	/*
1466 	 * Finally, start any timers.
1467 	 */
1468 	if (nstate == IEEE80211_S_RUN)
1469 		ieee80211_start_watchdog(ic, 1);
1470 
1471 	return (err);
1472 }
1473 
1474 
1475 
1476 static void
1477 ural_close_pipes(struct ural_softc *sc)
1478 {
1479 	usb_flags_t flags = USB_FLAGS_SLEEP;
1480 
1481 	if (sc->sc_rx_pipeh != NULL) {
1482 		usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1483 		usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1484 		sc->sc_rx_pipeh = NULL;
1485 	}
1486 
1487 	if (sc->sc_tx_pipeh != NULL) {
1488 		usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1489 		usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1490 		sc->sc_tx_pipeh = NULL;
1491 	}
1492 }
1493 
1494 static int
1495 ural_open_pipes(struct ural_softc *sc)
1496 {
1497 	usb_ep_data_t *ep_node;
1498 	usb_pipe_policy_t policy;
1499 	int err;
1500 
1501 	ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1502 	    USB_EP_ATTR_BULK, USB_EP_DIR_OUT);
1503 
1504 	bzero(&policy, sizeof (usb_pipe_policy_t));
1505 	policy.pp_max_async_reqs = RAL_TX_LIST_COUNT;
1506 
1507 	if ((err = usb_pipe_open(sc->sc_dev,
1508 	    &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1509 	    &sc->sc_tx_pipeh)) != USB_SUCCESS) {
1510 		RAL_DEBUG(RAL_DBG_ERR,
1511 		    "ural_open_pipes(): %x failed to open tx pipe\n", err);
1512 		goto fail;
1513 	}
1514 
1515 	RAL_DEBUG(RAL_DBG_MSG, "tx pipe opened\n");
1516 
1517 	ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1518 	    USB_EP_ATTR_BULK, USB_EP_DIR_IN);
1519 
1520 	bzero(&policy, sizeof (usb_pipe_policy_t));
1521 	policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32;
1522 
1523 	if ((err = usb_pipe_open(sc->sc_dev,
1524 	    &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1525 	    &sc->sc_rx_pipeh)) != USB_SUCCESS) {
1526 		RAL_DEBUG(RAL_DBG_ERR,
1527 		    "ural_open_pipes(): %x failed to open rx pipe\n", err);
1528 		goto fail;
1529 	}
1530 
1531 	RAL_DEBUG(RAL_DBG_MSG, "rx pipe opened\n");
1532 
1533 	return (USB_SUCCESS);
1534 
1535 fail:
1536 	if (sc->sc_rx_pipeh != NULL) {
1537 		usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh,
1538 		    USB_FLAGS_SLEEP, NULL, 0);
1539 		sc->sc_rx_pipeh = NULL;
1540 	}
1541 
1542 	if (sc->sc_tx_pipeh != NULL) {
1543 		usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh,
1544 		    USB_FLAGS_SLEEP, NULL, 0);
1545 		sc->sc_tx_pipeh = NULL;
1546 	}
1547 
1548 	return (USB_FAILURE);
1549 }
1550 
1551 static int
1552 ural_tx_trigger(struct ural_softc *sc, mblk_t *mp)
1553 {
1554 	usb_bulk_req_t *req;
1555 	int err;
1556 
1557 	sc->sc_tx_timer = RAL_TX_TIMEOUT;
1558 
1559 	req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
1560 	if (req == NULL) {
1561 		RAL_DEBUG(RAL_DBG_ERR,
1562 		    "ural_tx_trigger(): failed to allocate req");
1563 		freemsg(mp);
1564 		return (-1);
1565 	}
1566 
1567 	req->bulk_len		= (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
1568 	req->bulk_data		= mp;
1569 	req->bulk_client_private = (usb_opaque_t)sc;
1570 	req->bulk_timeout	= RAL_TX_TIMEOUT;
1571 	req->bulk_attributes	= USB_ATTRS_AUTOCLEARING;
1572 	req->bulk_cb		= ural_txeof;
1573 	req->bulk_exc_cb	= ural_txeof;
1574 	req->bulk_completion_reason = 0;
1575 	req->bulk_cb_flags	= 0;
1576 
1577 	if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0))
