xref: /titanic_41/usr/src/uts/common/io/tl.c (revision eec1faa811b20b01f0173edcf9179c3c6ad48243)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Multithreaded STREAMS Local Transport Provider.
30  *
31  * OVERVIEW
32  * ========
33  *
34  * This driver provides TLI as well as socket semantics.  It provides
35  * connectionless, connection oriented, and connection oriented with orderly
36  * release transports for TLI and sockets. Each transport type has separate name
37  * spaces (i.e. it is not possible to connect from a socket to a TLI endpoint) -
38  * this removes any name space conflicts when binding to socket style transport
39  * addresses.
40  *
41  * NOTE: There is one exception: Socket ticots and ticotsord transports share
42  * the same namespace. In fact, sockets always use ticotsord type transport.
43  *
44  * The driver mode is specified during open() by the minor number used for
45  * open.
46  *
47  *  The sockets in addition have the following semantic differences:
48  *  No support for passing up credentials (TL_SET[U]CRED).
49  *
50  *	Options are passed through transparently on T_CONN_REQ to T_CONN_IND,
51  *	from T_UNITDATA_REQ to T_UNIDATA_IND, and from T_OPTDATA_REQ to
52  *	T_OPTDATA_IND.
53  *
54  *	The T_CONN_CON is generated when processing the T_CONN_REQ i.e. before
55  *	a T_CONN_RES is received from the acceptor. This means that a socket
56  *	connect will complete before the peer has called accept.
57  *
58  *
59  * MULTITHREADING
60  * ==============
61  *
62  * The driver does not use STREAMS protection mechanisms. Instead it uses a
63  * generic "serializer" abstraction. Most of the operations are executed behind
64  * the serializer and are, essentially single-threaded. All functions executed
65  * behind the same serializer are strictly serialized. So if one thread calls
66  * serializer_enter(serializer, foo, mp1, arg1); and another thread calls
67  * serializer_enter(serializer, bar, mp2, arg1); then (depending on which one
68  * was called) the actual sequence will be foo(mp1, arg1); bar(mp1, arg2) or
69  * bar(mp1, arg2); foo(mp1, arg1); But foo() and bar() will never run at the
70  * same time.
71  *
72  * Connectionless transport use a single serializer per transport type (one for
73  * TLI and one for sockets. Connection-oriented transports use finer-grained
74  * serializers.
75  *
76  * All COTS-type endpoints start their life with private serializers. During
77  * connection request processing the endpoint serializer is switched to the
78  * listener's serializer and the rest of T_CONN_REQ processing is done on the
79  * listener serializer. During T_CONN_RES processing the eager serializer is
80  * switched from listener to acceptor serializer and after that point all
81  * processing for eager and acceptor happens on this serializer. To avoid races
82  * with endpoint closes while its serializer may be changing closes are blocked
83  * while serializers are manipulated.
84  *
85  * References accounting
86  * ---------------------
87  *
88  * Endpoints are reference counted and freed when the last reference is
89  * dropped. Functions within the serializer may access an endpoint state even
90  * after an endpoint closed. The te_closing being set on the endpoint indicates
91  * that the endpoint entered its close routine.
92  *
93  * One reference is held for each opened endpoint instance. The reference
94  * counter is incremented when the endpoint is linked to another endpoint and
95  * decremented when the link disappears. It is also incremented when the
96  * endpoint is found by the hash table lookup. This increment is atomic with the
97  * lookup itself and happens while the hash table read lock is held.
98  *
99  * Close synchronization
100  * ---------------------
101  *
102  * During close the endpoint as marked as closing using te_closing flag. It is
103  * usually enough to check for te_closing flag since all other state changes
104  * happen after this flag is set and the close entered serializer. Immediately
105  * after setting te_closing flag tl_close() enters serializer and waits until
106  * the callback finishes. This allows all functions called within serializer to
107  * simply check te_closing without any locks.
108  *
109  * Serializer management.
110  * ---------------------
111  *
112  * For COTS transports serializers are created when the endpoint is constructed
113  * and destroyed when the endpoint is destructed. CLTS transports use global
114  * serializers - one for sockets and one for TLI.
115  *
116  * COTS serializers have separate reference counts to deal with several
117  * endpoints sharing the same serializer. There is a subtle problem related to
118  * the serializer destruction. The serializer should never be destroyed by any
119  * function executed inside serializer. This means that close has to wait till
120  * all serializer activity for this endpoint is finished before it can drop the
121  * last reference on the endpoint (which may as well free the serializer).  This
122  * is only relevant for COTS transports which manage serializers
123  * dynamically. For CLTS transports close may complete without waiting for all
124  * serializer activity to finish since serializer is only destroyed at driver
125  * detach time.
126  *
127  * COTS endpoints keep track of the number of outstanding requests on the
128  * serializer for the endpoint. The code handling accept() avoids changing
129  * client serializer if it has any pending messages on the serializer and
130  * instead moves acceptor to listener's serializer.
131  *
132  *
133  * Use of hash tables
134  * ------------------
135  *
136  * The driver uses modhash hash table implementation. Each transport uses two
137  * hash tables - one for finding endpoints by acceptor ID and another one for
138  * finding endpoints by address. For sockets TICOTS and TICOTSORD share the same
139  * pair of hash tables since sockets only use TICOTSORD.
140  *
141  * All hash tables lookups increment a reference count for returned endpoints,
142  * so we may safely check the endpoint state even when the endpoint is removed
143  * from the hash by another thread immediately after it is found.
144  *
145  *
146  * CLOSE processing
147  * ================
148  *
149  * The driver enters serializer twice on close(). The close sequence is the
150  * following:
151  *
152  * 1) Wait until closing is safe (te_closewait becomes zero)
153  *	This step is needed to prevent close during serializer switches. In most
154  *	cases (close happening after connection establishment) te_closewait is
155  *	zero.
156  * 1) Set te_closing.
157  * 2) Call tl_close_ser() within serializer and wait for it to complete.
158  *
159  *      te_close_ser simply marks endpoint and wakes up waiting tl_close().
160  *	It also needs to clear write-side q_next pointers - this should be done
161  *	before qprocsoff().
162  *
163  *    This synchronous serializer entry during close is needed to ensure that
164  *    the queue is valid everywhere inside the serializer.
165  *
166  *    Note that in many cases close will execute tl_close_ser() synchronously,
167  *    so it will not wait at all.
168  *
169  * 3) Calls qprocsoff().
170  * 4) Calls tl_close_finish_ser() within the serializer and waits for it to
171  *	complete (for COTS transports). For CLTS transport there is no wait.
172  *
173  *	tl_close_finish_ser() Finishes the close process and wakes up waiting
174  *	close if there is any.
175  *
176  *    Note that in most cases close will enter te_close_ser_finish()
177  *    synchronously and will not wait at all.
178  *
179  *
180  * Flow Control
181  * ============
182  *
183  * The driver implements both read and write side service routines. No one calls
184  * putq() on the read queue. The read side service routine tl_rsrv() is called
185  * when the read side stream is back-enabled. It enters serializer synchronously
186  * (waits till serializer processing is complete). Within serializer it
187  * back-enables all endpoints blocked by the queue for connection-less
188  * transports and enables write side service processing for the peer for
189  * connection-oriented transports.
190  *
191  * Read and write side service routines use special mblk_sized space in the
192  * endpoint structure to enter perimeter.
193  *
194  * Write-side flow control
195  * -----------------------
196  *
197  * Write side flow control is a bit tricky. The driver needs to deal with two
198  * message queues - the explicit STREAMS message queue maintained by
199  * putq()/getq()/putbq() and the implicit queue within the serializer. These two
200  * queues should be synchronized to preserve message ordering and should
201  * maintain a single order determined by the order in which messages enter
202  * tl_wput(). In order to maintain the ordering between these two queues the
203  * STREAMS queue is only manipulated within the serializer, so the ordering is
204  * provided by the serializer.
205  *
206  * Functions called from the tl_wsrv() sometimes may call putbq(). To
207  * immediately stop any further processing of the STREAMS message queues the
208  * code calling putbq() also sets the te_nowsrv flag in the endpoint. The write
209  * side service processing stops when the flag is set.
210  *
211  * The tl_wsrv() function enters serializer synchronously and waits for it to
212  * complete. The serializer call-back tl_wsrv_ser() either drains all messages
213  * on the STREAMS queue or terminates when it notices the te_nowsrv flag
214  * set. Note that the maximum amount of messages processed by tl_wput_ser() is
215  * always bounded by the amount of messages on the STREAMS queue at the time
216  * tl_wsrv_ser() is entered. Any new messages may only appear on the STREAMS
217  * queue from another serialized entry which can't happen in parallel. This
218  * guarantees that tl_wput_ser() is complete in bounded time (there is no risk
219  * of it draining forever while writer places new messages on the STREAMS
220  * queue).
221  *
222  * Note that a closing endpoint never sets te_nowsrv and never calls putbq().
223  *
224  *
225  * Unix Domain Sockets
226  * ===================
227  *
228  * The driver knows the structure of Unix Domain sockets addresses and treats
229  * them differently from generic TLI addresses. For sockets implicit binds are
230  * requested by setting SOU_MAGIC_IMPLICIT in the soua_magic part of the address
231  * instead of using address length of zero. Explicit binds specify
232  * SOU_MAGIC_EXPLICIT as magic.
233  *
234  * For implicit binds we always use minor number as soua_vp part of the address
235  * and avoid any hash table lookups. This saves two hash tables lookups per
236  * anonymous bind.
237  *
238  * For explicit address we hash the vnode pointer instead of hashing the
239  * full-scale address+zone+length. Hashing by pointer is more efficient then
240  * hashing by the full address.
241  *
242  * For unix domain sockets the te_ap is always pointing to te_uxaddr part of the
243  * tep structure, so it should be never freed.
244  *
245  * Also for sockets the driver always uses minor number as acceptor id.
246  *
247  * TPI VIOLATIONS
248  * --------------
249  *
250  * This driver violates TPI in several respects for Unix Domain Sockets:
251  *
252  * 1) It treats O_T_BIND_REQ as T_BIND_REQ and refuses bind if an explicit bind
253  *	is requested and the endpoint is already in use. There is no point in
254  *	generating an unused address since this address will be rejected by
255  *	sockfs anyway. For implicit binds it always generates a new address
256  *	(sets soua_vp to its minor number).
257  *
258  * 2) It always uses minor number as acceptor ID and never uses queue
259  *	pointer. It is ok since sockets get acceptor ID from T_CAPABILITY_REQ
260  *	message and they do not use the queue pointer.
261  *
262  * 3) For Listener sockets the usual sequence is to issue bind() zero backlog
263  *	followed by listen(). The listen() should be issued with non-zero
264  *	backlog, so sotpi_listen() issues unbind request followed by bind
265  *	request to the same address but with a non-zero qlen value. Both
266  *	tl_bind() and tl_unbind() require write lock on the hash table to
267  *	insert/remove the address. The driver does not remove the address from
268  *	the hash for endpoints that are bound to the explicit address and have
269  *	backlog of zero. During T_BIND_REQ processing if the address requested
270  *	is equal to the address the endpoint already has it updates the backlog
271  *	without reinserting the address in the hash table. This optimization
272  *	avoids two hash table updates for each listener created. It always
273  *	avoids the problem of a "stolen" address when another listener may use
274  *	the same address between the unbind and bind and suddenly listen() fails
275  *	because address is in use even though the bind() succeeded.
276  *
277  *
278  * CONNECTIONLESS TRANSPORTS
279  * =========================
280  *
281  * Connectionless transports all share the same serializer (one for TLI and one
282  * for Sockets). Functions executing behind serializer can check or modify state
283  * of any endpoint.
284  *
285  * When endpoint X talks to another endpoint Y it caches the pointer to Y in the
286  * te_lastep field. The next time X talks to some address A it checks whether A
287  * is the same as Y's address and if it is there is no need to lookup Y. If the
288  * address is different or the state of Y is not appropriate (e.g. closed or not
289  * idle) X does a lookup using tl_find_peer() and caches the new address.
290  * NOTE: tl_find_peer() never returns closing endpoint and it places a refhold
291  * on the endpoint found.
292  *
293  * During close of endpoint Y it doesn't try to remove itself from other
294  * endpoints caches. They will detect that Y is gone and will search the peer
295  * endpoint again.
296  *
297  * Flow Control Handling.
298  * ----------------------
299  *
300  * Each connectionless endpoint keeps a list of endpoints which are
301  * flow-controlled by its queue. It also keeps a pointer to the queue which
302  * flow-controls itself.  Whenever flow control releases for endpoint X it
303  * enables all queues from the list. During close it also back-enables everyone
304  * in the list. If X is flow-controlled when it is closing it removes it from
305  * the peers list.
306  *
307  * DATA STRUCTURES
308  * ===============
309  *
310  * Each endpoint is represented by the tl_endpt_t structure which keeps all the
311  * endpoint state. For connection-oriented transports it has a keeps a list
312  * of pending connections (tl_icon_t). For connectionless transports it keeps a
313  * list of endpoints flow controlled by this one.
314  *
315  * Each transport type is represented by a per-transport data structure
316  * tl_transport_state_t. It contains a pointer to an acceptor ID hash and the
317  * endpoint address hash tables for each transport. It also contains pointer to
318  * transport serializer for connectionless transports.
319  *
320  * Each endpoint keeps a link to its transport structure, so the code can find
321  * all per-transport information quickly.
322  */
323 
324 #include	<sys/types.h>
325 #include	<sys/inttypes.h>
326 #include	<sys/stream.h>
327 #include	<sys/stropts.h>
328 #define	_SUN_TPI_VERSION 2
329 #include	<sys/tihdr.h>
330 #include	<sys/strlog.h>
331 #include	<sys/debug.h>
332 #include	<sys/cred.h>
333 #include	<sys/errno.h>
334 #include	<sys/kmem.h>
335 #include	<sys/id_space.h>
336 #include	<sys/modhash.h>
337 #include	<sys/mkdev.h>
338 #include	<sys/tl.h>
339 #include	<sys/stat.h>
340 #include	<sys/conf.h>
341 #include	<sys/modctl.h>
342 #include	<sys/strsun.h>
343 #include	<sys/socket.h>
344 #include	<sys/socketvar.h>
345 #include	<sys/sysmacros.h>
346 #include	<sys/xti_xtiopt.h>
347 #include	<sys/ddi.h>
348 #include	<sys/sunddi.h>
349 #include	<sys/zone.h>
350 #include	<inet/common.h>	/* typedef int (*pfi_t)() for inet/optcom.h */
351 #include	<inet/optcom.h>
352 #include	<sys/strsubr.h>
353 #include	<sys/ucred.h>
354 #include	<sys/suntpi.h>
355 #include	<sys/list.h>
356 #include	<sys/serializer.h>
357 
358 /*
359  * TBD List
360  * 14 Eliminate state changes through table
361  * 16. AF_UNIX socket options
362  * 17. connect() for ticlts
363  * 18. support for "netstat" to show AF_UNIX plus TLI local
364  *	transport connections
365  * 21. sanity check to flushing on sending M_ERROR
366  */
367 
368 /*
369  * CONSTANT DECLARATIONS
370  * --------------------
371  */
372 
373 /*
374  * Local declarations
375  */
376 #define	NEXTSTATE(EV, ST)	ti_statetbl[EV][ST]
377 
378 #define	TL_MAXQLEN	128	/* Max conn indications allowed. */
379 #define	BADSEQNUM	(-1)	/* initial seq number used by T_DISCON_IND */
380 #define	TL_BUFWAIT	(10000)	/* usecs to wait for allocb buffer timeout */
381 #define	TL_TIDUSZ (64*1024)	/* tidu size when "strmsgz" is unlimited (0) */
382 /*
383  * Hash tables size.
384  */
385 #define	TL_HASH_SIZE 311
386 
387 /*
388  * Definitions for module_info
389  */
390 #define		TL_ID		(104)		/* module ID number */
391 #define		TL_NAME		"tl"		/* module name */
392 #define		TL_MINPSZ	(0)		/* min packet size */
393 #define		TL_MAXPSZ	INFPSZ 		/* max packet size ZZZ */
394 #define		TL_HIWAT	(16*1024)	/* hi water mark */
395 #define		TL_LOWAT	(256)		/* lo water mark */
396 /*
397  * Definition of minor numbers/modes for new transport provider modes.
398  * We view the socket use as a separate mode to get a separate name space.
399  */
400 #define		TL_TICOTS	0	/* connection oriented transport */
401 #define		TL_TICOTSORD 	1	/* COTS w/ orderly release */
402 #define		TL_TICLTS 	2	/* connectionless transport */
403 #define		TL_UNUSED	3
404 #define		TL_SOCKET	4	/* Socket */
405 #define		TL_SOCK_COTS	(TL_SOCKET|TL_TICOTS)
406 #define		TL_SOCK_COTSORD	(TL_SOCKET|TL_TICOTSORD)
407 #define		TL_SOCK_CLTS	(TL_SOCKET|TL_TICLTS)
408 
409 #define		TL_MINOR_MASK	0x7
410 #define		TL_MINOR_START	(TL_TICLTS + 1)
411 
412 /*
413  * LOCAL MACROS
414  */
415 #define	T_ALIGN(p)	P2ROUNDUP((p), sizeof (t_scalar_t))
416 
417 /*
418  * EXTERNAL VARIABLE DECLARATIONS
419  * -----------------------------
420  */
421 /*
422  * state table defined in the OS space.c
423  */
424 extern	char	ti_statetbl[TE_NOEVENTS][TS_NOSTATES];
425 
426 /*
427  * STREAMS DRIVER ENTRY POINTS PROTOTYPES
428  */
429 static int tl_open(queue_t *, dev_t *, int, int, cred_t *);
430 static int tl_close(queue_t *, int, cred_t *);
431 static void tl_wput(queue_t *, mblk_t *);
432 static void tl_wsrv(queue_t *);
433 static void tl_rsrv(queue_t *);
434 
435 static int tl_attach(dev_info_t *, ddi_attach_cmd_t);
436 static int tl_detach(dev_info_t *, ddi_detach_cmd_t);
437 static int tl_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
438 
439 
440 /*
441  * GLOBAL DATA STRUCTURES AND VARIABLES
442  * -----------------------------------
443  */
444 
445 /*
446  * Table representing database of all options managed by T_SVR4_OPTMGMT_REQ
447  * For now, we only manage the SO_RECVUCRED option but we also have
448  * harmless dummy options to make things work with some common code we access.
449  */
450 opdes_t	tl_opt_arr[] = {
451 	/* The SO_TYPE is needed for the hack below */
452 	{
453 		SO_TYPE,
454 		SOL_SOCKET,
455 		OA_R,
456 		OA_R,
457 		OP_NP,
458 		OP_PASSNEXT,
459 		sizeof (t_scalar_t),
460 		0
461 	},
462 	{
463 		SO_RECVUCRED,
464 		SOL_SOCKET,
465 		OA_RW,
466 		OA_RW,
467 		OP_NP,
468 		OP_PASSNEXT,
469 		sizeof (int),
470 		0
471 	}
472 };
473 
474 /*
475  * Table of all supported levels
476  * Note: Some levels (e.g. XTI_GENERIC) may be valid but may not have
477  * any supported options so we need this info separately.
478  *
479  * This is needed only for topmost tpi providers.
480  */
481 optlevel_t	tl_valid_levels_arr[] = {
482 	XTI_GENERIC,
483 	SOL_SOCKET,
484 	TL_PROT_LEVEL
485 };
486 
487 #define	TL_VALID_LEVELS_CNT	A_CNT(tl_valid_levels_arr)
488 /*
489  * Current upper bound on the amount of space needed to return all options.
490  * Additional options with data size of sizeof(long) are handled automatically.
491  * Others need hand job.
492  */
493 #define	TL_MAX_OPT_BUF_LEN						\
494 		((A_CNT(tl_opt_arr) << 2) +				\
495 		(A_CNT(tl_opt_arr) * sizeof (struct opthdr)) +		\
496 		+ 64 + sizeof (struct T_optmgmt_ack))
497 
498 #define	TL_OPT_ARR_CNT	A_CNT(tl_opt_arr)
499 
500 /*
501  *	transport addr structure
502  */
503 typedef struct tl_addr {
504 	zoneid_t	ta_zoneid;		/* Zone scope of address */
505 	t_scalar_t	ta_alen;		/* length of abuf */
506 	void		*ta_abuf;		/* the addr itself */
507 } tl_addr_t;
508 
509 /*
510  * Refcounted version of serializer.
511  */
512 typedef struct tl_serializer {
513 	uint_t		ts_refcnt;
514 	serializer_t	*ts_serializer;
515 } tl_serializer_t;
516 
517 /*
518  * Each transport type has a separate state.
519  * Per-transport state.
520  */
521 typedef struct tl_transport_state {
522 	char		*tr_name;
523 	minor_t		tr_minor;
524 	uint32_t	tr_defaddr;
525 	mod_hash_t	*tr_ai_hash;
526 	mod_hash_t	*tr_addr_hash;
527 	tl_serializer_t	*tr_serializer;
528 } tl_transport_state_t;
529 
530 #define	TL_DFADDR 0x1000
531 
532 static tl_transport_state_t tl_transports[] = {
533 	{ "ticots", TL_TICOTS, TL_DFADDR, NULL, NULL, NULL },
534 	{ "ticotsord", TL_TICOTSORD, TL_DFADDR, NULL, NULL, NULL },
535 	{ "ticlts", TL_TICLTS, TL_DFADDR, NULL, NULL, NULL },
536 	{ "undefined", TL_UNUSED, TL_DFADDR, NULL, NULL, NULL },
537 	{ "sticots", TL_SOCK_COTS, TL_DFADDR, NULL, NULL, NULL },
538 	{ "sticotsord", TL_SOCK_COTSORD, TL_DFADDR, NULL, NULL },
539 	{ "sticlts", TL_SOCK_CLTS, TL_DFADDR, NULL, NULL, NULL }
540 };
541 
542 #define	TL_MAXTRANSPORT A_CNT(tl_transports)
543 
544 struct tl_endpt;
545 typedef struct tl_endpt tl_endpt_t;
546 
547 typedef void (tlproc_t)(mblk_t *, tl_endpt_t *);
548 
549 /*
550  * Data structure used to represent pending connects.
551  * Records enough information so that the connecting peer can close
552  * before the connection gets accepted.
553  */
554 typedef struct tl_icon {
555 	list_node_t	ti_node;
556 	struct tl_endpt *ti_tep;	/* NULL if peer has already closed */
557 	mblk_t		*ti_mp;		/* b_next list of data + ordrel_ind */
558 	t_scalar_t	ti_seqno;	/* Sequence number */
559 } tl_icon_t;
560 
561 typedef struct so_ux_addr soux_addr_t;
562 #define	TL_SOUX_ADDRLEN sizeof (soux_addr_t)
563 
564 /*
565  *	transport endpoint structure
566  */
567 struct tl_endpt {
568 	queue_t		*te_rq;		/* stream read queue */
569 	queue_t		*te_wq;		/* stream write queue */
570 	uint32_t	te_refcnt;
571 	int32_t 	te_state;	/* TPI state of endpoint */
572 	minor_t		te_minor;	/* minor number */
573 #define	te_seqno	te_minor
574 	uint_t		te_flag;	/* flag field */
575 	boolean_t	te_nowsrv;
576 	tl_serializer_t	*te_ser;	/* Serializer to use */
577 #define	te_serializer	te_ser->ts_serializer
578 
579 	soux_addr_t	te_uxaddr;	/* Socket address */
580 #define	te_magic	te_uxaddr.soua_magic
581 #define	te_vp		te_uxaddr.soua_vp
582 	tl_addr_t	te_ap;		/* addr bound to this endpt */
583 #define	te_zoneid te_ap.ta_zoneid
584 #define	te_alen	te_ap.ta_alen
585 #define	te_abuf	te_ap.ta_abuf
586 
587 	tl_transport_state_t *te_transport;
588 #define	te_addrhash	te_transport->tr_addr_hash
589 #define	te_aihash	te_transport->tr_ai_hash
590 #define	te_defaddr	te_transport->tr_defaddr
591 	cred_t		*te_credp;	/* endpoint user credentials */
592 	mod_hash_hndl_t	te_hash_hndl;	/* Handle for address hash */
593 
594 	/*
595 	 * State specific for connection-oriented and connectionless transports.
596 	 */
597 	union {
598 		/* Connection-oriented state. */
599 		struct {
600 			t_uscalar_t _te_nicon;	/* count of conn requests */
601 			t_uscalar_t _te_qlen;	/* max conn requests */
602 			tl_endpt_t  *_te_oconp;	/* conn request pending */
603 			tl_endpt_t  *_te_conp;	/* connected endpt */
604 #ifndef _ILP32
605 			void	    *_te_pad;
606 #endif
607 			list_t	_te_iconp;	/* list of conn ind. pending */
608 		} _te_cots_state;
609 		/* Connection-less state. */
610 		struct {
611 			tl_endpt_t *_te_lastep;	/* last dest. endpoint */
612 			tl_endpt_t *_te_flowq;	/* flow controlled on whom */
613 			list_node_t _te_flows;	/* lists of connections */
614 			list_t  _te_flowlist;	/* Who flowcontrols on me */
615 		} _te_clts_state;
616 	} _te_transport_state;
617 #define	te_nicon	_te_transport_state._te_cots_state._te_nicon
618 #define	te_qlen		_te_transport_state._te_cots_state._te_qlen
619 #define	te_oconp	_te_transport_state._te_cots_state._te_oconp
620 #define	te_conp		_te_transport_state._te_cots_state._te_conp
621 #define	te_iconp	_te_transport_state._te_cots_state._te_iconp
622 #define	te_lastep	_te_transport_state._te_clts_state._te_lastep
623 #define	te_flowq	_te_transport_state._te_clts_state._te_flowq
624 #define	te_flowlist	_te_transport_state._te_clts_state._te_flowlist
625 #define	te_flows	_te_transport_state._te_clts_state._te_flows
626 
627 	bufcall_id_t	te_bufcid;	/* outstanding bufcall id */
628 	timeout_id_t	te_timoutid;	/* outstanding timeout id */
629 	pid_t		te_cpid;	/* cached pid of endpoint */
630 	t_uscalar_t	te_acceptor_id;	/* acceptor id for T_CONN_RES */
631 	/*
632 	 * Pieces of the endpoint state needed for closing.
633 	 */
634 	kmutex_t	te_closelock;
635 	kcondvar_t	te_closecv;
636 	uint8_t		te_closing;	/* The endpoint started closing */
637 	uint8_t		te_closewait;	/* Wait in close until zero */
638 	mblk_t		te_closemp;	/* for entering serializer on close */
639 	mblk_t		te_rsrvmp;	/* for entering serializer on rsrv */
640 	mblk_t		te_wsrvmp;	/* for entering serializer on wsrv */
641 	kmutex_t	te_srv_lock;
642 	kcondvar_t	te_srv_cv;
643 	uint8_t		te_rsrv_active;	/* Running in tl_rsrv()	*/
644 	uint8_t		te_wsrv_active;	/* Running in tl_wsrv()	*/
645 	/*
646 	 * Pieces of the endpoint state needed for serializer transitions.
647 	 */
648 	kmutex_t	te_ser_lock;	/* Protects the count below */
649 	uint_t		te_ser_count;	/* Number of messages on serializer */
650 };
651 
652 /*
653  * Flag values. Lower 4 bits specify that transport used.
654  * TL_LISTENER, TL_ACCEPTOR, TL_ACCEPTED and TL_EAGER are for debugging only,
655  * they allow to identify the endpoint more easily.
656  */
657 #define	TL_LISTENER	0x00010	/* the listener endpoint */
658 #define	TL_ACCEPTOR	0x00020	/* the accepting endpoint */
659 #define	TL_EAGER	0x00040	/* connecting endpoint */
660 #define	TL_ACCEPTED	0x00080	/* accepted connection */
661 #define	TL_SETCRED	0x00100	/* flag to indicate sending of credentials */
662 #define	TL_SETUCRED	0x00200	/* flag to indicate sending of ucred */
663 #define	TL_SOCKUCRED	0x00400	/* flag to indicate sending of SCM_UCRED */
664 #define	TL_ADDRHASHED	0x01000	/* Endpoint address is stored in te_addrhash */
665 #define	TL_CLOSE_SER	0x10000	/* Endpoint close has entered the serializer */
666 /*
667  * Boolean checks for the endpoint type.
668  */
669 #define		IS_CLTS(x)	(((x)->te_flag & TL_TICLTS) != 0)
670 #define		IS_COTS(x)	(((x)->te_flag & TL_TICLTS) == 0)
671 #define		IS_COTSORD(x)	(((x)->te_flag & TL_TICOTSORD) != 0)
672 #define		IS_SOCKET(x)	(((x)->te_flag & TL_SOCKET) != 0)
673 
674 #define	TLPID(mp, tep)	(DB_CPID(mp) == -1 ? (tep)->te_cpid : DB_CPID(mp))
675 
676 /*
677  * Certain operations are always used together. These macros reduce the chance
678  * of missing a part of a combination.
679  */
680 #define	TL_UNCONNECT(x) { tl_refrele(x); x = NULL; }
681 #define	TL_REMOVE_PEER(x) { if ((x) != NULL) TL_UNCONNECT(x) }
682 
683 #define	TL_PUTBQ(x, mp) {		\
684 	ASSERT(!((x)->te_flag & TL_CLOSE_SER));	\
685 	(x)->te_nowsrv = B_TRUE;	\
686 	(void) putbq((x)->te_wq, mp);	\
687 }
688 
689 #define	TL_QENABLE(x) { (x)->te_nowsrv = B_FALSE; qenable((x)->te_wq); }
690 #define	TL_PUTQ(x, mp) { (x)->te_nowsrv = B_FALSE; (void)putq((x)->te_wq, mp); }
691 
692 /*
693  * STREAMS driver glue data structures.
