xref: /titanic_41/usr/src/uts/common/io/scsi/targets/sd.c (revision fb3fb4f3d76d55b64440afd0af72775dfad3bd1d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 
34 
35 
36 #include <sys/scsi/scsi.h>
37 #include <sys/dkbad.h>
38 #include <sys/dklabel.h>
39 #include <sys/dkio.h>
40 #include <sys/fdio.h>
41 #include <sys/cdio.h>
42 #include <sys/mhd.h>
43 #include <sys/vtoc.h>
44 #include <sys/dktp/fdisk.h>
45 #include <sys/file.h>
46 #include <sys/stat.h>
47 #include <sys/kstat.h>
48 #include <sys/vtrace.h>
49 #include <sys/note.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/efi_partition.h>
53 #include <sys/var.h>
54 #include <sys/aio_req.h>
55 
56 #ifdef __lock_lint
57 #define	_LP64
58 #define	__amd64
59 #endif
60 
61 #if (defined(__fibre))
62 /* Note: is there a leadville version of the following? */
63 #include <sys/fc4/fcal_linkapp.h>
64 #endif
65 #include <sys/taskq.h>
66 #include <sys/uuid.h>
67 #include <sys/byteorder.h>
68 #include <sys/sdt.h>
69 
70 #include "sd_xbuf.h"
71 
72 #include <sys/scsi/targets/sddef.h>
73 
74 
75 /*
76  * Loadable module info.
77  */
78 #if (defined(__fibre))
79 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
80 char _depends_on[]	= "misc/scsi drv/fcp";
81 #else
82 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
83 char _depends_on[]	= "misc/scsi";
84 #endif
85 
86 /*
87  * Define the interconnect type, to allow the driver to distinguish
88  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
89  *
90  * This is really for backward compatability. In the future, the driver
91  * should actually check the "interconnect-type" property as reported by
92  * the HBA; however at present this property is not defined by all HBAs,
93  * so we will use this #define (1) to permit the driver to run in
94  * backward-compatability mode; and (2) to print a notification message
95  * if an FC HBA does not support the "interconnect-type" property.  The
96  * behavior of the driver will be to assume parallel SCSI behaviors unless
97  * the "interconnect-type" property is defined by the HBA **AND** has a
98  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
99  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
100  * Channel behaviors (as per the old ssd).  (Note that the
101  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
102  * will result in the driver assuming parallel SCSI behaviors.)
103  *
104  * (see common/sys/scsi/impl/services.h)
105  *
106  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
107  * since some FC HBAs may already support that, and there is some code in
108  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
109  * default would confuse that code, and besides things should work fine
110  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
111  * "interconnect_type" property.
112  */
113 #if (defined(__fibre))
114 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
115 #else
116 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
117 #endif
118 
119 /*
120  * The name of the driver, established from the module name in _init.
121  */
122 static	char *sd_label			= NULL;
123 
124 /*
125  * Driver name is unfortunately prefixed on some driver.conf properties.
126  */
127 #if (defined(__fibre))
128 #define	sd_max_xfer_size		ssd_max_xfer_size
129 #define	sd_config_list			ssd_config_list
130 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
131 static	char *sd_config_list		= "ssd-config-list";
132 #else
133 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
134 static	char *sd_config_list		= "sd-config-list";
135 #endif
136 
137 /*
138  * Driver global variables
139  */
140 
141 #if (defined(__fibre))
142 /*
143  * These #defines are to avoid namespace collisions that occur because this
144  * code is currently used to compile two seperate driver modules: sd and ssd.
145  * All global variables need to be treated this way (even if declared static)
146  * in order to allow the debugger to resolve the names properly.
147  * It is anticipated that in the near future the ssd module will be obsoleted,
148  * at which time this namespace issue should go away.
149  */
150 #define	sd_state			ssd_state
151 #define	sd_io_time			ssd_io_time
152 #define	sd_failfast_enable		ssd_failfast_enable
153 #define	sd_ua_retry_count		ssd_ua_retry_count
154 #define	sd_report_pfa			ssd_report_pfa
155 #define	sd_max_throttle			ssd_max_throttle
156 #define	sd_min_throttle			ssd_min_throttle
157 #define	sd_rot_delay			ssd_rot_delay
158 
159 #define	sd_retry_on_reservation_conflict	\
160 					ssd_retry_on_reservation_conflict
161 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
162 #define	sd_resv_conflict_name		ssd_resv_conflict_name
163 
164 #define	sd_component_mask		ssd_component_mask
165 #define	sd_level_mask			ssd_level_mask
166 #define	sd_debug_un			ssd_debug_un
167 #define	sd_error_level			ssd_error_level
168 
169 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
170 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
171 
172 #define	sd_tr				ssd_tr
173 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
174 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
175 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
176 #define	sd_check_media_time		ssd_check_media_time
177 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
178 #define	sd_label_mutex			ssd_label_mutex
179 #define	sd_detach_mutex			ssd_detach_mutex
180 #define	sd_log_buf			ssd_log_buf
181 #define	sd_log_mutex			ssd_log_mutex
182 
183 #define	sd_disk_table			ssd_disk_table
184 #define	sd_disk_table_size		ssd_disk_table_size
185 #define	sd_sense_mutex			ssd_sense_mutex
186 #define	sd_cdbtab			ssd_cdbtab
187 
188 #define	sd_cb_ops			ssd_cb_ops
189 #define	sd_ops				ssd_ops
190 #define	sd_additional_codes		ssd_additional_codes
191 
192 #define	sd_minor_data			ssd_minor_data
193 #define	sd_minor_data_efi		ssd_minor_data_efi
194 
195 #define	sd_tq				ssd_tq
196 #define	sd_wmr_tq			ssd_wmr_tq
197 #define	sd_taskq_name			ssd_taskq_name
198 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
199 #define	sd_taskq_minalloc		ssd_taskq_minalloc
200 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
201 
202 #define	sd_dump_format_string		ssd_dump_format_string
203 
204 #define	sd_iostart_chain		ssd_iostart_chain
205 #define	sd_iodone_chain			ssd_iodone_chain
206 
207 #define	sd_pm_idletime			ssd_pm_idletime
208 
209 #define	sd_force_pm_supported		ssd_force_pm_supported
210 
211 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
212 
213 #endif
214 
215 
216 #ifdef	SDDEBUG
217 int	sd_force_pm_supported		= 0;
218 #endif	/* SDDEBUG */
219 
220 void *sd_state				= NULL;
221 int sd_io_time				= SD_IO_TIME;
222 int sd_failfast_enable			= 1;
223 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
224 int sd_report_pfa			= 1;
225 int sd_max_throttle			= SD_MAX_THROTTLE;
226 int sd_min_throttle			= SD_MIN_THROTTLE;
227 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
228 int sd_qfull_throttle_enable		= TRUE;
229 
230 int sd_retry_on_reservation_conflict	= 1;
231 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
232 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
233 
234 static int sd_dtype_optical_bind	= -1;
235 
236 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
237 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
238 
239 /*
240  * Global data for debug logging. To enable debug printing, sd_component_mask
241  * and sd_level_mask should be set to the desired bit patterns as outlined in
242  * sddef.h.
243  */
244 uint_t	sd_component_mask		= 0x0;
245 uint_t	sd_level_mask			= 0x0;
246 struct	sd_lun *sd_debug_un		= NULL;
247 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
248 
249 /* Note: these may go away in the future... */
250 static uint32_t	sd_xbuf_active_limit	= 512;
251 static uint32_t sd_xbuf_reserve_limit	= 16;
252 
253 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
254 
255 /*
256  * Timer value used to reset the throttle after it has been reduced
257  * (typically in response to TRAN_BUSY or STATUS_QFULL)
258  */
259 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
260 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
261 
262 /*
263  * Interval value associated with the media change scsi watch.
264  */
265 static int sd_check_media_time		= 3000000;
266 
267 /*
268  * Wait value used for in progress operations during a DDI_SUSPEND
269  */
270 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
271 
272 /*
273  * sd_label_mutex protects a static buffer used in the disk label
274  * component of the driver
275  */
276 static kmutex_t sd_label_mutex;
277 
278 /*
279  * sd_detach_mutex protects un_layer_count, un_detach_count, and
280  * un_opens_in_progress in the sd_lun structure.
281  */
282 static kmutex_t sd_detach_mutex;
283 
284 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
285 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
286 
287 /*
288  * Global buffer and mutex for debug logging
289  */
290 static char	sd_log_buf[1024];
291 static kmutex_t	sd_log_mutex;
292 
293 
294 /*
295  * "Smart" Probe Caching structs, globals, #defines, etc.
296  * For parallel scsi and non-self-identify device only.
297  */
298 
299 /*
300  * The following resources and routines are implemented to support
301  * "smart" probing, which caches the scsi_probe() results in an array,
302  * in order to help avoid long probe times.
303  */
304 struct sd_scsi_probe_cache {
305 	struct	sd_scsi_probe_cache	*next;
306 	dev_info_t	*pdip;
307 	int		cache[NTARGETS_WIDE];
308 };
309 
310 static kmutex_t	sd_scsi_probe_cache_mutex;
311 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
312 
313 /*
314  * Really we only need protection on the head of the linked list, but
315  * better safe than sorry.
316  */
317 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
318     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
319 
320 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
321     sd_scsi_probe_cache_head))
322 
323 
324 /*
325  * Vendor specific data name property declarations
326  */
327 
328 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
329 
330 static sd_tunables seagate_properties = {
331 	SEAGATE_THROTTLE_VALUE,
332 	0,
333 	0,
334 	0,
335 	0,
336 	0,
337 	0,
338 	0,
339 	0
340 };
341 
342 
343 static sd_tunables fujitsu_properties = {
344 	FUJITSU_THROTTLE_VALUE,
345 	0,
346 	0,
347 	0,
348 	0,
349 	0,
350 	0,
351 	0,
352 	0
353 };
354 
355 static sd_tunables ibm_properties = {
356 	IBM_THROTTLE_VALUE,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0,
364 	0
365 };
366 
367 static sd_tunables purple_properties = {
368 	PURPLE_THROTTLE_VALUE,
369 	0,
370 	0,
371 	PURPLE_BUSY_RETRIES,
372 	PURPLE_RESET_RETRY_COUNT,
373 	PURPLE_RESERVE_RELEASE_TIME,
374 	0,
375 	0,
376 	0
377 };
378 
379 static sd_tunables sve_properties = {
380 	SVE_THROTTLE_VALUE,
381 	0,
382 	0,
383 	SVE_BUSY_RETRIES,
384 	SVE_RESET_RETRY_COUNT,
385 	SVE_RESERVE_RELEASE_TIME,
386 	SVE_MIN_THROTTLE_VALUE,
387 	SVE_DISKSORT_DISABLED_FLAG,
388 	0
389 };
390 
391 static sd_tunables maserati_properties = {
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0,
399 	MASERATI_DISKSORT_DISABLED_FLAG,
400 	MASERATI_LUN_RESET_ENABLED_FLAG
401 };
402 
403 static sd_tunables pirus_properties = {
404 	PIRUS_THROTTLE_VALUE,
405 	0,
406 	PIRUS_NRR_COUNT,
407 	PIRUS_BUSY_RETRIES,
408 	PIRUS_RESET_RETRY_COUNT,
409 	0,
410 	PIRUS_MIN_THROTTLE_VALUE,
411 	PIRUS_DISKSORT_DISABLED_FLAG,
412 	PIRUS_LUN_RESET_ENABLED_FLAG
413 };
414 
415 #endif
416 
417 #if (defined(__sparc) && !defined(__fibre)) || \
418 	(defined(__i386) || defined(__amd64))
419 
420 
421 static sd_tunables elite_properties = {
422 	ELITE_THROTTLE_VALUE,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables st31200n_properties = {
434 	ST31200N_THROTTLE_VALUE,
435 	0,
436 	0,
437 	0,
438 	0,
439 	0,
440 	0,
441 	0,
442 	0
443 };
444 
445 #endif /* Fibre or not */
446 
447 static sd_tunables lsi_properties_scsi = {
448 	LSI_THROTTLE_VALUE,
449 	0,
450 	LSI_NOTREADY_RETRIES,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0,
456 	0
457 };
458 
459 static sd_tunables symbios_properties = {
460 	SYMBIOS_THROTTLE_VALUE,
461 	0,
462 	SYMBIOS_NOTREADY_RETRIES,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0,
468 	0
469 };
470 
471 static sd_tunables lsi_properties = {
472 	0,
473 	0,
474 	LSI_NOTREADY_RETRIES,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0,
480 	0
481 };
482 
483 static sd_tunables lsi_oem_properties = {
484 	0,
485 	0,
486 	LSI_OEM_NOTREADY_RETRIES,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0,
492 	0
493 };
494 
495 
496 
497 #if (defined(SD_PROP_TST))
498 
499 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
500 #define	SD_TST_THROTTLE_VAL	16
501 #define	SD_TST_NOTREADY_VAL	12
502 #define	SD_TST_BUSY_VAL		60
503 #define	SD_TST_RST_RETRY_VAL	36
504 #define	SD_TST_RSV_REL_TIME	60
505 
506 static sd_tunables tst_properties = {
507 	SD_TST_THROTTLE_VAL,
508 	SD_TST_CTYPE_VAL,
509 	SD_TST_NOTREADY_VAL,
510 	SD_TST_BUSY_VAL,
511 	SD_TST_RST_RETRY_VAL,
512 	SD_TST_RSV_REL_TIME,
513 	0,
514 	0,
515 	0
516 };
517 #endif
518 
519 /* This is similiar to the ANSI toupper implementation */
520 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
521 
522 /*
523  * Static Driver Configuration Table
524  *
525  * This is the table of disks which need throttle adjustment (or, perhaps
526  * something else as defined by the flags at a future time.)  device_id
527  * is a string consisting of concatenated vid (vendor), pid (product/model)
528  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
529  * the parts of the string are as defined by the sizes in the scsi_inquiry
530  * structure.  Device type is searched as far as the device_id string is
531  * defined.  Flags defines which values are to be set in the driver from the
532  * properties list.
533  *
534  * Entries below which begin and end with a "*" are a special case.
535  * These do not have a specific vendor, and the string which follows
536  * can appear anywhere in the 16 byte PID portion of the inquiry data.
537  *
538  * Entries below which begin and end with a " " (blank) are a special
539  * case. The comparison function will treat multiple consecutive blanks
540  * as equivalent to a single blank. For example, this causes a
541  * sd_disk_table entry of " NEC CDROM " to match a device's id string
542  * of  "NEC       CDROM".
543  *
544  * Note: The MD21 controller type has been obsoleted.
545  *	 ST318202F is a Legacy device
546  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
547  *	 made with an FC connection. The entries here are a legacy.
548  */
549 static sd_disk_config_t sd_disk_table[] = {
550 #if defined(__fibre) || defined(__i386) || defined(__amd64)
551 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
552 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
553 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
554 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
555 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
556 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
557 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
558 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
559 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
560 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
561 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
562 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
563 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
564 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
565 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
566 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
567 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
568 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
569 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
570 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
571 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
572 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
573 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
574 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
575 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
576 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
577 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
578 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
579 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
580 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
581 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
582 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
583 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
584 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
585 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
586 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
587 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
588 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
589 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
590 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
591 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
592 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
593 			SD_CONF_BSET_BSY_RETRY_COUNT|
594 			SD_CONF_BSET_RST_RETRIES|
595 			SD_CONF_BSET_RSV_REL_TIME,
596 		&purple_properties },
597 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
598 		SD_CONF_BSET_BSY_RETRY_COUNT|
599 		SD_CONF_BSET_RST_RETRIES|
600 		SD_CONF_BSET_RSV_REL_TIME|
601 		SD_CONF_BSET_MIN_THROTTLE|
602 		SD_CONF_BSET_DISKSORT_DISABLED,
603 		&sve_properties },
604 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
605 			SD_CONF_BSET_BSY_RETRY_COUNT|
606 			SD_CONF_BSET_RST_RETRIES|
607 			SD_CONF_BSET_RSV_REL_TIME,
608 		&purple_properties },
609 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
610 		SD_CONF_BSET_LUN_RESET_ENABLED,
611 		&maserati_properties },
612 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
613 		SD_CONF_BSET_NRR_COUNT|
614 		SD_CONF_BSET_BSY_RETRY_COUNT|
615 		SD_CONF_BSET_RST_RETRIES|
616 		SD_CONF_BSET_MIN_THROTTLE|
617 		SD_CONF_BSET_DISKSORT_DISABLED|
618 		SD_CONF_BSET_LUN_RESET_ENABLED,
619 		&pirus_properties },
620 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
621 		SD_CONF_BSET_NRR_COUNT|
622 		SD_CONF_BSET_BSY_RETRY_COUNT|
623 		SD_CONF_BSET_RST_RETRIES|
624 		SD_CONF_BSET_MIN_THROTTLE|
625 		SD_CONF_BSET_DISKSORT_DISABLED|
626 		SD_CONF_BSET_LUN_RESET_ENABLED,
627 		&pirus_properties },
628 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
629 		SD_CONF_BSET_NRR_COUNT|
630 		SD_CONF_BSET_BSY_RETRY_COUNT|
631 		SD_CONF_BSET_RST_RETRIES|
632 		SD_CONF_BSET_MIN_THROTTLE|
633 		SD_CONF_BSET_DISKSORT_DISABLED|
634 		SD_CONF_BSET_LUN_RESET_ENABLED,
635 		&pirus_properties },
636 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
637 		SD_CONF_BSET_NRR_COUNT|
638 		SD_CONF_BSET_BSY_RETRY_COUNT|
639 		SD_CONF_BSET_RST_RETRIES|
640 		SD_CONF_BSET_MIN_THROTTLE|
641 		SD_CONF_BSET_DISKSORT_DISABLED|
642 		SD_CONF_BSET_LUN_RESET_ENABLED,
643 		&pirus_properties },
644 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
645 		SD_CONF_BSET_NRR_COUNT|
646 		SD_CONF_BSET_BSY_RETRY_COUNT|
647 		SD_CONF_BSET_RST_RETRIES|
648 		SD_CONF_BSET_MIN_THROTTLE|
649 		SD_CONF_BSET_DISKSORT_DISABLED|
650 		SD_CONF_BSET_LUN_RESET_ENABLED,
651 		&pirus_properties },
652 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
653 		SD_CONF_BSET_NRR_COUNT|
654 		SD_CONF_BSET_BSY_RETRY_COUNT|
655 		SD_CONF_BSET_RST_RETRIES|
656 		SD_CONF_BSET_MIN_THROTTLE|
657 		SD_CONF_BSET_DISKSORT_DISABLED|
658 		SD_CONF_BSET_LUN_RESET_ENABLED,
659 		&pirus_properties },
660 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
665 #endif /* fibre or NON-sparc platforms */
666 #if ((defined(__sparc) && !defined(__fibre)) ||\
667 	(defined(__i386) || defined(__amd64)))
668 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
669 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
670 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
671 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
672 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
673 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
674 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
675 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
676 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
677 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
678 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
679 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
680 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
681 	    &symbios_properties },
682 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
683 	    &lsi_properties_scsi },
684 #if defined(__i386) || defined(__amd64)
685 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
686 				    | SD_CONF_BSET_READSUB_BCD
687 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
688 				    | SD_CONF_BSET_NO_READ_HEADER
689 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
690 
691 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
692 				    | SD_CONF_BSET_READSUB_BCD
693 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
694 				    | SD_CONF_BSET_NO_READ_HEADER
695 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
696 #endif /* __i386 || __amd64 */
697 #endif /* sparc NON-fibre or NON-sparc platforms */
698 
699 #if (defined(SD_PROP_TST))
700 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
701 				| SD_CONF_BSET_CTYPE
702 				| SD_CONF_BSET_NRR_COUNT
703 				| SD_CONF_BSET_FAB_DEVID
704 				| SD_CONF_BSET_NOCACHE
705 				| SD_CONF_BSET_BSY_RETRY_COUNT
706 				| SD_CONF_BSET_PLAYMSF_BCD
707 				| SD_CONF_BSET_READSUB_BCD
708 				| SD_CONF_BSET_READ_TOC_TRK_BCD
709 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
710 				| SD_CONF_BSET_NO_READ_HEADER
711 				| SD_CONF_BSET_READ_CD_XD4
712 				| SD_CONF_BSET_RST_RETRIES
713 				| SD_CONF_BSET_RSV_REL_TIME
714 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
715 #endif
716 };
717 
718 static const int sd_disk_table_size =
719 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
720 
721 
722 /*
723  * Return codes of sd_uselabel().
724  */
725 #define	SD_LABEL_IS_VALID		0
726 #define	SD_LABEL_IS_INVALID		1
727 
728 #define	SD_INTERCONNECT_PARALLEL	0
729 #define	SD_INTERCONNECT_FABRIC		1
730 #define	SD_INTERCONNECT_FIBRE		2
731 #define	SD_INTERCONNECT_SSA		3
732 #define	SD_IS_PARALLEL_SCSI(un)		\
733 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
734 
735 /*
736  * Definitions used by device id registration routines
737  */
738 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
739 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
740 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
741 #define	WD_NODE			7	/* the whole disk minor */
742 
743 static kmutex_t sd_sense_mutex = {0};
744 
745 /*
746  * Macros for updates of the driver state
747  */
748 #define	New_state(un, s)        \
749 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
750 #define	Restore_state(un)	\
751 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
752 
753 static struct sd_cdbinfo sd_cdbtab[] = {
754 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
755 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
756 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
757 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
758 };
759 
760 /*
761  * Specifies the number of seconds that must have elapsed since the last
762  * cmd. has completed for a device to be declared idle to the PM framework.
763  */
764 static int sd_pm_idletime = 1;
765 
766 /*
767  * Internal function prototypes
768  */
769 
770 #if (defined(__fibre))
771 /*
772  * These #defines are to avoid namespace collisions that occur because this
773  * code is currently used to compile two seperate driver modules: sd and ssd.
774  * All function names need to be treated this way (even if declared static)
775  * in order to allow the debugger to resolve the names properly.
776  * It is anticipated that in the near future the ssd module will be obsoleted,
777  * at which time this ugliness should go away.
778  */
779 #define	sd_log_trace			ssd_log_trace
780 #define	sd_log_info			ssd_log_info
781 #define	sd_log_err			ssd_log_err
782 #define	sdprobe				ssdprobe
783 #define	sdinfo				ssdinfo
784 #define	sd_prop_op			ssd_prop_op
785 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
786 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
787 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
788 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
789 #define	sd_spin_up_unit			ssd_spin_up_unit
790 #define	sd_enable_descr_sense		ssd_enable_descr_sense
791 #define	sd_set_mmc_caps			ssd_set_mmc_caps
792 #define	sd_read_unit_properties		ssd_read_unit_properties
793 #define	sd_process_sdconf_file		ssd_process_sdconf_file
794 #define	sd_process_sdconf_table		ssd_process_sdconf_table
795 #define	sd_sdconf_id_match		ssd_sdconf_id_match
796 #define	sd_blank_cmp			ssd_blank_cmp
797 #define	sd_chk_vers1_data		ssd_chk_vers1_data
798 #define	sd_set_vers1_properties		ssd_set_vers1_properties
799 #define	sd_validate_geometry		ssd_validate_geometry
800 
801 #if defined(_SUNOS_VTOC_16)
802 #define	sd_convert_geometry		ssd_convert_geometry
803 #endif
804 
805 #define	sd_resync_geom_caches		ssd_resync_geom_caches
806 #define	sd_read_fdisk			ssd_read_fdisk
807 #define	sd_get_physical_geometry	ssd_get_physical_geometry
808 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
809 #define	sd_update_block_info		ssd_update_block_info
810 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
811 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
812 #define	sd_validate_efi			ssd_validate_efi
813 #define	sd_use_efi			ssd_use_efi
814 #define	sd_uselabel			ssd_uselabel
815 #define	sd_build_default_label		ssd_build_default_label
816 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
817 #define	sd_inq_fill			ssd_inq_fill
818 #define	sd_register_devid		ssd_register_devid
819 #define	sd_get_devid_block		ssd_get_devid_block
820 #define	sd_get_devid			ssd_get_devid
821 #define	sd_create_devid			ssd_create_devid
822 #define	sd_write_deviceid		ssd_write_deviceid
823 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
824 #define	sd_setup_pm			ssd_setup_pm
825 #define	sd_create_pm_components		ssd_create_pm_components
826 #define	sd_ddi_suspend			ssd_ddi_suspend
827 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
828 #define	sd_ddi_resume			ssd_ddi_resume
829 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
830 #define	sdpower				ssdpower
831 #define	sdattach			ssdattach
832 #define	sddetach			ssddetach
833 #define	sd_unit_attach			ssd_unit_attach
834 #define	sd_unit_detach			ssd_unit_detach
835 #define	sd_set_unit_attributes		ssd_set_unit_attributes
836 #define	sd_create_minor_nodes		ssd_create_minor_nodes
837 #define	sd_create_errstats		ssd_create_errstats
838 #define	sd_set_errstats			ssd_set_errstats
839 #define	sd_set_pstats			ssd_set_pstats
840 #define	sddump				ssddump
841 #define	sd_scsi_poll			ssd_scsi_poll
842 #define	sd_send_polled_RQS		ssd_send_polled_RQS
843 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
844 #define	sd_init_event_callbacks		ssd_init_event_callbacks
845 #define	sd_event_callback		ssd_event_callback
846 #define	sd_disable_caching		ssd_disable_caching
847 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
848 #define	sd_make_device			ssd_make_device
849 #define	sdopen				ssdopen
850 #define	sdclose				ssdclose
851 #define	sd_ready_and_valid		ssd_ready_and_valid
852 #define	sdmin				ssdmin
853 #define	sdread				ssdread
854 #define	sdwrite				ssdwrite
855 #define	sdaread				ssdaread
856 #define	sdawrite			ssdawrite
857 #define	sdstrategy			ssdstrategy
858 #define	sdioctl				ssdioctl
859 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
860 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
861 #define	sd_checksum_iostart		ssd_checksum_iostart
862 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
863 #define	sd_pm_iostart			ssd_pm_iostart
864 #define	sd_core_iostart			ssd_core_iostart
865 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
866 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
867 #define	sd_checksum_iodone		ssd_checksum_iodone
868 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
869 #define	sd_pm_iodone			ssd_pm_iodone
870 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
871 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
872 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
873 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
874 #define	sd_buf_iodone			ssd_buf_iodone
875 #define	sd_uscsi_strategy		ssd_uscsi_strategy
876 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
877 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
878 #define	sd_uscsi_iodone			ssd_uscsi_iodone
879 #define	sd_xbuf_strategy		ssd_xbuf_strategy
880 #define	sd_xbuf_init			ssd_xbuf_init
881 #define	sd_pm_entry			ssd_pm_entry
882 #define	sd_pm_exit			ssd_pm_exit
883 
884 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
885 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
886 
887 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
888 #define	sdintr				ssdintr
889 #define	sd_start_cmds			ssd_start_cmds
890 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
891 #define	sd_bioclone_alloc		ssd_bioclone_alloc
892 #define	sd_bioclone_free		ssd_bioclone_free
893 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
894 #define	sd_shadow_buf_free		ssd_shadow_buf_free
895 #define	sd_print_transport_rejected_message	\
896 					ssd_print_transport_rejected_message
897 #define	sd_retry_command		ssd_retry_command
898 #define	sd_set_retry_bp			ssd_set_retry_bp
899 #define	sd_send_request_sense_command	ssd_send_request_sense_command
900 #define	sd_start_retry_command		ssd_start_retry_command
901 #define	sd_start_direct_priority_command	\
902 					ssd_start_direct_priority_command
903 #define	sd_return_failed_command	ssd_return_failed_command
904 #define	sd_return_failed_command_no_restart	\
905 					ssd_return_failed_command_no_restart
906 #define	sd_return_command		ssd_return_command
907 #define	sd_sync_with_callback		ssd_sync_with_callback
908 #define	sdrunout			ssdrunout
909 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
910 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
911 #define	sd_reduce_throttle		ssd_reduce_throttle
912 #define	sd_restore_throttle		ssd_restore_throttle
913 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
914 #define	sd_init_cdb_limits		ssd_init_cdb_limits
915 #define	sd_pkt_status_good		ssd_pkt_status_good
916 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
917 #define	sd_pkt_status_busy		ssd_pkt_status_busy
918 #define	sd_pkt_status_reservation_conflict	\
919 					ssd_pkt_status_reservation_conflict
920 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
921 #define	sd_handle_request_sense		ssd_handle_request_sense
922 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
923 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
924 #define	sd_validate_sense_data		ssd_validate_sense_data
925 #define	sd_decode_sense			ssd_decode_sense
926 #define	sd_print_sense_msg		ssd_print_sense_msg
927 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
928 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
929 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
930 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
931 #define	sd_sense_key_medium_or_hardware_error	\
932 					ssd_sense_key_medium_or_hardware_error
933 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
934 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
935 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
936 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
937 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
938 #define	sd_sense_key_default		ssd_sense_key_default
939 #define	sd_print_retry_msg		ssd_print_retry_msg
940 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
941 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
942 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
943 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
944 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
945 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
946 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
947 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
948 #define	sd_pkt_reason_default		ssd_pkt_reason_default
949 #define	sd_reset_target			ssd_reset_target
950 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
951 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
952 #define	sd_taskq_create			ssd_taskq_create
953 #define	sd_taskq_delete			ssd_taskq_delete
954 #define	sd_media_change_task		ssd_media_change_task
955 #define	sd_handle_mchange		ssd_handle_mchange
956 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
957 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
958 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
959 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
960 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
961 					sd_send_scsi_feature_GET_CONFIGURATION
962 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
963 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
964 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
965 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
966 					ssd_send_scsi_PERSISTENT_RESERVE_IN
967 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
968 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
969 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
970 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
971 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
972 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
973 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
974 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
975 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
976 #define	sd_alloc_rqs			ssd_alloc_rqs
977 #define	sd_free_rqs			ssd_free_rqs
978 #define	sd_dump_memory			ssd_dump_memory
979 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
980 #define	sd_get_media_info		ssd_get_media_info
981 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
982 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
983 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
984 #define	sd_dkio_get_partition		ssd_dkio_get_partition
985 #define	sd_dkio_set_partition		ssd_dkio_set_partition
986 #define	sd_dkio_partition		ssd_dkio_partition
987 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
988 #define	sd_dkio_get_efi			ssd_dkio_get_efi
989 #define	sd_build_user_vtoc		ssd_build_user_vtoc
990 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
991 #define	sd_dkio_set_efi			ssd_dkio_set_efi
992 #define	sd_build_label_vtoc		ssd_build_label_vtoc
993 #define	sd_write_label			ssd_write_label
994 #define	sd_clear_vtoc			ssd_clear_vtoc
995 #define	sd_clear_efi			ssd_clear_efi
996 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
997 #define	sd_setup_next_xfer		ssd_setup_next_xfer
998 #define	sd_dkio_get_temp		ssd_dkio_get_temp
999 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1000 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1001 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1002 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1003 #define	sd_check_mhd			ssd_check_mhd
1004 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1005 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1006 #define	sd_sname			ssd_sname
1007 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1008 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1009 #define	sd_take_ownership		ssd_take_ownership
1010 #define	sd_reserve_release		ssd_reserve_release
1011 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1012 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1013 #define	sd_persistent_reservation_in_read_keys	\
1014 					ssd_persistent_reservation_in_read_keys
1015 #define	sd_persistent_reservation_in_read_resv	\
1016 					ssd_persistent_reservation_in_read_resv
1017 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1018 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1019 #define	sd_mhdioc_release		ssd_mhdioc_release
1020 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1021 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1022 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1023 #define	sr_change_blkmode		ssr_change_blkmode
1024 #define	sr_change_speed			ssr_change_speed
1025 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1026 #define	sr_pause_resume			ssr_pause_resume
1027 #define	sr_play_msf			ssr_play_msf
1028 #define	sr_play_trkind			ssr_play_trkind
1029 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1030 #define	sr_read_subchannel		ssr_read_subchannel
1031 #define	sr_read_tocentry		ssr_read_tocentry
1032 #define	sr_read_tochdr			ssr_read_tochdr
1033 #define	sr_read_cdda			ssr_read_cdda
1034 #define	sr_read_cdxa			ssr_read_cdxa
1035 #define	sr_read_mode1			ssr_read_mode1
1036 #define	sr_read_mode2			ssr_read_mode2
1037 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1038 #define	sr_sector_mode			ssr_sector_mode
1039 #define	sr_eject			ssr_eject
1040 #define	sr_ejected			ssr_ejected
1041 #define	sr_check_wp			ssr_check_wp
1042 #define	sd_check_media			ssd_check_media
1043 #define	sd_media_watch_cb		ssd_media_watch_cb
1044 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1045 #define	sr_volume_ctrl			ssr_volume_ctrl
1046 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1047 #define	sd_log_page_supported		ssd_log_page_supported
1048 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1049 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1050 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1051 #define	sd_range_lock			ssd_range_lock
1052 #define	sd_get_range			ssd_get_range
1053 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1054 #define	sd_range_unlock			ssd_range_unlock
1055 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1056 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1057 
1058 #define	sd_iostart_chain		ssd_iostart_chain
1059 #define	sd_iodone_chain			ssd_iodone_chain
1060 #define	sd_initpkt_map			ssd_initpkt_map
1061 #define	sd_destroypkt_map		ssd_destroypkt_map
1062 #define	sd_chain_type_map		ssd_chain_type_map
1063 #define	sd_chain_index_map		ssd_chain_index_map
1064 
1065 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1066 #define	sd_failfast_flushq		ssd_failfast_flushq
1067 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1068 
1069 #define	sd_is_lsi			ssd_is_lsi
1070 
1071 #endif	/* #if (defined(__fibre)) */
1072 
1073 
1074 int _init(void);
1075 int _fini(void);
1076 int _info(struct modinfo *modinfop);
1077 
1078 /*PRINTFLIKE3*/
1079 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1080 /*PRINTFLIKE3*/
1081 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1082 /*PRINTFLIKE3*/
1083 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1084 
1085 static int sdprobe(dev_info_t *devi);
1086 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1087     void **result);
1088 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1089     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1090 
1091 /*
1092  * Smart probe for parallel scsi
1093  */
1094 static void sd_scsi_probe_cache_init(void);
1095 static void sd_scsi_probe_cache_fini(void);
1096 static void sd_scsi_clear_probe_cache(void);
1097 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1098 
1099 static int	sd_spin_up_unit(struct sd_lun *un);
1100 #ifdef _LP64
1101 static void	sd_enable_descr_sense(struct sd_lun *un);
1102 #endif /* _LP64 */
1103 static void	sd_set_mmc_caps(struct sd_lun *un);
1104 
1105 static void sd_read_unit_properties(struct sd_lun *un);
1106 static int  sd_process_sdconf_file(struct sd_lun *un);
1107 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1108     int *data_list, sd_tunables *values);
1109 static void sd_process_sdconf_table(struct sd_lun *un);
1110 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1111 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1112 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1113 	int list_len, char *dataname_ptr);
1114 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1115     sd_tunables *prop_list);
1116 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1117 
1118 #if defined(_SUNOS_VTOC_16)
1119 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1120 #endif
1121 
1122 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1123 	int path_flag);
1124 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1125 	int path_flag);
1126 static void sd_get_physical_geometry(struct sd_lun *un,
1127 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1128 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1129 	int lbasize);
1130 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1131 static void sd_swap_efi_gpt(efi_gpt_t *);
1132 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1133 static int sd_validate_efi(efi_gpt_t *);
1134 static int sd_use_efi(struct sd_lun *, int);
1135 static void sd_build_default_label(struct sd_lun *un);
1136 
1137 #if defined(_FIRMWARE_NEEDS_FDISK)
1138 static int  sd_has_max_chs_vals(struct ipart *fdp);
1139 #endif
1140 static void sd_inq_fill(char *p, int l, char *s);
1141 
1142 
1143 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1144     int reservation_flag);
1145 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1146 static int  sd_get_devid(struct sd_lun *un);
1147 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1148 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1149 static int  sd_write_deviceid(struct sd_lun *un);
1150 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1151 static int  sd_check_vpd_page_support(struct sd_lun *un);
1152 
1153 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1154 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1155 
1156 static int  sd_ddi_suspend(dev_info_t *devi);
1157 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1158 static int  sd_ddi_resume(dev_info_t *devi);
1159 static int  sd_ddi_pm_resume(struct sd_lun *un);
1160 static int  sdpower(dev_info_t *devi, int component, int level);
1161 
1162 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1163 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1164 static int  sd_unit_attach(dev_info_t *devi);
1165 static int  sd_unit_detach(dev_info_t *devi);
1166 
1167 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1168 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1169 static void sd_create_errstats(struct sd_lun *un, int instance);
1170 static void sd_set_errstats(struct sd_lun *un);
1171 static void sd_set_pstats(struct sd_lun *un);
1172 
1173 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1174 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1175 static int  sd_send_polled_RQS(struct sd_lun *un);
1176 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1177 
1178 #if (defined(__fibre))
1179 /*
1180  * Event callbacks (photon)
1181  */
1182 static void sd_init_event_callbacks(struct sd_lun *un);
1183 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1184 #endif
1185 
1186 
1187 static int   sd_disable_caching(struct sd_lun *un);
1188 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1189 static dev_t sd_make_device(dev_info_t *devi);
1190 
1191 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1192 	uint64_t capacity);
1193 
1194 /*
1195  * Driver entry point functions.
1196  */
1197 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1198 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1199 static int  sd_ready_and_valid(struct sd_lun *un);
1200 
1201 static void sdmin(struct buf *bp);
1202 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1203 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1204 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1205 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1206 
1207 static int sdstrategy(struct buf *bp);
1208 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1209 
1210 /*
1211  * Function prototypes for layering functions in the iostart chain.
1212  */
1213 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1218 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1219 	struct buf *bp);
1220 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1221 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1222 
1223 /*
1224  * Function prototypes for layering functions in the iodone chain.
1225  */
1226 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1227 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1228 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1229 	struct buf *bp);
1230 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1231 	struct buf *bp);
1232 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1233 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1234 	struct buf *bp);
1235 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1236 
1237 /*
1238  * Prototypes for functions to support buf(9S) based IO.
1239  */
1240 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1241 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1242 static void sd_destroypkt_for_buf(struct buf *);
1243 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1244 	struct buf *bp, int flags,
1245 	int (*callback)(caddr_t), caddr_t callback_arg,
1246 	diskaddr_t lba, uint32_t blockcount);
1247 #if defined(__i386) || defined(__amd64)
1248 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1249 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1250 #endif /* defined(__i386) || defined(__amd64) */
1251 
1252 /*
1253  * Prototypes for functions to support USCSI IO.
1254  */
1255 static int sd_uscsi_strategy(struct buf *bp);
1256 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1257 static void sd_destroypkt_for_uscsi(struct buf *);
1258 
1259 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1260 	uchar_t chain_type, void *pktinfop);
1261 
1262 static int  sd_pm_entry(struct sd_lun *un);
1263 static void sd_pm_exit(struct sd_lun *un);
1264 
1265 static void sd_pm_idletimeout_handler(void *arg);
1266 
1267 /*
1268  * sd_core internal functions (used at the sd_core_io layer).
1269  */
1270 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1271 static void sdintr(struct scsi_pkt *pktp);
1272 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1273 
1274 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1275 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1276 	int path_flag);
1277 
1278 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1279 	daddr_t blkno, int (*func)(struct buf *));
1280 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1281 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1282 static void sd_bioclone_free(struct buf *bp);
1283 static void sd_shadow_buf_free(struct buf *bp);
1284 
1285 static void sd_print_transport_rejected_message(struct sd_lun *un,
1286 	struct sd_xbuf *xp, int code);
1287 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1288     void *arg, int code);
1289 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1290     void *arg, int code);
1291 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1292     void *arg, int code);
1293 
1294 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1295 	int retry_check_flag,
1296 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1297 		int c),
1298 	void *user_arg, int failure_code,  clock_t retry_delay,
1299 	void (*statp)(kstat_io_t *));
1300 
1301 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1302 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1303 
1304 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1305 	struct scsi_pkt *pktp);
1306 static void sd_start_retry_command(void *arg);
1307 static void sd_start_direct_priority_command(void *arg);
1308 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1309 	int errcode);
1310 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1311 	struct buf *bp, int errcode);
1312 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1313 static void sd_sync_with_callback(struct sd_lun *un);
1314 static int sdrunout(caddr_t arg);
1315 
1316 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1317 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1318 
1319 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1320 static void sd_restore_throttle(void *arg);
1321 
1322 static void sd_init_cdb_limits(struct sd_lun *un);
1323 
1324 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1325 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1326 
1327 /*
1328  * Error handling functions
1329  */
1330 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1334 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1335 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 
1339 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1340 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1341 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1342 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1344 	struct sd_xbuf *xp);
1345 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1346 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 
1348 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1349 	void *arg, int code);
1350 static diskaddr_t sd_extract_sense_info_descr(
1351 	struct scsi_descr_sense_hdr *sdsp);
1352 
1353 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1356 	uint8_t asc,
1357 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1358 static void sd_sense_key_not_ready(struct sd_lun *un,
1359 	uint8_t asc, uint8_t ascq,
1360 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1361 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1362 	int sense_key, uint8_t asc,
1363 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_sense_key_unit_attention(struct sd_lun *un,
1367 	uint8_t asc,
1368 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1369 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1370 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_sense_key_default(struct sd_lun *un,
1376 	int sense_key,
1377 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1378 
1379 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1380 	void *arg, int flag);
1381 
1382 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1385 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1389 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1390 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1391 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1392 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1393 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1394 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1395 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1396 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1397 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1398 
1399 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1400 
1401 static void sd_start_stop_unit_callback(void *arg);
1402 static void sd_start_stop_unit_task(void *arg);
1403 
1404 static void sd_taskq_create(void);
1405 static void sd_taskq_delete(void);
1406 static void sd_media_change_task(void *arg);
1407 
1408 static int sd_handle_mchange(struct sd_lun *un);
1409 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1410 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1411 	uint32_t *lbap, int path_flag);
1412 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1413 	uint32_t *lbap, int path_flag);
1414 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1415 	int path_flag);
1416 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1417 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1418 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1419 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1420 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1421 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1422 	uchar_t usr_cmd, uchar_t *usr_bufp);
1423 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1424 	struct dk_callback *dkc);
1425 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1426 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1427 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1428 	uchar_t *bufaddr, uint_t buflen);
1429 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1430 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1431 	uchar_t *bufaddr, uint_t buflen, char feature);
1432 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1433 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1434 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1435 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1436 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1437 	size_t buflen, daddr_t start_block, int path_flag);
1438 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1439 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1440 	path_flag)
1441 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1442 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1443 	path_flag)
1444 
1445 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1446 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1447 	uint16_t param_ptr, int path_flag);
1448 
1449 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1450 static void sd_free_rqs(struct sd_lun *un);
1451 
1452 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1453 	uchar_t *data, int len, int fmt);
1454 static void sd_panic_for_res_conflict(struct sd_lun *un);
1455 
1456 /*
1457  * Disk Ioctl Function Prototypes
1458  */
1459 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1460 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1461 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1462 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1463 	int geom_validated);
1464 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1465 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1466 	int geom_validated);
1467 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1468 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1469 	int geom_validated);
1470 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1471 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1472 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1473 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1474 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1475 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1476 static int sd_write_label(dev_t dev);
1477 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1478 static void sd_clear_vtoc(struct sd_lun *un);
1479 static void sd_clear_efi(struct sd_lun *un);
1480 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1481 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1482 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1483 static void sd_setup_default_geometry(struct sd_lun *un);
1484 #if defined(__i386) || defined(__amd64)
1485 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1486 #endif
1487 
1488 /*
1489  * Multi-host Ioctl Prototypes
1490  */
1491 static int sd_check_mhd(dev_t dev, int interval);
1492 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1493 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1494 static char *sd_sname(uchar_t status);
1495 static void sd_mhd_resvd_recover(void *arg);
1496 static void sd_resv_reclaim_thread();
1497 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1498 static int sd_reserve_release(dev_t dev, int cmd);
1499 static void sd_rmv_resv_reclaim_req(dev_t dev);
1500 static void sd_mhd_reset_notify_cb(caddr_t arg);
1501 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1502 	mhioc_inkeys_t *usrp, int flag);
1503 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1504 	mhioc_inresvs_t *usrp, int flag);
1505 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1506 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1507 static int sd_mhdioc_release(dev_t dev);
1508 static int sd_mhdioc_register_devid(dev_t dev);
1509 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1510 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1511 
1512 /*
1513  * SCSI removable prototypes
1514  */
1515 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1516 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1517 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1518 static int sr_pause_resume(dev_t dev, int mode);
1519 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1520 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1521 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1522 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1523 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1524 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1525 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1526 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1527 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1528 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1529 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1530 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1531 static int sr_eject(dev_t dev);
1532 static void sr_ejected(register struct sd_lun *un);
1533 static int sr_check_wp(dev_t dev);
1534 static int sd_check_media(dev_t dev, enum dkio_state state);
1535 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1536 static void sd_delayed_cv_broadcast(void *arg);
1537 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1538 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1539 
1540 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1541 
1542 /*
1543  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1544  */
1545 static void sd_check_for_writable_cd(struct sd_lun *un);
1546 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1547 static void sd_wm_cache_destructor(void *wm, void *un);
1548 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1549 	daddr_t endb, ushort_t typ);
1550 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1551 	daddr_t endb);
1552 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1553 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1554 static void sd_read_modify_write_task(void * arg);
1555 static int
1556 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1557 	struct buf **bpp);
1558 
1559 
1560 /*
1561  * Function prototypes for failfast support.
1562  */
1563 static void sd_failfast_flushq(struct sd_lun *un);
1564 static int sd_failfast_flushq_callback(struct buf *bp);
1565 
1566 /*
1567  * Function prototypes to check for lsi devices
1568  */
1569 static void sd_is_lsi(struct sd_lun *un);
1570 
1571 /*
1572  * Function prototypes for x86 support
1573  */
1574 #if defined(__i386) || defined(__amd64)
1575 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1576 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1577 #endif
1578 
1579 /*
1580  * Constants for failfast support:
1581  *
1582  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1583  * failfast processing being performed.
1584  *
1585  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1586  * failfast processing on all bufs with B_FAILFAST set.
1587  */
1588 
1589 #define	SD_FAILFAST_INACTIVE		0
1590 #define	SD_FAILFAST_ACTIVE		1
1591 
1592 /*
1593  * Bitmask to control behavior of buf(9S) flushes when a transition to
1594  * the failfast state occurs. Optional bits include:
1595  *
1596  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1597  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1598  * be flushed.
1599  *
1600  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1601  * driver, in addition to the regular wait queue. This includes the xbuf
1602  * queues. When clear, only the driver's wait queue will be flushed.
1603  */
1604 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1605 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1606 
1607 /*
1608  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1609  * to flush all queues within the driver.
1610  */
1611 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1612 
1613 
1614 /*
1615  * SD Testing Fault Injection
1616  */
1617 #ifdef SD_FAULT_INJECTION
1618 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1619 static void sd_faultinjection(struct scsi_pkt *pktp);
1620 static void sd_injection_log(char *buf, struct sd_lun *un);
1621 #endif
1622 
1623 /*
1624  * Device driver ops vector
1625  */
1626 static struct cb_ops sd_cb_ops = {
1627 	sdopen,			/* open */
1628 	sdclose,		/* close */
1629 	sdstrategy,		/* strategy */
1630 	nodev,			/* print */
1631 	sddump,			/* dump */
1632 	sdread,			/* read */
1633 	sdwrite,		/* write */
1634 	sdioctl,		/* ioctl */
1635 	nodev,			/* devmap */
1636 	nodev,			/* mmap */
1637 	nodev,			/* segmap */
1638 	nochpoll,		/* poll */
1639 	sd_prop_op,		/* cb_prop_op */
1640 	0,			/* streamtab  */
1641 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1642 	CB_REV,			/* cb_rev */
1643 	sdaread, 		/* async I/O read entry point */
1644 	sdawrite		/* async I/O write entry point */
1645 };
1646 
1647 static struct dev_ops sd_ops = {
1648 	DEVO_REV,		/* devo_rev, */
1649 	0,			/* refcnt  */
1650 	sdinfo,			/* info */
1651 	nulldev,		/* identify */
1652 	sdprobe,		/* probe */
1653 	sdattach,		/* attach */
1654 	sddetach,		/* detach */
1655 	nodev,			/* reset */
1656 	&sd_cb_ops,		/* driver operations */
1657 	NULL,			/* bus operations */
1658 	sdpower			/* power */
1659 };
1660 
1661 
1662 /*
1663  * This is the loadable module wrapper.
1664  */
1665 #include <sys/modctl.h>
1666 
1667 static struct modldrv modldrv = {
1668 	&mod_driverops,		/* Type of module. This one is a driver */
1669 	SD_MODULE_NAME,		/* Module name. */
1670 	&sd_ops			/* driver ops */
1671 };
1672 
1673 
1674 static struct modlinkage modlinkage = {
1675 	MODREV_1,
1676 	&modldrv,
1677 	NULL
1678 };
1679 
1680 
1681 static struct scsi_asq_key_strings sd_additional_codes[] = {
1682 	0x81, 0, "Logical Unit is Reserved",
1683 	0x85, 0, "Audio Address Not Valid",
1684 	0xb6, 0, "Media Load Mechanism Failed",
1685 	0xB9, 0, "Audio Play Operation Aborted",
1686 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1687 	0x53, 2, "Medium removal prevented",
1688 	0x6f, 0, "Authentication failed during key exchange",
1689 	0x6f, 1, "Key not present",
1690 	0x6f, 2, "Key not established",
1691 	0x6f, 3, "Read without proper authentication",
1692 	0x6f, 4, "Mismatched region to this logical unit",
1693 	0x6f, 5, "Region reset count error",
1694 	0xffff, 0x0, NULL
1695 };
1696 
1697 
1698 /*
1699  * Struct for passing printing information for sense data messages
1700  */
1701 struct sd_sense_info {
1702 	int	ssi_severity;
1703 	int	ssi_pfa_flag;
1704 };
1705 
1706 /*
1707  * Table of function pointers for iostart-side routines. Seperate "chains"
1708  * of layered function calls are formed by placing the function pointers
1709  * sequentially in the desired order. Functions are called according to an
1710  * incrementing table index ordering. The last function in each chain must
1711  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1712  * in the sd_iodone_chain[] array.
1713  *
1714  * Note: It may seem more natural to organize both the iostart and iodone
1715  * functions together, into an array of structures (or some similar
1716  * organization) with a common index, rather than two seperate arrays which
1717  * must be maintained in synchronization. The purpose of this division is
1718  * to achiece improved performance: individual arrays allows for more
1719  * effective cache line utilization on certain platforms.
1720  */
1721 
1722 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1723 
1724 
1725 static sd_chain_t sd_iostart_chain[] = {
1726 
1727 	/* Chain for buf IO for disk drive targets (PM enabled) */
1728 	sd_mapblockaddr_iostart,	/* Index: 0 */
1729 	sd_pm_iostart,			/* Index: 1 */
1730 	sd_core_iostart,		/* Index: 2 */
1731 
1732 	/* Chain for buf IO for disk drive targets (PM disabled) */
1733 	sd_mapblockaddr_iostart,	/* Index: 3 */
1734 	sd_core_iostart,		/* Index: 4 */
1735 
1736 	/* Chain for buf IO for removable-media targets (PM enabled) */
1737 	sd_mapblockaddr_iostart,	/* Index: 5 */
1738 	sd_mapblocksize_iostart,	/* Index: 6 */
1739 	sd_pm_iostart,			/* Index: 7 */
1740 	sd_core_iostart,		/* Index: 8 */
1741 
1742 	/* Chain for buf IO for removable-media targets (PM disabled) */
1743 	sd_mapblockaddr_iostart,	/* Index: 9 */
1744 	sd_mapblocksize_iostart,	/* Index: 10 */
1745 	sd_core_iostart,		/* Index: 11 */
1746 
1747 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1748 	sd_mapblockaddr_iostart,	/* Index: 12 */
1749 	sd_checksum_iostart,		/* Index: 13 */
1750 	sd_pm_iostart,			/* Index: 14 */
1751 	sd_core_iostart,		/* Index: 15 */
1752 
1753 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1754 	sd_mapblockaddr_iostart,	/* Index: 16 */
1755 	sd_checksum_iostart,		/* Index: 17 */
1756 	sd_core_iostart,		/* Index: 18 */
1757 
1758 	/* Chain for USCSI commands (all targets) */
1759 	sd_pm_iostart,			/* Index: 19 */
1760 	sd_core_iostart,		/* Index: 20 */
1761 
1762 	/* Chain for checksumming USCSI commands (all targets) */
1763 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1764 	sd_pm_iostart,			/* Index: 22 */
1765 	sd_core_iostart,		/* Index: 23 */
1766 
1767 	/* Chain for "direct" USCSI commands (all targets) */
1768 	sd_core_iostart,		/* Index: 24 */
1769 
1770 	/* Chain for "direct priority" USCSI commands (all targets) */
1771 	sd_core_iostart,		/* Index: 25 */
1772 };
1773 
1774 /*
1775  * Macros to locate the first function of each iostart chain in the
1776  * sd_iostart_chain[] array. These are located by the index in the array.
1777  */
1778 #define	SD_CHAIN_DISK_IOSTART			0
1779 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1780 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1781 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1782 #define	SD_CHAIN_CHKSUM_IOSTART			12
1783 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1784 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1785 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1786 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1787 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1788 
1789 
1790 /*
1791  * Table of function pointers for the iodone-side routines for the driver-
1792  * internal layering mechanism.  The calling sequence for iodone routines
1793  * uses a decrementing table index, so the last routine called in a chain
1794  * must be at the lowest array index location for that chain.  The last
1795  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1796  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1797  * of the functions in an iodone side chain must correspond to the ordering
1798  * of the iostart routines for that chain.  Note that there is no iodone
1799  * side routine that corresponds to sd_core_iostart(), so there is no
1800  * entry in the table for this.
1801  */
1802 
1803 static sd_chain_t sd_iodone_chain[] = {
1804 
1805 	/* Chain for buf IO for disk drive targets (PM enabled) */
1806 	sd_buf_iodone,			/* Index: 0 */
1807 	sd_mapblockaddr_iodone,		/* Index: 1 */
1808 	sd_pm_iodone,			/* Index: 2 */
1809 
1810 	/* Chain for buf IO for disk drive targets (PM disabled) */
1811 	sd_buf_iodone,			/* Index: 3 */
1812 	sd_mapblockaddr_iodone,		/* Index: 4 */
1813 
1814 	/* Chain for buf IO for removable-media targets (PM enabled) */
1815 	sd_buf_iodone,			/* Index: 5 */
1816 	sd_mapblockaddr_iodone,		/* Index: 6 */
1817 	sd_mapblocksize_iodone,		/* Index: 7 */
1818 	sd_pm_iodone,			/* Index: 8 */
1819 
1820 	/* Chain for buf IO for removable-media targets (PM disabled) */
1821 	sd_buf_iodone,			/* Index: 9 */
1822 	sd_mapblockaddr_iodone,		/* Index: 10 */
1823 	sd_mapblocksize_iodone,		/* Index: 11 */
1824 
1825 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1826 	sd_buf_iodone,			/* Index: 12 */
1827 	sd_mapblockaddr_iodone,		/* Index: 13 */
1828 	sd_checksum_iodone,		/* Index: 14 */
1829 	sd_pm_iodone,			/* Index: 15 */
1830 
1831 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1832 	sd_buf_iodone,			/* Index: 16 */
1833 	sd_mapblockaddr_iodone,		/* Index: 17 */
1834 	sd_checksum_iodone,		/* Index: 18 */
1835 
1836 	/* Chain for USCSI commands (non-checksum targets) */
1837 	sd_uscsi_iodone,		/* Index: 19 */
1838 	sd_pm_iodone,			/* Index: 20 */
1839 
1840 	/* Chain for USCSI commands (checksum targets) */
1841 	sd_uscsi_iodone,		/* Index: 21 */
1842 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1843 	sd_pm_iodone,			/* Index: 22 */
1844 
1845 	/* Chain for "direct" USCSI commands (all targets) */
1846 	sd_uscsi_iodone,		/* Index: 24 */
1847 
1848 	/* Chain for "direct priority" USCSI commands (all targets) */
1849 	sd_uscsi_iodone,		/* Index: 25 */
1850 };
1851 
1852 
1853 /*
1854  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1855  * each iodone-side chain. These are located by the array index, but as the
1856  * iodone side functions are called in a decrementing-index order, the
1857  * highest index number in each chain must be specified (as these correspond
1858  * to the first function in the iodone chain that will be called by the core
1859  * at IO completion time).
1860  */
1861 
1862 #define	SD_CHAIN_DISK_IODONE			2
1863 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1864 #define	SD_CHAIN_RMMEDIA_IODONE			8
1865 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1866 #define	SD_CHAIN_CHKSUM_IODONE			15
1867 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1868 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1869 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1870 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1871 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1872 
1873 
1874 
1875 
1876 /*
1877  * Array to map a layering chain index to the appropriate initpkt routine.
1878  * The redundant entries are present so that the index used for accessing
1879  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1880  * with this table as well.