1578 	    != USB_SUCCESS) {
1579 
1580 		RAL_DEBUG(RAL_DBG_ERR, "ural_tx_trigger(): "
1581 		    "failed to do tx xfer, %d", err);
1582 		usb_free_bulk_req(req);
1583 		return (-1);
1584 	}
1585 
1586 	sc->tx_queued++;
1587 
1588 	return (0);
1589 }
1590 
1591 static int
1592 ural_rx_trigger(struct ural_softc *sc)
1593 {
1594 	usb_bulk_req_t *req;
1595 	int err;
1596 
1597 	req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP);
1598 	if (req == NULL) {
1599 		RAL_DEBUG(RAL_DBG_ERR,
1600 		    "ural_rx_trigger(): failed to allocate req");
1601 		return (-1);
1602 	}
1603 
1604 	req->bulk_len		= RAL_RXBUF_SIZE;
1605 	req->bulk_client_private = (usb_opaque_t)sc;
1606 	req->bulk_timeout	= 0;
1607 	req->bulk_attributes	= USB_ATTRS_SHORT_XFER_OK
1608 	    | USB_ATTRS_AUTOCLEARING;
1609 	req->bulk_cb		= ural_rxeof;
1610 	req->bulk_exc_cb	= ural_rxeof;
1611 	req->bulk_completion_reason = 0;
1612 	req->bulk_cb_flags	= 0;
1613 
1614 	err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0);
1615 
1616 	if (err != USB_SUCCESS) {
1617 		RAL_DEBUG(RAL_DBG_ERR, "ural_rx_trigger(): "
1618 		    "failed to do rx xfer, %d", err);
1619 		usb_free_bulk_req(req);
1620 
1621 		return (-1);
1622 	}
1623 
1624 	mutex_enter(&sc->rx_lock);
1625 	sc->rx_queued++;
1626 	mutex_exit(&sc->rx_lock);
1627 
1628 	return (0);
1629 }
1630 
1631 static void
1632 ural_init_tx_queue(struct ural_softc *sc)
1633 {
1634 	sc->tx_queued = 0;
1635 }
1636 
1637 static int
1638 ural_init_rx_queue(struct ural_softc *sc)
1639 {
1640 	int	i;
1641 
1642 	sc->rx_queued = 0;
1643 
1644 	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
1645 		if (ural_rx_trigger(sc) != 0) {
1646 			return (USB_FAILURE);
1647 		}
1648 	}
1649 
1650 	return (USB_SUCCESS);
1651 }
1652 
1653 static void
1654 ural_stop(struct ural_softc *sc)
1655 {
1656 	struct ieee80211com *ic = &sc->sc_ic;
1657 
1658 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1659 	ieee80211_stop_watchdog(ic);	/* stop the watchdog */
1660 
1661 	RAL_LOCK(sc);
1662 
1663 	sc->sc_tx_timer = 0;
1664 	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
1665 
1666 	/* disable Rx */
1667 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
1668 
1669 	/* reset ASIC and BBP (but won't reset MAC registers!) */
1670 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
1671 	ural_write(sc, RAL_MAC_CSR1, 0);
1672 
1673 	ural_close_pipes(sc);
1674 
1675 	RAL_UNLOCK(sc);
1676 }
1677 
1678 static int
1679 ural_init(struct ural_softc *sc)
1680 {
1681 	struct ieee80211com *ic = &sc->sc_ic;
1682 	uint16_t tmp;
1683 	int i, ntries;
1684 
1685 	ural_set_testmode(sc);
1686 	ural_write(sc, 0x308, 0x00f0);	/* magic */
1687 
1688 	ural_stop(sc);
1689 
1690 	/* initialize MAC registers to default values */
1691 	for (i = 0; i < URAL_N(ural_def_mac); i++)
1692 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
1693 
1694 	/* wait for BBP and RF to wake up (this can take a long time!) */
1695 	for (ntries = 0; ntries < 100; ntries++) {
1696 		tmp = ural_read(sc, RAL_MAC_CSR17);
1697 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
1698 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
1699 			break;
1700 		drv_usecwait(1000);
1701 	}
1702 	if (ntries == 100) {
1703 		RAL_DEBUG(RAL_DBG_ERR,
1704 		    "ural_init(): timeout waiting for BBP/RF to wakeup\n");