694  */
695 static	struct	module_info	tl_minfo = {
696 	TL_ID,			/* mi_idnum */
697 	TL_NAME,		/* mi_idname */
698 	TL_MINPSZ,		/* mi_minpsz */
699 	TL_MAXPSZ,		/* mi_maxpsz */
700 	TL_HIWAT,		/* mi_hiwat */
701 	TL_LOWAT		/* mi_lowat */
702 };
703 
704 static	struct	qinit	tl_rinit = {
705 	NULL,			/* qi_putp */
706 	(int (*)())tl_rsrv,	/* qi_srvp */
707 	tl_open,		/* qi_qopen */
708 	tl_close,		/* qi_qclose */
709 	NULL,			/* qi_qadmin */
710 	&tl_minfo,		/* qi_minfo */
711 	NULL			/* qi_mstat */
712 };
713 
714 static	struct	qinit	tl_winit = {
715 	(int (*)())tl_wput,	/* qi_putp */
716 	(int (*)())tl_wsrv,	/* qi_srvp */
717 	NULL,			/* qi_qopen */
718 	NULL,			/* qi_qclose */
719 	NULL,			/* qi_qadmin */
720 	&tl_minfo,		/* qi_minfo */
721 	NULL			/* qi_mstat */
722 };
723 
724 static	struct streamtab	tlinfo = {
725 	&tl_rinit,		/* st_rdinit */
726 	&tl_winit,		/* st_wrinit */
727 	NULL,			/* st_muxrinit */
728 	NULL			/* st_muxwrinit */
729 };
730 
731 DDI_DEFINE_STREAM_OPS(tl_devops, nulldev, nulldev, tl_attach, tl_detach,
732     nulldev, tl_info, D_MP, &tlinfo);
733 
734 static struct modldrv modldrv = {
735 	&mod_driverops,		/* Type of module -- pseudo driver here */
736 	"TPI Local Transport (tl) %I%",
737 	&tl_devops,		/* driver ops */
738 };
739 
740 /*
741  * Module linkage information for the kernel.
742  */
743 static struct modlinkage modlinkage = {
744 	MODREV_1,
745 	&modldrv,
746 	NULL
747 };
748 
749 /*
750  * Templates for response to info request
751  * Check sanity of unlimited connect data etc.
752  */
753 
754 #define		TL_CLTS_PROVIDER_FLAG	(XPG4_1|SENDZERO)
755 #define		TL_COTS_PROVIDER_FLAG	(XPG4_1|SENDZERO)
756 
757 static struct T_info_ack tl_cots_info_ack =
758 	{
759 		T_INFO_ACK,	/* PRIM_type -always T_INFO_ACK */
760 		T_INFINITE,	/* TSDU size */
761 		T_INFINITE,	/* ETSDU size */
762 		T_INFINITE,	/* CDATA_size */
763 		T_INFINITE,	/* DDATA_size */
764 		T_INFINITE,	/* ADDR_size  */
765 		T_INFINITE,	/* OPT_size */
766 		0,		/* TIDU_size - fill at run time */
767 		T_COTS,		/* SERV_type */
768 		-1,		/* CURRENT_state */
769 		TL_COTS_PROVIDER_FLAG	/* PROVIDER_flag */
770 	};
771 
772 static struct T_info_ack tl_clts_info_ack =
773 	{
774 		T_INFO_ACK,	/* PRIM_type - always T_INFO_ACK */
775 		0,		/* TSDU_size - fill at run time */
776 		-2,		/* ETSDU_size -2 => not supported */
777 		-2,		/* CDATA_size -2 => not supported */
778 		-2,		/* DDATA_size  -2 => not supported */
779 		-1,		/* ADDR_size -1 => unlimited */
780 		-1,		/* OPT_size */
781 		0,		/* TIDU_size - fill at run time */
782 		T_CLTS,		/* SERV_type */
783 		-1,		/* CURRENT_state */
784 		TL_CLTS_PROVIDER_FLAG /* PROVIDER_flag */
785 	};
786 
787 /*
788  * private copy of devinfo pointer used in tl_info
789  */
790 static dev_info_t *tl_dip;
791 
792 /*
793  * Endpoints cache.
794  */
795 static kmem_cache_t *tl_cache;
796 /*
797  * Minor number space.
798  */
799 static id_space_t *tl_minors;
800 
801 /*
802  * Default Data Unit size.
803  */
804 static t_scalar_t tl_tidusz;
805 
806 /*
807  * Size of hash tables.
808  */
809 static size_t tl_hash_size = TL_HASH_SIZE;
810 
811 /*
812  * Debug and test variable ONLY. Turn off T_CONN_IND queueing
813  * for sockets.
814  */
815 static int tl_disable_early_connect = 0;
816 static int tl_client_closing_when_accepting;
817 
818 static int tl_serializer_noswitch;
819 
820 /*
821  * LOCAL FUNCTION PROTOTYPES
822  * -------------------------
823  */
824 static boolean_t tl_eqaddr(tl_addr_t *, tl_addr_t *);
825 static void tl_do_proto(mblk_t *, tl_endpt_t *);
826 static void tl_do_ioctl(mblk_t *, tl_endpt_t *);
827 static void tl_do_ioctl_ser(mblk_t *, tl_endpt_t *);
828 static void tl_error_ack(queue_t *, mblk_t *, t_scalar_t, t_scalar_t,
829 	t_scalar_t);
830 static void tl_bind(mblk_t *, tl_endpt_t *);
831 static void tl_bind_ser(mblk_t *, tl_endpt_t *);
832 static void tl_ok_ack(queue_t *, mblk_t  *mp, t_scalar_t);
833 static void tl_unbind(mblk_t *, tl_endpt_t *);
834 static void tl_optmgmt(queue_t *, mblk_t *);
835 static void tl_conn_req(queue_t *, mblk_t *);
836 static void tl_conn_req_ser(mblk_t *, tl_endpt_t *);
837 static void tl_conn_res(mblk_t *, tl_endpt_t *);
838 static void tl_discon_req(mblk_t *, tl_endpt_t *);
839 static void tl_capability_req(mblk_t *, tl_endpt_t *);
840 static void tl_info_req_ser(mblk_t *, tl_endpt_t *);
841 static void tl_info_req(mblk_t *, tl_endpt_t *);
842 static void tl_addr_req(mblk_t *, tl_endpt_t *);
843 static void tl_connected_cots_addr_req(mblk_t *, tl_endpt_t *);
844 static void tl_data(mblk_t  *, tl_endpt_t *);
845 static void tl_exdata(mblk_t *, tl_endpt_t *);
846 static void tl_ordrel(mblk_t *, tl_endpt_t *);
847 static void tl_unitdata(mblk_t *, tl_endpt_t *);
848 static void tl_unitdata_ser(mblk_t *, tl_endpt_t *);
849 static void tl_uderr(queue_t *, mblk_t *, t_scalar_t);
850 static tl_endpt_t *tl_find_peer(tl_endpt_t *, tl_addr_t *);
851 static tl_endpt_t *tl_sock_find_peer(tl_endpt_t *, struct so_ux_addr *);
852 static boolean_t tl_get_any_addr(tl_endpt_t *, tl_addr_t *);
853 static void tl_cl_backenable(tl_endpt_t *);
854 static void tl_co_unconnect(tl_endpt_t *);
855 static mblk_t *tl_resizemp(mblk_t *, ssize_t);
856 static void tl_discon_ind(tl_endpt_t *, uint32_t);
857 static mblk_t *tl_discon_ind_alloc(uint32_t, t_scalar_t);
858 static mblk_t *tl_ordrel_ind_alloc(void);
859 static tl_icon_t *tl_icon_find(tl_endpt_t *, t_scalar_t);
860 static void tl_icon_queuemsg(tl_endpt_t *, t_scalar_t, mblk_t *);
861 static boolean_t tl_icon_hasprim(tl_endpt_t *, t_scalar_t, t_scalar_t);
862 static void tl_icon_sendmsgs(tl_endpt_t *, mblk_t **);
863 static void tl_icon_freemsgs(mblk_t **);
864 static void tl_merror(queue_t *, mblk_t *, int);
865 static void tl_fill_option(uchar_t *, cred_t *, pid_t, int, cred_t *);
866 static int tl_default_opt(queue_t *, int, int, uchar_t *);
867 static int tl_get_opt(queue_t *, int, int, uchar_t *);
868 static int tl_set_opt(queue_t *, uint_t, int, int, uint_t, uchar_t *, uint_t *,
869     uchar_t *, void *, cred_t *, mblk_t *);
870 static void tl_memrecover(queue_t *, mblk_t *, size_t);
871 static void tl_freetip(tl_endpt_t *, tl_icon_t *);
872 static void tl_free(tl_endpt_t *);
873 static int  tl_constructor(void *, void *, int);
874 static void tl_destructor(void *, void *);
875 static void tl_find_callback(mod_hash_key_t, mod_hash_val_t);
876 static tl_serializer_t *tl_serializer_alloc(int);
877 static void tl_serializer_refhold(tl_serializer_t *);
878 static void tl_serializer_refrele(tl_serializer_t *);
879 static void tl_serializer_enter(tl_endpt_t *, tlproc_t, mblk_t *);
880 static void tl_serializer_exit(tl_endpt_t *);
881 static boolean_t tl_noclose(tl_endpt_t *);
882 static void tl_closeok(tl_endpt_t *);
883 static void tl_refhold(tl_endpt_t *);
884 static void tl_refrele(tl_endpt_t *);
885 static int tl_hash_cmp_addr(mod_hash_key_t, mod_hash_key_t);
886 static uint_t tl_hash_by_addr(void *, mod_hash_key_t);
887 static void tl_close_ser(mblk_t *, tl_endpt_t *);
888 static void tl_close_finish_ser(mblk_t *, tl_endpt_t *);
889 static void tl_wput_data_ser(mblk_t *, tl_endpt_t *);
890 static void tl_proto_ser(mblk_t *, tl_endpt_t *);
891 static void tl_putq_ser(mblk_t *, tl_endpt_t *);
892 static void tl_wput_common_ser(mblk_t *, tl_endpt_t *);
893 static void tl_wput_ser(mblk_t *, tl_endpt_t *);
894 static void tl_wsrv_ser(mblk_t *, tl_endpt_t *);
895 static void tl_rsrv_ser(mblk_t *, tl_endpt_t *);
896 static void tl_addr_unbind(tl_endpt_t *);
897 
898 /*
899  * Intialize option database object for TL
900  */
901 
902 optdb_obj_t tl_opt_obj = {
903 	tl_default_opt,		/* TL default value function pointer */
904 	tl_get_opt,		/* TL get function pointer */
905 	tl_set_opt,		/* TL set function pointer */
906 	B_TRUE,			/* TL is tpi provider */
907 	TL_OPT_ARR_CNT,		/* TL option database count of entries */
908 	tl_opt_arr,		/* TL option database */
909 	TL_VALID_LEVELS_CNT,	/* TL valid level count of entries */
910 	tl_valid_levels_arr	/* TL valid level array */
911 };
912 
913 /*
914  * Logical operations.
915  *
916  * IMPLY(X, Y) means that X implies Y i.e. when X is true, Y
917  * should also be true.
918  *
919  * EQUIV(X, Y) is logical equivalence. Both X and Y should be true or falce at
920  * the same time.
921  */
922 #define	IMPLY(X, Y)	(!(X) || (Y))
923 #define	EQUIV(X, Y)	(IMPLY(X, Y) && IMPLY(Y, X))
924 
925 /*
926  * LOCAL FUNCTIONS AND DRIVER ENTRY POINTS
927  * ---------------------------------------
928  */
929 
930 /*
931  * Loadable module routines
932  */
933 int
934 _init(void)
935 {
936 	return (mod_install(&modlinkage));
937 }
938 
939 int
940 _fini(void)
941 {
942 	return (mod_remove(&modlinkage));
943 }
944 
945 int
946 _info(struct modinfo *modinfop)
947 {
948 	return (mod_info(&modlinkage, modinfop));
949 }
950 
951 /*
952  * Driver Entry Points and Other routines
953  */
954 static int
955 tl_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
956 {
957 	int i;
958 	char name[32];
959 
960 	/*
961 	 * Resume from a checkpoint state.
962 	 */
963 	if (cmd == DDI_RESUME)
964 		return (DDI_SUCCESS);
965 
966 	if (cmd != DDI_ATTACH)
967 		return (DDI_FAILURE);
968 
969 	/*
970 	 * Deduce TIDU size to use.  Note: "strmsgsz" being 0 has semantics that
971 	 * streams message sizes can be unlimited. We use a defined constant
972 	 * instead.
973 	 */
974 	tl_tidusz = strmsgsz != 0 ? (t_scalar_t)strmsgsz : TL_TIDUSZ;
975 
976 	/*
977 	 * Create subdevices for each transport.
978 	 */
979 	for (i = 0; i < TL_UNUSED; i++) {
980 		if (ddi_create_minor_node(devi,
981 			tl_transports[i].tr_name,
982 			S_IFCHR, tl_transports[i].tr_minor,
983 			DDI_PSEUDO, NULL) == DDI_FAILURE) {
984 			ddi_remove_minor_node(devi, NULL);
985 			return (DDI_FAILURE);
986 		}
987 	}
988 
989 	tl_cache = kmem_cache_create("tl_cache", sizeof (tl_endpt_t),
990 	    0, tl_constructor, tl_destructor, NULL, NULL, NULL, 0);
991 
992 	if (tl_cache == NULL) {
993 		ddi_remove_minor_node(devi, NULL);
994 		return (DDI_FAILURE);
995 	}
996 
997 	tl_minors = id_space_create("tl_minor_space",
998 	    TL_MINOR_START, MAXMIN32 - TL_MINOR_START + 1);
999 
1000 	/*
1001 	 * Create ID space for minor numbers
1002 	 */
1003 	for (i = 0; i < TL_MAXTRANSPORT; i++) {
1004 		tl_transport_state_t *t = &tl_transports[i];
1005 
1006 		if (i == TL_UNUSED)
1007 			continue;
1008 
1009 		/* Socket COTSORD shares namespace with COTS */
1010 		if (i == TL_SOCK_COTSORD) {
1011 			t->tr_ai_hash =
1012 			    tl_transports[TL_SOCK_COTS].tr_ai_hash;
1013 			ASSERT(t->tr_ai_hash != NULL);
1014 			t->tr_addr_hash =
1015 			    tl_transports[TL_SOCK_COTS].tr_addr_hash;
1016 			ASSERT(t->tr_addr_hash != NULL);
1017 			continue;
1018 		}
1019 
1020 		/*
1021 		 * Create hash tables.
1022 		 */
1023 		(void) snprintf(name, sizeof (name), "%s_ai_hash",
1024 		    t->tr_name);
1025 #ifdef _ILP32
1026 		if (i & TL_SOCKET)
1027 			t->tr_ai_hash =
1028 			    mod_hash_create_idhash(name, tl_hash_size - 1,
1029 				mod_hash_null_valdtor);
1030 		else
1031 			t->tr_ai_hash =
1032 			    mod_hash_create_ptrhash(name, tl_hash_size,
1033 				mod_hash_null_valdtor, sizeof (queue_t));
1034 #else
1035 		t->tr_ai_hash =
1036 		    mod_hash_create_idhash(name, tl_hash_size - 1,
1037 			mod_hash_null_valdtor);
1038 #endif /* _ILP32 */
1039 
1040 		if (i & TL_SOCKET) {
1041 			(void) snprintf(name, sizeof (name), "%s_sockaddr_hash",
1042 			    t->tr_name);
1043 			t->tr_addr_hash = mod_hash_create_ptrhash(name,
1044 			    tl_hash_size, mod_hash_null_valdtor,
1045 			    sizeof (uintptr_t));
1046 		} else {
1047 			(void) snprintf(name, sizeof (name), "%s_addr_hash",
1048 			    t->tr_name);
1049 			t->tr_addr_hash = mod_hash_create_extended(name,
1050 			    tl_hash_size, mod_hash_null_keydtor,
1051 			    mod_hash_null_valdtor,
1052 			    tl_hash_by_addr, NULL, tl_hash_cmp_addr, KM_SLEEP);
1053 		}
1054 
1055 		/* Create serializer for connectionless transports. */
1056 		if (i & TL_TICLTS)
1057 			t->tr_serializer = tl_serializer_alloc(KM_SLEEP);
1058 	}
1059 
1060 	tl_dip = devi;
1061 
1062 	return (DDI_SUCCESS);
1063 }
1064 
1065 static int
1066 tl_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
1067 {
1068 	int i;
1069 
1070 	if (cmd == DDI_SUSPEND)
1071 		return (DDI_SUCCESS);
1072 
1073 	if (cmd != DDI_DETACH)
1074 		return (DDI_FAILURE);
1075 
1076 	/*
1077 	 * Destroy arenas and hash tables.
1078 	 */
1079 	for (i = 0; i < TL_MAXTRANSPORT; i++) {
1080 		tl_transport_state_t *t = &tl_transports[i];
1081 
1082 		if ((i == TL_UNUSED) || (i == TL_SOCK_COTSORD))
1083 			continue;
1084 
1085 		ASSERT(EQUIV(i & TL_TICLTS, t->tr_serializer != NULL));
1086 		if (t->tr_serializer != NULL) {
1087 			tl_serializer_refrele(t->tr_serializer);
1088 			t->tr_serializer = NULL;
1089 		}
1090 
1091 #ifdef _ILP32
1092 		if (i & TL_SOCKET)
1093 			mod_hash_destroy_idhash(t->tr_ai_hash);
1094 		else
1095 			mod_hash_destroy_ptrhash(t->tr_ai_hash);
1096 #else
1097 		mod_hash_destroy_idhash(t->tr_ai_hash);
1098 #endif /* _ILP32 */
1099 		t->tr_ai_hash = NULL;
1100 		if (i & TL_SOCKET)
1101 			mod_hash_destroy_ptrhash(t->tr_addr_hash);
1102 		else
1103 			mod_hash_destroy_hash(t->tr_addr_hash);
1104 		t->tr_addr_hash = NULL;
1105 	}
1106 
1107 	kmem_cache_destroy(tl_cache);
1108 	tl_cache = NULL;
1109 	id_space_destroy(tl_minors);
1110 	tl_minors = NULL;
1111 	ddi_remove_minor_node(devi, NULL);
1112 	return (DDI_SUCCESS);
1113 }
1114 
1115 /* ARGSUSED */
1116 static int
1117 tl_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1118 {
1119 
1120 	int retcode = DDI_FAILURE;
1121 
1122 	switch (infocmd) {
1123 
1124 	case DDI_INFO_DEVT2DEVINFO:
1125 		if (tl_dip != NULL) {
1126 			*result = (void *)tl_dip;
1127 			retcode = DDI_SUCCESS;
1128 		}
1129 		break;
1130 
1131 	case DDI_INFO_DEVT2INSTANCE:
1132 		*result = (void *)0;
1133 		retcode = DDI_SUCCESS;
1134 		break;
1135 
1136 	default:
1137 		break;
1138 	}
1139 	return (retcode);
1140 }
1141 
1142 /*
1143  * Endpoint reference management.
1144  */
1145 static void
1146 tl_refhold(tl_endpt_t *tep)
1147 {
1148 	atomic_add_32(&tep->te_refcnt, 1);
1149 }
1150 
1151 static void
1152 tl_refrele(tl_endpt_t *tep)
1153 {
1154 	ASSERT(tep->te_refcnt != 0);
1155 
1156 	if (atomic_add_32_nv(&tep->te_refcnt, -1) == 0)
1157 		tl_free(tep);
1158 }
1159 
1160 /*ARGSUSED*/
1161 static int
1162 tl_constructor(void *buf, void *cdrarg, int kmflags)
1163 {
1164 	tl_endpt_t *tep = buf;
1165 
1166 	bzero(tep, sizeof (tl_endpt_t));
1167 	mutex_init(&tep->te_closelock, NULL, MUTEX_DEFAULT, NULL);
1168 	cv_init(&tep->te_closecv, NULL, CV_DEFAULT, NULL);
1169 	mutex_init(&tep->te_srv_lock, NULL, MUTEX_DEFAULT, NULL);
1170 	cv_init(&tep->te_srv_cv, NULL, CV_DEFAULT, NULL);
1171 	mutex_init(&tep->te_ser_lock, NULL, MUTEX_DEFAULT, NULL);
1172 
1173 	return (0);
1174 }
1175 
1176 /*ARGSUSED*/
1177 static void
1178 tl_destructor(void *buf, void *cdrarg)
1179 {
1180 	tl_endpt_t *tep = buf;
1181 
1182 	mutex_destroy(&tep->te_closelock);
1183 	cv_destroy(&tep->te_closecv);
1184 	mutex_destroy(&tep->te_srv_lock);
1185 	cv_destroy(&tep->te_srv_cv);
1186 	mutex_destroy(&tep->te_ser_lock);
1187 }
1188 
1189 static void
1190 tl_free(tl_endpt_t *tep)
1191 {
1192 	ASSERT(tep->te_refcnt == 0);
1193 	ASSERT(tep->te_transport != NULL);
1194 	ASSERT(tep->te_rq == NULL);
1195 	ASSERT(tep->te_wq == NULL);
1196 	ASSERT(tep->te_ser != NULL);
1197 	ASSERT(tep->te_ser_count == 0);
1198 	ASSERT(! (tep->te_flag & TL_ADDRHASHED));
1199 
1200 	if (IS_SOCKET(tep)) {
1201 		ASSERT(tep->te_alen == TL_SOUX_ADDRLEN);
1202 		ASSERT(tep->te_abuf == &tep->te_uxaddr);
1203 		ASSERT(tep->te_vp == (void *)(uintptr_t)tep->te_minor);
1204 		ASSERT(tep->te_magic == SOU_MAGIC_IMPLICIT);
1205 	} else if (tep->te_abuf != NULL) {
1206 		kmem_free(tep->te_abuf, tep->te_alen);
1207 		tep->te_alen = -1; /* uninitialized */
1208 		tep->te_abuf = NULL;
1209 	} else {
1210 		ASSERT(tep->te_alen == -1);
1211 	}
1212 
1213 	id_free(tl_minors, tep->te_minor);
1214 	ASSERT(tep->te_credp == NULL);
1215 
1216 	if (tep->te_hash_hndl != NULL)
1217 		mod_hash_cancel(tep->te_addrhash, &tep->te_hash_hndl);
1218 
1219 	if (IS_COTS(tep)) {
1220 		TL_REMOVE_PEER(tep->te_conp);
1221 		TL_REMOVE_PEER(tep->te_oconp);
1222 		tl_serializer_refrele(tep->te_ser);
1223 		tep->te_ser = NULL;
1224 		ASSERT(tep->te_nicon == 0);
1225 		ASSERT(list_head(&tep->te_iconp) == NULL);
1226 	} else {
1227 		ASSERT(tep->te_lastep == NULL);
1228 		ASSERT(list_head(&tep->te_flowlist) == NULL);
1229 		ASSERT(tep->te_flowq == NULL);
1230 	}
1231 
1232 	ASSERT(tep->te_bufcid == 0);
1233 	ASSERT(tep->te_timoutid == 0);
1234 	bzero(&tep->te_ap, sizeof (tep->te_ap));
1235 	tep->te_acceptor_id = 0;
1236 
1237 	ASSERT(tep->te_closewait == 0);
1238 	ASSERT(!tep->te_rsrv_active);
1239 	ASSERT(!tep->te_wsrv_active);
1240 	tep->te_closing = 0;
1241 	tep->te_nowsrv = B_FALSE;
1242 	tep->te_flag = 0;
1243 
1244 	kmem_cache_free(tl_cache, tep);
1245 }
1246 
1247 /*
1248  * Allocate/free reference-counted wrappers for serializers.
1249  */
1250 static tl_serializer_t *
1251 tl_serializer_alloc(int flags)
1252 {
1253 	tl_serializer_t *s = kmem_alloc(sizeof (tl_serializer_t), flags);
1254 	serializer_t *ser;
1255 
1256 	if (s == NULL)
1257 		return (NULL);
1258 
1259 	ser = serializer_create(flags);
1260 
1261 	if (ser == NULL) {
1262 		kmem_free(s, sizeof (tl_serializer_t));
1263 		return (NULL);
1264 	}
1265 
1266 	s->ts_refcnt = 1;
1267 	s->ts_serializer = ser;
1268 	return (s);
1269 }
1270 
1271 static void
1272 tl_serializer_refhold(tl_serializer_t *s)
1273 {
1274 	atomic_add_32(&s->ts_refcnt, 1);
1275 }
1276 
1277 static void
1278 tl_serializer_refrele(tl_serializer_t *s)
1279 {
1280 	if (atomic_add_32_nv(&s->ts_refcnt, -1) == 0) {
1281 		serializer_destroy(s->ts_serializer);
1282 		kmem_free(s, sizeof (tl_serializer_t));
1283 	}
1284 }
1285 
1286 /*
1287  * Post a request on the endpoint serializer. For COTS transports keep track of
1288  * the number of pending requests.
1289  */
1290 static void
1291 tl_serializer_enter(tl_endpt_t *tep, tlproc_t tlproc, mblk_t *mp)
1292 {
1293 	if (IS_COTS(tep)) {
1294 		mutex_enter(&tep->te_ser_lock);
1295 		tep->te_ser_count++;
1296 		mutex_exit(&tep->te_ser_lock);
1297 	}
1298 	serializer_enter(tep->te_serializer, (srproc_t *)tlproc, mp, tep);
1299 }
1300 
1301 /*
1302  * Complete processing the request on the serializer. Decrement the counter for
1303  * pending requests for COTS transports.
1304  */
1305 static void
1306 tl_serializer_exit(tl_endpt_t *tep)
1307 {
1308 	if (IS_COTS(tep)) {
1309 		mutex_enter(&tep->te_ser_lock);
1310 		ASSERT(tep->te_ser_count != 0);
1311 		tep->te_ser_count--;
1312 		mutex_exit(&tep->te_ser_lock);
1313 	}
1314 }
1315 
1316 /*
1317  * Hash management functions.
1318  */
1319 
1320 /*
1321  * Return TRUE if two addresses are equal, false otherwise.
1322  */
1323 static boolean_t
1324 tl_eqaddr(tl_addr_t *ap1, tl_addr_t *ap2)
1325 {
1326 	return ((ap1->ta_alen > 0) &&
1327 	    (ap1->ta_alen == ap2->ta_alen) &&
1328 	    (ap1->ta_zoneid == ap2->ta_zoneid) &&
1329 	    (bcmp(ap1->ta_abuf, ap2->ta_abuf, ap1->ta_alen) == 0));
1330 }
1331 
1332 /*
1333  * This function is called whenever an endpoint is found in the hash table.
1334  */
1335 /* ARGSUSED0 */
1336 static void
1337 tl_find_callback(mod_hash_key_t key, mod_hash_val_t val)
1338 {
1339 	tl_refhold((tl_endpt_t *)val);
1340 }
1341 
1342 /*
1343  * Address hash function.
1344  */
1345 /* ARGSUSED */
1346 static uint_t
1347 tl_hash_by_addr(void *hash_data, mod_hash_key_t key)
1348 {
1349 	tl_addr_t *ap = (tl_addr_t *)key;
1350 	size_t	len = ap->ta_alen;
1351 	uchar_t *p = ap->ta_abuf;
1352 	uint_t i, g;
1353 
1354 	ASSERT((len > 0) && (p != NULL));
1355 
1356 	for (i = ap->ta_zoneid; len -- != 0; p++) {
1357 		i = (i << 4) + (*p);
1358 		if ((g = (i & 0xf0000000U)) != 0) {
1359 			i ^= (g >> 24);
1360 			i ^= g;
1361 		}
1362 	}
1363 	return (i);
1364 }
1365 
1366 /*
1367  * This function is used by hash lookups. It compares two generic addresses.
1368  */
1369 static int
1370 tl_hash_cmp_addr(mod_hash_key_t key1, mod_hash_key_t key2)
1371 {
1372 #ifdef 	DEBUG
1373 	tl_addr_t *ap1 = (tl_addr_t *)key1;
1374 	tl_addr_t *ap2 = (tl_addr_t *)key2;
1375 
1376 	ASSERT(key1 != NULL);
1377 	ASSERT(key2 != NULL);
1378 
1379 	ASSERT(ap1->ta_abuf != NULL);
1380 	ASSERT(ap2->ta_abuf != NULL);
1381 	ASSERT(ap1->ta_alen > 0);
1382 	ASSERT(ap2->ta_alen > 0);
1383 #endif
1384 
1385 	return (! tl_eqaddr((tl_addr_t *)key1, (tl_addr_t *)key2));
1386 }
1387 
1388 /*
1389  * Prevent endpoint from closing if possible.
1390  * Return B_TRUE on success, B_FALSE on failure.
1391  */
1392 static boolean_t
1393 tl_noclose(tl_endpt_t *tep)
1394 {
1395 	boolean_t rc = B_FALSE;
1396 
1397 	mutex_enter(&tep->te_closelock);
1398 	if (! tep->te_closing) {
1399 		ASSERT(tep->te_closewait == 0);
1400 		tep->te_closewait++;
1401 		rc = B_TRUE;
1402 	}
1403 	mutex_exit(&tep->te_closelock);
1404 	return (rc);
1405 }
1406 
1407 /*
1408  * Allow endpoint to close if needed.
1409  */
1410 static void
1411 tl_closeok(tl_endpt_t *tep)
1412 {
1413 	ASSERT(tep->te_closewait > 0);
1414 	mutex_enter(&tep->te_closelock);
1415 	ASSERT(tep->te_closewait == 1);
1416 	tep->te_closewait--;
1417 	cv_signal(&tep->te_closecv);
1418 	mutex_exit(&tep->te_closelock);
1419 }
1420 
1421 /*
1422  * STREAMS open entry point.