1881  */
1882 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1883 
1884 static sd_initpkt_t	sd_initpkt_map[] = {
1885 
1886 	/* Chain for buf IO for disk drive targets (PM enabled) */
1887 	sd_initpkt_for_buf,		/* Index: 0 */
1888 	sd_initpkt_for_buf,		/* Index: 1 */
1889 	sd_initpkt_for_buf,		/* Index: 2 */
1890 
1891 	/* Chain for buf IO for disk drive targets (PM disabled) */
1892 	sd_initpkt_for_buf,		/* Index: 3 */
1893 	sd_initpkt_for_buf,		/* Index: 4 */
1894 
1895 	/* Chain for buf IO for removable-media targets (PM enabled) */
1896 	sd_initpkt_for_buf,		/* Index: 5 */
1897 	sd_initpkt_for_buf,		/* Index: 6 */
1898 	sd_initpkt_for_buf,		/* Index: 7 */
1899 	sd_initpkt_for_buf,		/* Index: 8 */
1900 
1901 	/* Chain for buf IO for removable-media targets (PM disabled) */
1902 	sd_initpkt_for_buf,		/* Index: 9 */
1903 	sd_initpkt_for_buf,		/* Index: 10 */
1904 	sd_initpkt_for_buf,		/* Index: 11 */
1905 
1906 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1907 	sd_initpkt_for_buf,		/* Index: 12 */
1908 	sd_initpkt_for_buf,		/* Index: 13 */
1909 	sd_initpkt_for_buf,		/* Index: 14 */
1910 	sd_initpkt_for_buf,		/* Index: 15 */
1911 
1912 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1913 	sd_initpkt_for_buf,		/* Index: 16 */
1914 	sd_initpkt_for_buf,		/* Index: 17 */
1915 	sd_initpkt_for_buf,		/* Index: 18 */
1916 
1917 	/* Chain for USCSI commands (non-checksum targets) */
1918 	sd_initpkt_for_uscsi,		/* Index: 19 */
1919 	sd_initpkt_for_uscsi,		/* Index: 20 */
1920 
1921 	/* Chain for USCSI commands (checksum targets) */
1922 	sd_initpkt_for_uscsi,		/* Index: 21 */
1923 	sd_initpkt_for_uscsi,		/* Index: 22 */
1924 	sd_initpkt_for_uscsi,		/* Index: 22 */
1925 
1926 	/* Chain for "direct" USCSI commands (all targets) */
1927 	sd_initpkt_for_uscsi,		/* Index: 24 */
1928 
1929 	/* Chain for "direct priority" USCSI commands (all targets) */
1930 	sd_initpkt_for_uscsi,		/* Index: 25 */
1931 
1932 };
1933 
1934 
1935 /*
1936  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1937  * The redundant entries are present so that the index used for accessing
1938  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1939  * with this table as well.
1940  */
1941 typedef void (*sd_destroypkt_t)(struct buf *);
1942 
1943 static sd_destroypkt_t	sd_destroypkt_map[] = {
1944 
1945 	/* Chain for buf IO for disk drive targets (PM enabled) */
1946 	sd_destroypkt_for_buf,		/* Index: 0 */
1947 	sd_destroypkt_for_buf,		/* Index: 1 */
1948 	sd_destroypkt_for_buf,		/* Index: 2 */
1949 
1950 	/* Chain for buf IO for disk drive targets (PM disabled) */
1951 	sd_destroypkt_for_buf,		/* Index: 3 */
1952 	sd_destroypkt_for_buf,		/* Index: 4 */
1953 
1954 	/* Chain for buf IO for removable-media targets (PM enabled) */
1955 	sd_destroypkt_for_buf,		/* Index: 5 */
1956 	sd_destroypkt_for_buf,		/* Index: 6 */
1957 	sd_destroypkt_for_buf,		/* Index: 7 */
1958 	sd_destroypkt_for_buf,		/* Index: 8 */
1959 
1960 	/* Chain for buf IO for removable-media targets (PM disabled) */
1961 	sd_destroypkt_for_buf,		/* Index: 9 */
1962 	sd_destroypkt_for_buf,		/* Index: 10 */
1963 	sd_destroypkt_for_buf,		/* Index: 11 */
1964 
1965 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1966 	sd_destroypkt_for_buf,		/* Index: 12 */
1967 	sd_destroypkt_for_buf,		/* Index: 13 */
1968 	sd_destroypkt_for_buf,		/* Index: 14 */
1969 	sd_destroypkt_for_buf,		/* Index: 15 */
1970 
1971 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1972 	sd_destroypkt_for_buf,		/* Index: 16 */
1973 	sd_destroypkt_for_buf,		/* Index: 17 */
1974 	sd_destroypkt_for_buf,		/* Index: 18 */
1975 
1976 	/* Chain for USCSI commands (non-checksum targets) */
1977 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1978 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1979 
1980 	/* Chain for USCSI commands (checksum targets) */
1981 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1982 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1983 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1984 
1985 	/* Chain for "direct" USCSI commands (all targets) */
1986 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1987 
1988 	/* Chain for "direct priority" USCSI commands (all targets) */
1989 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1990 
1991 };
1992 
1993 
1994 
1995 /*
1996  * Array to map a layering chain index to the appropriate chain "type".
1997  * The chain type indicates a specific property/usage of the chain.
1998  * The redundant entries are present so that the index used for accessing
1999  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2000  * with this table as well.
2001  */
2002 
2003 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2004 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2005 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2006 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2007 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2008 						/* (for error recovery) */
2009 
2010 static int sd_chain_type_map[] = {
2011 
2012 	/* Chain for buf IO for disk drive targets (PM enabled) */
2013 	SD_CHAIN_BUFIO,			/* Index: 0 */
2014 	SD_CHAIN_BUFIO,			/* Index: 1 */
2015 	SD_CHAIN_BUFIO,			/* Index: 2 */
2016 
2017 	/* Chain for buf IO for disk drive targets (PM disabled) */
2018 	SD_CHAIN_BUFIO,			/* Index: 3 */
2019 	SD_CHAIN_BUFIO,			/* Index: 4 */
2020 
2021 	/* Chain for buf IO for removable-media targets (PM enabled) */
2022 	SD_CHAIN_BUFIO,			/* Index: 5 */
2023 	SD_CHAIN_BUFIO,			/* Index: 6 */
2024 	SD_CHAIN_BUFIO,			/* Index: 7 */
2025 	SD_CHAIN_BUFIO,			/* Index: 8 */
2026 
2027 	/* Chain for buf IO for removable-media targets (PM disabled) */
2028 	SD_CHAIN_BUFIO,			/* Index: 9 */
2029 	SD_CHAIN_BUFIO,			/* Index: 10 */
2030 	SD_CHAIN_BUFIO,			/* Index: 11 */
2031 
2032 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2033 	SD_CHAIN_BUFIO,			/* Index: 12 */
2034 	SD_CHAIN_BUFIO,			/* Index: 13 */
2035 	SD_CHAIN_BUFIO,			/* Index: 14 */
2036 	SD_CHAIN_BUFIO,			/* Index: 15 */
2037 
2038 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2039 	SD_CHAIN_BUFIO,			/* Index: 16 */
2040 	SD_CHAIN_BUFIO,			/* Index: 17 */
2041 	SD_CHAIN_BUFIO,			/* Index: 18 */
2042 
2043 	/* Chain for USCSI commands (non-checksum targets) */
2044 	SD_CHAIN_USCSI,			/* Index: 19 */
2045 	SD_CHAIN_USCSI,			/* Index: 20 */
2046 
2047 	/* Chain for USCSI commands (checksum targets) */
2048 	SD_CHAIN_USCSI,			/* Index: 21 */
2049 	SD_CHAIN_USCSI,			/* Index: 22 */
2050 	SD_CHAIN_USCSI,			/* Index: 22 */
2051 
2052 	/* Chain for "direct" USCSI commands (all targets) */
2053 	SD_CHAIN_DIRECT,		/* Index: 24 */
2054 
2055 	/* Chain for "direct priority" USCSI commands (all targets) */
2056 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2057 };
2058 
2059 
2060 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2061 #define	SD_IS_BUFIO(xp)			\
2062 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2063 
2064 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2065 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2066 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2067 
2068 
2069 
2070 /*
2071  * Struct, array, and macros to map a specific chain to the appropriate
2072  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2073  *
2074  * The sd_chain_index_map[] array is used at attach time to set the various
2075  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2076  * chain to be used with the instance. This allows different instances to use
2077  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2078  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2079  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2080  * dynamically & without the use of locking; and (2) a layer may update the
2081  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2082  * to allow for deferred processing of an IO within the same chain from a
2083  * different execution context.
2084  */
2085 
2086 struct sd_chain_index {
2087 	int	sci_iostart_index;
2088 	int	sci_iodone_index;
2089 };
2090 
2091 static struct sd_chain_index	sd_chain_index_map[] = {
2092 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2093 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2094 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2095 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2096 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2097 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2098 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2099 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2100 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2101 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2102 };
2103 
2104 
2105 /*
2106  * The following are indexes into the sd_chain_index_map[] array.
2107  */
2108 
2109 /* un->un_buf_chain_type must be set to one of these */
2110 #define	SD_CHAIN_INFO_DISK		0
2111 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2112 #define	SD_CHAIN_INFO_RMMEDIA		2
2113 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2114 #define	SD_CHAIN_INFO_CHKSUM		4
2115 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2116 
2117 /* un->un_uscsi_chain_type must be set to one of these */
2118 #define	SD_CHAIN_INFO_USCSI_CMD		6
2119 /* USCSI with PM disabled is the same as DIRECT */
2120 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2121 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2122 
2123 /* un->un_direct_chain_type must be set to one of these */
2124 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2125 
2126 /* un->un_priority_chain_type must be set to one of these */
2127 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2128 
2129 /* size for devid inquiries */
2130 #define	MAX_INQUIRY_SIZE		0xF0
2131 
2132 /*
2133  * Macros used by functions to pass a given buf(9S) struct along to the
2134  * next function in the layering chain for further processing.
2135  *
2136  * In the following macros, passing more than three arguments to the called
2137  * routines causes the optimizer for the SPARC compiler to stop doing tail
2138  * call elimination which results in significant performance degradation.
2139  */
2140 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2141 	((*(sd_iostart_chain[index]))(index, un, bp))
2142 
2143 #define	SD_BEGIN_IODONE(index, un, bp)	\
2144 	((*(sd_iodone_chain[index]))(index, un, bp))
2145 
2146 #define	SD_NEXT_IOSTART(index, un, bp)				\
2147 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2148 
2149 #define	SD_NEXT_IODONE(index, un, bp)				\
2150 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2151 
2152 
2153 /*
2154  *    Function: _init
2155  *
2156  * Description: This is the driver _init(9E) entry point.
2157  *
2158  * Return Code: Returns the value from mod_install(9F) or
2159  *		ddi_soft_state_init(9F) as appropriate.
2160  *
2161  *     Context: Called when driver module loaded.
2162  */
2163 
2164 int
2165 _init(void)
2166 {
2167 	int	err;
2168 
2169 	/* establish driver name from module name */
2170 	sd_label = mod_modname(&modlinkage);
2171 
2172 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2173 		SD_MAXUNIT);
2174 
2175 	if (err != 0) {
2176 		return (err);
2177 	}
2178 
2179 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2180 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2181 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2182 
2183 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2184 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2185 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2186 
2187 	/*
2188 	 * it's ok to init here even for fibre device
2189 	 */
2190 	sd_scsi_probe_cache_init();
2191 
2192 	/*
2193 	 * Creating taskq before mod_install ensures that all callers (threads)
2194 	 * that enter the module after a successfull mod_install encounter
2195 	 * a valid taskq.
2196 	 */
2197 	sd_taskq_create();
2198 
2199 	err = mod_install(&modlinkage);
2200 	if (err != 0) {
2201 		/* delete taskq if install fails */
2202 		sd_taskq_delete();
2203 
2204 		mutex_destroy(&sd_detach_mutex);
2205 		mutex_destroy(&sd_log_mutex);
2206 		mutex_destroy(&sd_label_mutex);
2207 
2208 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2209 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2210 		cv_destroy(&sd_tr.srq_inprocess_cv);
2211 
2212 		sd_scsi_probe_cache_fini();
2213 
2214 		ddi_soft_state_fini(&sd_state);
2215 		return (err);
2216 	}
2217 
2218 	return (err);
2219 }
2220 
2221 
2222 /*
2223  *    Function: _fini
2224  *
2225  * Description: This is the driver _fini(9E) entry point.
2226  *
2227  * Return Code: Returns the value from mod_remove(9F)
2228  *
2229  *     Context: Called when driver module is unloaded.
2230  */
2231 
2232 int
2233 _fini(void)
2234 {
2235 	int err;
2236 
2237 	if ((err = mod_remove(&modlinkage)) != 0) {
2238 		return (err);
2239 	}
2240 
2241 	sd_taskq_delete();
2242 
2243 	mutex_destroy(&sd_detach_mutex);
2244 	mutex_destroy(&sd_log_mutex);
2245 	mutex_destroy(&sd_label_mutex);
2246 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2247 
2248 	sd_scsi_probe_cache_fini();
2249 
2250 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2251 	cv_destroy(&sd_tr.srq_inprocess_cv);
2252 
2253 	ddi_soft_state_fini(&sd_state);
2254 
2255 	return (err);
2256 }
2257 
2258 
2259 /*
2260  *    Function: _info
2261  *
2262  * Description: This is the driver _info(9E) entry point.
2263  *
2264  *   Arguments: modinfop - pointer to the driver modinfo structure
2265  *
2266  * Return Code: Returns the value from mod_info(9F).
2267  *
2268  *     Context: Kernel thread context
2269  */
2270 
2271 int
2272 _info(struct modinfo *modinfop)
2273 {
2274 	return (mod_info(&modlinkage, modinfop));
2275 }
2276 
2277 
2278 /*
2279  * The following routines implement the driver message logging facility.
2280  * They provide component- and level- based debug output filtering.
2281  * Output may also be restricted to messages for a single instance by
2282  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2283  * to NULL, then messages for all instances are printed.
2284  *
2285  * These routines have been cloned from each other due to the language
2286  * constraints of macros and variable argument list processing.
2287  */
2288 
2289 
2290 /*
2291  *    Function: sd_log_err
2292  *
2293  * Description: This routine is called by the SD_ERROR macro for debug
2294  *		logging of error conditions.
2295  *
2296  *   Arguments: comp - driver component being logged
2297  *		dev  - pointer to driver info structure
2298  *		fmt  - error string and format to be logged
2299  */
2300 
2301 static void
2302 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2303 {
2304 	va_list		ap;
2305 	dev_info_t	*dev;
2306 
2307 	ASSERT(un != NULL);
2308 	dev = SD_DEVINFO(un);
2309 	ASSERT(dev != NULL);
2310 
2311 	/*
2312 	 * Filter messages based on the global component and level masks.
2313 	 * Also print if un matches the value of sd_debug_un, or if
2314 	 * sd_debug_un is set to NULL.
2315 	 */
2316 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2317 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2318 		mutex_enter(&sd_log_mutex);
2319 		va_start(ap, fmt);
2320 		(void) vsprintf(sd_log_buf, fmt, ap);
2321 		va_end(ap);
2322 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2323 		mutex_exit(&sd_log_mutex);
2324 	}
2325 #ifdef SD_FAULT_INJECTION
2326 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2327 	if (un->sd_injection_mask & comp) {
2328 		mutex_enter(&sd_log_mutex);
2329 		va_start(ap, fmt);
2330 		(void) vsprintf(sd_log_buf, fmt, ap);
2331 		va_end(ap);
2332 		sd_injection_log(sd_log_buf, un);
2333 		mutex_exit(&sd_log_mutex);
2334 	}
2335 #endif
2336 }
2337 
2338 
2339 /*
2340  *    Function: sd_log_info
2341  *
2342  * Description: This routine is called by the SD_INFO macro for debug
2343  *		logging of general purpose informational conditions.
2344  *
2345  *   Arguments: comp - driver component being logged
2346  *		dev  - pointer to driver info structure
2347  *		fmt  - info string and format to be logged
2348  */
2349 
2350 static void
2351 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2352 {
2353 	va_list		ap;
2354 	dev_info_t	*dev;
2355 
2356 	ASSERT(un != NULL);
2357 	dev = SD_DEVINFO(un);
2358 	ASSERT(dev != NULL);
2359 
2360 	/*
2361 	 * Filter messages based on the global component and level masks.
2362 	 * Also print if un matches the value of sd_debug_un, or if
2363 	 * sd_debug_un is set to NULL.
2364 	 */
2365 	if ((sd_component_mask & component) &&
2366 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2367 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2368 		mutex_enter(&sd_log_mutex);
2369 		va_start(ap, fmt);
2370 		(void) vsprintf(sd_log_buf, fmt, ap);
2371 		va_end(ap);
2372 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2373 		mutex_exit(&sd_log_mutex);
2374 	}
2375 #ifdef SD_FAULT_INJECTION
2376 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2377 	if (un->sd_injection_mask & component) {
2378 		mutex_enter(&sd_log_mutex);
2379 		va_start(ap, fmt);
2380 		(void) vsprintf(sd_log_buf, fmt, ap);
2381 		va_end(ap);
2382 		sd_injection_log(sd_log_buf, un);
2383 		mutex_exit(&sd_log_mutex);
2384 	}
2385 #endif
2386 }
2387 
2388 
2389 /*
2390  *    Function: sd_log_trace
2391  *
2392  * Description: This routine is called by the SD_TRACE macro for debug
2393  *		logging of trace conditions (i.e. function entry/exit).
2394  *
2395  *   Arguments: comp - driver component being logged
2396  *		dev  - pointer to driver info structure
2397  *		fmt  - trace string and format to be logged
2398  */
2399 
2400 static void
2401 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2402 {
2403 	va_list		ap;
2404 	dev_info_t	*dev;
2405 
2406 	ASSERT(un != NULL);
2407 	dev = SD_DEVINFO(un);
2408 	ASSERT(dev != NULL);
2409 
2410 	/*
2411 	 * Filter messages based on the global component and level masks.
2412 	 * Also print if un matches the value of sd_debug_un, or if
2413 	 * sd_debug_un is set to NULL.
2414 	 */
2415 	if ((sd_component_mask & component) &&
2416 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2417 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2418 		mutex_enter(&sd_log_mutex);
2419 		va_start(ap, fmt);
2420 		(void) vsprintf(sd_log_buf, fmt, ap);
2421 		va_end(ap);
2422 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2423 		mutex_exit(&sd_log_mutex);
2424 	}
2425 #ifdef SD_FAULT_INJECTION
2426 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2427 	if (un->sd_injection_mask & component) {
2428 		mutex_enter(&sd_log_mutex);
2429 		va_start(ap, fmt);
2430 		(void) vsprintf(sd_log_buf, fmt, ap);
2431 		va_end(ap);
2432 		sd_injection_log(sd_log_buf, un);
2433 		mutex_exit(&sd_log_mutex);
2434 	}
2435 #endif
2436 }
2437 
2438 
2439 /*
2440  *    Function: sdprobe
2441  *
2442  * Description: This is the driver probe(9e) entry point function.
2443  *
2444  *   Arguments: devi - opaque device info handle
2445  *
2446  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2447  *              DDI_PROBE_FAILURE: If the probe failed.
2448  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2449  *				   but may be present in the future.
2450  */
2451 
2452 static int
2453 sdprobe(dev_info_t *devi)
2454 {
2455 	struct scsi_device	*devp;
2456 	int			rval;
2457 	int			instance;
2458 
2459 	/*
2460 	 * if it wasn't for pln, sdprobe could actually be nulldev
2461 	 * in the "__fibre" case.
2462 	 */
2463 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2464 		return (DDI_PROBE_DONTCARE);
2465 	}
2466 
2467 	devp = ddi_get_driver_private(devi);
2468 
2469 	if (devp == NULL) {
2470 		/* Ooops... nexus driver is mis-configured... */
2471 		return (DDI_PROBE_FAILURE);
2472 	}
2473 
2474 	instance = ddi_get_instance(devi);
2475 
2476 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2477 		return (DDI_PROBE_PARTIAL);
2478 	}
2479 
2480 	/*
2481 	 * Call the SCSA utility probe routine to see if we actually
2482 	 * have a target at this SCSI nexus.
2483 	 */
2484 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2485 	case SCSIPROBE_EXISTS:
2486 		switch (devp->sd_inq->inq_dtype) {
2487 		case DTYPE_DIRECT:
2488 			rval = DDI_PROBE_SUCCESS;
2489 			break;
2490 		case DTYPE_RODIRECT:
2491 			/* CDs etc. Can be removable media */
2492 			rval = DDI_PROBE_SUCCESS;
2493 			break;
2494 		case DTYPE_OPTICAL:
2495 			/*
2496 			 * Rewritable optical driver HP115AA
2497 			 * Can also be removable media
2498 			 */
2499 
2500 			/*
2501 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2502 			 * pre solaris 9 sparc sd behavior is required
2503 			 *
2504 			 * If first time through and sd_dtype_optical_bind
2505 			 * has not been set in /etc/system check properties
2506 			 */
2507 
2508 			if (sd_dtype_optical_bind  < 0) {
2509 			    sd_dtype_optical_bind = ddi_prop_get_int
2510 				(DDI_DEV_T_ANY,	devi,	0,
2511 				"optical-device-bind",	1);
2512 			}
2513 
2514 			if (sd_dtype_optical_bind == 0) {
2515 				rval = DDI_PROBE_FAILURE;
2516 			} else {
2517 				rval = DDI_PROBE_SUCCESS;
2518 			}
2519 			break;
2520 
2521 		case DTYPE_NOTPRESENT:
2522 		default:
2523 			rval = DDI_PROBE_FAILURE;
2524 			break;
2525 		}
2526 		break;
2527 	default:
2528 		rval = DDI_PROBE_PARTIAL;
2529 		break;
2530 	}
2531 
2532 	/*
2533 	 * This routine checks for resource allocation prior to freeing,
2534 	 * so it will take care of the "smart probing" case where a
2535 	 * scsi_probe() may or may not have been issued and will *not*
2536 	 * free previously-freed resources.
2537 	 */
2538 	scsi_unprobe(devp);
2539 	return (rval);
2540 }
2541 
2542 
2543 /*
2544  *    Function: sdinfo
2545  *
2546  * Description: This is the driver getinfo(9e) entry point function.
2547  * 		Given the device number, return the devinfo pointer from
2548  *		the scsi_device structure or the instance number
2549  *		associated with the dev_t.
2550  *
2551  *   Arguments: dip     - pointer to device info structure
2552  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2553  *			  DDI_INFO_DEVT2INSTANCE)
2554  *		arg     - driver dev_t
2555  *		resultp - user buffer for request response
2556  *
2557  * Return Code: DDI_SUCCESS
2558  *              DDI_FAILURE
2559  */
2560 /* ARGSUSED */
2561 static int
2562 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2563 {
2564 	struct sd_lun	*un;
2565 	dev_t		dev;
2566 	int		instance;
2567 	int		error;
2568 
2569 	switch (infocmd) {
2570 	case DDI_INFO_DEVT2DEVINFO:
2571 		dev = (dev_t)arg;
2572 		instance = SDUNIT(dev);
2573 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2574 			return (DDI_FAILURE);
2575 		}
2576 		*result = (void *) SD_DEVINFO(un);
2577 		error = DDI_SUCCESS;
2578 		break;
2579 	case DDI_INFO_DEVT2INSTANCE:
2580 		dev = (dev_t)arg;
2581 		instance = SDUNIT(dev);
2582 		*result = (void *)(uintptr_t)instance;
2583 		error = DDI_SUCCESS;
2584 		break;
2585 	default:
2586 		error = DDI_FAILURE;
2587 	}
2588 	return (error);
2589 }
2590 
2591 /*
2592  *    Function: sd_prop_op
2593  *
2594  * Description: This is the driver prop_op(9e) entry point function.
2595  *		Return the number of blocks for the partition in question
2596  *		or forward the request to the property facilities.
2597  *
2598  *   Arguments: dev       - device number
2599  *		dip       - pointer to device info structure
2600  *		prop_op   - property operator
2601  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2602  *		name      - pointer to property name
2603  *		valuep    - pointer or address of the user buffer
2604  *		lengthp   - property length
2605  *
2606  * Return Code: DDI_PROP_SUCCESS
2607  *              DDI_PROP_NOT_FOUND
2608  *              DDI_PROP_UNDEFINED
2609  *              DDI_PROP_NO_MEMORY
2610  *              DDI_PROP_BUF_TOO_SMALL
2611  */
2612 
2613 static int
2614 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2615 	char *name, caddr_t valuep, int *lengthp)
2616 {
2617 	int		instance = ddi_get_instance(dip);
2618 	struct sd_lun	*un;
2619 	uint64_t	nblocks64;
2620 
2621 	/*
2622 	 * Our dynamic properties are all device specific and size oriented.
2623 	 * Requests issued under conditions where size is valid are passed
2624 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2625 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2626 	 */
2627 	un = ddi_get_soft_state(sd_state, instance);
2628 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2629 	    (un->un_f_geometry_is_valid == FALSE)) {
2630 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2631 		    name, valuep, lengthp));
2632 	} else {
2633 		/* get nblocks value */
2634 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2635 		mutex_enter(SD_MUTEX(un));
2636 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2637 		mutex_exit(SD_MUTEX(un));
2638 
2639 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2640 		    name, valuep, lengthp, nblocks64));
2641 	}
2642 }
2643 
2644 /*
2645  * The following functions are for smart probing:
2646  * sd_scsi_probe_cache_init()
2647  * sd_scsi_probe_cache_fini()
2648  * sd_scsi_clear_probe_cache()
2649  * sd_scsi_probe_with_cache()
2650  */
2651 
2652 /*
2653  *    Function: sd_scsi_probe_cache_init
2654  *
2655  * Description: Initializes the probe response cache mutex and head pointer.
2656  *
2657  *     Context: Kernel thread context
2658  */
2659 
2660 static void
2661 sd_scsi_probe_cache_init(void)
2662 {
2663 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2664 	sd_scsi_probe_cache_head = NULL;
2665 }
2666 
2667 
2668 /*
2669  *    Function: sd_scsi_probe_cache_fini
2670  *
2671  * Description: Frees all resources associated with the probe response cache.
2672  *
2673  *     Context: Kernel thread context
2674  */
2675 
2676 static void
2677 sd_scsi_probe_cache_fini(void)
2678 {
2679 	struct sd_scsi_probe_cache *cp;
2680 	struct sd_scsi_probe_cache *ncp;
2681 
2682 	/* Clean up our smart probing linked list */
2683 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2684 		ncp = cp->next;
2685 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2686 	}
2687 	sd_scsi_probe_cache_head = NULL;
2688 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2689 }
2690 
2691 
2692 /*
2693  *    Function: sd_scsi_clear_probe_cache
2694  *
2695  * Description: This routine clears the probe response cache. This is
2696  *		done when open() returns ENXIO so that when deferred
2697  *		attach is attempted (possibly after a device has been
2698  *		turned on) we will retry the probe. Since we don't know
2699  *		which target we failed to open, we just clear the
2700  *		entire cache.
2701  *
2702  *     Context: Kernel thread context
2703  */
2704 
2705 static void
2706 sd_scsi_clear_probe_cache(void)
2707 {
2708 	struct sd_scsi_probe_cache	*cp;
2709 	int				i;
2710 
2711 	mutex_enter(&sd_scsi_probe_cache_mutex);
2712 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2713 		/*
2714 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2715 		 * force probing to be performed the next time
2716 		 * sd_scsi_probe_with_cache is called.
2717 		 */
2718 		for (i = 0; i < NTARGETS_WIDE; i++) {
2719 			cp->cache[i] = SCSIPROBE_EXISTS;
2720 		}
2721 	}
2722 	mutex_exit(&sd_scsi_probe_cache_mutex);
2723 }
2724 
2725 
2726 /*
2727  *    Function: sd_scsi_probe_with_cache
2728  *
2729  * Description: This routine implements support for a scsi device probe
2730  *		with cache. The driver maintains a cache of the target
2731  *		responses to scsi probes. If we get no response from a
2732  *		target during a probe inquiry, we remember that, and we
2733  *		avoid additional calls to scsi_probe on non-zero LUNs
2734  *		on the same target until the cache is cleared. By doing
2735  *		so we avoid the 1/4 sec selection timeout for nonzero
2736  *		LUNs. lun0 of a target is always probed.
2737  *
2738  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2739  *              waitfunc - indicates what the allocator routines should
2740  *			   do when resources are not available. This value
2741  *			   is passed on to scsi_probe() when that routine
2742  *			   is called.
2743  *
2744  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2745  *		otherwise the value returned by scsi_probe(9F).
2746  *
2747  *     Context: Kernel thread context
2748  */
2749 
2750 static int
2751 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2752 {
2753 	struct sd_scsi_probe_cache	*cp;
2754 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2755 	int		lun, tgt;
2756 
2757 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2758 	    SCSI_ADDR_PROP_LUN, 0);
2759 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2760 	    SCSI_ADDR_PROP_TARGET, -1);
2761 
2762 	/* Make sure caching enabled and target in range */
2763 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2764 		/* do it the old way (no cache) */
2765 		return (scsi_probe(devp, waitfn));
2766 	}
2767 
2768 	mutex_enter(&sd_scsi_probe_cache_mutex);
2769 
2770 	/* Find the cache for this scsi bus instance */
2771 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2772 		if (cp->pdip == pdip) {
2773 			break;
2774 		}
2775 	}
2776 
2777 	/* If we can't find a cache for this pdip, create one */
2778 	if (cp == NULL) {
2779 		int i;
2780 
2781 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2782 		    KM_SLEEP);
2783 		cp->pdip = pdip;
2784 		cp->next = sd_scsi_probe_cache_head;
2785 		sd_scsi_probe_cache_head = cp;
2786 		for (i = 0; i < NTARGETS_WIDE; i++) {
2787 			cp->cache[i] = SCSIPROBE_EXISTS;
2788 		}
2789 	}
2790 
2791 	mutex_exit(&sd_scsi_probe_cache_mutex);
2792 
2793 	/* Recompute the cache for this target if LUN zero */
2794 	if (lun == 0) {
2795 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2796 	}
2797 
2798 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2799 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2800 		return (SCSIPROBE_NORESP);
2801 	}
2802 
2803 	/* Do the actual probe; save & return the result */
2804 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2805 }
2806 
2807 
2808 /*
2809  *    Function: sd_spin_up_unit
2810  *
2811  * Description: Issues the following commands to spin-up the device:
2812  *		START STOP UNIT, and INQUIRY.
2813  *
2814  *   Arguments: un - driver soft state (unit) structure
2815  *
2816  * Return Code: 0 - success
2817  *		EIO - failure
2818  *		EACCES - reservation conflict
2819  *
2820  *     Context: Kernel thread context
2821  */
2822 
2823 static int
2824 sd_spin_up_unit(struct sd_lun *un)
2825 {
2826 	size_t	resid		= 0;
2827 	int	has_conflict	= FALSE;
2828 	uchar_t *bufaddr;
2829 
2830 	ASSERT(un != NULL);
2831 
2832 	/*
2833 	 * Send a throwaway START UNIT command.
2834 	 *
2835 	 * If we fail on this, we don't care presently what precisely
2836 	 * is wrong.  EMC's arrays will also fail this with a check
2837 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2838 	 * we don't want to fail the attach because it may become
2839 	 * "active" later.
2840 	 */
2841 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2842 	    == EACCES)
2843 		has_conflict = TRUE;
2844 
2845 	/*
2846 	 * Send another INQUIRY command to the target. This is necessary for
2847 	 * non-removable media direct access devices because their INQUIRY data
2848 	 * may not be fully qualified until they are spun up (perhaps via the
2849 	 * START command above).  Note: This seems to be needed for some
2850 	 * legacy devices only.) The INQUIRY command should succeed even if a
2851 	 * Reservation Conflict is present.
2852 	 */
2853 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2854 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2855 		kmem_free(bufaddr, SUN_INQSIZE);
2856 		return (EIO);
2857 	}
2858 
2859 	/*
2860 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2861 	 * Note that this routine does not return a failure here even if the
2862 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2863 	 */
2864 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2865 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2866 	}
2867 
2868 	kmem_free(bufaddr, SUN_INQSIZE);
2869 
2870 	/* If we hit a reservation conflict above, tell the caller. */
2871 	if (has_conflict == TRUE) {
2872 		return (EACCES);
2873 	}
2874 
2875 	return (0);
2876 }
2877 
2878 #ifdef _LP64
2879 /*
2880  *    Function: sd_enable_descr_sense
2881  *
2882  * Description: This routine attempts to select descriptor sense format
2883  *		using the Control mode page.  Devices that support 64 bit
2884  *		LBAs (for >2TB luns) should also implement descriptor
2885  *		sense data so we will call this function whenever we see
2886  *		a lun larger than 2TB.  If for some reason the device
2887  *		supports 64 bit LBAs but doesn't support descriptor sense
2888  *		presumably the mode select will fail.  Everything will
2889  *		continue to work normally except that we will not get
2890  *		complete sense data for commands that fail with an LBA
2891  *		larger than 32 bits.
2892  *
2893  *   Arguments: un - driver soft state (unit) structure
2894  *
2895  *     Context: Kernel thread context only
2896  */
2897 
2898 static void
2899 sd_enable_descr_sense(struct sd_lun *un)
2900 {
2901 	uchar_t			*header;
2902 	struct mode_control_scsi3 *ctrl_bufp;
2903 	size_t			buflen;
2904 	size_t			bd_len;
2905 
2906 	/*
2907 	 * Read MODE SENSE page 0xA, Control Mode Page
2908 	 */
2909 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2910 	    sizeof (struct mode_control_scsi3);
2911 	header = kmem_zalloc(buflen, KM_SLEEP);
2912 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2913 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2914 		SD_ERROR(SD_LOG_COMMON, un,
2915 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2916 		goto eds_exit;
2917 	}
2918 
2919 	/*
2920 	 * Determine size of Block Descriptors in order to locate
2921 	 * the mode page data. ATAPI devices return 0, SCSI devices
2922 	 * should return MODE_BLK_DESC_LENGTH.
2923 	 */
2924 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2925 
2926 	ctrl_bufp = (struct mode_control_scsi3 *)
2927 	    (header + MODE_HEADER_LENGTH + bd_len);
2928 
2929 	/*
2930 	 * Clear PS bit for MODE SELECT
2931 	 */
2932 	ctrl_bufp->mode_page.ps = 0;
2933 
2934 	/*
2935 	 * Set D_SENSE to enable descriptor sense format.
2936 	 */
2937 	ctrl_bufp->d_sense = 1;
2938 
2939 	/*
2940 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2941 	 */
2942 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2943 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2944 		SD_INFO(SD_LOG_COMMON, un,
2945 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2946 		goto eds_exit;
2947 	}
2948 
2949 eds_exit:
2950 	kmem_free(header, buflen);
2951 }
2952 #endif /* _LP64 */
2953 
2954 
2955 /*
2956  *    Function: sd_set_mmc_caps
2957  *
2958  * Description: This routine determines if the device is MMC compliant and if
2959  *		the device supports CDDA via a mode sense of the CDVD
2960  *		capabilities mode page. Also checks if the device is a
2961  *		dvdram writable device.
2962  *
2963  *   Arguments: un - driver soft state (unit) structure
2964  *
2965  *     Context: Kernel thread context only
2966  */
2967 
2968 static void
2969 sd_set_mmc_caps(struct sd_lun *un)
2970 {
2971 	struct mode_header_grp2		*sense_mhp;
2972 	uchar_t				*sense_page;
2973 	caddr_t				buf;
2974 	int				bd_len;
2975 	int				status;
2976 	struct uscsi_cmd		com;
2977 	int				rtn;
2978 	uchar_t				*out_data_rw, *out_data_hd;
2979 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2980 
2981 	ASSERT(un != NULL);
2982 
2983 	/*
2984 	 * The flags which will be set in this function are - mmc compliant,
2985 	 * dvdram writable device, cdda support. Initialize them to FALSE
2986 	 * and if a capability is detected - it will be set to TRUE.
2987 	 */
2988 	un->un_f_mmc_cap = FALSE;
2989 	un->un_f_dvdram_writable_device = FALSE;
2990 	un->un_f_cfg_cdda = FALSE;
2991 
2992 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2993 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2994 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2995 
2996 	if (status != 0) {
2997 		/* command failed; just return */
2998 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2999 		return;
3000 	}
3001 	/*
3002 	 * If the mode sense request for the CDROM CAPABILITIES
3003 	 * page (0x2A) succeeds the device is assumed to be MMC.
3004 	 */
3005 	un->un_f_mmc_cap = TRUE;
3006 
3007 	/* Get to the page data */
3008 	sense_mhp = (struct mode_header_grp2 *)buf;
3009 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3010 	    sense_mhp->bdesc_length_lo;
3011 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3012 		/*
3013 		 * We did not get back the expected block descriptor
3014 		 * length so we cannot determine if the device supports
3015 		 * CDDA. However, we still indicate the device is MMC
3016 		 * according to the successful response to the page
3017 		 * 0x2A mode sense request.
3018 		 */
3019 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3020 		    "sd_set_mmc_caps: Mode Sense returned "
3021 		    "invalid block descriptor length\n");
3022 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3023 		return;
3024 	}
3025 
3026 	/* See if read CDDA is supported */
3027 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3028 	    bd_len);
3029 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3030 
3031 	/* See if writing DVD RAM is supported. */
3032 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3033 	if (un->un_f_dvdram_writable_device == TRUE) {
3034 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3035 		return;
3036 	}
3037 
3038 	/*
3039 	 * If the device presents DVD or CD capabilities in the mode
3040 	 * page, we can return here since a RRD will not have
3041 	 * these capabilities.
3042 	 */
3043 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3044 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3045 		return;
3046 	}
3047 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3048 
3049 	/*
3050 	 * If un->un_f_dvdram_writable_device is still FALSE,
3051 	 * check for a Removable Rigid Disk (RRD).  A RRD
3052 	 * device is identified by the features RANDOM_WRITABLE and
3053 	 * HARDWARE_DEFECT_MANAGEMENT.
3054 	 */
3055 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3056 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3057 
3058 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3059 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3060 	    RANDOM_WRITABLE);
3061 	if (rtn != 0) {
3062 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3063 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3064 		return;
3065 	}
3066 
3067 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3068 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3069 
3070 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3071 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3072 	    HARDWARE_DEFECT_MANAGEMENT);
3073 	if (rtn == 0) {
3074 		/*
3075 		 * We have good information, check for random writable
3076 		 * and hardware defect features.
3077 		 */
3078 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3079 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3080 			un->un_f_dvdram_writable_device = TRUE;
3081 		}
3082 	}
3083 
3084 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3085 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3086 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3087 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3088 }
3089 
3090 /*
3091  *    Function: sd_check_for_writable_cd
3092  *
3093  * Description: This routine determines if the media in the device is
3094  *		writable or not. It uses the get configuration command (0x46)
3095  *		to determine if the media is writable
3096  *
3097  *   Arguments: un - driver soft state (unit) structure
3098  *
3099  *     Context: Never called at interrupt context.
3100  */
3101 
3102 static void
3103 sd_check_for_writable_cd(struct sd_lun *un)
3104 {
3105 	struct uscsi_cmd		com;
3106 	uchar_t				*out_data;
3107 	uchar_t				*rqbuf;
3108 	int				rtn;
3109 	uchar_t				*out_data_rw, *out_data_hd;
3110 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3111 	struct mode_header_grp2		*sense_mhp;
3112 	uchar_t				*sense_page;
3113 	caddr_t				buf;
3114 	int				bd_len;
3115 	int				status;
3116 
3117 	ASSERT(un != NULL);
3118 	ASSERT(mutex_owned(SD_MUTEX(un)));
3119 
3120 	/*
3121 	 * Initialize the writable media to false, if configuration info.
3122 	 * tells us otherwise then only we will set it.
3123 	 */
3124 	un->un_f_mmc_writable_media = FALSE;
3125 	mutex_exit(SD_MUTEX(un));
3126 
3127 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3128 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3129 
3130 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3131 	    out_data, SD_PROFILE_HEADER_LEN);
3132 
3133 	mutex_enter(SD_MUTEX(un));
3134 	if (rtn == 0) {
3135 		/*
3136 		 * We have good information, check for writable DVD.
3137 		 */
3138 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3139 			un->un_f_mmc_writable_media = TRUE;
3140 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3141 			kmem_free(rqbuf, SENSE_LENGTH);
3142 			return;
3143 		}
3144 	}
3145 
3146 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3147 	kmem_free(rqbuf, SENSE_LENGTH);
3148 
3149 	/*
3150 	 * Determine if this is a RRD type device.
3151 	 */
3152 	mutex_exit(SD_MUTEX(un));
3153 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3154 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3155 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3156 	mutex_enter(SD_MUTEX(un));
3157 	if (status != 0) {
3158 		/* command failed; just return */
3159 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3160 		return;
3161 	}
3162 
3163 	/* Get to the page data */
3164 	sense_mhp = (struct mode_header_grp2 *)buf;
3165 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3166 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3167 		/*
3168 		 * We did not get back the expected block descriptor length so
3169 		 * we cannot check the mode page.
3170 		 */
3171 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3172 		    "sd_check_for_writable_cd: Mode Sense returned "
3173 		    "invalid block descriptor length\n");
3174 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3175 		return;
3176 	}
3177 
3178 	/*
3179 	 * If the device presents DVD or CD capabilities in the mode
3180 	 * page, we can return here since a RRD device will not have
3181 	 * these capabilities.
3182 	 */
3183 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3184 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3185 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3186 		return;
3187 	}
3188 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3189 
3190 	/*
3191 	 * If un->un_f_mmc_writable_media is still FALSE,
3192 	 * check for RRD type media.  A RRD device is identified
3193 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3194 	 */
3195 	mutex_exit(SD_MUTEX(un));
3196 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3197 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3198 
3199 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3200 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3201 	    RANDOM_WRITABLE);
3202 	if (rtn != 0) {
3203 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3204 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3205 		mutex_enter(SD_MUTEX(un));
3206 		return;
3207 	}
3208 
3209 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3210 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3211 
3212 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3213 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3214 	    HARDWARE_DEFECT_MANAGEMENT);
3215 	mutex_enter(SD_MUTEX(un));
3216 	if (rtn == 0) {
3217 		/*
3218 		 * We have good information, check for random writable
3219 		 * and hardware defect features as current.
3220 		 */
3221 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3222 		    (out_data_rw[10] & 0x1) &&
3223 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3224 		    (out_data_hd[10] & 0x1)) {
3225 			un->un_f_mmc_writable_media = TRUE;
3226 		}
3227 	}
3228 
3229 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3230 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3231 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3232 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3233 }
3234 
3235 /*
3236  *    Function: sd_read_unit_properties
3237  *
3238  * Description: The following implements a property lookup mechanism.
3239  *		Properties for particular disks (keyed on vendor, model
3240  *		and rev numbers) are sought in the sd.conf file via
3241  *		sd_process_sdconf_file(), and if not found there, are
3242  *		looked for in a list hardcoded in this driver via
3243  *		sd_process_sdconf_table() Once located the properties
3244  *		are used to update the driver unit structure.
3245  *
3246  *   Arguments: un - driver soft state (unit) structure
3247  */
3248 
3249 static void
3250 sd_read_unit_properties(struct sd_lun *un)
3251 {
3252 	/*
3253 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3254 	 * the "sd-config-list" property (from the sd.conf file) or if
3255 	 * there was not a match for the inquiry vid/pid. If this event
3256 	 * occurs the static driver configuration table is searched for
3257 	 * a match.
3258 	 */
3259 	ASSERT(un != NULL);
3260 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3261 		sd_process_sdconf_table(un);
3262 	}
3263 
3264 	/* check for LSI device */
3265 	sd_is_lsi(un);
3266 
3267 
3268 }
3269 
3270 
3271 /*
3272  *    Function: sd_process_sdconf_file
3273  *
3274  * Description: Use ddi_getlongprop to obtain the properties from the
3275  *		driver's config file (ie, sd.conf) and update the driver
3276  *		soft state structure accordingly.
3277  *
3278  *   Arguments: un - driver soft state (unit) structure
3279  *
3280  * Return Code: SD_SUCCESS - The properties were successfully set according
3281  *			     to the driver configuration file.
3282  *		SD_FAILURE - The driver config list was not obtained or
3283  *			     there was no vid/pid match. This indicates that
3284  *			     the static config table should be used.
3285  *
3286  * The config file has a property, "sd-config-list", which consists of
3287  * one or more duplets as follows:
3288  *
3289  *  sd-config-list=
3290  *	<duplet>,
3291  *	[<duplet>,]
3292  *	[<duplet>];
3293  *
3294  * The structure of each duplet is as follows:
3295  *
3296  *  <duplet>:= <vid+pid>,<data-property-name_list>
3297  *
3298  * The first entry of the duplet is the device ID string (the concatenated
3299  * vid & pid; not to be confused with a device_id).  This is defined in
3300  * the same way as in the sd_disk_table.
3301  *
3302  * The second part of the duplet is a string that identifies a
3303  * data-property-name-list. The data-property-name-list is defined as
3304  * follows:
3305  *
3306  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3307  *
3308  * The syntax of <data-property-name> depends on the <version> field.
3309  *
3310  * If version = SD_CONF_VERSION_1 we have the following syntax:
3311  *
3312  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3313  *
3314  * where the prop0 value will be used to set prop0 if bit0 set in the
3315  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3316  *
3317  */
3318 
3319 static int
3320 sd_process_sdconf_file(struct sd_lun *un)
3321 {
3322 	char	*config_list = NULL;
3323 	int	config_list_len;
3324 	int	len;
3325 	int	dupletlen = 0;
3326 	char	*vidptr;
3327 	int	vidlen;
3328 	char	*dnlist_ptr;
3329 	char	*dataname_ptr;
3330 	int	dnlist_len;
3331 	int	dataname_len;
3332 	int	*data_list;
3333 	int	data_list_len;
3334 	int	rval = SD_FAILURE;
3335 	int	i;
3336 
3337 	ASSERT(un != NULL);
3338 
3339 	/* Obtain the configuration list associated with the .conf file */
3340 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3341 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3342 	    != DDI_PROP_SUCCESS) {
3343 		return (SD_FAILURE);
3344 	}
3345 
3346 	/*
3347 	 * Compare vids in each duplet to the inquiry vid - if a match is
3348 	 * made, get the data value and update the soft state structure
3349 	 * accordingly.
3350 	 *
3351 	 * Note: This algorithm is complex and difficult to maintain. It should
3352 	 * be replaced with a more robust implementation.
3353 	 */
3354 	for (len = config_list_len, vidptr = config_list; len > 0;
3355 	    vidptr += dupletlen, len -= dupletlen) {
3356 		/*
3357 		 * Note: The assumption here is that each vid entry is on
3358 		 * a unique line from its associated duplet.
3359 		 */
3360 		vidlen = dupletlen = (int)strlen(vidptr);
3361 		if ((vidlen == 0) ||
3362 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3363 			dupletlen++;
3364 			continue;
3365 		}
3366 
3367 		/*
3368 		 * dnlist contains 1 or more blank separated
3369 		 * data-property-name entries
3370 		 */
3371 		dnlist_ptr = vidptr + vidlen + 1;
3372 		dnlist_len = (int)strlen(dnlist_ptr);
3373 		dupletlen += dnlist_len + 2;
3374 
3375 		/*
3376 		 * Set a pointer for the first data-property-name
3377 		 * entry in the list
3378 		 */
3379 		dataname_ptr = dnlist_ptr;
3380 		dataname_len = 0;
3381 
3382 		/*
3383 		 * Loop through all data-property-name entries in the
3384 		 * data-property-name-list setting the properties for each.
3385 		 */
3386 		while (dataname_len < dnlist_len) {
3387 			int version;
3388 
3389 			/*
3390 			 * Determine the length of the current
3391 			 * data-property-name entry by indexing until a
3392 			 * blank or NULL is encountered. When the space is
3393 			 * encountered reset it to a NULL for compliance
3394 			 * with ddi_getlongprop().
3395 			 */
3396 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3397 			    (dataname_ptr[i] != '\0')); i++) {
3398 				;
3399 			}
3400 
3401 			dataname_len += i;
3402 			/* If not null terminated, Make it so */
3403 			if (dataname_ptr[i] == ' ') {
3404 				dataname_ptr[i] = '\0';
3405 			}
3406 			dataname_len++;
3407 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3408 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3409 			    vidptr, dataname_ptr);
3410 
3411 			/* Get the data list */
3412 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3413 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3414 			    != DDI_PROP_SUCCESS) {
3415 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3416 				    "sd_process_sdconf_file: data property (%s)"
3417 				    " has no value\n", dataname_ptr);
3418 				dataname_ptr = dnlist_ptr + dataname_len;
3419 				continue;
3420 			}
3421 
3422 			version = data_list[0];
3423 
3424 			if (version == SD_CONF_VERSION_1) {
3425 				sd_tunables values;
3426 
3427 				/* Set the properties */
3428 				if (sd_chk_vers1_data(un, data_list[1],
3429 				    &data_list[2], data_list_len, dataname_ptr)
3430 				    == SD_SUCCESS) {
3431 					sd_get_tunables_from_conf(un,
3432 					    data_list[1], &data_list[2],
3433 					    &values);
3434 					sd_set_vers1_properties(un,
3435 					    data_list[1], &values);
3436 					rval = SD_SUCCESS;
3437 				} else {
3438 					rval = SD_FAILURE;
3439 				}
3440 			} else {
3441 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3442 				    "data property %s version 0x%x is invalid.",
3443 				    dataname_ptr, version);
3444 				rval = SD_FAILURE;
3445 			}
3446 			kmem_free(data_list, data_list_len);
3447 			dataname_ptr = dnlist_ptr + dataname_len;
3448 		}
3449 	}
3450 
3451 	/* free up the memory allocated by ddi_getlongprop */
3452 	if (config_list) {
3453 		kmem_free(config_list, config_list_len);
3454 	}
3455 
3456 	return (rval);
3457 }
3458 
3459 /*
3460  *    Function: sd_get_tunables_from_conf()
3461  *
3462  *
3463  *    This function reads the data list from the sd.conf file and pulls
3464  *    the values that can have numeric values as arguments and places
3465  *    the values in the apropriate sd_tunables member.
3466  *    Since the order of the data list members varies across platforms
3467  *    This function reads them from the data list in a platform specific
3468  *    order and places them into the correct sd_tunable member that is
3469  *    a consistant across all platforms.
3470  */
3471 static void
3472 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3473     sd_tunables *values)
3474 {
3475 	int i;
3476 	int mask;
3477 
3478 	bzero(values, sizeof (sd_tunables));
3479 
3480 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3481 
3482 		mask = 1 << i;
3483 		if (mask > flags) {
3484 			break;
3485 		}
3486 
3487 		switch (mask & flags) {
3488 		case 0:	/* This mask bit not set in flags */
3489 			continue;
3490 		case SD_CONF_BSET_THROTTLE:
3491 			values->sdt_throttle = data_list[i];
3492 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3493 			    "sd_get_tunables_from_conf: throttle = %d\n",
3494 			    values->sdt_throttle);
3495 			break;
3496 		case SD_CONF_BSET_CTYPE:
3497 			values->sdt_ctype = data_list[i];
3498 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3499 			    "sd_get_tunables_from_conf: ctype = %d\n",
3500 			    values->sdt_ctype);
3501 			break;
3502 		case SD_CONF_BSET_NRR_COUNT:
3503 			values->sdt_not_rdy_retries = data_list[i];
3504 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3505 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3506 			    values->sdt_not_rdy_retries);
3507 			break;
3508 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3509 			values->sdt_busy_retries = data_list[i];
3510 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3511 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3512 			    values->sdt_busy_retries);
3513 			break;
3514 		case SD_CONF_BSET_RST_RETRIES:
3515 			values->sdt_reset_retries = data_list[i];
3516 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3517 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3518 			    values->sdt_reset_retries);
3519 			break;
3520 		case SD_CONF_BSET_RSV_REL_TIME:
3521 			values->sdt_reserv_rel_time = data_list[i];
3522 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3523 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3524 			    values->sdt_reserv_rel_time);
3525 			break;
3526 		case SD_CONF_BSET_MIN_THROTTLE:
3527 			values->sdt_min_throttle = data_list[i];
3528 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3529 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3530 			    values->sdt_min_throttle);
3531 			break;
3532 		case SD_CONF_BSET_DISKSORT_DISABLED:
3533 			values->sdt_disk_sort_dis = data_list[i];
3534 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3535 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3536 			    values->sdt_disk_sort_dis);
3537 			break;
3538 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3539 			values->sdt_lun_reset_enable = data_list[i];
3540 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3541 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3542 			    "\n", values->sdt_lun_reset_enable);
3543 			break;
3544 		}
3545 	}
3546 }
3547 
3548 /*
3549  *    Function: sd_process_sdconf_table
3550  *
3551  * Description: Search the static configuration table for a match on the
3552  *		inquiry vid/pid and update the driver soft state structure
3553  *		according to the table property values for the device.
3554  *
3555  *		The form of a configuration table entry is:
3556  *		  <vid+pid>,<flags>,<property-data>
3557  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3558  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3559  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3560  *
3561  *   Arguments: un - driver soft state (unit) structure
3562  */
3563 
3564 static void
3565 sd_process_sdconf_table(struct sd_lun *un)
3566 {
3567 	char	*id = NULL;
3568 	int	table_index;
3569 	int	idlen;
3570 
3571 	ASSERT(un != NULL);
3572 	for (table_index = 0; table_index < sd_disk_table_size;
3573 	    table_index++) {
3574 		id = sd_disk_table[table_index].device_id;
3575 		idlen = strlen(id);
3576 		if (idlen == 0) {
3577 			continue;
3578 		}
3579 
3580 		/*
3581 		 * The static configuration table currently does not
3582 		 * implement version 10 properties. Additionally,
3583 		 * multiple data-property-name entries are not
3584 		 * implemented in the static configuration table.
3585 		 */
3586 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3587 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3588 			    "sd_process_sdconf_table: disk %s\n", id);
3589 			sd_set_vers1_properties(un,
3590 			    sd_disk_table[table_index].flags,
3591 			    sd_disk_table[table_index].properties);
3592 			break;
3593 		}
3594 	}
3595 }
3596 
3597 
3598 /*
3599  *    Function: sd_sdconf_id_match
3600  *
3601  * Description: This local function implements a case sensitive vid/pid
3602  *		comparison as well as the boundary cases of wild card and
3603  *		multiple blanks.
3604  *
3605  *		Note: An implicit assumption made here is that the scsi
3606  *		inquiry structure will always keep the vid, pid and
3607  *		revision strings in consecutive sequence, so they can be
3608  *		read as a single string. If this assumption is not the
3609  *		case, a separate string, to be used for the check, needs
3610  *		to be built with these strings concatenated.
3611  *
3612  *   Arguments: un - driver soft state (unit) structure
3613  *		id - table or config file vid/pid
3614  *		idlen  - length of the vid/pid (bytes)
3615  *
3616  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3617  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3618  */
3619 
3620 static int
3621 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3622 {
3623 	struct scsi_inquiry	*sd_inq;
3624 	int 			rval = SD_SUCCESS;
3625 
3626 	ASSERT(un != NULL);
3627 	sd_inq = un->un_sd->sd_inq;
3628 	ASSERT(id != NULL);
3629 
3630 	/*
3631 	 * We use the inq_vid as a pointer to a buffer containing the
3632 	 * vid and pid and use the entire vid/pid length of the table
3633 	 * entry for the comparison. This works because the inq_pid
3634 	 * data member follows inq_vid in the scsi_inquiry structure.
3635 	 */
3636 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3637 		/*
3638 		 * The user id string is compared to the inquiry vid/pid
3639 		 * using a case insensitive comparison and ignoring
3640 		 * multiple spaces.
3641 		 */
3642 		rval = sd_blank_cmp(un, id, idlen);
3643 		if (rval != SD_SUCCESS) {
3644 			/*
3645 			 * User id strings that start and end with a "*"
3646 			 * are a special case. These do not have a
3647 			 * specific vendor, and the product string can
3648 			 * appear anywhere in the 16 byte PID portion of
3649 			 * the inquiry data. This is a simple strstr()
3650 			 * type search for the user id in the inquiry data.
3651 			 */
3652 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3653 				char	*pidptr = &id[1];
3654 				int	i;
3655 				int	j;
3656 				int	pidstrlen = idlen - 2;
3657 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3658 				    pidstrlen;
3659 
3660 				if (j < 0) {
3661 					return (SD_FAILURE);
3662 				}
3663 				for (i = 0; i < j; i++) {
3664 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3665 					    pidptr, pidstrlen) == 0) {
3666 						rval = SD_SUCCESS;
3667 						break;
3668 					}
3669 				}
3670 			}
3671 		}
3672 	}
3673 	return (rval);
3674 }
3675 
3676 
3677 /*
3678  *    Function: sd_blank_cmp
3679  *
3680  * Description: If the id string starts and ends with a space, treat
3681  *		multiple consecutive spaces as equivalent to a single
3682  *		space. For example, this causes a sd_disk_table entry
3683  *		of " NEC CDROM " to match a device's id string of
3684  *		"NEC       CDROM".
3685  *
3686  *		Note: The success exit condition for this routine is if
3687  *		the pointer to the table entry is '\0' and the cnt of
3688  *		the inquiry length is zero. This will happen if the inquiry
3689  *		string returned by the device is padded with spaces to be
3690  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3691  *		SCSI spec states that the inquiry string is to be padded with
3692  *		spaces.