1705 		goto fail;
1706 	}
1707 
1708 	/* we're ready! */
1709 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
1710 
1711 	/* set basic rate set (will be updated later) */
1712 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1713 
1714 	if (ural_bbp_init(sc) != 0)
1715 		goto fail;
1716 
1717 	/* set default BSS channel */
1718 	ural_set_chan(sc, ic->ic_curchan);
1719 
1720 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
1721 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
1722 
1723 	ural_set_txantenna(sc, sc->tx_ant);
1724 	ural_set_rxantenna(sc, sc->rx_ant);
1725 
1726 	ural_set_macaddr(sc, ic->ic_macaddr);
1727 
1728 	if (ural_open_pipes(sc) != USB_SUCCESS) {
1729 		RAL_DEBUG(RAL_DBG_ERR, "ural_init(): "
1730 		    "could not open pipes.\n");
1731 		goto fail;
1732 	}
1733 
1734 	ural_init_tx_queue(sc);
1735 
1736 	if (ural_init_rx_queue(sc) != USB_SUCCESS)
1737 		goto fail;
1738 
1739 	/* kick Rx */
1740 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
1741 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1742 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
1743 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1744 			tmp |= RAL_DROP_TODS;
1745 		if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1746 			tmp |= RAL_DROP_NOT_TO_ME;
1747 	}
1748 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1749 	sc->sc_flags |= RAL_FLAG_RUNNING;	/* RUNNING */
1750 
1751 	return (DDI_SUCCESS);
1752 fail:
1753 	ural_stop(sc);
1754 	return (EIO);
1755 }
1756 
1757 static int
1758 ural_offline(dev_info_t *devinfo)
1759 {
1760 	struct ural_softc *sc;
1761 	struct ieee80211com *ic;
1762 
1763 	RAL_DEBUG(RAL_DBG_MSG, "ural_offline()\n");
1764 
1765 	/*
1766 	 * We can't call ural_stop() here, since the hardware is removed,
1767 	 * we can't access the register anymore.
1768 	 */
1769 
1770 	sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
1771 	ic = &sc->sc_ic;
1772 
1773 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1774 	ieee80211_stop_watchdog(ic);	/* stop the watchdog */
1775 
1776 	RAL_LOCK(sc);
1777 
1778 	sc->sc_tx_timer = 0;
1779 	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
1780 
1781 	ural_close_pipes(sc);
1782 
1783 	RAL_UNLOCK(sc);
1784 
1785 	return (DDI_SUCCESS);
1786 }
1787 
1788 static int
1789 ural_online(dev_info_t *devinfo)
1790 {
1791 	struct ural_softc *sc;
1792 	int err;
1793 
1794 	RAL_DEBUG(RAL_DBG_MSG, "ural_online()\n");
1795 
1796 	sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
1797 	err = ural_init(sc);
1798 
1799 	return (err);
1800 }
1801 
1802 #define	URAL_AMRR_MIN_SUCCESS_THRESHOLD	1
1803 #define	URAL_AMRR_MAX_SUCCESS_THRESHOLD	10
1804 
1805 /*
1806  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
1807  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
1808  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
1809  * INRIA Sophia - Projet Planete
1810  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
1811  *
1812  * This algorithm is particularly well suited for ural since it does not
1813  * require per-frame retry statistics.  Note however that since h/w does
1814  * not provide per-frame stats, we can't do per-node rate adaptation and
1815  * thus automatic rate adaptation is only enabled in STA operating mode.