1423  */
1424 /* ARGSUSED */
1425 static int
1426 tl_open(queue_t	*rq, dev_t *devp, int oflag, int sflag,	cred_t	*credp)
1427 {
1428 	tl_endpt_t *tep;
1429 	minor_t	    minor = getminor(*devp);
1430 
1431 	/*
1432 	 * Driver is called directly. Both CLONEOPEN and MODOPEN
1433 	 * are illegal
1434 	 */
1435 	if ((sflag == CLONEOPEN) || (sflag == MODOPEN))
1436 		return (ENXIO);
1437 
1438 	if (rq->q_ptr != NULL)
1439 		return (0);
1440 
1441 	/* Minor number should specify the mode used for the driver. */
1442 	if ((minor >= TL_UNUSED))
1443 		return (ENXIO);
1444 
1445 	if (oflag & SO_SOCKSTR) {
1446 		minor |= TL_SOCKET;
1447 	}
1448 
1449 	tep = kmem_cache_alloc(tl_cache, KM_SLEEP);
1450 	tep->te_refcnt = 1;
1451 	tep->te_cpid = curproc->p_pid;
1452 	rq->q_ptr = WR(rq)->q_ptr = tep;
1453 	tep->te_state = TS_UNBND;
1454 	tep->te_credp = credp;
1455 	crhold(credp);
1456 	tep->te_zoneid = getzoneid();
1457 
1458 	tep->te_flag = minor & TL_MINOR_MASK;
1459 	tep->te_transport = &tl_transports[minor];
1460 
1461 	/* Allocate a unique minor number for this instance. */
1462 	tep->te_minor = (minor_t)id_alloc(tl_minors);
1463 
1464 	/* Reserve hash handle for bind(). */
1465 	(void) mod_hash_reserve(tep->te_addrhash, &tep->te_hash_hndl);
1466 
1467 	/* Transport-specific initialization */
1468 	if (IS_COTS(tep)) {
1469 		/* Use private serializer */
1470 		tep->te_ser = tl_serializer_alloc(KM_SLEEP);
1471 
1472 		/* Create list for pending connections */
1473 		list_create(&tep->te_iconp, sizeof (tl_icon_t),
1474 		    offsetof(tl_icon_t, ti_node));
1475 		tep->te_qlen = 0;
1476 		tep->te_nicon = 0;
1477 		tep->te_oconp = NULL;
1478 		tep->te_conp = NULL;
1479 	} else {
1480 		/* Use shared serializer */
1481 		tep->te_ser = tep->te_transport->tr_serializer;
1482 		bzero(&tep->te_flows, sizeof (list_node_t));
1483 		/* Create list for flow control */
1484 		list_create(&tep->te_flowlist, sizeof (tl_endpt_t),
1485 		    offsetof(tl_endpt_t, te_flows));
1486 		tep->te_flowq = NULL;
1487 		tep->te_lastep = NULL;
1488 
1489 	}
1490 
1491 	/* Initialize endpoint address */
1492 	if (IS_SOCKET(tep)) {
1493 		/* Socket-specific address handling. */
1494 		tep->te_alen = TL_SOUX_ADDRLEN;
1495 		tep->te_abuf = &tep->te_uxaddr;
1496 		tep->te_vp = (void *)(uintptr_t)tep->te_minor;
1497 		tep->te_magic = SOU_MAGIC_IMPLICIT;
1498 	} else {
1499 		tep->te_alen = -1;
1500 		tep->te_abuf = NULL;
1501 	}
1502 
1503 	/* clone the driver */
1504 	*devp = makedevice(getmajor(*devp), tep->te_minor);
1505 
1506 	tep->te_rq = rq;
1507 	tep->te_wq = WR(rq);
1508 
1509 #ifdef	_ILP32
1510 	if (IS_SOCKET(tep))
1511 		tep->te_acceptor_id = tep->te_minor;
1512 	else
1513 		tep->te_acceptor_id = (t_uscalar_t)rq;
1514 #else
1515 	tep->te_acceptor_id = tep->te_minor;
1516 #endif	/* _ILP32 */
1517 
1518 
1519 	qprocson(rq);
1520 
1521 	/*
1522 	 * Insert acceptor ID in the hash. The AI hash always sleeps on
1523 	 * insertion so insertion can't fail.
1524 	 */
1525 	(void) mod_hash_insert(tep->te_transport->tr_ai_hash,
1526 	    (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id,
1527 	    (mod_hash_val_t)tep);
1528 
1529 	return (0);
1530 }
1531 
1532 /* ARGSUSED1 */
1533 static int
1534 tl_close(queue_t *rq, int flag,	cred_t *credp)
1535 {
1536 	tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr;
1537 	tl_endpt_t *elp = NULL;
1538 	queue_t *wq = tep->te_wq;
1539 	int rc;
1540 
1541 	ASSERT(wq == WR(rq));
1542 
1543 	/*
1544 	 * Remove the endpoint from acceptor hash.
1545 	 */
1546 	rc = mod_hash_remove(tep->te_transport->tr_ai_hash,
1547 	    (mod_hash_key_t)(uintptr_t)tep->te_acceptor_id,
1548 	    (mod_hash_val_t *)&elp);
1549 	ASSERT(rc == 0 && tep == elp);
1550 	if ((rc != 0) || (tep != elp)) {
1551 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
1552 			    SL_TRACE|SL_ERROR,
1553 			    "tl_close:inconsistency in AI hash"));
1554 	}
1555 
1556 	/*
1557 	 * Wait till close is safe, then mark endpoint as closing.
1558 	 */
1559 	mutex_enter(&tep->te_closelock);
1560 	while (tep->te_closewait)
1561 		cv_wait(&tep->te_closecv, &tep->te_closelock);
1562 	tep->te_closing = B_TRUE;
1563 	/*
1564 	 * Will wait for the serializer part of the close to finish, so set
1565 	 * te_closewait now.
1566 	 */
1567 	tep->te_closewait = 1;
1568 	tep->te_nowsrv = B_FALSE;
1569 	mutex_exit(&tep->te_closelock);
1570 
1571 	/*
1572 	 * tl_close_ser doesn't drop reference, so no need to tl_refhold.
1573 	 * It is safe because close will wait for tl_close_ser to finish.
1574 	 */
1575 	tl_serializer_enter(tep, tl_close_ser, &tep->te_closemp);
1576 
1577 	/*
1578 	 * Wait for the first phase of close to complete before qprocsoff().
1579 	 */
1580 	mutex_enter(&tep->te_closelock);
1581 	while (tep->te_closewait)
1582 		cv_wait(&tep->te_closecv, &tep->te_closelock);
1583 	mutex_exit(&tep->te_closelock);
1584 
1585 	qprocsoff(rq);
1586 
1587 	if (tep->te_bufcid) {
1588 		qunbufcall(rq, tep->te_bufcid);
1589 		tep->te_bufcid = 0;
1590 	}
1591 	if (tep->te_timoutid) {
1592 		(void) quntimeout(rq, tep->te_timoutid);
1593 		tep->te_timoutid = 0;
1594 	}
1595 
1596 	/*
1597 	 * Finish close behind serializer.
1598 	 *
1599 	 * For a CLTS endpoint increase a refcount and continue close processing
1600 	 * with serializer protection. This processing may happen asynchronously
1601 	 * with the completion of tl_close().
1602 	 *
1603 	 * Fot a COTS endpoint wait before destroying tep since the serializer
1604 	 * may go away together with tep and we need to destroy serializer
1605 	 * outside of serializer context.
1606 	 */
1607 	ASSERT(tep->te_closewait == 0);
1608 	if (IS_COTS(tep))
1609 		tep->te_closewait = 1;
1610 	else
1611 		tl_refhold(tep);
1612 
1613 	tl_serializer_enter(tep, tl_close_finish_ser, &tep->te_closemp);
1614 
1615 	/*
1616 	 * For connection-oriented transports wait for all serializer activity
1617 	 * to settle down.
1618 	 */
1619 	if (IS_COTS(tep)) {
1620 		mutex_enter(&tep->te_closelock);
1621 		while (tep->te_closewait)
1622 			cv_wait(&tep->te_closecv, &tep->te_closelock);
1623 		mutex_exit(&tep->te_closelock);
1624 	}
1625 
1626 	crfree(tep->te_credp);
1627 	tep->te_credp = NULL;
1628 	tep->te_wq = NULL;
1629 	tl_refrele(tep);
1630 	/*
1631 	 * tep is likely to be destroyed now, so can't reference it any more.
1632 	 */
1633 
1634 	rq->q_ptr = wq->q_ptr = NULL;
1635 	return (0);
1636 }
1637 
1638 /*
1639  * First phase of close processing done behind the serializer.
1640  *
1641  * Do not drop the reference in the end - tl_close() wants this reference to
1642  * stay.
1643  */
1644 /* ARGSUSED0 */
1645 static void
1646 tl_close_ser(mblk_t *mp, tl_endpt_t *tep)
1647 {
1648 	ASSERT(tep->te_closing);
1649 	ASSERT(tep->te_closewait == 1);
1650 	ASSERT(!(tep->te_flag & TL_CLOSE_SER));
1651 
1652 	tep->te_flag |= TL_CLOSE_SER;
1653 
1654 	/*
1655 	 * Drain out all messages on queue except for TL_TICOTS where the
1656 	 * abortive release semantics permit discarding of data on close
1657 	 */
1658 	if (tep->te_wq->q_first && (IS_CLTS(tep) || IS_COTSORD(tep))) {
1659 		tl_wsrv_ser(NULL, tep);
1660 	}
1661 
1662 	/* Remove address from hash table. */
1663 	tl_addr_unbind(tep);
1664 	/*
1665 	 * qprocsoff() gets confused when q->q_next is not NULL on the write
1666 	 * queue of the driver, so clear these before qprocsoff() is called.
1667 	 * Also clear q_next for the peer since this queue is going away.
1668 	 */
1669 	if (IS_COTS(tep) && !IS_SOCKET(tep)) {
1670 		tl_endpt_t *peer_tep = tep->te_conp;
1671 
1672 		tep->te_wq->q_next = NULL;
1673 		if ((peer_tep != NULL) && !peer_tep->te_closing)
1674 			peer_tep->te_wq->q_next = NULL;
1675 	}
1676 
1677 	tep->te_rq = NULL;
1678 
1679 	/* wake up tl_close() */
1680 	tl_closeok(tep);
1681 	tl_serializer_exit(tep);
1682 }
1683 
1684 /*
1685  * Second phase of tl_close(). Should wakeup tl_close() for COTS mode and drop
1686  * the reference for CLTS.
1687  *
1688  * Called from serializer. Should drop reference count for CLTS only.
1689  */
1690 /* ARGSUSED0 */
1691 static void
1692 tl_close_finish_ser(mblk_t *mp, tl_endpt_t *tep)
1693 {
1694 	ASSERT(tep->te_closing);
1695 	ASSERT(IMPLY(IS_CLTS(tep), tep->te_closewait == 0));
1696 	ASSERT(IMPLY(IS_COTS(tep), tep->te_closewait == 1));
1697 
1698 	tep->te_state = -1;	/* Uninitialized */
1699 	if (IS_COTS(tep)) {
1700 		tl_co_unconnect(tep);
1701 	} else {
1702 		/* Connectionless specific cleanup */
1703 		TL_REMOVE_PEER(tep->te_lastep);
1704 		/*
1705 		 * Backenable anybody that is flow controlled waiting for
1706 		 * this endpoint.
1707 		 */
1708 		tl_cl_backenable(tep);
1709 		if (tep->te_flowq != NULL) {
1710 			list_remove(&(tep->te_flowq->te_flowlist), tep);
1711 			tep->te_flowq = NULL;
1712 		}
1713 	}
1714 
1715 	tl_serializer_exit(tep);
1716 	if (IS_COTS(tep))
1717 		tl_closeok(tep);
1718 	else
1719 		tl_refrele(tep);
1720 }
1721 
1722 /*
1723  * STREAMS write-side put procedure.
1724  * Enter serializer for most of the processing.
1725  *
1726  * The T_CONN_REQ is processed outside of serializer.
1727  */
1728 static void
1729 tl_wput(queue_t *wq, mblk_t *mp)
1730 {
1731 	tl_endpt_t		*tep = (tl_endpt_t *)wq->q_ptr;
1732 	ssize_t			msz = MBLKL(mp);
1733 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
1734 	tlproc_t		*tl_proc = NULL;
1735 
1736 	switch (DB_TYPE(mp)) {
1737 	case M_DATA:
1738 		/* Only valid for connection-oriented transports */
1739 		if (IS_CLTS(tep)) {
1740 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1741 				SL_TRACE|SL_ERROR,
1742 				"tl_wput:M_DATA invalid for ticlts driver"));
1743 			tl_merror(wq, mp, EPROTO);
1744 			return;
1745 		}
1746 		tl_proc = tl_wput_data_ser;
1747 		break;
1748 
1749 	case M_IOCTL:
1750 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
1751 		case TL_IOC_CREDOPT:
1752 			/* FALLTHROUGH */
1753 		case TL_IOC_UCREDOPT:
1754 			/*
1755 			 * Serialize endpoint state change.
1756 			 */
1757 			tl_proc = tl_do_ioctl_ser;
1758 			break;
1759 
1760 		default:
1761 			miocnak(wq, mp, 0, EINVAL);
1762 			return;
1763 		}
1764 		break;
1765 
1766 	case M_FLUSH:
1767 		/*
1768 		 * do canonical M_FLUSH processing
1769 		 */
1770 		if (*mp->b_rptr & FLUSHW) {
1771 			flushq(wq, FLUSHALL);
1772 			*mp->b_rptr &= ~FLUSHW;
1773 		}
1774 		if (*mp->b_rptr & FLUSHR) {
1775 			flushq(RD(wq), FLUSHALL);
1776 			qreply(wq, mp);
1777 		} else {
1778 			freemsg(mp);
1779 		}
1780 		return;
1781 
1782 	case M_PROTO:
1783 		if (msz < sizeof (prim->type)) {
1784 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1785 				SL_TRACE|SL_ERROR,
1786 				"tl_wput:M_PROTO data too short"));
1787 			tl_merror(wq, mp, EPROTO);
1788 			return;
1789 		}
1790 		switch (prim->type) {
1791 		case T_OPTMGMT_REQ:
1792 		case T_SVR4_OPTMGMT_REQ:
1793 			/*
1794 			 * Process TPI option management requests immediately
1795 			 * in put procedure regardless of in-order processing
1796 			 * of already queued messages.
1797 			 * (Note: This driver supports AF_UNIX socket
1798 			 * implementation.  Unless we implement this processing,
1799 			 * setsockopt() on socket endpoint will block on flow
1800 			 * controlled endpoints which it should not. That is
1801 			 * required for successful execution of VSU socket tests
1802 			 * and is consistent with BSD socket behavior).
1803 			 */
1804 			tl_optmgmt(wq, mp);
1805 			return;
1806 		case O_T_BIND_REQ:
1807 		case T_BIND_REQ:
1808 			tl_proc = tl_bind_ser;
1809 			break;
1810 		case T_CONN_REQ:
1811 			if (IS_CLTS(tep)) {
1812 				tl_merror(wq, mp, EPROTO);
1813 				return;
1814 			}
1815 			tl_conn_req(wq, mp);
1816 			return;
1817 		case T_DATA_REQ:
1818 		case T_OPTDATA_REQ:
1819 		case T_EXDATA_REQ:
1820 		case T_ORDREL_REQ:
1821 			tl_proc = tl_putq_ser;
1822 			break;
1823 		case T_UNITDATA_REQ:
1824 			if (IS_COTS(tep) ||
1825 			    (msz < sizeof (struct T_unitdata_req))) {
1826 				tl_merror(wq, mp, EPROTO);
1827 				return;
1828 			}
1829 			if ((tep->te_state == TS_IDLE) && !wq->q_first) {
1830 				tl_proc = tl_unitdata_ser;
1831 			} else {
1832 				tl_proc = tl_putq_ser;
1833 			}
1834 			break;
1835 		default:
1836 			/*
1837 			 * process in service procedure if message already
1838 			 * queued (maintain in-order processing)
1839 			 */
1840 			if (wq->q_first != NULL) {
1841 				tl_proc = tl_putq_ser;
1842 			} else {
1843 				tl_proc = tl_wput_ser;
1844 			}
1845 			break;
1846 		}
1847 		break;
1848 
1849 	case M_PCPROTO:
1850 		/*
1851 		 * Check that the message has enough data to figure out TPI
1852 		 * primitive.
1853 		 */
1854 		if (msz < sizeof (prim->type)) {
1855 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1856 				SL_TRACE|SL_ERROR,
1857 				"tl_wput:M_PCROTO data too short"));
1858 			tl_merror(wq, mp, EPROTO);
1859 			return;
1860 		}
1861 		switch (prim->type) {
1862 		case T_CAPABILITY_REQ:
1863 			tl_capability_req(mp, tep);
1864 			return;
1865 		case T_INFO_REQ:
1866 			tl_proc = tl_info_req_ser;
1867 			break;
1868 		default:
1869 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
1870 				    SL_TRACE|SL_ERROR,
1871 				    "tl_wput:unknown TPI msg primitive"));
1872 			tl_merror(wq, mp, EPROTO);
1873 			return;
1874 		}
1875 		break;
1876 	default:
1877 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
1878 			"tl_wput:default:unexpected Streams message"));
1879 		freemsg(mp);
1880 		return;
1881 	}
1882 
1883 	/*
1884 	 * Continue processing via serializer.
1885 	 */
1886 	ASSERT(tl_proc != NULL);
1887 	tl_refhold(tep);
1888 	tl_serializer_enter(tep, tl_proc, mp);
1889 }
1890 
1891 /*
1892  * Place message on the queue while preserving order.
1893  */
1894 static void
1895 tl_putq_ser(mblk_t *mp, tl_endpt_t *tep)
1896 {
1897 	if (tep->te_closing) {
1898 		tl_wput_ser(mp, tep);
1899 	} else {
1900 		TL_PUTQ(tep, mp);
1901 		tl_serializer_exit(tep);
1902 		tl_refrele(tep);
1903 	}
1904 
1905 }
1906 
1907 static void
1908 tl_wput_common_ser(mblk_t *mp, tl_endpt_t *tep)
1909 {
1910 	ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO));
1911 
1912 	switch (DB_TYPE(mp)) {
1913 	case M_DATA:
1914 		tl_data(mp, tep);
1915 		break;
1916 	case M_PROTO:
1917 		tl_do_proto(mp, tep);
1918 		break;
1919 	default:
1920 		freemsg(mp);
1921 		break;
1922 	}
1923 }
1924 
1925 /*
1926  * Write side put procedure called from serializer.
1927  */
1928 static void
1929 tl_wput_ser(mblk_t *mp, tl_endpt_t *tep)
1930 {
1931 	tl_wput_common_ser(mp, tep);
1932 	tl_serializer_exit(tep);
1933 	tl_refrele(tep);
1934 }
1935 
1936 /*
1937  * M_DATA processing. Called from serializer.
1938  */
1939 static void
1940 tl_wput_data_ser(mblk_t *mp, tl_endpt_t *tep)
1941 {
1942 	tl_endpt_t	*peer_tep = tep->te_conp;
1943 	queue_t		*peer_rq;
1944 
1945 	ASSERT(DB_TYPE(mp) == M_DATA);
1946 	ASSERT(IS_COTS(tep));
1947 
1948 	ASSERT(IMPLY(peer_tep, tep->te_serializer == peer_tep->te_serializer));
1949 
1950 	/*
1951 	 * fastpath for data. Ignore flow control if tep is closing.
1952 	 */
1953 	if ((peer_tep != NULL) &&
1954 	    !peer_tep->te_closing &&
1955 	    ((tep->te_state == TS_DATA_XFER) ||
1956 		(tep->te_state == TS_WREQ_ORDREL)) &&
1957 	    (tep->te_wq != NULL) &&
1958 	    (tep->te_wq->q_first == NULL) &&
1959 	    ((peer_tep->te_state == TS_DATA_XFER) ||
1960 		(peer_tep->te_state == TS_WREQ_ORDREL))	&&
1961 	    ((peer_rq = peer_tep->te_rq) != NULL) &&
1962 	    (canputnext(peer_rq) || tep->te_closing)) {
1963 		putnext(peer_rq, mp);
1964 	} else if (tep->te_closing) {
1965 		/*
1966 		 * It is possible that by the time we got here tep started to
1967 		 * close. If the write queue is not empty, and the state is
1968 		 * TS_DATA_XFER the data should be delivered in order, so we
1969 		 * call putq() instead of freeing the data.
1970 		 */
1971 		if ((tep->te_wq != NULL) &&
1972 		    ((tep->te_state == TS_DATA_XFER) ||
1973 			(tep->te_state == TS_WREQ_ORDREL))) {
1974 			TL_PUTQ(tep, mp);
1975 		} else {
1976 			freemsg(mp);
1977 		}
1978 	} else {
1979 		TL_PUTQ(tep, mp);
1980 	}
1981 
1982 	tl_serializer_exit(tep);
1983 	tl_refrele(tep);
1984 }
1985 
1986 /*
1987  * Write side service routine.
1988  *
1989  * All actual processing happens within serializer which is entered
1990  * synchronously. It is possible that by the time tl_wsrv() wakes up, some new
1991  * messages that need processing may have arrived, so tl_wsrv repeats until
1992  * queue is empty or te_nowsrv is set.
1993  */
1994 static void
1995 tl_wsrv(queue_t *wq)
1996 {
1997 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
1998 
1999 	while ((wq->q_first != NULL) && !tep->te_nowsrv) {
2000 		mutex_enter(&tep->te_srv_lock);
2001 		ASSERT(tep->te_wsrv_active == B_FALSE);
2002 		tep->te_wsrv_active = B_TRUE;
2003 		mutex_exit(&tep->te_srv_lock);
2004 
2005 		tl_serializer_enter(tep, tl_wsrv_ser, &tep->te_wsrvmp);
2006 
2007 		/*
2008 		 * Wait for serializer job to complete.
2009 		 */
2010 		mutex_enter(&tep->te_srv_lock);
2011 		while (tep->te_wsrv_active) {
2012 			cv_wait(&tep->te_srv_cv, &tep->te_srv_lock);
2013 		}
2014 		cv_signal(&tep->te_srv_cv);
2015 		mutex_exit(&tep->te_srv_lock);
2016 	}
2017 }
2018 
2019 /*
2020  * Serialized write side processing of the STREAMS queue.
2021  * May be called either from tl_wsrv() or from tl_close() in which case ser_mp
2022  * is NULL.
2023  */
2024 static void
2025 tl_wsrv_ser(mblk_t *ser_mp, tl_endpt_t *tep)
2026 {
2027 	mblk_t *mp;
2028 	queue_t *wq = tep->te_wq;
2029 
2030 	ASSERT(wq != NULL);
2031 	while (!tep->te_nowsrv && (mp = getq(wq)) != NULL) {
2032 		tl_wput_common_ser(mp, tep);
2033 	}
2034 
2035 	/*
2036 	 * Wakeup service routine unless called from close.
2037 	 * If ser_mp is specified, the caller is tl_wsrv().
2038 	 * Otherwise, the caller is tl_close_ser(). Since tl_close_ser() doesn't
2039 	 * call tl_serializer_enter() before calling tl_wsrv_ser(), there should
2040 	 * be no matching tl_serializer_exit() in this case.
2041 	 * Also, there is no need to wakeup anyone since tl_close_ser() is not
2042 	 * waiting on te_srv_cv.
2043 	 */
2044 	if (ser_mp != NULL) {
2045 		/*
2046 		 * We are called from tl_wsrv.
2047 		 */
2048 		mutex_enter(&tep->te_srv_lock);
2049 		ASSERT(tep->te_wsrv_active);
2050 		tep->te_wsrv_active = B_FALSE;
2051 		cv_signal(&tep->te_srv_cv);
2052 		mutex_exit(&tep->te_srv_lock);
2053 		tl_serializer_exit(tep);
2054 	}
2055 }
2056 
2057 /*
2058  * Called when the stream is backenabled. Enter serializer and qenable everyone
2059  * flow controlled by tep.
2060  *
2061  * NOTE: The service routine should enter serializer synchronously. Otherwise it
2062  * is possible that two instances of tl_rsrv will be running reusing the same
2063  * rsrv mblk.
2064  */
2065 static void
2066 tl_rsrv(queue_t *rq)
2067 {
2068 	tl_endpt_t *tep = (tl_endpt_t *)rq->q_ptr;
2069 
2070 	ASSERT(rq->q_first == NULL);
2071 	ASSERT(tep->te_rsrv_active == 0);
2072 
2073 	tep->te_rsrv_active = B_TRUE;
2074 	tl_serializer_enter(tep, tl_rsrv_ser, &tep->te_rsrvmp);
2075 	/*
2076 	 * Wait for serializer job to complete.
2077 	 */
2078 	mutex_enter(&tep->te_srv_lock);
2079 	while (tep->te_rsrv_active) {
2080 		cv_wait(&tep->te_srv_cv, &tep->te_srv_lock);
2081 	}
2082 	cv_signal(&tep->te_srv_cv);
2083 	mutex_exit(&tep->te_srv_lock);
2084 }
2085 
2086 /* ARGSUSED */
2087 static void
2088 tl_rsrv_ser(mblk_t *mp, tl_endpt_t *tep)
2089 {
2090 	tl_endpt_t *peer_tep;
2091 
2092 	if (IS_CLTS(tep) && tep->te_state == TS_IDLE) {
2093 		tl_cl_backenable(tep);
2094 	} else if (
2095 		IS_COTS(tep) &&
2096 		    ((peer_tep = tep->te_conp) != NULL) &&
2097 		    !peer_tep->te_closing &&
2098 		    ((tep->te_state == TS_DATA_XFER) ||
2099 			(tep->te_state == TS_WIND_ORDREL)||
2100 			(tep->te_state == TS_WREQ_ORDREL))) {
2101 		TL_QENABLE(peer_tep);
2102 	}
2103 
2104 	/*
2105 	 * Wakeup read side service routine.
2106 	 */
2107 	mutex_enter(&tep->te_srv_lock);
2108 	ASSERT(tep->te_rsrv_active);
2109 	tep->te_rsrv_active = B_FALSE;
2110 	cv_signal(&tep->te_srv_cv);
2111 	mutex_exit(&tep->te_srv_lock);
2112 	tl_serializer_exit(tep);
2113 }
2114 
2115 /*
2116  * process M_PROTO messages. Always called from serializer.
2117  */
2118 static void
2119 tl_do_proto(mblk_t *mp, tl_endpt_t *tep)
2120 {
2121 	ssize_t			msz = MBLKL(mp);
2122 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
2123 
2124 	/* Message size was validated by tl_wput(). */
2125 	ASSERT(msz >= sizeof (prim->type));
2126 
2127 	switch (prim->type) {
2128 	case T_UNBIND_REQ:
2129 		tl_unbind(mp, tep);
2130 		break;
2131 
2132 	case T_ADDR_REQ:
2133 		tl_addr_req(mp, tep);
2134 		break;
2135 
2136 	case O_T_CONN_RES:
2137 	case T_CONN_RES:
2138 		if (IS_CLTS(tep)) {
2139 			tl_merror(tep->te_wq, mp, EPROTO);
2140 			break;
2141 		}
2142 		tl_conn_res(mp, tep);
2143 		break;
2144 
2145 	case T_DISCON_REQ:
2146 		if (IS_CLTS(tep)) {
2147 			tl_merror(tep->te_wq, mp, EPROTO);
2148 			break;
2149 		}
2150 		tl_discon_req(mp, tep);
2151 		break;
2152 
2153 	case T_DATA_REQ:
2154 		if (IS_CLTS(tep)) {
2155 			tl_merror(tep->te_wq, mp, EPROTO);
2156 			break;
2157 		}
2158 		tl_data(mp, tep);
2159 		break;
2160 
2161 	case T_OPTDATA_REQ:
2162 		if (IS_CLTS(tep)) {
2163 			tl_merror(tep->te_wq, mp, EPROTO);
2164 			break;
2165 		}
2166 		tl_data(mp, tep);
2167 		break;
2168 
2169 	case T_EXDATA_REQ:
2170 		if (IS_CLTS(tep)) {
2171 			tl_merror(tep->te_wq, mp, EPROTO);
2172 			break;
2173 		}
2174 		tl_exdata(mp, tep);
2175 		break;
2176 
2177 	case T_ORDREL_REQ:
2178 		if (! IS_COTSORD(tep)) {
2179 			tl_merror(tep->te_wq, mp, EPROTO);
2180 			break;
2181 		}
2182 		tl_ordrel(mp, tep);
2183 		break;
2184 
2185 	case T_UNITDATA_REQ:
2186 		if (IS_COTS(tep)) {
2187 			tl_merror(tep->te_wq, mp, EPROTO);
2188 			break;
2189 		}
2190 		tl_unitdata(mp, tep);
2191 		break;
2192 
2193 	default:
2194 		tl_merror(tep->te_wq, mp, EPROTO);
2195 		break;
2196 	}
2197 }
2198 
2199 /*
2200  * Process ioctl from serializer.
2201  * This is a wrapper around tl_do_ioctl().
2202  */
2203 static void
2204 tl_do_ioctl_ser(mblk_t *mp, tl_endpt_t *tep)
2205 {
2206 	if (! tep->te_closing)
2207 		tl_do_ioctl(mp, tep);
2208 	else
2209 		freemsg(mp);
2210 
2211 	tl_serializer_exit(tep);
2212 	tl_refrele(tep);
2213 }
2214 
2215 static void
2216 tl_do_ioctl(mblk_t *mp, tl_endpt_t *tep)
2217 {
2218 	struct iocblk *iocbp = (struct iocblk *)mp->b_rptr;
2219 	int cmd = iocbp->ioc_cmd;
2220 	queue_t *wq = tep->te_wq;
2221 	int error;
2222 	int thisopt, otheropt;
2223 
2224 	ASSERT((cmd == TL_IOC_CREDOPT) || (cmd == TL_IOC_UCREDOPT));
2225 
2226 	switch (cmd) {
2227 	case TL_IOC_CREDOPT:
2228 		if (cmd == TL_IOC_CREDOPT) {
2229 			thisopt = TL_SETCRED;
2230 			otheropt = TL_SETUCRED;
2231 		} else {
2232 			/* FALLTHROUGH */
2233 	case TL_IOC_UCREDOPT:
2234 			thisopt = TL_SETUCRED;
2235 			otheropt = TL_SETCRED;
2236 		}
2237 		/*
2238 		 * The credentials passing does not apply to sockets.
2239 		 * Only one of the cred options can be set at a given time.
2240 		 */
2241 		if (IS_SOCKET(tep) || (tep->te_flag & otheropt)) {
2242 			miocnak(wq, mp, 0, EINVAL);
2243 			return;
2244 		}
2245 
2246 		/*
2247 		 * Turn on generation of credential options for
2248 		 * T_conn_req, T_conn_con, T_unidata_ind.