3693  *
3694  *   Arguments: un - driver soft state (unit) structure
3695  *		id - table or config file vid/pid
3696  *		idlen  - length of the vid/pid (bytes)
3697  *
3698  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3699  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3700  */
3701 
3702 static int
3703 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3704 {
3705 	char		*p1;
3706 	char		*p2;
3707 	int		cnt;
3708 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3709 	    sizeof (SD_INQUIRY(un)->inq_pid);
3710 
3711 	ASSERT(un != NULL);
3712 	p2 = un->un_sd->sd_inq->inq_vid;
3713 	ASSERT(id != NULL);
3714 	p1 = id;
3715 
3716 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3717 		/*
3718 		 * Note: string p1 is terminated by a NUL but string p2
3719 		 * isn't.  The end of p2 is determined by cnt.
3720 		 */
3721 		for (;;) {
3722 			/* skip over any extra blanks in both strings */
3723 			while ((*p1 != '\0') && (*p1 == ' ')) {
3724 				p1++;
3725 			}
3726 			while ((cnt != 0) && (*p2 == ' ')) {
3727 				p2++;
3728 				cnt--;
3729 			}
3730 
3731 			/* compare the two strings */
3732 			if ((cnt == 0) ||
3733 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3734 				break;
3735 			}
3736 			while ((cnt > 0) &&
3737 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3738 				p1++;
3739 				p2++;
3740 				cnt--;
3741 			}
3742 		}
3743 	}
3744 
3745 	/* return SD_SUCCESS if both strings match */
3746 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3747 }
3748 
3749 
3750 /*
3751  *    Function: sd_chk_vers1_data
3752  *
3753  * Description: Verify the version 1 device properties provided by the
3754  *		user via the configuration file
3755  *
3756  *   Arguments: un	     - driver soft state (unit) structure
3757  *		flags	     - integer mask indicating properties to be set
3758  *		prop_list    - integer list of property values
3759  *		list_len     - length of user provided data
3760  *
3761  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3762  *		SD_FAILURE - Indicates the user provided data is invalid
3763  */
3764 
3765 static int
3766 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3767     int list_len, char *dataname_ptr)
3768 {
3769 	int i;
3770 	int mask = 1;
3771 	int index = 0;
3772 
3773 	ASSERT(un != NULL);
3774 
3775 	/* Check for a NULL property name and list */
3776 	if (dataname_ptr == NULL) {
3777 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3778 		    "sd_chk_vers1_data: NULL data property name.");
3779 		return (SD_FAILURE);
3780 	}
3781 	if (prop_list == NULL) {
3782 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3783 		    "sd_chk_vers1_data: %s NULL data property list.",
3784 		    dataname_ptr);
3785 		return (SD_FAILURE);
3786 	}
3787 
3788 	/* Display a warning if undefined bits are set in the flags */
3789 	if (flags & ~SD_CONF_BIT_MASK) {
3790 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3791 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3792 		    "Properties not set.",
3793 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3794 		return (SD_FAILURE);
3795 	}
3796 
3797 	/*
3798 	 * Verify the length of the list by identifying the highest bit set
3799 	 * in the flags and validating that the property list has a length
3800 	 * up to the index of this bit.
3801 	 */
3802 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3803 		if (flags & mask) {
3804 			index++;
3805 		}
3806 		mask = 1 << i;
3807 	}
3808 	if ((list_len / sizeof (int)) < (index + 2)) {
3809 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3810 		    "sd_chk_vers1_data: "
3811 		    "Data property list %s size is incorrect. "
3812 		    "Properties not set.", dataname_ptr);
3813 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3814 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3815 		return (SD_FAILURE);
3816 	}
3817 	return (SD_SUCCESS);
3818 }
3819 
3820 
3821 /*
3822  *    Function: sd_set_vers1_properties
3823  *
3824  * Description: Set version 1 device properties based on a property list
3825  *		retrieved from the driver configuration file or static
3826  *		configuration table. Version 1 properties have the format:
3827  *
3828  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3829  *
3830  *		where the prop0 value will be used to set prop0 if bit0
3831  *		is set in the flags
3832  *
3833  *   Arguments: un	     - driver soft state (unit) structure
3834  *		flags	     - integer mask indicating properties to be set
3835  *		prop_list    - integer list of property values
3836  */
3837 
3838 static void
3839 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3840 {
3841 	ASSERT(un != NULL);
3842 
3843 	/*
3844 	 * Set the flag to indicate cache is to be disabled. An attempt
3845 	 * to disable the cache via sd_disable_caching() will be made
3846 	 * later during attach once the basic initialization is complete.
3847 	 */
3848 	if (flags & SD_CONF_BSET_NOCACHE) {
3849 		un->un_f_opt_disable_cache = TRUE;
3850 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3851 		    "sd_set_vers1_properties: caching disabled flag set\n");
3852 	}
3853 
3854 	/* CD-specific configuration parameters */
3855 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3856 		un->un_f_cfg_playmsf_bcd = TRUE;
3857 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3858 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3859 	}
3860 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3861 		un->un_f_cfg_readsub_bcd = TRUE;
3862 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3863 		    "sd_set_vers1_properties: readsub_bcd set\n");
3864 	}
3865 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3866 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3867 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3868 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3869 	}
3870 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3871 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3872 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3873 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3874 	}
3875 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3876 		un->un_f_cfg_no_read_header = TRUE;
3877 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3878 			    "sd_set_vers1_properties: no_read_header set\n");
3879 	}
3880 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3881 		un->un_f_cfg_read_cd_xd4 = TRUE;
3882 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3883 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3884 	}
3885 
3886 	/* Support for devices which do not have valid/unique serial numbers */
3887 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3888 		un->un_f_opt_fab_devid = TRUE;
3889 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3890 		    "sd_set_vers1_properties: fab_devid bit set\n");
3891 	}
3892 
3893 	/* Support for user throttle configuration */
3894 	if (flags & SD_CONF_BSET_THROTTLE) {
3895 		ASSERT(prop_list != NULL);
3896 		un->un_saved_throttle = un->un_throttle =
3897 		    prop_list->sdt_throttle;
3898 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3899 		    "sd_set_vers1_properties: throttle set to %d\n",
3900 		    prop_list->sdt_throttle);
3901 	}
3902 
3903 	/* Set the per disk retry count according to the conf file or table. */
3904 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3905 		ASSERT(prop_list != NULL);
3906 		if (prop_list->sdt_not_rdy_retries) {
3907 			un->un_notready_retry_count =
3908 				prop_list->sdt_not_rdy_retries;
3909 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3910 			    "sd_set_vers1_properties: not ready retry count"
3911 			    " set to %d\n", un->un_notready_retry_count);
3912 		}
3913 	}
3914 
3915 	/* The controller type is reported for generic disk driver ioctls */
3916 	if (flags & SD_CONF_BSET_CTYPE) {
3917 		ASSERT(prop_list != NULL);
3918 		switch (prop_list->sdt_ctype) {
3919 		case CTYPE_CDROM:
3920 			un->un_ctype = prop_list->sdt_ctype;
3921 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3922 			    "sd_set_vers1_properties: ctype set to "
3923 			    "CTYPE_CDROM\n");
3924 			break;
3925 		case CTYPE_CCS:
3926 			un->un_ctype = prop_list->sdt_ctype;
3927 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3928 				"sd_set_vers1_properties: ctype set to "
3929 				"CTYPE_CCS\n");
3930 			break;
3931 		case CTYPE_ROD:		/* RW optical */
3932 			un->un_ctype = prop_list->sdt_ctype;
3933 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3934 			    "sd_set_vers1_properties: ctype set to "
3935 			    "CTYPE_ROD\n");
3936 			break;
3937 		default:
3938 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3939 			    "sd_set_vers1_properties: Could not set "
3940 			    "invalid ctype value (%d)",
3941 			    prop_list->sdt_ctype);
3942 		}
3943 	}
3944 
3945 	/* Purple failover timeout */
3946 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3947 		ASSERT(prop_list != NULL);
3948 		un->un_busy_retry_count =
3949 			prop_list->sdt_busy_retries;
3950 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3951 		    "sd_set_vers1_properties: "
3952 		    "busy retry count set to %d\n",
3953 		    un->un_busy_retry_count);
3954 	}
3955 
3956 	/* Purple reset retry count */
3957 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3958 		ASSERT(prop_list != NULL);
3959 		un->un_reset_retry_count =
3960 			prop_list->sdt_reset_retries;
3961 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3962 		    "sd_set_vers1_properties: "
3963 		    "reset retry count set to %d\n",
3964 		    un->un_reset_retry_count);
3965 	}
3966 
3967 	/* Purple reservation release timeout */
3968 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3969 		ASSERT(prop_list != NULL);
3970 		un->un_reserve_release_time =
3971 			prop_list->sdt_reserv_rel_time;
3972 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3973 		    "sd_set_vers1_properties: "
3974 		    "reservation release timeout set to %d\n",
3975 		    un->un_reserve_release_time);
3976 	}
3977 
3978 	/*
3979 	 * Driver flag telling the driver to verify that no commands are pending
3980 	 * for a device before issuing a Test Unit Ready. This is a workaround
3981 	 * for a firmware bug in some Seagate eliteI drives.
3982 	 */
3983 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3984 		un->un_f_cfg_tur_check = TRUE;
3985 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3986 		    "sd_set_vers1_properties: tur queue check set\n");
3987 	}
3988 
3989 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3990 		un->un_min_throttle = prop_list->sdt_min_throttle;
3991 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3992 		    "sd_set_vers1_properties: min throttle set to %d\n",
3993 		    un->un_min_throttle);
3994 	}
3995 
3996 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3997 		un->un_f_disksort_disabled =
3998 		    (prop_list->sdt_disk_sort_dis != 0) ?
3999 		    TRUE : FALSE;
4000 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4001 		    "sd_set_vers1_properties: disksort disabled "
4002 		    "flag set to %d\n",
4003 		    prop_list->sdt_disk_sort_dis);
4004 	}
4005 
4006 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4007 		un->un_f_lun_reset_enabled =
4008 		    (prop_list->sdt_lun_reset_enable != 0) ?
4009 		    TRUE : FALSE;
4010 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4011 		    "sd_set_vers1_properties: lun reset enabled "
4012 		    "flag set to %d\n",
4013 		    prop_list->sdt_lun_reset_enable);
4014 	}
4015 
4016 	/*
4017 	 * Validate the throttle values.
4018 	 * If any of the numbers are invalid, set everything to defaults.
4019 	 */
4020 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4021 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4022 	    (un->un_min_throttle > un->un_throttle)) {
4023 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4024 		un->un_min_throttle = sd_min_throttle;
4025 	}
4026 }
4027 
4028 /*
4029  *   Function: sd_is_lsi()
4030  *
4031  *   Description: Check for lsi devices, step throught the static device
4032  *	table to match vid/pid.
4033  *
4034  *   Args: un - ptr to sd_lun
4035  *
4036  *   Notes:  When creating new LSI property, need to add the new LSI property
4037  *		to this function.
4038  */
4039 static void
4040 sd_is_lsi(struct sd_lun *un)
4041 {
4042 	char	*id = NULL;
4043 	int	table_index;
4044 	int	idlen;
4045 	void	*prop;
4046 
4047 	ASSERT(un != NULL);
4048 	for (table_index = 0; table_index < sd_disk_table_size;
4049 	    table_index++) {
4050 		id = sd_disk_table[table_index].device_id;
4051 		idlen = strlen(id);
4052 		if (idlen == 0) {
4053 			continue;
4054 		}
4055 
4056 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4057 			prop = sd_disk_table[table_index].properties;
4058 			if (prop == &lsi_properties ||
4059 			    prop == &lsi_oem_properties ||
4060 			    prop == &lsi_properties_scsi ||
4061 			    prop == &symbios_properties) {
4062 				un->un_f_cfg_is_lsi = TRUE;
4063 			}
4064 			break;
4065 		}
4066 	}
4067 }
4068 
4069 
4070 /*
4071  * The following routines support reading and interpretation of disk labels,
4072  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4073  * fdisk tables.
4074  */
4075 
4076 /*
4077  *    Function: sd_validate_geometry
4078  *
4079  * Description: Read the label from the disk (if present). Update the unit's
4080  *		geometry and vtoc information from the data in the label.
4081  *		Verify that the label is valid.
4082  *
4083  *   Arguments: un - driver soft state (unit) structure
4084  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4085  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4086  *			to use the USCSI "direct" chain and bypass the normal
4087  *			command waitq.
4088  *
4089  * Return Code: 0 - Successful completion
4090  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4091  *			  un->un_blockcount; or label on disk is corrupted
4092  *			  or unreadable.
4093  *		EACCES  - Reservation conflict at the device.
4094  *		ENOMEM  - Resource allocation error
4095  *		ENOTSUP - geometry not applicable
4096  *
4097  *     Context: Kernel thread only (can sleep).
4098  */
4099 
4100 static int
4101 sd_validate_geometry(struct sd_lun *un, int path_flag)
4102 {
4103 	static	char		labelstring[128];
4104 	static	char		buf[256];
4105 	char	*label		= NULL;
4106 	int	label_error	= 0;
4107 	int	gvalid		= un->un_f_geometry_is_valid;
4108 	int	lbasize;
4109 	uint_t	capacity;
4110 	int	count;
4111 
4112 	ASSERT(un != NULL);
4113 	ASSERT(mutex_owned(SD_MUTEX(un)));
4114 
4115 	/*
4116 	 * If the required values are not valid, then try getting them
4117 	 * once via read capacity. If that fails, then fail this call.
4118 	 * This is necessary with the new mpxio failover behavior in
4119 	 * the T300 where we can get an attach for the inactive path
4120 	 * before the active path. The inactive path fails commands with
4121 	 * sense data of 02,04,88 which happens to the read capacity
4122 	 * before mpxio has had sufficient knowledge to know if it should
4123 	 * force a fail over or not. (Which it won't do at attach anyhow).
4124 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4125 	 * un_blockcount won't be valid.
4126 	 */
4127 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4128 	    (un->un_f_blockcount_is_valid != TRUE)) {
4129 		uint64_t	cap;
4130 		uint32_t	lbasz;
4131 		int		rval;
4132 
4133 		mutex_exit(SD_MUTEX(un));
4134 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4135 		    &lbasz, SD_PATH_DIRECT);
4136 		mutex_enter(SD_MUTEX(un));
4137 		if (rval == 0) {
4138 			/*
4139 			 * The following relies on
4140 			 * sd_send_scsi_READ_CAPACITY never
4141 			 * returning 0 for capacity and/or lbasize.
4142 			 */
4143 			sd_update_block_info(un, lbasz, cap);
4144 		}
4145 
4146 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4147 		    (un->un_f_blockcount_is_valid != TRUE)) {
4148 			return (EINVAL);
4149 		}
4150 	}
4151 
4152 	/*
4153 	 * Copy the lbasize and capacity so that if they're reset while we're
4154 	 * not holding the SD_MUTEX, we will continue to use valid values
4155 	 * after the SD_MUTEX is reacquired. (4119659)
4156 	 */
4157 	lbasize  = un->un_tgt_blocksize;
4158 	capacity = un->un_blockcount;
4159 
4160 #if defined(_SUNOS_VTOC_16)
4161 	/*
4162 	 * Set up the "whole disk" fdisk partition; this should always
4163 	 * exist, regardless of whether the disk contains an fdisk table
4164 	 * or vtoc.
4165 	 */
4166 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4167 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4168 #endif
4169 
4170 	/*
4171 	 * Refresh the logical and physical geometry caches.
4172 	 * (data from MODE SENSE format/rigid disk geometry pages,
4173 	 * and scsi_ifgetcap("geometry").
4174 	 */
4175 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4176 
4177 	label_error = sd_use_efi(un, path_flag);
4178 	if (label_error == 0) {
4179 		/* found a valid EFI label */
4180 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4181 			"sd_validate_geometry: found EFI label\n");
4182 		un->un_solaris_offset = 0;
4183 		un->un_solaris_size = capacity;
4184 		return (ENOTSUP);
4185 	}
4186 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4187 		if (label_error == ESRCH) {
4188 			/*
4189 			 * they've configured a LUN over 1TB, but used
4190 			 * format.dat to restrict format's view of the
4191 			 * capacity to be under 1TB
4192 			 */
4193 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4194 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4195 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4196 "size to be < 1TB or relabel the disk with an EFI label");
4197 		} else {
4198 			/* unlabeled disk over 1TB */
4199 			return (ENOTSUP);
4200 		}
4201 	}
4202 	label_error = 0;
4203 
4204 	/*
4205 	 * at this point it is either labeled with a VTOC or it is
4206 	 * under 1TB
4207 	 */
4208 	if (un->un_f_vtoc_label_supported) {
4209 		struct	dk_label *dkl;
4210 		offset_t dkl1;
4211 		offset_t label_addr, real_addr;
4212 		int	rval;
4213 		size_t	buffer_size;
4214 
4215 		/*
4216 		 * Note: This will set up un->un_solaris_size and
4217 		 * un->un_solaris_offset.
4218 		 */
4219 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4220 		case SD_CMD_RESERVATION_CONFLICT:
4221 			ASSERT(mutex_owned(SD_MUTEX(un)));
4222 			return (EACCES);
4223 		case SD_CMD_FAILURE:
4224 			ASSERT(mutex_owned(SD_MUTEX(un)));
4225 			return (ENOMEM);
4226 		}
4227 
4228 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4229 			/*
4230 			 * Found fdisk table but no Solaris partition entry,
4231 			 * so don't call sd_uselabel() and don't create
4232 			 * a default label.
4233 			 */
4234 			label_error = 0;
4235 			un->un_f_geometry_is_valid = TRUE;
4236 			goto no_solaris_partition;
4237 		}
4238 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4239 
4240 		/*
4241 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4242 		 * blkno and save the index to beginning of dk_label
4243 		 */
4244 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4245 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4246 		    sizeof (struct dk_label));
4247 
4248 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4249 		    "label_addr: 0x%x allocation size: 0x%x\n",
4250 		    label_addr, buffer_size);
4251 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4252 		if (dkl == NULL) {
4253 			return (ENOMEM);
4254 		}
4255 
4256 		mutex_exit(SD_MUTEX(un));
4257 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4258 		    path_flag);
4259 		mutex_enter(SD_MUTEX(un));
4260 
4261 		switch (rval) {
4262 		case 0:
4263 			/*
4264 			 * sd_uselabel will establish that the geometry
4265 			 * is valid.
4266 			 * For sys_blocksize != tgt_blocksize, need
4267 			 * to index into the beginning of dk_label
4268 			 */
4269 			dkl1 = (daddr_t)dkl
4270 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4271 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4272 			    path_flag) != SD_LABEL_IS_VALID) {
4273 				label_error = EINVAL;
4274 			}
4275 			break;
4276 		case EACCES:
4277 			label_error = EACCES;
4278 			break;
4279 		default:
4280 			label_error = EINVAL;
4281 			break;
4282 		}
4283 
4284 		kmem_free(dkl, buffer_size);
4285 
4286 #if defined(_SUNOS_VTOC_8)
4287 		label = (char *)un->un_asciilabel;
4288 #elif defined(_SUNOS_VTOC_16)
4289 		label = (char *)un->un_vtoc.v_asciilabel;
4290 #else
4291 #error "No VTOC format defined."
4292 #endif
4293 	}
4294 
4295 	/*
4296 	 * If a valid label was not found, AND if no reservation conflict
4297 	 * was detected, then go ahead and create a default label (4069506).
4298 	 */
4299 
4300 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4301 		if (un->un_f_geometry_is_valid == FALSE) {
4302 			sd_build_default_label(un);
4303 		}
4304 		label_error = 0;
4305 	}
4306 
4307 no_solaris_partition:
4308 	if ((!un->un_f_has_removable_media ||
4309 	    (un->un_f_has_removable_media &&
4310 		un->un_mediastate == DKIO_EJECTED)) &&
4311 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4312 		/*
4313 		 * Print out a message indicating who and what we are.
4314 		 * We do this only when we happen to really validate the
4315 		 * geometry. We may call sd_validate_geometry() at other
4316 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4317 		 * don't want to print the label.
4318 		 * If the geometry is valid, print the label string,
4319 		 * else print vendor and product info, if available
4320 		 */
4321 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4322 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4323 		} else {
4324 			mutex_enter(&sd_label_mutex);
4325 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4326 			    labelstring);
4327 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4328 			    &labelstring[64]);
4329 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4330 			    labelstring, &labelstring[64]);
4331 			if (un->un_f_blockcount_is_valid == TRUE) {
4332 				(void) sprintf(&buf[strlen(buf)],
4333 				    ", %llu %u byte blocks\n",
4334 				    (longlong_t)un->un_blockcount,
4335 				    un->un_tgt_blocksize);
4336 			} else {
4337 				(void) sprintf(&buf[strlen(buf)],
4338 				    ", (unknown capacity)\n");
4339 			}
4340 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4341 			mutex_exit(&sd_label_mutex);
4342 		}
4343 	}
4344 
4345 #if defined(_SUNOS_VTOC_16)
4346 	/*
4347 	 * If we have valid geometry, set up the remaining fdisk partitions.
4348 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4349 	 * we set it to an entirely bogus value.
4350 	 */
4351 	for (count = 0; count < FD_NUMPART; count++) {
4352 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4353 		un->un_map[FDISK_P1 + count].dkl_nblk =
4354 		    un->un_fmap[count].fmap_nblk;
4355 
4356 		un->un_offset[FDISK_P1 + count] =
4357 		    un->un_fmap[count].fmap_start;
4358 	}
4359 #endif
4360 
4361 	for (count = 0; count < NDKMAP; count++) {
4362 #if defined(_SUNOS_VTOC_8)
4363 		struct dk_map *lp  = &un->un_map[count];
4364 		un->un_offset[count] =
4365 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4366 #elif defined(_SUNOS_VTOC_16)
4367 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4368 
4369 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4370 #else
4371 #error "No VTOC format defined."
4372 #endif
4373 	}
4374 
4375 	return (label_error);
4376 }
4377 
4378 
4379 #if defined(_SUNOS_VTOC_16)
4380 /*
4381  * Macro: MAX_BLKS
4382  *
4383  *	This macro is used for table entries where we need to have the largest
4384  *	possible sector value for that head & SPT (sectors per track)
4385  *	combination.  Other entries for some smaller disk sizes are set by
4386  *	convention to match those used by X86 BIOS usage.
4387  */
4388 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4389 
4390 /*
4391  *    Function: sd_convert_geometry
4392  *
4393  * Description: Convert physical geometry into a dk_geom structure. In
4394  *		other words, make sure we don't wrap 16-bit values.
4395  *		e.g. converting from geom_cache to dk_geom
4396  *
4397  *     Context: Kernel thread only
4398  */
4399 static void
4400 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4401 {
4402 	int i;
4403 	static const struct chs_values {
4404 		uint_t max_cap;		/* Max Capacity for this HS. */
4405 		uint_t nhead;		/* Heads to use. */
4406 		uint_t nsect;		/* SPT to use. */
4407 	} CHS_values[] = {
4408 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4409 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4410 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4411 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4412 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4413 	};
4414 
4415 	/* Unlabeled SCSI floppy device */
4416 	if (capacity <= 0x1000) {
4417 		un_g->dkg_nhead = 2;
4418 		un_g->dkg_ncyl = 80;
4419 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4420 		return;
4421 	}
4422 
4423 	/*
4424 	 * For all devices we calculate cylinders using the
4425 	 * heads and sectors we assign based on capacity of the
4426 	 * device.  The table is designed to be compatible with the
4427 	 * way other operating systems lay out fdisk tables for X86
4428 	 * and to insure that the cylinders never exceed 65535 to
4429 	 * prevent problems with X86 ioctls that report geometry.
4430 	 * We use SPT that are multiples of 63, since other OSes that
4431 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4432 	 * we make do by using multiples of 63 SPT.
4433 	 *
4434 	 * Note than capacities greater than or equal to 1TB will simply
4435 	 * get the largest geometry from the table. This should be okay
4436 	 * since disks this large shouldn't be using CHS values anyway.
4437 	 */
4438 	for (i = 0; CHS_values[i].max_cap < capacity &&
4439 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4440 		;
4441 
4442 	un_g->dkg_nhead = CHS_values[i].nhead;
4443 	un_g->dkg_nsect = CHS_values[i].nsect;
4444 }
4445 #endif
4446 
4447 
4448 /*
4449  *    Function: sd_resync_geom_caches
4450  *
4451  * Description: (Re)initialize both geometry caches: the virtual geometry
4452  *		information is extracted from the HBA (the "geometry"
4453  *		capability), and the physical geometry cache data is
4454  *		generated by issuing MODE SENSE commands.
4455  *
4456  *   Arguments: un - driver soft state (unit) structure
4457  *		capacity - disk capacity in #blocks
4458  *		lbasize - disk block size in bytes
4459  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4460  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4461  *			to use the USCSI "direct" chain and bypass the normal
4462  *			command waitq.
4463  *
4464  *     Context: Kernel thread only (can sleep).
4465  */
4466 
4467 static void
4468 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4469 	int path_flag)
4470 {
4471 	struct 	geom_cache 	pgeom;
4472 	struct 	geom_cache	*pgeom_p = &pgeom;
4473 	int 	spc;
4474 	unsigned short nhead;
4475 	unsigned short nsect;
4476 
4477 	ASSERT(un != NULL);
4478 	ASSERT(mutex_owned(SD_MUTEX(un)));
4479 
4480 	/*
4481 	 * Ask the controller for its logical geometry.
4482 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4483 	 * then the lgeom cache will be invalid.
4484 	 */
4485 	sd_get_virtual_geometry(un, capacity, lbasize);
4486 
4487 	/*
4488 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4489 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4490 	 */
4491 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4492 		/*
4493 		 * Note: Perhaps this needs to be more adaptive? The rationale
4494 		 * is that, if there's no HBA geometry from the HBA driver, any
4495 		 * guess is good, since this is the physical geometry. If MODE
4496 		 * SENSE fails this gives a max cylinder size for non-LBA access
4497 		 */
4498 		nhead = 255;
4499 		nsect = 63;
4500 	} else {
4501 		nhead = un->un_lgeom.g_nhead;
4502 		nsect = un->un_lgeom.g_nsect;
4503 	}
4504 
4505 	if (ISCD(un)) {
4506 		pgeom_p->g_nhead = 1;
4507 		pgeom_p->g_nsect = nsect * nhead;
4508 	} else {
4509 		pgeom_p->g_nhead = nhead;
4510 		pgeom_p->g_nsect = nsect;
4511 	}
4512 
4513 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4514 	pgeom_p->g_capacity = capacity;
4515 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4516 	pgeom_p->g_acyl = 0;
4517 
4518 	/*
4519 	 * Retrieve fresh geometry data from the hardware, stash it
4520 	 * here temporarily before we rebuild the incore label.
4521 	 *
4522 	 * We want to use the MODE SENSE commands to derive the
4523 	 * physical geometry of the device, but if either command
4524 	 * fails, the logical geometry is used as the fallback for
4525 	 * disk label geometry.
4526 	 */
4527 	mutex_exit(SD_MUTEX(un));
4528 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4529 	mutex_enter(SD_MUTEX(un));
4530 
4531 	/*
4532 	 * Now update the real copy while holding the mutex. This
4533 	 * way the global copy is never in an inconsistent state.
4534 	 */
4535 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4536 
4537 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4538 	    "(cached from lgeom)\n");
4539 	SD_INFO(SD_LOG_COMMON, un,
4540 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4541 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4542 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4543 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4544 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4545 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4546 	    un->un_pgeom.g_rpm);
4547 }
4548 
4549 
4550 /*
4551  *    Function: sd_read_fdisk
4552  *
4553  * Description: utility routine to read the fdisk table.
4554  *
4555  *   Arguments: un - driver soft state (unit) structure
4556  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4557  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4558  *			to use the USCSI "direct" chain and bypass the normal
4559  *			command waitq.
4560  *
4561  * Return Code: SD_CMD_SUCCESS
4562  *		SD_CMD_FAILURE
4563  *
4564  *     Context: Kernel thread only (can sleep).
4565  */
4566 /* ARGSUSED */
4567 static int
4568 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4569 {
4570 #if defined(_NO_FDISK_PRESENT)
4571 
4572 	un->un_solaris_offset = 0;
4573 	un->un_solaris_size = capacity;
4574 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4575 	return (SD_CMD_SUCCESS);
4576 
4577 #elif defined(_FIRMWARE_NEEDS_FDISK)
4578 
4579 	struct ipart	*fdp;
4580 	struct mboot	*mbp;
4581 	struct ipart	fdisk[FD_NUMPART];
4582 	int		i;
4583 	char		sigbuf[2];
4584 	caddr_t		bufp;
4585 	int		uidx;
4586 	int		rval;
4587 	int		lba = 0;
4588 	uint_t		solaris_offset;	/* offset to solaris part. */
4589 	daddr_t		solaris_size;	/* size of solaris partition */
4590 	uint32_t	blocksize;
4591 
4592 	ASSERT(un != NULL);
4593 	ASSERT(mutex_owned(SD_MUTEX(un)));
4594 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4595 
4596 	blocksize = un->un_tgt_blocksize;
4597 
4598 	/*
4599 	 * Start off assuming no fdisk table
4600 	 */
4601 	solaris_offset = 0;
4602 	solaris_size   = capacity;
4603 
4604 	mutex_exit(SD_MUTEX(un));
4605 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4606 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4607 	mutex_enter(SD_MUTEX(un));
4608 
4609 	if (rval != 0) {
4610 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4611 		    "sd_read_fdisk: fdisk read err\n");
4612 		kmem_free(bufp, blocksize);
4613 		return (SD_CMD_FAILURE);
4614 	}
4615 
4616 	mbp = (struct mboot *)bufp;
4617 
4618 	/*
4619 	 * The fdisk table does not begin on a 4-byte boundary within the
4620 	 * master boot record, so we copy it to an aligned structure to avoid
4621 	 * alignment exceptions on some processors.
4622 	 */
4623 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4624 
4625 	/*
4626 	 * Check for lba support before verifying sig; sig might not be
4627 	 * there, say on a blank disk, but the max_chs mark may still
4628 	 * be present.
4629 	 *
4630 	 * Note: LBA support and BEFs are an x86-only concept but this
4631 	 * code should work OK on SPARC as well.
4632 	 */
4633 
4634 	/*
4635 	 * First, check for lba-access-ok on root node (or prom root node)
4636 	 * if present there, don't need to search fdisk table.
4637 	 */
4638 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4639 	    "lba-access-ok", 0) != 0) {
4640 		/* All drives do LBA; don't search fdisk table */
4641 		lba = 1;
4642 	} else {
4643 		/* Okay, look for mark in fdisk table */
4644 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4645 			/* accumulate "lba" value from all partitions */
4646 			lba = (lba || sd_has_max_chs_vals(fdp));
4647 		}
4648 	}
4649 
4650 	if (lba != 0) {
4651 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4652 
4653 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4654 		    "lba-access-ok", 0) == 0) {
4655 			/* not found; create it */
4656 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4657 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4658 			    DDI_PROP_SUCCESS) {
4659 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4660 				    "sd_read_fdisk: Can't create lba property "
4661 				    "for instance %d\n",
4662 				    ddi_get_instance(SD_DEVINFO(un)));
4663 			}
4664 		}
4665 	}
4666 
4667 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4668 
4669 	/*
4670 	 * Endian-independent signature check
4671 	 */
4672 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4673 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4674 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4675 		    "sd_read_fdisk: no fdisk\n");
4676 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4677 		rval = SD_CMD_SUCCESS;
4678 		goto done;
4679 	}
4680 
4681 #ifdef SDDEBUG
4682 	if (sd_level_mask & SD_LOGMASK_INFO) {
4683 		fdp = fdisk;
4684 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4685 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4686 		    "numsect         sysid       bootid\n");
4687 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4688 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4689 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4690 			    i, fdp->relsect, fdp->numsect,
4691 			    fdp->systid, fdp->bootid);
4692 		}
4693 	}
4694 #endif
4695 
4696 	/*
4697 	 * Try to find the unix partition
4698 	 */
4699 	uidx = -1;
4700 	solaris_offset = 0;
4701 	solaris_size   = 0;
4702 
4703 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4704 		int	relsect;
4705 		int	numsect;
4706 
4707 		if (fdp->numsect == 0) {
4708 			un->un_fmap[i].fmap_start = 0;
4709 			un->un_fmap[i].fmap_nblk  = 0;
4710 			continue;
4711 		}
4712 
4713 		/*
4714 		 * Data in the fdisk table is little-endian.
4715 		 */
4716 		relsect = LE_32(fdp->relsect);
4717 		numsect = LE_32(fdp->numsect);
4718 
4719 		un->un_fmap[i].fmap_start = relsect;
4720 		un->un_fmap[i].fmap_nblk  = numsect;
4721 
4722 		if (fdp->systid != SUNIXOS &&
4723 		    fdp->systid != SUNIXOS2 &&
4724 		    fdp->systid != EFI_PMBR) {
4725 			continue;
4726 		}
4727 
4728 		/*
4729 		 * use the last active solaris partition id found
4730 		 * (there should only be 1 active partition id)
4731 		 *
4732 		 * if there are no active solaris partition id
4733 		 * then use the first inactive solaris partition id
4734 		 */
4735 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4736 			uidx = i;
4737 			solaris_offset = relsect;
4738 			solaris_size   = numsect;
4739 		}
4740 	}
4741 
4742 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4743 	    un->un_solaris_offset, un->un_solaris_size);
4744 
4745 	rval = SD_CMD_SUCCESS;
4746 
4747 done:
4748 
4749 	/*
4750 	 * Clear the VTOC info, only if the Solaris partition entry
4751 	 * has moved, changed size, been deleted, or if the size of
4752 	 * the partition is too small to even fit the label sector.
4753 	 */
4754 	if ((un->un_solaris_offset != solaris_offset) ||
4755 	    (un->un_solaris_size != solaris_size) ||
4756 	    solaris_size <= DK_LABEL_LOC) {
4757 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4758 			solaris_offset, solaris_size);
4759 		bzero(&un->un_g, sizeof (struct dk_geom));
4760 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4761 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4762 		un->un_f_geometry_is_valid = FALSE;
4763 	}
4764 	un->un_solaris_offset = solaris_offset;
4765 	un->un_solaris_size = solaris_size;
4766 	kmem_free(bufp, blocksize);
4767 	return (rval);
4768 
4769 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4770 #error "fdisk table presence undetermined for this platform."
4771 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4772 }
4773 
4774 
4775 /*
4776  *    Function: sd_get_physical_geometry
4777  *
4778  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4779  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4780  *		target, and use this information to initialize the physical
4781  *		geometry cache specified by pgeom_p.
4782  *
4783  *		MODE SENSE is an optional command, so failure in this case
4784  *		does not necessarily denote an error. We want to use the
4785  *		MODE SENSE commands to derive the physical geometry of the
4786  *		device, but if either command fails, the logical geometry is
4787  *		used as the fallback for disk label geometry.
4788  *
4789  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4790  *		have already been initialized for the current target and
4791  *		that the current values be passed as args so that we don't
4792  *		end up ever trying to use -1 as a valid value. This could
4793  *		happen if either value is reset while we're not holding
4794  *		the mutex.
4795  *
4796  *   Arguments: un - driver soft state (unit) structure
4797  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4798  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4799  *			to use the USCSI "direct" chain and bypass the normal
4800  *			command waitq.
4801  *
4802  *     Context: Kernel thread only (can sleep).
4803  */
4804 
4805 static void
4806 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4807 	int capacity, int lbasize, int path_flag)
4808 {
4809 	struct	mode_format	*page3p;
4810 	struct	mode_geometry	*page4p;
4811 	struct	mode_header	*headerp;
4812 	int	sector_size;
4813 	int	nsect;
4814 	int	nhead;
4815 	int	ncyl;
4816 	int	intrlv;
4817 	int	spc;
4818 	int	modesense_capacity;
4819 	int	rpm;
4820 	int	bd_len;
4821 	int	mode_header_length;
4822 	uchar_t	*p3bufp;
4823 	uchar_t	*p4bufp;
4824 	int	cdbsize;
4825 
4826 	ASSERT(un != NULL);
4827 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4828 
4829 	if (un->un_f_blockcount_is_valid != TRUE) {
4830 		return;
4831 	}
4832 
4833 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4834 		return;
4835 	}
4836 
4837 	if (lbasize == 0) {
4838 		if (ISCD(un)) {
4839 			lbasize = 2048;
4840 		} else {
4841 			lbasize = un->un_sys_blocksize;
4842 		}
4843 	}
4844 	pgeom_p->g_secsize = (unsigned short)lbasize;
4845 
4846 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4847 
4848 	/*
4849 	 * Retrieve MODE SENSE page 3 - Format Device Page
4850 	 */
4851 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4852 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4853 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4854 	    != 0) {
4855 		SD_ERROR(SD_LOG_COMMON, un,
4856 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4857 		goto page3_exit;
4858 	}
4859 
4860 	/*
4861 	 * Determine size of Block Descriptors in order to locate the mode
4862 	 * page data.  ATAPI devices return 0, SCSI devices should return
4863 	 * MODE_BLK_DESC_LENGTH.
4864 	 */
4865 	headerp = (struct mode_header *)p3bufp;
4866 	if (un->un_f_cfg_is_atapi == TRUE) {
4867 		struct mode_header_grp2 *mhp =
4868 		    (struct mode_header_grp2 *)headerp;
4869 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4870 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4871 	} else {
4872 		mode_header_length = MODE_HEADER_LENGTH;
4873 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4874 	}
4875 
4876 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4877 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4878 		    "received unexpected bd_len of %d, page3\n", bd_len);
4879 		goto page3_exit;
4880 	}
4881 
4882 	page3p = (struct mode_format *)
4883 	    ((caddr_t)headerp + mode_header_length + bd_len);
4884 
4885 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4886 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4887 		    "mode sense pg3 code mismatch %d\n",
4888 		    page3p->mode_page.code);
4889 		goto page3_exit;
4890 	}
4891 
4892 	/*
4893 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4894 	 * complete successfully; otherwise, revert to the logical geometry.
4895 	 * So, we need to save everything in temporary variables.
4896 	 */
4897 	sector_size = BE_16(page3p->data_bytes_sect);
4898 
4899 	/*
4900 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4901 	 */
4902 	if (sector_size == 0) {
4903 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4904 	} else {
4905 		sector_size &= ~(un->un_sys_blocksize - 1);
4906 	}
4907 
4908 	nsect  = BE_16(page3p->sect_track);
4909 	intrlv = BE_16(page3p->interleave);
4910 
4911 	SD_INFO(SD_LOG_COMMON, un,
4912 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4913 	SD_INFO(SD_LOG_COMMON, un,
4914 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4915 	    page3p->mode_page.code, nsect, sector_size);
4916 	SD_INFO(SD_LOG_COMMON, un,
4917 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4918 	    BE_16(page3p->track_skew),
4919 	    BE_16(page3p->cylinder_skew));
4920 
4921 
4922 	/*
4923 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4924 	 */
4925 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4926 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4927 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4928 	    != 0) {
4929 		SD_ERROR(SD_LOG_COMMON, un,
4930 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4931 		goto page4_exit;
4932 	}
4933 
4934 	/*
4935 	 * Determine size of Block Descriptors in order to locate the mode
4936 	 * page data.  ATAPI devices return 0, SCSI devices should return
4937 	 * MODE_BLK_DESC_LENGTH.
4938 	 */
4939 	headerp = (struct mode_header *)p4bufp;
4940 	if (un->un_f_cfg_is_atapi == TRUE) {
4941 		struct mode_header_grp2 *mhp =
4942 		    (struct mode_header_grp2 *)headerp;
4943 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4944 	} else {
4945 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4946 	}
4947 
4948 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4949 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4950 		    "received unexpected bd_len of %d, page4\n", bd_len);
4951 		goto page4_exit;
4952 	}
4953 
4954 	page4p = (struct mode_geometry *)
4955 	    ((caddr_t)headerp + mode_header_length + bd_len);
4956 
4957 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4958 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4959 		    "mode sense pg4 code mismatch %d\n",
4960 		    page4p->mode_page.code);
4961 		goto page4_exit;
4962 	}
4963 
4964 	/*
4965 	 * Stash the data now, after we know that both commands completed.
4966 	 */
4967 
4968 	mutex_enter(SD_MUTEX(un));
4969 
4970 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4971 	spc   = nhead * nsect;
4972 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4973 	rpm   = BE_16(page4p->rpm);
4974 
4975 	modesense_capacity = spc * ncyl;
4976 
4977 	SD_INFO(SD_LOG_COMMON, un,
4978 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4979 	SD_INFO(SD_LOG_COMMON, un,
4980 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4981 	SD_INFO(SD_LOG_COMMON, un,
4982 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4983 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4984 	    (void *)pgeom_p, capacity);
4985 
4986 	/*
4987 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4988 	 * the product of C * H * S returned by MODE SENSE >= that returned
4989 	 * by read capacity. This is an idiosyncrasy of the original x86
4990 	 * disk subsystem.
4991 	 */
4992 	if (modesense_capacity >= capacity) {
4993 		SD_INFO(SD_LOG_COMMON, un,
4994 		    "sd_get_physical_geometry: adjusting acyl; "
4995 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4996 		    (modesense_capacity - capacity + spc - 1) / spc);
4997 		if (sector_size != 0) {
4998 			/* 1243403: NEC D38x7 drives don't support sec size */
4999 			pgeom_p->g_secsize = (unsigned short)sector_size;
5000 		}
5001 		pgeom_p->g_nsect    = (unsigned short)nsect;
5002 		pgeom_p->g_nhead    = (unsigned short)nhead;
5003 		pgeom_p->g_capacity = capacity;
5004 		pgeom_p->g_acyl	    =
5005 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5006 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5007 	}
5008 
5009 	pgeom_p->g_rpm    = (unsigned short)rpm;
5010 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5011 
5012 	SD_INFO(SD_LOG_COMMON, un,
5013 	    "sd_get_physical_geometry: mode sense geometry:\n");
5014 	SD_INFO(SD_LOG_COMMON, un,
5015 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5016 	    nsect, sector_size, intrlv);
5017 	SD_INFO(SD_LOG_COMMON, un,
5018 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5019 	    nhead, ncyl, rpm, modesense_capacity);
5020 	SD_INFO(SD_LOG_COMMON, un,
5021 	    "sd_get_physical_geometry: (cached)\n");
5022 	SD_INFO(SD_LOG_COMMON, un,
5023 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5024 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5025 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5026 	SD_INFO(SD_LOG_COMMON, un,
5027 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5028 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5029 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5030 
5031 	mutex_exit(SD_MUTEX(un));
5032 
5033 page4_exit:
5034 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5035 page3_exit:
5036 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5037 }
5038 
5039 
5040 /*
5041  *    Function: sd_get_virtual_geometry
5042  *
5043  * Description: Ask the controller to tell us about the target device.
5044  *
5045  *   Arguments: un - pointer to softstate
5046  *		capacity - disk capacity in #blocks
5047  *		lbasize - disk block size in bytes
5048  *
5049  *     Context: Kernel thread only
5050  */
5051 
5052 static void
5053 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5054 {
5055 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5056 	uint_t	geombuf;
5057 	int	spc;
5058 
5059 	ASSERT(un != NULL);
5060 	ASSERT(mutex_owned(SD_MUTEX(un)));
5061 
5062 	mutex_exit(SD_MUTEX(un));
5063 
5064 	/* Set sector size, and total number of sectors */
5065 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5066 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5067 
5068 	/* Let the HBA tell us its geometry */
5069 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5070 
5071 	mutex_enter(SD_MUTEX(un));
5072 
5073 	/* A value of -1 indicates an undefined "geometry" property */
5074 	if (geombuf == (-1)) {
5075 		return;
5076 	}
5077 
5078 	/* Initialize the logical geometry cache. */
5079 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5080 	lgeom_p->g_nsect   = geombuf & 0xffff;
5081 	lgeom_p->g_secsize = un->un_sys_blocksize;
5082 
5083 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5084 
5085 	/*
5086 	 * Note: The driver originally converted the capacity value from
5087 	 * target blocks to system blocks. However, the capacity value passed
5088 	 * to this routine is already in terms of system blocks (this scaling
5089 	 * is done when the READ CAPACITY command is issued and processed).
5090 	 * This 'error' may have gone undetected because the usage of g_ncyl
5091 	 * (which is based upon g_capacity) is very limited within the driver
5092 	 */
5093 	lgeom_p->g_capacity = capacity;
5094 
5095 	/*
5096 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5097 	 * hba may return zero values if the device has been removed.
5098 	 */
5099 	if (spc == 0) {
5100 		lgeom_p->g_ncyl = 0;
5101 	} else {
5102 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5103 	}
5104 	lgeom_p->g_acyl = 0;
5105 
5106 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5107 	SD_INFO(SD_LOG_COMMON, un,
5108 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5109 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5110 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5111 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5112 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5113 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5114 }
5115 
5116 
5117 /*
5118  *    Function: sd_update_block_info
5119  *
5120  * Description: Calculate a byte count to sector count bitshift value
5121  *		from sector size.
5122  *
5123  *   Arguments: un: unit struct.
5124  *		lbasize: new target sector size
5125  *		capacity: new target capacity, ie. block count
5126  *
5127  *     Context: Kernel thread context
5128  */
5129 
5130 static void
5131 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5132 {
5133 	if (lbasize != 0) {
5134 		un->un_tgt_blocksize = lbasize;
5135 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5136 	}
5137 
5138 	if (capacity != 0) {
5139 		un->un_blockcount		= capacity;
5140 		un->un_f_blockcount_is_valid	= TRUE;
5141 	}
5142 }
5143 
5144 
5145 static void
5146 sd_swap_efi_gpt(efi_gpt_t *e)
5147 {
5148 	_NOTE(ASSUMING_PROTECTED(*e))
5149 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5150 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5151 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5152 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5153 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5154 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5155 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5156 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5157 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5158 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5159 	e->efi_gpt_NumberOfPartitionEntries =
5160 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5161 	e->efi_gpt_SizeOfPartitionEntry =
5162 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5163 	e->efi_gpt_PartitionEntryArrayCRC32 =
5164 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5165 }
5166 
5167 static void
5168 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5169 {
5170 	int i;
5171 
5172 	_NOTE(ASSUMING_PROTECTED(*p))
5173 	for (i = 0; i < nparts; i++) {
5174 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5175 		    p[i].efi_gpe_PartitionTypeGUID);
5176 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5177 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5178 		/* PartitionAttrs */
5179 	}
5180 }
5181 
5182 static int
5183 sd_validate_efi(efi_gpt_t *labp)
5184 {
5185 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5186 		return (EINVAL);
5187 	/* at least 96 bytes in this version of the spec. */
5188 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5189 	    labp->efi_gpt_HeaderSize)
5190 		return (EINVAL);
5191 	/* this should be 128 bytes */
5192 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5193 		return (EINVAL);
5194 	return (0);
5195 }
5196 
5197 static int
5198 sd_use_efi(struct sd_lun *un, int path_flag)
5199 {
5200 	int		i;
5201 	int		rval = 0;
5202 	efi_gpe_t	*partitions;
5203 	uchar_t		*buf;
5204 	uint_t		lbasize;
5205 	uint64_t	cap;
5206 	uint_t		nparts;
5207 	diskaddr_t	gpe_lba;
5208 
5209 	ASSERT(mutex_owned(SD_MUTEX(un)));
5210 	lbasize = un->un_tgt_blocksize;
5211 
5212 	mutex_exit(SD_MUTEX(un));
5213 
5214 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5215 
5216 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5217 		rval = EINVAL;
5218 		goto done_err;
5219 	}
5220 
5221 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5222 	if (rval) {
5223 		goto done_err;
5224 	}
5225 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5226 		/* not ours */
5227 		rval = ESRCH;
5228 		goto done_err;
5229 	}
5230 
5231 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5232 	if (rval) {
5233 		goto done_err;
5234 	}
5235 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5236 
5237 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5238 		/*
5239 		 * Couldn't read the primary, try the backup.  Our
5240 		 * capacity at this point could be based on CHS, so
5241 		 * check what the device reports.
5242 		 */
5243 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5244 		    path_flag);
5245 		if (rval) {
5246 			goto done_err;
5247 		}
5248 
5249 		/*
5250 		 * The MMC standard allows READ CAPACITY to be
5251 		 * inaccurate by a bounded amount (in the interest of
5252 		 * response latency).  As a result, failed READs are
5253 		 * commonplace (due to the reading of metadata and not
5254 		 * data). Depending on the per-Vendor/drive Sense data,
5255 		 * the failed READ can cause many (unnecessary) retries.
5256 		 */
5257 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5258 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5259 			path_flag)) != 0) {
5260 				goto done_err;
5261 		}
5262 
5263 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5264 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5265 			goto done_err;
5266 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5267 		    "primary label corrupt; using backup\n");
5268 	}
5269 
5270 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5271 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5272 
5273 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5274 	    path_flag);
5275 	if (rval) {
5276 		goto done_err;
5277 	}
5278 	partitions = (efi_gpe_t *)buf;
5279 
5280 	if (nparts > MAXPART) {
5281 		nparts = MAXPART;
5282 	}
5283 	sd_swap_efi_gpe(nparts, partitions);
5284 
5285 	mutex_enter(SD_MUTEX(un));
5286 
5287 	/* Fill in partition table. */
5288 	for (i = 0; i < nparts; i++) {
5289 		if (partitions->efi_gpe_StartingLBA != 0 ||
5290 		    partitions->efi_gpe_EndingLBA != 0) {
5291 			un->un_map[i].dkl_cylno =
5292 			    partitions->efi_gpe_StartingLBA;
5293 			un->un_map[i].dkl_nblk =
5294 			    partitions->efi_gpe_EndingLBA -
5295 			    partitions->efi_gpe_StartingLBA + 1;
5296 			un->un_offset[i] =
5297 			    partitions->efi_gpe_StartingLBA;
5298 		}
5299 		if (i == WD_NODE) {
5300 			/*
5301 			 * minor number 7 corresponds to the whole disk
5302 			 */
5303 			un->un_map[i].dkl_cylno = 0;
5304 			un->un_map[i].dkl_nblk = un->un_blockcount;
5305 			un->un_offset[i] = 0;
5306 		}
5307 		partitions++;
5308 	}
5309 	un->un_solaris_offset = 0;
5310 	un->un_solaris_size = cap;
5311 	un->un_f_geometry_is_valid = TRUE;
5312 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5313 	return (0);
5314 
5315 done_err:
5316 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5317 	mutex_enter(SD_MUTEX(un));
5318 	/*
5319 	 * if we didn't find something that could look like a VTOC
5320 	 * and the disk is over 1TB, we know there isn't a valid label.
5321 	 * Otherwise let sd_uselabel decide what to do.  We only
5322 	 * want to invalidate this if we're certain the label isn't
5323 	 * valid because sd_prop_op will now fail, which in turn
5324 	 * causes things like opens and stats on the partition to fail.
5325 	 */
5326 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5327 		un->un_f_geometry_is_valid = FALSE;
5328 	}
5329 	return (rval);
5330 }
5331 
5332 
5333 /*
5334  *    Function: sd_uselabel
5335  *
5336  * Description: Validate the disk label and update the relevant data (geometry,
5337  *		partition, vtoc, and capacity data) in the sd_lun struct.
5338  *		Marks the geometry of the unit as being valid.
5339  *
5340  *   Arguments: un: unit struct.
5341  *		dk_label: disk label
5342  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5343  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5344  *			to use the USCSI "direct" chain and bypass the normal
5345  *			command waitq.
5346  *
5347  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5348  *		partition, vtoc, and capacity data are good.
5349  *
5350  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5351  *		label; or computed capacity does not jibe with capacity
5352  *		reported from the READ CAPACITY command.
5353  *
5354  *     Context: Kernel thread only (can sleep).
5355  */
5356 
5357 static int
5358 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5359 {
5360 	short	*sp;
5361 	short	sum;
5362 	short	count;
5363 	int	label_error = SD_LABEL_IS_VALID;
5364 	int	i;
5365 	int	capacity;
5366 	int	part_end;
5367 	int	track_capacity;
5368 	int	err;
5369 #if defined(_SUNOS_VTOC_16)
5370 	struct	dkl_partition	*vpartp;
5371 #endif
5372 	ASSERT(un != NULL);
5373 	ASSERT(mutex_owned(SD_MUTEX(un)));
5374 
5375 	/* Validate the magic number of the label. */
5376 	if (labp->dkl_magic != DKL_MAGIC) {
5377 #if defined(__sparc)
5378 		if ((un->un_state == SD_STATE_NORMAL) &&
5379 			un->un_f_vtoc_errlog_supported) {
5380 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5381 			    "Corrupt label; wrong magic number\n");
5382 		}
5383 #endif
5384 		return (SD_LABEL_IS_INVALID);
5385 	}
5386 
5387 	/* Validate the checksum of the label. */
5388 	sp  = (short *)labp;
5389 	sum = 0;
5390 	count = sizeof (struct dk_label) / sizeof (short);
5391 	while (count--)	 {
5392 		sum ^= *sp++;
5393 	}
5394 
5395 	if (sum != 0) {
5396 #if	defined(_SUNOS_VTOC_16)
5397 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5398 #elif defined(_SUNOS_VTOC_8)
5399 		if ((un->un_state == SD_STATE_NORMAL) &&
5400 		    un->un_f_vtoc_errlog_supported) {
5401 #endif
5402 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5403 			    "Corrupt label - label checksum failed\n");
5404 		}
5405 		return (SD_LABEL_IS_INVALID);
5406 	}
5407 
5408 
5409 	/*
5410 	 * Fill in geometry structure with data from label.
5411 	 */
5412 	bzero(&un->un_g, sizeof (struct dk_geom));
5413 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5414 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5415 	un->un_g.dkg_bcyl   = 0;
5416 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5417 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5418 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5419 
5420 #if defined(_SUNOS_VTOC_8)
5421 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5422 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5423 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5424 #endif
5425 #if defined(_SUNOS_VTOC_16)
5426 	un->un_dkg_skew = labp->dkl_skew;
5427 #endif
5428 
5429 #if defined(__i386) || defined(__amd64)
5430 	un->un_g.dkg_apc = labp->dkl_apc;
5431 #endif
5432 
5433 	/*
5434 	 * Currently we rely on the values in the label being accurate. If
5435 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5436 	 *
5437 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5438 	 * although this command is optional in SCSI-2.
5439 	 */
5440 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5441 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5442 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5443 
5444 	/*
5445 	 * The Read and Write reinstruct values may not be valid
5446 	 * for older disks.
5447 	 */
5448 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5449 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5450 
5451 	/* Fill in partition table. */
5452 #if defined(_SUNOS_VTOC_8)
5453 	for (i = 0; i < NDKMAP; i++) {
5454 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5455 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5456 	}
5457 #endif
5458 #if  defined(_SUNOS_VTOC_16)
5459 	vpartp		= labp->dkl_vtoc.v_part;
5460 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5461 
5462 	/* Prevent divide by zero */
5463 	if (track_capacity == 0) {
5464 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5465 		    "Corrupt label - zero nhead or nsect value\n");
5466 
5467 		return (SD_LABEL_IS_INVALID);
5468 	}
5469 
5470 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5471 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5472 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5473 	}
5474 #endif
5475 
5476 	/* Fill in VTOC Structure. */
5477 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5478 #if defined(_SUNOS_VTOC_8)
5479 	/*
5480 	 * The 8-slice vtoc does not include the ascii label; save it into
5481 	 * the device's soft state structure here.
5482 	 */
5483 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5484 #endif
5485 
5486 	/* Now look for a valid capacity. */
5487 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5488 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5489 
5490 	if (un->un_g.dkg_acyl) {
5491 #if defined(__i386) || defined(__amd64)
5492 		/* we may have > 1 alts cylinder */
5493 		capacity += (track_capacity * un->un_g.dkg_acyl);
5494 #else
5495 		capacity += track_capacity;
5496 #endif
5497 	}
5498 
5499 	/*
5500 	 * Force check here to ensure the computed capacity is valid.
5501 	 * If capacity is zero, it indicates an invalid label and
5502 	 * we should abort updating the relevant data then.
5503 	 */
5504 	if (capacity == 0) {
5505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5506 		    "Corrupt label - no valid capacity could be retrieved\n");
5507 
5508 		return (SD_LABEL_IS_INVALID);
5509 	}
5510 
5511 	/* Mark the geometry as valid. */
5512 	un->un_f_geometry_is_valid = TRUE;
5513 
5514 	/*
5515 	 * At this point, un->un_blockcount should contain valid data from
5516 	 * the READ CAPACITY command.
5517 	 */
5518 	if (un->un_f_blockcount_is_valid != TRUE) {
5519 		/*
5520 		 * We have a situation where the target didn't give us a good
5521 		 * READ CAPACITY value, yet there appears to be a valid label.
5522 		 * In this case, we'll fake the capacity.
5523 		 */
5524 		un->un_blockcount = capacity;
5525 		un->un_f_blockcount_is_valid = TRUE;
5526 		goto done;
5527 	}
5528 
5529 
5530 	if ((capacity <= un->un_blockcount) ||
5531 	    (un->un_state != SD_STATE_NORMAL)) {
5532 #if defined(_SUNOS_VTOC_8)
5533 		/*
5534 		 * We can't let this happen on drives that are subdivided
5535 		 * into logical disks (i.e., that have an fdisk table).
5536 		 * The un_blockcount field should always hold the full media
5537 		 * size in sectors, period.  This code would overwrite
5538 		 * un_blockcount with the size of the Solaris fdisk partition.