1816  */
1817 #define	is_success(amrr)	\
1818 	((amrr)->retrycnt < (amrr)->txcnt / 10)
1819 #define	is_failure(amrr)	\
1820 	((amrr)->retrycnt > (amrr)->txcnt / 3)
1821 #define	is_enough(amrr)		\
1822 	((amrr)->txcnt > 10)
1823 #define	is_min_rate(ni)		\
1824 	((ni)->in_txrate == 0)
1825 #define	is_max_rate(ni)		\
1826 	((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1)
1827 #define	increase_rate(ni)	\
1828 	((ni)->in_txrate++)
1829 #define	decrease_rate(ni)	\
1830 	((ni)->in_txrate--)
1831 #define	reset_cnt(amrr)	do {	\
1832 	(amrr)->txcnt = (amrr)->retrycnt = 0;	\
1833 	_NOTE(CONSTCOND)	\
1834 } while (/* CONSTCOND */0)
1835 
1836 static void
1837 ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
1838 {
1839 	int need_change = 0;
1840 
1841 	if (is_success(amrr) && is_enough(amrr)) {
1842 		amrr->success++;
1843 		if (amrr->success >= amrr->success_threshold &&
1844 		    !is_max_rate(ni)) {
1845 			amrr->recovery = 1;
1846 			amrr->success = 0;
1847 			increase_rate(ni);
1848 			need_change = 1;
1849 		} else {
1850 			amrr->recovery = 0;
1851 		}
1852 	} else if (is_failure(amrr)) {
1853 		amrr->success = 0;
1854 		if (!is_min_rate(ni)) {
1855 			if (amrr->recovery) {
1856 				amrr->success_threshold *= 2;
1857 				if (amrr->success_threshold >
1858 				    URAL_AMRR_MAX_SUCCESS_THRESHOLD)
1859 					amrr->success_threshold =
1860 					    URAL_AMRR_MAX_SUCCESS_THRESHOLD;
1861 			} else {
1862 				amrr->success_threshold =
1863 				    URAL_AMRR_MIN_SUCCESS_THRESHOLD;
1864 			}
1865 			decrease_rate(ni);
1866 			need_change = 1;
1867 		}
1868 		amrr->recovery = 0;	/* original paper was incorrect */
1869 	}
1870 
1871 	if (is_enough(amrr) || need_change)
1872 		reset_cnt(amrr);
1873 }
1874 
1875 static void
1876 ural_amrr_timeout(void *arg)
1877 {
1878 	struct ural_softc *sc = (struct ural_softc *)arg;
1879 	struct ural_amrr *amrr = &sc->amrr;
1880 
1881 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
1882 
1883 	/* count TX retry-fail as Tx errors */
1884 	sc->sc_tx_err += sc->sta[9];
1885 	sc->sc_tx_retries += (sc->sta[7] + sc->sta[8]);
1886 
1887 	amrr->retrycnt =
1888 	    sc->sta[7] +	/* TX one-retry ok count */
1889 	    sc->sta[8] +	/* TX more-retry ok count */
1890 	    sc->sta[9];		/* TX retry-fail count */
1891 
1892 	amrr->txcnt =
1893 	    amrr->retrycnt +
1894 	    sc->sta[6];		/* TX no-retry ok count */
1895 
1896 	ural_ratectl(amrr, sc->sc_ic.ic_bss);
1897 
1898 	sc->sc_amrr_id = timeout(ural_amrr_timeout, (void *)sc,
1899 	    drv_usectohz(1000 * 1000)); /* 1 second */
1900 }
1901 
1902 
1903 static void
1904 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
1905 {
1906 	struct ural_amrr *amrr = &sc->amrr;
1907 	int i;
1908 
1909 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
1910 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof (sc->sta));
1911 
1912 	amrr->success = 0;
1913 	amrr->recovery = 0;
1914 	amrr->txcnt = amrr->retrycnt = 0;
1915 	amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
1916 
1917 	/* set rate to some reasonable initial value */
1918 	for (i = ni->in_rates.ir_nrates - 1;
1919 	    i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72;
1920 	    i--) {
1921 	}
1922 
1923 	ni->in_txrate = i;
1924 
1925 	sc->sc_amrr_id = timeout(ural_amrr_timeout, (void *)sc,
1926 	    drv_usectohz(1000 * 1000)); /* 1 second */
1927 }