2249 		 */
2250 		error = miocpullup(mp, sizeof (uint32_t));
2251 		if (error != 0) {
2252 			miocnak(wq, mp, 0, error);
2253 			return;
2254 		}
2255 		if (!IS_P2ALIGNED(mp->b_cont->b_rptr, sizeof (uint32_t))) {
2256 			miocnak(wq, mp, 0, EINVAL);
2257 			return;
2258 		}
2259 
2260 		if (*(uint32_t *)mp->b_cont->b_rptr)
2261 			tep->te_flag |= thisopt;
2262 		else
2263 			tep->te_flag &= ~thisopt;
2264 
2265 		miocack(wq, mp, 0, 0);
2266 		break;
2267 
2268 	default:
2269 		/* Should not be here */
2270 		miocnak(wq, mp, 0, EINVAL);
2271 		break;
2272 	}
2273 }
2274 
2275 
2276 /*
2277  * send T_ERROR_ACK
2278  * Note: assumes enough memory or caller passed big enough mp
2279  *	- no recovery from allocb failures
2280  */
2281 
2282 static void
2283 tl_error_ack(queue_t *wq, mblk_t *mp, t_scalar_t tli_err,
2284     t_scalar_t unix_err, t_scalar_t type)
2285 {
2286 	struct T_error_ack *err_ack;
2287 	mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2288 	    M_PCPROTO, T_ERROR_ACK);
2289 
2290 	if (ackmp == NULL) {
2291 		(void) (STRLOG(TL_ID, 0, 1, SL_TRACE|SL_ERROR,
2292 			    "tl_error_ack:out of mblk memory"));
2293 		tl_merror(wq, NULL, ENOSR);
2294 		return;
2295 	}
2296 	err_ack = (struct T_error_ack *)ackmp->b_rptr;
2297 	err_ack->ERROR_prim = type;
2298 	err_ack->TLI_error = tli_err;
2299 	err_ack->UNIX_error = unix_err;
2300 
2301 	/*
2302 	 * send error ack message
2303 	 */
2304 	qreply(wq, ackmp);
2305 }
2306 
2307 
2308 
2309 /*
2310  * send T_OK_ACK
2311  * Note: assumes enough memory or caller passed big enough mp
2312  *	- no recovery from allocb failures
2313  */
2314 static void
2315 tl_ok_ack(queue_t *wq, mblk_t *mp, t_scalar_t type)
2316 {
2317 	struct T_ok_ack *ok_ack;
2318 	mblk_t *ackmp = tpi_ack_alloc(mp, sizeof (struct T_ok_ack),
2319 	    M_PCPROTO, T_OK_ACK);
2320 
2321 	if (ackmp == NULL) {
2322 		tl_merror(wq, NULL, ENOMEM);
2323 		return;
2324 	}
2325 
2326 	ok_ack = (struct T_ok_ack *)ackmp->b_rptr;
2327 	ok_ack->CORRECT_prim = type;
2328 
2329 	(void) qreply(wq, ackmp);
2330 }
2331 
2332 /*
2333  * Process T_BIND_REQ and O_T_BIND_REQ from serializer.
2334  * This is a wrapper around tl_bind().
2335  */
2336 static void
2337 tl_bind_ser(mblk_t *mp, tl_endpt_t *tep)
2338 {
2339 	if (! tep->te_closing)
2340 		tl_bind(mp, tep);
2341 	else
2342 		freemsg(mp);
2343 
2344 	tl_serializer_exit(tep);
2345 	tl_refrele(tep);
2346 }
2347 
2348 /*
2349  * Process T_BIND_REQ and O_T_BIND_REQ TPI requests.
2350  * Assumes that the endpoint is in the unbound.
2351  */
2352 static void
2353 tl_bind(mblk_t *mp, tl_endpt_t *tep)
2354 {
2355 	queue_t			*wq = tep->te_wq;
2356 	struct T_bind_ack	*b_ack;
2357 	struct T_bind_req	*bind = (struct T_bind_req *)mp->b_rptr;
2358 	mblk_t			*ackmp, *bamp;
2359 	soux_addr_t		ux_addr;
2360 	t_uscalar_t		qlen = 0;
2361 	t_scalar_t		alen, aoff;
2362 	tl_addr_t		addr_req;
2363 	void			*addr_startp;
2364 	ssize_t			msz = MBLKL(mp), basize;
2365 	t_scalar_t		tli_err = 0, unix_err = 0;
2366 	t_scalar_t		save_prim_type = bind->PRIM_type;
2367 	t_scalar_t		save_state = tep->te_state;
2368 
2369 	if (tep->te_state != TS_UNBND) {
2370 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2371 			SL_TRACE|SL_ERROR,
2372 			"tl_wput:bind_request:out of state, state=%d",
2373 			tep->te_state));
2374 		tli_err = TOUTSTATE;
2375 		goto error;
2376 	}
2377 
2378 	if (msz < sizeof (struct T_bind_req)) {
2379 		tli_err = TSYSERR; unix_err = EINVAL;
2380 		goto error;
2381 	}
2382 
2383 	tep->te_state = NEXTSTATE(TE_BIND_REQ, tep->te_state);
2384 
2385 	ASSERT((bind->PRIM_type == O_T_BIND_REQ) ||
2386 	    (bind->PRIM_type == T_BIND_REQ));
2387 
2388 	alen = bind->ADDR_length;
2389 	aoff = bind->ADDR_offset;
2390 
2391 	/* negotiate max conn req pending */
2392 	if (IS_COTS(tep)) {
2393 		qlen = bind->CONIND_number;
2394 		if (qlen > TL_MAXQLEN)
2395 			qlen = TL_MAXQLEN;
2396 	}
2397 
2398 	/*
2399 	 * Reserve hash handle. It can only be NULL if the endpoint is unbound
2400 	 * and bound again.
2401 	 */
2402 	if ((tep->te_hash_hndl == NULL) &&
2403 	    ((tep->te_flag & TL_ADDRHASHED) == 0) &&
2404 	    mod_hash_reserve_nosleep(tep->te_addrhash,
2405 		&tep->te_hash_hndl) != 0) {
2406 		tli_err = TSYSERR; unix_err = ENOSR;
2407 		goto error;
2408 	}
2409 
2410 	/*
2411 	 * Verify address correctness.
2412 	 */
2413 	if (IS_SOCKET(tep)) {
2414 		ASSERT(bind->PRIM_type == O_T_BIND_REQ);
2415 
2416 		if ((alen != TL_SOUX_ADDRLEN) ||
2417 		    (aoff < 0) ||
2418 		    (aoff + alen > msz)) {
2419 			(void) (STRLOG(TL_ID, tep->te_minor,
2420 				    1, SL_TRACE|SL_ERROR,
2421 				    "tl_bind: invalid socket addr"));
2422 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2423 			tli_err = TSYSERR; unix_err = EINVAL;
2424 			goto error;
2425 		}
2426 		/* Copy address from message to local buffer. */
2427 		bcopy(mp->b_rptr + aoff, &ux_addr, sizeof (ux_addr));
2428 		/*
2429 		 * Check that we got correct address from sockets
2430 		 */
2431 		if ((ux_addr.soua_magic != SOU_MAGIC_EXPLICIT) &&
2432 		    (ux_addr.soua_magic != SOU_MAGIC_IMPLICIT)) {
2433 			(void) (STRLOG(TL_ID, tep->te_minor,
2434 				    1, SL_TRACE|SL_ERROR,
2435 				    "tl_bind: invalid socket magic"));
2436 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2437 			tli_err = TSYSERR; unix_err = EINVAL;
2438 			goto error;
2439 		}
2440 		if ((ux_addr.soua_magic == SOU_MAGIC_IMPLICIT) &&
2441 		    (ux_addr.soua_vp != NULL)) {
2442 			(void) (STRLOG(TL_ID, tep->te_minor,
2443 				    1, SL_TRACE|SL_ERROR,
2444 				    "tl_bind: implicit addr non-empty"));
2445 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2446 			tli_err = TSYSERR; unix_err = EINVAL;
2447 			goto error;
2448 		}
2449 		if ((ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) &&
2450 		    (ux_addr.soua_vp == NULL)) {
2451 			(void) (STRLOG(TL_ID, tep->te_minor,
2452 				    1, SL_TRACE|SL_ERROR,
2453 				    "tl_bind: explicit addr empty"));
2454 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2455 			tli_err = TSYSERR; unix_err = EINVAL;
2456 			goto error;
2457 		}
2458 	} else {
2459 		if ((alen > 0) && ((aoff < 0) ||
2460 			((ssize_t)(aoff + alen) > msz) ||
2461 			((aoff + alen) < 0))) {
2462 			(void) (STRLOG(TL_ID, tep->te_minor,
2463 				    1, SL_TRACE|SL_ERROR,
2464 				    "tl_bind: invalid message"));
2465 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2466 			tli_err = TSYSERR; unix_err = EINVAL;
2467 			goto error;
2468 		}
2469 		if ((alen < 0) || (alen > (msz - sizeof (struct T_bind_req)))) {
2470 			(void) (STRLOG(TL_ID, tep->te_minor,
2471 				    1, SL_TRACE|SL_ERROR,
2472 				    "tl_bind: bad addr in  message"));
2473 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2474 			tli_err = TBADADDR;
2475 			goto error;
2476 		}
2477 #ifdef DEBUG
2478 		/*
2479 		 * Mild form of ASSERT()ion to detect broken TPI apps.
2480 		 * if (! assertion)
2481 		 *	log warning;
2482 		 */
2483 		if (! ((alen == 0 && aoff == 0) ||
2484 			(aoff >= (t_scalar_t)(sizeof (struct T_bind_req))))) {
2485 			(void) (STRLOG(TL_ID, tep->te_minor,
2486 				    3, SL_TRACE|SL_ERROR,
2487 				    "tl_bind: addr overlaps TPI message"));
2488 		}
2489 #endif
2490 	}
2491 
2492 	/*
2493 	 * Bind the address provided or allocate one if requested.
2494 	 * Allow rebinds with a new qlen value.
2495 	 */
2496 	if (IS_SOCKET(tep)) {
2497 		/*
2498 		 * For anonymous requests the te_ap is already set up properly
2499 		 * so use minor number as an address.
2500 		 * For explicit requests need to check whether the address is
2501 		 * already in use.
2502 		 */
2503 		if (ux_addr.soua_magic == SOU_MAGIC_EXPLICIT) {
2504 			int rc;
2505 
2506 			if (tep->te_flag & TL_ADDRHASHED) {
2507 				ASSERT(IS_COTS(tep) && tep->te_qlen == 0);
2508 				if (tep->te_vp == ux_addr.soua_vp)
2509 					goto skip_addr_bind;
2510 				else /* Rebind to a new address. */
2511 					tl_addr_unbind(tep);
2512 			}
2513 			/*
2514 			 * Insert address in the hash if it is not already
2515 			 * there.  Since we use preallocated handle, the insert
2516 			 * can fail only if the key is already present.
2517 			 */
2518 			rc = mod_hash_insert_reserve(tep->te_addrhash,
2519 			    (mod_hash_key_t)ux_addr.soua_vp,
2520 			    (mod_hash_val_t)tep, tep->te_hash_hndl);
2521 
2522 			if (rc != 0) {
2523 				ASSERT(rc == MH_ERR_DUPLICATE);
2524 				/*
2525 				 * Violate O_T_BIND_REQ semantics and fail with
2526 				 * TADDRBUSY - sockets will not use any address
2527 				 * other than supplied one for explicit binds.
2528 				 */
2529 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2530 					SL_TRACE|SL_ERROR,
2531 					"tl_bind:requested addr %p is busy",
2532 					    ux_addr.soua_vp));
2533 				tli_err = TADDRBUSY; unix_err = 0;
2534 				goto error;
2535 			}
2536 			tep->te_uxaddr = ux_addr;
2537 			tep->te_flag |= TL_ADDRHASHED;
2538 			tep->te_hash_hndl = NULL;
2539 		}
2540 	} else if (alen == 0) {
2541 		/*
2542 		 * assign any free address
2543 		 */
2544 		if (! tl_get_any_addr(tep, NULL)) {
2545 			(void) (STRLOG(TL_ID, tep->te_minor,
2546 				1, SL_TRACE|SL_ERROR,
2547 				"tl_bind:failed to get buffer for any "
2548 				"address"));
2549 			tli_err = TSYSERR; unix_err = ENOSR;
2550 			goto error;
2551 		}
2552 	} else {
2553 		addr_req.ta_alen = alen;
2554 		addr_req.ta_abuf = (mp->b_rptr + aoff);
2555 		addr_req.ta_zoneid = tep->te_zoneid;
2556 
2557 		tep->te_abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP);
2558 		if (tep->te_abuf == NULL) {
2559 			tli_err = TSYSERR; unix_err = ENOSR;
2560 			goto error;
2561 		}
2562 		bcopy(addr_req.ta_abuf, tep->te_abuf, addr_req.ta_alen);
2563 		tep->te_alen = alen;
2564 
2565 		if (mod_hash_insert_reserve(tep->te_addrhash,
2566 			(mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep,
2567 			tep->te_hash_hndl) != 0) {
2568 			if (save_prim_type == T_BIND_REQ) {
2569 				/*
2570 				 * The bind semantics for this primitive
2571 				 * require a failure if the exact address
2572 				 * requested is busy
2573 				 */
2574 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2575 					SL_TRACE|SL_ERROR,
2576 					"tl_bind:requested addr is busy"));
2577 				tli_err = TADDRBUSY; unix_err = 0;
2578 				goto error;
2579 			}
2580 
2581 			/*
2582 			 * O_T_BIND_REQ semantics say if address if requested
2583 			 * address is busy, bind to any available free address
2584 			 */
2585 			if (! tl_get_any_addr(tep, &addr_req)) {
2586 				(void) (STRLOG(TL_ID, tep->te_minor, 1,
2587 					SL_TRACE|SL_ERROR,
2588 					"tl_bind:unable to get any addr buf"));
2589 				tli_err = TSYSERR; unix_err = ENOMEM;
2590 				goto error;
2591 			}
2592 		} else {
2593 			tep->te_flag |= TL_ADDRHASHED;
2594 			tep->te_hash_hndl = NULL;
2595 		}
2596 	}
2597 
2598 	ASSERT(tep->te_alen >= 0);
2599 
2600 skip_addr_bind:
2601 	/*
2602 	 * prepare T_BIND_ACK TPI message
2603 	 */
2604 	basize = sizeof (struct T_bind_ack) + tep->te_alen;
2605 	bamp = reallocb(mp, basize, 0);
2606 	if (bamp == NULL) {
2607 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2608 			"tl_wput:tl_bind: allocb failed"));
2609 		/*
2610 		 * roll back state changes
2611 		 */
2612 		tl_addr_unbind(tep);
2613 		tep->te_state = TS_UNBND;
2614 		tl_memrecover(wq, mp, basize);
2615 		return;
2616 	}
2617 
2618 	DB_TYPE(bamp) = M_PCPROTO;
2619 	bamp->b_wptr = bamp->b_rptr + basize;
2620 	b_ack = (struct T_bind_ack *)bamp->b_rptr;
2621 	b_ack->PRIM_type = T_BIND_ACK;
2622 	b_ack->CONIND_number = qlen;
2623 	b_ack->ADDR_length = tep->te_alen;
2624 	b_ack->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_ack);
2625 	addr_startp = bamp->b_rptr + b_ack->ADDR_offset;
2626 	bcopy(tep->te_abuf, addr_startp, tep->te_alen);
2627 
2628 	if (IS_COTS(tep)) {
2629 		tep->te_qlen = qlen;
2630 		if (qlen > 0)
2631 			tep->te_flag |= TL_LISTENER;
2632 	}
2633 
2634 	tep->te_state = NEXTSTATE(TE_BIND_ACK, tep->te_state);
2635 	/*
2636 	 * send T_BIND_ACK message
2637 	 */
2638 	(void) qreply(wq, bamp);
2639 	return;
2640 
2641 error:
2642 	ackmp = reallocb(mp, sizeof (struct T_error_ack), 0);
2643 	if (ackmp == NULL) {
2644 		/*
2645 		 * roll back state changes
2646 		 */
2647 		tep->te_state = save_state;
2648 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2649 		return;
2650 	}
2651 	tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
2652 	tl_error_ack(wq, ackmp, tli_err, unix_err, save_prim_type);
2653 }
2654 
2655 /*
2656  * Process T_UNBIND_REQ.
2657  * Called from serializer.
2658  */
2659 static void
2660 tl_unbind(mblk_t *mp, tl_endpt_t *tep)
2661 {
2662 	queue_t *wq;
2663 	mblk_t *ackmp;
2664 
2665 	if (tep->te_closing) {
2666 		freemsg(mp);
2667 		return;
2668 	}
2669 
2670 	wq = tep->te_wq;
2671 
2672 	/*
2673 	 * preallocate memory for max of T_OK_ACK and T_ERROR_ACK
2674 	 * ==> allocate for T_ERROR_ACK (known max)
2675 	 */
2676 	if ((ackmp = reallocb(mp, sizeof (struct T_error_ack), 0)) == NULL) {
2677 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2678 		return;
2679 	}
2680 	/*
2681 	 * memory resources committed
2682 	 * Note: no message validation. T_UNBIND_REQ message is
2683 	 * same size as PRIM_type field so already verified earlier.
2684 	 */
2685 
2686 	/*
2687 	 * validate state
2688 	 */
2689 	if (tep->te_state != TS_IDLE) {
2690 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2691 			SL_TRACE|SL_ERROR,
2692 			"tl_wput:T_UNBIND_REQ:out of state, state=%d",
2693 			tep->te_state));
2694 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_UNBIND_REQ);
2695 		return;
2696 	}
2697 	tep->te_state = NEXTSTATE(TE_UNBIND_REQ, tep->te_state);
2698 
2699 	/*
2700 	 * TPI says on T_UNBIND_REQ:
2701 	 *    send up a M_FLUSH to flush both
2702 	 *    read and write queues
2703 	 */
2704 	(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
2705 
2706 	if (! IS_SOCKET(tep) || !IS_CLTS(tep) || tep->te_qlen != 0 ||
2707 	    tep->te_magic != SOU_MAGIC_EXPLICIT) {
2708 
2709 		/*
2710 		 * Sockets use bind with qlen==0 followed by bind() to
2711 		 * the same address with qlen > 0 for listeners.
2712 		 * We allow rebind with a new qlen value.
2713 		 */
2714 		tl_addr_unbind(tep);
2715 	}
2716 
2717 	tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state);
2718 	/*
2719 	 * send  T_OK_ACK
2720 	 */
2721 	tl_ok_ack(wq, ackmp, T_UNBIND_REQ);
2722 }
2723 
2724 
2725 /*
2726  * Option management code from drv/ip is used here
2727  * Note: TL_PROT_LEVEL/TL_IOC_CREDOPT option is not part of tl_opt_arr
2728  *	database of options. So optcom_req() will fail T_SVR4_OPTMGMT_REQ.
2729  *	However, that is what we want as that option is 'unorthodox'
2730  *	and only valid in T_CONN_IND, T_CONN_CON  and T_UNITDATA_IND
2731  *	and not in T_SVR4_OPTMGMT_REQ/ACK
2732  * Note2: use of optcom_req means this routine is an exception to
2733  *	 recovery from allocb() failures.
2734  */
2735 
2736 static void
2737 tl_optmgmt(queue_t *wq, mblk_t *mp)
2738 {
2739 	tl_endpt_t *tep;
2740 	mblk_t *ackmp;
2741 	union T_primitives *prim;
2742 
2743 	tep = (tl_endpt_t *)wq->q_ptr;
2744 	prim = (union T_primitives *)mp->b_rptr;
2745 
2746 	/*  all states OK for AF_UNIX options ? */
2747 	if (!IS_SOCKET(tep) && tep->te_state != TS_IDLE &&
2748 	    prim->type == T_SVR4_OPTMGMT_REQ) {
2749 		/*
2750 		 * Broken TLI semantics that options can only be managed
2751 		 * in TS_IDLE state. Needed for Sparc ABI test suite that
2752 		 * tests this TLI (mis)feature using this device driver.
2753 		 */
2754 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2755 			SL_TRACE|SL_ERROR,
2756 			"tl_wput:T_SVR4_OPTMGMT_REQ:out of state, state=%d",
2757 			tep->te_state));
2758 		/*
2759 		 * preallocate memory for T_ERROR_ACK
2760 		 */
2761 		ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
2762 		if (! ackmp) {
2763 			tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2764 			return;
2765 		}
2766 
2767 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_SVR4_OPTMGMT_REQ);
2768 		freemsg(mp);
2769 		return;
2770 	}
2771 
2772 	/*
2773 	 * call common option management routine from drv/ip
2774 	 */
2775 	if (prim->type == T_SVR4_OPTMGMT_REQ) {
2776 		(void) svr4_optcom_req(wq, mp, tep->te_credp, &tl_opt_obj);
2777 	} else {
2778 		ASSERT(prim->type == T_OPTMGMT_REQ);
2779 		(void) tpi_optcom_req(wq, mp, tep->te_credp, &tl_opt_obj);
2780 	}
2781 }
2782 
2783 /*
2784  * Handle T_conn_req - the driver part of accept().
2785  * If TL_SET[U]CRED generate the credentials options.
2786  * If this is a socket pass through options unmodified.
2787  * For sockets generate the T_CONN_CON here instead of
2788  * waiting for the T_CONN_RES.
2789  */
2790 static void
2791 tl_conn_req(queue_t *wq, mblk_t *mp)
2792 {
2793 	tl_endpt_t		*tep = (tl_endpt_t *)wq->q_ptr;
2794 	struct T_conn_req	*creq = (struct T_conn_req *)mp->b_rptr;
2795 	ssize_t			msz = MBLKL(mp);
2796 	t_scalar_t		alen, aoff, olen, ooff,	err = 0;
2797 	tl_endpt_t		*peer_tep = NULL;
2798 	mblk_t			*ackmp;
2799 	mblk_t			*dimp;
2800 	struct T_discon_ind	*di;
2801 	soux_addr_t		ux_addr;
2802 	tl_addr_t		dst;
2803 
2804 	ASSERT(IS_COTS(tep));
2805 
2806 	if (tep->te_closing) {
2807 		freemsg(mp);
2808 		return;
2809 	}
2810 
2811 	/*
2812 	 * preallocate memory for:
2813 	 * 1. max of T_ERROR_ACK and T_OK_ACK
2814 	 *	==> known max T_ERROR_ACK
2815 	 * 2. max of T_DISCON_IND and T_CONN_IND
2816 	 */
2817 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
2818 	if (! ackmp) {
2819 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
2820 		return;
2821 	}
2822 	/*
2823 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
2824 	 * will be committed for T_DISCON_IND/T_CONN_IND later
2825 	 */
2826 
2827 	if (tep->te_state != TS_IDLE) {
2828 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
2829 			SL_TRACE|SL_ERROR,
2830 			"tl_wput:T_CONN_REQ:out of state, state=%d",
2831 			tep->te_state));
2832 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ);
2833 		freemsg(mp);
2834 		return;
2835 	}
2836 
2837 	/*
2838 	 * validate the message
2839 	 * Note: dereference fields in struct inside message only
2840 	 * after validating the message length.
2841 	 */
2842 	if (msz < sizeof (struct T_conn_req)) {
2843 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2844 			"tl_conn_req:invalid message length"));
2845 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2846 		freemsg(mp);
2847 		return;
2848 	}
2849 	alen = creq->DEST_length;
2850 	aoff = creq->DEST_offset;
2851 	olen = creq->OPT_length;
2852 	ooff = creq->OPT_offset;
2853 	if (olen == 0)
2854 		ooff = 0;
2855 
2856 	if (IS_SOCKET(tep)) {
2857 		if ((alen != TL_SOUX_ADDRLEN) ||
2858 		    (aoff < 0) ||
2859 		    (aoff + alen > msz) ||
2860 		    (alen > msz - sizeof (struct T_conn_req))) {
2861 			(void) (STRLOG(TL_ID, tep->te_minor,
2862 				    1, SL_TRACE|SL_ERROR,
2863 				    "tl_conn_req: invalid socket addr"));
2864 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2865 			freemsg(mp);
2866 			return;
2867 		}
2868 		bcopy(mp->b_rptr + aoff, &ux_addr, TL_SOUX_ADDRLEN);
2869 		if ((ux_addr.soua_magic != SOU_MAGIC_IMPLICIT) &&
2870 		    (ux_addr.soua_magic != SOU_MAGIC_EXPLICIT)) {
2871 			(void) (STRLOG(TL_ID, tep->te_minor,
2872 				    1, SL_TRACE|SL_ERROR,
2873 				    "tl_conn_req: invalid socket magic"));
2874 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2875 			freemsg(mp);
2876 			return;
2877 		}
2878 	} else {
2879 		if ((alen > 0 && ((aoff + alen) > msz || aoff + alen < 0)) ||
2880 		    (olen > 0 && ((ssize_t)(ooff + olen) > msz ||
2881 			ooff + olen < 0)) ||
2882 		    olen < 0 || ooff < 0) {
2883 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2884 				    SL_TRACE|SL_ERROR,
2885 				    "tl_conn_req:invalid message"));
2886 			tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_CONN_REQ);
2887 			freemsg(mp);
2888 			return;
2889 		}
2890 
2891 		if (alen <= 0 || aoff < 0 ||
2892 		    (ssize_t)alen > msz - sizeof (struct T_conn_req)) {
2893 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2894 				    SL_TRACE|SL_ERROR,
2895 				    "tl_conn_req:bad addr in message, "
2896 				    "alen=%d, msz=%ld",
2897 				    alen, msz));
2898 			tl_error_ack(wq, ackmp, TBADADDR, 0, T_CONN_REQ);
2899 			freemsg(mp);
2900 			return;
2901 		}
2902 #ifdef DEBUG
2903 		/*
2904 		 * Mild form of ASSERT()ion to detect broken TPI apps.
2905 		 * if (! assertion)
2906 		 *	log warning;
2907 		 */
2908 		if (! (aoff >= (t_scalar_t)sizeof (struct T_conn_req))) {
2909 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
2910 				    SL_TRACE|SL_ERROR,
2911 				    "tl_conn_req: addr overlaps TPI message"));
2912 		}
2913 #endif
2914 		if (olen) {
2915 			/*
2916 			 * no opts in connect req
2917 			 * supported in this provider except for sockets.
2918 			 */
2919 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
2920 				    SL_TRACE|SL_ERROR,
2921 				    "tl_conn_req:options not supported "
2922 				    "in message"));
2923 			tl_error_ack(wq, ackmp, TBADOPT, 0, T_CONN_REQ);
2924 			freemsg(mp);
2925 			return;
2926 		}
2927 	}
2928 
2929 	/*
2930 	 * Prevent tep from closing on us.
2931 	 */
2932 	if (! tl_noclose(tep)) {
2933 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2934 			"tl_conn_req:endpoint is closing"));
2935 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_CONN_REQ);
2936 		freemsg(mp);
2937 		return;
2938 	}
2939 
2940 	tep->te_state = NEXTSTATE(TE_CONN_REQ, tep->te_state);
2941 	/*
2942 	 * get endpoint to connect to
2943 	 * check that peer with DEST addr is bound to addr
2944 	 * and has CONIND_number > 0
2945 	 */
2946 	dst.ta_alen = alen;
2947 	dst.ta_abuf = mp->b_rptr + aoff;
2948 	dst.ta_zoneid = tep->te_zoneid;
2949 
2950 	/*
2951 	 * Verify if remote addr is in use
2952 	 */
2953 	peer_tep = (IS_SOCKET(tep) ?
2954 	    tl_sock_find_peer(tep, &ux_addr) :
2955 	    tl_find_peer(tep, &dst));
2956 
2957 	if (peer_tep == NULL) {
2958 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
2959 			"tl_conn_req:no one at connect address"));
2960 		err = ECONNREFUSED;
2961 	} else if (peer_tep->te_nicon >= peer_tep->te_qlen)  {
2962 		/*
2963 		 * validate that number of incoming connection is
2964 		 * not to capacity on destination endpoint
2965 		 */
2966 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
2967 			"tl_conn_req: qlen overflow connection refused"));
2968 			err = ECONNREFUSED;
2969 	} else if (!((peer_tep->te_state == TS_IDLE) ||
2970 			(peer_tep->te_state == TS_WRES_CIND))) {
2971 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
2972 			"tl_conn_req:peer in bad state"));
2973 		err = ECONNREFUSED;
2974 	}
2975 
2976 	/*
2977 	 * preallocate now for T_DISCON_IND or T_CONN_IND
2978 	 */
2979 	if (err != 0) {
2980 		if (peer_tep != NULL)
2981 			tl_refrele(peer_tep);
2982 		/* We are still expected to send T_OK_ACK */
2983 		tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state);
2984 		tl_ok_ack(tep->te_wq, ackmp, T_CONN_REQ);
2985 		tl_closeok(tep);
2986 		dimp = tpi_ack_alloc(mp, sizeof (struct T_discon_ind),
2987 		    M_PROTO, T_DISCON_IND);
2988 		if (dimp == NULL) {
2989 			tl_merror(wq, NULL, ENOSR);
2990 			return;
2991 		}
2992 		di = (struct T_discon_ind *)dimp->b_rptr;
2993 		di->DISCON_reason = err;
2994 		di->SEQ_number = BADSEQNUM;
2995 
2996 		tep->te_state = TS_IDLE;
2997 		/*
2998 		 * send T_DISCON_IND message
2999 		 */
3000 		putnext(tep->te_rq, dimp);
3001 		return;
3002 	}
3003 
3004 	ASSERT(IS_COTS(peer_tep));
3005 
3006 	/*
3007 	 * Found the listener. At this point processing will continue on
3008 	 * listener serializer. Close of the endpoint should be blocked while we
3009 	 * switch serializers.
3010 	 */
3011 	tl_serializer_refhold(peer_tep->te_ser);
3012 	tl_serializer_refrele(tep->te_ser);
3013 	tep->te_ser = peer_tep->te_ser;
3014 	ASSERT(tep->te_oconp == NULL);
3015 	tep->te_oconp = peer_tep;
3016 
3017 	/*
3018 	 * It is safe to close now. Close may continue on listener serializer.
3019 	 */
3020 	tl_closeok(tep);
3021 
3022 	/*
3023 	 * Pass ackmp to tl_conn_req_ser. Note that mp->b_cont may contain user
3024 	 * data, so we link mp to ackmp.
3025 	 */
3026 	ackmp->b_cont = mp;
3027 	mp = ackmp;
3028 
3029 	tl_refhold(tep);
3030 	tl_serializer_enter(tep, tl_conn_req_ser, mp);
3031 }
3032 
3033 /*
3034  * Finish T_CONN_REQ processing on listener serializer.