5539 		 */
5540 		SD_ERROR(SD_LOG_COMMON, un,
5541 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5542 		    capacity, un->un_blockcount);
5543 		un->un_blockcount = capacity;
5544 		un->un_f_blockcount_is_valid = TRUE;
5545 #endif	/* defined(_SUNOS_VTOC_8) */
5546 		goto done;
5547 	}
5548 
5549 	if (ISCD(un)) {
5550 		/* For CDROMs, we trust that the data in the label is OK. */
5551 #if defined(_SUNOS_VTOC_8)
5552 		for (i = 0; i < NDKMAP; i++) {
5553 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5554 			    labp->dkl_map[i].dkl_cylno +
5555 			    labp->dkl_map[i].dkl_nblk  - 1;
5556 
5557 			if ((labp->dkl_map[i].dkl_nblk) &&
5558 			    (part_end > un->un_blockcount)) {
5559 				un->un_f_geometry_is_valid = FALSE;
5560 				break;
5561 			}
5562 		}
5563 #endif
5564 #if defined(_SUNOS_VTOC_16)
5565 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5566 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5567 			part_end = vpartp->p_start + vpartp->p_size;
5568 			if ((vpartp->p_size > 0) &&
5569 			    (part_end > un->un_blockcount)) {
5570 				un->un_f_geometry_is_valid = FALSE;
5571 				break;
5572 			}
5573 		}
5574 #endif
5575 	} else {
5576 		uint64_t t_capacity;
5577 		uint32_t t_lbasize;
5578 
5579 		mutex_exit(SD_MUTEX(un));
5580 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5581 		    path_flag);
5582 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5583 		mutex_enter(SD_MUTEX(un));
5584 
5585 		if (err == 0) {
5586 			sd_update_block_info(un, t_lbasize, t_capacity);
5587 		}
5588 
5589 		if (capacity > un->un_blockcount) {
5590 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5591 			    "Corrupt label - bad geometry\n");
5592 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5593 			    "Label says %u blocks; Drive says %llu blocks\n",
5594 			    capacity, (unsigned long long)un->un_blockcount);
5595 			un->un_f_geometry_is_valid = FALSE;
5596 			label_error = SD_LABEL_IS_INVALID;
5597 		}
5598 	}
5599 
5600 done:
5601 
5602 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5603 	SD_INFO(SD_LOG_COMMON, un,
5604 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5605 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5606 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5607 	SD_INFO(SD_LOG_COMMON, un,
5608 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5609 	    un->un_tgt_blocksize, un->un_blockcount,
5610 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5611 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5612 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5613 
5614 	ASSERT(mutex_owned(SD_MUTEX(un)));
5615 
5616 	return (label_error);
5617 }
5618 
5619 
5620 /*
5621  *    Function: sd_build_default_label
5622  *
5623  * Description: Generate a default label for those devices that do not have
5624  *		one, e.g., new media, removable cartridges, etc..
5625  *
5626  *     Context: Kernel thread only
5627  */
5628 
5629 static void
5630 sd_build_default_label(struct sd_lun *un)
5631 {
5632 #if defined(_SUNOS_VTOC_16)
5633 	uint_t	phys_spc;
5634 	uint_t	disksize;
5635 	struct	dk_geom un_g;
5636 #endif
5637 
5638 	ASSERT(un != NULL);
5639 	ASSERT(mutex_owned(SD_MUTEX(un)));
5640 
5641 #if defined(_SUNOS_VTOC_8)
5642 	/*
5643 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5644 	 * only. This may be a valid check for VTOC_16 as well.
5645 	 * Once we understand why there is this difference between SPARC and
5646 	 * x86 platform, we could remove this legacy check.
5647 	 */
5648 	ASSERT(un->un_f_default_vtoc_supported);
5649 #endif
5650 
5651 	bzero(&un->un_g, sizeof (struct dk_geom));
5652 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5653 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5654 
5655 #if defined(_SUNOS_VTOC_8)
5656 
5657 	/*
5658 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5659 	 * But it is still necessary to set up various geometry information,
5660 	 * and we are doing this here.
5661 	 */
5662 
5663 	/*
5664 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5665 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5666 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5667 	 * equal to C*H*S values.  This will cause some truncation of size due
5668 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5669 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5670 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5671 	 */
5672 	if (ISCD(un)) {
5673 		/*
5674 		 * Preserve the old behavior for non-writable
5675 		 * medias. Since dkg_nsect is a ushort, it
5676 		 * will lose bits as cdroms have more than
5677 		 * 65536 sectors. So if we recalculate
5678 		 * capacity, it will become much shorter.
5679 		 * But the dkg_* information is not
5680 		 * used for CDROMs so it is OK. But for
5681 		 * Writable CDs we need this information
5682 		 * to be valid (for newfs say). So we
5683 		 * make nsect and nhead > 1 that way
5684 		 * nsect can still stay within ushort limit
5685 		 * without losing any bits.
5686 		 */
5687 		if (un->un_f_mmc_writable_media == TRUE) {
5688 			un->un_g.dkg_nhead = 64;
5689 			un->un_g.dkg_nsect = 32;
5690 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5691 			un->un_blockcount = un->un_g.dkg_ncyl *
5692 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5693 		} else {
5694 			un->un_g.dkg_ncyl  = 1;
5695 			un->un_g.dkg_nhead = 1;
5696 			un->un_g.dkg_nsect = un->un_blockcount;
5697 		}
5698 	} else {
5699 		if (un->un_blockcount <= 0x1000) {
5700 			/* unlabeled SCSI floppy device */
5701 			un->un_g.dkg_nhead = 2;
5702 			un->un_g.dkg_ncyl = 80;
5703 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5704 		} else if (un->un_blockcount <= 0x200000) {
5705 			un->un_g.dkg_nhead = 64;
5706 			un->un_g.dkg_nsect = 32;
5707 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5708 		} else {
5709 			un->un_g.dkg_nhead = 255;
5710 			un->un_g.dkg_nsect = 63;
5711 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5712 		}
5713 		un->un_blockcount =
5714 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5715 	}
5716 
5717 	un->un_g.dkg_acyl	= 0;
5718 	un->un_g.dkg_bcyl	= 0;
5719 	un->un_g.dkg_rpm	= 200;
5720 	un->un_asciilabel[0]	= '\0';
5721 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5722 
5723 	un->un_map[0].dkl_cylno = 0;
5724 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5725 	un->un_map[2].dkl_cylno = 0;
5726 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5727 
5728 #elif defined(_SUNOS_VTOC_16)
5729 
5730 	if (un->un_solaris_size == 0) {
5731 		/*
5732 		 * Got fdisk table but no solaris entry therefore
5733 		 * don't create a default label
5734 		 */
5735 		un->un_f_geometry_is_valid = TRUE;
5736 		return;
5737 	}
5738 
5739 	/*
5740 	 * For CDs we continue to use the physical geometry to calculate
5741 	 * number of cylinders. All other devices must convert the
5742 	 * physical geometry (geom_cache) to values that will fit
5743 	 * in a dk_geom structure.
5744 	 */
5745 	if (ISCD(un)) {
5746 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5747 	} else {
5748 		/* Convert physical geometry to disk geometry */
5749 		bzero(&un_g, sizeof (struct dk_geom));
5750 		sd_convert_geometry(un->un_blockcount, &un_g);
5751 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5752 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5753 	}
5754 
5755 	ASSERT(phys_spc != 0);
5756 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5757 	un->un_g.dkg_acyl = DK_ACYL;
5758 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5759 	disksize = un->un_g.dkg_ncyl * phys_spc;
5760 
5761 	if (ISCD(un)) {
5762 		/*
5763 		 * CD's don't use the "heads * sectors * cyls"-type of
5764 		 * geometry, but instead use the entire capacity of the media.
5765 		 */
5766 		disksize = un->un_solaris_size;
5767 		un->un_g.dkg_nhead = 1;
5768 		un->un_g.dkg_nsect = 1;
5769 		un->un_g.dkg_rpm =
5770 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5771 
5772 		un->un_vtoc.v_part[0].p_start = 0;
5773 		un->un_vtoc.v_part[0].p_size  = disksize;
5774 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5775 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5776 
5777 		un->un_map[0].dkl_cylno = 0;
5778 		un->un_map[0].dkl_nblk  = disksize;
5779 		un->un_offset[0] = 0;
5780 
5781 	} else {
5782 		/*
5783 		 * Hard disks and removable media cartridges
5784 		 */
5785 		un->un_g.dkg_rpm =
5786 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5787 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5788 
5789 		/* Add boot slice */
5790 		un->un_vtoc.v_part[8].p_start = 0;
5791 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5792 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5793 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5794 
5795 		un->un_map[8].dkl_cylno = 0;
5796 		un->un_map[8].dkl_nblk  = phys_spc;
5797 		un->un_offset[8] = 0;
5798 	}
5799 
5800 	un->un_g.dkg_apc = 0;
5801 	un->un_vtoc.v_nparts = V_NUMPAR;
5802 
5803 	/* Add backup slice */
5804 	un->un_vtoc.v_part[2].p_start = 0;
5805 	un->un_vtoc.v_part[2].p_size  = disksize;
5806 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5807 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5808 
5809 	un->un_map[2].dkl_cylno = 0;
5810 	un->un_map[2].dkl_nblk  = disksize;
5811 	un->un_offset[2] = 0;
5812 
5813 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5814 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5815 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5816 
5817 #else
5818 #error "No VTOC format defined."
5819 #endif
5820 
5821 	un->un_g.dkg_read_reinstruct  = 0;
5822 	un->un_g.dkg_write_reinstruct = 0;
5823 
5824 	un->un_g.dkg_intrlv = 1;
5825 
5826 	un->un_vtoc.v_version = V_VERSION;
5827 	un->un_vtoc.v_sanity  = VTOC_SANE;
5828 
5829 	un->un_f_geometry_is_valid = TRUE;
5830 
5831 	SD_INFO(SD_LOG_COMMON, un,
5832 	    "sd_build_default_label: Default label created: "
5833 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5834 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5835 	    un->un_g.dkg_nsect, un->un_blockcount);
5836 }
5837 
5838 
5839 #if defined(_FIRMWARE_NEEDS_FDISK)
5840 /*
5841  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5842  */
5843 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5844 #define	LBA_MAX_CYL	(1022 & 0xFF)
5845 #define	LBA_MAX_HEAD	(254)
5846 
5847 
5848 /*
5849  *    Function: sd_has_max_chs_vals
5850  *
5851  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5852  *
5853  *   Arguments: fdp - ptr to CHS info
5854  *
5855  * Return Code: True or false
5856  *
5857  *     Context: Any.
5858  */
5859 
5860 static int
5861 sd_has_max_chs_vals(struct ipart *fdp)
5862 {
5863 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5864 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5865 	    (fdp->begsect == LBA_MAX_SECT)	&&
5866 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5867 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5868 	    (fdp->endsect == LBA_MAX_SECT));
5869 }
5870 #endif
5871 
5872 
5873 /*
5874  *    Function: sd_inq_fill
5875  *
5876  * Description: Print a piece of inquiry data, cleaned up for non-printable
5877  *		characters and stopping at the first space character after
5878  *		the beginning of the passed string;
5879  *
5880  *   Arguments: p - source string
5881  *		l - maximum length to copy
5882  *		s - destination string
5883  *
5884  *     Context: Any.
5885  */
5886 
5887 static void
5888 sd_inq_fill(char *p, int l, char *s)
5889 {
5890 	unsigned i = 0;
5891 	char c;
5892 
5893 	while (i++ < l) {
5894 		if ((c = *p++) < ' ' || c >= 0x7F) {
5895 			c = '*';
5896 		} else if (i != 1 && c == ' ') {
5897 			break;
5898 		}
5899 		*s++ = c;
5900 	}
5901 	*s++ = 0;
5902 }
5903 
5904 
5905 /*
5906  *    Function: sd_register_devid
5907  *
5908  * Description: This routine will obtain the device id information from the
5909  *		target, obtain the serial number, and register the device
5910  *		id with the ddi framework.
5911  *
5912  *   Arguments: devi - the system's dev_info_t for the device.
5913  *		un - driver soft state (unit) structure
5914  *		reservation_flag - indicates if a reservation conflict
5915  *		occurred during attach
5916  *
5917  *     Context: Kernel Thread
5918  */
5919 static void
5920 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5921 {
5922 	int		rval		= 0;
5923 	uchar_t		*inq80		= NULL;
5924 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5925 	size_t		inq80_resid	= 0;
5926 	uchar_t		*inq83		= NULL;
5927 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5928 	size_t		inq83_resid	= 0;
5929 
5930 	ASSERT(un != NULL);
5931 	ASSERT(mutex_owned(SD_MUTEX(un)));
5932 	ASSERT((SD_DEVINFO(un)) == devi);
5933 
5934 	/*
5935 	 * This is the case of antiquated Sun disk drives that have the
5936 	 * FAB_DEVID property set in the disk_table.  These drives
5937 	 * manage the devid's by storing them in last 2 available sectors
5938 	 * on the drive and have them fabricated by the ddi layer by calling
5939 	 * ddi_devid_init and passing the DEVID_FAB flag.
5940 	 */
5941 	if (un->un_f_opt_fab_devid == TRUE) {
5942 		/*
5943 		 * Depending on EINVAL isn't reliable, since a reserved disk
5944 		 * may result in invalid geometry, so check to make sure a
5945 		 * reservation conflict did not occur during attach.
5946 		 */
5947 		if ((sd_get_devid(un) == EINVAL) &&
5948 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5949 			/*
5950 			 * The devid is invalid AND there is no reservation
5951 			 * conflict.  Fabricate a new devid.
5952 			 */
5953 			(void) sd_create_devid(un);
5954 		}
5955 
5956 		/* Register the devid if it exists */
5957 		if (un->un_devid != NULL) {
5958 			(void) ddi_devid_register(SD_DEVINFO(un),
5959 			    un->un_devid);
5960 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5961 			    "sd_register_devid: Devid Fabricated\n");
5962 		}
5963 		return;
5964 	}
5965 
5966 	/*
5967 	 * We check the availibility of the World Wide Name (0x83) and Unit
5968 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5969 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5970 	 * 0x83 is availible, that is the best choice.  Our next choice is
5971 	 * 0x80.  If neither are availible, we munge the devid from the device
5972 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5973 	 * to fabricate a devid for non-Sun qualified disks.
5974 	 */
5975 	if (sd_check_vpd_page_support(un) == 0) {
5976 		/* collect page 80 data if available */
5977 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5978 
5979 			mutex_exit(SD_MUTEX(un));
5980 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5981 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5982 			    0x01, 0x80, &inq80_resid);
5983 
5984 			if (rval != 0) {
5985 				kmem_free(inq80, inq80_len);
5986 				inq80 = NULL;
5987 				inq80_len = 0;
5988 			}
5989 			mutex_enter(SD_MUTEX(un));
5990 		}
5991 
5992 		/* collect page 83 data if available */
5993 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5994 			mutex_exit(SD_MUTEX(un));
5995 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5996 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5997 			    0x01, 0x83, &inq83_resid);
5998 
5999 			if (rval != 0) {
6000 				kmem_free(inq83, inq83_len);
6001 				inq83 = NULL;
6002 				inq83_len = 0;
6003 			}
6004 			mutex_enter(SD_MUTEX(un));
6005 		}
6006 	}
6007 
6008 	/* encode best devid possible based on data available */
6009 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6010 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6011 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6012 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6013 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6014 
6015 		/* devid successfully encoded, register devid */
6016 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6017 
6018 	} else {
6019 		/*
6020 		 * Unable to encode a devid based on data available.
6021 		 * This is not a Sun qualified disk.  Older Sun disk
6022 		 * drives that have the SD_FAB_DEVID property
6023 		 * set in the disk_table and non Sun qualified
6024 		 * disks are treated in the same manner.  These
6025 		 * drives manage the devid's by storing them in
6026 		 * last 2 available sectors on the drive and
6027 		 * have them fabricated by the ddi layer by
6028 		 * calling ddi_devid_init and passing the
6029 		 * DEVID_FAB flag.
6030 		 * Create a fabricate devid only if there's no
6031 		 * fabricate devid existed.
6032 		 */
6033 		if (sd_get_devid(un) == EINVAL) {
6034 			(void) sd_create_devid(un);
6035 			un->un_f_opt_fab_devid = TRUE;
6036 		}
6037 
6038 		/* Register the devid if it exists */
6039 		if (un->un_devid != NULL) {
6040 			(void) ddi_devid_register(SD_DEVINFO(un),
6041 			    un->un_devid);
6042 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6043 			    "sd_register_devid: devid fabricated using "
6044 			    "ddi framework\n");
6045 		}
6046 	}
6047 
6048 	/* clean up resources */
6049 	if (inq80 != NULL) {
6050 		kmem_free(inq80, inq80_len);
6051 	}
6052 	if (inq83 != NULL) {
6053 		kmem_free(inq83, inq83_len);
6054 	}
6055 }
6056 
6057 static daddr_t
6058 sd_get_devid_block(struct sd_lun *un)
6059 {
6060 	daddr_t			spc, blk, head, cyl;
6061 
6062 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6063 		/* this geometry doesn't allow us to write a devid */
6064 		if (un->un_g.dkg_acyl < 2) {
6065 			return (-1);
6066 		}
6067 
6068 		/*
6069 		 * Subtract 2 guarantees that the next to last cylinder
6070 		 * is used
6071 		 */
6072 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6073 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6074 		head = un->un_g.dkg_nhead - 1;
6075 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6076 		    (head * un->un_g.dkg_nsect) + 1;
6077 	} else {
6078 		if (un->un_reserved != -1) {
6079 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6080 		} else {
6081 			return (-1);
6082 		}
6083 	}
6084 	return (blk);
6085 }
6086 
6087 /*
6088  *    Function: sd_get_devid
6089  *
6090  * Description: This routine will return 0 if a valid device id has been
6091  *		obtained from the target and stored in the soft state. If a
6092  *		valid device id has not been previously read and stored, a
6093  *		read attempt will be made.
6094  *
6095  *   Arguments: un - driver soft state (unit) structure
6096  *
6097  * Return Code: 0 if we successfully get the device id
6098  *
6099  *     Context: Kernel Thread
6100  */
6101 
6102 static int
6103 sd_get_devid(struct sd_lun *un)
6104 {
6105 	struct dk_devid		*dkdevid;
6106 	ddi_devid_t		tmpid;
6107 	uint_t			*ip;
6108 	size_t			sz;
6109 	daddr_t			blk;
6110 	int			status;
6111 	int			chksum;
6112 	int			i;
6113 	size_t			buffer_size;
6114 
6115 	ASSERT(un != NULL);
6116 	ASSERT(mutex_owned(SD_MUTEX(un)));
6117 
6118 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6119 	    un);
6120 
6121 	if (un->un_devid != NULL) {
6122 		return (0);
6123 	}
6124 
6125 	blk = sd_get_devid_block(un);
6126 	if (blk < 0)
6127 		return (EINVAL);
6128 
6129 	/*
6130 	 * Read and verify device id, stored in the reserved cylinders at the
6131 	 * end of the disk. Backup label is on the odd sectors of the last
6132 	 * track of the last cylinder. Device id will be on track of the next
6133 	 * to last cylinder.
6134 	 */
6135 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6136 	mutex_exit(SD_MUTEX(un));
6137 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6138 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6139 	    SD_PATH_DIRECT);
6140 	if (status != 0) {
6141 		goto error;
6142 	}
6143 
6144 	/* Validate the revision */
6145 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6146 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6147 		status = EINVAL;
6148 		goto error;
6149 	}
6150 
6151 	/* Calculate the checksum */
6152 	chksum = 0;
6153 	ip = (uint_t *)dkdevid;
6154 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6155 	    i++) {
6156 		chksum ^= ip[i];
6157 	}
6158 
6159 	/* Compare the checksums */
6160 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6161 		status = EINVAL;
6162 		goto error;
6163 	}
6164 
6165 	/* Validate the device id */
6166 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6167 		status = EINVAL;
6168 		goto error;
6169 	}
6170 
6171 	/*
6172 	 * Store the device id in the driver soft state
6173 	 */
6174 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6175 	tmpid = kmem_alloc(sz, KM_SLEEP);
6176 
6177 	mutex_enter(SD_MUTEX(un));
6178 
6179 	un->un_devid = tmpid;
6180 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6181 
6182 	kmem_free(dkdevid, buffer_size);
6183 
6184 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6185 
6186 	return (status);
6187 error:
6188 	mutex_enter(SD_MUTEX(un));
6189 	kmem_free(dkdevid, buffer_size);
6190 	return (status);
6191 }
6192 
6193 
6194 /*
6195  *    Function: sd_create_devid
6196  *
6197  * Description: This routine will fabricate the device id and write it
6198  *		to the disk.
6199  *
6200  *   Arguments: un - driver soft state (unit) structure
6201  *
6202  * Return Code: value of the fabricated device id
6203  *
6204  *     Context: Kernel Thread
6205  */
6206 
6207 static ddi_devid_t
6208 sd_create_devid(struct sd_lun *un)
6209 {
6210 	ASSERT(un != NULL);
6211 
6212 	/* Fabricate the devid */
6213 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6214 	    == DDI_FAILURE) {
6215 		return (NULL);
6216 	}
6217 
6218 	/* Write the devid to disk */
6219 	if (sd_write_deviceid(un) != 0) {
6220 		ddi_devid_free(un->un_devid);
6221 		un->un_devid = NULL;
6222 	}
6223 
6224 	return (un->un_devid);
6225 }
6226 
6227 
6228 /*
6229  *    Function: sd_write_deviceid
6230  *
6231  * Description: This routine will write the device id to the disk
6232  *		reserved sector.
6233  *
6234  *   Arguments: un - driver soft state (unit) structure
6235  *
6236  * Return Code: EINVAL
6237  *		value returned by sd_send_scsi_cmd
6238  *
6239  *     Context: Kernel Thread
6240  */
6241 
6242 static int
6243 sd_write_deviceid(struct sd_lun *un)
6244 {
6245 	struct dk_devid		*dkdevid;
6246 	daddr_t			blk;
6247 	uint_t			*ip, chksum;
6248 	int			status;
6249 	int			i;
6250 
6251 	ASSERT(mutex_owned(SD_MUTEX(un)));
6252 
6253 	blk = sd_get_devid_block(un);
6254 	if (blk < 0)
6255 		return (-1);
6256 	mutex_exit(SD_MUTEX(un));
6257 
6258 	/* Allocate the buffer */
6259 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6260 
6261 	/* Fill in the revision */
6262 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6263 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6264 
6265 	/* Copy in the device id */
6266 	mutex_enter(SD_MUTEX(un));
6267 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6268 	    ddi_devid_sizeof(un->un_devid));
6269 	mutex_exit(SD_MUTEX(un));
6270 
6271 	/* Calculate the checksum */
6272 	chksum = 0;
6273 	ip = (uint_t *)dkdevid;
6274 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6275 	    i++) {
6276 		chksum ^= ip[i];
6277 	}
6278 
6279 	/* Fill-in checksum */
6280 	DKD_FORMCHKSUM(chksum, dkdevid);
6281 
6282 	/* Write the reserved sector */
6283 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6284 	    SD_PATH_DIRECT);
6285 
6286 	kmem_free(dkdevid, un->un_sys_blocksize);
6287 
6288 	mutex_enter(SD_MUTEX(un));
6289 	return (status);
6290 }
6291 
6292 
6293 /*
6294  *    Function: sd_check_vpd_page_support
6295  *
6296  * Description: This routine sends an inquiry command with the EVPD bit set and
6297  *		a page code of 0x00 to the device. It is used to determine which
6298  *		vital product pages are availible to find the devid. We are
6299  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6300  *		device does not support that command.
6301  *
6302  *   Arguments: un  - driver soft state (unit) structure
6303  *
6304  * Return Code: 0 - success
6305  *		1 - check condition
6306  *
6307  *     Context: This routine can sleep.
6308  */
6309 
6310 static int
6311 sd_check_vpd_page_support(struct sd_lun *un)
6312 {
6313 	uchar_t	*page_list	= NULL;
6314 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6315 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6316 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6317 	int    	rval		= 0;
6318 	int	counter;
6319 
6320 	ASSERT(un != NULL);
6321 	ASSERT(mutex_owned(SD_MUTEX(un)));
6322 
6323 	mutex_exit(SD_MUTEX(un));
6324 
6325 	/*
6326 	 * We'll set the page length to the maximum to save figuring it out
6327 	 * with an additional call.
6328 	 */
6329 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6330 
6331 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6332 	    page_code, NULL);
6333 
6334 	mutex_enter(SD_MUTEX(un));
6335 
6336 	/*
6337 	 * Now we must validate that the device accepted the command, as some
6338 	 * drives do not support it.  If the drive does support it, we will
6339 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6340 	 * not, we return -1.
6341 	 */
6342 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6343 		/* Loop to find one of the 2 pages we need */
6344 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6345 
6346 		/*
6347 		 * Pages are returned in ascending order, and 0x83 is what we
6348 		 * are hoping for.
6349 		 */
6350 		while ((page_list[counter] <= 0x83) &&
6351 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6352 		    VPD_HEAD_OFFSET))) {
6353 			/*
6354 			 * Add 3 because page_list[3] is the number of
6355 			 * pages minus 3
6356 			 */
6357 
6358 			switch (page_list[counter]) {
6359 			case 0x00:
6360 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6361 				break;
6362 			case 0x80:
6363 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6364 				break;
6365 			case 0x81:
6366 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6367 				break;
6368 			case 0x82:
6369 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6370 				break;
6371 			case 0x83:
6372 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6373 				break;
6374 			}
6375 			counter++;
6376 		}
6377 
6378 	} else {
6379 		rval = -1;
6380 
6381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6382 		    "sd_check_vpd_page_support: This drive does not implement "
6383 		    "VPD pages.\n");
6384 	}
6385 
6386 	kmem_free(page_list, page_length);
6387 
6388 	return (rval);
6389 }
6390 
6391 
6392 /*
6393  *    Function: sd_setup_pm
6394  *
6395  * Description: Initialize Power Management on the device
6396  *
6397  *     Context: Kernel Thread
6398  */
6399 
6400 static void
6401 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6402 {
6403 	uint_t	log_page_size;
6404 	uchar_t	*log_page_data;
6405 	int	rval;
6406 
6407 	/*
6408 	 * Since we are called from attach, holding a mutex for
6409 	 * un is unnecessary. Because some of the routines called
6410 	 * from here require SD_MUTEX to not be held, assert this
6411 	 * right up front.
6412 	 */
6413 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6414 	/*
6415 	 * Since the sd device does not have the 'reg' property,
6416 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6417 	 * The following code is to tell cpr that this device
6418 	 * DOES need to be suspended and resumed.
6419 	 */
6420 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6421 	    "pm-hardware-state", "needs-suspend-resume");
6422 
6423 	/*
6424 	 * This complies with the new power management framework
6425 	 * for certain desktop machines. Create the pm_components
6426 	 * property as a string array property.
6427 	 */
6428 	if (un->un_f_pm_supported) {
6429 		/*
6430 		 * not all devices have a motor, try it first.
6431 		 * some devices may return ILLEGAL REQUEST, some
6432 		 * will hang
6433 		 * The following START_STOP_UNIT is used to check if target
6434 		 * device has a motor.
6435 		 */
6436 		un->un_f_start_stop_supported = TRUE;
6437 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6438 		    SD_PATH_DIRECT) != 0) {
6439 			un->un_f_start_stop_supported = FALSE;
6440 		}
6441 
6442 		/*
6443 		 * create pm properties anyways otherwise the parent can't
6444 		 * go to sleep
6445 		 */
6446 		(void) sd_create_pm_components(devi, un);
6447 		un->un_f_pm_is_enabled = TRUE;
6448 		return;
6449 	}
6450 
6451 	if (!un->un_f_log_sense_supported) {
6452 		un->un_power_level = SD_SPINDLE_ON;
6453 		un->un_f_pm_is_enabled = FALSE;
6454 		return;
6455 	}
6456 
6457 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6458 
6459 #ifdef	SDDEBUG
6460 	if (sd_force_pm_supported) {
6461 		/* Force a successful result */
6462 		rval = 1;
6463 	}
6464 #endif
6465 
6466 	/*
6467 	 * If the start-stop cycle counter log page is not supported
6468 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6469 	 * then we should not create the pm_components property.
6470 	 */
6471 	if (rval == -1) {
6472 		/*
6473 		 * Error.
6474 		 * Reading log sense failed, most likely this is
6475 		 * an older drive that does not support log sense.
6476 		 * If this fails auto-pm is not supported.
6477 		 */
6478 		un->un_power_level = SD_SPINDLE_ON;
6479 		un->un_f_pm_is_enabled = FALSE;
6480 
6481 	} else if (rval == 0) {
6482 		/*
6483 		 * Page not found.
6484 		 * The start stop cycle counter is implemented as page
6485 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6486 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6487 		 */
6488 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6489 			/*
6490 			 * Page found, use this one.
6491 			 */
6492 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6493 			un->un_f_pm_is_enabled = TRUE;
6494 		} else {
6495 			/*
6496 			 * Error or page not found.
6497 			 * auto-pm is not supported for this device.
6498 			 */
6499 			un->un_power_level = SD_SPINDLE_ON;
6500 			un->un_f_pm_is_enabled = FALSE;
6501 		}
6502 	} else {
6503 		/*
6504 		 * Page found, use it.
6505 		 */
6506 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6507 		un->un_f_pm_is_enabled = TRUE;
6508 	}
6509 
6510 
6511 	if (un->un_f_pm_is_enabled == TRUE) {
6512 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6513 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6514 
6515 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6516 		    log_page_size, un->un_start_stop_cycle_page,
6517 		    0x01, 0, SD_PATH_DIRECT);
6518 #ifdef	SDDEBUG
6519 		if (sd_force_pm_supported) {
6520 			/* Force a successful result */
6521 			rval = 0;
6522 		}
6523 #endif
6524 
6525 		/*
6526 		 * If the Log sense for Page( Start/stop cycle counter page)
6527 		 * succeeds, then power managment is supported and we can
6528 		 * enable auto-pm.
6529 		 */
6530 		if (rval == 0)  {
6531 			(void) sd_create_pm_components(devi, un);
6532 		} else {
6533 			un->un_power_level = SD_SPINDLE_ON;
6534 			un->un_f_pm_is_enabled = FALSE;
6535 		}
6536 
6537 		kmem_free(log_page_data, log_page_size);
6538 	}
6539 }
6540 
6541 
6542 /*
6543  *    Function: sd_create_pm_components
6544  *
6545  * Description: Initialize PM property.
6546  *
6547  *     Context: Kernel thread context
6548  */
6549 
6550 static void
6551 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6552 {
6553 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6554 
6555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6556 
6557 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6558 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6559 		/*
6560 		 * When components are initially created they are idle,
6561 		 * power up any non-removables.
6562 		 * Note: the return value of pm_raise_power can't be used
6563 		 * for determining if PM should be enabled for this device.
6564 		 * Even if you check the return values and remove this
6565 		 * property created above, the PM framework will not honor the
6566 		 * change after the first call to pm_raise_power. Hence,
6567 		 * removal of that property does not help if pm_raise_power
6568 		 * fails. In the case of removable media, the start/stop
6569 		 * will fail if the media is not present.
6570 		 */
6571 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6572 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6573 			mutex_enter(SD_MUTEX(un));
6574 			un->un_power_level = SD_SPINDLE_ON;
6575 			mutex_enter(&un->un_pm_mutex);
6576 			/* Set to on and not busy. */
6577 			un->un_pm_count = 0;
6578 		} else {
6579 			mutex_enter(SD_MUTEX(un));
6580 			un->un_power_level = SD_SPINDLE_OFF;
6581 			mutex_enter(&un->un_pm_mutex);
6582 			/* Set to off. */
6583 			un->un_pm_count = -1;
6584 		}
6585 		mutex_exit(&un->un_pm_mutex);
6586 		mutex_exit(SD_MUTEX(un));
6587 	} else {
6588 		un->un_power_level = SD_SPINDLE_ON;
6589 		un->un_f_pm_is_enabled = FALSE;
6590 	}
6591 }
6592 
6593 
6594 /*
6595  *    Function: sd_ddi_suspend
6596  *
6597  * Description: Performs system power-down operations. This includes
6598  *		setting the drive state to indicate its suspended so
6599  *		that no new commands will be accepted. Also, wait for
6600  *		all commands that are in transport or queued to a timer
6601  *		for retry to complete. All timeout threads are cancelled.
6602  *
6603  * Return Code: DDI_FAILURE or DDI_SUCCESS
6604  *
6605  *     Context: Kernel thread context
6606  */
6607 
6608 static int
6609 sd_ddi_suspend(dev_info_t *devi)
6610 {
6611 	struct	sd_lun	*un;
6612 	clock_t		wait_cmds_complete;
6613 
6614 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6615 	if (un == NULL) {
6616 		return (DDI_FAILURE);
6617 	}
6618 
6619 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6620 
6621 	mutex_enter(SD_MUTEX(un));
6622 
6623 	/* Return success if the device is already suspended. */
6624 	if (un->un_state == SD_STATE_SUSPENDED) {
6625 		mutex_exit(SD_MUTEX(un));
6626 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6627 		    "device already suspended, exiting\n");
6628 		return (DDI_SUCCESS);
6629 	}
6630 
6631 	/* Return failure if the device is being used by HA */
6632 	if (un->un_resvd_status &
6633 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6634 		mutex_exit(SD_MUTEX(un));
6635 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6636 		    "device in use by HA, exiting\n");
6637 		return (DDI_FAILURE);
6638 	}
6639 
6640 	/*
6641 	 * Return failure if the device is in a resource wait
6642 	 * or power changing state.
6643 	 */
6644 	if ((un->un_state == SD_STATE_RWAIT) ||
6645 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6646 		mutex_exit(SD_MUTEX(un));
6647 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6648 		    "device in resource wait state, exiting\n");
6649 		return (DDI_FAILURE);
6650 	}
6651 
6652 
6653 	un->un_save_state = un->un_last_state;
6654 	New_state(un, SD_STATE_SUSPENDED);
6655 
6656 	/*
6657 	 * Wait for all commands that are in transport or queued to a timer
6658 	 * for retry to complete.
6659 	 *
6660 	 * While waiting, no new commands will be accepted or sent because of
6661 	 * the new state we set above.
6662 	 *
6663 	 * Wait till current operation has completed. If we are in the resource
6664 	 * wait state (with an intr outstanding) then we need to wait till the
6665 	 * intr completes and starts the next cmd. We want to wait for
6666 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6667 	 */
6668 	wait_cmds_complete = ddi_get_lbolt() +
6669 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6670 
6671 	while (un->un_ncmds_in_transport != 0) {
6672 		/*
6673 		 * Fail if commands do not finish in the specified time.
6674 		 */
6675 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6676 		    wait_cmds_complete) == -1) {
6677 			/*
6678 			 * Undo the state changes made above. Everything
6679 			 * must go back to it's original value.
6680 			 */
6681 			Restore_state(un);
6682 			un->un_last_state = un->un_save_state;
6683 			/* Wake up any threads that might be waiting. */
6684 			cv_broadcast(&un->un_suspend_cv);
6685 			mutex_exit(SD_MUTEX(un));
6686 			SD_ERROR(SD_LOG_IO_PM, un,
6687 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6688 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6689 			return (DDI_FAILURE);
6690 		}
6691 	}
6692 
6693 	/*
6694 	 * Cancel SCSI watch thread and timeouts, if any are active
6695 	 */
6696 
6697 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6698 		opaque_t temp_token = un->un_swr_token;
6699 		mutex_exit(SD_MUTEX(un));
6700 		scsi_watch_suspend(temp_token);
6701 		mutex_enter(SD_MUTEX(un));
6702 	}
6703 
6704 	if (un->un_reset_throttle_timeid != NULL) {
6705 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6706 		un->un_reset_throttle_timeid = NULL;
6707 		mutex_exit(SD_MUTEX(un));
6708 		(void) untimeout(temp_id);
6709 		mutex_enter(SD_MUTEX(un));
6710 	}
6711 
6712 	if (un->un_dcvb_timeid != NULL) {
6713 		timeout_id_t temp_id = un->un_dcvb_timeid;
6714 		un->un_dcvb_timeid = NULL;
6715 		mutex_exit(SD_MUTEX(un));
6716 		(void) untimeout(temp_id);
6717 		mutex_enter(SD_MUTEX(un));
6718 	}
6719 
6720 	mutex_enter(&un->un_pm_mutex);
6721 	if (un->un_pm_timeid != NULL) {
6722 		timeout_id_t temp_id = un->un_pm_timeid;
6723 		un->un_pm_timeid = NULL;
6724 		mutex_exit(&un->un_pm_mutex);
6725 		mutex_exit(SD_MUTEX(un));
6726 		(void) untimeout(temp_id);
6727 		mutex_enter(SD_MUTEX(un));
6728 	} else {
6729 		mutex_exit(&un->un_pm_mutex);
6730 	}
6731 
6732 	if (un->un_retry_timeid != NULL) {
6733 		timeout_id_t temp_id = un->un_retry_timeid;
6734 		un->un_retry_timeid = NULL;
6735 		mutex_exit(SD_MUTEX(un));
6736 		(void) untimeout(temp_id);
6737 		mutex_enter(SD_MUTEX(un));
6738 	}
6739 
6740 	if (un->un_direct_priority_timeid != NULL) {
6741 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6742 		un->un_direct_priority_timeid = NULL;
6743 		mutex_exit(SD_MUTEX(un));
6744 		(void) untimeout(temp_id);
6745 		mutex_enter(SD_MUTEX(un));
6746 	}
6747 
6748 	if (un->un_f_is_fibre == TRUE) {
6749 		/*
6750 		 * Remove callbacks for insert and remove events
6751 		 */
6752 		if (un->un_insert_event != NULL) {
6753 			mutex_exit(SD_MUTEX(un));
6754 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6755 			mutex_enter(SD_MUTEX(un));
6756 			un->un_insert_event = NULL;
6757 		}
6758 
6759 		if (un->un_remove_event != NULL) {
6760 			mutex_exit(SD_MUTEX(un));
6761 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6762 			mutex_enter(SD_MUTEX(un));
6763 			un->un_remove_event = NULL;
6764 		}
6765 	}
6766 
6767 	mutex_exit(SD_MUTEX(un));
6768 
6769 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6770 
6771 	return (DDI_SUCCESS);
6772 }
6773 
6774 
6775 /*
6776  *    Function: sd_ddi_pm_suspend
6777  *
6778  * Description: Set the drive state to low power.
6779  *		Someone else is required to actually change the drive
6780  *		power level.
6781  *
6782  *   Arguments: un - driver soft state (unit) structure
6783  *
6784  * Return Code: DDI_FAILURE or DDI_SUCCESS
6785  *
6786  *     Context: Kernel thread context
6787  */
6788 
6789 static int
6790 sd_ddi_pm_suspend(struct sd_lun *un)
6791 {
6792 	ASSERT(un != NULL);
6793 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6794 
6795 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6796 	mutex_enter(SD_MUTEX(un));
6797 
6798 	/*
6799 	 * Exit if power management is not enabled for this device, or if
6800 	 * the device is being used by HA.
6801 	 */
6802 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6803 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6804 		mutex_exit(SD_MUTEX(un));
6805 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6806 		return (DDI_SUCCESS);
6807 	}
6808 
6809 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6810 	    un->un_ncmds_in_driver);
6811 
6812 	/*
6813 	 * See if the device is not busy, ie.:
6814 	 *    - we have no commands in the driver for this device
6815 	 *    - not waiting for resources
6816 	 */
6817 	if ((un->un_ncmds_in_driver == 0) &&
6818 	    (un->un_state != SD_STATE_RWAIT)) {
6819 		/*
6820 		 * The device is not busy, so it is OK to go to low power state.
6821 		 * Indicate low power, but rely on someone else to actually
6822 		 * change it.
6823 		 */
6824 		mutex_enter(&un->un_pm_mutex);
6825 		un->un_pm_count = -1;
6826 		mutex_exit(&un->un_pm_mutex);
6827 		un->un_power_level = SD_SPINDLE_OFF;
6828 	}
6829 
6830 	mutex_exit(SD_MUTEX(un));
6831 
6832 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6833 
6834 	return (DDI_SUCCESS);
6835 }
6836 
6837 
6838 /*
6839  *    Function: sd_ddi_resume
6840  *
6841  * Description: Performs system power-up operations..
6842  *
6843  * Return Code: DDI_SUCCESS
6844  *		DDI_FAILURE
6845  *
6846  *     Context: Kernel thread context
6847  */
6848 
6849 static int
6850 sd_ddi_resume(dev_info_t *devi)
6851 {
6852 	struct	sd_lun	*un;
6853 
6854 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6855 	if (un == NULL) {
6856 		return (DDI_FAILURE);
6857 	}
6858 
6859 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6860 
6861 	mutex_enter(SD_MUTEX(un));
6862 	Restore_state(un);
6863 
6864 	/*
6865 	 * Restore the state which was saved to give the
6866 	 * the right state in un_last_state
6867 	 */
6868 	un->un_last_state = un->un_save_state;
6869 	/*
6870 	 * Note: throttle comes back at full.
6871 	 * Also note: this MUST be done before calling pm_raise_power
6872 	 * otherwise the system can get hung in biowait. The scenario where
6873 	 * this'll happen is under cpr suspend. Writing of the system
6874 	 * state goes through sddump, which writes 0 to un_throttle. If
6875 	 * writing the system state then fails, example if the partition is
6876 	 * too small, then cpr attempts a resume. If throttle isn't restored
6877 	 * from the saved value until after calling pm_raise_power then
6878 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6879 	 * in biowait.
6880 	 */
6881 	un->un_throttle = un->un_saved_throttle;
6882 
6883 	/*
6884 	 * The chance of failure is very rare as the only command done in power
6885 	 * entry point is START command when you transition from 0->1 or
6886 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6887 	 * which suspend was done. Ignore the return value as the resume should
6888 	 * not be failed. In the case of removable media the media need not be
6889 	 * inserted and hence there is a chance that raise power will fail with
6890 	 * media not present.
6891 	 */
6892 	if (un->un_f_attach_spinup) {
6893 		mutex_exit(SD_MUTEX(un));
6894 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6895 		mutex_enter(SD_MUTEX(un));
6896 	}
6897 
6898 	/*
6899 	 * Don't broadcast to the suspend cv and therefore possibly
6900 	 * start I/O until after power has been restored.
6901 	 */
6902 	cv_broadcast(&un->un_suspend_cv);
6903 	cv_broadcast(&un->un_state_cv);
6904 
6905 	/* restart thread */
6906 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6907 		scsi_watch_resume(un->un_swr_token);
6908 	}
6909 
6910 #if (defined(__fibre))
6911 	if (un->un_f_is_fibre == TRUE) {
6912 		/*
6913 		 * Add callbacks for insert and remove events
6914 		 */
6915 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6916 			sd_init_event_callbacks(un);
6917 		}
6918 	}
6919 #endif
6920 
6921 	/*
6922 	 * Transport any pending commands to the target.
6923 	 *
6924 	 * If this is a low-activity device commands in queue will have to wait
6925 	 * until new commands come in, which may take awhile. Also, we
6926 	 * specifically don't check un_ncmds_in_transport because we know that
6927 	 * there really are no commands in progress after the unit was
6928 	 * suspended and we could have reached the throttle level, been
6929 	 * suspended, and have no new commands coming in for awhile. Highly
6930 	 * unlikely, but so is the low-activity disk scenario.
6931 	 */
6932 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6933 
6934 	sd_start_cmds(un, NULL);
6935 	mutex_exit(SD_MUTEX(un));
6936 
6937 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6938 
6939 	return (DDI_SUCCESS);
6940 }
6941 
6942 
6943 /*
6944  *    Function: sd_ddi_pm_resume
6945  *
6946  * Description: Set the drive state to powered on.
6947  *		Someone else is required to actually change the drive
6948  *		power level.
6949  *
6950  *   Arguments: un - driver soft state (unit) structure
6951  *
6952  * Return Code: DDI_SUCCESS
6953  *
6954  *     Context: Kernel thread context
6955  */
6956 
6957 static int
6958 sd_ddi_pm_resume(struct sd_lun *un)
6959 {
6960 	ASSERT(un != NULL);
6961 
6962 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6963 	mutex_enter(SD_MUTEX(un));
6964 	un->un_power_level = SD_SPINDLE_ON;
6965 
6966 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6967 	mutex_enter(&un->un_pm_mutex);
6968 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6969 		un->un_pm_count++;
6970 		ASSERT(un->un_pm_count == 0);
6971 		/*
6972 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6973 		 * un_suspend_cv is for a system resume, not a power management
6974 		 * device resume. (4297749)
6975 		 *	 cv_broadcast(&un->un_suspend_cv);
6976 		 */
6977 	}
6978 	mutex_exit(&un->un_pm_mutex);
6979 	mutex_exit(SD_MUTEX(un));
6980 
6981 	return (DDI_SUCCESS);
6982 }
6983 
6984 
6985 /*
6986  *    Function: sd_pm_idletimeout_handler
6987  *
6988  * Description: A timer routine that's active only while a device is busy.
6989  *		The purpose is to extend slightly the pm framework's busy
6990  *		view of the device to prevent busy/idle thrashing for
6991  *		back-to-back commands. Do this by comparing the current time
6992  *		to the time at which the last command completed and when the
6993  *		difference is greater than sd_pm_idletime, call
6994  *		pm_idle_component. In addition to indicating idle to the pm
6995  *		framework, update the chain type to again use the internal pm
6996  *		layers of the driver.
6997  *
6998  *   Arguments: arg - driver soft state (unit) structure
6999  *
7000  *     Context: Executes in a timeout(9F) thread context
7001  */
7002 
7003 static void
7004 sd_pm_idletimeout_handler(void *arg)
7005 {
7006 	struct sd_lun *un = arg;
7007 
7008 	time_t	now;
7009 
7010 	mutex_enter(&sd_detach_mutex);
7011 	if (un->un_detach_count != 0) {
7012 		/* Abort if the instance is detaching */
7013 		mutex_exit(&sd_detach_mutex);
7014 		return;
7015 	}
7016 	mutex_exit(&sd_detach_mutex);
7017 
7018 	now = ddi_get_time();
7019 	/*
7020 	 * Grab both mutexes, in the proper order, since we're accessing
7021 	 * both PM and softstate variables.
7022 	 */
7023 	mutex_enter(SD_MUTEX(un));
7024 	mutex_enter(&un->un_pm_mutex);
7025 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7026 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7027 		/*
7028 		 * Update the chain types.
7029 		 * This takes affect on the next new command received.
7030 		 */
7031 		if (un->un_f_non_devbsize_supported) {
7032 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7033 		} else {
7034 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7035 		}
7036 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7037 
7038 		SD_TRACE(SD_LOG_IO_PM, un,
7039 		    "sd_pm_idletimeout_handler: idling device\n");
7040 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7041 		un->un_pm_idle_timeid = NULL;
7042 	} else {
7043 		un->un_pm_idle_timeid =
7044 			timeout(sd_pm_idletimeout_handler, un,
7045 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7046 	}
7047 	mutex_exit(&un->un_pm_mutex);
7048 	mutex_exit(SD_MUTEX(un));
7049 }
7050 
7051 
7052 /*
7053  *    Function: sd_pm_timeout_handler
7054  *
7055  * Description: Callback to tell framework we are idle.
7056  *
7057  *     Context: timeout(9f) thread context.
7058  */
7059 
7060 static void
7061 sd_pm_timeout_handler(void *arg)
7062 {
7063 	struct sd_lun *un = arg;
7064 
7065 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7066 	mutex_enter(&un->un_pm_mutex);
7067 	un->un_pm_timeid = NULL;
7068 	mutex_exit(&un->un_pm_mutex);
7069 }
7070 
7071 
7072 /*
7073  *    Function: sdpower
7074  *
7075  * Description: PM entry point.
7076  *
7077  * Return Code: DDI_SUCCESS
7078  *		DDI_FAILURE
7079  *
7080  *     Context: Kernel thread context
7081  */
7082 
7083 static int
7084 sdpower(dev_info_t *devi, int component, int level)
7085 {
7086 	struct sd_lun	*un;
7087 	int		instance;
7088 	int		rval = DDI_SUCCESS;
7089 	uint_t		i, log_page_size, maxcycles, ncycles;
7090 	uchar_t		*log_page_data;
7091 	int		log_sense_page;
7092 	int		medium_present;
7093 	time_t		intvlp;
7094 	dev_t		dev;
7095 	struct pm_trans_data	sd_pm_tran_data;
7096 	uchar_t		save_state;
7097 	int		sval;
7098 	uchar_t		state_before_pm;
7099 	int		got_semaphore_here;
7100 
7101 	instance = ddi_get_instance(devi);
7102 
7103 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7104 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7105 	    component != 0) {
7106 		return (DDI_FAILURE);
7107 	}
7108 
7109 	dev = sd_make_device(SD_DEVINFO(un));
7110 
7111 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7112 
7113 	/*
7114 	 * Must synchronize power down with close.
7115 	 * Attempt to decrement/acquire the open/close semaphore,
7116 	 * but do NOT wait on it. If it's not greater than zero,
7117 	 * ie. it can't be decremented without waiting, then
7118 	 * someone else, either open or close, already has it
7119 	 * and the try returns 0. Use that knowledge here to determine
7120 	 * if it's OK to change the device power level.
7121 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7122 	 * here.
7123 	 */
7124 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7125 
7126 	mutex_enter(SD_MUTEX(un));
7127 
7128 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7129 	    un->un_ncmds_in_driver);
7130 
7131 	/*
7132 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7133 	 * already being processed in the driver, or if the semaphore was
7134 	 * not gotten here it indicates an open or close is being processed.
7135 	 * At the same time somebody is requesting to go low power which
7136 	 * can't happen, therefore we need to return failure.
7137 	 */
7138 	if ((level == SD_SPINDLE_OFF) &&
7139 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7140 		mutex_exit(SD_MUTEX(un));
7141 
7142 		if (got_semaphore_here != 0) {
7143 			sema_v(&un->un_semoclose);
7144 		}
7145 		SD_TRACE(SD_LOG_IO_PM, un,
7146 		    "sdpower: exit, device has queued cmds.\n");
7147 		return (DDI_FAILURE);
7148 	}
7149 
7150 	/*
7151 	 * if it is OFFLINE that means the disk is completely dead
7152 	 * in our case we have to put the disk in on or off by sending commands
7153 	 * Of course that will fail anyway so return back here.
7154 	 *
7155 	 * Power changes to a device that's OFFLINE or SUSPENDED
7156 	 * are not allowed.
7157 	 */
7158 	if ((un->un_state == SD_STATE_OFFLINE) ||
7159 	    (un->un_state == SD_STATE_SUSPENDED)) {
7160 		mutex_exit(SD_MUTEX(un));
7161 
7162 		if (got_semaphore_here != 0) {
7163 			sema_v(&un->un_semoclose);
7164 		}
7165 		SD_TRACE(SD_LOG_IO_PM, un,
7166 		    "sdpower: exit, device is off-line.\n");
7167 		return (DDI_FAILURE);
7168 	}
7169 
7170 	/*
7171 	 * Change the device's state to indicate it's power level
7172 	 * is being changed. Do this to prevent a power off in the
7173 	 * middle of commands, which is especially bad on devices
7174 	 * that are really powered off instead of just spun down.
7175 	 */
7176 	state_before_pm = un->un_state;
7177 	un->un_state = SD_STATE_PM_CHANGING;
7178 
7179 	mutex_exit(SD_MUTEX(un));
7180 
7181 	/*
7182 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7183 	 * bypass the following checking, otherwise, check the log
7184 	 * sense information for this device
7185 	 */
7186 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7187 		/*
7188 		 * Get the log sense information to understand whether the
7189 		 * the powercycle counts have gone beyond the threshhold.
7190 		 */
7191 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7192 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7193 
7194 		mutex_enter(SD_MUTEX(un));
7195 		log_sense_page = un->un_start_stop_cycle_page;
7196 		mutex_exit(SD_MUTEX(un));
7197 
7198 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7199 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7200 #ifdef	SDDEBUG
7201 		if (sd_force_pm_supported) {
7202 			/* Force a successful result */
7203 			rval = 0;
7204 		}
7205 #endif
7206 		if (rval != 0) {
7207 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7208 			    "Log Sense Failed\n");
7209 			kmem_free(log_page_data, log_page_size);
7210 			/* Cannot support power management on those drives */
7211 
7212 			if (got_semaphore_here != 0) {
7213 				sema_v(&un->un_semoclose);
7214 			}
7215 			/*
7216 			 * On exit put the state back to it's original value
7217 			 * and broadcast to anyone waiting for the power
7218 			 * change completion.
7219 			 */
7220 			mutex_enter(SD_MUTEX(un));
7221 			un->un_state = state_before_pm;
7222 			cv_broadcast(&un->un_suspend_cv);
7223 			mutex_exit(SD_MUTEX(un));
7224 			SD_TRACE(SD_LOG_IO_PM, un,
7225 			    "sdpower: exit, Log Sense Failed.\n");
7226 			return (DDI_FAILURE);
7227 		}
7228 
7229 		/*
7230 		 * From the page data - Convert the essential information to
7231 		 * pm_trans_data
7232 		 */
7233 		maxcycles =
7234 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7235 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7236 
7237 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7238 
7239 		ncycles =
7240 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7241 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7242 
7243 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7244 
7245 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7246 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7247 			    log_page_data[8+i];
7248 		}
7249 
7250 		kmem_free(log_page_data, log_page_size);
7251 
7252 		/*
7253 		 * Call pm_trans_check routine to get the Ok from
7254 		 * the global policy
7255 		 */
7256 
7257 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7258 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7259 
7260 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7261 #ifdef	SDDEBUG
7262 		if (sd_force_pm_supported) {
7263 			/* Force a successful result */
7264 			rval = 1;
7265 		}
7266 #endif
7267 		switch (rval) {
7268 		case 0:
7269 			/*
7270 			 * Not Ok to Power cycle or error in parameters passed
7271 			 * Would have given the advised time to consider power
7272 			 * cycle. Based on the new intvlp parameter we are
7273 			 * supposed to pretend we are busy so that pm framework
7274 			 * will never call our power entry point. Because of
7275 			 * that install a timeout handler and wait for the
7276 			 * recommended time to elapse so that power management
7277 			 * can be effective again.
7278 			 *
7279 			 * To effect this behavior, call pm_busy_component to
7280 			 * indicate to the framework this device is busy.
7281 			 * By not adjusting un_pm_count the rest of PM in
7282 			 * the driver will function normally, and independant
7283 			 * of this but because the framework is told the device
7284 			 * is busy it won't attempt powering down until it gets
7285 			 * a matching idle. The timeout handler sends this.
7286 			 * Note: sd_pm_entry can't be called here to do this
7287 			 * because sdpower may have been called as a result
7288 			 * of a call to pm_raise_power from within sd_pm_entry.
7289 			 *
7290 			 * If a timeout handler is already active then
7291 			 * don't install another.
7292 			 */
7293 			mutex_enter(&un->un_pm_mutex);
7294 			if (un->un_pm_timeid == NULL) {
7295 				un->un_pm_timeid =
7296 				    timeout(sd_pm_timeout_handler,
7297 				    un, intvlp * drv_usectohz(1000000));
7298 				mutex_exit(&un->un_pm_mutex);
7299 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7300 			} else {
7301 				mutex_exit(&un->un_pm_mutex);
7302 			}
7303 			if (got_semaphore_here != 0) {
7304 				sema_v(&un->un_semoclose);
7305 			}
7306 			/*
7307 			 * On exit put the state back to it's original value
7308 			 * and broadcast to anyone waiting for the power
7309 			 * change completion.
7310 			 */
7311 			mutex_enter(SD_MUTEX(un));
7312 			un->un_state = state_before_pm;
7313 			cv_broadcast(&un->un_suspend_cv);
7314 			mutex_exit(SD_MUTEX(un));
7315 
7316 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7317 			    "trans check Failed, not ok to power cycle.\n");
7318 			return (DDI_FAILURE);
7319 
7320 		case -1:
7321 			if (got_semaphore_here != 0) {
7322 				sema_v(&un->un_semoclose);
7323 			}
7324 			/*
7325 			 * On exit put the state back to it's original value
7326 			 * and broadcast to anyone waiting for the power
7327 			 * change completion.
7328 			 */
7329 			mutex_enter(SD_MUTEX(un));
7330 			un->un_state = state_before_pm;
7331 			cv_broadcast(&un->un_suspend_cv);
7332 			mutex_exit(SD_MUTEX(un));
7333 			SD_TRACE(SD_LOG_IO_PM, un,
7334 			    "sdpower: exit, trans check command Failed.\n");
7335 			return (DDI_FAILURE);
7336 		}
7337 	}
7338 
7339 	if (level == SD_SPINDLE_OFF) {
7340 		/*
7341 		 * Save the last state... if the STOP FAILS we need it
7342 		 * for restoring
7343 		 */
7344 		mutex_enter(SD_MUTEX(un));
7345 		save_state = un->un_last_state;
7346 		/*
7347 		 * There must not be any cmds. getting processed
7348 		 * in the driver when we get here. Power to the
7349 		 * device is potentially going off.
7350 		 */
7351 		ASSERT(un->un_ncmds_in_driver == 0);
7352 		mutex_exit(SD_MUTEX(un));
7353 
7354 		/*
7355 		 * For now suspend the device completely before spindle is
7356 		 * turned off
7357 		 */
7358 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7359 			if (got_semaphore_here != 0) {
7360 				sema_v(&un->un_semoclose);
7361 			}
7362 			/*
7363 			 * On exit put the state back to it's original value
7364 			 * and broadcast to anyone waiting for the power
7365 			 * change completion.