1928 
1929 void
1930 ural_watchdog(void *arg)
1931 {
1932 	struct ural_softc *sc = arg;
1933 	struct ieee80211com *ic = &sc->sc_ic;
1934 	int ntimer = 0;
1935 
1936 	RAL_LOCK(sc);
1937 	ic->ic_watchdog_timer = 0;
1938 
1939 	if (!RAL_IS_RUNNING(sc)) {
1940 		RAL_UNLOCK(sc);
1941 		return;
1942 	}
1943 
1944 	if (sc->sc_tx_timer > 0) {
1945 		if (--sc->sc_tx_timer == 0) {
1946 			RAL_DEBUG(RAL_DBG_ERR, "tx timer timeout\n");
1947 			RAL_UNLOCK(sc);
1948 			(void) ural_init(sc);
1949 			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1950 			return;
1951 		}
1952 	}
1953 
1954 	if (ic->ic_state == IEEE80211_S_RUN)
1955 		ntimer = 1;
1956 
1957 	RAL_UNLOCK(sc);
1958 
1959 	ieee80211_watchdog(ic);
1960 
1961 	if (ntimer)
1962 		ieee80211_start_watchdog(ic, ntimer);
1963 }
1964 
1965 static int
1966 ural_m_start(void *arg)
1967 {
1968 	struct ural_softc *sc = (struct ural_softc *)arg;
1969 	crypto_mech_type_t type;
1970 	int err;
1971 
1972 
1973 	type = crypto_mech2id(SUN_CKM_RC4); /* load rc4 module into kernel */
1974 	RAL_DEBUG(RAL_DBG_MSG, "ural_m_start(%d)\n", type);
1975 
1976 	/*
1977 	 * initialize RT2500USB hardware
1978 	 */
1979 	err = ural_init(sc);
1980 	if (err != DDI_SUCCESS) {
1981 		RAL_DEBUG(RAL_DBG_ERR, "device configuration failed\n");
1982 		goto fail;
1983 	}
1984 	sc->sc_flags |= RAL_FLAG_RUNNING;	/* RUNNING */
1985 	return (err);
1986 
1987 fail:
1988 	ural_stop(sc);
1989 	return (err);
1990 }
1991 
1992 static void
1993 ural_m_stop(void *arg)
1994 {
1995 	struct ural_softc *sc = (struct ural_softc *)arg;
1996 
1997 	RAL_DEBUG(RAL_DBG_MSG, "ural_m_stop()\n");
1998 
1999 	(void) ural_stop(sc);
2000 	sc->sc_flags &= ~RAL_FLAG_RUNNING;	/* STOP */
2001 }
2002 
2003 static int
2004 ural_m_unicst(void *arg, const uint8_t *macaddr)
2005 {
2006 	struct ural_softc *sc = (struct ural_softc *)arg;
2007 	struct ieee80211com *ic = &sc->sc_ic;
2008 
2009 	RAL_DEBUG(RAL_DBG_MSG, "ural_m_unicst(): " MACSTR "\n",
2010 	    MAC2STR(macaddr));
2011 
2012 	IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2013 	(void) ural_set_macaddr(sc, (uint8_t *)macaddr);
2014 	(void) ural_init(sc);
2015 
2016 	return (0);
2017 }
2018 
2019 /*ARGSUSED*/
2020 static int
2021 ural_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2022 {
2023 	return (0);
2024 }
2025 
2026 static int
2027 ural_m_promisc(void *arg, boolean_t on)
2028 {
2029 	struct ural_softc *sc = (struct ural_softc *)arg;
2030 
2031 	RAL_DEBUG(RAL_DBG_MSG, "ural_m_promisc()\n");
2032 
2033 	if (on) {
2034 		sc->sc_rcr |= RAL_RCR_PROMISC;
2035 		sc->sc_rcr |= RAL_RCR_MULTI;
2036 	} else {
2037 		sc->sc_rcr &= ~RAL_RCR_PROMISC;
2038 		sc->sc_rcr &= ~RAL_RCR_PROMISC;
2039 	}
2040 
2041 	ural_update_promisc(sc);
2042 	return (0);
2043 }
2044 
2045 static void
2046 ural_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2047 {
2048 	struct ural_softc *sc = (struct ural_softc *)arg;
2049 	struct ieee80211com *ic = &sc->sc_ic;
2050 	int err;
2051 
2052 	err = ieee80211_ioctl(ic, wq, mp);
2053 	RAL_LOCK(sc);
2054 	if (err == ENETRESET) {
2055 		if (RAL_IS_RUNNING(sc)) {
2056 			RAL_UNLOCK(sc);
2057 			(void) ural_init(sc);
2058 			(void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2059 			RAL_LOCK(sc);
2060 		}
2061 	}
2062 	RAL_UNLOCK(sc);
2063 }
2064 
2065 static int
2066 ural_m_stat(void *arg, uint_t stat, uint64_t *val)
2067 {