3035  */
3036 static void
3037 tl_conn_req_ser(mblk_t *mp, tl_endpt_t *tep)
3038 {
3039 	queue_t		*wq;
3040 	tl_endpt_t	*peer_tep = tep->te_oconp;
3041 	mblk_t		*confmp, *cimp, *indmp;
3042 	void		*opts = NULL;
3043 	mblk_t		*ackmp = mp;
3044 	struct T_conn_req	*creq = (struct T_conn_req *)mp->b_cont->b_rptr;
3045 	struct T_conn_ind	*ci;
3046 	tl_icon_t	*tip;
3047 	void		*addr_startp;
3048 	t_scalar_t	olen = creq->OPT_length;
3049 	t_scalar_t	ooff = creq->OPT_offset;
3050 	size_t 		ci_msz;
3051 	size_t		size;
3052 
3053 	if (tep->te_closing) {
3054 		TL_UNCONNECT(tep->te_oconp);
3055 		tl_serializer_exit(tep);
3056 		tl_refrele(tep);
3057 		freemsg(mp);
3058 		return;
3059 	}
3060 
3061 	wq = tep->te_wq;
3062 	tep->te_flag |= TL_EAGER;
3063 
3064 	/*
3065 	 * Extract preallocated ackmp from mp.
3066 	 */
3067 	mp = mp->b_cont;
3068 	ackmp->b_cont = NULL;
3069 
3070 	if (olen == 0)
3071 		ooff = 0;
3072 
3073 	if (peer_tep->te_closing ||
3074 	    !((peer_tep->te_state == TS_IDLE) ||
3075 		(peer_tep->te_state == TS_WRES_CIND))) {
3076 		TL_UNCONNECT(tep->te_oconp);
3077 		tl_error_ack(wq, mp, TSYSERR, ECONNREFUSED, T_CONN_REQ);
3078 		freemsg(ackmp);
3079 		tl_serializer_exit(tep);
3080 		tl_refrele(tep);
3081 		return;
3082 	}
3083 
3084 	/*
3085 	 * preallocate now for T_DISCON_IND or T_CONN_IND
3086 	 */
3087 	/*
3088 	 * calculate length of T_CONN_IND message
3089 	 */
3090 	if (peer_tep->te_flag & TL_SETCRED) {
3091 		ooff = 0;
3092 		olen = (t_scalar_t) sizeof (struct opthdr) +
3093 		    OPTLEN(sizeof (tl_credopt_t));
3094 		/* 1 option only */
3095 	} else if (peer_tep->te_flag & TL_SETUCRED) {
3096 		ooff = 0;
3097 		olen = (t_scalar_t)sizeof (struct opthdr) +
3098 		    OPTLEN(ucredsize);
3099 		/* 1 option only */
3100 	}
3101 	ci_msz = sizeof (struct T_conn_ind) + tep->te_alen;
3102 	ci_msz = T_ALIGN(ci_msz) + olen;
3103 	size = max(ci_msz, sizeof (struct T_discon_ind));
3104 
3105 	/*
3106 	 * Save options from mp - we'll need them for T_CONN_IND.
3107 	 */
3108 	if (ooff != 0) {
3109 		opts = kmem_alloc(olen, KM_NOSLEEP);
3110 		if (opts == NULL) {
3111 			/*
3112 			 * roll back state changes
3113 			 */
3114 			tep->te_state = TS_IDLE;
3115 			tl_memrecover(wq, mp, size);
3116 			freemsg(ackmp);
3117 			TL_UNCONNECT(tep->te_oconp);
3118 			tl_serializer_exit(tep);
3119 			tl_refrele(tep);
3120 			return;
3121 		}
3122 		/* Copy options to a temp buffer */
3123 		bcopy(mp->b_rptr + ooff, opts, olen);
3124 	}
3125 
3126 	if (IS_SOCKET(tep) && !tl_disable_early_connect) {
3127 		/*
3128 		 * Generate a T_CONN_CON that has the identical address
3129 		 * (and options) as the T_CONN_REQ.
3130 		 * NOTE: assumes that the T_conn_req and T_conn_con structures
3131 		 * are isomorphic.
3132 		 */
3133 		confmp = copyb(mp);
3134 		if (! confmp) {
3135 			/*
3136 			 * roll back state changes
3137 			 */
3138 			tep->te_state = TS_IDLE;
3139 			tl_memrecover(wq, mp, mp->b_wptr - mp->b_rptr);
3140 			freemsg(ackmp);
3141 			if (opts != NULL)
3142 				kmem_free(opts, olen);
3143 			TL_UNCONNECT(tep->te_oconp);
3144 			tl_serializer_exit(tep);
3145 			tl_refrele(tep);
3146 			return;
3147 		}
3148 		((struct T_conn_con *)(confmp->b_rptr))->PRIM_type =
3149 			T_CONN_CON;
3150 	} else {
3151 		confmp = NULL;
3152 	}
3153 	if ((indmp = reallocb(mp, size, 0)) == NULL) {
3154 		/*
3155 		 * roll back state changes
3156 		 */
3157 		tep->te_state = TS_IDLE;
3158 		tl_memrecover(wq, mp, size);
3159 		freemsg(ackmp);
3160 		if (opts != NULL)
3161 			kmem_free(opts, olen);
3162 		freemsg(confmp);
3163 		TL_UNCONNECT(tep->te_oconp);
3164 		tl_serializer_exit(tep);
3165 		tl_refrele(tep);
3166 		return;
3167 	}
3168 
3169 	tip = kmem_zalloc(sizeof (*tip), KM_NOSLEEP);
3170 	if (tip == NULL) {
3171 		/*
3172 		 * roll back state changes
3173 		 */
3174 		tep->te_state = TS_IDLE;
3175 		tl_memrecover(wq, indmp, sizeof (*tip));
3176 		freemsg(ackmp);
3177 		if (opts != NULL)
3178 			kmem_free(opts, olen);
3179 		freemsg(confmp);
3180 		TL_UNCONNECT(tep->te_oconp);
3181 		tl_serializer_exit(tep);
3182 		tl_refrele(tep);
3183 		return;
3184 	}
3185 	tip->ti_mp = NULL;
3186 
3187 	/*
3188 	 * memory is now committed for T_DISCON_IND/T_CONN_IND/T_CONN_CON
3189 	 * and tl_icon_t cell.
3190 	 */
3191 
3192 	/*
3193 	 * ack validity of request and send the peer credential in the ACK.
3194 	 */
3195 	tep->te_state = NEXTSTATE(TE_OK_ACK1, tep->te_state);
3196 
3197 	if (peer_tep != NULL && peer_tep->te_credp != NULL &&
3198 	    confmp != NULL) {
3199 		mblk_setcred(confmp, peer_tep->te_credp);
3200 		DB_CPID(confmp) = peer_tep->te_cpid;
3201 	}
3202 
3203 	tl_ok_ack(wq, ackmp, T_CONN_REQ);
3204 
3205 	/*
3206 	 * prepare message to send T_CONN_IND
3207 	 */
3208 	/*
3209 	 * allocate the message - original data blocks retained
3210 	 * in the returned mblk
3211 	 */
3212 	cimp = tl_resizemp(indmp, size);
3213 	if (! cimp) {
3214 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
3215 			"tl_conn_req:con_ind:allocb failure"));
3216 		tl_merror(wq, indmp, ENOMEM);
3217 		TL_UNCONNECT(tep->te_oconp);
3218 		tl_serializer_exit(tep);
3219 		tl_refrele(tep);
3220 		if (opts != NULL)
3221 			kmem_free(opts, olen);
3222 		freemsg(confmp);
3223 		ASSERT(tip->ti_mp == NULL);
3224 		kmem_free(tip, sizeof (*tip));
3225 		return;
3226 	}
3227 
3228 	DB_TYPE(cimp) = M_PROTO;
3229 	ci = (struct T_conn_ind *)cimp->b_rptr;
3230 	ci->PRIM_type  = T_CONN_IND;
3231 	ci->SRC_offset = (t_scalar_t)sizeof (struct T_conn_ind);
3232 	ci->SRC_length = tep->te_alen;
3233 	ci->SEQ_number = tep->te_seqno;
3234 
3235 	addr_startp = cimp->b_rptr + ci->SRC_offset;
3236 	bcopy(tep->te_abuf, addr_startp, tep->te_alen);
3237 	if (peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED)) {
3238 		ci->OPT_offset = (t_scalar_t)T_ALIGN(ci->SRC_offset +
3239 					ci->SRC_length);
3240 		ci->OPT_length = olen; /* because only 1 option */
3241 		tl_fill_option(cimp->b_rptr + ci->OPT_offset,
3242 			DB_CREDDEF(cimp, tep->te_credp),
3243 			TLPID(cimp, tep),
3244 			peer_tep->te_flag, peer_tep->te_credp);
3245 	} else if (ooff != 0) {
3246 		/* Copy option from T_CONN_REQ */
3247 		ci->OPT_offset = (t_scalar_t)T_ALIGN(ci->SRC_offset +
3248 					ci->SRC_length);
3249 		ci->OPT_length = olen;
3250 		ASSERT(opts != NULL);
3251 		bcopy(opts, (void *)((uintptr_t)ci + ci->OPT_offset), olen);
3252 	} else {
3253 		ci->OPT_offset = 0;
3254 		ci->OPT_length = 0;
3255 	}
3256 	if (opts != NULL)
3257 		kmem_free(opts, olen);
3258 
3259 	/*
3260 	 * register connection request with server peer
3261 	 * append to list of incoming connections
3262 	 * increment references for both peer_tep and tep: peer_tep is placed on
3263 	 * te_oconp and tep is placed on listeners queue.
3264 	 */
3265 	tip->ti_tep = tep;
3266 	tip->ti_seqno = tep->te_seqno;
3267 	list_insert_tail(&peer_tep->te_iconp, tip);
3268 	peer_tep->te_nicon++;
3269 
3270 	peer_tep->te_state = NEXTSTATE(TE_CONN_IND, peer_tep->te_state);
3271 	/*
3272 	 * send the T_CONN_IND message
3273 	 */
3274 	putnext(peer_tep->te_rq, cimp);
3275 
3276 	/*
3277 	 * Send a T_CONN_CON message for sockets.
3278 	 * Disable the queues until we have reached the correct state!
3279 	 */
3280 	if (confmp != NULL) {
3281 		tep->te_state = NEXTSTATE(TE_CONN_CON, tep->te_state);
3282 		noenable(wq);
3283 		putnext(tep->te_rq, confmp);
3284 	}
3285 	/*
3286 	 * Now we need to increment tep reference because tep is referenced by
3287 	 * server list of pending connections. We also need to decrement
3288 	 * reference before exiting serializer. Two operations void each other
3289 	 * so we don't modify reference at all.
3290 	 */
3291 	ASSERT(tep->te_refcnt >= 2);
3292 	ASSERT(peer_tep->te_refcnt >= 2);
3293 	tl_serializer_exit(tep);
3294 }
3295 
3296 
3297 
3298 /*
3299  * Handle T_conn_res on listener stream. Called on listener serializer.
3300  * tl_conn_req has already generated the T_CONN_CON.
3301  * tl_conn_res is called on listener serializer.
3302  * No one accesses acceptor at this point, so it is safe to modify acceptor.
3303  * Switch eager serializer to acceptor's.
3304  *
3305  * If TL_SET[U]CRED generate the credentials options.
3306  * For sockets tl_conn_req has already generated the T_CONN_CON.
3307  */
3308 static void
3309 tl_conn_res(mblk_t *mp, tl_endpt_t *tep)
3310 {
3311 	queue_t			*wq;
3312 	struct T_conn_res	*cres = (struct T_conn_res *)mp->b_rptr;
3313 	ssize_t			msz = MBLKL(mp);
3314 	t_scalar_t		olen, ooff, err = 0;
3315 	t_scalar_t		prim = cres->PRIM_type;
3316 	uchar_t			*addr_startp;
3317 	tl_endpt_t 		*acc_ep = NULL, *cl_ep = NULL;
3318 	tl_icon_t		*tip;
3319 	size_t			size;
3320 	mblk_t			*ackmp, *respmp;
3321 	mblk_t			*dimp, *ccmp = NULL;
3322 	struct T_discon_ind	*di;
3323 	struct T_conn_con	*cc;
3324 	boolean_t		client_noclose_set = B_FALSE;
3325 	boolean_t		switch_client_serializer = B_TRUE;
3326 
3327 	ASSERT(IS_COTS(tep));
3328 
3329 	if (tep->te_closing) {
3330 		freemsg(mp);
3331 		return;
3332 	}
3333 
3334 	wq = tep->te_wq;
3335 
3336 	/*
3337 	 * preallocate memory for:
3338 	 * 1. max of T_ERROR_ACK and T_OK_ACK
3339 	 *	==> known max T_ERROR_ACK
3340 	 * 2. max of T_DISCON_IND and T_CONN_CON
3341 	 */
3342 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
3343 	if (! ackmp) {
3344 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
3345 		return;
3346 	}
3347 	/*
3348 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
3349 	 * will be committed for T_DISCON_IND/T_CONN_CON later
3350 	 */
3351 
3352 
3353 	ASSERT(prim == T_CONN_RES || prim == O_T_CONN_RES);
3354 
3355 	/*
3356 	 * validate state
3357 	 */
3358 	if (tep->te_state != TS_WRES_CIND) {
3359 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
3360 			SL_TRACE|SL_ERROR,
3361 			"tl_wput:T_CONN_RES:out of state, state=%d",
3362 			tep->te_state));
3363 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, prim);
3364 		freemsg(mp);
3365 		return;
3366 	}
3367 
3368 	/*
3369 	 * validate the message
3370 	 * Note: dereference fields in struct inside message only
3371 	 * after validating the message length.
3372 	 */
3373 	if (msz < sizeof (struct T_conn_res)) {
3374 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3375 			"tl_conn_res:invalid message length"));
3376 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, prim);
3377 		freemsg(mp);
3378 		return;
3379 	}
3380 	olen = cres->OPT_length;
3381 	ooff = cres->OPT_offset;
3382 	if (((olen > 0) && ((ooff + olen) > msz))) {
3383 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3384 			"tl_conn_res:invalid message"));
3385 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, prim);
3386 		freemsg(mp);
3387 		return;
3388 	}
3389 	if (olen) {
3390 		/*
3391 		 * no opts in connect res
3392 		 * supported in this provider
3393 		 */
3394 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3395 			"tl_conn_res:options not supported in message"));
3396 		tl_error_ack(wq, ackmp, TBADOPT, 0, prim);
3397 		freemsg(mp);
3398 		return;
3399 	}
3400 
3401 	tep->te_state = NEXTSTATE(TE_CONN_RES, tep->te_state);
3402 	ASSERT(tep->te_state == TS_WACK_CRES);
3403 
3404 	if (cres->SEQ_number < TL_MINOR_START &&
3405 		cres->SEQ_number >= BADSEQNUM) {
3406 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3407 			"tl_conn_res:remote endpoint sequence number bad"));
3408 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3409 		tl_error_ack(wq, ackmp, TBADSEQ, 0, prim);
3410 		freemsg(mp);
3411 		return;
3412 	}
3413 
3414 	/*
3415 	 * find accepting endpoint. Will have extra reference if found.
3416 	 */
3417 	if (mod_hash_find_cb(tep->te_transport->tr_ai_hash,
3418 		(mod_hash_key_t)(uintptr_t)cres->ACCEPTOR_id,
3419 		(mod_hash_val_t *)&acc_ep, tl_find_callback) != 0) {
3420 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3421 			"tl_conn_res:bad accepting endpoint"));
3422 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3423 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3424 		freemsg(mp);
3425 		return;
3426 	}
3427 
3428 	/*
3429 	 * Prevent acceptor from closing.
3430 	 */
3431 	if (! tl_noclose(acc_ep)) {
3432 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3433 			"tl_conn_res:bad accepting endpoint"));
3434 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3435 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3436 		tl_refrele(acc_ep);
3437 		freemsg(mp);
3438 		return;
3439 	}
3440 
3441 	acc_ep->te_flag |= TL_ACCEPTOR;
3442 
3443 	/*
3444 	 * validate that accepting endpoint, if different from listening
3445 	 * has address bound => state is TS_IDLE
3446 	 * TROUBLE in XPG4 !!?
3447 	 */
3448 	if ((tep != acc_ep) && (acc_ep->te_state != TS_IDLE)) {
3449 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3450 			"tl_conn_res:accepting endpoint has no address bound,"
3451 			"state=%d", acc_ep->te_state));
3452 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3453 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, prim);
3454 		freemsg(mp);
3455 		tl_closeok(acc_ep);
3456 		tl_refrele(acc_ep);
3457 		return;
3458 	}
3459 
3460 	/*
3461 	 * validate if accepting endpt same as listening, then
3462 	 * no other incoming connection should be on the queue
3463 	 */
3464 
3465 	if ((tep == acc_ep) && (tep->te_nicon > 1)) {
3466 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
3467 			"tl_conn_res: > 1 conn_ind on listener-acceptor"));
3468 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3469 		tl_error_ack(wq, ackmp, TBADF, 0, prim);
3470 		freemsg(mp);
3471 		tl_closeok(acc_ep);
3472 		tl_refrele(acc_ep);
3473 		return;
3474 	}
3475 
3476 	/*
3477 	 * Mark for deletion, the entry corresponding to client
3478 	 * on list of pending connections made by the listener
3479 	 *  search list to see if client is one of the
3480 	 * recorded as a listener.
3481 	 */
3482 	tip = tl_icon_find(tep, cres->SEQ_number);
3483 	if (tip == NULL) {
3484 		(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE|SL_ERROR,
3485 			"tl_conn_res:no client in listener list"));
3486 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, tep->te_state);
3487 		tl_error_ack(wq, ackmp, TBADSEQ, 0, prim);
3488 		freemsg(mp);
3489 		tl_closeok(acc_ep);
3490 		tl_refrele(acc_ep);
3491 		return;
3492 	}
3493 
3494 	/*
3495 	 * If ti_tep is NULL the client has already closed. In this case
3496 	 * the code below will avoid any action on the client side
3497 	 * but complete the server and acceptor state transitions.
3498 	 */
3499 	ASSERT(tip->ti_tep == NULL ||
3500 		tip->ti_tep->te_seqno == cres->SEQ_number);
3501 	cl_ep = tip->ti_tep;
3502 
3503 	/*
3504 	 * If the client is present it is switched from listener's to acceptor's
3505 	 * serializer. We should block client closes while serializers are
3506 	 * being switched.
3507 	 *
3508 	 * It is possible that the client is present but is currently being
3509 	 * closed. There are two possible cases:
3510 	 *
3511 	 * 1) The client has already entered tl_close_finish_ser() and sent
3512 	 *    T_ORDREL_IND. In this case we can just ignore the client (but we
3513 	 *    still need to send all messages from tip->ti_mp to the acceptor).
3514 	 *
3515 	 * 2) The client started the close but has not entered
3516 	 *    tl_close_finish_ser() yet. In this case, the client is already
3517 	 *    proceeding asynchronously on the listener's serializer, so we're
3518 	 *    forced to change the acceptor to use the listener's serializer to
3519 	 *    ensure that any operations on the acceptor are serialized with
3520 	 *    respect to the close that's in-progress.
3521 	 */
3522 	if (cl_ep != NULL) {
3523 		if (tl_noclose(cl_ep)) {
3524 			client_noclose_set = B_TRUE;
3525 		} else {
3526 			/*
3527 			 * Client is closing. If it it has sent the
3528 			 * T_ORDREL_IND, we can simply ignore it - otherwise,
3529 			 * we have to let let the client continue until it is
3530 			 * sent.
3531 			 *
3532 			 * If we do continue using the client, acceptor will
3533 			 * switch to client's serializer which is used by client
3534 			 * for its close.
3535 			 */
3536 			tl_client_closing_when_accepting++;
3537 			switch_client_serializer = B_FALSE;
3538 			if (!IS_SOCKET(cl_ep) || tl_disable_early_connect ||
3539 			    cl_ep->te_state == -1)
3540 				cl_ep = NULL;
3541 		}
3542 	}
3543 
3544 	if (cl_ep != NULL) {
3545 		/*
3546 		 * validate client state to be TS_WCON_CREQ or TS_DATA_XFER
3547 		 * (latter for sockets only)
3548 		 */
3549 		if (cl_ep->te_state != TS_WCON_CREQ &&
3550 		    (cl_ep->te_state != TS_DATA_XFER &&
3551 		    IS_SOCKET(cl_ep))) {
3552 			err = ECONNREFUSED;
3553 			/*
3554 			 * T_DISCON_IND sent later after committing memory
3555 			 * and acking validity of request
3556 			 */
3557 			(void) (STRLOG(TL_ID, tep->te_minor, 2, SL_TRACE,
3558 				"tl_conn_res:peer in bad state"));
3559 		}
3560 
3561 		/*
3562 		 * preallocate now for T_DISCON_IND or T_CONN_CONN
3563 		 * ack validity of request (T_OK_ACK) after memory committed
3564 		 */
3565 
3566 		if (err)
3567 			size = sizeof (struct T_discon_ind);
3568 		else {
3569 			/*
3570 			 * calculate length of T_CONN_CON message
3571 			 */
3572 			olen = 0;
3573 			if (cl_ep->te_flag & TL_SETCRED) {
3574 				olen = (t_scalar_t)sizeof (struct opthdr) +
3575 					OPTLEN(sizeof (tl_credopt_t));
3576 			} else if (cl_ep->te_flag & TL_SETUCRED) {
3577 				olen = (t_scalar_t)sizeof (struct opthdr) +
3578 					OPTLEN(ucredsize);
3579 			}
3580 			size = T_ALIGN(sizeof (struct T_conn_con) +
3581 					acc_ep->te_alen) + olen;
3582 		}
3583 		if ((respmp = reallocb(mp, size, 0)) == NULL) {
3584 			/*
3585 			 * roll back state changes
3586 			 */
3587 			tep->te_state = TS_WRES_CIND;
3588 			tl_memrecover(wq, mp, size);
3589 			freemsg(ackmp);
3590 			if (client_noclose_set)
3591 				tl_closeok(cl_ep);
3592 			tl_closeok(acc_ep);
3593 			tl_refrele(acc_ep);
3594 			return;
3595 		}
3596 		mp = NULL;
3597 	}
3598 
3599 	/*
3600 	 * Now ack validity of request
3601 	 */
3602 	if (tep->te_nicon == 1) {
3603 		if (tep == acc_ep)
3604 			tep->te_state = NEXTSTATE(TE_OK_ACK2, tep->te_state);
3605 		else
3606 			tep->te_state = NEXTSTATE(TE_OK_ACK3, tep->te_state);
3607 	} else
3608 		tep->te_state = NEXTSTATE(TE_OK_ACK4, tep->te_state);
3609 
3610 	/*
3611 	 * send T_DISCON_IND now if client state validation failed earlier
3612 	 */
3613 	if (err) {
3614 		tl_ok_ack(wq, ackmp, prim);
3615 		/*
3616 		 * flush the queues - why always ?
3617 		 */
3618 		(void) putnextctl1(acc_ep->te_rq, M_FLUSH, FLUSHR);
3619 
3620 		dimp = tl_resizemp(respmp, size);
3621 		if (! dimp) {
3622 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3623 				SL_TRACE|SL_ERROR,
3624 				"tl_conn_res:con_ind:allocb failure"));
3625 			tl_merror(wq, respmp, ENOMEM);
3626 			tl_closeok(acc_ep);
3627 			if (client_noclose_set)
3628 				tl_closeok(cl_ep);
3629 			tl_refrele(acc_ep);
3630 			return;
3631 		}
3632 		if (dimp->b_cont) {
3633 			/* no user data in provider generated discon ind */
3634 			freemsg(dimp->b_cont);
3635 			dimp->b_cont = NULL;
3636 		}
3637 
3638 		DB_TYPE(dimp) = M_PROTO;
3639 		di = (struct T_discon_ind *)dimp->b_rptr;
3640 		di->PRIM_type  = T_DISCON_IND;
3641 		di->DISCON_reason = err;
3642 		di->SEQ_number = BADSEQNUM;
3643 
3644 		tep->te_state = TS_IDLE;
3645 		/*
3646 		 * send T_DISCON_IND message
3647 		 */
3648 		putnext(acc_ep->te_rq, dimp);
3649 		if (client_noclose_set)
3650 			tl_closeok(cl_ep);
3651 		tl_closeok(acc_ep);
3652 		tl_refrele(acc_ep);
3653 		return;
3654 	}
3655 
3656 	/*
3657 	 * now start connecting the accepting endpoint
3658 	 */
3659 	if (tep != acc_ep)
3660 		acc_ep->te_state = NEXTSTATE(TE_PASS_CONN, acc_ep->te_state);
3661 
3662 	if (cl_ep == NULL) {
3663 		/*
3664 		 * The client has already closed. Send up any queued messages
3665 		 * and change the state accordingly.
3666 		 */
3667 		tl_ok_ack(wq, ackmp, prim);
3668 		tl_icon_sendmsgs(acc_ep, &tip->ti_mp);
3669 
3670 		/*
3671 		 * remove endpoint from incoming connection
3672 		 * delete client from list of incoming connections
3673 		 */
3674 		tl_freetip(tep, tip);
3675 		freemsg(mp);
3676 		tl_closeok(acc_ep);
3677 		tl_refrele(acc_ep);
3678 		return;
3679 	} else if (tip->ti_mp != NULL) {
3680 		/*
3681 		 * The client could have queued a T_DISCON_IND which needs
3682 		 * to be sent up.
3683 		 * Note that t_discon_req can not operate the same as
3684 		 * t_data_req since it is not possible for it to putbq
3685 		 * the message and return -1 due to the use of qwriter.
3686 		 */
3687 		tl_icon_sendmsgs(acc_ep, &tip->ti_mp);
3688 	}
3689 
3690 	/*
3691 	 * prepare connect confirm T_CONN_CON message
3692 	 */
3693 
3694 	/*
3695 	 * allocate the message - original data blocks
3696 	 * retained in the returned mblk
3697 	 */
3698 	if (! IS_SOCKET(cl_ep) || tl_disable_early_connect) {
3699 		ccmp = tl_resizemp(respmp, size);
3700 		if (ccmp == NULL) {
3701 			tl_ok_ack(wq, ackmp, prim);
3702 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
3703 				    SL_TRACE|SL_ERROR,
3704 				    "tl_conn_res:conn_con:allocb failure"));
3705 			tl_merror(wq, respmp, ENOMEM);
3706 			tl_closeok(acc_ep);
3707 			if (client_noclose_set)
3708 				tl_closeok(cl_ep);
3709 			tl_refrele(acc_ep);
3710 			return;
3711 		}
3712 
3713 		DB_TYPE(ccmp) = M_PROTO;
3714 		cc = (struct T_conn_con *)ccmp->b_rptr;
3715 		cc->PRIM_type  = T_CONN_CON;
3716 		cc->RES_offset = (t_scalar_t)sizeof (struct T_conn_con);
3717 		cc->RES_length = acc_ep->te_alen;
3718 		addr_startp = ccmp->b_rptr + cc->RES_offset;
3719 		bcopy(acc_ep->te_abuf, addr_startp, acc_ep->te_alen);
3720 		if (cl_ep->te_flag & (TL_SETCRED|TL_SETUCRED)) {
3721 			cc->OPT_offset = (t_scalar_t)T_ALIGN(cc->RES_offset +
3722 			    cc->RES_length);
3723 			cc->OPT_length = olen;
3724 			tl_fill_option(ccmp->b_rptr + cc->OPT_offset,
3725 			    acc_ep->te_credp, acc_ep->te_cpid, cl_ep->te_flag,
3726 			    cl_ep->te_credp);
3727 		} else {
3728 			cc->OPT_offset = 0;
3729 			cc->OPT_length = 0;
3730 		}
3731 		/*
3732 		 * Forward the credential in the packet so it can be picked up
3733 		 * at the higher layers for more complete credential processing
3734 		 */
3735 		mblk_setcred(ccmp, acc_ep->te_credp);
3736 		DB_CPID(ccmp) = acc_ep->te_cpid;
3737 	} else {
3738 		freemsg(respmp);
3739 		respmp = NULL;
3740 	}
3741 
3742 	/*
3743 	 * make connection linking
3744 	 * accepting and client endpoints
3745 	 * No need to increment references:
3746 	 *	on client: it should already have one from tip->ti_tep linkage.
3747 	 *	on acceptor is should already have one from the table lookup.
3748 	 *
3749 	 * At this point both client and acceptor can't close. Set client
3750 	 * serializer to acceptor's.
3751 	 */
3752 	ASSERT(cl_ep->te_refcnt >= 2);
3753 	ASSERT(acc_ep->te_refcnt >= 2);
3754 	ASSERT(cl_ep->te_conp == NULL);
3755 	ASSERT(acc_ep->te_conp == NULL);
3756 	cl_ep->te_conp = acc_ep;
3757 	acc_ep->te_conp = cl_ep;
3758 	ASSERT(cl_ep->te_ser == tep->te_ser);
3759 	if (switch_client_serializer) {
3760 		mutex_enter(&cl_ep->te_ser_lock);
3761 		if (cl_ep->te_ser_count > 0) {
3762 			switch_client_serializer = B_FALSE;
3763 			tl_serializer_noswitch++;
3764 		} else {
3765 			/*
3766 			 * Move client to the acceptor's serializer.
3767 			 */
3768 			tl_serializer_refhold(acc_ep->te_ser);
3769 			tl_serializer_refrele(cl_ep->te_ser);
3770 			cl_ep->te_ser = acc_ep->te_ser;
3771 		}
3772 		mutex_exit(&cl_ep->te_ser_lock);
3773 	}
3774 	if (!switch_client_serializer) {
3775 		/*
3776 		 * It is not possible to switch client to use acceptor's.
3777 		 * Move acceptor to client's serializer (which is the same as
3778 		 * listener's).