7366 			 */
7367 			mutex_enter(SD_MUTEX(un));
7368 			un->un_state = state_before_pm;
7369 			cv_broadcast(&un->un_suspend_cv);
7370 			mutex_exit(SD_MUTEX(un));
7371 			SD_TRACE(SD_LOG_IO_PM, un,
7372 			    "sdpower: exit, PM suspend Failed.\n");
7373 			return (DDI_FAILURE);
7374 		}
7375 	}
7376 
7377 	/*
7378 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7379 	 * close, or strategy. Dump no long uses this routine, it uses it's
7380 	 * own code so it can be done in polled mode.
7381 	 */
7382 
7383 	medium_present = TRUE;
7384 
7385 	/*
7386 	 * When powering up, issue a TUR in case the device is at unit
7387 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7388 	 * a deadlock on un_pm_busy_cv will occur.
7389 	 */
7390 	if (level == SD_SPINDLE_ON) {
7391 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7392 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7393 	}
7394 
7395 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7396 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7397 
7398 	sval = sd_send_scsi_START_STOP_UNIT(un,
7399 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7400 	    SD_PATH_DIRECT);
7401 	/* Command failed, check for media present. */
7402 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7403 		medium_present = FALSE;
7404 	}
7405 
7406 	/*
7407 	 * The conditions of interest here are:
7408 	 *   if a spindle off with media present fails,
7409 	 *	then restore the state and return an error.
7410 	 *   else if a spindle on fails,
7411 	 *	then return an error (there's no state to restore).
7412 	 * In all other cases we setup for the new state
7413 	 * and return success.
7414 	 */
7415 	switch (level) {
7416 	case SD_SPINDLE_OFF:
7417 		if ((medium_present == TRUE) && (sval != 0)) {
7418 			/* The stop command from above failed */
7419 			rval = DDI_FAILURE;
7420 			/*
7421 			 * The stop command failed, and we have media
7422 			 * present. Put the level back by calling the
7423 			 * sd_pm_resume() and set the state back to
7424 			 * it's previous value.
7425 			 */
7426 			(void) sd_ddi_pm_resume(un);
7427 			mutex_enter(SD_MUTEX(un));
7428 			un->un_last_state = save_state;
7429 			mutex_exit(SD_MUTEX(un));
7430 			break;
7431 		}
7432 		/*
7433 		 * The stop command from above succeeded.
7434 		 */
7435 		if (un->un_f_monitor_media_state) {
7436 			/*
7437 			 * Terminate watch thread in case of removable media
7438 			 * devices going into low power state. This is as per
7439 			 * the requirements of pm framework, otherwise commands
7440 			 * will be generated for the device (through watch
7441 			 * thread), even when the device is in low power state.
7442 			 */
7443 			mutex_enter(SD_MUTEX(un));
7444 			un->un_f_watcht_stopped = FALSE;
7445 			if (un->un_swr_token != NULL) {
7446 				opaque_t temp_token = un->un_swr_token;
7447 				un->un_f_watcht_stopped = TRUE;
7448 				un->un_swr_token = NULL;
7449 				mutex_exit(SD_MUTEX(un));
7450 				(void) scsi_watch_request_terminate(temp_token,
7451 				    SCSI_WATCH_TERMINATE_WAIT);
7452 			} else {
7453 				mutex_exit(SD_MUTEX(un));
7454 			}
7455 		}
7456 		break;
7457 
7458 	default:	/* The level requested is spindle on... */
7459 		/*
7460 		 * Legacy behavior: return success on a failed spinup
7461 		 * if there is no media in the drive.
7462 		 * Do this by looking at medium_present here.
7463 		 */
7464 		if ((sval != 0) && medium_present) {
7465 			/* The start command from above failed */
7466 			rval = DDI_FAILURE;
7467 			break;
7468 		}
7469 		/*
7470 		 * The start command from above succeeded
7471 		 * Resume the devices now that we have
7472 		 * started the disks
7473 		 */
7474 		(void) sd_ddi_pm_resume(un);
7475 
7476 		/*
7477 		 * Resume the watch thread since it was suspended
7478 		 * when the device went into low power mode.
7479 		 */
7480 		if (un->un_f_monitor_media_state) {
7481 			mutex_enter(SD_MUTEX(un));
7482 			if (un->un_f_watcht_stopped == TRUE) {
7483 				opaque_t temp_token;
7484 
7485 				un->un_f_watcht_stopped = FALSE;
7486 				mutex_exit(SD_MUTEX(un));
7487 				temp_token = scsi_watch_request_submit(
7488 				    SD_SCSI_DEVP(un),
7489 				    sd_check_media_time,
7490 				    SENSE_LENGTH, sd_media_watch_cb,
7491 				    (caddr_t)dev);
7492 				mutex_enter(SD_MUTEX(un));
7493 				un->un_swr_token = temp_token;
7494 			}
7495 			mutex_exit(SD_MUTEX(un));
7496 		}
7497 	}
7498 	if (got_semaphore_here != 0) {
7499 		sema_v(&un->un_semoclose);
7500 	}
7501 	/*
7502 	 * On exit put the state back to it's original value
7503 	 * and broadcast to anyone waiting for the power
7504 	 * change completion.
7505 	 */
7506 	mutex_enter(SD_MUTEX(un));
7507 	un->un_state = state_before_pm;
7508 	cv_broadcast(&un->un_suspend_cv);
7509 	mutex_exit(SD_MUTEX(un));
7510 
7511 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7512 
7513 	return (rval);
7514 }
7515 
7516 
7517 
7518 /*
7519  *    Function: sdattach
7520  *
7521  * Description: Driver's attach(9e) entry point function.
7522  *
7523  *   Arguments: devi - opaque device info handle
7524  *		cmd  - attach  type
7525  *
7526  * Return Code: DDI_SUCCESS
7527  *		DDI_FAILURE
7528  *
7529  *     Context: Kernel thread context
7530  */
7531 
7532 static int
7533 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7534 {
7535 	switch (cmd) {
7536 	case DDI_ATTACH:
7537 		return (sd_unit_attach(devi));
7538 	case DDI_RESUME:
7539 		return (sd_ddi_resume(devi));
7540 	default:
7541 		break;
7542 	}
7543 	return (DDI_FAILURE);
7544 }
7545 
7546 
7547 /*
7548  *    Function: sddetach
7549  *
7550  * Description: Driver's detach(9E) entry point function.
7551  *
7552  *   Arguments: devi - opaque device info handle
7553  *		cmd  - detach  type
7554  *
7555  * Return Code: DDI_SUCCESS
7556  *		DDI_FAILURE
7557  *
7558  *     Context: Kernel thread context
7559  */
7560 
7561 static int
7562 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7563 {
7564 	switch (cmd) {
7565 	case DDI_DETACH:
7566 		return (sd_unit_detach(devi));
7567 	case DDI_SUSPEND:
7568 		return (sd_ddi_suspend(devi));
7569 	default:
7570 		break;
7571 	}
7572 	return (DDI_FAILURE);
7573 }
7574 
7575 
7576 /*
7577  *     Function: sd_sync_with_callback
7578  *
7579  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7580  *		 state while the callback routine is active.
7581  *
7582  *    Arguments: un: softstate structure for the instance
7583  *
7584  *	Context: Kernel thread context
7585  */
7586 
7587 static void
7588 sd_sync_with_callback(struct sd_lun *un)
7589 {
7590 	ASSERT(un != NULL);
7591 
7592 	mutex_enter(SD_MUTEX(un));
7593 
7594 	ASSERT(un->un_in_callback >= 0);
7595 
7596 	while (un->un_in_callback > 0) {
7597 		mutex_exit(SD_MUTEX(un));
7598 		delay(2);
7599 		mutex_enter(SD_MUTEX(un));
7600 	}
7601 
7602 	mutex_exit(SD_MUTEX(un));
7603 }
7604 
7605 /*
7606  *    Function: sd_unit_attach
7607  *
7608  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7609  *		the soft state structure for the device and performs
7610  *		all necessary structure and device initializations.
7611  *
7612  *   Arguments: devi: the system's dev_info_t for the device.
7613  *
7614  * Return Code: DDI_SUCCESS if attach is successful.
7615  *		DDI_FAILURE if any part of the attach fails.
7616  *
7617  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7618  *		Kernel thread context only.  Can sleep.
7619  */
7620 
7621 static int
7622 sd_unit_attach(dev_info_t *devi)
7623 {
7624 	struct	scsi_device	*devp;
7625 	struct	sd_lun		*un;
7626 	char			*variantp;
7627 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7628 	int	instance;
7629 	int	rval;
7630 	int	wc_enabled;
7631 	uint64_t	capacity;
7632 	uint_t		lbasize;
7633 
7634 	/*
7635 	 * Retrieve the target driver's private data area. This was set
7636 	 * up by the HBA.
7637 	 */
7638 	devp = ddi_get_driver_private(devi);
7639 
7640 	/*
7641 	 * Since we have no idea what state things were left in by the last
7642 	 * user of the device, set up some 'default' settings, ie. turn 'em
7643 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7644 	 * Do this before the scsi_probe, which sends an inquiry.
7645 	 * This is a fix for bug (4430280).
7646 	 * Of special importance is wide-xfer. The drive could have been left
7647 	 * in wide transfer mode by the last driver to communicate with it,
7648 	 * this includes us. If that's the case, and if the following is not
7649 	 * setup properly or we don't re-negotiate with the drive prior to
7650 	 * transferring data to/from the drive, it causes bus parity errors,
7651 	 * data overruns, and unexpected interrupts. This first occurred when
7652 	 * the fix for bug (4378686) was made.
7653 	 */
7654 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7655 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7656 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7657 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7658 
7659 	/*
7660 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7661 	 * This call will allocate and fill in the scsi_inquiry structure
7662 	 * and point the sd_inq member of the scsi_device structure to it.
7663 	 * If the attach succeeds, then this memory will not be de-allocated
7664 	 * (via scsi_unprobe()) until the instance is detached.
7665 	 */
7666 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7667 		goto probe_failed;
7668 	}
7669 
7670 	/*
7671 	 * Check the device type as specified in the inquiry data and
7672 	 * claim it if it is of a type that we support.
7673 	 */
7674 	switch (devp->sd_inq->inq_dtype) {
7675 	case DTYPE_DIRECT:
7676 		break;
7677 	case DTYPE_RODIRECT:
7678 		break;
7679 	case DTYPE_OPTICAL:
7680 		break;
7681 	case DTYPE_NOTPRESENT:
7682 	default:
7683 		/* Unsupported device type; fail the attach. */
7684 		goto probe_failed;
7685 	}
7686 
7687 	/*
7688 	 * Allocate the soft state structure for this unit.
7689 	 *
7690 	 * We rely upon this memory being set to all zeroes by
7691 	 * ddi_soft_state_zalloc().  We assume that any member of the
7692 	 * soft state structure that is not explicitly initialized by
7693 	 * this routine will have a value of zero.
7694 	 */
7695 	instance = ddi_get_instance(devp->sd_dev);
7696 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7697 		goto probe_failed;
7698 	}
7699 
7700 	/*
7701 	 * Retrieve a pointer to the newly-allocated soft state.
7702 	 *
7703 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7704 	 * was successful, unless something has gone horribly wrong and the
7705 	 * ddi's soft state internals are corrupt (in which case it is
7706 	 * probably better to halt here than just fail the attach....)
7707 	 */
7708 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7709 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7710 		    instance);
7711 		/*NOTREACHED*/
7712 	}
7713 
7714 	/*
7715 	 * Link the back ptr of the driver soft state to the scsi_device
7716 	 * struct for this lun.
7717 	 * Save a pointer to the softstate in the driver-private area of
7718 	 * the scsi_device struct.
7719 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7720 	 * we first set un->un_sd below.
7721 	 */
7722 	un->un_sd = devp;
7723 	devp->sd_private = (opaque_t)un;
7724 
7725 	/*
7726 	 * The following must be after devp is stored in the soft state struct.
7727 	 */
7728 #ifdef SDDEBUG
7729 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7730 	    "%s_unit_attach: un:0x%p instance:%d\n",
7731 	    ddi_driver_name(devi), un, instance);
7732 #endif
7733 
7734 	/*
7735 	 * Set up the device type and node type (for the minor nodes).
7736 	 * By default we assume that the device can at least support the
7737 	 * Common Command Set. Call it a CD-ROM if it reports itself
7738 	 * as a RODIRECT device.
7739 	 */
7740 	switch (devp->sd_inq->inq_dtype) {
7741 	case DTYPE_RODIRECT:
7742 		un->un_node_type = DDI_NT_CD_CHAN;
7743 		un->un_ctype	 = CTYPE_CDROM;
7744 		break;
7745 	case DTYPE_OPTICAL:
7746 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7747 		un->un_ctype	 = CTYPE_ROD;
7748 		break;
7749 	default:
7750 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7751 		un->un_ctype	 = CTYPE_CCS;
7752 		break;
7753 	}
7754 
7755 	/*
7756 	 * Try to read the interconnect type from the HBA.
7757 	 *
7758 	 * Note: This driver is currently compiled as two binaries, a parallel
7759 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7760 	 * differences are determined at compile time. In the future a single
7761 	 * binary will be provided and the inteconnect type will be used to
7762 	 * differentiate between fibre and parallel scsi behaviors. At that time
7763 	 * it will be necessary for all fibre channel HBAs to support this
7764 	 * property.
7765 	 *
7766 	 * set un_f_is_fiber to TRUE ( default fiber )
7767 	 */
7768 	un->un_f_is_fibre = TRUE;
7769 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7770 	case INTERCONNECT_SSA:
7771 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7772 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7773 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7774 		break;
7775 	case INTERCONNECT_PARALLEL:
7776 		un->un_f_is_fibre = FALSE;
7777 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7778 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7779 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7780 		break;
7781 	case INTERCONNECT_FIBRE:
7782 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7783 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7784 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7785 		break;
7786 	case INTERCONNECT_FABRIC:
7787 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7788 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7789 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7790 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7791 		break;
7792 	default:
7793 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7794 		/*
7795 		 * The HBA does not support the "interconnect-type" property
7796 		 * (or did not provide a recognized type).
7797 		 *
7798 		 * Note: This will be obsoleted when a single fibre channel
7799 		 * and parallel scsi driver is delivered. In the meantime the
7800 		 * interconnect type will be set to the platform default.If that
7801 		 * type is not parallel SCSI, it means that we should be
7802 		 * assuming "ssd" semantics. However, here this also means that
7803 		 * the FC HBA is not supporting the "interconnect-type" property
7804 		 * like we expect it to, so log this occurrence.
7805 		 */
7806 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7807 		if (!SD_IS_PARALLEL_SCSI(un)) {
7808 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7809 			    "sd_unit_attach: un:0x%p Assuming "
7810 			    "INTERCONNECT_FIBRE\n", un);
7811 		} else {
7812 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7813 			    "sd_unit_attach: un:0x%p Assuming "
7814 			    "INTERCONNECT_PARALLEL\n", un);
7815 			un->un_f_is_fibre = FALSE;
7816 		}
7817 #else
7818 		/*
7819 		 * Note: This source will be implemented when a single fibre
7820 		 * channel and parallel scsi driver is delivered. The default
7821 		 * will be to assume that if a device does not support the
7822 		 * "interconnect-type" property it is a parallel SCSI HBA and
7823 		 * we will set the interconnect type for parallel scsi.
7824 		 */
7825 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7826 		un->un_f_is_fibre = FALSE;
7827 #endif
7828 		break;
7829 	}
7830 
7831 	if (un->un_f_is_fibre == TRUE) {
7832 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7833 			SCSI_VERSION_3) {
7834 			switch (un->un_interconnect_type) {
7835 			case SD_INTERCONNECT_FIBRE:
7836 			case SD_INTERCONNECT_SSA:
7837 				un->un_node_type = DDI_NT_BLOCK_WWN;
7838 				break;
7839 			default:
7840 				break;
7841 			}
7842 		}
7843 	}
7844 
7845 	/*
7846 	 * Initialize the Request Sense command for the target
7847 	 */
7848 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7849 		goto alloc_rqs_failed;
7850 	}
7851 
7852 	/*
7853 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7854 	 * with seperate binary for sd and ssd.
7855 	 *
7856 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7857 	 * The hardcoded values will go away when Sparc uses 1 binary
7858 	 * for sd and ssd.  This hardcoded values need to match
7859 	 * SD_RETRY_COUNT in sddef.h
7860 	 * The value used is base on interconnect type.
7861 	 * fibre = 3, parallel = 5
7862 	 */
7863 #if defined(__i386) || defined(__amd64)
7864 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7865 #else
7866 	un->un_retry_count = SD_RETRY_COUNT;
7867 #endif
7868 
7869 	/*
7870 	 * Set the per disk retry count to the default number of retries
7871 	 * for disks and CDROMs. This value can be overridden by the
7872 	 * disk property list or an entry in sd.conf.
7873 	 */
7874 	un->un_notready_retry_count =
7875 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7876 			: DISK_NOT_READY_RETRY_COUNT(un);
7877 
7878 	/*
7879 	 * Set the busy retry count to the default value of un_retry_count.
7880 	 * This can be overridden by entries in sd.conf or the device
7881 	 * config table.
7882 	 */
7883 	un->un_busy_retry_count = un->un_retry_count;
7884 
7885 	/*
7886 	 * Init the reset threshold for retries.  This number determines
7887 	 * how many retries must be performed before a reset can be issued
7888 	 * (for certain error conditions). This can be overridden by entries
7889 	 * in sd.conf or the device config table.
7890 	 */
7891 	un->un_reset_retry_count = (un->un_retry_count / 2);
7892 
7893 	/*
7894 	 * Set the victim_retry_count to the default un_retry_count
7895 	 */
7896 	un->un_victim_retry_count = (2 * un->un_retry_count);
7897 
7898 	/*
7899 	 * Set the reservation release timeout to the default value of
7900 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7901 	 * device config table.
7902 	 */
7903 	un->un_reserve_release_time = 5;
7904 
7905 	/*
7906 	 * Set up the default maximum transfer size. Note that this may
7907 	 * get updated later in the attach, when setting up default wide
7908 	 * operations for disks.
7909 	 */
7910 #if defined(__i386) || defined(__amd64)
7911 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7912 #else
7913 	un->un_max_xfer_size = (uint_t)maxphys;
7914 #endif
7915 
7916 	/*
7917 	 * Get "allow bus device reset" property (defaults to "enabled" if
7918 	 * the property was not defined). This is to disable bus resets for
7919 	 * certain kinds of error recovery. Note: In the future when a run-time
7920 	 * fibre check is available the soft state flag should default to
7921 	 * enabled.
7922 	 */
7923 	if (un->un_f_is_fibre == TRUE) {
7924 		un->un_f_allow_bus_device_reset = TRUE;
7925 	} else {
7926 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7927 			"allow-bus-device-reset", 1) != 0) {
7928 			un->un_f_allow_bus_device_reset = TRUE;
7929 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7930 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7931 				un);
7932 		} else {
7933 			un->un_f_allow_bus_device_reset = FALSE;
7934 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7935 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7936 				un);
7937 		}
7938 	}
7939 
7940 	/*
7941 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7942 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7943 	 *
7944 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7945 	 * property. The new "variant" property with a value of "atapi" has been
7946 	 * introduced so that future 'variants' of standard SCSI behavior (like
7947 	 * atapi) could be specified by the underlying HBA drivers by supplying
7948 	 * a new value for the "variant" property, instead of having to define a
7949 	 * new property.
7950 	 */
7951 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7952 		un->un_f_cfg_is_atapi = TRUE;
7953 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7954 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7955 	}
7956 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7957 	    &variantp) == DDI_PROP_SUCCESS) {
7958 		if (strcmp(variantp, "atapi") == 0) {
7959 			un->un_f_cfg_is_atapi = TRUE;
7960 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7961 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7962 		}
7963 		ddi_prop_free(variantp);
7964 	}
7965 
7966 	un->un_cmd_timeout	= SD_IO_TIME;
7967 
7968 	/* Info on current states, statuses, etc. (Updated frequently) */
7969 	un->un_state		= SD_STATE_NORMAL;
7970 	un->un_last_state	= SD_STATE_NORMAL;
7971 
7972 	/* Control & status info for command throttling */
7973 	un->un_throttle		= sd_max_throttle;
7974 	un->un_saved_throttle	= sd_max_throttle;
7975 	un->un_min_throttle	= sd_min_throttle;
7976 
7977 	if (un->un_f_is_fibre == TRUE) {
7978 		un->un_f_use_adaptive_throttle = TRUE;
7979 	} else {
7980 		un->un_f_use_adaptive_throttle = FALSE;
7981 	}
7982 
7983 	/* Removable media support. */
7984 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7985 	un->un_mediastate		= DKIO_NONE;
7986 	un->un_specified_mediastate	= DKIO_NONE;
7987 
7988 	/* CVs for suspend/resume (PM or DR) */
7989 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7990 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7991 
7992 	/* Power management support. */
7993 	un->un_power_level = SD_SPINDLE_UNINIT;
7994 
7995 	/*
7996 	 * The open/close semaphore is used to serialize threads executing
7997 	 * in the driver's open & close entry point routines for a given
7998 	 * instance.
7999 	 */
8000 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8001 
8002 	/*
8003 	 * The conf file entry and softstate variable is a forceful override,
8004 	 * meaning a non-zero value must be entered to change the default.
8005 	 */
8006 	un->un_f_disksort_disabled = FALSE;
8007 
8008 	/*
8009 	 * Retrieve the properties from the static driver table or the driver
8010 	 * configuration file (.conf) for this unit and update the soft state
8011 	 * for the device as needed for the indicated properties.
8012 	 * Note: the property configuration needs to occur here as some of the
8013 	 * following routines may have dependancies on soft state flags set
8014 	 * as part of the driver property configuration.
8015 	 */
8016 	sd_read_unit_properties(un);
8017 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8018 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8019 
8020 	/*
8021 	 * Only if a device has "hotpluggable" property, it is
8022 	 * treated as hotpluggable device. Otherwise, it is
8023 	 * regarded as non-hotpluggable one.
8024 	 */
8025 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8026 	    -1) != -1) {
8027 		un->un_f_is_hotpluggable = TRUE;
8028 	}
8029 
8030 	/*
8031 	 * set unit's attributes(flags) according to "hotpluggable" and
8032 	 * RMB bit in INQUIRY data.
8033 	 */
8034 	sd_set_unit_attributes(un, devi);
8035 
8036 	/*
8037 	 * By default, we mark the capacity, lbasize, and geometry
8038 	 * as invalid. Only if we successfully read a valid capacity
8039 	 * will we update the un_blockcount and un_tgt_blocksize with the
8040 	 * valid values (the geometry will be validated later).
8041 	 */
8042 	un->un_f_blockcount_is_valid	= FALSE;
8043 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8044 	un->un_f_geometry_is_valid	= FALSE;
8045 
8046 	/*
8047 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8048 	 * otherwise.
8049 	 */
8050 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8051 	un->un_blockcount = 0;
8052 
8053 	/*
8054 	 * Set up the per-instance info needed to determine the correct
8055 	 * CDBs and other info for issuing commands to the target.
8056 	 */
8057 	sd_init_cdb_limits(un);
8058 
8059 	/*
8060 	 * Set up the IO chains to use, based upon the target type.
8061 	 */
8062 	if (un->un_f_non_devbsize_supported) {
8063 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8064 	} else {
8065 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8066 	}
8067 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8068 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8069 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8070 
8071 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8072 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8073 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8074 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8075 
8076 
8077 	if (ISCD(un)) {
8078 		un->un_additional_codes = sd_additional_codes;
8079 	} else {
8080 		un->un_additional_codes = NULL;
8081 	}
8082 
8083 	/*
8084 	 * Create the kstats here so they can be available for attach-time
8085 	 * routines that send commands to the unit (either polled or via
8086 	 * sd_send_scsi_cmd).
8087 	 *
8088 	 * Note: This is a critical sequence that needs to be maintained:
8089 	 *	1) Instantiate the kstats here, before any routines using the
8090 	 *	   iopath (i.e. sd_send_scsi_cmd).
8091 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8092 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8093 	 *	   sd_register_devid(), and sd_disable_caching().
8094 	 */
8095 
8096 	un->un_stats = kstat_create(sd_label, instance,
8097 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8098 	if (un->un_stats != NULL) {
8099 		un->un_stats->ks_lock = SD_MUTEX(un);
8100 		kstat_install(un->un_stats);
8101 	}
8102 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8103 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8104 
8105 	sd_create_errstats(un, instance);
8106 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8107 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8108 
8109 	/*
8110 	 * The following if/else code was relocated here from below as part
8111 	 * of the fix for bug (4430280). However with the default setup added
8112 	 * on entry to this routine, it's no longer absolutely necessary for
8113 	 * this to be before the call to sd_spin_up_unit.
8114 	 */
8115 	if (SD_IS_PARALLEL_SCSI(un)) {
8116 		/*
8117 		 * If SCSI-2 tagged queueing is supported by the target
8118 		 * and by the host adapter then we will enable it.
8119 		 */
8120 		un->un_tagflags = 0;
8121 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8122 		    (devp->sd_inq->inq_cmdque) &&
8123 		    (un->un_f_arq_enabled == TRUE)) {
8124 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8125 			    1, 1) == 1) {
8126 				un->un_tagflags = FLAG_STAG;
8127 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8128 				    "sd_unit_attach: un:0x%p tag queueing "
8129 				    "enabled\n", un);
8130 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8131 			    "untagged-qing", 0) == 1) {
8132 				un->un_f_opt_queueing = TRUE;
8133 				un->un_saved_throttle = un->un_throttle =
8134 				    min(un->un_throttle, 3);
8135 			} else {
8136 				un->un_f_opt_queueing = FALSE;
8137 				un->un_saved_throttle = un->un_throttle = 1;
8138 			}
8139 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8140 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8141 			/* The Host Adapter supports internal queueing. */
8142 			un->un_f_opt_queueing = TRUE;
8143 			un->un_saved_throttle = un->un_throttle =
8144 			    min(un->un_throttle, 3);
8145 		} else {
8146 			un->un_f_opt_queueing = FALSE;
8147 			un->un_saved_throttle = un->un_throttle = 1;
8148 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8149 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8150 		}
8151 
8152 
8153 		/* Setup or tear down default wide operations for disks */
8154 
8155 		/*
8156 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8157 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8158 		 * system and be set to different values. In the future this
8159 		 * code may need to be updated when the ssd module is
8160 		 * obsoleted and removed from the system. (4299588)
8161 		 */
8162 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8163 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8164 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8165 			    1, 1) == 1) {
8166 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8167 				    "sd_unit_attach: un:0x%p Wide Transfer "
8168 				    "enabled\n", un);
8169 			}
8170 
8171 			/*
8172 			 * If tagged queuing has also been enabled, then
8173 			 * enable large xfers
8174 			 */
8175 			if (un->un_saved_throttle == sd_max_throttle) {
8176 				un->un_max_xfer_size =
8177 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8178 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8179 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8180 				    "sd_unit_attach: un:0x%p max transfer "
8181 				    "size=0x%x\n", un, un->un_max_xfer_size);
8182 			}
8183 		} else {
8184 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8185 			    0, 1) == 1) {
8186 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8187 				    "sd_unit_attach: un:0x%p "
8188 				    "Wide Transfer disabled\n", un);
8189 			}
8190 		}
8191 	} else {
8192 		un->un_tagflags = FLAG_STAG;
8193 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8194 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8195 	}
8196 
8197 	/*
8198 	 * If this target supports LUN reset, try to enable it.
8199 	 */
8200 	if (un->un_f_lun_reset_enabled) {
8201 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8202 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8203 			    "un:0x%p lun_reset capability set\n", un);
8204 		} else {
8205 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8206 			    "un:0x%p lun-reset capability not set\n", un);
8207 		}
8208 	}
8209 
8210 	/*
8211 	 * At this point in the attach, we have enough info in the
8212 	 * soft state to be able to issue commands to the target.
8213 	 *
8214 	 * All command paths used below MUST issue their commands as
8215 	 * SD_PATH_DIRECT. This is important as intermediate layers
8216 	 * are not all initialized yet (such as PM).
8217 	 */
8218 
8219 	/*
8220 	 * Send a TEST UNIT READY command to the device. This should clear
8221 	 * any outstanding UNIT ATTENTION that may be present.
8222 	 *
8223 	 * Note: Don't check for success, just track if there is a reservation,
8224 	 * this is a throw away command to clear any unit attentions.
8225 	 *
8226 	 * Note: This MUST be the first command issued to the target during
8227 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8228 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8229 	 * with attempts at spinning up a device with no media.
8230 	 */
8231 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8232 		reservation_flag = SD_TARGET_IS_RESERVED;
8233 	}
8234 
8235 	/*
8236 	 * If the device is NOT a removable media device, attempt to spin
8237 	 * it up (using the START_STOP_UNIT command) and read its capacity
8238 	 * (using the READ CAPACITY command).  Note, however, that either
8239 	 * of these could fail and in some cases we would continue with
8240 	 * the attach despite the failure (see below).
8241 	 */
8242 	if (un->un_f_descr_format_supported) {
8243 		switch (sd_spin_up_unit(un)) {
8244 		case 0:
8245 			/*
8246 			 * Spin-up was successful; now try to read the
8247 			 * capacity.  If successful then save the results
8248 			 * and mark the capacity & lbasize as valid.
8249 			 */
8250 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8251 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8252 
8253 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8254 			    &lbasize, SD_PATH_DIRECT)) {
8255 			case 0: {
8256 				if (capacity > DK_MAX_BLOCKS) {
8257 #ifdef _LP64
8258 					/*
8259 					 * Enable descriptor format sense data
8260 					 * so that we can get 64 bit sense
8261 					 * data fields.
8262 					 */
8263 					sd_enable_descr_sense(un);
8264 #else
8265 					/* 32-bit kernels can't handle this */
8266 					scsi_log(SD_DEVINFO(un),
8267 					    sd_label, CE_WARN,
8268 					    "disk has %llu blocks, which "
8269 					    "is too large for a 32-bit "
8270 					    "kernel", capacity);
8271 					goto spinup_failed;
8272 #endif
8273 				}
8274 				/*
8275 				 * The following relies on
8276 				 * sd_send_scsi_READ_CAPACITY never
8277 				 * returning 0 for capacity and/or lbasize.
8278 				 */
8279 				sd_update_block_info(un, lbasize, capacity);
8280 
8281 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8282 				    "sd_unit_attach: un:0x%p capacity = %ld "
8283 				    "blocks; lbasize= %ld.\n", un,
8284 				    un->un_blockcount, un->un_tgt_blocksize);
8285 
8286 				break;
8287 			}
8288 			case EACCES:
8289 				/*
8290 				 * Should never get here if the spin-up
8291 				 * succeeded, but code it in anyway.
8292 				 * From here, just continue with the attach...
8293 				 */
8294 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8295 				    "sd_unit_attach: un:0x%p "
8296 				    "sd_send_scsi_READ_CAPACITY "
8297 				    "returned reservation conflict\n", un);
8298 				reservation_flag = SD_TARGET_IS_RESERVED;
8299 				break;
8300 			default:
8301 				/*
8302 				 * Likewise, should never get here if the
8303 				 * spin-up succeeded. Just continue with
8304 				 * the attach...
8305 				 */
8306 				break;
8307 			}
8308 			break;
8309 		case EACCES:
8310 			/*
8311 			 * Device is reserved by another host.  In this case
8312 			 * we could not spin it up or read the capacity, but
8313 			 * we continue with the attach anyway.
8314 			 */
8315 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8316 			    "sd_unit_attach: un:0x%p spin-up reservation "
8317 			    "conflict.\n", un);
8318 			reservation_flag = SD_TARGET_IS_RESERVED;
8319 			break;
8320 		default:
8321 			/* Fail the attach if the spin-up failed. */
8322 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8323 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8324 			goto spinup_failed;
8325 		}
8326 	}
8327 
8328 	/*
8329 	 * Check to see if this is a MMC drive
8330 	 */
8331 	if (ISCD(un)) {
8332 		sd_set_mmc_caps(un);
8333 	}
8334 
8335 	/*
8336 	 * Create the minor nodes for the device.
8337 	 * Note: If we want to support fdisk on both sparc and intel, this will
8338 	 * have to separate out the notion that VTOC8 is always sparc, and
8339 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8340 	 * type will have to be determined at run-time, and the fdisk
8341 	 * partitioning will have to have been read & set up before we
8342 	 * create the minor nodes. (any other inits (such as kstats) that
8343 	 * also ought to be done before creating the minor nodes?) (Doesn't
8344 	 * setting up the minor nodes kind of imply that we're ready to
8345 	 * handle an open from userland?)
8346 	 */
8347 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8348 		goto create_minor_nodes_failed;
8349 	}
8350 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8351 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8352 
8353 	/*
8354 	 * Add a zero-length attribute to tell the world we support
8355 	 * kernel ioctls (for layered drivers)
8356 	 */
8357 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8358 	    DDI_KERNEL_IOCTL, NULL, 0);
8359 
8360 	/*
8361 	 * Add a boolean property to tell the world we support
8362 	 * the B_FAILFAST flag (for layered drivers)
8363 	 */
8364 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8365 	    "ddi-failfast-supported", NULL, 0);
8366 
8367 	/*
8368 	 * Initialize power management
8369 	 */
8370 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8371 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8372 	sd_setup_pm(un, devi);
8373 	if (un->un_f_pm_is_enabled == FALSE) {
8374 		/*
8375 		 * For performance, point to a jump table that does
8376 		 * not include pm.
8377 		 * The direct and priority chains don't change with PM.
8378 		 *
8379 		 * Note: this is currently done based on individual device
8380 		 * capabilities. When an interface for determining system
8381 		 * power enabled state becomes available, or when additional
8382 		 * layers are added to the command chain, these values will
8383 		 * have to be re-evaluated for correctness.
8384 		 */
8385 		if (un->un_f_non_devbsize_supported) {
8386 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8387 		} else {
8388 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8389 		}
8390 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8391 	}
8392 
8393 	/*
8394 	 * This property is set to 0 by HA software to avoid retries
8395 	 * on a reserved disk. (The preferred property name is
8396 	 * "retry-on-reservation-conflict") (1189689)
8397 	 *
8398 	 * Note: The use of a global here can have unintended consequences. A
8399 	 * per instance variable is preferrable to match the capabilities of
8400 	 * different underlying hba's (4402600)
8401 	 */
8402 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8403 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8404 	    sd_retry_on_reservation_conflict);
8405 	if (sd_retry_on_reservation_conflict != 0) {
8406 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8407 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8408 		    sd_retry_on_reservation_conflict);
8409 	}
8410 
8411 	/* Set up options for QFULL handling. */
8412 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8413 	    "qfull-retries", -1)) != -1) {
8414 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8415 		    rval, 1);
8416 	}
8417 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8418 	    "qfull-retry-interval", -1)) != -1) {
8419 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8420 		    rval, 1);
8421 	}
8422 
8423 	/*
8424 	 * This just prints a message that announces the existence of the
8425 	 * device. The message is always printed in the system logfile, but
8426 	 * only appears on the console if the system is booted with the
8427 	 * -v (verbose) argument.
8428 	 */
8429 	ddi_report_dev(devi);
8430 
8431 	/*
8432 	 * The framework calls driver attach routines single-threaded
8433 	 * for a given instance.  However we still acquire SD_MUTEX here
8434 	 * because this required for calling the sd_validate_geometry()
8435 	 * and sd_register_devid() functions.
8436 	 */
8437 	mutex_enter(SD_MUTEX(un));
8438 	un->un_f_geometry_is_valid = FALSE;
8439 	un->un_mediastate = DKIO_NONE;
8440 	un->un_reserved = -1;
8441 
8442 	/*
8443 	 * Read and validate the device's geometry (ie, disk label)
8444 	 * A new unformatted drive will not have a valid geometry, but
8445 	 * the driver needs to successfully attach to this device so
8446 	 * the drive can be formatted via ioctls.
8447 	 */
8448 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8449 	    ENOTSUP)) &&
8450 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8451 		/*
8452 		 * We found a small disk with an EFI label on it;
8453 		 * we need to fix up the minor nodes accordingly.
8454 		 */
8455 		ddi_remove_minor_node(devi, "h");
8456 		ddi_remove_minor_node(devi, "h,raw");
8457 		(void) ddi_create_minor_node(devi, "wd",
8458 		    S_IFBLK,
8459 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8460 		    un->un_node_type, NULL);
8461 		(void) ddi_create_minor_node(devi, "wd,raw",
8462 		    S_IFCHR,
8463 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8464 		    un->un_node_type, NULL);
8465 	}
8466 
8467 	/*
8468 	 * Read and initialize the devid for the unit.
8469 	 */
8470 	ASSERT(un->un_errstats != NULL);
8471 	if (un->un_f_devid_supported) {
8472 		sd_register_devid(un, devi, reservation_flag);
8473 	}
8474 	mutex_exit(SD_MUTEX(un));
8475 
8476 #if (defined(__fibre))
8477 	/*
8478 	 * Register callbacks for fibre only.  You can't do this soley
8479 	 * on the basis of the devid_type because this is hba specific.
8480 	 * We need to query our hba capabilities to find out whether to
8481 	 * register or not.
8482 	 */
8483 	if (un->un_f_is_fibre) {
8484 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8485 		sd_init_event_callbacks(un);
8486 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8487 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8488 	    }
8489 	}
8490 #endif
8491 
8492 	if (un->un_f_opt_disable_cache == TRUE) {
8493 		if (sd_disable_caching(un) != 0) {
8494 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8495 			    "sd_unit_attach: un:0x%p Could not disable "
8496 			    "caching", un);
8497 			goto devid_failed;
8498 		}
8499 	}
8500 
8501 	/*
8502 	 * NOTE: Since there is currently no mechanism to
8503 	 * change the state of the Write Cache Enable mode select,
8504 	 * this code just checks the value of the WCE bit
8505 	 * at device attach time.  If a mechanism
8506 	 * is added to the driver to change WCE, un_f_write_cache_enabled
8507 	 * must be updated appropriately.
8508 	 */
8509 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8510 	mutex_enter(SD_MUTEX(un));
8511 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8512 	mutex_exit(SD_MUTEX(un));
8513 
8514 	/*
8515 	 * Set the pstat and error stat values here, so data obtained during the
8516 	 * previous attach-time routines is available.
8517 	 *
8518 	 * Note: This is a critical sequence that needs to be maintained:
8519 	 *	1) Instantiate the kstats before any routines using the iopath
8520 	 *	   (i.e. sd_send_scsi_cmd).
8521 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8522 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8523 	 *	   sd_register_devid(), and sd_disable_caching().
8524 	 */
8525 	if (un->un_f_pkstats_enabled) {
8526 		sd_set_pstats(un);
8527 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8528 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8529 	}
8530 
8531 	sd_set_errstats(un);
8532 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8533 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8534 
8535 	/*
8536 	 * Find out what type of reservation this disk supports.
8537 	 */
8538 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8539 	case 0:
8540 		/*
8541 		 * SCSI-3 reservations are supported.
8542 		 */
8543 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8544 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8545 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8546 		break;
8547 	case ENOTSUP:
8548 		/*
8549 		 * The PERSISTENT RESERVE IN command would not be recognized by
8550 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8551 		 */
8552 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8553 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8554 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8555 		break;
8556 	default:
8557 		/*
8558 		 * default to SCSI-3 reservations
8559 		 */
8560 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8561 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8562 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8563 		break;
8564 	}
8565 
8566 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8567 	    "sd_unit_attach: un:0x%p exit success\n", un);
8568 
8569 	return (DDI_SUCCESS);
8570 
8571 	/*
8572 	 * An error occurred during the attach; clean up & return failure.
8573 	 */
8574 
8575 devid_failed:
8576 
8577 setup_pm_failed:
8578 	ddi_remove_minor_node(devi, NULL);
8579 
8580 create_minor_nodes_failed:
8581 	/*
8582 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8583 	 */
8584 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8585 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8586 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8587 
8588 	if (un->un_f_is_fibre == FALSE) {
8589 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8590 	}
8591 
8592 spinup_failed:
8593 
8594 	mutex_enter(SD_MUTEX(un));
8595 
8596 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8597 	if (un->un_direct_priority_timeid != NULL) {
8598 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8599 		un->un_direct_priority_timeid = NULL;
8600 		mutex_exit(SD_MUTEX(un));
8601 		(void) untimeout(temp_id);
8602 		mutex_enter(SD_MUTEX(un));
8603 	}
8604 
8605 	/* Cancel any pending start/stop timeouts */
8606 	if (un->un_startstop_timeid != NULL) {
8607 		timeout_id_t temp_id = un->un_startstop_timeid;
8608 		un->un_startstop_timeid = NULL;
8609 		mutex_exit(SD_MUTEX(un));
8610 		(void) untimeout(temp_id);
8611 		mutex_enter(SD_MUTEX(un));
8612 	}
8613 
8614 	/* Cancel any pending reset-throttle timeouts */
8615 	if (un->un_reset_throttle_timeid != NULL) {
8616 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8617 		un->un_reset_throttle_timeid = NULL;
8618 		mutex_exit(SD_MUTEX(un));
8619 		(void) untimeout(temp_id);
8620 		mutex_enter(SD_MUTEX(un));
8621 	}
8622 
8623 	/* Cancel any pending retry timeouts */
8624 	if (un->un_retry_timeid != NULL) {
8625 		timeout_id_t temp_id = un->un_retry_timeid;
8626 		un->un_retry_timeid = NULL;
8627 		mutex_exit(SD_MUTEX(un));
8628 		(void) untimeout(temp_id);
8629 		mutex_enter(SD_MUTEX(un));
8630 	}
8631 
8632 	/* Cancel any pending delayed cv broadcast timeouts */
8633 	if (un->un_dcvb_timeid != NULL) {
8634 		timeout_id_t temp_id = un->un_dcvb_timeid;
8635 		un->un_dcvb_timeid = NULL;
8636 		mutex_exit(SD_MUTEX(un));
8637 		(void) untimeout(temp_id);
8638 		mutex_enter(SD_MUTEX(un));
8639 	}
8640 
8641 	mutex_exit(SD_MUTEX(un));
8642 
8643 	/* There should not be any in-progress I/O so ASSERT this check */
8644 	ASSERT(un->un_ncmds_in_transport == 0);
8645 	ASSERT(un->un_ncmds_in_driver == 0);
8646 
8647 	/* Do not free the softstate if the callback routine is active */
8648 	sd_sync_with_callback(un);
8649 
8650 	/*
8651 	 * Partition stats apparently are not used with removables. These would
8652 	 * not have been created during attach, so no need to clean them up...
8653 	 */
8654 	if (un->un_stats != NULL) {
8655 		kstat_delete(un->un_stats);
8656 		un->un_stats = NULL;
8657 	}
8658 	if (un->un_errstats != NULL) {
8659 		kstat_delete(un->un_errstats);
8660 		un->un_errstats = NULL;
8661 	}
8662 
8663 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8664 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8665 
8666 	ddi_prop_remove_all(devi);
8667 	sema_destroy(&un->un_semoclose);
8668 	cv_destroy(&un->un_state_cv);
8669 
8670 getrbuf_failed:
8671 
8672 	sd_free_rqs(un);
8673 
8674 alloc_rqs_failed:
8675 
8676 	devp->sd_private = NULL;
8677 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8678 
8679 get_softstate_failed:
8680 	/*
8681 	 * Note: the man pages are unclear as to whether or not doing a
8682 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8683 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8684 	 * ddi_get_soft_state() fails.  The implication seems to be
8685 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8686 	 */
8687 	ddi_soft_state_free(sd_state, instance);
8688 
8689 probe_failed:
8690 	scsi_unprobe(devp);
8691 #ifdef SDDEBUG
8692 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8693 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8694 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8695 		    (void *)un);
8696 	}
8697 #endif
8698 	return (DDI_FAILURE);
8699 }
8700 
8701 
8702 /*
8703  *    Function: sd_unit_detach
8704  *
8705  * Description: Performs DDI_DETACH processing for sddetach().
8706  *
8707  * Return Code: DDI_SUCCESS
8708  *		DDI_FAILURE
8709  *
8710  *     Context: Kernel thread context
8711  */
8712 
8713 static int
8714 sd_unit_detach(dev_info_t *devi)
8715 {
8716 	struct scsi_device	*devp;
8717 	struct sd_lun		*un;
8718 	int			i;
8719 	dev_t			dev;
8720 	int			instance = ddi_get_instance(devi);
8721 
8722 	mutex_enter(&sd_detach_mutex);
8723 
8724 	/*
8725 	 * Fail the detach for any of the following:
8726 	 *  - Unable to get the sd_lun struct for the instance
8727 	 *  - A layered driver has an outstanding open on the instance
8728 	 *  - Another thread is already detaching this instance
8729 	 *  - Another thread is currently performing an open
8730 	 */
8731 	devp = ddi_get_driver_private(devi);
8732 	if ((devp == NULL) ||
8733 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8734 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8735 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8736 		mutex_exit(&sd_detach_mutex);
8737 		return (DDI_FAILURE);
8738 	}
8739 
8740 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8741 
8742 	/*
8743 	 * Mark this instance as currently in a detach, to inhibit any
8744 	 * opens from a layered driver.
8745 	 */
8746 	un->un_detach_count++;
8747 	mutex_exit(&sd_detach_mutex);
8748 
8749 	dev = sd_make_device(SD_DEVINFO(un));
8750 
8751 	_NOTE(COMPETING_THREADS_NOW);
8752 
8753 	mutex_enter(SD_MUTEX(un));
8754 
8755 	/*
8756 	 * Fail the detach if there are any outstanding layered
8757 	 * opens on this device.
8758 	 */
8759 	for (i = 0; i < NDKMAP; i++) {
8760 		if (un->un_ocmap.lyropen[i] != 0) {
8761 			goto err_notclosed;
8762 		}
8763 	}
8764 
8765 	/*
8766 	 * Verify there are NO outstanding commands issued to this device.
8767 	 * ie, un_ncmds_in_transport == 0.
8768 	 * It's possible to have outstanding commands through the physio
8769 	 * code path, even though everything's closed.
8770 	 */
8771 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8772 	    (un->un_direct_priority_timeid != NULL) ||
8773 	    (un->un_state == SD_STATE_RWAIT)) {
8774 		mutex_exit(SD_MUTEX(un));
8775 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8776 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8777 		goto err_stillbusy;
8778 	}
8779 
8780 	/*
8781 	 * If we have the device reserved, release the reservation.
8782 	 */
8783 	if ((un->un_resvd_status & SD_RESERVE) &&
8784 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8785 		mutex_exit(SD_MUTEX(un));
8786 		/*
8787 		 * Note: sd_reserve_release sends a command to the device
8788 		 * via the sd_ioctlcmd() path, and can sleep.
8789 		 */
8790 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8791 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8792 			    "sd_dr_detach: Cannot release reservation \n");
8793 		}
8794 	} else {
8795 		mutex_exit(SD_MUTEX(un));
8796 	}
8797 
8798 	/*
8799 	 * Untimeout any reserve recover, throttle reset, restart unit
8800 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8801 	 * from getting nulled by their callback functions.
8802 	 */
8803 	mutex_enter(SD_MUTEX(un));
8804 	if (un->un_resvd_timeid != NULL) {
8805 		timeout_id_t temp_id = un->un_resvd_timeid;
8806 		un->un_resvd_timeid = NULL;
8807 		mutex_exit(SD_MUTEX(un));
8808 		(void) untimeout(temp_id);
8809 		mutex_enter(SD_MUTEX(un));
8810 	}
8811 
8812 	if (un->un_reset_throttle_timeid != NULL) {
8813 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8814 		un->un_reset_throttle_timeid = NULL;
8815 		mutex_exit(SD_MUTEX(un));
8816 		(void) untimeout(temp_id);
8817 		mutex_enter(SD_MUTEX(un));
8818 	}
8819 
8820 	if (un->un_startstop_timeid != NULL) {
8821 		timeout_id_t temp_id = un->un_startstop_timeid;
8822 		un->un_startstop_timeid = NULL;
8823 		mutex_exit(SD_MUTEX(un));
8824 		(void) untimeout(temp_id);
8825 		mutex_enter(SD_MUTEX(un));
8826 	}
8827 
8828 	if (un->un_dcvb_timeid != NULL) {
8829 		timeout_id_t temp_id = un->un_dcvb_timeid;
8830 		un->un_dcvb_timeid = NULL;
8831 		mutex_exit(SD_MUTEX(un));
8832 		(void) untimeout(temp_id);
8833 	} else {
8834 		mutex_exit(SD_MUTEX(un));
8835 	}
8836 
8837 	/* Remove any pending reservation reclaim requests for this device */
8838 	sd_rmv_resv_reclaim_req(dev);
8839 
8840 	mutex_enter(SD_MUTEX(un));
8841 
8842 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8843 	if (un->un_direct_priority_timeid != NULL) {
8844 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8845 		un->un_direct_priority_timeid = NULL;
8846 		mutex_exit(SD_MUTEX(un));
8847 		(void) untimeout(temp_id);
8848 		mutex_enter(SD_MUTEX(un));
8849 	}
8850 
8851 	/* Cancel any active multi-host disk watch thread requests */
8852 	if (un->un_mhd_token != NULL) {
8853 		mutex_exit(SD_MUTEX(un));
8854 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8855 		if (scsi_watch_request_terminate(un->un_mhd_token,
8856 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8857 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8858 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8859 			/*
8860 			 * Note: We are returning here after having removed
8861 			 * some driver timeouts above. This is consistent with
8862 			 * the legacy implementation but perhaps the watch
8863 			 * terminate call should be made with the wait flag set.
8864 			 */
8865 			goto err_stillbusy;
8866 		}
8867 		mutex_enter(SD_MUTEX(un));
8868 		un->un_mhd_token = NULL;
8869 	}
8870 
8871 	if (un->un_swr_token != NULL) {
8872 		mutex_exit(SD_MUTEX(un));
8873 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8874 		if (scsi_watch_request_terminate(un->un_swr_token,
8875 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8876 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8877 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8878 			/*
8879 			 * Note: We are returning here after having removed
8880 			 * some driver timeouts above. This is consistent with
8881 			 * the legacy implementation but perhaps the watch
8882 			 * terminate call should be made with the wait flag set.
8883 			 */
8884 			goto err_stillbusy;
8885 		}
8886 		mutex_enter(SD_MUTEX(un));
8887 		un->un_swr_token = NULL;
8888 	}
8889 
8890 	mutex_exit(SD_MUTEX(un));
8891 
8892 	/*
8893 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8894 	 * if we have not registered one.
8895 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8896 	 */
8897 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8898 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8899 
8900 	/*
8901 	 * protect the timeout pointers from getting nulled by
8902 	 * their callback functions during the cancellation process.
8903 	 * In such a scenario untimeout can be invoked with a null value.
8904 	 */
8905 	_NOTE(NO_COMPETING_THREADS_NOW);
8906 
8907 	mutex_enter(&un->un_pm_mutex);
8908 	if (un->un_pm_idle_timeid != NULL) {
8909 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8910 		un->un_pm_idle_timeid = NULL;
8911 		mutex_exit(&un->un_pm_mutex);
8912 
8913 		/*
8914 		 * Timeout is active; cancel it.
8915 		 * Note that it'll never be active on a device
8916 		 * that does not support PM therefore we don't
8917 		 * have to check before calling pm_idle_component.
8918 		 */
8919 		(void) untimeout(temp_id);
8920 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8921 		mutex_enter(&un->un_pm_mutex);
8922 	}
8923 
8924 	/*
8925 	 * Check whether there is already a timeout scheduled for power
8926 	 * management. If yes then don't lower the power here, that's.
8927 	 * the timeout handler's job.
8928 	 */
8929 	if (un->un_pm_timeid != NULL) {
8930 		timeout_id_t temp_id = un->un_pm_timeid;
8931 		un->un_pm_timeid = NULL;
8932 		mutex_exit(&un->un_pm_mutex);
8933 		/*
8934 		 * Timeout is active; cancel it.
8935 		 * Note that it'll never be active on a device
8936 		 * that does not support PM therefore we don't
8937 		 * have to check before calling pm_idle_component.
8938 		 */
8939 		(void) untimeout(temp_id);
8940 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8941 
8942 	} else {
8943 		mutex_exit(&un->un_pm_mutex);
8944 		if ((un->un_f_pm_is_enabled == TRUE) &&
8945 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8946 		    DDI_SUCCESS)) {
8947 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8948 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8949 			/*
8950 			 * Fix for bug: 4297749, item # 13
8951 			 * The above test now includes a check to see if PM is
8952 			 * supported by this device before call
8953 			 * pm_lower_power().
8954 			 * Note, the following is not dead code. The call to
8955 			 * pm_lower_power above will generate a call back into
8956 			 * our sdpower routine which might result in a timeout
8957 			 * handler getting activated. Therefore the following
8958 			 * code is valid and necessary.
8959 			 */
8960 			mutex_enter(&un->un_pm_mutex);
8961 			if (un->un_pm_timeid != NULL) {
8962 				timeout_id_t temp_id = un->un_pm_timeid;
8963 				un->un_pm_timeid = NULL;
8964 				mutex_exit(&un->un_pm_mutex);
8965 				(void) untimeout(temp_id);
8966 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8967 			} else {
8968 				mutex_exit(&un->un_pm_mutex);
8969 			}
8970 		}
8971 	}
8972 
8973 	/*
8974 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8975 	 * Relocated here from above to be after the call to
8976 	 * pm_lower_power, which was getting errors.
8977 	 */
8978 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8979 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8980 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8981 
8982 	if (un->un_f_is_fibre == FALSE) {
8983 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8984 	}
8985 
8986 	/*
8987 	 * Remove any event callbacks, fibre only
8988 	 */
8989 	if (un->un_f_is_fibre == TRUE) {
8990 		if ((un->un_insert_event != NULL) &&
8991 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
8992 				DDI_SUCCESS)) {
8993 			/*
8994 			 * Note: We are returning here after having done
8995 			 * substantial cleanup above. This is consistent
8996 			 * with the legacy implementation but this may not
8997 			 * be the right thing to do.
8998 			 */
8999 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9000 				"sd_dr_detach: Cannot cancel insert event\n");
9001 			goto err_remove_event;
9002 		}
9003 		un->un_insert_event = NULL;
9004 
9005 		if ((un->un_remove_event != NULL) &&
9006 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9007 				DDI_SUCCESS)) {
9008 			/*
9009 			 * Note: We are returning here after having done
9010 			 * substantial cleanup above. This is consistent
9011 			 * with the legacy implementation but this may not
9012 			 * be the right thing to do.
9013 			 */
9014 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9015 				"sd_dr_detach: Cannot cancel remove event\n");
9016 			goto err_remove_event;
9017 		}
9018 		un->un_remove_event = NULL;
9019 	}
9020 
9021 	/* Do not free the softstate if the callback routine is active */
9022 	sd_sync_with_callback(un);
9023 
9024 	/*
9025 	 * Hold the detach mutex here, to make sure that no other threads ever
9026 	 * can access a (partially) freed soft state structure.
9027 	 */
9028 	mutex_enter(&sd_detach_mutex);
9029 
9030 	/*
9031 	 * Clean up the soft state struct.
9032 	 * Cleanup is done in reverse order of allocs/inits.
9033 	 * At this point there should be no competing threads anymore.
9034 	 */
9035 
9036 	/* Unregister and free device id. */
9037 	ddi_devid_unregister(devi);
9038 	if (un->un_devid) {
9039 		ddi_devid_free(un->un_devid);
9040 		un->un_devid = NULL;
9041 	}
9042 
9043 	/*
9044 	 * Destroy wmap cache if it exists.
9045 	 */
9046 	if (un->un_wm_cache != NULL) {
9047 		kmem_cache_destroy(un->un_wm_cache);
9048 		un->un_wm_cache = NULL;
9049 	}
9050 
9051 	/* Remove minor nodes */
9052 	ddi_remove_minor_node(devi, NULL);
9053 
9054 	/*
9055 	 * kstat cleanup is done in detach for all device types (4363169).
9056 	 * We do not want to fail detach if the device kstats are not deleted
9057 	 * since there is a confusion about the devo_refcnt for the device.
9058 	 * We just delete the kstats and let detach complete successfully.