2068 	struct ural_softc *sc  = (struct ural_softc *)arg;
2069 	ieee80211com_t	*ic = &sc->sc_ic;
2070 	ieee80211_node_t *ni = ic->ic_bss;
2071 	struct ieee80211_rateset *rs = &ni->in_rates;
2072 
2073 	RAL_LOCK(sc);
2074 	switch (stat) {
2075 	case MAC_STAT_IFSPEED:
2076 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2077 		    (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
2078 		    : ic->ic_fixed_rate) / 2 * 1000000;
2079 		break;
2080 	case MAC_STAT_NOXMTBUF:
2081 		*val = sc->sc_tx_nobuf;
2082 		break;
2083 	case MAC_STAT_NORCVBUF:
2084 		*val = sc->sc_rx_nobuf;
2085 		break;
2086 	case MAC_STAT_IERRORS:
2087 		*val = sc->sc_rx_err;
2088 		break;
2089 	case MAC_STAT_RBYTES:
2090 		*val = ic->ic_stats.is_rx_bytes;
2091 		break;
2092 	case MAC_STAT_IPACKETS:
2093 		*val = ic->ic_stats.is_rx_frags;
2094 		break;
2095 	case MAC_STAT_OBYTES:
2096 		*val = ic->ic_stats.is_tx_bytes;
2097 		break;
2098 	case MAC_STAT_OPACKETS:
2099 		*val = ic->ic_stats.is_tx_frags;
2100 		break;
2101 	case MAC_STAT_OERRORS:
2102 	case WIFI_STAT_TX_FAILED:
2103 		*val = sc->sc_tx_err;
2104 		break;
2105 	case WIFI_STAT_TX_RETRANS:
2106 		*val = sc->sc_tx_retries;
2107 		break;
2108 	case WIFI_STAT_FCS_ERRORS:
2109 	case WIFI_STAT_WEP_ERRORS:
2110 	case WIFI_STAT_TX_FRAGS:
2111 	case WIFI_STAT_MCAST_TX:
2112 	case WIFI_STAT_RTS_SUCCESS:
2113 	case WIFI_STAT_RTS_FAILURE:
2114 	case WIFI_STAT_ACK_FAILURE:
2115 	case WIFI_STAT_RX_FRAGS:
2116 	case WIFI_STAT_MCAST_RX:
2117 	case WIFI_STAT_RX_DUPS:
2118 		RAL_UNLOCK(sc);
2119 		return (ieee80211_stat(ic, stat, val));
2120 	default:
2121 		RAL_UNLOCK(sc);
2122 		return (ENOTSUP);
2123 	}
2124 	RAL_UNLOCK(sc);
2125 
2126 	return (0);
2127 }
2128 
2129 
2130 static int
2131 ural_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2132 {
2133 	struct ural_softc *sc;
2134 	struct ieee80211com *ic;
2135 	int err, i;
2136 	int instance;
2137 
2138 	char strbuf[32];
2139 
2140 	wifi_data_t wd = { 0 };
2141 	mac_register_t *macp;
2142 
2143 	RAL_DEBUG(RAL_DBG_MSG, "ural_attach()\n");
2144 
2145 	if (cmd != DDI_ATTACH)
2146 		return (DDI_FAILURE);
2147 
2148 	instance = ddi_get_instance(devinfo);
2149 
2150 	if (ddi_soft_state_zalloc(ural_soft_state_p, instance) != DDI_SUCCESS) {
2151 		RAL_DEBUG(RAL_DBG_MSG, "ural_attach(): "
2152 		    "unable to alloc soft_state_p\n");
2153 		return (DDI_FAILURE);
2154 	}
2155 
2156 	sc = ddi_get_soft_state(ural_soft_state_p, instance);
2157 	ic = (ieee80211com_t *)&sc->sc_ic;
2158 	sc->sc_dev = devinfo;
2159 
2160 	if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) {
2161 		RAL_DEBUG(RAL_DBG_ERR,
2162 		    "ural_attach(): usb_client_attach failed\n");
2163 		goto fail1;
2164 	}
2165 
2166 	if (usb_get_dev_data(devinfo, &sc->sc_udev,
2167 	    USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) {
2168 		sc->sc_udev = NULL;
2169 		goto fail2;
2170 	}
2171 
2172 	mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
2173 	mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL);
2174 	mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL);
2175 
2176 	/* retrieve RT2570 rev. no */
2177 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
2178 
2179 	/* retrieve MAC address and various other things from EEPROM */
2180 	ural_read_eeprom(sc);
2181 
2182 	RAL_DEBUG(RAL_DBG_MSG, "ural: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