3779 		 */
3780 		tl_serializer_refhold(cl_ep->te_ser);
3781 		tl_serializer_refrele(acc_ep->te_ser);
3782 		acc_ep->te_ser = cl_ep->te_ser;
3783 	}
3784 
3785 	TL_REMOVE_PEER(cl_ep->te_oconp);
3786 	TL_REMOVE_PEER(acc_ep->te_oconp);
3787 
3788 	/*
3789 	 * remove endpoint from incoming connection
3790 	 * delete client from list of incoming connections
3791 	 */
3792 	tip->ti_tep = NULL;
3793 	tl_freetip(tep, tip);
3794 	tl_ok_ack(wq, ackmp, prim);
3795 
3796 	/*
3797 	 * data blocks already linked in reallocb()
3798 	 */
3799 
3800 	/*
3801 	 * link queues so that I_SENDFD will work
3802 	 */
3803 	if (! IS_SOCKET(tep)) {
3804 		acc_ep->te_wq->q_next = cl_ep->te_rq;
3805 		cl_ep->te_wq->q_next = acc_ep->te_rq;
3806 	}
3807 
3808 	/*
3809 	 * send T_CONN_CON up on client side unless it was already
3810 	 * done (for a socket). In cases any data or ordrel req has been
3811 	 * queued make sure that the service procedure runs.
3812 	 */
3813 	if (IS_SOCKET(cl_ep) && !tl_disable_early_connect) {
3814 		enableok(cl_ep->te_wq);
3815 		TL_QENABLE(cl_ep);
3816 		if (ccmp != NULL)
3817 			freemsg(ccmp);
3818 	} else {
3819 		/*
3820 		 * change client state on TE_CONN_CON event
3821 		 */
3822 		cl_ep->te_state = NEXTSTATE(TE_CONN_CON, cl_ep->te_state);
3823 		putnext(cl_ep->te_rq, ccmp);
3824 	}
3825 
3826 	/* Mark the both endpoints as accepted */
3827 	cl_ep->te_flag |= TL_ACCEPTED;
3828 	acc_ep->te_flag |= TL_ACCEPTED;
3829 
3830 	/*
3831 	 * Allow client and acceptor to close.
3832 	 */
3833 	tl_closeok(acc_ep);
3834 	if (client_noclose_set)
3835 		tl_closeok(cl_ep);
3836 }
3837 
3838 
3839 
3840 
3841 static void
3842 tl_discon_req(mblk_t *mp, tl_endpt_t *tep)
3843 {
3844 	queue_t			*wq;
3845 	struct T_discon_req	*dr;
3846 	ssize_t			msz;
3847 	tl_endpt_t		*peer_tep = tep->te_conp;
3848 	tl_endpt_t		*srv_tep = tep->te_oconp;
3849 	tl_icon_t		*tip;
3850 	size_t			size;
3851 	mblk_t			*ackmp, *dimp, *respmp;
3852 	struct T_discon_ind	*di;
3853 	t_scalar_t		save_state, new_state;
3854 
3855 	if (tep->te_closing) {
3856 		freemsg(mp);
3857 		return;
3858 	}
3859 
3860 	if ((peer_tep != NULL) && peer_tep->te_closing) {
3861 		TL_UNCONNECT(tep->te_conp);
3862 		peer_tep = NULL;
3863 	}
3864 	if ((srv_tep != NULL) && srv_tep->te_closing) {
3865 		TL_UNCONNECT(tep->te_oconp);
3866 		srv_tep = NULL;
3867 	}
3868 
3869 	wq = tep->te_wq;
3870 
3871 	/*
3872 	 * preallocate memory for:
3873 	 * 1. max of T_ERROR_ACK and T_OK_ACK
3874 	 *	==> known max T_ERROR_ACK
3875 	 * 2. for  T_DISCON_IND
3876 	 */
3877 	ackmp = allocb(sizeof (struct T_error_ack), BPRI_MED);
3878 	if (! ackmp) {
3879 		tl_memrecover(wq, mp, sizeof (struct T_error_ack));
3880 		return;
3881 	}
3882 	/*
3883 	 * memory committed for T_OK_ACK/T_ERROR_ACK now
3884 	 * will be committed for T_DISCON_IND  later
3885 	 */
3886 
3887 	dr = (struct T_discon_req *)mp->b_rptr;
3888 	msz = MBLKL(mp);
3889 
3890 	/*
3891 	 * validate the state
3892 	 */
3893 	save_state = new_state = tep->te_state;
3894 	if (! (save_state >= TS_WCON_CREQ && save_state <= TS_WRES_CIND) &&
3895 	    ! (save_state >= TS_DATA_XFER && save_state <= TS_WREQ_ORDREL)) {
3896 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
3897 			SL_TRACE|SL_ERROR,
3898 			"tl_wput:T_DISCON_REQ:out of state, state=%d",
3899 			tep->te_state));
3900 		tl_error_ack(wq, ackmp, TOUTSTATE, 0, T_DISCON_REQ);
3901 		freemsg(mp);
3902 		return;
3903 	}
3904 	/*
3905 	 * Defer committing the state change until it is determined if
3906 	 * the message will be queued with the tl_icon or not.
3907 	 */
3908 	new_state  = NEXTSTATE(TE_DISCON_REQ, tep->te_state);
3909 
3910 	/* validate the message */
3911 	if (msz < sizeof (struct T_discon_req)) {
3912 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
3913 			"tl_discon_req:invalid message"));
3914 		tep->te_state = NEXTSTATE(TE_ERROR_ACK, new_state);
3915 		tl_error_ack(wq, ackmp, TSYSERR, EINVAL, T_DISCON_REQ);
3916 		freemsg(mp);
3917 		return;
3918 	}
3919 
3920 	/*
3921 	 * if server, then validate that client exists
3922 	 * by connection sequence number etc.
3923 	 */
3924 	if (tep->te_nicon > 0) { /* server */
3925 
3926 		/*
3927 		 * search server list for disconnect client
3928 		 */
3929 		tip = tl_icon_find(tep, dr->SEQ_number);
3930 		if (tip == NULL) {
3931 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
3932 				SL_TRACE|SL_ERROR,
3933 				"tl_discon_req:no disconnect endpoint"));
3934 			tep->te_state = NEXTSTATE(TE_ERROR_ACK, new_state);
3935 			tl_error_ack(wq, ackmp, TBADSEQ, 0, T_DISCON_REQ);
3936 			freemsg(mp);
3937 			return;
3938 		}
3939 		/*
3940 		 * If ti_tep is NULL the client has already closed. In this case
3941 		 * the code below will avoid any action on the client side.
3942 		 */
3943 
3944 		ASSERT(IMPLY(tip->ti_tep != NULL,
3945 			tip->ti_tep->te_seqno == dr->SEQ_number));
3946 		peer_tep = tip->ti_tep;
3947 	}
3948 
3949 	/*
3950 	 * preallocate now for T_DISCON_IND
3951 	 * ack validity of request (T_OK_ACK) after memory committed
3952 	 */
3953 	size = sizeof (struct T_discon_ind);
3954 	if ((respmp = reallocb(mp, size, 0)) == NULL) {
3955 		tl_memrecover(wq, mp, size);
3956 		freemsg(ackmp);
3957 		return;
3958 	}
3959 
3960 	/*
3961 	 * prepare message to ack validity of request
3962 	 */
3963 	if (tep->te_nicon == 0)
3964 		new_state = NEXTSTATE(TE_OK_ACK1, new_state);
3965 	else
3966 		if (tep->te_nicon == 1)
3967 			new_state = NEXTSTATE(TE_OK_ACK2, new_state);
3968 		else
3969 			new_state = NEXTSTATE(TE_OK_ACK4, new_state);
3970 
3971 	/*
3972 	 * Flushing queues according to TPI. Using the old state.
3973 	 */
3974 	if ((tep->te_nicon <= 1) &&
3975 	    ((save_state == TS_DATA_XFER) ||
3976 	    (save_state == TS_WIND_ORDREL) ||
3977 	    (save_state == TS_WREQ_ORDREL)))
3978 		(void) putnextctl1(RD(wq), M_FLUSH, FLUSHRW);
3979 
3980 	/* send T_OK_ACK up  */
3981 	tl_ok_ack(wq, ackmp, T_DISCON_REQ);
3982 
3983 	/*
3984 	 * now do disconnect business
3985 	 */
3986 	if (tep->te_nicon > 0) { /* listener */
3987 		if (peer_tep != NULL && !peer_tep->te_closing) {
3988 			/*
3989 			 * disconnect incoming connect request pending to tep
3990 			 */
3991 			if ((dimp = tl_resizemp(respmp, size)) == NULL) {
3992 				(void) (STRLOG(TL_ID, tep->te_minor, 2,
3993 					SL_TRACE|SL_ERROR,
3994 					"tl_discon_req: reallocb failed"));
3995 				tep->te_state = new_state;
3996 				tl_merror(wq, respmp, ENOMEM);
3997 				return;
3998 			}
3999 			di = (struct T_discon_ind *)dimp->b_rptr;
4000 			di->SEQ_number = BADSEQNUM;
4001 			save_state = peer_tep->te_state;
4002 			peer_tep->te_state = TS_IDLE;
4003 
4004 			TL_REMOVE_PEER(peer_tep->te_oconp);
4005 			enableok(peer_tep->te_wq);
4006 			TL_QENABLE(peer_tep);
4007 		} else {
4008 			freemsg(respmp);
4009 			dimp = NULL;
4010 		}
4011 
4012 		/*
4013 		 * remove endpoint from incoming connection list
4014 		 * - remove disconnect client from list on server
4015 		 */
4016 		tl_freetip(tep, tip);
4017 	} else if ((peer_tep = tep->te_oconp) != NULL) { /* client */
4018 		/*
4019 		 * disconnect an outgoing request pending from tep
4020 		 */
4021 
4022 		if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4023 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4024 				SL_TRACE|SL_ERROR,
4025 				"tl_discon_req: reallocb failed"));
4026 			tep->te_state = new_state;
4027 			tl_merror(wq, respmp, ENOMEM);
4028 			return;
4029 		}
4030 		di = (struct T_discon_ind *)dimp->b_rptr;
4031 		DB_TYPE(dimp) = M_PROTO;
4032 		di->PRIM_type  = T_DISCON_IND;
4033 		di->DISCON_reason = ECONNRESET;
4034 		di->SEQ_number = tep->te_seqno;
4035 
4036 		/*
4037 		 * If this is a socket the T_DISCON_IND is queued with
4038 		 * the T_CONN_IND. Otherwise the T_CONN_IND is removed
4039 		 * from the list of pending connections.
4040 		 * Note that when te_oconp is set the peer better have
4041 		 * a t_connind_t for the client.
4042 		 */
4043 		if (IS_SOCKET(tep) && !tl_disable_early_connect) {
4044 			/*
4045 			 * No need to check that
4046 			 * ti_tep == NULL since the T_DISCON_IND
4047 			 * takes precedence over other queued
4048 			 * messages.
4049 			 */
4050 			tl_icon_queuemsg(peer_tep, tep->te_seqno, dimp);
4051 			peer_tep = NULL;
4052 			dimp = NULL;
4053 			/*
4054 			 * Can't clear te_oconp since tl_co_unconnect needs
4055 			 * it as a hint not to free the tep.
4056 			 * Keep the state unchanged since tl_conn_res inspects
4057 			 * it.
4058 			 */
4059 			new_state = tep->te_state;
4060 		} else {
4061 			/* Found - delete it */
4062 			tip = tl_icon_find(peer_tep, tep->te_seqno);
4063 			if (tip != NULL) {
4064 				ASSERT(tep == tip->ti_tep);
4065 				save_state = peer_tep->te_state;
4066 				if (peer_tep->te_nicon == 1)
4067 					peer_tep->te_state =
4068 					    NEXTSTATE(TE_DISCON_IND2,
4069 						peer_tep->te_state);
4070 				else
4071 					peer_tep->te_state =
4072 					    NEXTSTATE(TE_DISCON_IND3,
4073 						peer_tep->te_state);
4074 				tl_freetip(peer_tep, tip);
4075 			}
4076 			ASSERT(tep->te_oconp != NULL);
4077 			TL_UNCONNECT(tep->te_oconp);
4078 		}
4079 	} else if ((peer_tep = tep->te_conp) != NULL) { /* connected! */
4080 		if ((dimp = tl_resizemp(respmp, size)) == NULL) {
4081 			(void) (STRLOG(TL_ID, tep->te_minor, 2,
4082 				SL_TRACE|SL_ERROR,
4083 				"tl_discon_req: reallocb failed"));
4084 			tep->te_state = new_state;
4085 			tl_merror(wq, respmp, ENOMEM);
4086 			return;
4087 		}
4088 		di = (struct T_discon_ind *)dimp->b_rptr;
4089 		di->SEQ_number = BADSEQNUM;
4090 
4091 		save_state = peer_tep->te_state;
4092 		peer_tep->te_state = TS_IDLE;
4093 	} else {
4094 		/* Not connected */
4095 		tep->te_state = new_state;
4096 		freemsg(respmp);
4097 		return;
4098 	}
4099 
4100 	/* Commit state changes */
4101 	tep->te_state = new_state;
4102 
4103 	if (peer_tep == NULL) {
4104 		ASSERT(dimp == NULL);
4105 		goto done;
4106 	}
4107 	/*
4108 	 * Flush queues on peer before sending up
4109 	 * T_DISCON_IND according to TPI
4110 	 */
4111 
4112 	if ((save_state == TS_DATA_XFER) ||
4113 	    (save_state == TS_WIND_ORDREL) ||
4114 	    (save_state == TS_WREQ_ORDREL))
4115 		(void) putnextctl1(peer_tep->te_rq, M_FLUSH, FLUSHRW);
4116 
4117 	DB_TYPE(dimp) = M_PROTO;
4118 	di->PRIM_type  = T_DISCON_IND;
4119 	di->DISCON_reason = ECONNRESET;
4120 
4121 	/*
4122 	 * data blocks already linked into dimp by reallocb()
4123 	 */
4124 	/*
4125 	 * send indication message to peer user module
4126 	 */
4127 	ASSERT(dimp != NULL);
4128 	putnext(peer_tep->te_rq, dimp);
4129 done:
4130 	if (tep->te_conp) {	/* disconnect pointers if connected */
4131 		ASSERT(! peer_tep->te_closing);
4132 
4133 		/*
4134 		 * Messages may be queued on peer's write queue
4135 		 * waiting to be processed by its write service
4136 		 * procedure. Before the pointer to the peer transport
4137 		 * structure is set to NULL, qenable the peer's write
4138 		 * queue so that the queued up messages are processed.
4139 		 */
4140 		if ((save_state == TS_DATA_XFER) ||
4141 		    (save_state == TS_WIND_ORDREL) ||
4142 		    (save_state == TS_WREQ_ORDREL))
4143 			TL_QENABLE(peer_tep);
4144 		ASSERT(peer_tep != NULL && peer_tep->te_conp != NULL);
4145 		TL_UNCONNECT(peer_tep->te_conp);
4146 		if (! IS_SOCKET(tep)) {
4147 			/*
4148 			 * unlink the streams
4149 			 */
4150 			tep->te_wq->q_next = NULL;
4151 			peer_tep->te_wq->q_next = NULL;
4152 		}
4153 		TL_UNCONNECT(tep->te_conp);
4154 	}
4155 }
4156 
4157 
4158 static void
4159 tl_addr_req(mblk_t *mp, tl_endpt_t *tep)
4160 {
4161 	queue_t			*wq;
4162 	size_t			ack_sz;
4163 	mblk_t			*ackmp;
4164 	struct T_addr_ack	*taa;
4165 
4166 	if (tep->te_closing) {
4167 		freemsg(mp);
4168 		return;
4169 	}
4170 
4171 	wq = tep->te_wq;
4172 
4173 	/*
4174 	 * Note: T_ADDR_REQ message has only PRIM_type field
4175 	 * so it is already validated earlier.
4176 	 */
4177 
4178 	if (IS_CLTS(tep) ||
4179 	    (tep->te_state > TS_WREQ_ORDREL) ||
4180 	    (tep->te_state < TS_DATA_XFER)) {
4181 		/*
4182 		 * Either connectionless or connection oriented but not
4183 		 * in connected data transfer state or half-closed states.
4184 		 */
4185 		ack_sz = sizeof (struct T_addr_ack);
4186 		if (tep->te_state >= TS_IDLE)
4187 			/* is bound */
4188 			ack_sz += tep->te_alen;
4189 		ackmp = reallocb(mp, ack_sz, 0);
4190 		if (ackmp == NULL) {
4191 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4192 				SL_TRACE|SL_ERROR,
4193 				"tl_addr_req: reallocb failed"));
4194 			tl_memrecover(wq, mp, ack_sz);
4195 			return;
4196 		}
4197 
4198 		taa = (struct T_addr_ack *)ackmp->b_rptr;
4199 
4200 		bzero(taa, sizeof (struct T_addr_ack));
4201 
4202 		taa->PRIM_type = T_ADDR_ACK;
4203 		ackmp->b_datap->db_type = M_PCPROTO;
4204 		ackmp->b_wptr = (uchar_t *)&taa[1];
4205 
4206 		if (tep->te_state >= TS_IDLE) {
4207 			/* endpoint is bound */
4208 			taa->LOCADDR_length = tep->te_alen;
4209 			taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);
4210 
4211 			bcopy(tep->te_abuf, ackmp->b_wptr,
4212 				tep->te_alen);
4213 			ackmp->b_wptr += tep->te_alen;
4214 			ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
4215 		}
4216 
4217 		(void) qreply(wq, ackmp);
4218 	} else {
4219 		ASSERT(tep->te_state == TS_DATA_XFER ||
4220 			tep->te_state == TS_WIND_ORDREL ||
4221 			tep->te_state == TS_WREQ_ORDREL);
4222 		/* connection oriented in data transfer */
4223 		tl_connected_cots_addr_req(mp, tep);
4224 	}
4225 }
4226 
4227 
4228 static void
4229 tl_connected_cots_addr_req(mblk_t *mp, tl_endpt_t *tep)
4230 {
4231 	tl_endpt_t		*peer_tep;
4232 	size_t			ack_sz;
4233 	mblk_t			*ackmp;
4234 	struct T_addr_ack	*taa;
4235 	uchar_t			*addr_startp;
4236 
4237 	if (tep->te_closing) {
4238 		freemsg(mp);
4239 		return;
4240 	}
4241 
4242 	ASSERT(tep->te_state >= TS_IDLE);
4243 
4244 	ack_sz = sizeof (struct T_addr_ack);
4245 	ack_sz += T_ALIGN(tep->te_alen);
4246 	peer_tep = tep->te_conp;
4247 	ack_sz += peer_tep->te_alen;
4248 
4249 	ackmp = tpi_ack_alloc(mp, ack_sz, M_PCPROTO, T_ADDR_ACK);
4250 	if (ackmp == NULL) {
4251 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4252 			"tl_connected_cots_addr_req: reallocb failed"));
4253 		tl_memrecover(tep->te_wq, mp, ack_sz);
4254 		return;
4255 	}
4256 
4257 	taa = (struct T_addr_ack *)ackmp->b_rptr;
4258 
4259 	/* endpoint is bound */
4260 	taa->LOCADDR_length = tep->te_alen;
4261 	taa->LOCADDR_offset = (t_scalar_t)sizeof (*taa);
4262 
4263 	addr_startp = (uchar_t *)&taa[1];
4264 
4265 	bcopy(tep->te_abuf, addr_startp,
4266 	    tep->te_alen);
4267 
4268 	taa->REMADDR_length = peer_tep->te_alen;
4269 	taa->REMADDR_offset = (t_scalar_t)T_ALIGN(taa->LOCADDR_offset +
4270 				    taa->LOCADDR_length);
4271 	addr_startp = ackmp->b_rptr + taa->REMADDR_offset;
4272 	bcopy(peer_tep->te_abuf, addr_startp,
4273 	    peer_tep->te_alen);
4274 	ackmp->b_wptr = (uchar_t *)ackmp->b_rptr +
4275 	    taa->REMADDR_offset + peer_tep->te_alen;
4276 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
4277 
4278 	putnext(tep->te_rq, ackmp);
4279 }
4280 
4281 static void
4282 tl_copy_info(struct T_info_ack *ia, tl_endpt_t *tep)
4283 {
4284 	if (IS_CLTS(tep)) {
4285 		*ia = tl_clts_info_ack;
4286 		ia->TSDU_size = tl_tidusz; /* TSDU and TIDU size are same */
4287 	} else {
4288 		*ia = tl_cots_info_ack;
4289 		if (IS_COTSORD(tep))
4290 			ia->SERV_type = T_COTS_ORD;
4291 	}
4292 	ia->TIDU_size = tl_tidusz;
4293 	ia->CURRENT_state = tep->te_state;
4294 }
4295 
4296 /*
4297  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
4298  * tl_wput.
4299  */
4300 static void
4301 tl_capability_req(mblk_t *mp, tl_endpt_t *tep)
4302 {
4303 	mblk_t			*ackmp;
4304 	t_uscalar_t		cap_bits1;
4305 	struct T_capability_ack	*tcap;
4306 
4307 	if (tep->te_closing) {
4308 		freemsg(mp);
4309 		return;
4310 	}
4311 
4312 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
4313 
4314 	ackmp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
4315 	    M_PCPROTO, T_CAPABILITY_ACK);
4316 	if (ackmp == NULL) {
4317 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4318 			"tl_capability_req: reallocb failed"));
4319 		tl_memrecover(tep->te_wq, mp,
4320 		    sizeof (struct T_capability_ack));
4321 		return;
4322 	}
4323 
4324 	tcap = (struct T_capability_ack *)ackmp->b_rptr;
4325 	tcap->CAP_bits1 = 0;
4326 
4327 	if (cap_bits1 & TC1_INFO) {
4328 		tl_copy_info(&tcap->INFO_ack, tep);
4329 		tcap->CAP_bits1 |= TC1_INFO;
4330 	}
4331 
4332 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
4333 		tcap->ACCEPTOR_id = tep->te_acceptor_id;
4334 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
4335 	}
4336 
4337 	putnext(tep->te_rq, ackmp);
4338 }
4339 
4340 static void
4341 tl_info_req_ser(mblk_t *mp, tl_endpt_t *tep)
4342 {
4343 	if (! tep->te_closing)
4344 		tl_info_req(mp, tep);
4345 	else
4346 		freemsg(mp);
4347 
4348 	tl_serializer_exit(tep);
4349 	tl_refrele(tep);
4350 }
4351 
4352 static void
4353 tl_info_req(mblk_t *mp, tl_endpt_t *tep)
4354 {
4355 	mblk_t *ackmp;
4356 
4357 	ackmp = tpi_ack_alloc(mp, sizeof (struct T_info_ack),
4358 	    M_PCPROTO, T_INFO_ACK);
4359 	if (ackmp == NULL) {
4360 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4361 			"tl_info_req: reallocb failed"));
4362 		tl_memrecover(tep->te_wq, mp, sizeof (struct T_info_ack));
4363 		return;
4364 	}
4365 
4366 	/*
4367 	 * fill in T_INFO_ACK contents
4368 	 */
4369 	tl_copy_info((struct T_info_ack *)ackmp->b_rptr, tep);
4370 
4371 	/*
4372 	 * send ack message
4373 	 */
4374 	putnext(tep->te_rq, ackmp);
4375 }
4376 
4377 /*
4378  * Handle M_DATA, T_data_req and T_optdata_req.
4379  * If this is a socket pass through T_optdata_req options unmodified.
4380  */
4381 static void
4382 tl_data(mblk_t *mp, tl_endpt_t *tep)
4383 {
4384 	queue_t			*wq = tep->te_wq;
4385 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4386 	ssize_t			msz = MBLKL(mp);
4387 	tl_endpt_t		*peer_tep;
4388 	queue_t			*peer_rq;
4389 	boolean_t		closing = tep->te_closing;
4390 
4391 	if (IS_CLTS(tep)) {
4392 		(void) (STRLOG(TL_ID, tep->te_minor, 2,
4393 			    SL_TRACE|SL_ERROR,
4394 			    "tl_wput:clts:unattached M_DATA"));
4395 		if (!closing) {
4396 			tl_merror(wq, mp, EPROTO);
4397 		} else {
4398 			freemsg(mp);
4399 		}
4400 		return;
4401 	}
4402 
4403 	/*
4404 	 * If the endpoint is closing it should still forward any data to the
4405 	 * peer (if it has one). If it is not allowed to forward it can just
4406 	 * free the message.
4407 	 */
4408 	if (closing &&
4409 	    (tep->te_state != TS_DATA_XFER) &&
4410 	    (tep->te_state != TS_WREQ_ORDREL)) {
4411 		freemsg(mp);
4412 		return;
4413 	}
4414 
4415 	if (DB_TYPE(mp) == M_PROTO) {
4416 		if (prim->type == T_DATA_REQ &&
4417 		    msz < sizeof (struct T_data_req)) {
4418 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4419 				SL_TRACE|SL_ERROR,
4420 				"tl_data:T_DATA_REQ:invalid message"));
4421 			if (!closing) {
4422 				tl_merror(wq, mp, EPROTO);
4423 			} else {
4424 				freemsg(mp);
4425 			}
4426 			return;
4427 		} else if (prim->type == T_OPTDATA_REQ &&
4428 			    (msz < sizeof (struct T_optdata_req) ||
4429 			    !IS_SOCKET(tep))) {
4430 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4431 				SL_TRACE|SL_ERROR,
4432 				"tl_data:T_OPTDATA_REQ:invalid message"));
4433 			if (!closing) {
4434 				tl_merror(wq, mp, EPROTO);
4435 			} else {
4436 				freemsg(mp);
4437 			}
4438 			return;
4439 		}
4440 	}
4441 
4442 	/*
4443 	 * connection oriented provider
4444 	 */
4445 	switch (tep->te_state) {
4446 	case TS_IDLE:
4447 		/*
4448 		 * Other end not here - do nothing.
4449 		 */
4450 		freemsg(mp);
4451 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
4452 			"tl_data:cots with endpoint idle"));
4453 		return;
4454 
4455 	case TS_DATA_XFER:
4456 		/* valid states */
4457 		if (tep->te_conp != NULL)
4458 			break;
4459 
4460 		if (tep->te_oconp == NULL) {
4461 			if (!closing) {
4462 				tl_merror(wq, mp, EPROTO);
4463 			} else {
4464 				freemsg(mp);
4465 			}
4466 			return;
4467 		}
4468 		/*
4469 		 * For a socket the T_CONN_CON is sent early thus
4470 		 * the peer might not yet have accepted the connection.
4471 		 * If we are closing queue the packet with the T_CONN_IND.
4472 		 * Otherwise defer processing the packet until the peer
4473 		 * accepts the connection.
4474 		 * Note that the queue is noenabled when we go into this
4475 		 * state.
4476 		 */
4477 		if (!closing) {
4478 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4479 				    SL_TRACE|SL_ERROR,
4480 				    "tl_data: ocon"));
4481 			TL_PUTBQ(tep, mp);
4482 			return;
4483 		}
4484 		if (DB_TYPE(mp) == M_PROTO) {
4485 			if (msz < sizeof (t_scalar_t)) {
4486 				freemsg(mp);
4487 				return;
4488 			}
4489 			/* reuse message block - just change REQ to IND */
4490 			if (prim->type == T_DATA_REQ)
4491 				prim->type = T_DATA_IND;
4492 			else
4493 				prim->type = T_OPTDATA_IND;
4494 		}
4495 		tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4496 		return;
4497 
4498 	case TS_WREQ_ORDREL:
4499 		if (tep->te_conp == NULL) {
4500 			/*
4501 			 * Other end closed - generate discon_ind
4502 			 * with reason 0 to cause an EPIPE but no
4503 			 * read side error on AF_UNIX sockets.
4504 			 */
4505 			freemsg(mp);
4506 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
4507 				SL_TRACE|SL_ERROR,
4508 				"tl_data: WREQ_ORDREL and no peer"));
4509 			tl_discon_ind(tep, 0);
4510 			return;
4511 		}
4512 		break;
4513 
4514 	default:
4515 		/* invalid state for event TE_DATA_REQ */
4516 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4517 			"tl_data:cots:out of state"));
4518 		tl_merror(wq, mp, EPROTO);
4519 		return;
4520 	}
4521 	/*
4522 	 * tep->te_state = NEXTSTATE(TE_DATA_REQ, tep->te_state);
4523 	 * (State stays same on this event)
4524 	 */
4525 
4526 	/*
4527 	 * get connected endpoint
4528 	 */
4529 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4530 		freemsg(mp);
4531 		/* Peer closed */
4532 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4533 			"tl_data: peer gone"));
4534 		return;
4535 	}
4536 
4537 	ASSERT(tep->te_serializer == peer_tep->te_serializer);
4538 	peer_rq = peer_tep->te_rq;
4539 
4540 	/*
4541 	 * Put it back if flow controlled
4542 	 * Note: Messages already on queue when we are closing is bounded
4543 	 * so we can ignore flow control.
4544 	 */
4545 	if (!canputnext(peer_rq) && !closing) {
4546 		TL_PUTBQ(tep, mp);
4547 		return;
4548 	}
4549 
4550 	/*
4551 	 * validate peer state
4552 	 */
4553 	switch (peer_tep->te_state) {
4554 	case TS_DATA_XFER:
4555 	case TS_WIND_ORDREL:
4556 		/* valid states */
4557 		break;
4558 	default:
4559 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4560 			"tl_data:rx side:invalid state"));
4561 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4562 		return;
4563 	}
4564 	if (DB_TYPE(mp) == M_PROTO) {
4565 		/* reuse message block - just change REQ to IND */
4566 		if (prim->type == T_DATA_REQ)
4567 			prim->type = T_DATA_IND;
4568 		else
4569 			prim->type = T_OPTDATA_IND;
4570 	}
4571 	/*
4572 	 * peer_tep->te_state = NEXTSTATE(TE_DATA_IND, peer_tep->te_state);
4573 	 * (peer state stays same on this event)
4574 	 */
4575 	/*
4576 	 * send data to connected peer
4577 	 */
4578 	putnext(peer_rq, mp);
4579 }
4580 
4581 
4582 
4583 static void
4584 tl_exdata(mblk_t *mp, tl_endpt_t *tep)
4585 {
4586 	queue_t			*wq = tep->te_wq;
4587 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4588 	ssize_t			msz = MBLKL(mp);
4589 	tl_endpt_t		*peer_tep;
4590 	queue_t			*peer_rq;
4591 	boolean_t		closing = tep->te_closing;
4592 
4593 	if (msz < sizeof (struct T_exdata_req)) {
4594 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4595 			"tl_exdata:invalid message"));
4596 		if (!closing) {
4597 			tl_merror(wq, mp, EPROTO);
4598 		} else {
4599 			freemsg(mp);
4600 		}
4601 		return;
4602 	}
4603 
4604 	/*
4605 	 * If the endpoint is closing it should still forward any data to the
4606 	 * peer (if it has one). If it is not allowed to forward it can just
4607 	 * free the message.