9059 	 */
9060 	if (un->un_stats != NULL) {
9061 		kstat_delete(un->un_stats);
9062 		un->un_stats = NULL;
9063 	}
9064 	if (un->un_errstats != NULL) {
9065 		kstat_delete(un->un_errstats);
9066 		un->un_errstats = NULL;
9067 	}
9068 
9069 	/* Remove partition stats */
9070 	if (un->un_f_pkstats_enabled) {
9071 		for (i = 0; i < NSDMAP; i++) {
9072 			if (un->un_pstats[i] != NULL) {
9073 				kstat_delete(un->un_pstats[i]);
9074 				un->un_pstats[i] = NULL;
9075 			}
9076 		}
9077 	}
9078 
9079 	/* Remove xbuf registration */
9080 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9081 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9082 
9083 	/* Remove driver properties */
9084 	ddi_prop_remove_all(devi);
9085 
9086 	mutex_destroy(&un->un_pm_mutex);
9087 	cv_destroy(&un->un_pm_busy_cv);
9088 
9089 	/* Open/close semaphore */
9090 	sema_destroy(&un->un_semoclose);
9091 
9092 	/* Removable media condvar. */
9093 	cv_destroy(&un->un_state_cv);
9094 
9095 	/* Suspend/resume condvar. */
9096 	cv_destroy(&un->un_suspend_cv);
9097 	cv_destroy(&un->un_disk_busy_cv);
9098 
9099 	sd_free_rqs(un);
9100 
9101 	/* Free up soft state */
9102 	devp->sd_private = NULL;
9103 	bzero(un, sizeof (struct sd_lun));
9104 	ddi_soft_state_free(sd_state, instance);
9105 
9106 	mutex_exit(&sd_detach_mutex);
9107 
9108 	/* This frees up the INQUIRY data associated with the device. */
9109 	scsi_unprobe(devp);
9110 
9111 	return (DDI_SUCCESS);
9112 
9113 err_notclosed:
9114 	mutex_exit(SD_MUTEX(un));
9115 
9116 err_stillbusy:
9117 	_NOTE(NO_COMPETING_THREADS_NOW);
9118 
9119 err_remove_event:
9120 	mutex_enter(&sd_detach_mutex);
9121 	un->un_detach_count--;
9122 	mutex_exit(&sd_detach_mutex);
9123 
9124 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9125 	return (DDI_FAILURE);
9126 }
9127 
9128 
9129 /*
9130  * Driver minor node structure and data table
9131  */
9132 struct driver_minor_data {
9133 	char	*name;
9134 	minor_t	minor;
9135 	int	type;
9136 };
9137 
9138 static struct driver_minor_data sd_minor_data[] = {
9139 	{"a", 0, S_IFBLK},
9140 	{"b", 1, S_IFBLK},
9141 	{"c", 2, S_IFBLK},
9142 	{"d", 3, S_IFBLK},
9143 	{"e", 4, S_IFBLK},
9144 	{"f", 5, S_IFBLK},
9145 	{"g", 6, S_IFBLK},
9146 	{"h", 7, S_IFBLK},
9147 #if defined(_SUNOS_VTOC_16)
9148 	{"i", 8, S_IFBLK},
9149 	{"j", 9, S_IFBLK},
9150 	{"k", 10, S_IFBLK},
9151 	{"l", 11, S_IFBLK},
9152 	{"m", 12, S_IFBLK},
9153 	{"n", 13, S_IFBLK},
9154 	{"o", 14, S_IFBLK},
9155 	{"p", 15, S_IFBLK},
9156 #endif			/* defined(_SUNOS_VTOC_16) */
9157 #if defined(_FIRMWARE_NEEDS_FDISK)
9158 	{"q", 16, S_IFBLK},
9159 	{"r", 17, S_IFBLK},
9160 	{"s", 18, S_IFBLK},
9161 	{"t", 19, S_IFBLK},
9162 	{"u", 20, S_IFBLK},
9163 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9164 	{"a,raw", 0, S_IFCHR},
9165 	{"b,raw", 1, S_IFCHR},
9166 	{"c,raw", 2, S_IFCHR},
9167 	{"d,raw", 3, S_IFCHR},
9168 	{"e,raw", 4, S_IFCHR},
9169 	{"f,raw", 5, S_IFCHR},
9170 	{"g,raw", 6, S_IFCHR},
9171 	{"h,raw", 7, S_IFCHR},
9172 #if defined(_SUNOS_VTOC_16)
9173 	{"i,raw", 8, S_IFCHR},
9174 	{"j,raw", 9, S_IFCHR},
9175 	{"k,raw", 10, S_IFCHR},
9176 	{"l,raw", 11, S_IFCHR},
9177 	{"m,raw", 12, S_IFCHR},
9178 	{"n,raw", 13, S_IFCHR},
9179 	{"o,raw", 14, S_IFCHR},
9180 	{"p,raw", 15, S_IFCHR},
9181 #endif			/* defined(_SUNOS_VTOC_16) */
9182 #if defined(_FIRMWARE_NEEDS_FDISK)
9183 	{"q,raw", 16, S_IFCHR},
9184 	{"r,raw", 17, S_IFCHR},
9185 	{"s,raw", 18, S_IFCHR},
9186 	{"t,raw", 19, S_IFCHR},
9187 	{"u,raw", 20, S_IFCHR},
9188 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9189 	{0}
9190 };
9191 
9192 static struct driver_minor_data sd_minor_data_efi[] = {
9193 	{"a", 0, S_IFBLK},
9194 	{"b", 1, S_IFBLK},
9195 	{"c", 2, S_IFBLK},
9196 	{"d", 3, S_IFBLK},
9197 	{"e", 4, S_IFBLK},
9198 	{"f", 5, S_IFBLK},
9199 	{"g", 6, S_IFBLK},
9200 	{"wd", 7, S_IFBLK},
9201 #if defined(_FIRMWARE_NEEDS_FDISK)
9202 	{"q", 16, S_IFBLK},
9203 	{"r", 17, S_IFBLK},
9204 	{"s", 18, S_IFBLK},
9205 	{"t", 19, S_IFBLK},
9206 	{"u", 20, S_IFBLK},
9207 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9208 	{"a,raw", 0, S_IFCHR},
9209 	{"b,raw", 1, S_IFCHR},
9210 	{"c,raw", 2, S_IFCHR},
9211 	{"d,raw", 3, S_IFCHR},
9212 	{"e,raw", 4, S_IFCHR},
9213 	{"f,raw", 5, S_IFCHR},
9214 	{"g,raw", 6, S_IFCHR},
9215 	{"wd,raw", 7, S_IFCHR},
9216 #if defined(_FIRMWARE_NEEDS_FDISK)
9217 	{"q,raw", 16, S_IFCHR},
9218 	{"r,raw", 17, S_IFCHR},
9219 	{"s,raw", 18, S_IFCHR},
9220 	{"t,raw", 19, S_IFCHR},
9221 	{"u,raw", 20, S_IFCHR},
9222 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9223 	{0}
9224 };
9225 
9226 
9227 /*
9228  *    Function: sd_create_minor_nodes
9229  *
9230  * Description: Create the minor device nodes for the instance.
9231  *
9232  *   Arguments: un - driver soft state (unit) structure
9233  *		devi - pointer to device info structure
9234  *
9235  * Return Code: DDI_SUCCESS
9236  *		DDI_FAILURE
9237  *
9238  *     Context: Kernel thread context
9239  */
9240 
9241 static int
9242 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9243 {
9244 	struct driver_minor_data	*dmdp;
9245 	struct scsi_device		*devp;
9246 	int				instance;
9247 	char				name[48];
9248 
9249 	ASSERT(un != NULL);
9250 	devp = ddi_get_driver_private(devi);
9251 	instance = ddi_get_instance(devp->sd_dev);
9252 
9253 	/*
9254 	 * Create all the minor nodes for this target.
9255 	 */
9256 	if (un->un_blockcount > DK_MAX_BLOCKS)
9257 		dmdp = sd_minor_data_efi;
9258 	else
9259 		dmdp = sd_minor_data;
9260 	while (dmdp->name != NULL) {
9261 
9262 		(void) sprintf(name, "%s", dmdp->name);
9263 
9264 		if (ddi_create_minor_node(devi, name, dmdp->type,
9265 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9266 		    un->un_node_type, NULL) == DDI_FAILURE) {
9267 			/*
9268 			 * Clean up any nodes that may have been created, in
9269 			 * case this fails in the middle of the loop.
9270 			 */
9271 			ddi_remove_minor_node(devi, NULL);
9272 			return (DDI_FAILURE);
9273 		}
9274 		dmdp++;
9275 	}
9276 
9277 	return (DDI_SUCCESS);
9278 }
9279 
9280 
9281 /*
9282  *    Function: sd_create_errstats
9283  *
9284  * Description: This routine instantiates the device error stats.
9285  *
9286  *		Note: During attach the stats are instantiated first so they are
9287  *		available for attach-time routines that utilize the driver
9288  *		iopath to send commands to the device. The stats are initialized
9289  *		separately so data obtained during some attach-time routines is
9290  *		available. (4362483)
9291  *
9292  *   Arguments: un - driver soft state (unit) structure
9293  *		instance - driver instance
9294  *
9295  *     Context: Kernel thread context
9296  */
9297 
9298 static void
9299 sd_create_errstats(struct sd_lun *un, int instance)
9300 {
9301 	struct	sd_errstats	*stp;
9302 	char	kstatmodule_err[KSTAT_STRLEN];
9303 	char	kstatname[KSTAT_STRLEN];
9304 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9305 
9306 	ASSERT(un != NULL);
9307 
9308 	if (un->un_errstats != NULL) {
9309 		return;
9310 	}
9311 
9312 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9313 	    "%serr", sd_label);
9314 	(void) snprintf(kstatname, sizeof (kstatname),
9315 	    "%s%d,err", sd_label, instance);
9316 
9317 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9318 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9319 
9320 	if (un->un_errstats == NULL) {
9321 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9322 		    "sd_create_errstats: Failed kstat_create\n");
9323 		return;
9324 	}
9325 
9326 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9327 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9328 	    KSTAT_DATA_UINT32);
9329 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9330 	    KSTAT_DATA_UINT32);
9331 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9332 	    KSTAT_DATA_UINT32);
9333 	kstat_named_init(&stp->sd_vid,		"Vendor",
9334 	    KSTAT_DATA_CHAR);
9335 	kstat_named_init(&stp->sd_pid,		"Product",
9336 	    KSTAT_DATA_CHAR);
9337 	kstat_named_init(&stp->sd_revision,	"Revision",
9338 	    KSTAT_DATA_CHAR);
9339 	kstat_named_init(&stp->sd_serial,	"Serial No",
9340 	    KSTAT_DATA_CHAR);
9341 	kstat_named_init(&stp->sd_capacity,	"Size",
9342 	    KSTAT_DATA_ULONGLONG);
9343 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9344 	    KSTAT_DATA_UINT32);
9345 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9346 	    KSTAT_DATA_UINT32);
9347 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9348 	    KSTAT_DATA_UINT32);
9349 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9350 	    KSTAT_DATA_UINT32);
9351 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9352 	    KSTAT_DATA_UINT32);
9353 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9354 	    KSTAT_DATA_UINT32);
9355 
9356 	un->un_errstats->ks_private = un;
9357 	un->un_errstats->ks_update  = nulldev;
9358 
9359 	kstat_install(un->un_errstats);
9360 }
9361 
9362 
9363 /*
9364  *    Function: sd_set_errstats
9365  *
9366  * Description: This routine sets the value of the vendor id, product id,
9367  *		revision, serial number, and capacity device error stats.
9368  *
9369  *		Note: During attach the stats are instantiated first so they are
9370  *		available for attach-time routines that utilize the driver
9371  *		iopath to send commands to the device. The stats are initialized
9372  *		separately so data obtained during some attach-time routines is
9373  *		available. (4362483)
9374  *
9375  *   Arguments: un - driver soft state (unit) structure
9376  *
9377  *     Context: Kernel thread context
9378  */
9379 
9380 static void
9381 sd_set_errstats(struct sd_lun *un)
9382 {
9383 	struct	sd_errstats	*stp;
9384 
9385 	ASSERT(un != NULL);
9386 	ASSERT(un->un_errstats != NULL);
9387 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9388 	ASSERT(stp != NULL);
9389 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9390 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9391 	(void) strncpy(stp->sd_revision.value.c,
9392 	    un->un_sd->sd_inq->inq_revision, 4);
9393 
9394 	/*
9395 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9396 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9397 	 * (4376302))
9398 	 */
9399 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9400 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9401 		    sizeof (SD_INQUIRY(un)->inq_serial));
9402 	}
9403 
9404 	if (un->un_f_blockcount_is_valid != TRUE) {
9405 		/*
9406 		 * Set capacity error stat to 0 for no media. This ensures
9407 		 * a valid capacity is displayed in response to 'iostat -E'
9408 		 * when no media is present in the device.
9409 		 */
9410 		stp->sd_capacity.value.ui64 = 0;
9411 	} else {
9412 		/*
9413 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9414 		 * capacity.
9415 		 *
9416 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9417 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9418 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9419 		 */
9420 		stp->sd_capacity.value.ui64 = (uint64_t)
9421 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9422 	}
9423 }
9424 
9425 
9426 /*
9427  *    Function: sd_set_pstats
9428  *
9429  * Description: This routine instantiates and initializes the partition
9430  *              stats for each partition with more than zero blocks.
9431  *		(4363169)
9432  *
9433  *   Arguments: un - driver soft state (unit) structure
9434  *
9435  *     Context: Kernel thread context
9436  */
9437 
9438 static void
9439 sd_set_pstats(struct sd_lun *un)
9440 {
9441 	char	kstatname[KSTAT_STRLEN];
9442 	int	instance;
9443 	int	i;
9444 
9445 	ASSERT(un != NULL);
9446 
9447 	instance = ddi_get_instance(SD_DEVINFO(un));
9448 
9449 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9450 	for (i = 0; i < NSDMAP; i++) {
9451 		if ((un->un_pstats[i] == NULL) &&
9452 		    (un->un_map[i].dkl_nblk != 0)) {
9453 			(void) snprintf(kstatname, sizeof (kstatname),
9454 			    "%s%d,%s", sd_label, instance,
9455 			    sd_minor_data[i].name);
9456 			un->un_pstats[i] = kstat_create(sd_label,
9457 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9458 			    1, KSTAT_FLAG_PERSISTENT);
9459 			if (un->un_pstats[i] != NULL) {
9460 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9461 				kstat_install(un->un_pstats[i]);
9462 			}
9463 		}
9464 	}
9465 }
9466 
9467 
9468 #if (defined(__fibre))
9469 /*
9470  *    Function: sd_init_event_callbacks
9471  *
9472  * Description: This routine initializes the insertion and removal event
9473  *		callbacks. (fibre only)
9474  *
9475  *   Arguments: un - driver soft state (unit) structure
9476  *
9477  *     Context: Kernel thread context
9478  */
9479 
9480 static void
9481 sd_init_event_callbacks(struct sd_lun *un)
9482 {
9483 	ASSERT(un != NULL);
9484 
9485 	if ((un->un_insert_event == NULL) &&
9486 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9487 	    &un->un_insert_event) == DDI_SUCCESS)) {
9488 		/*
9489 		 * Add the callback for an insertion event
9490 		 */
9491 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9492 		    un->un_insert_event, sd_event_callback, (void *)un,
9493 		    &(un->un_insert_cb_id));
9494 	}
9495 
9496 	if ((un->un_remove_event == NULL) &&
9497 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9498 	    &un->un_remove_event) == DDI_SUCCESS)) {
9499 		/*
9500 		 * Add the callback for a removal event
9501 		 */
9502 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9503 		    un->un_remove_event, sd_event_callback, (void *)un,
9504 		    &(un->un_remove_cb_id));
9505 	}
9506 }
9507 
9508 
9509 /*
9510  *    Function: sd_event_callback
9511  *
9512  * Description: This routine handles insert/remove events (photon). The
9513  *		state is changed to OFFLINE which can be used to supress
9514  *		error msgs. (fibre only)
9515  *
9516  *   Arguments: un - driver soft state (unit) structure
9517  *
9518  *     Context: Callout thread context
9519  */
9520 /* ARGSUSED */
9521 static void
9522 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9523     void *bus_impldata)
9524 {
9525 	struct sd_lun *un = (struct sd_lun *)arg;
9526 
9527 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9528 	if (event == un->un_insert_event) {
9529 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9530 		mutex_enter(SD_MUTEX(un));
9531 		if (un->un_state == SD_STATE_OFFLINE) {
9532 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9533 				un->un_state = un->un_last_state;
9534 			} else {
9535 				/*
9536 				 * We have gone through SUSPEND/RESUME while
9537 				 * we were offline. Restore the last state
9538 				 */
9539 				un->un_state = un->un_save_state;
9540 			}
9541 		}
9542 		mutex_exit(SD_MUTEX(un));
9543 
9544 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9545 	} else if (event == un->un_remove_event) {
9546 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9547 		mutex_enter(SD_MUTEX(un));
9548 		/*
9549 		 * We need to handle an event callback that occurs during
9550 		 * the suspend operation, since we don't prevent it.
9551 		 */
9552 		if (un->un_state != SD_STATE_OFFLINE) {
9553 			if (un->un_state != SD_STATE_SUSPENDED) {
9554 				New_state(un, SD_STATE_OFFLINE);
9555 			} else {
9556 				un->un_last_state = SD_STATE_OFFLINE;
9557 			}
9558 		}
9559 		mutex_exit(SD_MUTEX(un));
9560 	} else {
9561 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9562 		    "!Unknown event\n");
9563 	}
9564 
9565 }
9566 #endif
9567 
9568 
9569 /*
9570  *    Function: sd_disable_caching()
9571  *
9572  * Description: This routine is the driver entry point for disabling
9573  *		read and write caching by modifying the WCE (write cache
9574  *		enable) and RCD (read cache disable) bits of mode
9575  *		page 8 (MODEPAGE_CACHING).
9576  *
9577  *   Arguments: un - driver soft state (unit) structure
9578  *
9579  * Return Code: EIO
9580  *		code returned by sd_send_scsi_MODE_SENSE and
9581  *		sd_send_scsi_MODE_SELECT
9582  *
9583  *     Context: Kernel Thread
9584  */
9585 
9586 static int
9587 sd_disable_caching(struct sd_lun *un)
9588 {
9589 	struct mode_caching	*mode_caching_page;
9590 	uchar_t			*header;
9591 	size_t			buflen;
9592 	int			hdrlen;
9593 	int			bd_len;
9594 	int			rval = 0;
9595 
9596 	ASSERT(un != NULL);
9597 
9598 	/*
9599 	 * Do a test unit ready, otherwise a mode sense may not work if this
9600 	 * is the first command sent to the device after boot.
9601 	 */
9602 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9603 
9604 	if (un->un_f_cfg_is_atapi == TRUE) {
9605 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9606 	} else {
9607 		hdrlen = MODE_HEADER_LENGTH;
9608 	}
9609 
9610 	/*
9611 	 * Allocate memory for the retrieved mode page and its headers.  Set
9612 	 * a pointer to the page itself.
9613 	 */
9614 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9615 	header = kmem_zalloc(buflen, KM_SLEEP);
9616 
9617 	/* Get the information from the device. */
9618 	if (un->un_f_cfg_is_atapi == TRUE) {
9619 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9620 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9621 	} else {
9622 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9623 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9624 	}
9625 	if (rval != 0) {
9626 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9627 		    "sd_disable_caching: Mode Sense Failed\n");
9628 		kmem_free(header, buflen);
9629 		return (rval);
9630 	}
9631 
9632 	/*
9633 	 * Determine size of Block Descriptors in order to locate
9634 	 * the mode page data. ATAPI devices return 0, SCSI devices
9635 	 * should return MODE_BLK_DESC_LENGTH.
9636 	 */
9637 	if (un->un_f_cfg_is_atapi == TRUE) {
9638 		struct mode_header_grp2	*mhp;
9639 		mhp	= (struct mode_header_grp2 *)header;
9640 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9641 	} else {
9642 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9643 	}
9644 
9645 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9646 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9647 		    "sd_disable_caching: Mode Sense returned invalid "
9648 		    "block descriptor length\n");
9649 		kmem_free(header, buflen);
9650 		return (EIO);
9651 	}
9652 
9653 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9654 
9655 	/* Check the relevant bits on successful mode sense. */
9656 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9657 		/*
9658 		 * Read or write caching is enabled.  Disable both of them.
9659 		 */
9660 		mode_caching_page->wce = 0;
9661 		mode_caching_page->rcd = 1;
9662 
9663 		/* Clear reserved bits before mode select. */
9664 		mode_caching_page->mode_page.ps = 0;
9665 
9666 		/*
9667 		 * Clear out mode header for mode select.
9668 		 * The rest of the retrieved page will be reused.
9669 		 */
9670 		bzero(header, hdrlen);
9671 
9672 		/* Change the cache page to disable all caching. */
9673 		if (un->un_f_cfg_is_atapi == TRUE) {
9674 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9675 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9676 		} else {
9677 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9678 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9679 		}
9680 	}
9681 
9682 	kmem_free(header, buflen);
9683 	return (rval);
9684 }
9685 
9686 
9687 /*
9688  *    Function: sd_get_write_cache_enabled()
9689  *
9690  * Description: This routine is the driver entry point for determining if
9691  *		write caching is enabled.  It examines the WCE (write cache
9692  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9693  *
9694  *   Arguments: un - driver soft state (unit) structure
9695  *   		is_enabled - pointer to int where write cache enabled state
9696  *   			is returned (non-zero -> write cache enabled)
9697  *
9698  *
9699  * Return Code: EIO
9700  *		code returned by sd_send_scsi_MODE_SENSE
9701  *
9702  *     Context: Kernel Thread
9703  *
9704  * NOTE: If ioctl is added to disable write cache, this sequence should
9705  * be followed so that no locking is required for accesses to
9706  * un->un_f_write_cache_enabled:
9707  * 	do mode select to clear wce
9708  * 	do synchronize cache to flush cache
9709  * 	set un->un_f_write_cache_enabled = FALSE
9710  *
9711  * Conversely, an ioctl to enable the write cache should be done
9712  * in this order:
9713  * 	set un->un_f_write_cache_enabled = TRUE
9714  * 	do mode select to set wce
9715  */
9716 
9717 static int
9718 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
9719 {
9720 	struct mode_caching	*mode_caching_page;
9721 	uchar_t			*header;
9722 	size_t			buflen;
9723 	int			hdrlen;
9724 	int			bd_len;
9725 	int			rval = 0;
9726 
9727 	ASSERT(un != NULL);
9728 	ASSERT(is_enabled != NULL);
9729 
9730 	/* in case of error, flag as enabled */
9731 	*is_enabled = TRUE;
9732 
9733 	/*
9734 	 * Do a test unit ready, otherwise a mode sense may not work if this
9735 	 * is the first command sent to the device after boot.
9736 	 */
9737 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9738 
9739 	if (un->un_f_cfg_is_atapi == TRUE) {
9740 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9741 	} else {
9742 		hdrlen = MODE_HEADER_LENGTH;
9743 	}
9744 
9745 	/*
9746 	 * Allocate memory for the retrieved mode page and its headers.  Set
9747 	 * a pointer to the page itself.
9748 	 */
9749 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9750 	header = kmem_zalloc(buflen, KM_SLEEP);
9751 
9752 	/* Get the information from the device. */
9753 	if (un->un_f_cfg_is_atapi == TRUE) {
9754 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9755 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9756 	} else {
9757 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9758 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9759 	}
9760 	if (rval != 0) {
9761 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9762 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9763 		kmem_free(header, buflen);
9764 		return (rval);
9765 	}
9766 
9767 	/*
9768 	 * Determine size of Block Descriptors in order to locate
9769 	 * the mode page data. ATAPI devices return 0, SCSI devices
9770 	 * should return MODE_BLK_DESC_LENGTH.
9771 	 */
9772 	if (un->un_f_cfg_is_atapi == TRUE) {
9773 		struct mode_header_grp2	*mhp;
9774 		mhp	= (struct mode_header_grp2 *)header;
9775 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9776 	} else {
9777 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9778 	}
9779 
9780 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9781 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9782 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9783 		    "block descriptor length\n");
9784 		kmem_free(header, buflen);
9785 		return (EIO);
9786 	}
9787 
9788 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9789 	*is_enabled = mode_caching_page->wce;
9790 
9791 	kmem_free(header, buflen);
9792 	return (0);
9793 }
9794 
9795 
9796 /*
9797  *    Function: sd_make_device
9798  *
9799  * Description: Utility routine to return the Solaris device number from
9800  *		the data in the device's dev_info structure.
9801  *
9802  * Return Code: The Solaris device number
9803  *
9804  *     Context: Any
9805  */
9806 
9807 static dev_t
9808 sd_make_device(dev_info_t *devi)
9809 {
9810 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9811 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9812 }
9813 
9814 
9815 /*
9816  *    Function: sd_pm_entry
9817  *
9818  * Description: Called at the start of a new command to manage power
9819  *		and busy status of a device. This includes determining whether
9820  *		the current power state of the device is sufficient for
9821  *		performing the command or whether it must be changed.
9822  *		The PM framework is notified appropriately.
9823  *		Only with a return status of DDI_SUCCESS will the
9824  *		component be busy to the framework.
9825  *
9826  *		All callers of sd_pm_entry must check the return status
9827  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9828  *		of DDI_FAILURE indicates the device failed to power up.
9829  *		In this case un_pm_count has been adjusted so the result
9830  *		on exit is still powered down, ie. count is less than 0.
9831  *		Calling sd_pm_exit with this count value hits an ASSERT.
9832  *
9833  * Return Code: DDI_SUCCESS or DDI_FAILURE
9834  *
9835  *     Context: Kernel thread context.
9836  */
9837 
9838 static int
9839 sd_pm_entry(struct sd_lun *un)
9840 {
9841 	int return_status = DDI_SUCCESS;
9842 
9843 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9844 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9845 
9846 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9847 
9848 	if (un->un_f_pm_is_enabled == FALSE) {
9849 		SD_TRACE(SD_LOG_IO_PM, un,
9850 		    "sd_pm_entry: exiting, PM not enabled\n");
9851 		return (return_status);
9852 	}
9853 
9854 	/*
9855 	 * Just increment a counter if PM is enabled. On the transition from
9856 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9857 	 * the count with each IO and mark the device as idle when the count
9858 	 * hits 0.
9859 	 *
9860 	 * If the count is less than 0 the device is powered down. If a powered
9861 	 * down device is successfully powered up then the count must be
9862 	 * incremented to reflect the power up. Note that it'll get incremented
9863 	 * a second time to become busy.
9864 	 *
9865 	 * Because the following has the potential to change the device state
9866 	 * and must release the un_pm_mutex to do so, only one thread can be
9867 	 * allowed through at a time.
9868 	 */
9869 
9870 	mutex_enter(&un->un_pm_mutex);
9871 	while (un->un_pm_busy == TRUE) {
9872 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9873 	}
9874 	un->un_pm_busy = TRUE;
9875 
9876 	if (un->un_pm_count < 1) {
9877 
9878 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9879 
9880 		/*
9881 		 * Indicate we are now busy so the framework won't attempt to
9882 		 * power down the device. This call will only fail if either
9883 		 * we passed a bad component number or the device has no
9884 		 * components. Neither of these should ever happen.
9885 		 */
9886 		mutex_exit(&un->un_pm_mutex);
9887 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9888 		ASSERT(return_status == DDI_SUCCESS);
9889 
9890 		mutex_enter(&un->un_pm_mutex);
9891 
9892 		if (un->un_pm_count < 0) {
9893 			mutex_exit(&un->un_pm_mutex);
9894 
9895 			SD_TRACE(SD_LOG_IO_PM, un,
9896 			    "sd_pm_entry: power up component\n");
9897 
9898 			/*
9899 			 * pm_raise_power will cause sdpower to be called
9900 			 * which brings the device power level to the
9901 			 * desired state, ON in this case. If successful,
9902 			 * un_pm_count and un_power_level will be updated
9903 			 * appropriately.
9904 			 */
9905 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9906 			    SD_SPINDLE_ON);
9907 
9908 			mutex_enter(&un->un_pm_mutex);
9909 
9910 			if (return_status != DDI_SUCCESS) {
9911 				/*
9912 				 * Power up failed.
9913 				 * Idle the device and adjust the count
9914 				 * so the result on exit is that we're
9915 				 * still powered down, ie. count is less than 0.
9916 				 */
9917 				SD_TRACE(SD_LOG_IO_PM, un,
9918 				    "sd_pm_entry: power up failed,"
9919 				    " idle the component\n");
9920 
9921 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9922 				un->un_pm_count--;
9923 			} else {
9924 				/*
9925 				 * Device is powered up, verify the
9926 				 * count is non-negative.
9927 				 * This is debug only.
9928 				 */
9929 				ASSERT(un->un_pm_count == 0);
9930 			}
9931 		}
9932 
9933 		if (return_status == DDI_SUCCESS) {
9934 			/*
9935 			 * For performance, now that the device has been tagged
9936 			 * as busy, and it's known to be powered up, update the
9937 			 * chain types to use jump tables that do not include
9938 			 * pm. This significantly lowers the overhead and
9939 			 * therefore improves performance.
9940 			 */
9941 
9942 			mutex_exit(&un->un_pm_mutex);
9943 			mutex_enter(SD_MUTEX(un));
9944 			SD_TRACE(SD_LOG_IO_PM, un,
9945 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9946 			    un->un_uscsi_chain_type);
9947 
9948 			if (un->un_f_non_devbsize_supported) {
9949 				un->un_buf_chain_type =
9950 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9951 			} else {
9952 				un->un_buf_chain_type =
9953 				    SD_CHAIN_INFO_DISK_NO_PM;
9954 			}
9955 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9956 
9957 			SD_TRACE(SD_LOG_IO_PM, un,
9958 			    "             changed  uscsi_chain_type to   %d\n",
9959 			    un->un_uscsi_chain_type);
9960 			mutex_exit(SD_MUTEX(un));
9961 			mutex_enter(&un->un_pm_mutex);
9962 
9963 			if (un->un_pm_idle_timeid == NULL) {
9964 				/* 300 ms. */
9965 				un->un_pm_idle_timeid =
9966 				    timeout(sd_pm_idletimeout_handler, un,
9967 				    (drv_usectohz((clock_t)300000)));
9968 				/*
9969 				 * Include an extra call to busy which keeps the
9970 				 * device busy with-respect-to the PM layer
9971 				 * until the timer fires, at which time it'll
9972 				 * get the extra idle call.
9973 				 */
9974 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9975 			}
9976 		}
9977 	}
9978 	un->un_pm_busy = FALSE;
9979 	/* Next... */
9980 	cv_signal(&un->un_pm_busy_cv);
9981 
9982 	un->un_pm_count++;
9983 
9984 	SD_TRACE(SD_LOG_IO_PM, un,
9985 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9986 
9987 	mutex_exit(&un->un_pm_mutex);
9988 
9989 	return (return_status);
9990 }
9991 
9992 
9993 /*
9994  *    Function: sd_pm_exit
9995  *
9996  * Description: Called at the completion of a command to manage busy
9997  *		status for the device. If the device becomes idle the
9998  *		PM framework is notified.
9999  *
10000  *     Context: Kernel thread context
10001  */
10002 
10003 static void
10004 sd_pm_exit(struct sd_lun *un)
10005 {
10006 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10007 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10008 
10009 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10010 
10011 	/*
10012 	 * After attach the following flag is only read, so don't
10013 	 * take the penalty of acquiring a mutex for it.
10014 	 */
10015 	if (un->un_f_pm_is_enabled == TRUE) {
10016 
10017 		mutex_enter(&un->un_pm_mutex);
10018 		un->un_pm_count--;
10019 
10020 		SD_TRACE(SD_LOG_IO_PM, un,
10021 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10022 
10023 		ASSERT(un->un_pm_count >= 0);
10024 		if (un->un_pm_count == 0) {
10025 			mutex_exit(&un->un_pm_mutex);
10026 
10027 			SD_TRACE(SD_LOG_IO_PM, un,
10028 			    "sd_pm_exit: idle component\n");
10029 
10030 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10031 
10032 		} else {
10033 			mutex_exit(&un->un_pm_mutex);
10034 		}
10035 	}
10036 
10037 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10038 }
10039 
10040 
10041 /*
10042  *    Function: sdopen
10043  *
10044  * Description: Driver's open(9e) entry point function.
10045  *
10046  *   Arguments: dev_i   - pointer to device number
10047  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10048  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10049  *		cred_p  - user credential pointer
10050  *
10051  * Return Code: EINVAL
10052  *		ENXIO
10053  *		EIO
10054  *		EROFS
10055  *		EBUSY
10056  *
10057  *     Context: Kernel thread context
10058  */
10059 /* ARGSUSED */
10060 static int
10061 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10062 {
10063 	struct sd_lun	*un;
10064 	int		nodelay;
10065 	int		part;
10066 	uint64_t	partmask;
10067 	int		instance;
10068 	dev_t		dev;
10069 	int		rval = EIO;
10070 
10071 	/* Validate the open type */
10072 	if (otyp >= OTYPCNT) {
10073 		return (EINVAL);
10074 	}
10075 
10076 	dev = *dev_p;
10077 	instance = SDUNIT(dev);
10078 	mutex_enter(&sd_detach_mutex);
10079 
10080 	/*
10081 	 * Fail the open if there is no softstate for the instance, or
10082 	 * if another thread somewhere is trying to detach the instance.
10083 	 */
10084 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10085 	    (un->un_detach_count != 0)) {
10086 		mutex_exit(&sd_detach_mutex);
10087 		/*
10088 		 * The probe cache only needs to be cleared when open (9e) fails
10089 		 * with ENXIO (4238046).
10090 		 */
10091 		/*
10092 		 * un-conditionally clearing probe cache is ok with
10093 		 * separate sd/ssd binaries
10094 		 * x86 platform can be an issue with both parallel
10095 		 * and fibre in 1 binary
10096 		 */
10097 		sd_scsi_clear_probe_cache();
10098 		return (ENXIO);
10099 	}
10100 
10101 	/*
10102 	 * The un_layer_count is to prevent another thread in specfs from
10103 	 * trying to detach the instance, which can happen when we are
10104 	 * called from a higher-layer driver instead of thru specfs.
10105 	 * This will not be needed when DDI provides a layered driver
10106 	 * interface that allows specfs to know that an instance is in
10107 	 * use by a layered driver & should not be detached.
10108 	 *
10109 	 * Note: the semantics for layered driver opens are exactly one
10110 	 * close for every open.
10111 	 */
10112 	if (otyp == OTYP_LYR) {
10113 		un->un_layer_count++;
10114 	}
10115 
10116 	/*
10117 	 * Keep a count of the current # of opens in progress. This is because
10118 	 * some layered drivers try to call us as a regular open. This can
10119 	 * cause problems that we cannot prevent, however by keeping this count
10120 	 * we can at least keep our open and detach routines from racing against
10121 	 * each other under such conditions.
10122 	 */
10123 	un->un_opens_in_progress++;
10124 	mutex_exit(&sd_detach_mutex);
10125 
10126 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10127 	part	 = SDPART(dev);
10128 	partmask = 1 << part;
10129 
10130 	/*
10131 	 * We use a semaphore here in order to serialize
10132 	 * open and close requests on the device.
10133 	 */
10134 	sema_p(&un->un_semoclose);
10135 
10136 	mutex_enter(SD_MUTEX(un));
10137 
10138 	/*
10139 	 * All device accesses go thru sdstrategy() where we check
10140 	 * on suspend status but there could be a scsi_poll command,
10141 	 * which bypasses sdstrategy(), so we need to check pm
10142 	 * status.
10143 	 */
10144 
10145 	if (!nodelay) {
10146 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10147 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10148 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10149 		}
10150 
10151 		mutex_exit(SD_MUTEX(un));
10152 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10153 			rval = EIO;
10154 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10155 			    "sdopen: sd_pm_entry failed\n");
10156 			goto open_failed_with_pm;
10157 		}
10158 		mutex_enter(SD_MUTEX(un));
10159 	}
10160 
10161 	/* check for previous exclusive open */
10162 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10163 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10164 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10165 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10166 
10167 	if (un->un_exclopen & (partmask)) {
10168 		goto excl_open_fail;
10169 	}
10170 
10171 	if (flag & FEXCL) {
10172 		int i;
10173 		if (un->un_ocmap.lyropen[part]) {
10174 			goto excl_open_fail;
10175 		}
10176 		for (i = 0; i < (OTYPCNT - 1); i++) {
10177 			if (un->un_ocmap.regopen[i] & (partmask)) {
10178 				goto excl_open_fail;
10179 			}
10180 		}
10181 	}
10182 
10183 	/*
10184 	 * Check the write permission if this is a removable media device,
10185 	 * NDELAY has not been set, and writable permission is requested.
10186 	 *
10187 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10188 	 * attempt will fail with EIO as part of the I/O processing. This is a
10189 	 * more permissive implementation that allows the open to succeed and
10190 	 * WRITE attempts to fail when appropriate.
10191 	 */
10192 	if (un->un_f_chk_wp_open) {
10193 		if ((flag & FWRITE) && (!nodelay)) {
10194 			mutex_exit(SD_MUTEX(un));
10195 			/*
10196 			 * Defer the check for write permission on writable
10197 			 * DVD drive till sdstrategy and will not fail open even
10198 			 * if FWRITE is set as the device can be writable
10199 			 * depending upon the media and the media can change
10200 			 * after the call to open().
10201 			 */
10202 			if (un->un_f_dvdram_writable_device == FALSE) {
10203 				if (ISCD(un) || sr_check_wp(dev)) {
10204 				rval = EROFS;
10205 				mutex_enter(SD_MUTEX(un));
10206 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10207 				    "write to cd or write protected media\n");
10208 				goto open_fail;
10209 				}
10210 			}
10211 			mutex_enter(SD_MUTEX(un));
10212 		}
10213 	}
10214 
10215 	/*
10216 	 * If opening in NDELAY/NONBLOCK mode, just return.
10217 	 * Check if disk is ready and has a valid geometry later.
10218 	 */
10219 	if (!nodelay) {
10220 		mutex_exit(SD_MUTEX(un));
10221 		rval = sd_ready_and_valid(un);
10222 		mutex_enter(SD_MUTEX(un));
10223 		/*
10224 		 * Fail if device is not ready or if the number of disk
10225 		 * blocks is zero or negative for non CD devices.
10226 		 */
10227 		if ((rval != SD_READY_VALID) ||
10228 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10229 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10230 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10231 			    "device not ready or invalid disk block value\n");
10232 			goto open_fail;
10233 		}
10234 #if defined(__i386) || defined(__amd64)
10235 	} else {
10236 		uchar_t *cp;
10237 		/*
10238 		 * x86 requires special nodelay handling, so that p0 is
10239 		 * always defined and accessible.
10240 		 * Invalidate geometry only if device is not already open.
10241 		 */
10242 		cp = &un->un_ocmap.chkd[0];
10243 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10244 			if (*cp != (uchar_t)0) {
10245 			    break;
10246 			}
10247 			cp++;
10248 		}
10249 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10250 			un->un_f_geometry_is_valid = FALSE;
10251 		}
10252 
10253 #endif
10254 	}
10255 
10256 	if (otyp == OTYP_LYR) {
10257 		un->un_ocmap.lyropen[part]++;
10258 	} else {
10259 		un->un_ocmap.regopen[otyp] |= partmask;
10260 	}
10261 
10262 	/* Set up open and exclusive open flags */
10263 	if (flag & FEXCL) {
10264 		un->un_exclopen |= (partmask);
10265 	}
10266 
10267 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10268 	    "open of part %d type %d\n", part, otyp);
10269 
10270 	mutex_exit(SD_MUTEX(un));
10271 	if (!nodelay) {
10272 		sd_pm_exit(un);
10273 	}
10274 
10275 	sema_v(&un->un_semoclose);
10276 
10277 	mutex_enter(&sd_detach_mutex);
10278 	un->un_opens_in_progress--;
10279 	mutex_exit(&sd_detach_mutex);
10280 
10281 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10282 	return (DDI_SUCCESS);
10283 
10284 excl_open_fail:
10285 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10286 	rval = EBUSY;
10287 
10288 open_fail:
10289 	mutex_exit(SD_MUTEX(un));
10290 
10291 	/*
10292 	 * On a failed open we must exit the pm management.
10293 	 */
10294 	if (!nodelay) {
10295 		sd_pm_exit(un);
10296 	}
10297 open_failed_with_pm:
10298 	sema_v(&un->un_semoclose);
10299 
10300 	mutex_enter(&sd_detach_mutex);
10301 	un->un_opens_in_progress--;
10302 	if (otyp == OTYP_LYR) {
10303 		un->un_layer_count--;
10304 	}
10305 	mutex_exit(&sd_detach_mutex);
10306 
10307 	return (rval);
10308 }
10309 
10310 
10311 /*
10312  *    Function: sdclose
10313  *
10314  * Description: Driver's close(9e) entry point function.
10315  *
10316  *   Arguments: dev    - device number
10317  *		flag   - file status flag, informational only
10318  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10319  *		cred_p - user credential pointer
10320  *
10321  * Return Code: ENXIO
10322  *
10323  *     Context: Kernel thread context
10324  */
10325 /* ARGSUSED */
10326 static int
10327 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10328 {
10329 	struct sd_lun	*un;
10330 	uchar_t		*cp;
10331 	int		part;
10332 	int		nodelay;
10333 	int		rval = 0;
10334 
10335 	/* Validate the open type */
10336 	if (otyp >= OTYPCNT) {
10337 		return (ENXIO);
10338 	}
10339 
10340 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10341 		return (ENXIO);
10342 	}
10343 
10344 	part = SDPART(dev);
10345 	nodelay = flag & (FNDELAY | FNONBLOCK);
10346 
10347 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10348 	    "sdclose: close of part %d type %d\n", part, otyp);
10349 
10350 	/*
10351 	 * We use a semaphore here in order to serialize
10352 	 * open and close requests on the device.
10353 	 */
10354 	sema_p(&un->un_semoclose);
10355 
10356 	mutex_enter(SD_MUTEX(un));
10357 
10358 	/* Don't proceed if power is being changed. */
10359 	while (un->un_state == SD_STATE_PM_CHANGING) {
10360 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10361 	}
10362 
10363 	if (un->un_exclopen & (1 << part)) {
10364 		un->un_exclopen &= ~(1 << part);
10365 	}
10366 
10367 	/* Update the open partition map */
10368 	if (otyp == OTYP_LYR) {
10369 		un->un_ocmap.lyropen[part] -= 1;
10370 	} else {
10371 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10372 	}
10373 
10374 	cp = &un->un_ocmap.chkd[0];
10375 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10376 		if (*cp != NULL) {
10377 			break;
10378 		}
10379 		cp++;
10380 	}
10381 
10382 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10383 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10384 
10385 		/*
10386 		 * We avoid persistance upon the last close, and set
10387 		 * the throttle back to the maximum.
10388 		 */
10389 		un->un_throttle = un->un_saved_throttle;
10390 
10391 		if (un->un_state == SD_STATE_OFFLINE) {
10392 			if (un->un_f_is_fibre == FALSE) {
10393 				scsi_log(SD_DEVINFO(un), sd_label,
10394 					CE_WARN, "offline\n");
10395 			}
10396 			un->un_f_geometry_is_valid = FALSE;
10397 
10398 		} else {
10399 			/*
10400 			 * Flush any outstanding writes in NVRAM cache.
10401 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10402 			 * cmd, it may not work for non-Pluto devices.
10403 			 * SYNCHRONIZE CACHE is not required for removables,
10404 			 * except DVD-RAM drives.
10405 			 *
10406 			 * Also note: because SYNCHRONIZE CACHE is currently
10407 			 * the only command issued here that requires the
10408 			 * drive be powered up, only do the power up before
10409 			 * sending the Sync Cache command. If additional
10410 			 * commands are added which require a powered up
10411 			 * drive, the following sequence may have to change.
10412 			 *
10413 			 * And finally, note that parallel SCSI on SPARC
10414 			 * only issues a Sync Cache to DVD-RAM, a newly
10415 			 * supported device.
10416 			 */
10417 #if defined(__i386) || defined(__amd64)
10418 			if (un->un_f_sync_cache_supported ||
10419 			    un->un_f_dvdram_writable_device == TRUE) {
10420 #else
10421 			if (un->un_f_dvdram_writable_device == TRUE) {
10422 #endif
10423 				mutex_exit(SD_MUTEX(un));
10424 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10425 					rval =
10426 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10427 					    NULL);
10428 					/* ignore error if not supported */
10429 					if (rval == ENOTSUP) {
10430 						rval = 0;
10431 					} else if (rval != 0) {
10432 						rval = EIO;
10433 					}
10434 					sd_pm_exit(un);
10435 				} else {
10436 					rval = EIO;
10437 				}
10438 				mutex_enter(SD_MUTEX(un));
10439 			}
10440 
10441 			/*
10442 			 * For devices which supports DOOR_LOCK, send an ALLOW
10443 			 * MEDIA REMOVAL command, but don't get upset if it
10444 			 * fails. We need to raise the power of the drive before
10445 			 * we can call sd_send_scsi_DOORLOCK()
10446 			 */
10447 			if (un->un_f_doorlock_supported) {
10448 				mutex_exit(SD_MUTEX(un));
10449 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10450 					rval = sd_send_scsi_DOORLOCK(un,
10451 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10452 
10453 					sd_pm_exit(un);
10454 					if (ISCD(un) && (rval != 0) &&
10455 					    (nodelay != 0)) {
10456 						rval = ENXIO;
10457 					}
10458 				} else {
10459 					rval = EIO;
10460 				}
10461 				mutex_enter(SD_MUTEX(un));
10462 			}
10463 
10464 			/*
10465 			 * If a device has removable media, invalidate all
10466 			 * parameters related to media, such as geometry,
10467 			 * blocksize, and blockcount.
10468 			 */
10469 			if (un->un_f_has_removable_media) {
10470 				sr_ejected(un);
10471 			}
10472 
10473 		}
10474 	}
10475 
10476 	/*
10477 	 * Destroy the cache (if it exists) which was
10478 	 * allocated for the write maps since this is
10479 	 * the last close for this media.
10480 	 */
10481 	if (un->un_wm_cache) {
10482 		/*
10483 		 * Check if there are pending commands.
10484 		 * and if there are give a warning and
10485 		 * do not destroy the cache.
10486 		 */
10487 		if (un->un_ncmds_in_driver > 0) {
10488 			scsi_log(SD_DEVINFO(un),
10489 			    sd_label, CE_WARN,
10490 			    "Unable to clean up memory "
10491 			    "because of pending I/O\n");
10492 		} else {
10493 			kmem_cache_destroy(
10494 			    un->un_wm_cache);
10495 			un->un_wm_cache = NULL;
10496 		}
10497 	}
10498 
10499 	mutex_exit(SD_MUTEX(un));
10500 	sema_v(&un->un_semoclose);
10501 
10502 	if (otyp == OTYP_LYR) {
10503 		mutex_enter(&sd_detach_mutex);
10504 		/*
10505 		 * The detach routine may run when the layer count
10506 		 * drops to zero.
10507 		 */
10508 		un->un_layer_count--;
10509 		mutex_exit(&sd_detach_mutex);
10510 	}
10511 
10512 	return (rval);
10513 }
10514 
10515 
10516 /*
10517  *    Function: sd_ready_and_valid
10518  *
10519  * Description: Test if device is ready and has a valid geometry.
10520  *
10521  *   Arguments: dev - device number
10522  *		un  - driver soft state (unit) structure
10523  *
10524  * Return Code: SD_READY_VALID		ready and valid label
10525  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10526  *		SD_NOT_READY_VALID	not ready, no label
10527  *
10528  *     Context: Never called at interrupt context.
10529  */
10530 
10531 static int
10532 sd_ready_and_valid(struct sd_lun *un)
10533 {
10534 	struct sd_errstats	*stp;
10535 	uint64_t		capacity;
10536 	uint_t			lbasize;
10537 	int			rval = SD_READY_VALID;
10538 	char			name_str[48];
10539 
10540 	ASSERT(un != NULL);
10541 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10542 
10543 	mutex_enter(SD_MUTEX(un));
10544 	/*
10545 	 * If a device has removable media, we must check if media is
10546 	 * ready when checking if this device is ready and valid.
10547 	 */
10548 	if (un->un_f_has_removable_media) {
10549 		mutex_exit(SD_MUTEX(un));
10550 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10551 			rval = SD_NOT_READY_VALID;
10552 			mutex_enter(SD_MUTEX(un));
10553 			goto done;
10554 		}
10555 
10556 		mutex_enter(SD_MUTEX(un));
10557 		if ((un->un_f_geometry_is_valid == FALSE) ||
10558 		    (un->un_f_blockcount_is_valid == FALSE) ||
10559 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10560 
10561 			/* capacity has to be read every open. */
10562 			mutex_exit(SD_MUTEX(un));
10563 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10564 			    &lbasize, SD_PATH_DIRECT) != 0) {
10565 				mutex_enter(SD_MUTEX(un));
10566 				un->un_f_geometry_is_valid = FALSE;
10567 				rval = SD_NOT_READY_VALID;
10568 				goto done;
10569 			} else {
10570 				mutex_enter(SD_MUTEX(un));
10571 				sd_update_block_info(un, lbasize, capacity);
10572 			}
10573 		}
10574 
10575 		/*
10576 		 * Check if the media in the device is writable or not.
10577 		 */
10578 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10579 			sd_check_for_writable_cd(un);
10580 		}
10581 
10582 	} else {
10583 		/*
10584 		 * Do a test unit ready to clear any unit attention from non-cd
10585 		 * devices.
10586 		 */
10587 		mutex_exit(SD_MUTEX(un));
10588 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10589 		mutex_enter(SD_MUTEX(un));
10590 	}
10591 
10592 
10593 	/*
10594 	 * If this is a non 512 block device, allocate space for
10595 	 * the wmap cache. This is being done here since every time
10596 	 * a media is changed this routine will be called and the
10597 	 * block size is a function of media rather than device.
10598 	 */
10599 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10600 		if (!(un->un_wm_cache)) {
10601 			(void) snprintf(name_str, sizeof (name_str),
10602 			    "%s%d_cache",
10603 			    ddi_driver_name(SD_DEVINFO(un)),
10604 			    ddi_get_instance(SD_DEVINFO(un)));
10605 			un->un_wm_cache = kmem_cache_create(
10606 			    name_str, sizeof (struct sd_w_map),
10607 			    8, sd_wm_cache_constructor,
10608 			    sd_wm_cache_destructor, NULL,
10609 			    (void *)un, NULL, 0);
10610 			if (!(un->un_wm_cache)) {
10611 					rval = ENOMEM;
10612 					goto done;
10613 			}
10614 		}
10615 	}
10616 
10617 	if (un->un_state == SD_STATE_NORMAL) {
10618 		/*
10619 		 * If the target is not yet ready here (defined by a TUR
10620 		 * failure), invalidate the geometry and print an 'offline'
10621 		 * message. This is a legacy message, as the state of the
10622 		 * target is not actually changed to SD_STATE_OFFLINE.
10623 		 *
10624 		 * If the TUR fails for EACCES (Reservation Conflict), it
10625 		 * means there actually is nothing wrong with the target that
10626 		 * would require invalidating the geometry, so continue in
10627 		 * that case as if the TUR was successful.
10628 		 */
10629 		int err;
10630 
10631 		mutex_exit(SD_MUTEX(un));
10632 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10633 		mutex_enter(SD_MUTEX(un));
10634 
10635 		if ((err != 0) && (err != EACCES)) {
10636 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10637 			    "offline\n");
10638 			un->un_f_geometry_is_valid = FALSE;
10639 			rval = SD_NOT_READY_VALID;
10640 			goto done;
10641 		}
10642 	}
10643 
10644 	if (un->un_f_format_in_progress == FALSE) {
10645 		/*
10646 		 * Note: sd_validate_geometry may return TRUE, but that does
10647 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10648 		 */
10649 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10650 		if (rval == ENOTSUP) {
10651 			if (un->un_f_geometry_is_valid == TRUE)
10652 				rval = 0;
10653 			else {
10654 				rval = SD_READY_NOT_VALID;
10655 				goto done;
10656 			}
10657 		}
10658 		if (rval != 0) {
10659 			/*
10660 			 * We don't check the validity of geometry for
10661 			 * CDROMs. Also we assume we have a good label
10662 			 * even if sd_validate_geometry returned ENOMEM.
10663 			 */
10664 			if (!ISCD(un) && rval != ENOMEM) {
10665 				rval = SD_NOT_READY_VALID;
10666 				goto done;
10667 			}
10668 		}
10669 	}
10670 
10671 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10672 	/*
10673 	 * check to see if this disk is write protected, if it is and we have
10674 	 * not set read-only, then fail
10675 	 */
10676 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10677 		New_state(un, SD_STATE_CLOSED);
10678 		goto done;
10679 	}
10680 #endif
10681 
10682 	/*
10683 	 * If this device supports DOOR_LOCK command, try and send
10684 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10685 	 * if it fails. For a CD, however, it is an error
10686 	 */
10687 	if (un->un_f_doorlock_supported) {
10688 		mutex_exit(SD_MUTEX(un));
10689 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10690 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10691 			rval = SD_NOT_READY_VALID;
10692 			mutex_enter(SD_MUTEX(un));
10693 			goto done;
10694 		}
10695 		mutex_enter(SD_MUTEX(un));
10696 	}
10697 
10698 	/* The state has changed, inform the media watch routines */
10699 	un->un_mediastate = DKIO_INSERTED;
10700 	cv_broadcast(&un->un_state_cv);
10701 	rval = SD_READY_VALID;
10702 
10703 done:
10704 
10705 	/*
10706 	 * Initialize the capacity kstat value, if no media previously
10707 	 * (capacity kstat is 0) and a media has been inserted
10708 	 * (un_blockcount > 0).
10709 	 */
10710 	if (un->un_errstats != NULL) {
10711 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10712 		if ((stp->sd_capacity.value.ui64 == 0) &&
10713 		    (un->un_f_blockcount_is_valid == TRUE)) {
10714 			stp->sd_capacity.value.ui64 =
10715 			    (uint64_t)((uint64_t)un->un_blockcount *
10716 			    un->un_sys_blocksize);
10717 		}
10718 	}
10719 
10720 	mutex_exit(SD_MUTEX(un));
10721 	return (rval);
10722 }
10723 
10724 
10725 /*
10726  *    Function: sdmin
10727  *
10728  * Description: Routine to limit the size of a data transfer. Used in
10729  *		conjunction with physio(9F).
10730  *
10731  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10732  *
10733  *     Context: Kernel thread context.
10734  */
10735 
10736 static void
10737 sdmin(struct buf *bp)
10738 {
10739 	struct sd_lun	*un;
10740 	int		instance;
10741 
10742 	instance = SDUNIT(bp->b_edev);
10743 
10744 	un = ddi_get_soft_state(sd_state, instance);
10745 	ASSERT(un != NULL);
10746 
10747 	if (bp->b_bcount > un->un_max_xfer_size) {
10748 		bp->b_bcount = un->un_max_xfer_size;
10749 	}
10750 }
10751 
10752 
10753 /*
10754  *    Function: sdread
10755  *
10756  * Description: Driver's read(9e) entry point function.
10757  *
10758  *   Arguments: dev   - device number
10759  *		uio   - structure pointer describing where data is to be stored
10760  *			in user's space
10761  *		cred_p  - user credential pointer
10762  *
10763  * Return Code: ENXIO
10764  *		EIO
10765  *		EINVAL
10766  *		value returned by physio
10767  *
10768  *     Context: Kernel thread context.
10769  */
10770 /* ARGSUSED */
10771 static int
10772 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10773 {
10774 	struct sd_lun	*un = NULL;
10775 	int		secmask;
10776 	int		err;
10777 
10778 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10779 		return (ENXIO);
10780 	}
10781 
10782 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10783 
10784 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10785 		mutex_enter(SD_MUTEX(un));
10786 		/*
10787 		 * Because the call to sd_ready_and_valid will issue I/O we
10788 		 * must wait here if either the device is suspended or
10789 		 * if it's power level is changing.
10790 		 */
10791 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10792 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10793 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10794 		}
10795 		un->un_ncmds_in_driver++;
10796 		mutex_exit(SD_MUTEX(un));
10797 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10798 			mutex_enter(SD_MUTEX(un));
10799 			un->un_ncmds_in_driver--;
10800 			ASSERT(un->un_ncmds_in_driver >= 0);
10801 			mutex_exit(SD_MUTEX(un));
10802 			return (EIO);
10803 		}
10804 		mutex_enter(SD_MUTEX(un));
10805 		un->un_ncmds_in_driver--;
10806 		ASSERT(un->un_ncmds_in_driver >= 0);
10807 		mutex_exit(SD_MUTEX(un));
10808 	}
10809 
10810 	/*
10811 	 * Read requests are restricted to multiples of the system block size.
10812 	 */
10813 	secmask = un->un_sys_blocksize - 1;
10814 
10815 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10816 		SD_ERROR(SD_LOG_READ_WRITE, un,
10817 		    "sdread: file offset not modulo %d\n",
10818 		    un->un_sys_blocksize);
10819 		err = EINVAL;
10820 	} else if (uio->uio_iov->iov_len & (secmask)) {
10821 		SD_ERROR(SD_LOG_READ_WRITE, un,
10822 		    "sdread: transfer length not modulo %d\n",
10823 		    un->un_sys_blocksize);
10824 		err = EINVAL;
10825 	} else {
10826 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10827 	}
10828 	return (err);
10829 }
10830 
10831 
10832 /*
10833  *    Function: sdwrite
10834  *
10835  * Description: Driver's write(9e) entry point function.
10836  *
10837  *   Arguments: dev   - device number
10838  *		uio   - structure pointer describing where data is stored in
10839  *			user's space
10840  *		cred_p  - user credential pointer
10841  *
10842  * Return Code: ENXIO
10843  *		EIO
10844  *		EINVAL
10845  *		value returned by physio
10846  *
10847  *     Context: Kernel thread context.
10848  */
10849 /* ARGSUSED */
10850 static int
10851 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10852 {
10853 	struct sd_lun	*un = NULL;
10854 	int		secmask;
10855 	int		err;
10856 
10857 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10858 		return (ENXIO);
10859 	}
10860 
10861 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10862 
10863 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10864 		mutex_enter(SD_MUTEX(un));
10865 		/*
10866 		 * Because the call to sd_ready_and_valid will issue I/O we
10867 		 * must wait here if either the device is suspended or
10868 		 * if it's power level is changing.