2183 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
2184 
2185 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
2186 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
2187 	ic->ic_state = IEEE80211_S_INIT;
2188 
2189 	ic->ic_maxrssi = 63;
2190 	ic->ic_set_shortslot = ural_update_slot;
2191 	ic->ic_xmit = ural_send;
2192 
2193 	/* set device capabilities */
2194 	ic->ic_caps =
2195 	    IEEE80211_C_TXPMGT |	/* tx power management */
2196 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
2197 	    IEEE80211_C_SHSLOT;		/* short slot time supported */
2198 
2199 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
2200 
2201 #define	IEEE80211_CHAN_A	\
2202 	(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2203 
2204 	if (sc->rf_rev == RAL_RF_5222) {
2205 		/* set supported .11a rates */
2206 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
2207 
2208 		/* set supported .11a channels */
2209 		for (i = 36; i <= 64; i += 4) {
2210 			ic->ic_sup_channels[i].ich_freq =
2211 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2212 			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2213 		}
2214 		for (i = 100; i <= 140; i += 4) {
2215 			ic->ic_sup_channels[i].ich_freq =
2216 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2217 			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2218 		}
2219 		for (i = 149; i <= 161; i += 4) {
2220 			ic->ic_sup_channels[i].ich_freq =
2221 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2222 			ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2223 		}
2224 	}
2225 
2226 	/* set supported .11b and .11g rates */
2227 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
2228 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
2229 
2230 	/* set supported .11b and .11g channels (1 through 14) */
2231 	for (i = 1; i <= 14; i++) {
2232 		ic->ic_sup_channels[i].ich_freq =
2233 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
2234 		ic->ic_sup_channels[i].ich_flags =
2235 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2236 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2237 	}
2238 
2239 	ieee80211_attach(ic);
2240 
2241 	/* register WPA door */
2242 	ieee80211_register_door(ic, ddi_driver_name(devinfo),
2243 	    ddi_get_instance(devinfo));
2244 
2245 	/* override state transition machine */
2246 	sc->sc_newstate = ic->ic_newstate;
2247 	ic->ic_newstate = ural_newstate;
2248 	ic->ic_watchdog = ural_watchdog;
2249 	ieee80211_media_init(ic);
2250 	ic->ic_def_txkey = 0;
2251 
2252 	sc->sc_rcr = 0;
2253 	sc->dwelltime = 300;
2254 	sc->sc_flags &= ~RAL_FLAG_RUNNING;
2255 
2256 	/*
2257 	 * Provide initial settings for the WiFi plugin; whenever this
2258 	 * information changes, we need to call mac_plugindata_update()
2259 	 */
2260 	wd.wd_opmode = ic->ic_opmode;
2261 	wd.wd_secalloc = WIFI_SEC_NONE;
2262 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2263 
2264 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2265 		RAL_DEBUG(RAL_DBG_ERR, "ural_attach(): "
2266 		    "MAC version mismatch\n");
2267 		goto fail3;
2268 	}
2269 
2270 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2271 	macp->m_driver		= sc;
2272 	macp->m_dip		= devinfo;
2273 	macp->m_src_addr	= ic->ic_macaddr;
2274 	macp->m_callbacks	= &ural_m_callbacks;
2275 	macp->m_min_sdu		= 0;
2276 	macp->m_max_sdu		= IEEE80211_MTU;