4608 	 */
4609 	if (closing &&
4610 	    (tep->te_state != TS_DATA_XFER) &&
4611 	    (tep->te_state != TS_WREQ_ORDREL)) {
4612 		freemsg(mp);
4613 		return;
4614 	}
4615 
4616 	/*
4617 	 * validate state
4618 	 */
4619 	switch (tep->te_state) {
4620 	case TS_IDLE:
4621 		/*
4622 		 * Other end not here - do nothing.
4623 		 */
4624 		freemsg(mp);
4625 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
4626 			"tl_exdata:cots with endpoint idle"));
4627 		return;
4628 
4629 	case TS_DATA_XFER:
4630 		/* valid states */
4631 		if (tep->te_conp != NULL)
4632 			break;
4633 
4634 		if (tep->te_oconp == NULL) {
4635 			if (!closing) {
4636 				tl_merror(wq, mp, EPROTO);
4637 			} else {
4638 				freemsg(mp);
4639 			}
4640 			return;
4641 		}
4642 		/*
4643 		 * For a socket the T_CONN_CON is sent early thus
4644 		 * the peer might not yet have accepted the connection.
4645 		 * If we are closing queue the packet with the T_CONN_IND.
4646 		 * Otherwise defer processing the packet until the peer
4647 		 * accepts the connection.
4648 		 * Note that the queue is noenabled when we go into this
4649 		 * state.
4650 		 */
4651 		if (!closing) {
4652 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4653 				    SL_TRACE|SL_ERROR,
4654 				    "tl_exdata: ocon"));
4655 			TL_PUTBQ(tep, mp);
4656 			return;
4657 		}
4658 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4659 			    "tl_exdata: closing socket ocon"));
4660 		prim->type = T_EXDATA_IND;
4661 		tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4662 		return;
4663 
4664 	case TS_WREQ_ORDREL:
4665 		if (tep->te_conp == NULL) {
4666 			/*
4667 			 * Other end closed - generate discon_ind
4668 			 * with reason 0 to cause an EPIPE but no
4669 			 * read side error on AF_UNIX sockets.
4670 			 */
4671 			freemsg(mp);
4672 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
4673 				SL_TRACE|SL_ERROR,
4674 				"tl_exdata: WREQ_ORDREL and no peer"));
4675 			tl_discon_ind(tep, 0);
4676 			return;
4677 		}
4678 		break;
4679 
4680 	default:
4681 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4682 			SL_TRACE|SL_ERROR,
4683 			"tl_wput:T_EXDATA_REQ:out of state, state=%d",
4684 			tep->te_state));
4685 		tl_merror(wq, mp, EPROTO);
4686 		return;
4687 	}
4688 	/*
4689 	 * tep->te_state = NEXTSTATE(TE_EXDATA_REQ, tep->te_state);
4690 	 * (state stays same on this event)
4691 	 */
4692 
4693 	/*
4694 	 * get connected endpoint
4695 	 */
4696 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4697 		freemsg(mp);
4698 		/* Peer closed */
4699 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4700 			"tl_exdata: peer gone"));
4701 		return;
4702 	}
4703 
4704 	peer_rq = peer_tep->te_rq;
4705 
4706 	/*
4707 	 * Put it back if flow controlled
4708 	 * Note: Messages already on queue when we are closing is bounded
4709 	 * so we can ignore flow control.
4710 	 */
4711 	if (!canputnext(peer_rq) && !closing) {
4712 		TL_PUTBQ(tep, mp);
4713 		return;
4714 	}
4715 
4716 	/*
4717 	 * validate state on peer
4718 	 */
4719 	switch (peer_tep->te_state) {
4720 	case TS_DATA_XFER:
4721 	case TS_WIND_ORDREL:
4722 		/* valid states */
4723 		break;
4724 	default:
4725 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4726 			"tl_exdata:rx side:invalid state"));
4727 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4728 		return;
4729 	}
4730 	/*
4731 	 * peer_tep->te_state = NEXTSTATE(TE_DATA_IND, peer_tep->te_state);
4732 	 * (peer state stays same on this event)
4733 	 */
4734 	/*
4735 	 * reuse message block
4736 	 */
4737 	prim->type = T_EXDATA_IND;
4738 
4739 	/*
4740 	 * send data to connected peer
4741 	 */
4742 	putnext(peer_rq, mp);
4743 }
4744 
4745 
4746 
4747 static void
4748 tl_ordrel(mblk_t *mp, tl_endpt_t *tep)
4749 {
4750 	queue_t			*wq =  tep->te_wq;
4751 	union T_primitives	*prim = (union T_primitives *)mp->b_rptr;
4752 	ssize_t			msz = MBLKL(mp);
4753 	tl_endpt_t		*peer_tep;
4754 	queue_t			*peer_rq;
4755 	boolean_t		closing = tep->te_closing;
4756 
4757 	if (msz < sizeof (struct T_ordrel_req)) {
4758 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4759 			"tl_ordrel:invalid message"));
4760 		if (!closing) {
4761 			tl_merror(wq, mp, EPROTO);
4762 		} else {
4763 			freemsg(mp);
4764 		}
4765 		return;
4766 	}
4767 
4768 	/*
4769 	 * validate state
4770 	 */
4771 	switch (tep->te_state) {
4772 	case TS_DATA_XFER:
4773 	case TS_WREQ_ORDREL:
4774 		/* valid states */
4775 		if (tep->te_conp != NULL)
4776 			break;
4777 
4778 		if (tep->te_oconp == NULL)
4779 			break;
4780 
4781 		/*
4782 		 * For a socket the T_CONN_CON is sent early thus
4783 		 * the peer might not yet have accepted the connection.
4784 		 * If we are closing queue the packet with the T_CONN_IND.
4785 		 * Otherwise defer processing the packet until the peer
4786 		 * accepts the connection.
4787 		 * Note that the queue is noenabled when we go into this
4788 		 * state.
4789 		 */
4790 		if (!closing) {
4791 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
4792 				SL_TRACE|SL_ERROR,
4793 				"tl_ordlrel: ocon"));
4794 			TL_PUTBQ(tep, mp);
4795 			return;
4796 		}
4797 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4798 			"tl_ordlrel: closing socket ocon"));
4799 		prim->type = T_ORDREL_IND;
4800 		(void) tl_icon_queuemsg(tep->te_oconp, tep->te_seqno, mp);
4801 		return;
4802 
4803 	default:
4804 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4805 			SL_TRACE|SL_ERROR,
4806 			"tl_wput:T_ORDREL_REQ:out of state, state=%d",
4807 			tep->te_state));
4808 		if (!closing) {
4809 			tl_merror(wq, mp, EPROTO);
4810 		} else {
4811 			freemsg(mp);
4812 		}
4813 		return;
4814 	}
4815 	tep->te_state = NEXTSTATE(TE_ORDREL_REQ, tep->te_state);
4816 
4817 	/*
4818 	 * get connected endpoint
4819 	 */
4820 	if (((peer_tep = tep->te_conp) == NULL) || peer_tep->te_closing) {
4821 		/* Peer closed */
4822 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4823 			"tl_ordrel: peer gone"));
4824 		freemsg(mp);
4825 		return;
4826 	}
4827 
4828 	peer_rq = peer_tep->te_rq;
4829 
4830 	/*
4831 	 * Put it back if flow controlled except when we are closing.
4832 	 * Note: Messages already on queue when we are closing is bounded
4833 	 * so we can ignore flow control.
4834 	 */
4835 	if (! canputnext(peer_rq) && !closing) {
4836 		TL_PUTBQ(tep, mp);
4837 		return;
4838 	}
4839 
4840 	/*
4841 	 * validate state on peer
4842 	 */
4843 	switch (peer_tep->te_state) {
4844 	case TS_DATA_XFER:
4845 	case TS_WIND_ORDREL:
4846 		/* valid states */
4847 		break;
4848 	default:
4849 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
4850 			"tl_ordrel:rx side:invalid state"));
4851 		tl_merror(peer_tep->te_wq, mp, EPROTO);
4852 		return;
4853 	}
4854 	peer_tep->te_state = NEXTSTATE(TE_ORDREL_IND, peer_tep->te_state);
4855 
4856 	/*
4857 	 * reuse message block
4858 	 */
4859 	prim->type = T_ORDREL_IND;
4860 	(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
4861 		"tl_ordrel: send ordrel_ind"));
4862 
4863 	/*
4864 	 * send data to connected peer
4865 	 */
4866 	putnext(peer_rq, mp);
4867 }
4868 
4869 
4870 /*
4871  * Send T_UDERROR_IND. The error should be from the <sys/errno.h> space.
4872  */
4873 static void
4874 tl_uderr(queue_t *wq, mblk_t *mp, t_scalar_t err)
4875 {
4876 	size_t			err_sz;
4877 	tl_endpt_t		*tep;
4878 	struct T_unitdata_req	*udreq;
4879 	mblk_t			*err_mp;
4880 	t_scalar_t		alen;
4881 	t_scalar_t		olen;
4882 	struct T_uderror_ind	*uderr;
4883 	uchar_t			*addr_startp;
4884 
4885 	err_sz = sizeof (struct T_uderror_ind);
4886 	tep = (tl_endpt_t *)wq->q_ptr;
4887 	udreq = (struct T_unitdata_req *)mp->b_rptr;
4888 	alen = udreq->DEST_length;
4889 	olen = udreq->OPT_length;
4890 
4891 	if (alen > 0)
4892 		err_sz = T_ALIGN(err_sz + alen);
4893 	if (olen > 0)
4894 		err_sz += olen;
4895 
4896 	err_mp = allocb(err_sz, BPRI_MED);
4897 	if (! err_mp) {
4898 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
4899 			"tl_uderr:allocb failure"));
4900 		/*
4901 		 * Note: no rollback of state needed as it does
4902 		 * not change in connectionless transport
4903 		 */
4904 		tl_memrecover(wq, mp, err_sz);
4905 		return;
4906 	}
4907 
4908 	DB_TYPE(err_mp) = M_PROTO;
4909 	err_mp->b_wptr = err_mp->b_rptr + err_sz;
4910 	uderr = (struct T_uderror_ind *)err_mp->b_rptr;
4911 	uderr->PRIM_type = T_UDERROR_IND;
4912 	uderr->ERROR_type = err;
4913 	uderr->DEST_length = alen;
4914 	uderr->OPT_length = olen;
4915 	if (alen <= 0) {
4916 		uderr->DEST_offset = 0;
4917 	} else {
4918 		uderr->DEST_offset =
4919 			(t_scalar_t)sizeof (struct T_uderror_ind);
4920 		addr_startp  = mp->b_rptr + udreq->DEST_offset;
4921 		bcopy(addr_startp, err_mp->b_rptr + uderr->DEST_offset,
4922 			(size_t)alen);
4923 	}
4924 	if (olen <= 0) {
4925 		uderr->OPT_offset = 0;
4926 	} else {
4927 		uderr->OPT_offset =
4928 			(t_scalar_t)T_ALIGN(sizeof (struct T_uderror_ind) +
4929 						uderr->DEST_length);
4930 		addr_startp  = mp->b_rptr + udreq->OPT_offset;
4931 		bcopy(addr_startp, err_mp->b_rptr+uderr->OPT_offset,
4932 			(size_t)olen);
4933 	}
4934 	freemsg(mp);
4935 
4936 	/*
4937 	 * send indication message
4938 	 */
4939 	tep->te_state = NEXTSTATE(TE_UDERROR_IND, tep->te_state);
4940 
4941 	qreply(wq, err_mp);
4942 }
4943 
4944 static void
4945 tl_unitdata_ser(mblk_t *mp, tl_endpt_t *tep)
4946 {
4947 	queue_t *wq = tep->te_wq;
4948 
4949 	if (!tep->te_closing && (wq->q_first != NULL)) {
4950 		TL_PUTQ(tep, mp);
4951 	} else if (tep->te_rq != NULL)
4952 		tl_unitdata(mp, tep);
4953 	else
4954 		freemsg(mp);
4955 
4956 	tl_serializer_exit(tep);
4957 	tl_refrele(tep);
4958 }
4959 
4960 /*
4961  * Handle T_unitdata_req.
4962  * If TL_SET[U]CRED or TL_SOCKUCRED generate the credentials options.
4963  * If this is a socket pass through options unmodified.
4964  */
4965 static void
4966 tl_unitdata(mblk_t *mp, tl_endpt_t *tep)
4967 {
4968 	queue_t			*wq = tep->te_wq;
4969 	soux_addr_t		ux_addr;
4970 	tl_addr_t		destaddr;
4971 	uchar_t			*addr_startp;
4972 	tl_endpt_t		*peer_tep;
4973 	struct T_unitdata_ind	*udind;
4974 	struct T_unitdata_req	*udreq;
4975 	ssize_t			msz, ui_sz;
4976 	t_scalar_t		alen, aoff, olen, ooff;
4977 	t_scalar_t		oldolen = 0;
4978 
4979 	udreq = (struct T_unitdata_req *)mp->b_rptr;
4980 	msz = MBLKL(mp);
4981 
4982 	/*
4983 	 * validate the state
4984 	 */
4985 	if (tep->te_state != TS_IDLE) {
4986 		(void) (STRLOG(TL_ID, tep->te_minor, 1,
4987 			SL_TRACE|SL_ERROR,
4988 			"tl_wput:T_CONN_REQ:out of state"));
4989 		tl_merror(wq, mp, EPROTO);
4990 		return;
4991 	}
4992 	/*
4993 	 * tep->te_state = NEXTSTATE(TE_UNITDATA_REQ, tep->te_state);
4994 	 * (state does not change on this event)
4995 	 */
4996 
4997 	/*
4998 	 * validate the message
4999 	 * Note: dereference fields in struct inside message only
5000 	 * after validating the message length.
5001 	 */
5002 	if (msz < sizeof (struct T_unitdata_req)) {
5003 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
5004 			"tl_unitdata:invalid message length"));
5005 		tl_merror(wq, mp, EINVAL);
5006 		return;
5007 	}
5008 	alen = udreq->DEST_length;
5009 	aoff = udreq->DEST_offset;
5010 	oldolen = olen = udreq->OPT_length;
5011 	ooff = udreq->OPT_offset;
5012 	if (olen == 0)
5013 		ooff = 0;
5014 
5015 	if (IS_SOCKET(tep)) {
5016 		if ((alen != TL_SOUX_ADDRLEN) ||
5017 		    (aoff < 0) ||
5018 		    (aoff + alen > msz) ||
5019 		    (olen < 0) || (ooff < 0) ||
5020 		    ((olen > 0) && ((ooff + olen) > msz))) {
5021 			(void) (STRLOG(TL_ID, tep->te_minor,
5022 				    1, SL_TRACE|SL_ERROR,
5023 				    "tl_unitdata_req: invalid socket addr "
5024 				    "(msz=%d, al=%d, ao=%d, ol=%d, oo = %d)",
5025 				    (int)msz, alen, aoff, olen, ooff));
5026 			tl_error_ack(wq, mp, TSYSERR, EINVAL, T_UNITDATA_REQ);
5027 			return;
5028 		}
5029 		bcopy(mp->b_rptr + aoff, &ux_addr, TL_SOUX_ADDRLEN);
5030 
5031 		if ((ux_addr.soua_magic != SOU_MAGIC_IMPLICIT) &&
5032 		    (ux_addr.soua_magic != SOU_MAGIC_EXPLICIT)) {
5033 			(void) (STRLOG(TL_ID, tep->te_minor,
5034 				    1, SL_TRACE|SL_ERROR,
5035 				    "tl_conn_req: invalid socket magic"));
5036 			tl_error_ack(wq, mp, TSYSERR, EINVAL, T_UNITDATA_REQ);
5037 			return;
5038 		}
5039 	} else {
5040 		if ((alen < 0) ||
5041 		    (aoff < 0) ||
5042 		    ((alen > 0) && ((aoff + alen) > msz)) ||
5043 		    ((ssize_t)alen > (msz - sizeof (struct T_unitdata_req))) ||
5044 		    ((aoff + alen) < 0) ||
5045 		    ((olen > 0) && ((ooff + olen) > msz)) ||
5046 		    (olen < 0) ||
5047 		    (ooff < 0) ||
5048 		    ((ssize_t)olen > (msz - sizeof (struct T_unitdata_req)))) {
5049 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
5050 				    SL_TRACE|SL_ERROR,
5051 				    "tl_unitdata:invalid unit data message"));
5052 			tl_merror(wq, mp, EINVAL);
5053 			return;
5054 		}
5055 	}
5056 
5057 	/* Options not supported unless it's a socket */
5058 	if (alen == 0 || (olen != 0 && !IS_SOCKET(tep))) {
5059 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
5060 		    "tl_unitdata:option use(unsupported) or zero len addr"));
5061 		tl_uderr(wq, mp, EPROTO);
5062 		return;
5063 	}
5064 #ifdef DEBUG
5065 	/*
5066 	 * Mild form of ASSERT()ion to detect broken TPI apps.
5067 	 * if (! assertion)
5068 	 *	log warning;
5069 	 */
5070 	if (! (aoff >= (t_scalar_t)sizeof (struct T_unitdata_req))) {
5071 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
5072 			"tl_unitdata:addr overlaps TPI message"));
5073 	}
5074 #endif
5075 	/*
5076 	 * get destination endpoint
5077 	 */
5078 	destaddr.ta_alen = alen;
5079 	destaddr.ta_abuf = mp->b_rptr + aoff;
5080 	destaddr.ta_zoneid = tep->te_zoneid;
5081 
5082 	/*
5083 	 * Check whether the destination is the same that was used previously
5084 	 * and the destination endpoint is in the right state. If something is
5085 	 * wrong, find destination again and cache it.
5086 	 */
5087 	peer_tep = tep->te_lastep;
5088 
5089 	if ((peer_tep == NULL) || peer_tep->te_closing ||
5090 	    (peer_tep->te_state != TS_IDLE) ||
5091 	    !tl_eqaddr(&destaddr, &peer_tep->te_ap)) {
5092 		/*
5093 		 * Not the same as cached destination , need to find the right
5094 		 * destination.
5095 		 */
5096 		peer_tep = (IS_SOCKET(tep) ?
5097 		    tl_sock_find_peer(tep, &ux_addr) :
5098 		    tl_find_peer(tep, &destaddr));
5099 
5100 		if (peer_tep == NULL) {
5101 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5102 				SL_TRACE|SL_ERROR,
5103 				"tl_unitdata:no one at destination address"));
5104 			tl_uderr(wq, mp, ECONNRESET);
5105 			return;
5106 		}
5107 
5108 		/*
5109 		 * Cache the new peer.
5110 		 */
5111 		if (tep->te_lastep != NULL)
5112 			tl_refrele(tep->te_lastep);
5113 
5114 		tep->te_lastep = peer_tep;
5115 	}
5116 
5117 	if (peer_tep->te_state != TS_IDLE) {
5118 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
5119 			"tl_unitdata:provider in invalid state"));
5120 		tl_uderr(wq, mp, EPROTO);
5121 		return;
5122 	}
5123 
5124 	ASSERT(peer_tep->te_rq != NULL);
5125 
5126 	/*
5127 	 * Put it back if flow controlled except when we are closing.
5128 	 * Note: Messages already on queue when we are closing is bounded
5129 	 * so we can ignore flow control.
5130 	 */
5131 	if (!canputnext(peer_tep->te_rq) && !(tep->te_closing)) {
5132 		/* record what we are flow controlled on */
5133 		if (tep->te_flowq != NULL) {
5134 			list_remove(&tep->te_flowq->te_flowlist, tep);
5135 		}
5136 		list_insert_head(&peer_tep->te_flowlist, tep);
5137 		tep->te_flowq = peer_tep;
5138 		TL_PUTBQ(tep, mp);
5139 		return;
5140 	}
5141 	/*
5142 	 * prepare indication message
5143 	 */
5144 
5145 	/*
5146 	 * calculate length of message
5147 	 */
5148 	if (peer_tep->te_flag & TL_SETCRED) {
5149 		ASSERT(olen == 0);
5150 		olen = (t_scalar_t)sizeof (struct opthdr) +
5151 				OPTLEN(sizeof (tl_credopt_t));
5152 					/* 1 option only */
5153 	} else if (peer_tep->te_flag & TL_SETUCRED) {
5154 		ASSERT(olen == 0);
5155 		olen = (t_scalar_t)sizeof (struct opthdr) + OPTLEN(ucredsize);
5156 					/* 1 option only */
5157 	} else if (peer_tep->te_flag & TL_SOCKUCRED) {
5158 		/* Possibly more than one option */
5159 		olen += (t_scalar_t)sizeof (struct T_opthdr) +
5160 		    OPTLEN(ucredsize);
5161 	}
5162 
5163 	ui_sz = T_ALIGN(sizeof (struct T_unitdata_ind) + tep->te_alen) +
5164 		olen;
5165 	/*
5166 	 * If the unitdata_ind fits and we are not adding options
5167 	 * reuse the udreq mblk.
5168 	 */
5169 	if (msz >= ui_sz && alen >= tep->te_alen &&
5170 	    !(peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED|TL_SOCKUCRED))) {
5171 		/*
5172 		 * Reuse the original mblk. Leave options in place.
5173 		 */
5174 		udind =  (struct T_unitdata_ind *)mp->b_rptr;
5175 		udind->PRIM_type = T_UNITDATA_IND;
5176 		udind->SRC_length = tep->te_alen;
5177 		addr_startp = mp->b_rptr + udind->SRC_offset;
5178 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5179 	} else {
5180 		/* Allocate a new T_unidata_ind message */
5181 		mblk_t *ui_mp;
5182 
5183 		ui_mp = allocb(ui_sz, BPRI_MED);
5184 		if (! ui_mp) {
5185 			(void) (STRLOG(TL_ID, tep->te_minor, 4, SL_TRACE,
5186 				"tl_unitdata:allocb failure:message queued"));
5187 			tl_memrecover(wq, mp, ui_sz);
5188 			return;
5189 		}
5190 
5191 		/*
5192 		 * fill in T_UNITDATA_IND contents
5193 		 */
5194 		DB_TYPE(ui_mp) = M_PROTO;
5195 		ui_mp->b_wptr = ui_mp->b_rptr + ui_sz;
5196 		udind =  (struct T_unitdata_ind *)ui_mp->b_rptr;
5197 		udind->PRIM_type = T_UNITDATA_IND;
5198 		udind->SRC_offset = (t_scalar_t)sizeof (struct T_unitdata_ind);
5199 		udind->SRC_length = tep->te_alen;
5200 		addr_startp = ui_mp->b_rptr + udind->SRC_offset;
5201 		bcopy(tep->te_abuf, addr_startp, tep->te_alen);
5202 		udind->OPT_offset =
5203 		    (t_scalar_t)T_ALIGN(udind->SRC_offset + udind->SRC_length);
5204 		udind->OPT_length = olen;
5205 		if (peer_tep->te_flag & (TL_SETCRED|TL_SETUCRED|TL_SOCKUCRED)) {
5206 			if (oldolen != 0) {
5207 				bcopy((void *)((uintptr_t)udreq + ooff),
5208 				    (void *)((uintptr_t)udind +
5209 				    udind->OPT_offset),
5210 				    oldolen);
5211 			}
5212 			tl_fill_option(ui_mp->b_rptr + udind->OPT_offset +
5213 			    oldolen,
5214 			    DB_CREDDEF(mp, tep->te_credp), TLPID(mp, tep),
5215 			    peer_tep->te_flag, peer_tep->te_credp);
5216 		} else {
5217 			bcopy((void *)((uintptr_t)udreq + ooff),
5218 				(void *)((uintptr_t)udind + udind->OPT_offset),
5219 				olen);
5220 		}
5221 
5222 		/*
5223 		 * relink data blocks from mp to ui_mp
5224 		 */
5225 		ui_mp->b_cont = mp->b_cont;
5226 		freeb(mp);
5227 		mp = ui_mp;
5228 	}
5229 	/*
5230 	 * send indication message
5231 	 */
5232 	peer_tep->te_state = NEXTSTATE(TE_UNITDATA_IND, peer_tep->te_state);
5233 	putnext(peer_tep->te_rq, mp);
5234 }
5235 
5236 
5237 
5238 /*
5239  * Check if a given addr is in use.
5240  * Endpoint ptr returned or NULL if not found.
5241  * The name space is separate for each mode. This implies that
5242  * sockets get their own name space.
5243  */
5244 static tl_endpt_t *
5245 tl_find_peer(tl_endpt_t *tep, tl_addr_t *ap)
5246 {
5247 	tl_endpt_t *peer_tep = NULL;
5248 	int rc = mod_hash_find_cb(tep->te_addrhash, (mod_hash_key_t)ap,
5249 	    (mod_hash_val_t *)&peer_tep, tl_find_callback);
5250 
5251 	ASSERT(! IS_SOCKET(tep));
5252 
5253 	ASSERT(ap != NULL && ap->ta_alen > 0);
5254 	ASSERT(ap->ta_zoneid == tep->te_zoneid);
5255 	ASSERT(ap->ta_abuf != NULL);
5256 	ASSERT(EQUIV(rc == 0, peer_tep != NULL));
5257 	ASSERT(IMPLY(rc == 0,
5258 		(tep->te_zoneid == peer_tep->te_zoneid) &&
5259 		(tep->te_transport == peer_tep->te_transport)));
5260 
5261 	if ((rc == 0) && (peer_tep->te_closing)) {
5262 		tl_refrele(peer_tep);
5263 		peer_tep = NULL;
5264 	}
5265 
5266 	return (peer_tep);
5267 }
5268 
5269 /*
5270  * Find peer for a socket based on unix domain address.
5271  * For implicit addresses our peer can be found by minor number in ai hash. For
5272  * explici binds we look vnode address at addr_hash.
5273  */
5274 static tl_endpt_t *
5275 tl_sock_find_peer(tl_endpt_t *tep, soux_addr_t *ux_addr)
5276 {
5277 	tl_endpt_t *peer_tep = NULL;
5278 	mod_hash_t *hash = ux_addr->soua_magic == SOU_MAGIC_IMPLICIT ?
5279 	    tep->te_aihash : tep->te_addrhash;
5280 	int rc = mod_hash_find_cb(hash, (mod_hash_key_t)ux_addr->soua_vp,
5281 	    (mod_hash_val_t *)&peer_tep, tl_find_callback);
5282 
5283 	ASSERT(IS_SOCKET(tep));
5284 	ASSERT(EQUIV(rc == 0, peer_tep != NULL));
5285 	ASSERT(IMPLY(rc == 0,
5286 		(tep->te_zoneid == peer_tep->te_zoneid) &&
5287 		(tep->te_transport == peer_tep->te_transport)));
5288 	/*
5289 	 * Don't attempt to use closing peer.
5290 	 */
5291 	if ((peer_tep != NULL) &&
5292 	    (peer_tep->te_closing ||
5293 		(peer_tep->te_zoneid != tep->te_zoneid))) {
5294 		tl_refrele(peer_tep);
5295 		peer_tep = NULL;
5296 	}
5297 
5298 	return (peer_tep);
5299 }
5300 
5301 /*
5302  * Generate a free addr and return it in struct pointed by ap
5303  * but allocating space for address buffer.
5304  * The generated address will be at least 4 bytes long and, if req->ta_alen
5305  * exceeds 4 bytes, be req->ta_alen bytes long.
5306  *
5307  * If address is found it will be inserted in the hash.
5308  *
5309  * If req->ta_alen is larger than the default alen (4 bytes) the last
5310  * alen-4 bytes will always be the same as in req.
5311  *
5312  * Return 0 for failure.
5313  * Return non-zero for success.
5314  */
5315 static boolean_t
5316 tl_get_any_addr(tl_endpt_t *tep, tl_addr_t *req)
5317 {
5318 	t_scalar_t	alen;
5319 	uint32_t	loopcnt;	/* Limit loop to 2^32 */
5320 
5321 	ASSERT(tep->te_hash_hndl != NULL);
5322 	ASSERT(! IS_SOCKET(tep));
5323 
5324 	if (tep->te_hash_hndl == NULL)
5325 		return (B_FALSE);
5326 
5327 	/*
5328 	 * check if default addr is in use
5329 	 * if it is - bump it and try again
5330 	 */
5331 	if (req == NULL) {
5332 		alen = sizeof (uint32_t);
5333 	} else {
5334 		alen = max(req->ta_alen, sizeof (uint32_t));
5335 		ASSERT(tep->te_zoneid == req->ta_zoneid);
5336 	}
5337 
5338 	if (tep->te_alen < alen) {
5339 		void *abuf = kmem_zalloc((size_t)alen, KM_NOSLEEP);
5340 
5341 		/*
5342 		 * Not enough space in tep->ta_ap to hold the address,
5343 		 * allocate a bigger space.
5344 		 */
5345 		if (abuf == NULL)
5346 			return (B_FALSE);
5347 
5348 		if (tep->te_alen > 0)
5349 			kmem_free(tep->te_abuf, tep->te_alen);
5350 
5351 		tep->te_alen = alen;
5352 		tep->te_abuf = abuf;
5353 	}
5354 
5355 	/* Copy in the address in req */
5356 	if (req != NULL) {
5357 		ASSERT(alen >= req->ta_alen);
5358 		bcopy(req->ta_abuf, tep->te_abuf, (size_t)req->ta_alen);
5359 	}
5360 
5361 	/*
5362 	 * First try minor number then try default addresses.
5363 	 */
5364 	bcopy(&tep->te_minor, tep->te_abuf, sizeof (uint32_t));
5365 
5366 	for (loopcnt = 0; loopcnt < UINT32_MAX; loopcnt++) {
5367 		if (mod_hash_insert_reserve(tep->te_addrhash,
5368 			(mod_hash_key_t)&tep->te_ap, (mod_hash_val_t)tep,
5369 			tep->te_hash_hndl) == 0) {
5370 			/*
5371 			 * found free address
5372 			 */
5373 			tep->te_flag |= TL_ADDRHASHED;
5374 			tep->te_hash_hndl = NULL;
5375 
5376 			return (B_TRUE); /* successful return */
5377 		}
5378 		/*
5379 		 * Use default address.
5380 		 */
5381 		bcopy(&tep->te_defaddr, tep->te_abuf, sizeof (uint32_t));
5382 		atomic_add_32(&tep->te_defaddr, 1);
5383 	}
5384 
5385 	/*
5386 	 * Failed to find anything.