10869 		 */
10870 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10871 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10872 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10873 		}
10874 		un->un_ncmds_in_driver++;
10875 		mutex_exit(SD_MUTEX(un));
10876 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10877 			mutex_enter(SD_MUTEX(un));
10878 			un->un_ncmds_in_driver--;
10879 			ASSERT(un->un_ncmds_in_driver >= 0);
10880 			mutex_exit(SD_MUTEX(un));
10881 			return (EIO);
10882 		}
10883 		mutex_enter(SD_MUTEX(un));
10884 		un->un_ncmds_in_driver--;
10885 		ASSERT(un->un_ncmds_in_driver >= 0);
10886 		mutex_exit(SD_MUTEX(un));
10887 	}
10888 
10889 	/*
10890 	 * Write requests are restricted to multiples of the system block size.
10891 	 */
10892 	secmask = un->un_sys_blocksize - 1;
10893 
10894 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10895 		SD_ERROR(SD_LOG_READ_WRITE, un,
10896 		    "sdwrite: file offset not modulo %d\n",
10897 		    un->un_sys_blocksize);
10898 		err = EINVAL;
10899 	} else if (uio->uio_iov->iov_len & (secmask)) {
10900 		SD_ERROR(SD_LOG_READ_WRITE, un,
10901 		    "sdwrite: transfer length not modulo %d\n",
10902 		    un->un_sys_blocksize);
10903 		err = EINVAL;
10904 	} else {
10905 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10906 	}
10907 	return (err);
10908 }
10909 
10910 
10911 /*
10912  *    Function: sdaread
10913  *
10914  * Description: Driver's aread(9e) entry point function.
10915  *
10916  *   Arguments: dev   - device number
10917  *		aio   - structure pointer describing where data is to be stored
10918  *		cred_p  - user credential pointer
10919  *
10920  * Return Code: ENXIO
10921  *		EIO
10922  *		EINVAL
10923  *		value returned by aphysio
10924  *
10925  *     Context: Kernel thread context.
10926  */
10927 /* ARGSUSED */
10928 static int
10929 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10930 {
10931 	struct sd_lun	*un = NULL;
10932 	struct uio	*uio = aio->aio_uio;
10933 	int		secmask;
10934 	int		err;
10935 
10936 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10937 		return (ENXIO);
10938 	}
10939 
10940 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10941 
10942 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10943 		mutex_enter(SD_MUTEX(un));
10944 		/*
10945 		 * Because the call to sd_ready_and_valid will issue I/O we
10946 		 * must wait here if either the device is suspended or
10947 		 * if it's power level is changing.
10948 		 */
10949 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10950 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10951 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10952 		}
10953 		un->un_ncmds_in_driver++;
10954 		mutex_exit(SD_MUTEX(un));
10955 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10956 			mutex_enter(SD_MUTEX(un));
10957 			un->un_ncmds_in_driver--;
10958 			ASSERT(un->un_ncmds_in_driver >= 0);
10959 			mutex_exit(SD_MUTEX(un));
10960 			return (EIO);
10961 		}
10962 		mutex_enter(SD_MUTEX(un));
10963 		un->un_ncmds_in_driver--;
10964 		ASSERT(un->un_ncmds_in_driver >= 0);
10965 		mutex_exit(SD_MUTEX(un));
10966 	}
10967 
10968 	/*
10969 	 * Read requests are restricted to multiples of the system block size.
10970 	 */
10971 	secmask = un->un_sys_blocksize - 1;
10972 
10973 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10974 		SD_ERROR(SD_LOG_READ_WRITE, un,
10975 		    "sdaread: file offset not modulo %d\n",
10976 		    un->un_sys_blocksize);
10977 		err = EINVAL;
10978 	} else if (uio->uio_iov->iov_len & (secmask)) {
10979 		SD_ERROR(SD_LOG_READ_WRITE, un,
10980 		    "sdaread: transfer length not modulo %d\n",
10981 		    un->un_sys_blocksize);
10982 		err = EINVAL;
10983 	} else {
10984 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10985 	}
10986 	return (err);
10987 }
10988 
10989 
10990 /*
10991  *    Function: sdawrite
10992  *
10993  * Description: Driver's awrite(9e) entry point function.
10994  *
10995  *   Arguments: dev   - device number
10996  *		aio   - structure pointer describing where data is stored
10997  *		cred_p  - user credential pointer
10998  *
10999  * Return Code: ENXIO
11000  *		EIO
11001  *		EINVAL
11002  *		value returned by aphysio
11003  *
11004  *     Context: Kernel thread context.
11005  */
11006 /* ARGSUSED */
11007 static int
11008 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11009 {
11010 	struct sd_lun	*un = NULL;
11011 	struct uio	*uio = aio->aio_uio;
11012 	int		secmask;
11013 	int		err;
11014 
11015 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11016 		return (ENXIO);
11017 	}
11018 
11019 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11020 
11021 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11022 		mutex_enter(SD_MUTEX(un));
11023 		/*
11024 		 * Because the call to sd_ready_and_valid will issue I/O we
11025 		 * must wait here if either the device is suspended or
11026 		 * if it's power level is changing.
11027 		 */
11028 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11029 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11030 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11031 		}
11032 		un->un_ncmds_in_driver++;
11033 		mutex_exit(SD_MUTEX(un));
11034 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11035 			mutex_enter(SD_MUTEX(un));
11036 			un->un_ncmds_in_driver--;
11037 			ASSERT(un->un_ncmds_in_driver >= 0);
11038 			mutex_exit(SD_MUTEX(un));
11039 			return (EIO);
11040 		}
11041 		mutex_enter(SD_MUTEX(un));
11042 		un->un_ncmds_in_driver--;
11043 		ASSERT(un->un_ncmds_in_driver >= 0);
11044 		mutex_exit(SD_MUTEX(un));
11045 	}
11046 
11047 	/*
11048 	 * Write requests are restricted to multiples of the system block size.
11049 	 */
11050 	secmask = un->un_sys_blocksize - 1;
11051 
11052 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11053 		SD_ERROR(SD_LOG_READ_WRITE, un,
11054 		    "sdawrite: file offset not modulo %d\n",
11055 		    un->un_sys_blocksize);
11056 		err = EINVAL;
11057 	} else if (uio->uio_iov->iov_len & (secmask)) {
11058 		SD_ERROR(SD_LOG_READ_WRITE, un,
11059 		    "sdawrite: transfer length not modulo %d\n",
11060 		    un->un_sys_blocksize);
11061 		err = EINVAL;
11062 	} else {
11063 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11064 	}
11065 	return (err);
11066 }
11067 
11068 
11069 
11070 
11071 
11072 /*
11073  * Driver IO processing follows the following sequence:
11074  *
11075  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11076  *         |                |                     ^
11077  *         v                v                     |
11078  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11079  *         |                |                     |                   |
11080  *         v                |                     |                   |
11081  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11082  *         |                |                     ^                   ^
11083  *         v                v                     |                   |
11084  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11085  *         |                |                     |                   |
11086  *     +---+                |                     +------------+      +-------+
11087  *     |                    |                                  |              |
11088  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11089  *     |                    v                                  |              |
11090  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11091  *     |                    |                                  ^              |
11092  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11093  *     |                    v                                  |              |
11094  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11095  *     |                    |                                  ^              |
11096  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11097  *     |                    v                                  |              |
11098  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11099  *     |                    |                                  ^              |
11100  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11101  *     |                    v                                  |              |
11102  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11103  *     |                    |                                  ^              |
11104  *     |                    |                                  |              |
11105  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11106  *                          |                           ^
11107  *                          v                           |
11108  *                   sd_core_iostart()                  |
11109  *                          |                           |
11110  *                          |                           +------>(*destroypkt)()
11111  *                          +-> sd_start_cmds() <-+     |           |
11112  *                          |                     |     |           v
11113  *                          |                     |     |  scsi_destroy_pkt(9F)
11114  *                          |                     |     |
11115  *                          +->(*initpkt)()       +- sdintr()
11116  *                          |  |                        |  |
11117  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11118  *                          |  +-> scsi_setup_cdb(9F)   |
11119  *                          |                           |
11120  *                          +--> scsi_transport(9F)     |
11121  *                                     |                |
11122  *                                     +----> SCSA ---->+
11123  *
11124  *
11125  * This code is based upon the following presumtions:
11126  *
11127  *   - iostart and iodone functions operate on buf(9S) structures. These
11128  *     functions perform the necessary operations on the buf(9S) and pass
11129  *     them along to the next function in the chain by using the macros
11130  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11131  *     (for iodone side functions).
11132  *
11133  *   - The iostart side functions may sleep. The iodone side functions
11134  *     are called under interrupt context and may NOT sleep. Therefore
11135  *     iodone side functions also may not call iostart side functions.
11136  *     (NOTE: iostart side functions should NOT sleep for memory, as
11137  *     this could result in deadlock.)
11138  *
11139  *   - An iostart side function may call its corresponding iodone side
11140  *     function directly (if necessary).
11141  *
11142  *   - In the event of an error, an iostart side function can return a buf(9S)
11143  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11144  *     b_error in the usual way of course).
11145  *
11146  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11147  *     requests to the iostart side functions.  The iostart side functions in
11148  *     this case would be called under the context of a taskq thread, so it's
11149  *     OK for them to block/sleep/spin in this case.
11150  *
11151  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11152  *     pass them along to the next function in the chain.  The corresponding
11153  *     iodone side functions must coalesce the "shadow" bufs and return
11154  *     the "original" buf to the next higher layer.
11155  *
11156  *   - The b_private field of the buf(9S) struct holds a pointer to
11157  *     an sd_xbuf struct, which contains information needed to
11158  *     construct the scsi_pkt for the command.
11159  *
11160  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11161  *     layer must acquire & release the SD_MUTEX(un) as needed.
11162  */
11163 
11164 
11165 /*
11166  * Create taskq for all targets in the system. This is created at
11167  * _init(9E) and destroyed at _fini(9E).
11168  *
11169  * Note: here we set the minalloc to a reasonably high number to ensure that
11170  * we will have an adequate supply of task entries available at interrupt time.
11171  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11172  * sd_create_taskq().  Since we do not want to sleep for allocations at
11173  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11174  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11175  * requests any one instant in time.
11176  */
11177 #define	SD_TASKQ_NUMTHREADS	8
11178 #define	SD_TASKQ_MINALLOC	256
11179 #define	SD_TASKQ_MAXALLOC	256
11180 
11181 static taskq_t	*sd_tq = NULL;
11182 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11183 
11184 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11185 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11186 
11187 /*
11188  * The following task queue is being created for the write part of
11189  * read-modify-write of non-512 block size devices.
11190  * Limit the number of threads to 1 for now. This number has been choosen
11191  * considering the fact that it applies only to dvd ram drives/MO drives
11192  * currently. Performance for which is not main criteria at this stage.
11193  * Note: It needs to be explored if we can use a single taskq in future
11194  */
11195 #define	SD_WMR_TASKQ_NUMTHREADS	1
11196 static taskq_t	*sd_wmr_tq = NULL;
11197 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11198 
11199 /*
11200  *    Function: sd_taskq_create
11201  *
11202  * Description: Create taskq thread(s) and preallocate task entries
11203  *
11204  * Return Code: Returns a pointer to the allocated taskq_t.
11205  *
11206  *     Context: Can sleep. Requires blockable context.
11207  *
11208  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11209  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11210  *		- taskq_create() will block for memory, also it will panic
11211  *		  if it cannot create the requested number of threads.
11212  *		- Currently taskq_create() creates threads that cannot be
11213  *		  swapped.
11214  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11215  *		  supply of taskq entries at interrupt time (ie, so that we
11216  *		  do not have to sleep for memory)
11217  */
11218 
11219 static void
11220 sd_taskq_create(void)
11221 {
11222 	char	taskq_name[TASKQ_NAMELEN];
11223 
11224 	ASSERT(sd_tq == NULL);
11225 	ASSERT(sd_wmr_tq == NULL);
11226 
11227 	(void) snprintf(taskq_name, sizeof (taskq_name),
11228 	    "%s_drv_taskq", sd_label);
11229 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11230 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11231 	    TASKQ_PREPOPULATE));
11232 
11233 	(void) snprintf(taskq_name, sizeof (taskq_name),
11234 	    "%s_rmw_taskq", sd_label);
11235 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11236 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11237 	    TASKQ_PREPOPULATE));
11238 }
11239 
11240 
11241 /*
11242  *    Function: sd_taskq_delete
11243  *
11244  * Description: Complementary cleanup routine for sd_taskq_create().
11245  *
11246  *     Context: Kernel thread context.
11247  */
11248 
11249 static void
11250 sd_taskq_delete(void)
11251 {
11252 	ASSERT(sd_tq != NULL);
11253 	ASSERT(sd_wmr_tq != NULL);
11254 	taskq_destroy(sd_tq);
11255 	taskq_destroy(sd_wmr_tq);
11256 	sd_tq = NULL;
11257 	sd_wmr_tq = NULL;
11258 }
11259 
11260 
11261 /*
11262  *    Function: sdstrategy
11263  *
11264  * Description: Driver's strategy (9E) entry point function.
11265  *
11266  *   Arguments: bp - pointer to buf(9S)
11267  *
11268  * Return Code: Always returns zero
11269  *
11270  *     Context: Kernel thread context.
11271  */
11272 
11273 static int
11274 sdstrategy(struct buf *bp)
11275 {
11276 	struct sd_lun *un;
11277 
11278 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11279 	if (un == NULL) {
11280 		bioerror(bp, EIO);
11281 		bp->b_resid = bp->b_bcount;
11282 		biodone(bp);
11283 		return (0);
11284 	}
11285 	/* As was done in the past, fail new cmds. if state is dumping. */
11286 	if (un->un_state == SD_STATE_DUMPING) {
11287 		bioerror(bp, ENXIO);
11288 		bp->b_resid = bp->b_bcount;
11289 		biodone(bp);
11290 		return (0);
11291 	}
11292 
11293 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11294 
11295 	/*
11296 	 * Commands may sneak in while we released the mutex in
11297 	 * DDI_SUSPEND, we should block new commands. However, old
11298 	 * commands that are still in the driver at this point should
11299 	 * still be allowed to drain.
11300 	 */
11301 	mutex_enter(SD_MUTEX(un));
11302 	/*
11303 	 * Must wait here if either the device is suspended or
11304 	 * if it's power level is changing.
11305 	 */
11306 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11307 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11308 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11309 	}
11310 
11311 	un->un_ncmds_in_driver++;
11312 
11313 	/*
11314 	 * atapi: Since we are running the CD for now in PIO mode we need to
11315 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11316 	 * the HBA's init_pkt routine.
11317 	 */
11318 	if (un->un_f_cfg_is_atapi == TRUE) {
11319 		mutex_exit(SD_MUTEX(un));
11320 		bp_mapin(bp);
11321 		mutex_enter(SD_MUTEX(un));
11322 	}
11323 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11324 	    un->un_ncmds_in_driver);
11325 
11326 	mutex_exit(SD_MUTEX(un));
11327 
11328 	/*
11329 	 * This will (eventually) allocate the sd_xbuf area and
11330 	 * call sd_xbuf_strategy().  We just want to return the
11331 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11332 	 * imized tail call which saves us a stack frame.
11333 	 */
11334 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11335 }
11336 
11337 
11338 /*
11339  *    Function: sd_xbuf_strategy
11340  *
11341  * Description: Function for initiating IO operations via the
11342  *		ddi_xbuf_qstrategy() mechanism.
11343  *
11344  *     Context: Kernel thread context.
11345  */
11346 
11347 static void
11348 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11349 {
11350 	struct sd_lun *un = arg;
11351 
11352 	ASSERT(bp != NULL);
11353 	ASSERT(xp != NULL);
11354 	ASSERT(un != NULL);
11355 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11356 
11357 	/*
11358 	 * Initialize the fields in the xbuf and save a pointer to the
11359 	 * xbuf in bp->b_private.
11360 	 */
11361 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11362 
11363 	/* Send the buf down the iostart chain */
11364 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11365 }
11366 
11367 
11368 /*
11369  *    Function: sd_xbuf_init
11370  *
11371  * Description: Prepare the given sd_xbuf struct for use.
11372  *
11373  *   Arguments: un - ptr to softstate
11374  *		bp - ptr to associated buf(9S)
11375  *		xp - ptr to associated sd_xbuf
11376  *		chain_type - IO chain type to use:
11377  *			SD_CHAIN_NULL
11378  *			SD_CHAIN_BUFIO
11379  *			SD_CHAIN_USCSI
11380  *			SD_CHAIN_DIRECT
11381  *			SD_CHAIN_DIRECT_PRIORITY
11382  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11383  *			initialization; may be NULL if none.
11384  *
11385  *     Context: Kernel thread context
11386  */
11387 
11388 static void
11389 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11390 	uchar_t chain_type, void *pktinfop)
11391 {
11392 	int index;
11393 
11394 	ASSERT(un != NULL);
11395 	ASSERT(bp != NULL);
11396 	ASSERT(xp != NULL);
11397 
11398 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11399 	    bp, chain_type);
11400 
11401 	xp->xb_un	= un;
11402 	xp->xb_pktp	= NULL;
11403 	xp->xb_pktinfo	= pktinfop;
11404 	xp->xb_private	= bp->b_private;
11405 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11406 
11407 	/*
11408 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11409 	 * upon the specified chain type to use.
11410 	 */
11411 	switch (chain_type) {
11412 	case SD_CHAIN_NULL:
11413 		/*
11414 		 * Fall thru to just use the values for the buf type, even
11415 		 * tho for the NULL chain these values will never be used.
11416 		 */
11417 		/* FALLTHRU */
11418 	case SD_CHAIN_BUFIO:
11419 		index = un->un_buf_chain_type;
11420 		break;
11421 	case SD_CHAIN_USCSI:
11422 		index = un->un_uscsi_chain_type;
11423 		break;
11424 	case SD_CHAIN_DIRECT:
11425 		index = un->un_direct_chain_type;
11426 		break;
11427 	case SD_CHAIN_DIRECT_PRIORITY:
11428 		index = un->un_priority_chain_type;
11429 		break;
11430 	default:
11431 		/* We're really broken if we ever get here... */
11432 		panic("sd_xbuf_init: illegal chain type!");
11433 		/*NOTREACHED*/
11434 	}
11435 
11436 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11437 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11438 
11439 	/*
11440 	 * It might be a bit easier to simply bzero the entire xbuf above,
11441 	 * but it turns out that since we init a fair number of members anyway,
11442 	 * we save a fair number cycles by doing explicit assignment of zero.
11443 	 */
11444 	xp->xb_pkt_flags	= 0;
11445 	xp->xb_dma_resid	= 0;
11446 	xp->xb_retry_count	= 0;
11447 	xp->xb_victim_retry_count = 0;
11448 	xp->xb_ua_retry_count	= 0;
11449 	xp->xb_sense_bp		= NULL;
11450 	xp->xb_sense_status	= 0;
11451 	xp->xb_sense_state	= 0;
11452 	xp->xb_sense_resid	= 0;
11453 
11454 	bp->b_private	= xp;
11455 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11456 	bp->b_resid	= 0;
11457 	bp->av_forw	= NULL;
11458 	bp->av_back	= NULL;
11459 	bioerror(bp, 0);
11460 
11461 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11462 }
11463 
11464 
11465 /*
11466  *    Function: sd_uscsi_strategy
11467  *
11468  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11469  *
11470  *   Arguments: bp - buf struct ptr
11471  *
11472  * Return Code: Always returns 0
11473  *
11474  *     Context: Kernel thread context
11475  */
11476 
11477 static int
11478 sd_uscsi_strategy(struct buf *bp)
11479 {
11480 	struct sd_lun		*un;
11481 	struct sd_uscsi_info	*uip;
11482 	struct sd_xbuf		*xp;
11483 	uchar_t			chain_type;
11484 
11485 	ASSERT(bp != NULL);
11486 
11487 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11488 	if (un == NULL) {
11489 		bioerror(bp, EIO);
11490 		bp->b_resid = bp->b_bcount;
11491 		biodone(bp);
11492 		return (0);
11493 	}
11494 
11495 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11496 
11497 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11498 
11499 	mutex_enter(SD_MUTEX(un));
11500 	/*
11501 	 * atapi: Since we are running the CD for now in PIO mode we need to
11502 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11503 	 * the HBA's init_pkt routine.
11504 	 */
11505 	if (un->un_f_cfg_is_atapi == TRUE) {
11506 		mutex_exit(SD_MUTEX(un));
11507 		bp_mapin(bp);
11508 		mutex_enter(SD_MUTEX(un));
11509 	}
11510 	un->un_ncmds_in_driver++;
11511 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11512 	    un->un_ncmds_in_driver);
11513 	mutex_exit(SD_MUTEX(un));
11514 
11515 	/*
11516 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11517 	 */
11518 	ASSERT(bp->b_private != NULL);
11519 	uip = (struct sd_uscsi_info *)bp->b_private;
11520 
11521 	switch (uip->ui_flags) {
11522 	case SD_PATH_DIRECT:
11523 		chain_type = SD_CHAIN_DIRECT;
11524 		break;
11525 	case SD_PATH_DIRECT_PRIORITY:
11526 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11527 		break;
11528 	default:
11529 		chain_type = SD_CHAIN_USCSI;
11530 		break;
11531 	}
11532 
11533 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11534 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11535 
11536 	/* Use the index obtained within xbuf_init */
11537 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11538 
11539 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11540 
11541 	return (0);
11542 }
11543 
11544 
11545 /*
11546  * These routines perform raw i/o operations.
11547  */
11548 /*ARGSUSED*/
11549 static void
11550 sduscsimin(struct buf *bp)
11551 {
11552 	/*
11553 	 * do not break up because the CDB count would then
11554 	 * be incorrect and data underruns would result (incomplete
11555 	 * read/writes which would be retried and then failed, see
11556 	 * sdintr().
11557 	 */
11558 }
11559 
11560 
11561 
11562 /*
11563  *    Function: sd_send_scsi_cmd
11564  *
11565  * Description: Runs a USCSI command for user (when called thru sdioctl),
11566  *		or for the driver
11567  *
11568  *   Arguments: dev - the dev_t for the device
11569  *		incmd - ptr to a valid uscsi_cmd struct
11570  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11571  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11572  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11573  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11574  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11575  *			to use the USCSI "direct" chain and bypass the normal
11576  *			command waitq.
11577  *
11578  * Return Code: 0 -  successful completion of the given command
11579  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11580  *		ENXIO  - soft state not found for specified dev
11581  *		EINVAL
11582  *		EFAULT - copyin/copyout error
11583  *		return code of biowait(9F) or physio(9F):
11584  *			EIO - IO error, caller may check incmd->uscsi_status
11585  *			ENXIO
11586  *			EACCES - reservation conflict
11587  *
11588  *     Context: Waits for command to complete. Can sleep.
11589  */
11590 
11591 static int
11592 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11593 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11594 	int path_flag)
11595 {
11596 	struct sd_uscsi_info	*uip;
11597 	struct uscsi_cmd	*uscmd;
11598 	struct sd_lun	*un;
11599 	struct buf	*bp;
11600 	int	rval;
11601 	int	flags;
11602 
11603 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11604 	if (un == NULL) {
11605 		return (ENXIO);
11606 	}
11607 
11608 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11609 
11610 #ifdef SDDEBUG
11611 	switch (dataspace) {
11612 	case UIO_USERSPACE:
11613 		SD_TRACE(SD_LOG_IO, un,
11614 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11615 		break;
11616 	case UIO_SYSSPACE:
11617 		SD_TRACE(SD_LOG_IO, un,
11618 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11619 		break;
11620 	default:
11621 		SD_TRACE(SD_LOG_IO, un,
11622 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11623 		break;
11624 	}
11625 #endif
11626 
11627 	/*
11628 	 * Perform resets directly; no need to generate a command to do it.
11629 	 */
11630 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11631 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11632 		    RESET_ALL : RESET_TARGET;
11633 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11634 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11635 			/* Reset attempt was unsuccessful */
11636 			SD_TRACE(SD_LOG_IO, un,
11637 			    "sd_send_scsi_cmd: reset: failure\n");
11638 			return (EIO);
11639 		}
11640 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11641 		return (0);
11642 	}
11643 
11644 	/* Perfunctory sanity check... */
11645 	if (incmd->uscsi_cdblen <= 0) {
11646 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11647 		    "invalid uscsi_cdblen, returning EINVAL\n");
11648 		return (EINVAL);
11649 	}
11650 
11651 	/*
11652 	 * In order to not worry about where the uscsi structure came from
11653 	 * (or where the cdb it points to came from) we're going to make
11654 	 * kmem_alloc'd copies of them here. This will also allow reference
11655 	 * to the data they contain long after this process has gone to
11656 	 * sleep and its kernel stack has been unmapped, etc.
11657 	 *
11658 	 * First get some memory for the uscsi_cmd struct and copy the
11659 	 * contents of the given uscsi_cmd struct into it.
11660 	 */
11661 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11662 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11663 
11664 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11665 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11666 
11667 	/*
11668 	 * Now get some space for the CDB, and copy the given CDB into
11669 	 * it. Use ddi_copyin() in case the data is in user space.
11670 	 */
11671 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11672 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11673 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11674 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11675 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11676 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11677 		return (EFAULT);
11678 	}
11679 
11680 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11681 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11682 
11683 	bp = getrbuf(KM_SLEEP);
11684 
11685 	/*
11686 	 * Allocate an sd_uscsi_info struct and fill it with the info
11687 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11688 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11689 	 * since we allocate the buf here in this function, we do not
11690 	 * need to preserve the prior contents of b_private.
11691 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11692 	 */
11693 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11694 	uip->ui_flags = path_flag;
11695 	uip->ui_cmdp  = uscmd;
11696 	bp->b_private = uip;
11697 
11698 	/*
11699 	 * Initialize Request Sense buffering, if requested.
11700 	 */
11701 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11702 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11703 		/*
11704 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11705 		 * buffer, but we replace this with a kernel buffer that
11706 		 * we allocate to use with the sense data. The sense data
11707 		 * (if present) gets copied into this new buffer before the
11708 		 * command is completed.  Then we copy the sense data from
11709 		 * our allocated buf into the caller's buffer below. Note
11710 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11711 		 * below to perform the copy back to the caller's buf.
11712 		 */
11713 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11714 		if (rqbufspace == UIO_USERSPACE) {
11715 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11716 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11717 		} else {
11718 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11719 			uscmd->uscsi_rqlen   = rlen;
11720 			uscmd->uscsi_rqresid = rlen;
11721 		}
11722 	} else {
11723 		uscmd->uscsi_rqbuf = NULL;
11724 		uscmd->uscsi_rqlen   = 0;
11725 		uscmd->uscsi_rqresid = 0;
11726 	}
11727 
11728 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11729 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11730 
11731 	if (un->un_f_is_fibre == FALSE) {
11732 		/*
11733 		 * Force asynchronous mode, if necessary.  Doing this here
11734 		 * has the unfortunate effect of running other queued
11735 		 * commands async also, but since the main purpose of this
11736 		 * capability is downloading new drive firmware, we can
11737 		 * probably live with it.
11738 		 */
11739 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11740 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11741 				== 1) {
11742 				if (scsi_ifsetcap(SD_ADDRESS(un),
11743 					    "synchronous", 0, 1) == 1) {
11744 					SD_TRACE(SD_LOG_IO, un,
11745 					"sd_send_scsi_cmd: forced async ok\n");
11746 				} else {
11747 					SD_TRACE(SD_LOG_IO, un,
11748 					"sd_send_scsi_cmd:\
11749 					forced async failed\n");
11750 					rval = EINVAL;
11751 					goto done;
11752 				}
11753 			}
11754 		}
11755 
11756 		/*
11757 		 * Re-enable synchronous mode, if requested
11758 		 */
11759 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11760 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11761 				== 0) {
11762 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11763 						"synchronous", 1, 1);
11764 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11765 					"re-enabled sync %s\n",
11766 					(i == 1) ? "ok" : "failed");
11767 			}
11768 		}
11769 	}
11770 
11771 	/*
11772 	 * Commands sent with priority are intended for error recovery
11773 	 * situations, and do not have retries performed.
11774 	 */
11775 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11776 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11777 	}
11778 
11779 	/*
11780 	 * If we're going to do actual I/O, let physio do all the right things
11781 	 */
11782 	if (uscmd->uscsi_buflen != 0) {
11783 		struct iovec	aiov;
11784 		struct uio	auio;
11785 		struct uio	*uio = &auio;
11786 
11787 		bzero(&auio, sizeof (struct uio));
11788 		bzero(&aiov, sizeof (struct iovec));
11789 		aiov.iov_base = uscmd->uscsi_bufaddr;
11790 		aiov.iov_len  = uscmd->uscsi_buflen;
11791 		uio->uio_iov  = &aiov;
11792 
11793 		uio->uio_iovcnt  = 1;
11794 		uio->uio_resid   = uscmd->uscsi_buflen;
11795 		uio->uio_segflg  = dataspace;
11796 
11797 		/*
11798 		 * physio() will block here until the command completes....
11799 		 */
11800 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11801 
11802 		rval = physio(sd_uscsi_strategy, bp, dev,
11803 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11804 		    sduscsimin, uio);
11805 
11806 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11807 		    "returned from physio with 0x%x\n", rval);
11808 
11809 	} else {
11810 		/*
11811 		 * We have to mimic what physio would do here! Argh!
11812 		 */
11813 		bp->b_flags  = B_BUSY |
11814 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11815 		bp->b_edev   = dev;
11816 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11817 		bp->b_bcount = 0;
11818 		bp->b_blkno  = 0;
11819 
11820 		SD_TRACE(SD_LOG_IO, un,
11821 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11822 
11823 		(void) sd_uscsi_strategy(bp);
11824 
11825 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11826 
11827 		rval = biowait(bp);
11828 
11829 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11830 		    "returned from  biowait with 0x%x\n", rval);
11831 	}
11832 
11833 done:
11834 
11835 #ifdef SDDEBUG
11836 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11837 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11838 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11839 	if (uscmd->uscsi_bufaddr != NULL) {
11840 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11841 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11842 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11843 		if (dataspace == UIO_SYSSPACE) {
11844 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11845 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11846 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11847 		}
11848 	}
11849 #endif
11850 
11851 	/*
11852 	 * Get the status and residual to return to the caller.
11853 	 */
11854 	incmd->uscsi_status = uscmd->uscsi_status;
11855 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11856 
11857 	/*
11858 	 * If the caller wants sense data, copy back whatever sense data
11859 	 * we may have gotten, and update the relevant rqsense info.
11860 	 */
11861 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11862 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11863 
11864 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11865 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11866 
11867 		/* Update the Request Sense status and resid */
11868 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11869 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11870 
11871 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11872 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11873 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11874 
11875 		/* Copy out the sense data for user processes */
11876 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11877 			int flags =
11878 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11879 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11880 			    rqlen, flags) != 0) {
11881 				rval = EFAULT;
11882 			}
11883 			/*
11884 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11885 			 * uscmd->uscsi_rqbuf instead. They're the same.
11886 			 */
11887 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11888 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11889 			    incmd->uscsi_rqbuf, rqlen);
11890 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11891 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11892 		}
11893 	}
11894 
11895 	/*
11896 	 * Free allocated resources and return; mapout the buf in case it was
11897 	 * mapped in by a lower layer.
11898 	 */
11899 	bp_mapout(bp);
11900 	freerbuf(bp);
11901 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11902 	if (uscmd->uscsi_rqbuf != NULL) {
11903 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11904 	}
11905 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11906 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11907 
11908 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11909 
11910 	return (rval);
11911 }
11912 
11913 
11914 /*
11915  *    Function: sd_buf_iodone
11916  *
11917  * Description: Frees the sd_xbuf & returns the buf to its originator.
11918  *
11919  *     Context: May be called from interrupt context.
11920  */
11921 /* ARGSUSED */
11922 static void
11923 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11924 {
11925 	struct sd_xbuf *xp;
11926 
11927 	ASSERT(un != NULL);
11928 	ASSERT(bp != NULL);
11929 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11930 
11931 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11932 
11933 	xp = SD_GET_XBUF(bp);
11934 	ASSERT(xp != NULL);
11935 
11936 	mutex_enter(SD_MUTEX(un));
11937 
11938 	/*
11939 	 * Grab time when the cmd completed.
11940 	 * This is used for determining if the system has been
11941 	 * idle long enough to make it idle to the PM framework.
11942 	 * This is for lowering the overhead, and therefore improving
11943 	 * performance per I/O operation.
11944 	 */
11945 	un->un_pm_idle_time = ddi_get_time();
11946 
11947 	un->un_ncmds_in_driver--;
11948 	ASSERT(un->un_ncmds_in_driver >= 0);
11949 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11950 	    un->un_ncmds_in_driver);
11951 
11952 	mutex_exit(SD_MUTEX(un));
11953 
11954 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11955 	biodone(bp);				/* bp is gone after this */
11956 
11957 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11958 }
11959 
11960 
11961 /*
11962  *    Function: sd_uscsi_iodone
11963  *
11964  * Description: Frees the sd_xbuf & returns the buf to its originator.
11965  *
11966  *     Context: May be called from interrupt context.
11967  */
11968 /* ARGSUSED */
11969 static void
11970 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11971 {
11972 	struct sd_xbuf *xp;
11973 
11974 	ASSERT(un != NULL);
11975 	ASSERT(bp != NULL);
11976 
11977 	xp = SD_GET_XBUF(bp);
11978 	ASSERT(xp != NULL);
11979 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11980 
11981 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11982 
11983 	bp->b_private = xp->xb_private;
11984 
11985 	mutex_enter(SD_MUTEX(un));
11986 
11987 	/*
11988 	 * Grab time when the cmd completed.
11989 	 * This is used for determining if the system has been
11990 	 * idle long enough to make it idle to the PM framework.
11991 	 * This is for lowering the overhead, and therefore improving
11992 	 * performance per I/O operation.
11993 	 */
11994 	un->un_pm_idle_time = ddi_get_time();
11995 
11996 	un->un_ncmds_in_driver--;
11997 	ASSERT(un->un_ncmds_in_driver >= 0);
11998 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11999 	    un->un_ncmds_in_driver);
12000 
12001 	mutex_exit(SD_MUTEX(un));
12002 
12003 	kmem_free(xp, sizeof (struct sd_xbuf));
12004 	biodone(bp);
12005 
12006 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12007 }
12008 
12009 
12010 /*
12011  *    Function: sd_mapblockaddr_iostart
12012  *
12013  * Description: Verify request lies withing the partition limits for
12014  *		the indicated minor device.  Issue "overrun" buf if
12015  *		request would exceed partition range.  Converts
12016  *		partition-relative block address to absolute.
12017  *
12018  *     Context: Can sleep
12019  *
12020  *      Issues: This follows what the old code did, in terms of accessing
12021  *		some of the partition info in the unit struct without holding
12022  *		the mutext.  This is a general issue, if the partition info
12023  *		can be altered while IO is in progress... as soon as we send
12024  *		a buf, its partitioning can be invalid before it gets to the
12025  *		device.  Probably the right fix is to move partitioning out
12026  *		of the driver entirely.
12027  */
12028 
12029 static void
12030 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12031 {
12032 	daddr_t	nblocks;	/* #blocks in the given partition */
12033 	daddr_t	blocknum;	/* Block number specified by the buf */
12034 	size_t	requested_nblocks;
12035 	size_t	available_nblocks;
12036 	int	partition;
12037 	diskaddr_t	partition_offset;
12038 	struct sd_xbuf *xp;
12039 
12040 
12041 	ASSERT(un != NULL);
12042 	ASSERT(bp != NULL);
12043 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12044 
12045 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12046 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12047 
12048 	xp = SD_GET_XBUF(bp);
12049 	ASSERT(xp != NULL);
12050 
12051 	/*
12052 	 * If the geometry is not indicated as valid, attempt to access
12053 	 * the unit & verify the geometry/label. This can be the case for
12054 	 * removable-media devices, of if the device was opened in
12055 	 * NDELAY/NONBLOCK mode.
12056 	 */
12057 	if ((un->un_f_geometry_is_valid != TRUE) &&
12058 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12059 		/*
12060 		 * For removable devices it is possible to start an I/O
12061 		 * without a media by opening the device in nodelay mode.
12062 		 * Also for writable CDs there can be many scenarios where
12063 		 * there is no geometry yet but volume manager is trying to
12064 		 * issue a read() just because it can see TOC on the CD. So
12065 		 * do not print a message for removables.
12066 		 */
12067 		if (!un->un_f_has_removable_media) {
12068 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12069 			    "i/o to invalid geometry\n");
12070 		}
12071 		bioerror(bp, EIO);
12072 		bp->b_resid = bp->b_bcount;
12073 		SD_BEGIN_IODONE(index, un, bp);
12074 		return;
12075 	}
12076 
12077 	partition = SDPART(bp->b_edev);
12078 
12079 	/* #blocks in partition */
12080 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12081 
12082 	/* Use of a local variable potentially improves performance slightly */
12083 	partition_offset = un->un_offset[partition];
12084 
12085 	/*
12086 	 * blocknum is the starting block number of the request. At this
12087 	 * point it is still relative to the start of the minor device.
12088 	 */
12089 	blocknum = xp->xb_blkno;
12090 
12091 	/*
12092 	 * Legacy: If the starting block number is one past the last block
12093 	 * in the partition, do not set B_ERROR in the buf.
12094 	 */
12095 	if (blocknum == nblocks)  {
12096 		goto error_exit;
12097 	}
12098 
12099 	/*
12100 	 * Confirm that the first block of the request lies within the
12101 	 * partition limits. Also the requested number of bytes must be
12102 	 * a multiple of the system block size.
12103 	 */
12104 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12105 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12106 		bp->b_flags |= B_ERROR;
12107 		goto error_exit;
12108 	}
12109 
12110 	/*
12111 	 * If the requsted # blocks exceeds the available # blocks, that
12112 	 * is an overrun of the partition.
12113 	 */
12114 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12115 	available_nblocks = (size_t)(nblocks - blocknum);
12116 	ASSERT(nblocks >= blocknum);
12117 
12118 	if (requested_nblocks > available_nblocks) {
12119 		/*
12120 		 * Allocate an "overrun" buf to allow the request to proceed
12121 		 * for the amount of space available in the partition. The
12122 		 * amount not transferred will be added into the b_resid
12123 		 * when the operation is complete. The overrun buf
12124 		 * replaces the original buf here, and the original buf
12125 		 * is saved inside the overrun buf, for later use.
12126 		 */
12127 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12128 		    (offset_t)(requested_nblocks - available_nblocks));
12129 		size_t count = bp->b_bcount - resid;
12130 		/*
12131 		 * Note: count is an unsigned entity thus it'll NEVER
12132 		 * be less than 0 so ASSERT the original values are
12133 		 * correct.
12134 		 */
12135 		ASSERT(bp->b_bcount >= resid);
12136 
12137 		bp = sd_bioclone_alloc(bp, count, blocknum,
12138 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12139 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12140 		ASSERT(xp != NULL);
12141 	}
12142 
12143 	/* At this point there should be no residual for this buf. */
12144 	ASSERT(bp->b_resid == 0);
12145 
12146 	/* Convert the block number to an absolute address. */
12147 	xp->xb_blkno += partition_offset;
12148 
12149 	SD_NEXT_IOSTART(index, un, bp);
12150 
12151 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12152 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12153 
12154 	return;
12155 
12156 error_exit:
12157 	bp->b_resid = bp->b_bcount;
12158 	SD_BEGIN_IODONE(index, un, bp);
12159 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12160 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12161 }
12162 
12163 
12164 /*
12165  *    Function: sd_mapblockaddr_iodone
12166  *
12167  * Description: Completion-side processing for partition management.
12168  *
12169  *     Context: May be called under interrupt context
12170  */
12171 
12172 static void
12173 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12174 {
12175 	/* int	partition; */	/* Not used, see below. */
12176 	ASSERT(un != NULL);
12177 	ASSERT(bp != NULL);
12178 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12179 
12180 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12181 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12182 
12183 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12184 		/*
12185 		 * We have an "overrun" buf to deal with...
12186 		 */
12187 		struct sd_xbuf	*xp;
12188 		struct buf	*obp;	/* ptr to the original buf */
12189 
12190 		xp = SD_GET_XBUF(bp);
12191 		ASSERT(xp != NULL);
12192 
12193 		/* Retrieve the pointer to the original buf */
12194 		obp = (struct buf *)xp->xb_private;
12195 		ASSERT(obp != NULL);
12196 
12197 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12198 		bioerror(obp, bp->b_error);
12199 
12200 		sd_bioclone_free(bp);
12201 
12202 		/*
12203 		 * Get back the original buf.
12204 		 * Note that since the restoration of xb_blkno below
12205 		 * was removed, the sd_xbuf is not needed.
12206 		 */
12207 		bp = obp;
12208 		/*
12209 		 * xp = SD_GET_XBUF(bp);
12210 		 * ASSERT(xp != NULL);
12211 		 */
12212 	}
12213 
12214 	/*
12215 	 * Convert sd->xb_blkno back to a minor-device relative value.
12216 	 * Note: this has been commented out, as it is not needed in the
12217 	 * current implementation of the driver (ie, since this function
12218 	 * is at the top of the layering chains, so the info will be
12219 	 * discarded) and it is in the "hot" IO path.
12220 	 *
12221 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12222 	 * xp->xb_blkno -= un->un_offset[partition];
12223 	 */
12224 
12225 	SD_NEXT_IODONE(index, un, bp);
12226 
12227 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12228 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12229 }
12230 
12231 
12232 /*
12233  *    Function: sd_mapblocksize_iostart
12234  *
12235  * Description: Convert between system block size (un->un_sys_blocksize)
12236  *		and target block size (un->un_tgt_blocksize).
12237  *
12238  *     Context: Can sleep to allocate resources.
12239  *
12240  * Assumptions: A higher layer has already performed any partition validation,
12241  *		and converted the xp->xb_blkno to an absolute value relative
12242  *		to the start of the device.
12243  *
12244  *		It is also assumed that the higher layer has implemented
12245  *		an "overrun" mechanism for the case where the request would
12246  *		read/write beyond the end of a partition.  In this case we
12247  *		assume (and ASSERT) that bp->b_resid == 0.
12248  *
12249  *		Note: The implementation for this routine assumes the target
12250  *		block size remains constant between allocation and transport.
12251  */
12252 
12253 static void
12254 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12255 {
12256 	struct sd_mapblocksize_info	*bsp;
12257 	struct sd_xbuf			*xp;
12258 	offset_t first_byte;
12259 	daddr_t	start_block, end_block;
12260 	daddr_t	request_bytes;
12261 	ushort_t is_aligned = FALSE;
12262 
12263 	ASSERT(un != NULL);
12264 	ASSERT(bp != NULL);
12265 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12266 	ASSERT(bp->b_resid == 0);
12267 
12268 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12269 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12270 
12271 	/*
12272 	 * For a non-writable CD, a write request is an error
12273 	 */
12274 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12275 	    (un->un_f_mmc_writable_media == FALSE)) {
12276 		bioerror(bp, EIO);
12277 		bp->b_resid = bp->b_bcount;
12278 		SD_BEGIN_IODONE(index, un, bp);
12279 		return;
12280 	}
12281 
12282 	/*
12283 	 * We do not need a shadow buf if the device is using
12284 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12285 	 * In this case there is no layer-private data block allocated.
12286 	 */
12287 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12288 	    (bp->b_bcount == 0)) {
12289 		goto done;
12290 	}
12291 
12292 #if defined(__i386) || defined(__amd64)
12293 	/* We do not support non-block-aligned transfers for ROD devices */
12294 	ASSERT(!ISROD(un));
12295 #endif
12296 
12297 	xp = SD_GET_XBUF(bp);
12298 	ASSERT(xp != NULL);
12299 
12300 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12301 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12302 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12303 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12304 	    "request start block:0x%x\n", xp->xb_blkno);
12305 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12306 	    "request len:0x%x\n", bp->b_bcount);
12307 
12308 	/*
12309 	 * Allocate the layer-private data area for the mapblocksize layer.
12310 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12311 	 * struct to store the pointer to their layer-private data block, but
12312 	 * each layer also has the responsibility of restoring the prior
12313 	 * contents of xb_private before returning the buf/xbuf to the
12314 	 * higher layer that sent it.
12315 	 *
12316 	 * Here we save the prior contents of xp->xb_private into the
12317 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12318 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12319 	 * the layer-private area and returning the buf/xbuf to the layer
12320 	 * that sent it.
12321 	 *
12322 	 * Note that here we use kmem_zalloc for the allocation as there are
12323 	 * parts of the mapblocksize code that expect certain fields to be
12324 	 * zero unless explicitly set to a required value.
12325 	 */
12326 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12327 	bsp->mbs_oprivate = xp->xb_private;
12328 	xp->xb_private = bsp;
12329 
12330 	/*
12331 	 * This treats the data on the disk (target) as an array of bytes.
12332 	 * first_byte is the byte offset, from the beginning of the device,
12333 	 * to the location of the request. This is converted from a
12334 	 * un->un_sys_blocksize block address to a byte offset, and then back
12335 	 * to a block address based upon a un->un_tgt_blocksize block size.
12336 	 *
12337 	 * xp->xb_blkno should be absolute upon entry into this function,
12338 	 * but, but it is based upon partitions that use the "system"
12339 	 * block size. It must be adjusted to reflect the block size of
12340 	 * the target.
12341 	 *
12342 	 * Note that end_block is actually the block that follows the last
12343 	 * block of the request, but that's what is needed for the computation.
12344 	 */
12345 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12346 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12347 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12348 	    un->un_tgt_blocksize;
12349 
12350 	/* request_bytes is rounded up to a multiple of the target block size */
12351 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12352 
12353 	/*
12354 	 * See if the starting address of the request and the request
12355 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12356 	 * then we do not need to allocate a shadow buf to handle the request.
12357 	 */
12358 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12359 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12360 		is_aligned = TRUE;
12361 	}
12362 
12363 	if ((bp->b_flags & B_READ) == 0) {
12364 		/*
12365 		 * Lock the range for a write operation. An aligned request is
12366 		 * considered a simple write; otherwise the request must be a
12367 		 * read-modify-write.
12368 		 */
12369 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12370 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12371 	}
12372 
12373 	/*
12374 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12375 	 * where the READ command is generated for a read-modify-write. (The
12376 	 * write phase is deferred until after the read completes.)
12377 	 */
12378 	if (is_aligned == FALSE) {
12379 
12380 		struct sd_mapblocksize_info	*shadow_bsp;
12381 		struct sd_xbuf	*shadow_xp;
12382 		struct buf	*shadow_bp;
12383 
12384 		/*
12385 		 * Allocate the shadow buf and it associated xbuf. Note that
12386 		 * after this call the xb_blkno value in both the original
12387 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12388 		 * same: absolute relative to the start of the device, and
12389 		 * adjusted for the target block size. The b_blkno in the
12390 		 * shadow buf will also be set to this value. We should never
12391 		 * change b_blkno in the original bp however.
12392 		 *
12393 		 * Note also that the shadow buf will always need to be a
12394 		 * READ command, regardless of whether the incoming command
12395 		 * is a READ or a WRITE.
12396 		 */
12397 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12398 		    xp->xb_blkno,
12399 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12400 
12401 		shadow_xp = SD_GET_XBUF(shadow_bp);
12402 
12403 		/*
12404 		 * Allocate the layer-private data for the shadow buf.
12405 		 * (No need to preserve xb_private in the shadow xbuf.)
12406 		 */
12407 		shadow_xp->xb_private = shadow_bsp =
12408 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12409 
12410 		/*
12411 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12412 		 * to figure out where the start of the user data is (based upon
12413 		 * the system block size) in the data returned by the READ
12414 		 * command (which will be based upon the target blocksize). Note
12415 		 * that this is only really used if the request is unaligned.
12416 		 */
12417 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12418 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12419 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12420 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12421 
12422 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12423 
12424 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12425 
12426 		/* Transfer the wmap (if any) to the shadow buf */
12427 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12428 		bsp->mbs_wmp = NULL;
12429 
12430 		/*
12431 		 * The shadow buf goes on from here in place of the
12432 		 * original buf.
12433 		 */
12434 		shadow_bsp->mbs_orig_bp = bp;
12435 		bp = shadow_bp;
12436 	}
12437 
12438 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12439 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12440 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12441 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12442 	    request_bytes);
12443 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12444 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12445 
12446 done:
12447 	SD_NEXT_IOSTART(index, un, bp);
12448 
12449 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12450 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12451 }
12452 
12453 
12454 /*
12455  *    Function: sd_mapblocksize_iodone
12456  *
12457  * Description: Completion side processing for block-size mapping.
12458  *
12459  *     Context: May be called under interrupt context
12460  */
12461 
12462 static void
12463 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12464 {
12465 	struct sd_mapblocksize_info	*bsp;
12466 	struct sd_xbuf	*xp;
12467 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12468 	struct buf	*orig_bp;	/* ptr to the original buf */
12469 	offset_t	shadow_end;
12470 	offset_t	request_end;
12471 	offset_t	shadow_start;
12472 	ssize_t		copy_offset;
12473 	size_t		copy_length;
12474 	size_t		shortfall;
12475 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12476 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12477 
12478 	ASSERT(un != NULL);
12479 	ASSERT(bp != NULL);
12480 
12481 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12482 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12483 
12484 	/*
12485 	 * There is no shadow buf or layer-private data if the target is
12486 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12487 	 */
12488 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12489 	    (bp->b_bcount == 0)) {
12490 		goto exit;
12491 	}
12492 
12493 	xp = SD_GET_XBUF(bp);
12494 	ASSERT(xp != NULL);
12495 
12496 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12497 	bsp = xp->xb_private;
12498 
12499 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12500 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12501 
12502 	if (is_write) {
12503 		/*
12504 		 * For a WRITE request we must free up the block range that
12505 		 * we have locked up.  This holds regardless of whether this is
12506 		 * an aligned write request or a read-modify-write request.
12507 		 */
12508 		sd_range_unlock(un, bsp->mbs_wmp);
12509 		bsp->mbs_wmp = NULL;
12510 	}
12511 
12512 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12513 		/*
12514 		 * An aligned read or write command will have no shadow buf;
12515 		 * there is not much else to do with it.
12516 		 */
12517 		goto done;
12518 	}
12519 
12520 	orig_bp = bsp->mbs_orig_bp;
12521 	ASSERT(orig_bp != NULL);
12522 	orig_xp = SD_GET_XBUF(orig_bp);
12523 	ASSERT(orig_xp != NULL);
12524 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12525 
12526 	if (!is_write && has_wmap) {
12527 		/*
12528 		 * A READ with a wmap means this is the READ phase of a
12529 		 * read-modify-write. If an error occurred on the READ then
12530 		 * we do not proceed with the WRITE phase or copy any data.
12531 		 * Just release the write maps and return with an error.
12532 		 */
12533 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12534 			orig_bp->b_resid = orig_bp->b_bcount;
12535 			bioerror(orig_bp, bp->b_error);
12536 			sd_range_unlock(un, bsp->mbs_wmp);
12537 			goto freebuf_done;
12538 		}
12539 	}
12540 
12541 	/*
12542 	 * Here is where we set up to copy the data from the shadow buf
12543 	 * into the space associated with the original buf.
12544 	 *
12545 	 * To deal with the conversion between block sizes, these
12546 	 * computations treat the data as an array of bytes, with the
12547 	 * first byte (byte 0) corresponding to the first byte in the
12548 	 * first block on the disk.
12549 	 */
12550 
12551 	/*
12552 	 * shadow_start and shadow_len indicate the location and size of
12553 	 * the data returned with the shadow IO request.
12554 	 */
12555 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12556 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12557 
12558 	/*
12559 	 * copy_offset gives the offset (in bytes) from the start of the first
12560 	 * block of the READ request to the beginning of the data.  We retrieve
12561 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12562 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12563 	 * data to be copied (in bytes).
12564 	 */
12565 	copy_offset  = bsp->mbs_copy_offset;
12566 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12567 	copy_length  = orig_bp->b_bcount;
12568 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12569 
12570 	/*
12571 	 * Set up the resid and error fields of orig_bp as appropriate.
12572 	 */
12573 	if (shadow_end >= request_end) {
12574 		/* We got all the requested data; set resid to zero */
12575 		orig_bp->b_resid = 0;
12576 	} else {
12577 		/*
12578 		 * We failed to get enough data to fully satisfy the original
12579 		 * request. Just copy back whatever data we got and set
12580 		 * up the residual and error code as required.
12581 		 *
12582 		 * 'shortfall' is the amount by which the data received with the
12583 		 * shadow buf has "fallen short" of the requested amount.
12584 		 */
12585 		shortfall = (size_t)(request_end - shadow_end);
12586 
12587 		if (shortfall > orig_bp->b_bcount) {
12588 			/*
12589 			 * We did not get enough data to even partially
12590 			 * fulfill the original request.  The residual is
12591 			 * equal to the amount requested.
12592 			 */
12593 			orig_bp->b_resid = orig_bp->b_bcount;
12594 		} else {
12595 			/*
12596 			 * We did not get all the data that we requested
12597 			 * from the device, but we will try to return what
12598 			 * portion we did get.
12599 			 */
12600 			orig_bp->b_resid = shortfall;
12601 		}
12602 		ASSERT(copy_length >= orig_bp->b_resid);
12603 		copy_length  -= orig_bp->b_resid;
12604 	}
12605 
12606 	/* Propagate the error code from the shadow buf to the original buf */
12607 	bioerror(orig_bp, bp->b_error);
12608 
12609 	if (is_write) {
12610 		goto freebuf_done;	/* No data copying for a WRITE */
12611 	}
12612 
12613 	if (has_wmap) {
12614 		/*
12615 		 * This is a READ command from the READ phase of a
12616 		 * read-modify-write request. We have to copy the data given
12617 		 * by the user OVER the data returned by the READ command,
12618 		 * then convert the command from a READ to a WRITE and send
12619 		 * it back to the target.
12620 		 */
12621 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12622 		    copy_length);
12623 
12624 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12625 
12626 		/*
12627 		 * Dispatch the WRITE command to the taskq thread, which
12628 		 * will in turn send the command to the target. When the
12629 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12630 		 * will get called again as part of the iodone chain
12631 		 * processing for it. Note that we will still be dealing
12632 		 * with the shadow buf at that point.
12633 		 */
12634 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12635 		    KM_NOSLEEP) != 0) {
12636 			/*
12637 			 * Dispatch was successful so we are done. Return
12638 			 * without going any higher up the iodone chain. Do
12639 			 * not free up any layer-private data until after the
12640 			 * WRITE completes.
12641 			 */
12642 			return;
12643 		}
12644 
12645 		/*
12646 		 * Dispatch of the WRITE command failed; set up the error
12647 		 * condition and send this IO back up the iodone chain.
12648 		 */
12649 		bioerror(orig_bp, EIO);
12650 		orig_bp->b_resid = orig_bp->b_bcount;
12651 
12652 	} else {
12653 		/*
12654 		 * This is a regular READ request (ie, not a RMW). Copy the
12655 		 * data from the shadow buf into the original buf. The
12656 		 * copy_offset compensates for any "misalignment" between the
12657 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12658 		 * original buf (with its un->un_sys_blocksize blocks).
12659 		 */
12660 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12661 		    copy_length);
12662 	}
12663 
12664 freebuf_done:
12665 
12666 	/*
12667 	 * At this point we still have both the shadow buf AND the original
12668 	 * buf to deal with, as well as the layer-private data area in each.
12669 	 * Local variables are as follows:
12670 	 *
12671 	 * bp -- points to shadow buf
12672 	 * xp -- points to xbuf of shadow buf
12673 	 * bsp -- points to layer-private data area of shadow buf
12674 	 * orig_bp -- points to original buf
12675 	 *
12676 	 * First free the shadow buf and its associated xbuf, then free the
12677 	 * layer-private data area from the shadow buf. There is no need to
12678 	 * restore xb_private in the shadow xbuf.
12679 	 */
12680 	sd_shadow_buf_free(bp);
12681 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12682 
12683 	/*
12684 	 * Now update the local variables to point to the original buf, xbuf,
12685 	 * and layer-private area.
12686 	 */
12687 	bp = orig_bp;
12688 	xp = SD_GET_XBUF(bp);
12689 	ASSERT(xp != NULL);
12690 	ASSERT(xp == orig_xp);
12691 	bsp = xp->xb_private;
12692 	ASSERT(bsp != NULL);
12693 
12694 done:
12695 	/*
12696 	 * Restore xb_private to whatever it was set to by the next higher
12697 	 * layer in the chain, then free the layer-private data area.
12698 	 */
12699 	xp->xb_private = bsp->mbs_oprivate;
12700 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12701 
12702 exit:
12703 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12704 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12705 
12706 	SD_NEXT_IODONE(index, un, bp);
12707 }
12708 
12709 
12710 /*
12711  *    Function: sd_checksum_iostart
12712  *
12713  * Description: A stub function for a layer that's currently not used.
12714  *		For now just a placeholder.
12715  *
12716  *     Context: Kernel thread context
12717  */
12718 
12719 static void
12720 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12721 {
12722 	ASSERT(un != NULL);
12723 	ASSERT(bp != NULL);
12724 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12725 	SD_NEXT_IOSTART(index, un, bp);
12726 }
12727 
12728 
12729 /*
12730  *    Function: sd_checksum_iodone
12731  *
12732  * Description: A stub function for a layer that's currently not used.
12733  *		For now just a placeholder.
12734  *
12735  *     Context: May be called under interrupt context
12736  */
12737 
12738 static void
12739 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12740 {
12741 	ASSERT(un != NULL);
12742 	ASSERT(bp != NULL);
12743 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12744 	SD_NEXT_IODONE(index, un, bp);
12745 }
12746 
12747 
12748 /*
12749  *    Function: sd_checksum_uscsi_iostart
12750  *
12751  * Description: A stub function for a layer that's currently not used.