2277 	macp->m_pdata		= &wd;
2278 	macp->m_pdata_size	= sizeof (wd);
2279 
2280 	err = mac_register(macp, &ic->ic_mach);
2281 	mac_free(macp);
2282 	if (err != 0) {
2283 		RAL_DEBUG(RAL_DBG_ERR, "ural_attach(): "
2284 		    "mac_register() err %x\n", err);
2285 		goto fail3;
2286 	}
2287 
2288 	if (usb_register_hotplug_cbs(devinfo, ural_offline,
2289 	    ural_online) != USB_SUCCESS) {
2290 		RAL_DEBUG(RAL_DBG_ERR,
2291 		    "ural: ural_attach() failed to register events");
2292 		goto fail4;
2293 	}
2294 
2295 	/*
2296 	 * Create minor node of type DDI_NT_NET_WIFI
2297 	 */
2298 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2299 	    "ural", instance);
2300 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2301 	    instance + 1, DDI_NT_NET_WIFI, 0);
2302 
2303 	if (err != DDI_SUCCESS)
2304 		RAL_DEBUG(RAL_DBG_ERR, "ddi_create_minor_node() failed\n");
2305 
2306 	/*
2307 	 * Notify link is down now
2308 	 */
2309 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2310 
2311 	RAL_DEBUG(RAL_DBG_MSG, "ural_attach() done successfully.\n");
2312 	return (DDI_SUCCESS);
2313 fail4:
2314 	(void) mac_unregister(ic->ic_mach);
2315 fail3:
2316 	mutex_destroy(&sc->sc_genlock);
2317 	mutex_destroy(&sc->tx_lock);
2318 	mutex_destroy(&sc->rx_lock);
2319 fail2:
2320 	usb_client_detach(sc->sc_dev, sc->sc_udev);
2321 fail1:
2322 	ddi_soft_state_free(ural_soft_state_p, ddi_get_instance(devinfo));
2323 
2324 	return (DDI_FAILURE);
2325 }
2326 
2327 static int
2328 ural_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2329 {
2330 	struct ural_softc *sc;
2331 
2332 	RAL_DEBUG(RAL_DBG_MSG, "ural_detach()\n");
2333 	sc = ddi_get_soft_state(ural_soft_state_p, ddi_get_instance(devinfo));
2334 
2335 	if (cmd != DDI_DETACH)
2336 		return (DDI_FAILURE);
2337 
2338 	if (mac_disable(sc->sc_ic.ic_mach) != 0)
2339 		return (DDI_FAILURE);
2340 
2341 	ural_stop(sc);
2342 	usb_unregister_hotplug_cbs(devinfo);
2343 
2344 	/*
2345 	 * Unregister from the MAC layer subsystem
2346 	 */
2347 	(void) mac_unregister(sc->sc_ic.ic_mach);
2348 
2349 	/*
2350 	 * detach ieee80211 layer
2351 	 */
2352 	ieee80211_detach(&sc->sc_ic);
2353 
2354 	mutex_destroy(&sc->sc_genlock);
2355 	mutex_destroy(&sc->tx_lock);
2356 	mutex_destroy(&sc->rx_lock);
2357 
2358 	/* pipes will be close in ural_stop() */
2359 	usb_client_detach(devinfo, sc->sc_udev);
2360 	sc->sc_udev = NULL;
2361 
2362 	ddi_remove_minor_node(devinfo, NULL);
2363 	ddi_soft_state_free(ural_soft_state_p, ddi_get_instance(devinfo));
2364 
2365 	return (DDI_SUCCESS);
2366 }
2367 
2368 int
2369 _info(struct modinfo *modinfop)
2370 {
2371 	return (mod_info(&modlinkage, modinfop));
2372 }
2373 
2374 int
2375 _init(void)
2376 {
2377 	int status;
2378 
2379 	status = ddi_soft_state_init(&ural_soft_state_p,
2380 	    sizeof (struct ural_softc), 1);
2381 	if (status != 0)
2382 		return (status);
2383 
2384 	mac_init_ops(&ural_dev_ops, "ural");
2385 	status = mod_install(&modlinkage);
2386 	if (status != 0) {
2387 		mac_fini_ops(&ural_dev_ops);
2388 		ddi_soft_state_fini(&ural_soft_state_p);
2389 	}
2390 	return (status);
2391 }
2392 
2393 int
2394 _fini(void)
2395 {
2396 	int status;
2397 
2398 	status = mod_remove(&modlinkage);
2399 	if (status == 0) {
2400 		mac_fini_ops(&ural_dev_ops);
2401 		ddi_soft_state_fini(&ural_soft_state_p);
2402 	}
2403 	return (status);
2404 }
2405