5387 	 */
5388 	(void) (STRLOG(TL_ID, -1, 1, SL_ERROR,
5389 		"tl_get_any_addr:looped 2^32 times"));
5390 	return (B_FALSE);
5391 }
5392 
5393 /*
5394  * reallocb + set r/w ptrs to reflect size.
5395  */
5396 static mblk_t *
5397 tl_resizemp(mblk_t *mp, ssize_t new_size)
5398 {
5399 	if ((mp = reallocb(mp, new_size, 0)) == NULL)
5400 		return (NULL);
5401 
5402 	mp->b_rptr = DB_BASE(mp);
5403 	mp->b_wptr = mp->b_rptr + new_size;
5404 	return (mp);
5405 }
5406 
5407 static void
5408 tl_cl_backenable(tl_endpt_t *tep)
5409 {
5410 	list_t *l = &tep->te_flowlist;
5411 	tl_endpt_t *elp;
5412 
5413 	ASSERT(IS_CLTS(tep));
5414 
5415 	for (elp = list_head(l); elp != NULL; elp = list_head(l)) {
5416 		ASSERT(tep->te_ser == elp->te_ser);
5417 		ASSERT(elp->te_flowq == tep);
5418 		if (! elp->te_closing)
5419 			TL_QENABLE(elp);
5420 		elp->te_flowq = NULL;
5421 		list_remove(l, elp);
5422 	}
5423 }
5424 
5425 /*
5426  * Unconnect endpoints.
5427  */
5428 static void
5429 tl_co_unconnect(tl_endpt_t *tep)
5430 {
5431 	tl_endpt_t	*peer_tep = tep->te_conp;
5432 	tl_endpt_t	*srv_tep = tep->te_oconp;
5433 	list_t		*l;
5434 	tl_icon_t  	*tip;
5435 	tl_endpt_t	*cl_tep;
5436 	mblk_t		*d_mp;
5437 
5438 	ASSERT(IS_COTS(tep));
5439 	/*
5440 	 * If our peer is closing, don't use it.
5441 	 */
5442 	if ((peer_tep != NULL) && peer_tep->te_closing) {
5443 		TL_UNCONNECT(tep->te_conp);
5444 		peer_tep = NULL;
5445 	}
5446 	if ((srv_tep != NULL) && srv_tep->te_closing) {
5447 		TL_UNCONNECT(tep->te_oconp);
5448 		srv_tep = NULL;
5449 	}
5450 
5451 	if (tep->te_nicon > 0) {
5452 		l = &tep->te_iconp;
5453 		/*
5454 		 * If incoming requests pending, change state
5455 		 * of clients on disconnect ind event and send
5456 		 * discon_ind pdu to modules above them
5457 		 * for server: all clients get disconnect
5458 		 */
5459 
5460 		while (tep->te_nicon > 0) {
5461 			tip    = list_head(l);
5462 			cl_tep = tip->ti_tep;
5463 
5464 			if (cl_tep == NULL) {
5465 				tl_freetip(tep, tip);
5466 				continue;
5467 			}
5468 
5469 			if (cl_tep->te_oconp != NULL) {
5470 				ASSERT(cl_tep != cl_tep->te_oconp);
5471 				TL_UNCONNECT(cl_tep->te_oconp);
5472 			}
5473 
5474 			if (cl_tep->te_closing) {
5475 				tl_freetip(tep, tip);
5476 				continue;
5477 			}
5478 
5479 			enableok(cl_tep->te_wq);
5480 			TL_QENABLE(cl_tep);
5481 			d_mp = tl_discon_ind_alloc(ECONNREFUSED, BADSEQNUM);
5482 			if (d_mp != NULL) {
5483 				cl_tep->te_state = TS_IDLE;
5484 				putnext(cl_tep->te_rq, d_mp);
5485 			} else {
5486 				(void) (STRLOG(TL_ID, tep->te_minor, 3,
5487 					    SL_TRACE|SL_ERROR,
5488 					    "tl_co_unconnect:icmng: "
5489 					    "allocb failure"));
5490 			}
5491 			tl_freetip(tep, tip);
5492 		}
5493 	} else if (srv_tep != NULL) {
5494 		/*
5495 		 * If outgoing request pending, change state
5496 		 * of server on discon ind event
5497 		 */
5498 
5499 		if (IS_SOCKET(tep) && !tl_disable_early_connect &&
5500 		    IS_COTSORD(srv_tep) &&
5501 		    !tl_icon_hasprim(srv_tep, tep->te_seqno, T_ORDREL_IND)) {
5502 			/*
5503 			 * Queue ordrel_ind for server to be picked up
5504 			 * when the connection is accepted.
5505 			 */
5506 			d_mp = tl_ordrel_ind_alloc();
5507 		} else {
5508 			/*
5509 			 * send discon_ind to server
5510 			 */
5511 			d_mp = tl_discon_ind_alloc(ECONNRESET, tep->te_seqno);
5512 		}
5513 		if (d_mp == NULL) {
5514 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5515 				SL_TRACE|SL_ERROR,
5516 				"tl_co_unconnect:outgoing:allocb failure"));
5517 			TL_UNCONNECT(tep->te_oconp);
5518 			goto discon_peer;
5519 		}
5520 
5521 		/*
5522 		 * If this is a socket the T_DISCON_IND is queued with
5523 		 * the T_CONN_IND. Otherwise the T_CONN_IND is removed
5524 		 * from the list of pending connections.
5525 		 * Note that when te_oconp is set the peer better have
5526 		 * a t_connind_t for the client.
5527 		 */
5528 		if (IS_SOCKET(tep) && !tl_disable_early_connect) {
5529 			/*
5530 			 * Queue the disconnection message.
5531 			 */
5532 			tl_icon_queuemsg(srv_tep, tep->te_seqno, d_mp);
5533 		} else {
5534 			tip = tl_icon_find(srv_tep, tep->te_seqno);
5535 			if (tip == NULL) {
5536 				freemsg(d_mp);
5537 			} else {
5538 				ASSERT(tep == tip->ti_tep);
5539 				ASSERT(tep->te_ser == srv_tep->te_ser);
5540 				/*
5541 				 * Delete tip from the server list.
5542 				 */
5543 				if (srv_tep->te_nicon == 1) {
5544 					srv_tep->te_state =
5545 					    NEXTSTATE(TE_DISCON_IND2,
5546 						srv_tep->te_state);
5547 				} else {
5548 					srv_tep->te_state =
5549 					    NEXTSTATE(TE_DISCON_IND3,
5550 						srv_tep->te_state);
5551 				}
5552 				ASSERT(*(uint32_t *)(d_mp->b_rptr) ==
5553 				    T_DISCON_IND);
5554 				putnext(srv_tep->te_rq, d_mp);
5555 				tl_freetip(srv_tep, tip);
5556 			}
5557 			TL_UNCONNECT(tep->te_oconp);
5558 			srv_tep = NULL;
5559 		}
5560 	} else if (peer_tep != NULL) {
5561 		/*
5562 		 * unconnect existing connection
5563 		 * If connected, change state of peer on
5564 		 * discon ind event and send discon ind pdu
5565 		 * to module above it
5566 		 */
5567 
5568 		ASSERT(tep->te_ser == peer_tep->te_ser);
5569 		if (IS_COTSORD(peer_tep) &&
5570 		    (peer_tep->te_state == TS_WIND_ORDREL ||
5571 		    peer_tep->te_state == TS_DATA_XFER)) {
5572 			/*
5573 			 * send ordrel ind
5574 			 */
5575 			(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE,
5576 			"tl_co_unconnect:connected: ordrel_ind state %d->%d",
5577 				peer_tep->te_state,
5578 				NEXTSTATE(TE_ORDREL_IND, peer_tep->te_state)));
5579 			d_mp = tl_ordrel_ind_alloc();
5580 			if (! d_mp) {
5581 				(void) (STRLOG(TL_ID, tep->te_minor, 3,
5582 				    SL_TRACE|SL_ERROR,
5583 				    "tl_co_unconnect:connected:"
5584 				    "allocb failure"));
5585 				/*
5586 				 * Continue with cleaning up peer as
5587 				 * this side may go away with the close
5588 				 */
5589 				TL_QENABLE(peer_tep);
5590 				goto discon_peer;
5591 			}
5592 			peer_tep->te_state =
5593 				NEXTSTATE(TE_ORDREL_IND, peer_tep->te_state);
5594 
5595 			putnext(peer_tep->te_rq, d_mp);
5596 			/*
5597 			 * Handle flow control case.  This will generate
5598 			 * a t_discon_ind message with reason 0 if there
5599 			 * is data queued on the write side.
5600 			 */
5601 			TL_QENABLE(peer_tep);
5602 		} else if (IS_COTSORD(peer_tep) &&
5603 		    peer_tep->te_state == TS_WREQ_ORDREL) {
5604 			/*
5605 			 * Sent an ordrel_ind. We send a discon with
5606 			 * with error 0 to inform that the peer is gone.
5607 			 */
5608 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5609 				SL_TRACE|SL_ERROR,
5610 				"tl_co_unconnect: discon in state %d",
5611 				tep->te_state));
5612 			tl_discon_ind(peer_tep, 0);
5613 		} else {
5614 			(void) (STRLOG(TL_ID, tep->te_minor, 3,
5615 				SL_TRACE|SL_ERROR,
5616 				"tl_co_unconnect: state %d", tep->te_state));
5617 			tl_discon_ind(peer_tep, ECONNRESET);
5618 		}
5619 
5620 discon_peer:
5621 		/*
5622 		 * Disconnect cross-pointers only for close
5623 		 */
5624 		if (tep->te_closing) {
5625 			peer_tep = tep->te_conp;
5626 			TL_REMOVE_PEER(peer_tep->te_conp);
5627 			TL_REMOVE_PEER(tep->te_conp);
5628 		}
5629 	}
5630 }
5631 
5632 /*
5633  * Note: The following routine does not recover from allocb()
5634  * failures
5635  * The reason should be from the <sys/errno.h> space.
5636  */
5637 static void
5638 tl_discon_ind(tl_endpt_t *tep, uint32_t reason)
5639 {
5640 	mblk_t *d_mp;
5641 
5642 	if (tep->te_closing)
5643 		return;
5644 
5645 	/*
5646 	 * flush the queues.
5647 	 */
5648 	flushq(tep->te_rq, FLUSHDATA);
5649 	(void) putnextctl1(tep->te_rq, M_FLUSH, FLUSHRW);
5650 
5651 	/*
5652 	 * send discon ind
5653 	 */
5654 	d_mp = tl_discon_ind_alloc(reason, tep->te_seqno);
5655 	if (! d_mp) {
5656 		(void) (STRLOG(TL_ID, tep->te_minor, 3, SL_TRACE|SL_ERROR,
5657 			"tl_discon_ind:allocb failure"));
5658 		return;
5659 	}
5660 	tep->te_state = TS_IDLE;
5661 	putnext(tep->te_rq, d_mp);
5662 }
5663 
5664 /*
5665  * Note: The following routine does not recover from allocb()
5666  * failures
5667  * The reason should be from the <sys/errno.h> space.
5668  */
5669 static mblk_t *
5670 tl_discon_ind_alloc(uint32_t reason, t_scalar_t seqnum)
5671 {
5672 	mblk_t *mp;
5673 	struct T_discon_ind *tdi;
5674 
5675 	if (mp = allocb(sizeof (struct T_discon_ind), BPRI_MED)) {
5676 		DB_TYPE(mp) = M_PROTO;
5677 		mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
5678 		tdi = (struct T_discon_ind *)mp->b_rptr;
5679 		tdi->PRIM_type = T_DISCON_IND;
5680 		tdi->DISCON_reason = reason;
5681 		tdi->SEQ_number = seqnum;
5682 	}
5683 	return (mp);
5684 }
5685 
5686 
5687 /*
5688  * Note: The following routine does not recover from allocb()
5689  * failures
5690  */
5691 static mblk_t *
5692 tl_ordrel_ind_alloc(void)
5693 {
5694 	mblk_t *mp;
5695 	struct T_ordrel_ind *toi;
5696 
5697 	if (mp = allocb(sizeof (struct T_ordrel_ind), BPRI_MED)) {
5698 		DB_TYPE(mp) = M_PROTO;
5699 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ordrel_ind);
5700 		toi = (struct T_ordrel_ind *)mp->b_rptr;
5701 		toi->PRIM_type = T_ORDREL_IND;
5702 	}
5703 	return (mp);
5704 }
5705 
5706 
5707 /*
5708  * Lookup the seqno in the list of queued connections.
5709  */
5710 static tl_icon_t *
5711 tl_icon_find(tl_endpt_t *tep, t_scalar_t seqno)
5712 {
5713 	list_t *l = &tep->te_iconp;
5714 	tl_icon_t *tip = list_head(l);
5715 
5716 	ASSERT(seqno != 0);
5717 
5718 	for (; tip != NULL && (tip->ti_seqno != seqno); tip = list_next(l, tip))
5719 		;
5720 
5721 	return (tip);
5722 }
5723 
5724 /*
5725  * Queue data for a given T_CONN_IND while verifying that redundant
5726  * messages, such as a T_ORDREL_IND after a T_DISCON_IND, are not queued.
5727  * Used when the originator of the connection closes.
5728  */
5729 static void
5730 tl_icon_queuemsg(tl_endpt_t *tep, t_scalar_t seqno, mblk_t *nmp)
5731 {
5732 	tl_icon_t		*tip;
5733 	mblk_t			**mpp, *mp;
5734 	int			prim, nprim;
5735 
5736 	if (nmp->b_datap->db_type == M_PROTO)
5737 		nprim = ((union T_primitives *)nmp->b_rptr)->type;
5738 	else
5739 		nprim = -1;	/* M_DATA */
5740 
5741 	tip = tl_icon_find(tep, seqno);
5742 	if (tip == NULL) {
5743 		freemsg(nmp);
5744 		return;
5745 	}
5746 
5747 	ASSERT(tip->ti_seqno != 0);
5748 	mpp = &tip->ti_mp;
5749 	while (*mpp != NULL) {
5750 		mp = *mpp;
5751 
5752 		if (mp->b_datap->db_type == M_PROTO)
5753 			prim = ((union T_primitives *)mp->b_rptr)->type;
5754 		else
5755 			prim = -1;	/* M_DATA */
5756 
5757 		/*
5758 		 * Allow nothing after a T_DISCON_IND
5759 		 */
5760 		if (prim == T_DISCON_IND) {
5761 			freemsg(nmp);
5762 			return;
5763 		}
5764 		/*
5765 		 * Only allow a T_DISCON_IND after an T_ORDREL_IND
5766 		 */
5767 		if (prim == T_ORDREL_IND && nprim != T_DISCON_IND) {
5768 			freemsg(nmp);
5769 			return;
5770 		}
5771 		mpp = &(mp->b_next);
5772 	}
5773 	*mpp = nmp;
5774 }
5775 
5776 /*
5777  * Verify if a certain TPI primitive exists on the connind queue.
5778  * Use prim -1 for M_DATA.
5779  * Return non-zero if found.
5780  */
5781 static boolean_t
5782 tl_icon_hasprim(tl_endpt_t *tep, t_scalar_t seqno, t_scalar_t prim)
5783 {
5784 	tl_icon_t *tip = tl_icon_find(tep, seqno);
5785 	boolean_t found = B_FALSE;
5786 
5787 	if (tip != NULL) {
5788 		mblk_t *mp;
5789 		for (mp = tip->ti_mp; !found && mp != NULL; mp = mp->b_next) {
5790 			found = (DB_TYPE(mp) == M_PROTO &&
5791 			    ((union T_primitives *)mp->b_rptr)->type == prim);
5792 		}
5793 	}
5794 	return (found);
5795 }
5796 
5797 /*
5798  * Send the b_next mblk chain that has accumulated before the connection
5799  * was accepted. Perform the necessary state transitions.
5800  */
5801 static void
5802 tl_icon_sendmsgs(tl_endpt_t *tep, mblk_t **mpp)
5803 {
5804 	mblk_t			*mp;
5805 	union T_primitives	*primp;
5806 
5807 	if (tep->te_closing) {
5808 		tl_icon_freemsgs(mpp);
5809 		return;
5810 	}
5811 
5812 	ASSERT(tep->te_state == TS_DATA_XFER);
5813 	ASSERT(tep->te_rq->q_first == NULL);
5814 
5815 	while ((mp = *mpp) != NULL) {
5816 		*mpp = mp->b_next;
5817 		mp->b_next = NULL;
5818 
5819 		ASSERT((DB_TYPE(mp) == M_DATA) || (DB_TYPE(mp) == M_PROTO));
5820 		switch (DB_TYPE(mp)) {
5821 		default:
5822 			freemsg(mp);
5823 			break;
5824 		case M_DATA:
5825 			putnext(tep->te_rq, mp);
5826 			break;
5827 		case M_PROTO:
5828 			primp = (union T_primitives *)mp->b_rptr;
5829 			switch (primp->type) {
5830 			case T_UNITDATA_IND:
5831 			case T_DATA_IND:
5832 			case T_OPTDATA_IND:
5833 			case T_EXDATA_IND:
5834 				putnext(tep->te_rq, mp);
5835 				break;
5836 			case T_ORDREL_IND:
5837 				tep->te_state = NEXTSTATE(TE_ORDREL_IND,
5838 							tep->te_state);
5839 				putnext(tep->te_rq, mp);
5840 				break;
5841 			case T_DISCON_IND:
5842 				tep->te_state = TS_IDLE;
5843 				putnext(tep->te_rq, mp);
5844 				break;
5845 			default:
5846 #ifdef DEBUG
5847 				cmn_err(CE_PANIC,
5848 					"tl_icon_sendmsgs: unknown primitive");
5849 #endif /* DEBUG */
5850 				freemsg(mp);
5851 				break;
5852 			}
5853 			break;
5854 		}
5855 	}
5856 }
5857 
5858 /*
5859  * Free the b_next mblk chain that has accumulated before the connection
5860  * was accepted.
5861  */
5862 static void
5863 tl_icon_freemsgs(mblk_t **mpp)
5864 {
5865 	mblk_t *mp;
5866 
5867 	while ((mp = *mpp) != NULL) {
5868 		*mpp = mp->b_next;
5869 		mp->b_next = NULL;
5870 		freemsg(mp);
5871 	}
5872 }
5873 
5874 /*
5875  * Send M_ERROR
5876  * Note: assumes caller ensured enough space in mp or enough
5877  *	memory available. Does not attempt recovery from allocb()
5878  *	failures
5879  */
5880 
5881 static void
5882 tl_merror(queue_t *wq, mblk_t *mp, int error)
5883 {
5884 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
5885 
5886 	if (tep->te_closing) {
5887 		freemsg(mp);
5888 		return;
5889 	}
5890 
5891 	(void) (STRLOG(TL_ID, tep->te_minor, 1,
5892 		    SL_TRACE|SL_ERROR,
5893 		    "tl_merror: tep=%p, err=%d", tep, error));
5894 
5895 	/*
5896 	 * flush all messages on queue. we are shutting
5897 	 * the stream down on fatal error
5898 	 */
5899 	flushq(wq, FLUSHALL);
5900 	if (IS_COTS(tep)) {
5901 		/* connection oriented - unconnect endpoints */
5902 		tl_co_unconnect(tep);
5903 	}
5904 	if (mp->b_cont) {
5905 		freemsg(mp->b_cont);
5906 		mp->b_cont = NULL;
5907 	}
5908 
5909 	if ((MBLKSIZE(mp) < 1) || (DB_REF(mp) > 1)) {
5910 		freemsg(mp);
5911 		mp = allocb(1, BPRI_HI);
5912 		if (!mp) {
5913 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
5914 				SL_TRACE|SL_ERROR,
5915 				"tl_merror:M_PROTO: out of memory"));
5916 			return;
5917 		}
5918 	}
5919 	if (mp) {
5920 		DB_TYPE(mp) = M_ERROR;
5921 		mp->b_rptr = DB_BASE(mp);
5922 		*mp->b_rptr = (char)error;
5923 		mp->b_wptr = mp->b_rptr + sizeof (char);
5924 		qreply(wq, mp);
5925 	} else {
5926 		(void) putnextctl1(tep->te_rq, M_ERROR, error);
5927 	}
5928 }
5929 
5930 static void
5931 tl_fill_option(uchar_t *buf, cred_t *cr, pid_t cpid, int flag, cred_t *pcr)
5932 {
5933 	if (flag & TL_SETCRED) {
5934 		struct opthdr *opt = (struct opthdr *)buf;
5935 		tl_credopt_t *tlcred;
5936 
5937 		opt->level = TL_PROT_LEVEL;
5938 		opt->name = TL_OPT_PEER_CRED;
5939 		opt->len = (t_uscalar_t)OPTLEN(sizeof (tl_credopt_t));
5940 
5941 		tlcred = (tl_credopt_t *)(opt + 1);
5942 		tlcred->tc_uid = crgetuid(cr);
5943 		tlcred->tc_gid = crgetgid(cr);
5944 		tlcred->tc_ruid = crgetruid(cr);
5945 		tlcred->tc_rgid = crgetrgid(cr);
5946 		tlcred->tc_suid = crgetsuid(cr);
5947 		tlcred->tc_sgid = crgetsgid(cr);
5948 		tlcred->tc_ngroups = crgetngroups(cr);
5949 	} else if (flag & TL_SETUCRED) {
5950 		struct opthdr *opt = (struct opthdr *)buf;
5951 
5952 		opt->level = TL_PROT_LEVEL;
5953 		opt->name = TL_OPT_PEER_UCRED;
5954 		opt->len = (t_uscalar_t)OPTLEN(ucredsize);
5955 
5956 		(void) cred2ucred(cr, cpid, (void *)(opt + 1), pcr);
5957 	} else {
5958 		struct T_opthdr *topt = (struct T_opthdr *)buf;
5959 		ASSERT(flag & TL_SOCKUCRED);
5960 
5961 		topt->level = SOL_SOCKET;
5962 		topt->name = SCM_UCRED;
5963 		topt->len = ucredsize + sizeof (*topt);
5964 		topt->status = 0;
5965 		(void) cred2ucred(cr, cpid, (void *)(topt + 1), pcr);
5966 	}
5967 }
5968 
5969 /* ARGSUSED */
5970 static int
5971 tl_default_opt(queue_t *wq, int level, int name, uchar_t *ptr)
5972 {
5973 	/* no default value processed in protocol specific code currently */
5974 	return (-1);
5975 }
5976 
5977 /* ARGSUSED */
5978 static int
5979 tl_get_opt(queue_t *wq, int level, int name, uchar_t *ptr)
5980 {
5981 	int len;
5982 	tl_endpt_t *tep;
5983 	int *valp;
5984 
5985 	tep = (tl_endpt_t *)wq->q_ptr;
5986 
5987 	len = 0;
5988 
5989 	/*
5990 	 * Assumes: option level and name sanity check done elsewhere
5991 	 */
5992 
5993 	switch (level) {
5994 	case SOL_SOCKET:
5995 		if (! IS_SOCKET(tep))
5996 			break;
5997 		switch (name) {
5998 		case SO_RECVUCRED:
5999 			len = sizeof (int);
6000 			valp = (int *)ptr;
6001 			*valp = (tep->te_flag & TL_SOCKUCRED) != 0;
6002 			break;
6003 		default:
6004 			break;
6005 		}
6006 		break;
6007 	case TL_PROT_LEVEL:
6008 		switch (name) {
6009 		case TL_OPT_PEER_CRED:
6010 		case TL_OPT_PEER_UCRED:
6011 			/*
6012 			 * option not supposed to retrieved directly
6013 			 * Only sent in T_CON_{IND,CON}, T_UNITDATA_IND
6014 			 * when some internal flags set by other options
6015 			 * Direct retrieval always designed to fail(ignored)
6016 			 * for this option.
6017 			 */
6018 			break;
6019 		}
6020 	}
6021 	return (len);
6022 }
6023 
6024 /* ARGSUSED */
6025 static int
6026 tl_set_opt(
6027 	queue_t		*wq,
6028 	uint_t		mgmt_flags,
6029 	int		level,
6030 	int		name,
6031 	uint_t		inlen,
6032 	uchar_t		*invalp,
6033 	uint_t		*outlenp,
6034 	uchar_t		*outvalp,
6035 	void		*thisdg_attrs,
6036 	cred_t		*cr,
6037 	mblk_t		*mblk)
6038 {
6039 	int error;
6040 	tl_endpt_t *tep;
6041 
6042 	tep = (tl_endpt_t *)wq->q_ptr;
6043 
6044 	error = 0;		/* NOERROR */
6045 
6046 	/*
6047 	 * Assumes: option level and name sanity checks done elsewhere
6048 	 */
6049 
6050 	switch (level) {
6051 	case SOL_SOCKET:
6052 		if (! IS_SOCKET(tep)) {
6053 			error = EINVAL;
6054 			break;
6055 		}
6056 		/*
6057 		 * TBD: fill in other AF_UNIX socket options and then stop
6058 		 * returning error.
6059 		 */
6060 		switch (name) {
6061 		case SO_RECVUCRED:
6062 			/*
6063 			 * We only support this for datagram sockets;
6064 			 * getpeerucred handles the connection oriented
6065 			 * transports.
6066 			 */
6067 			if (! IS_CLTS(tep)) {
6068 				error = EINVAL;
6069 				break;
6070 			}
6071 			if (*(int *)invalp == 0)
6072 				tep->te_flag &= ~TL_SOCKUCRED;
6073 			else
6074 				tep->te_flag |= TL_SOCKUCRED;
6075 			break;
6076 		default:
6077 			error = EINVAL;
6078 			break;
6079 		}
6080 		break;
6081 	case TL_PROT_LEVEL:
6082 		switch (name) {
6083 		case TL_OPT_PEER_CRED:
6084 		case TL_OPT_PEER_UCRED:
6085 			/*
6086 			 * option not supposed to be set directly
6087 			 * Its value in initialized for each endpoint at
6088 			 * driver open time.
6089 			 * Direct setting always designed to fail for this
6090 			 * option.
6091 			 */
6092 			(void) (STRLOG(TL_ID, tep->te_minor, 1,
6093 				    SL_TRACE|SL_ERROR,
6094 				    "tl_set_opt: option is not supported"));
6095 			error = EPROTO;
6096 			break;
6097 		}
6098 	}
6099 	return (error);
6100 }
6101 
6102 
6103 static void
6104 tl_timer(void *arg)
6105 {
6106 	queue_t *wq = arg;
6107 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6108 
6109 	ASSERT(tep);
6110 
6111 	tep->te_timoutid = 0;
6112 
6113 	enableok(wq);
6114 	/*
6115 	 * Note: can call wsrv directly here and save context switch
6116 	 * Consider change when qtimeout (not timeout) is active
6117 	 */
6118 	qenable(wq);
6119 }
6120 
6121 static void
6122 tl_buffer(void *arg)
6123 {
6124 	queue_t *wq = arg;
6125 	tl_endpt_t *tep = (tl_endpt_t *)wq->q_ptr;
6126 
6127 	ASSERT(tep);
6128 
6129 	tep->te_bufcid = 0;
6130 	tep->te_nowsrv = B_FALSE;
6131 
6132 	enableok(wq);
6133 	/*
6134 	 *  Note: can call wsrv directly here and save context switch
6135 	 * Consider change when qbufcall (not bufcall) is active
6136 	 */
6137 	qenable(wq);
6138 }
6139 
6140 static void
6141 tl_memrecover(queue_t *wq, mblk_t *mp, size_t size)
6142 {
6143 	tl_endpt_t *tep;
6144 
6145 	tep = (tl_endpt_t *)wq->q_ptr;
6146 
6147 	if (tep->te_closing) {
6148 		freemsg(mp);
6149 		return;
6150 	}
6151 	noenable(wq);
6152 
6153 	(void) insq(wq, wq->q_first, mp);
6154 
6155 	if (tep->te_bufcid || tep->te_timoutid) {
6156 		(void) (STRLOG(TL_ID, tep->te_minor, 1, SL_TRACE|SL_ERROR,
6157 			"tl_memrecover:recover %p pending", (void *)wq));
6158 		return;
6159 	}
6160 
6161 	if (!(tep->te_bufcid = qbufcall(wq, size, BPRI_MED, tl_buffer, wq))) {
6162 		tep->te_timoutid = qtimeout(wq, tl_timer, wq,
6163 		    drv_usectohz(TL_BUFWAIT));
6164 	}
6165 }
6166 
6167 static void
6168 tl_freetip(tl_endpt_t *tep, tl_icon_t *tip)
6169 {
6170 	ASSERT(tip->ti_seqno != 0);
6171 
6172 	if (tip->ti_mp != NULL) {
6173 		tl_icon_freemsgs(&tip->ti_mp);
6174 		tip->ti_mp = NULL;
6175 	}
6176 	if (tip->ti_tep != NULL) {
6177 		tl_refrele(tip->ti_tep);
6178 		tip->ti_tep = NULL;
6179 	}
6180 	list_remove(&tep->te_iconp, tip);
6181 	kmem_free(tip, sizeof (tl_icon_t));
6182 	tep->te_nicon--;
6183 }
6184 
6185 /*
6186  * Remove address from address hash.
6187  */
6188 static void
6189 tl_addr_unbind(tl_endpt_t *tep)
6190 {
6191 	tl_endpt_t *elp;
6192 
6193 	if (tep->te_flag & TL_ADDRHASHED) {
6194 		if (IS_SOCKET(tep)) {
6195 			(void) mod_hash_remove(tep->te_addrhash,
6196 			    (mod_hash_key_t)tep->te_vp,
6197 			    (mod_hash_val_t *)&elp);
6198 			tep->te_vp = (void *)(uintptr_t)tep->te_minor;
6199 			tep->te_magic = SOU_MAGIC_IMPLICIT;
6200 		} else {
6201 			(void) mod_hash_remove(tep->te_addrhash,
6202 			    (mod_hash_key_t)&tep->te_ap,
6203 			    (mod_hash_val_t *)&elp);
6204 			(void) kmem_free(tep->te_abuf, tep->te_alen);
6205 			tep->te_alen = -1;
6206 			tep->te_abuf = NULL;
6207 		}
6208 		tep->te_flag &= ~TL_ADDRHASHED;
6209 	}
6210 }
6211