12752  *		For now just a placeholder.
12753  *
12754  *     Context: Kernel thread context
12755  */
12756 
12757 static void
12758 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12759 {
12760 	ASSERT(un != NULL);
12761 	ASSERT(bp != NULL);
12762 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12763 	SD_NEXT_IOSTART(index, un, bp);
12764 }
12765 
12766 
12767 /*
12768  *    Function: sd_checksum_uscsi_iodone
12769  *
12770  * Description: A stub function for a layer that's currently not used.
12771  *		For now just a placeholder.
12772  *
12773  *     Context: May be called under interrupt context
12774  */
12775 
12776 static void
12777 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12778 {
12779 	ASSERT(un != NULL);
12780 	ASSERT(bp != NULL);
12781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12782 	SD_NEXT_IODONE(index, un, bp);
12783 }
12784 
12785 
12786 /*
12787  *    Function: sd_pm_iostart
12788  *
12789  * Description: iostart-side routine for Power mangement.
12790  *
12791  *     Context: Kernel thread context
12792  */
12793 
12794 static void
12795 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12796 {
12797 	ASSERT(un != NULL);
12798 	ASSERT(bp != NULL);
12799 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12800 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12801 
12802 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12803 
12804 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12805 		/*
12806 		 * Set up to return the failed buf back up the 'iodone'
12807 		 * side of the calling chain.
12808 		 */
12809 		bioerror(bp, EIO);
12810 		bp->b_resid = bp->b_bcount;
12811 
12812 		SD_BEGIN_IODONE(index, un, bp);
12813 
12814 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12815 		return;
12816 	}
12817 
12818 	SD_NEXT_IOSTART(index, un, bp);
12819 
12820 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12821 }
12822 
12823 
12824 /*
12825  *    Function: sd_pm_iodone
12826  *
12827  * Description: iodone-side routine for power mangement.
12828  *
12829  *     Context: may be called from interrupt context
12830  */
12831 
12832 static void
12833 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12834 {
12835 	ASSERT(un != NULL);
12836 	ASSERT(bp != NULL);
12837 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12838 
12839 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12840 
12841 	/*
12842 	 * After attach the following flag is only read, so don't
12843 	 * take the penalty of acquiring a mutex for it.
12844 	 */
12845 	if (un->un_f_pm_is_enabled == TRUE) {
12846 		sd_pm_exit(un);
12847 	}
12848 
12849 	SD_NEXT_IODONE(index, un, bp);
12850 
12851 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12852 }
12853 
12854 
12855 /*
12856  *    Function: sd_core_iostart
12857  *
12858  * Description: Primary driver function for enqueuing buf(9S) structs from
12859  *		the system and initiating IO to the target device
12860  *
12861  *     Context: Kernel thread context. Can sleep.
12862  *
12863  * Assumptions:  - The given xp->xb_blkno is absolute
12864  *		   (ie, relative to the start of the device).
12865  *		 - The IO is to be done using the native blocksize of
12866  *		   the device, as specified in un->un_tgt_blocksize.
12867  */
12868 /* ARGSUSED */
12869 static void
12870 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12871 {
12872 	struct sd_xbuf *xp;
12873 
12874 	ASSERT(un != NULL);
12875 	ASSERT(bp != NULL);
12876 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12877 	ASSERT(bp->b_resid == 0);
12878 
12879 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12880 
12881 	xp = SD_GET_XBUF(bp);
12882 	ASSERT(xp != NULL);
12883 
12884 	mutex_enter(SD_MUTEX(un));
12885 
12886 	/*
12887 	 * If we are currently in the failfast state, fail any new IO
12888 	 * that has B_FAILFAST set, then return.
12889 	 */
12890 	if ((bp->b_flags & B_FAILFAST) &&
12891 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12892 		mutex_exit(SD_MUTEX(un));
12893 		bioerror(bp, EIO);
12894 		bp->b_resid = bp->b_bcount;
12895 		SD_BEGIN_IODONE(index, un, bp);
12896 		return;
12897 	}
12898 
12899 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12900 		/*
12901 		 * Priority command -- transport it immediately.
12902 		 *
12903 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12904 		 * because all direct priority commands should be associated
12905 		 * with error recovery actions which we don't want to retry.
12906 		 */
12907 		sd_start_cmds(un, bp);
12908 	} else {
12909 		/*
12910 		 * Normal command -- add it to the wait queue, then start
12911 		 * transporting commands from the wait queue.
12912 		 */
12913 		sd_add_buf_to_waitq(un, bp);
12914 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12915 		sd_start_cmds(un, NULL);
12916 	}
12917 
12918 	mutex_exit(SD_MUTEX(un));
12919 
12920 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12921 }
12922 
12923 
12924 /*
12925  *    Function: sd_init_cdb_limits
12926  *
12927  * Description: This is to handle scsi_pkt initialization differences
12928  *		between the driver platforms.
12929  *
12930  *		Legacy behaviors:
12931  *
12932  *		If the block number or the sector count exceeds the
12933  *		capabilities of a Group 0 command, shift over to a
12934  *		Group 1 command. We don't blindly use Group 1
12935  *		commands because a) some drives (CDC Wren IVs) get a
12936  *		bit confused, and b) there is probably a fair amount
12937  *		of speed difference for a target to receive and decode
12938  *		a 10 byte command instead of a 6 byte command.
12939  *
12940  *		The xfer time difference of 6 vs 10 byte CDBs is
12941  *		still significant so this code is still worthwhile.
12942  *		10 byte CDBs are very inefficient with the fas HBA driver
12943  *		and older disks. Each CDB byte took 1 usec with some
12944  *		popular disks.
12945  *
12946  *     Context: Must be called at attach time
12947  */
12948 
12949 static void
12950 sd_init_cdb_limits(struct sd_lun *un)
12951 {
12952 	/*
12953 	 * Use CDB_GROUP1 commands for most devices except for
12954 	 * parallel SCSI fixed drives in which case we get better
12955 	 * performance using CDB_GROUP0 commands (where applicable).
12956 	 */
12957 	un->un_mincdb = SD_CDB_GROUP1;
12958 #if !defined(__fibre)
12959 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12960 	    !un->un_f_has_removable_media) {
12961 		un->un_mincdb = SD_CDB_GROUP0;
12962 	}
12963 #endif
12964 
12965 	/*
12966 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12967 	 * commands for fixed disks unless we are building for a 32 bit
12968 	 * kernel.
12969 	 */
12970 #ifdef _LP64
12971 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12972 	    SD_CDB_GROUP4;
12973 #else
12974 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12975 	    SD_CDB_GROUP1;
12976 #endif
12977 
12978 	/*
12979 	 * x86 systems require the PKT_DMA_PARTIAL flag
12980 	 */
12981 #if defined(__x86)
12982 	un->un_pkt_flags = PKT_DMA_PARTIAL;
12983 #else
12984 	un->un_pkt_flags = 0;
12985 #endif
12986 
12987 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12988 	    ? sizeof (struct scsi_arq_status) : 1);
12989 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12990 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12991 }
12992 
12993 
12994 /*
12995  *    Function: sd_initpkt_for_buf
12996  *
12997  * Description: Allocate and initialize for transport a scsi_pkt struct,
12998  *		based upon the info specified in the given buf struct.
12999  *
13000  *		Assumes the xb_blkno in the request is absolute (ie,
13001  *		relative to the start of the device (NOT partition!).
13002  *		Also assumes that the request is using the native block
13003  *		size of the device (as returned by the READ CAPACITY
13004  *		command).
13005  *
13006  * Return Code: SD_PKT_ALLOC_SUCCESS
13007  *		SD_PKT_ALLOC_FAILURE
13008  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13009  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13010  *
13011  *     Context: Kernel thread and may be called from software interrupt context
13012  *		as part of a sdrunout callback. This function may not block or
13013  *		call routines that block
13014  */
13015 
13016 static int
13017 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13018 {
13019 	struct sd_xbuf	*xp;
13020 	struct scsi_pkt *pktp = NULL;
13021 	struct sd_lun	*un;
13022 	size_t		blockcount;
13023 	daddr_t		startblock;
13024 	int		rval;
13025 	int		cmd_flags;
13026 
13027 	ASSERT(bp != NULL);
13028 	ASSERT(pktpp != NULL);
13029 	xp = SD_GET_XBUF(bp);
13030 	ASSERT(xp != NULL);
13031 	un = SD_GET_UN(bp);
13032 	ASSERT(un != NULL);
13033 	ASSERT(mutex_owned(SD_MUTEX(un)));
13034 	ASSERT(bp->b_resid == 0);
13035 
13036 	SD_TRACE(SD_LOG_IO_CORE, un,
13037 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13038 
13039 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13040 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13041 		/*
13042 		 * Already have a scsi_pkt -- just need DMA resources.
13043 		 * We must recompute the CDB in case the mapping returns
13044 		 * a nonzero pkt_resid.
13045 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13046 		 * that is being retried, the unmap/remap of the DMA resouces
13047 		 * will result in the entire transfer starting over again
13048 		 * from the very first block.
13049 		 */
13050 		ASSERT(xp->xb_pktp != NULL);
13051 		pktp = xp->xb_pktp;
13052 	} else {
13053 		pktp = NULL;
13054 	}
13055 #endif /* __i386 || __amd64 */
13056 
13057 	startblock = xp->xb_blkno;	/* Absolute block num. */
13058 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13059 
13060 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13061 
13062 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13063 
13064 #else
13065 
13066 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13067 
13068 #endif
13069 
13070 	/*
13071 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13072 	 * call scsi_init_pkt, and build the CDB.
13073 	 */
13074 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13075 	    cmd_flags, sdrunout, (caddr_t)un,
13076 	    startblock, blockcount);
13077 
13078 	if (rval == 0) {
13079 		/*
13080 		 * Success.
13081 		 *
13082 		 * If partial DMA is being used and required for this transfer.
13083 		 * set it up here.
13084 		 */
13085 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13086 		    (pktp->pkt_resid != 0)) {
13087 
13088 			/*
13089 			 * Save the CDB length and pkt_resid for the
13090 			 * next xfer
13091 			 */
13092 			xp->xb_dma_resid = pktp->pkt_resid;
13093 
13094 			/* rezero resid */
13095 			pktp->pkt_resid = 0;
13096 
13097 		} else {
13098 			xp->xb_dma_resid = 0;
13099 		}
13100 
13101 		pktp->pkt_flags = un->un_tagflags;
13102 		pktp->pkt_time  = un->un_cmd_timeout;
13103 		pktp->pkt_comp  = sdintr;
13104 
13105 		pktp->pkt_private = bp;
13106 		*pktpp = pktp;
13107 
13108 		SD_TRACE(SD_LOG_IO_CORE, un,
13109 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13110 
13111 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13112 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13113 #endif
13114 
13115 		return (SD_PKT_ALLOC_SUCCESS);
13116 
13117 	}
13118 
13119 	/*
13120 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13121 	 * from sd_setup_rw_pkt.
13122 	 */
13123 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13124 
13125 	if (rval == SD_PKT_ALLOC_FAILURE) {
13126 		*pktpp = NULL;
13127 		/*
13128 		 * Set the driver state to RWAIT to indicate the driver
13129 		 * is waiting on resource allocations. The driver will not
13130 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13131 		 */
13132 		New_state(un, SD_STATE_RWAIT);
13133 
13134 		SD_ERROR(SD_LOG_IO_CORE, un,
13135 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13136 
13137 		if ((bp->b_flags & B_ERROR) != 0) {
13138 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13139 		}
13140 		return (SD_PKT_ALLOC_FAILURE);
13141 	} else {
13142 		/*
13143 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13144 		 *
13145 		 * This should never happen.  Maybe someone messed with the
13146 		 * kernel's minphys?
13147 		 */
13148 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13149 		    "Request rejected: too large for CDB: "
13150 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13151 		SD_ERROR(SD_LOG_IO_CORE, un,
13152 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13153 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13154 
13155 	}
13156 }
13157 
13158 
13159 /*
13160  *    Function: sd_destroypkt_for_buf
13161  *
13162  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13163  *
13164  *     Context: Kernel thread or interrupt context
13165  */
13166 
13167 static void
13168 sd_destroypkt_for_buf(struct buf *bp)
13169 {
13170 	ASSERT(bp != NULL);
13171 	ASSERT(SD_GET_UN(bp) != NULL);
13172 
13173 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13174 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13175 
13176 	ASSERT(SD_GET_PKTP(bp) != NULL);
13177 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13178 
13179 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13180 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13181 }
13182 
13183 /*
13184  *    Function: sd_setup_rw_pkt
13185  *
13186  * Description: Determines appropriate CDB group for the requested LBA
13187  *		and transfer length, calls scsi_init_pkt, and builds
13188  *		the CDB.  Do not use for partial DMA transfers except
13189  *		for the initial transfer since the CDB size must
13190  *		remain constant.
13191  *
13192  *     Context: Kernel thread and may be called from software interrupt
13193  *		context as part of a sdrunout callback. This function may not
13194  *		block or call routines that block
13195  */
13196 
13197 
13198 int
13199 sd_setup_rw_pkt(struct sd_lun *un,
13200     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13201     int (*callback)(caddr_t), caddr_t callback_arg,
13202     diskaddr_t lba, uint32_t blockcount)
13203 {
13204 	struct scsi_pkt *return_pktp;
13205 	union scsi_cdb *cdbp;
13206 	struct sd_cdbinfo *cp = NULL;
13207 	int i;
13208 
13209 	/*
13210 	 * See which size CDB to use, based upon the request.
13211 	 */
13212 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13213 
13214 		/*
13215 		 * Check lba and block count against sd_cdbtab limits.
13216 		 * In the partial DMA case, we have to use the same size
13217 		 * CDB for all the transfers.  Check lba + blockcount
13218 		 * against the max LBA so we know that segment of the
13219 		 * transfer can use the CDB we select.
13220 		 */
13221 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13222 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13223 
13224 			/*
13225 			 * The command will fit into the CDB type
13226 			 * specified by sd_cdbtab[i].
13227 			 */
13228 			cp = sd_cdbtab + i;
13229 
13230 			/*
13231 			 * Call scsi_init_pkt so we can fill in the
13232 			 * CDB.
13233 			 */
13234 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13235 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13236 			    flags, callback, callback_arg);
13237 
13238 			if (return_pktp != NULL) {
13239 
13240 				/*
13241 				 * Return new value of pkt
13242 				 */
13243 				*pktpp = return_pktp;
13244 
13245 				/*
13246 				 * To be safe, zero the CDB insuring there is
13247 				 * no leftover data from a previous command.
13248 				 */
13249 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13250 
13251 				/*
13252 				 * Handle partial DMA mapping
13253 				 */
13254 				if (return_pktp->pkt_resid != 0) {
13255 
13256 					/*
13257 					 * Not going to xfer as many blocks as
13258 					 * originally expected
13259 					 */
13260 					blockcount -=
13261 					    SD_BYTES2TGTBLOCKS(un,
13262 						return_pktp->pkt_resid);
13263 				}
13264 
13265 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13266 
13267 				/*
13268 				 * Set command byte based on the CDB
13269 				 * type we matched.
13270 				 */
13271 				cdbp->scc_cmd = cp->sc_grpmask |
13272 				    ((bp->b_flags & B_READ) ?
13273 					SCMD_READ : SCMD_WRITE);
13274 
13275 				SD_FILL_SCSI1_LUN(un, return_pktp);
13276 
13277 				/*
13278 				 * Fill in LBA and length
13279 				 */
13280 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13281 				    (cp->sc_grpcode == CDB_GROUP4) ||
13282 				    (cp->sc_grpcode == CDB_GROUP0) ||
13283 				    (cp->sc_grpcode == CDB_GROUP5));
13284 
13285 				if (cp->sc_grpcode == CDB_GROUP1) {
13286 					FORMG1ADDR(cdbp, lba);
13287 					FORMG1COUNT(cdbp, blockcount);
13288 					return (0);
13289 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13290 					FORMG4LONGADDR(cdbp, lba);
13291 					FORMG4COUNT(cdbp, blockcount);
13292 					return (0);
13293 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13294 					FORMG0ADDR(cdbp, lba);
13295 					FORMG0COUNT(cdbp, blockcount);
13296 					return (0);
13297 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13298 					FORMG5ADDR(cdbp, lba);
13299 					FORMG5COUNT(cdbp, blockcount);
13300 					return (0);
13301 				}
13302 
13303 				/*
13304 				 * It should be impossible to not match one
13305 				 * of the CDB types above, so we should never
13306 				 * reach this point.  Set the CDB command byte
13307 				 * to test-unit-ready to avoid writing
13308 				 * to somewhere we don't intend.
13309 				 */
13310 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13311 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13312 			} else {
13313 				/*
13314 				 * Couldn't get scsi_pkt
13315 				 */
13316 				return (SD_PKT_ALLOC_FAILURE);
13317 			}
13318 		}
13319 	}
13320 
13321 	/*
13322 	 * None of the available CDB types were suitable.  This really
13323 	 * should never happen:  on a 64 bit system we support
13324 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13325 	 * and on a 32 bit system we will refuse to bind to a device
13326 	 * larger than 2TB so addresses will never be larger than 32 bits.
13327 	 */
13328 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13329 }
13330 
13331 #if defined(__i386) || defined(__amd64)
13332 /*
13333  *    Function: sd_setup_next_rw_pkt
13334  *
13335  * Description: Setup packet for partial DMA transfers, except for the
13336  * 		initial transfer.  sd_setup_rw_pkt should be used for
13337  *		the initial transfer.
13338  *
13339  *     Context: Kernel thread and may be called from interrupt context.
13340  */
13341 
13342 int
13343 sd_setup_next_rw_pkt(struct sd_lun *un,
13344     struct scsi_pkt *pktp, struct buf *bp,
13345     diskaddr_t lba, uint32_t blockcount)
13346 {
13347 	uchar_t com;
13348 	union scsi_cdb *cdbp;
13349 	uchar_t cdb_group_id;
13350 
13351 	ASSERT(pktp != NULL);
13352 	ASSERT(pktp->pkt_cdbp != NULL);
13353 
13354 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13355 	com = cdbp->scc_cmd;
13356 	cdb_group_id = CDB_GROUPID(com);
13357 
13358 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13359 	    (cdb_group_id == CDB_GROUPID_1) ||
13360 	    (cdb_group_id == CDB_GROUPID_4) ||
13361 	    (cdb_group_id == CDB_GROUPID_5));
13362 
13363 	/*
13364 	 * Move pkt to the next portion of the xfer.
13365 	 * func is NULL_FUNC so we do not have to release
13366 	 * the disk mutex here.
13367 	 */
13368 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13369 	    NULL_FUNC, NULL) == pktp) {
13370 		/* Success.  Handle partial DMA */
13371 		if (pktp->pkt_resid != 0) {
13372 			blockcount -=
13373 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13374 		}
13375 
13376 		cdbp->scc_cmd = com;
13377 		SD_FILL_SCSI1_LUN(un, pktp);
13378 		if (cdb_group_id == CDB_GROUPID_1) {
13379 			FORMG1ADDR(cdbp, lba);
13380 			FORMG1COUNT(cdbp, blockcount);
13381 			return (0);
13382 		} else if (cdb_group_id == CDB_GROUPID_4) {
13383 			FORMG4LONGADDR(cdbp, lba);
13384 			FORMG4COUNT(cdbp, blockcount);
13385 			return (0);
13386 		} else if (cdb_group_id == CDB_GROUPID_0) {
13387 			FORMG0ADDR(cdbp, lba);
13388 			FORMG0COUNT(cdbp, blockcount);
13389 			return (0);
13390 		} else if (cdb_group_id == CDB_GROUPID_5) {
13391 			FORMG5ADDR(cdbp, lba);
13392 			FORMG5COUNT(cdbp, blockcount);
13393 			return (0);
13394 		}
13395 
13396 		/* Unreachable */
13397 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13398 	}
13399 
13400 	/*
13401 	 * Error setting up next portion of cmd transfer.
13402 	 * Something is definitely very wrong and this
13403 	 * should not happen.
13404 	 */
13405 	return (SD_PKT_ALLOC_FAILURE);
13406 }
13407 #endif /* defined(__i386) || defined(__amd64) */
13408 
13409 /*
13410  *    Function: sd_initpkt_for_uscsi
13411  *
13412  * Description: Allocate and initialize for transport a scsi_pkt struct,
13413  *		based upon the info specified in the given uscsi_cmd struct.
13414  *
13415  * Return Code: SD_PKT_ALLOC_SUCCESS
13416  *		SD_PKT_ALLOC_FAILURE
13417  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13418  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13419  *
13420  *     Context: Kernel thread and may be called from software interrupt context
13421  *		as part of a sdrunout callback. This function may not block or
13422  *		call routines that block
13423  */
13424 
13425 static int
13426 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13427 {
13428 	struct uscsi_cmd *uscmd;
13429 	struct sd_xbuf	*xp;
13430 	struct scsi_pkt	*pktp;
13431 	struct sd_lun	*un;
13432 	uint32_t	flags = 0;
13433 
13434 	ASSERT(bp != NULL);
13435 	ASSERT(pktpp != NULL);
13436 	xp = SD_GET_XBUF(bp);
13437 	ASSERT(xp != NULL);
13438 	un = SD_GET_UN(bp);
13439 	ASSERT(un != NULL);
13440 	ASSERT(mutex_owned(SD_MUTEX(un)));
13441 
13442 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13443 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13444 	ASSERT(uscmd != NULL);
13445 
13446 	SD_TRACE(SD_LOG_IO_CORE, un,
13447 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13448 
13449 	/*
13450 	 * Allocate the scsi_pkt for the command.
13451 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13452 	 *	 during scsi_init_pkt time and will continue to use the
13453 	 *	 same path as long as the same scsi_pkt is used without
13454 	 *	 intervening scsi_dma_free(). Since uscsi command does
13455 	 *	 not call scsi_dmafree() before retry failed command, it
13456 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13457 	 *	 set such that scsi_vhci can use other available path for
13458 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13459 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13460 	 */
13461 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13462 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13463 	    sizeof (struct scsi_arq_status), 0,
13464 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13465 	    sdrunout, (caddr_t)un);
13466 
13467 	if (pktp == NULL) {
13468 		*pktpp = NULL;
13469 		/*
13470 		 * Set the driver state to RWAIT to indicate the driver
13471 		 * is waiting on resource allocations. The driver will not
13472 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13473 		 */
13474 		New_state(un, SD_STATE_RWAIT);
13475 
13476 		SD_ERROR(SD_LOG_IO_CORE, un,
13477 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13478 
13479 		if ((bp->b_flags & B_ERROR) != 0) {
13480 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13481 		}
13482 		return (SD_PKT_ALLOC_FAILURE);
13483 	}
13484 
13485 	/*
13486 	 * We do not do DMA breakup for USCSI commands, so return failure
13487 	 * here if all the needed DMA resources were not allocated.
13488 	 */
13489 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13490 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13491 		scsi_destroy_pkt(pktp);
13492 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13493 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13494 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13495 	}
13496 
13497 	/* Init the cdb from the given uscsi struct */
13498 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13499 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13500 
13501 	SD_FILL_SCSI1_LUN(un, pktp);
13502 
13503 	/*
13504 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13505 	 * for listing of the supported flags.
13506 	 */
13507 
13508 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13509 		flags |= FLAG_SILENT;
13510 	}
13511 
13512 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13513 		flags |= FLAG_DIAGNOSE;
13514 	}
13515 
13516 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13517 		flags |= FLAG_ISOLATE;
13518 	}
13519 
13520 	if (un->un_f_is_fibre == FALSE) {
13521 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13522 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13523 		}
13524 	}
13525 
13526 	/*
13527 	 * Set the pkt flags here so we save time later.
13528 	 * Note: These flags are NOT in the uscsi man page!!!
13529 	 */
13530 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13531 		flags |= FLAG_HEAD;
13532 	}
13533 
13534 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13535 		flags |= FLAG_NOINTR;
13536 	}
13537 
13538 	/*
13539 	 * For tagged queueing, things get a bit complicated.
13540 	 * Check first for head of queue and last for ordered queue.
13541 	 * If neither head nor order, use the default driver tag flags.
13542 	 */
13543 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13544 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13545 			flags |= FLAG_HTAG;
13546 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13547 			flags |= FLAG_OTAG;
13548 		} else {
13549 			flags |= un->un_tagflags & FLAG_TAGMASK;
13550 		}
13551 	}
13552 
13553 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13554 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13555 	}
13556 
13557 	pktp->pkt_flags = flags;
13558 
13559 	/* Copy the caller's CDB into the pkt... */
13560 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13561 
13562 	if (uscmd->uscsi_timeout == 0) {
13563 		pktp->pkt_time = un->un_uscsi_timeout;
13564 	} else {
13565 		pktp->pkt_time = uscmd->uscsi_timeout;
13566 	}
13567 
13568 	/* need it later to identify USCSI request in sdintr */
13569 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13570 
13571 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13572 
13573 	pktp->pkt_private = bp;
13574 	pktp->pkt_comp = sdintr;
13575 	*pktpp = pktp;
13576 
13577 	SD_TRACE(SD_LOG_IO_CORE, un,
13578 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13579 
13580 	return (SD_PKT_ALLOC_SUCCESS);
13581 }
13582 
13583 
13584 /*
13585  *    Function: sd_destroypkt_for_uscsi
13586  *
13587  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13588  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13589  *		struct.
13590  *
13591  *     Context: May be called under interrupt context
13592  */
13593 
13594 static void
13595 sd_destroypkt_for_uscsi(struct buf *bp)
13596 {
13597 	struct uscsi_cmd *uscmd;
13598 	struct sd_xbuf	*xp;
13599 	struct scsi_pkt	*pktp;
13600 	struct sd_lun	*un;
13601 
13602 	ASSERT(bp != NULL);
13603 	xp = SD_GET_XBUF(bp);
13604 	ASSERT(xp != NULL);
13605 	un = SD_GET_UN(bp);
13606 	ASSERT(un != NULL);
13607 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13608 	pktp = SD_GET_PKTP(bp);
13609 	ASSERT(pktp != NULL);
13610 
13611 	SD_TRACE(SD_LOG_IO_CORE, un,
13612 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13613 
13614 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13615 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13616 	ASSERT(uscmd != NULL);
13617 
13618 	/* Save the status and the residual into the uscsi_cmd struct */
13619 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13620 	uscmd->uscsi_resid  = bp->b_resid;
13621 
13622 	/*
13623 	 * If enabled, copy any saved sense data into the area specified
13624 	 * by the uscsi command.
13625 	 */
13626 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13627 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13628 		/*
13629 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13630 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13631 		 */
13632 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13633 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13634 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13635 	}
13636 
13637 	/* We are done with the scsi_pkt; free it now */
13638 	ASSERT(SD_GET_PKTP(bp) != NULL);
13639 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13640 
13641 	SD_TRACE(SD_LOG_IO_CORE, un,
13642 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13643 }
13644 
13645 
13646 /*
13647  *    Function: sd_bioclone_alloc
13648  *
13649  * Description: Allocate a buf(9S) and init it as per the given buf
13650  *		and the various arguments.  The associated sd_xbuf
13651  *		struct is (nearly) duplicated.  The struct buf *bp
13652  *		argument is saved in new_xp->xb_private.
13653  *
13654  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13655  *		datalen - size of data area for the shadow bp
13656  *		blkno - starting LBA
13657  *		func - function pointer for b_iodone in the shadow buf. (May
13658  *			be NULL if none.)
13659  *
13660  * Return Code: Pointer to allocates buf(9S) struct
13661  *
13662  *     Context: Can sleep.
13663  */
13664 
13665 static struct buf *
13666 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13667 	daddr_t blkno, int (*func)(struct buf *))
13668 {
13669 	struct	sd_lun	*un;
13670 	struct	sd_xbuf	*xp;
13671 	struct	sd_xbuf	*new_xp;
13672 	struct	buf	*new_bp;
13673 
13674 	ASSERT(bp != NULL);
13675 	xp = SD_GET_XBUF(bp);
13676 	ASSERT(xp != NULL);
13677 	un = SD_GET_UN(bp);
13678 	ASSERT(un != NULL);
13679 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13680 
13681 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13682 	    NULL, KM_SLEEP);
13683 
13684 	new_bp->b_lblkno	= blkno;
13685 
13686 	/*
13687 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13688 	 * original xbuf into it.
13689 	 */
13690 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13691 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13692 
13693 	/*
13694 	 * The given bp is automatically saved in the xb_private member
13695 	 * of the new xbuf.  Callers are allowed to depend on this.
13696 	 */
13697 	new_xp->xb_private = bp;
13698 
13699 	new_bp->b_private  = new_xp;
13700 
13701 	return (new_bp);
13702 }
13703 
13704 /*
13705  *    Function: sd_shadow_buf_alloc
13706  *
13707  * Description: Allocate a buf(9S) and init it as per the given buf
13708  *		and the various arguments.  The associated sd_xbuf
13709  *		struct is (nearly) duplicated.  The struct buf *bp
13710  *		argument is saved in new_xp->xb_private.
13711  *
13712  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13713  *		datalen - size of data area for the shadow bp
13714  *		bflags - B_READ or B_WRITE (pseudo flag)
13715  *		blkno - starting LBA
13716  *		func - function pointer for b_iodone in the shadow buf. (May
13717  *			be NULL if none.)
13718  *
13719  * Return Code: Pointer to allocates buf(9S) struct
13720  *
13721  *     Context: Can sleep.
13722  */
13723 
13724 static struct buf *
13725 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13726 	daddr_t blkno, int (*func)(struct buf *))
13727 {
13728 	struct	sd_lun	*un;
13729 	struct	sd_xbuf	*xp;
13730 	struct	sd_xbuf	*new_xp;
13731 	struct	buf	*new_bp;
13732 
13733 	ASSERT(bp != NULL);
13734 	xp = SD_GET_XBUF(bp);
13735 	ASSERT(xp != NULL);
13736 	un = SD_GET_UN(bp);
13737 	ASSERT(un != NULL);
13738 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13739 
13740 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13741 		bp_mapin(bp);
13742 	}
13743 
13744 	bflags &= (B_READ | B_WRITE);
13745 #if defined(__i386) || defined(__amd64)
13746 	new_bp = getrbuf(KM_SLEEP);
13747 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13748 	new_bp->b_bcount = datalen;
13749 	new_bp->b_flags	= bp->b_flags | bflags;
13750 #else
13751 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13752 	    datalen, bflags, SLEEP_FUNC, NULL);
13753 #endif
13754 	new_bp->av_forw	= NULL;
13755 	new_bp->av_back	= NULL;
13756 	new_bp->b_dev	= bp->b_dev;
13757 	new_bp->b_blkno	= blkno;
13758 	new_bp->b_iodone = func;
13759 	new_bp->b_edev	= bp->b_edev;
13760 	new_bp->b_resid	= 0;
13761 
13762 	/* We need to preserve the B_FAILFAST flag */
13763 	if (bp->b_flags & B_FAILFAST) {
13764 		new_bp->b_flags |= B_FAILFAST;
13765 	}
13766 
13767 	/*
13768 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13769 	 * original xbuf into it.
13770 	 */
13771 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13772 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13773 
13774 	/* Need later to copy data between the shadow buf & original buf! */
13775 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13776 
13777 	/*
13778 	 * The given bp is automatically saved in the xb_private member
13779 	 * of the new xbuf.  Callers are allowed to depend on this.
13780 	 */
13781 	new_xp->xb_private = bp;
13782 
13783 	new_bp->b_private  = new_xp;
13784 
13785 	return (new_bp);
13786 }
13787 
13788 /*
13789  *    Function: sd_bioclone_free
13790  *
13791  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13792  *		in the larger than partition operation.
13793  *
13794  *     Context: May be called under interrupt context
13795  */
13796 
13797 static void
13798 sd_bioclone_free(struct buf *bp)
13799 {
13800 	struct sd_xbuf	*xp;
13801 
13802 	ASSERT(bp != NULL);
13803 	xp = SD_GET_XBUF(bp);
13804 	ASSERT(xp != NULL);
13805 
13806 	/*
13807 	 * Call bp_mapout() before freeing the buf,  in case a lower
13808 	 * layer or HBA  had done a bp_mapin().  we must do this here
13809 	 * as we are the "originator" of the shadow buf.
13810 	 */
13811 	bp_mapout(bp);
13812 
13813 	/*
13814 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13815 	 * never gets confused by a stale value in this field. (Just a little
13816 	 * extra defensiveness here.)
13817 	 */
13818 	bp->b_iodone = NULL;
13819 
13820 	freerbuf(bp);
13821 
13822 	kmem_free(xp, sizeof (struct sd_xbuf));
13823 }
13824 
13825 /*
13826  *    Function: sd_shadow_buf_free
13827  *
13828  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13829  *
13830  *     Context: May be called under interrupt context
13831  */
13832 
13833 static void
13834 sd_shadow_buf_free(struct buf *bp)
13835 {
13836 	struct sd_xbuf	*xp;
13837 
13838 	ASSERT(bp != NULL);
13839 	xp = SD_GET_XBUF(bp);
13840 	ASSERT(xp != NULL);
13841 
13842 #if defined(__sparc)
13843 	/*
13844 	 * Call bp_mapout() before freeing the buf,  in case a lower
13845 	 * layer or HBA  had done a bp_mapin().  we must do this here
13846 	 * as we are the "originator" of the shadow buf.
13847 	 */
13848 	bp_mapout(bp);
13849 #endif
13850 
13851 	/*
13852 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13853 	 * never gets confused by a stale value in this field. (Just a little
13854 	 * extra defensiveness here.)
13855 	 */
13856 	bp->b_iodone = NULL;
13857 
13858 #if defined(__i386) || defined(__amd64)
13859 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13860 	freerbuf(bp);
13861 #else
13862 	scsi_free_consistent_buf(bp);
13863 #endif
13864 
13865 	kmem_free(xp, sizeof (struct sd_xbuf));
13866 }
13867 
13868 
13869 /*
13870  *    Function: sd_print_transport_rejected_message
13871  *
13872  * Description: This implements the ludicrously complex rules for printing
13873  *		a "transport rejected" message.  This is to address the
13874  *		specific problem of having a flood of this error message
13875  *		produced when a failover occurs.
13876  *
13877  *     Context: Any.
13878  */
13879 
13880 static void
13881 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13882 	int code)
13883 {
13884 	ASSERT(un != NULL);
13885 	ASSERT(mutex_owned(SD_MUTEX(un)));
13886 	ASSERT(xp != NULL);
13887 
13888 	/*
13889 	 * Print the "transport rejected" message under the following
13890 	 * conditions:
13891 	 *
13892 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13893 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13894 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13895 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13896 	 *   scsi_transport(9F) (which indicates that the target might have
13897 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13898 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13899 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13900 	 *   from scsi_transport().
13901 	 *
13902 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13903 	 * the preceeding cases in order for the message to be printed.
13904 	 */
13905 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13906 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13907 		    (code != TRAN_FATAL_ERROR) ||
13908 		    (un->un_tran_fatal_count == 1)) {
13909 			switch (code) {
13910 			case TRAN_BADPKT:
13911 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13912 				    "transport rejected bad packet\n");
13913 				break;
13914 			case TRAN_FATAL_ERROR:
13915 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13916 				    "transport rejected fatal error\n");
13917 				break;
13918 			default:
13919 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13920 				    "transport rejected (%d)\n", code);
13921 				break;
13922 			}
13923 		}
13924 	}
13925 }
13926 
13927 
13928 /*
13929  *    Function: sd_add_buf_to_waitq
13930  *
13931  * Description: Add the given buf(9S) struct to the wait queue for the
13932  *		instance.  If sorting is enabled, then the buf is added
13933  *		to the queue via an elevator sort algorithm (a la
13934  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13935  *		If sorting is not enabled, then the buf is just added
13936  *		to the end of the wait queue.
13937  *
13938  * Return Code: void
13939  *
13940  *     Context: Does not sleep/block, therefore technically can be called
13941  *		from any context.  However if sorting is enabled then the
13942  *		execution time is indeterminate, and may take long if
13943  *		the wait queue grows large.
13944  */
13945 
13946 static void
13947 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13948 {
13949 	struct buf *ap;
13950 
13951 	ASSERT(bp != NULL);
13952 	ASSERT(un != NULL);
13953 	ASSERT(mutex_owned(SD_MUTEX(un)));
13954 
13955 	/* If the queue is empty, add the buf as the only entry & return. */
13956 	if (un->un_waitq_headp == NULL) {
13957 		ASSERT(un->un_waitq_tailp == NULL);
13958 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13959 		bp->av_forw = NULL;
13960 		return;
13961 	}
13962 
13963 	ASSERT(un->un_waitq_tailp != NULL);
13964 
13965 	/*
13966 	 * If sorting is disabled, just add the buf to the tail end of
13967 	 * the wait queue and return.
13968 	 */
13969 	if (un->un_f_disksort_disabled) {
13970 		un->un_waitq_tailp->av_forw = bp;
13971 		un->un_waitq_tailp = bp;
13972 		bp->av_forw = NULL;
13973 		return;
13974 	}
13975 
13976 	/*
13977 	 * Sort thru the list of requests currently on the wait queue
13978 	 * and add the new buf request at the appropriate position.
13979 	 *
13980 	 * The un->un_waitq_headp is an activity chain pointer on which
13981 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13982 	 * first queue holds those requests which are positioned after
13983 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13984 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13985 	 * Thus we implement a one way scan, retracting after reaching
13986 	 * the end of the drive to the first request on the second
13987 	 * queue, at which time it becomes the first queue.
13988 	 * A one-way scan is natural because of the way UNIX read-ahead
13989 	 * blocks are allocated.
13990 	 *
13991 	 * If we lie after the first request, then we must locate the
13992 	 * second request list and add ourselves to it.
13993 	 */
13994 	ap = un->un_waitq_headp;
13995 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13996 		while (ap->av_forw != NULL) {
13997 			/*
13998 			 * Look for an "inversion" in the (normally
13999 			 * ascending) block numbers. This indicates
14000 			 * the start of the second request list.
14001 			 */
14002 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14003 				/*
14004 				 * Search the second request list for the
14005 				 * first request at a larger block number.
14006 				 * We go before that; however if there is
14007 				 * no such request, we go at the end.
14008 				 */
14009 				do {
14010 					if (SD_GET_BLKNO(bp) <
14011 					    SD_GET_BLKNO(ap->av_forw)) {
14012 						goto insert;
14013 					}
14014 					ap = ap->av_forw;
14015 				} while (ap->av_forw != NULL);
14016 				goto insert;		/* after last */
14017 			}
14018 			ap = ap->av_forw;
14019 		}
14020 
14021 		/*
14022 		 * No inversions... we will go after the last, and
14023 		 * be the first request in the second request list.
14024 		 */
14025 		goto insert;
14026 	}
14027 
14028 	/*
14029 	 * Request is at/after the current request...
14030 	 * sort in the first request list.
14031 	 */
14032 	while (ap->av_forw != NULL) {
14033 		/*
14034 		 * We want to go after the current request (1) if
14035 		 * there is an inversion after it (i.e. it is the end
14036 		 * of the first request list), or (2) if the next
14037 		 * request is a larger block no. than our request.
14038 		 */
14039 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14040 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14041 			goto insert;
14042 		}
14043 		ap = ap->av_forw;
14044 	}
14045 
14046 	/*
14047 	 * Neither a second list nor a larger request, therefore
14048 	 * we go at the end of the first list (which is the same
14049 	 * as the end of the whole schebang).
14050 	 */
14051 insert:
14052 	bp->av_forw = ap->av_forw;
14053 	ap->av_forw = bp;
14054 
14055 	/*
14056 	 * If we inserted onto the tail end of the waitq, make sure the
14057 	 * tail pointer is updated.
14058 	 */
14059 	if (ap == un->un_waitq_tailp) {
14060 		un->un_waitq_tailp = bp;
14061 	}
14062 }
14063 
14064 
14065 /*
14066  *    Function: sd_start_cmds
14067  *
14068  * Description: Remove and transport cmds from the driver queues.
14069  *
14070  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14071  *
14072  *		immed_bp - ptr to a buf to be transported immediately. Only
14073  *		the immed_bp is transported; bufs on the waitq are not
14074  *		processed and the un_retry_bp is not checked.  If immed_bp is
14075  *		NULL, then normal queue processing is performed.
14076  *
14077  *     Context: May be called from kernel thread context, interrupt context,
14078  *		or runout callback context. This function may not block or
14079  *		call routines that block.
14080  */
14081 
14082 static void
14083 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14084 {
14085 	struct	sd_xbuf	*xp;
14086 	struct	buf	*bp;
14087 	void	(*statp)(kstat_io_t *);
14088 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14089 	void	(*saved_statp)(kstat_io_t *);
14090 #endif
14091 	int	rval;
14092 
14093 	ASSERT(un != NULL);
14094 	ASSERT(mutex_owned(SD_MUTEX(un)));
14095 	ASSERT(un->un_ncmds_in_transport >= 0);
14096 	ASSERT(un->un_throttle >= 0);
14097 
14098 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14099 
14100 	do {
14101 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14102 		saved_statp = NULL;
14103 #endif
14104 
14105 		/*
14106 		 * If we are syncing or dumping, fail the command to
14107 		 * avoid recursively calling back into scsi_transport().
14108 		 * The dump I/O itself uses a separate code path so this
14109 		 * only prevents non-dump I/O from being sent while dumping.
14110 		 * File system sync takes place before dumping begins.
14111 		 * During panic, filesystem I/O is allowed provided
14112 		 * un_in_callback is <= 1.  This is to prevent recursion
14113 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14114 		 * sd_start_cmds and so on.  See panic.c for more information
14115 		 * about the states the system can be in during panic.
14116 		 */
14117 		if ((un->un_state == SD_STATE_DUMPING) ||
14118 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14119 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14120 			    "sd_start_cmds: panicking\n");
14121 			goto exit;
14122 		}
14123 
14124 		if ((bp = immed_bp) != NULL) {
14125 			/*
14126 			 * We have a bp that must be transported immediately.
14127 			 * It's OK to transport the immed_bp here without doing
14128 			 * the throttle limit check because the immed_bp is
14129 			 * always used in a retry/recovery case. This means
14130 			 * that we know we are not at the throttle limit by
14131 			 * virtue of the fact that to get here we must have
14132 			 * already gotten a command back via sdintr(). This also
14133 			 * relies on (1) the command on un_retry_bp preventing
14134 			 * further commands from the waitq from being issued;
14135 			 * and (2) the code in sd_retry_command checking the
14136 			 * throttle limit before issuing a delayed or immediate
14137 			 * retry. This holds even if the throttle limit is
14138 			 * currently ratcheted down from its maximum value.
14139 			 */
14140 			statp = kstat_runq_enter;
14141 			if (bp == un->un_retry_bp) {
14142 				ASSERT((un->un_retry_statp == NULL) ||
14143 				    (un->un_retry_statp == kstat_waitq_enter) ||
14144 				    (un->un_retry_statp ==
14145 				    kstat_runq_back_to_waitq));
14146 				/*
14147 				 * If the waitq kstat was incremented when
14148 				 * sd_set_retry_bp() queued this bp for a retry,
14149 				 * then we must set up statp so that the waitq
14150 				 * count will get decremented correctly below.
14151 				 * Also we must clear un->un_retry_statp to
14152 				 * ensure that we do not act on a stale value
14153 				 * in this field.
14154 				 */
14155 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14156 				    (un->un_retry_statp ==
14157 				    kstat_runq_back_to_waitq)) {
14158 					statp = kstat_waitq_to_runq;
14159 				}
14160 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14161 				saved_statp = un->un_retry_statp;
14162 #endif
14163 				un->un_retry_statp = NULL;
14164 
14165 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14166 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14167 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14168 				    un, un->un_retry_bp, un->un_throttle,
14169 				    un->un_ncmds_in_transport);
14170 			} else {
14171 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14172 				    "processing priority bp:0x%p\n", bp);
14173 			}
14174 
14175 		} else if ((bp = un->un_waitq_headp) != NULL) {
14176 			/*
14177 			 * A command on the waitq is ready to go, but do not
14178 			 * send it if:
14179 			 *
14180 			 * (1) the throttle limit has been reached, or
14181 			 * (2) a retry is pending, or
14182 			 * (3) a START_STOP_UNIT callback pending, or
14183 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14184 			 *	command is pending.
14185 			 *
14186 			 * For all of these conditions, IO processing will
14187 			 * restart after the condition is cleared.
14188 			 */
14189 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14190 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14191 				    "sd_start_cmds: exiting, "
14192 				    "throttle limit reached!\n");
14193 				goto exit;
14194 			}
14195 			if (un->un_retry_bp != NULL) {
14196 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14197 				    "sd_start_cmds: exiting, retry pending!\n");
14198 				goto exit;
14199 			}
14200 			if (un->un_startstop_timeid != NULL) {
14201 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14202 				    "sd_start_cmds: exiting, "
14203 				    "START_STOP pending!\n");
14204 				goto exit;
14205 			}
14206 			if (un->un_direct_priority_timeid != NULL) {
14207 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14208 				    "sd_start_cmds: exiting, "
14209 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14210 				goto exit;
14211 			}
14212 
14213 			/* Dequeue the command */
14214 			un->un_waitq_headp = bp->av_forw;
14215 			if (un->un_waitq_headp == NULL) {
14216 				un->un_waitq_tailp = NULL;
14217 			}
14218 			bp->av_forw = NULL;
14219 			statp = kstat_waitq_to_runq;
14220 			SD_TRACE(SD_LOG_IO_CORE, un,
14221 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14222 
14223 		} else {
14224 			/* No work to do so bail out now */
14225 			SD_TRACE(SD_LOG_IO_CORE, un,
14226 			    "sd_start_cmds: no more work, exiting!\n");
14227 			goto exit;
14228 		}
14229 
14230 		/*
14231 		 * Reset the state to normal. This is the mechanism by which
14232 		 * the state transitions from either SD_STATE_RWAIT or
14233 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14234 		 * If state is SD_STATE_PM_CHANGING then this command is
14235 		 * part of the device power control and the state must
14236 		 * not be put back to normal. Doing so would would
14237 		 * allow new commands to proceed when they shouldn't,
14238 		 * the device may be going off.
14239 		 */
14240 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14241 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14242 			New_state(un, SD_STATE_NORMAL);
14243 		    }
14244 
14245 		xp = SD_GET_XBUF(bp);
14246 		ASSERT(xp != NULL);
14247 
14248 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14249 		/*
14250 		 * Allocate the scsi_pkt if we need one, or attach DMA
14251 		 * resources if we have a scsi_pkt that needs them. The
14252 		 * latter should only occur for commands that are being
14253 		 * retried.
14254 		 */
14255 		if ((xp->xb_pktp == NULL) ||
14256 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14257 #else
14258 		if (xp->xb_pktp == NULL) {
14259 #endif
14260 			/*
14261 			 * There is no scsi_pkt allocated for this buf. Call
14262 			 * the initpkt function to allocate & init one.
14263 			 *
14264 			 * The scsi_init_pkt runout callback functionality is
14265 			 * implemented as follows:
14266 			 *
14267 			 * 1) The initpkt function always calls
14268 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14269 			 *    callback routine.
14270 			 * 2) A successful packet allocation is initialized and
14271 			 *    the I/O is transported.
14272 			 * 3) The I/O associated with an allocation resource
14273 			 *    failure is left on its queue to be retried via
14274 			 *    runout or the next I/O.
14275 			 * 4) The I/O associated with a DMA error is removed
14276 			 *    from the queue and failed with EIO. Processing of
14277 			 *    the transport queues is also halted to be
14278 			 *    restarted via runout or the next I/O.
14279 			 * 5) The I/O associated with a CDB size or packet
14280 			 *    size error is removed from the queue and failed
14281 			 *    with EIO. Processing of the transport queues is
14282 			 *    continued.
14283 			 *
14284 			 * Note: there is no interface for canceling a runout
14285 			 * callback. To prevent the driver from detaching or
14286 			 * suspending while a runout is pending the driver
14287 			 * state is set to SD_STATE_RWAIT
14288 			 *
14289 			 * Note: using the scsi_init_pkt callback facility can
14290 			 * result in an I/O request persisting at the head of
14291 			 * the list which cannot be satisfied even after
14292 			 * multiple retries. In the future the driver may
14293 			 * implement some kind of maximum runout count before
14294 			 * failing an I/O.
14295 			 *
14296 			 * Note: the use of funcp below may seem superfluous,
14297 			 * but it helps warlock figure out the correct
14298 			 * initpkt function calls (see [s]sd.wlcmd).
14299 			 */
14300 			struct scsi_pkt	*pktp;
14301 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14302 
14303 			ASSERT(bp != un->un_rqs_bp);
14304 
14305 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14306 			switch ((*funcp)(bp, &pktp)) {
14307 			case  SD_PKT_ALLOC_SUCCESS:
14308 				xp->xb_pktp = pktp;
14309 				SD_TRACE(SD_LOG_IO_CORE, un,
14310 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14311 				    pktp);
14312 				goto got_pkt;
14313 
14314 			case SD_PKT_ALLOC_FAILURE:
14315 				/*
14316 				 * Temporary (hopefully) resource depletion.
14317 				 * Since retries and RQS commands always have a
14318 				 * scsi_pkt allocated, these cases should never
14319 				 * get here. So the only cases this needs to
14320 				 * handle is a bp from the waitq (which we put
14321 				 * back onto the waitq for sdrunout), or a bp
14322 				 * sent as an immed_bp (which we just fail).
14323 				 */
14324 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14325 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14326 
14327 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14328 
14329 				if (bp == immed_bp) {
14330 					/*
14331 					 * If SD_XB_DMA_FREED is clear, then
14332 					 * this is a failure to allocate a
14333 					 * scsi_pkt, and we must fail the
14334 					 * command.
14335 					 */
14336 					if ((xp->xb_pkt_flags &
14337 					    SD_XB_DMA_FREED) == 0) {
14338 						break;
14339 					}
14340 
14341 					/*
14342 					 * If this immediate command is NOT our
14343 					 * un_retry_bp, then we must fail it.
14344 					 */
14345 					if (bp != un->un_retry_bp) {
14346 						break;
14347 					}
14348 
14349 					/*
14350 					 * We get here if this cmd is our
14351 					 * un_retry_bp that was DMAFREED, but
14352 					 * scsi_init_pkt() failed to reallocate
14353 					 * DMA resources when we attempted to
14354 					 * retry it. This can happen when an
14355 					 * mpxio failover is in progress, but
14356 					 * we don't want to just fail the
14357 					 * command in this case.
14358 					 *
14359 					 * Use timeout(9F) to restart it after
14360 					 * a 100ms delay.  We don't want to
14361 					 * let sdrunout() restart it, because
14362 					 * sdrunout() is just supposed to start
14363 					 * commands that are sitting on the
14364 					 * wait queue.  The un_retry_bp stays
14365 					 * set until the command completes, but
14366 					 * sdrunout can be called many times
14367 					 * before that happens.  Since sdrunout
14368 					 * cannot tell if the un_retry_bp is
14369 					 * already in the transport, it could
14370 					 * end up calling scsi_transport() for
14371 					 * the un_retry_bp multiple times.
14372 					 *
14373 					 * Also: don't schedule the callback
14374 					 * if some other callback is already
14375 					 * pending.
14376 					 */
14377 					if (un->un_retry_statp == NULL) {
14378 						/*
14379 						 * restore the kstat pointer to
14380 						 * keep kstat counts coherent
14381 						 * when we do retry the command.
14382 						 */
14383 						un->un_retry_statp =
14384 						    saved_statp;
14385 					}
14386 
14387 					if ((un->un_startstop_timeid == NULL) &&
14388 					    (un->un_retry_timeid == NULL) &&
14389 					    (un->un_direct_priority_timeid ==
14390 					    NULL)) {
14391 
14392 						un->un_retry_timeid =
14393 						    timeout(
14394 						    sd_start_retry_command,
14395 						    un, SD_RESTART_TIMEOUT);
14396 					}
14397 					goto exit;
14398 				}
14399 
14400 #else
14401 				if (bp == immed_bp) {
14402 					break;	/* Just fail the command */
14403 				}
14404 #endif
14405 
14406 				/* Add the buf back to the head of the waitq */
14407 				bp->av_forw = un->un_waitq_headp;
14408 				un->un_waitq_headp = bp;
14409 				if (un->un_waitq_tailp == NULL) {
14410 					un->un_waitq_tailp = bp;
14411 				}
14412 				goto exit;
14413 
14414 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14415 				/*
14416 				 * HBA DMA resource failure. Fail the command
14417 				 * and continue processing of the queues.
14418 				 */
14419 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14420 				    "sd_start_cmds: "
14421 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14422 				break;
14423 
14424 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14425 				/*
14426 				 * Note:x86: Partial DMA mapping not supported
14427 				 * for USCSI commands, and all the needed DMA
14428 				 * resources were not allocated.
14429 				 */
14430 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14431 				    "sd_start_cmds: "
14432 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14433 				break;
14434 
14435 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14436 				/*
14437 				 * Note:x86: Request cannot fit into CDB based
14438 				 * on lba and len.
14439 				 */
14440 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14441 				    "sd_start_cmds: "
14442 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14443 				break;
14444 
14445 			default:
14446 				/* Should NEVER get here! */
14447 				panic("scsi_initpkt error");
14448 				/*NOTREACHED*/
14449 			}
14450 
14451 			/*
14452 			 * Fatal error in allocating a scsi_pkt for this buf.
14453 			 * Update kstats & return the buf with an error code.
14454 			 * We must use sd_return_failed_command_no_restart() to
14455 			 * avoid a recursive call back into sd_start_cmds().
14456 			 * However this also means that we must keep processing
14457 			 * the waitq here in order to avoid stalling.
14458 			 */
14459 			if (statp == kstat_waitq_to_runq) {
14460 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14461 			}
14462 			sd_return_failed_command_no_restart(un, bp, EIO);
14463 			if (bp == immed_bp) {
14464 				/* immed_bp is gone by now, so clear this */
14465 				immed_bp = NULL;
14466 			}
14467 			continue;
14468 		}
14469 got_pkt:
14470 		if (bp == immed_bp) {
14471 			/* goto the head of the class.... */
14472 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14473 		}
14474 
14475 		un->un_ncmds_in_transport++;
14476 		SD_UPDATE_KSTATS(un, statp, bp);
14477 
14478 		/*
14479 		 * Call scsi_transport() to send the command to the target.
14480 		 * According to SCSA architecture, we must drop the mutex here
14481 		 * before calling scsi_transport() in order to avoid deadlock.
14482 		 * Note that the scsi_pkt's completion routine can be executed
14483 		 * (from interrupt context) even before the call to
14484 		 * scsi_transport() returns.
14485 		 */
14486 		SD_TRACE(SD_LOG_IO_CORE, un,
14487 		    "sd_start_cmds: calling scsi_transport()\n");
14488 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14489 
14490 		mutex_exit(SD_MUTEX(un));
14491 		rval = scsi_transport(xp->xb_pktp);
14492 		mutex_enter(SD_MUTEX(un));
14493 
14494 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14495 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14496 
14497 		switch (rval) {
14498 		case TRAN_ACCEPT:
14499 			/* Clear this with every pkt accepted by the HBA */
14500 			un->un_tran_fatal_count = 0;
14501 			break;	/* Success; try the next cmd (if any) */
14502 
14503 		case TRAN_BUSY:
14504 			un->un_ncmds_in_transport--;
14505 			ASSERT(un->un_ncmds_in_transport >= 0);
14506 
14507 			/*
14508 			 * Don't retry request sense, the sense data
14509 			 * is lost when another request is sent.
14510 			 * Free up the rqs buf and retry
14511 			 * the original failed cmd.  Update kstat.
14512 			 */
14513 			if (bp == un->un_rqs_bp) {
14514 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14515 				bp = sd_mark_rqs_idle(un, xp);
14516 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14517 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14518 					kstat_waitq_enter);
14519 				goto exit;
14520 			}
14521 
14522 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14523 			/*
14524 			 * Free the DMA resources for the  scsi_pkt. This will
14525 			 * allow mpxio to select another path the next time
14526 			 * we call scsi_transport() with this scsi_pkt.
14527 			 * See sdintr() for the rationalization behind this.
14528 			 */
14529 			if ((un->un_f_is_fibre == TRUE) &&
14530 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14531 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14532 				scsi_dmafree(xp->xb_pktp);
14533 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14534 			}
14535 #endif
14536 
14537 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14538 				/*
14539 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14540 				 * are for error recovery situations. These do
14541 				 * not use the normal command waitq, so if they
14542 				 * get a TRAN_BUSY we cannot put them back onto
14543 				 * the waitq for later retry. One possible
14544 				 * problem is that there could already be some
14545 				 * other command on un_retry_bp that is waiting
14546 				 * for this one to complete, so we would be
14547 				 * deadlocked if we put this command back onto
14548 				 * the waitq for later retry (since un_retry_bp
14549 				 * must complete before the driver gets back to
14550 				 * commands on the waitq).
14551 				 *
14552 				 * To avoid deadlock we must schedule a callback
14553 				 * that will restart this command after a set
14554 				 * interval.  This should keep retrying for as
14555 				 * long as the underlying transport keeps
14556 				 * returning TRAN_BUSY (just like for other
14557 				 * commands).  Use the same timeout interval as
14558 				 * for the ordinary TRAN_BUSY retry.
14559 				 */
14560 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14561 				    "sd_start_cmds: scsi_transport() returned "
14562 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14563 
14564 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14565 				un->un_direct_priority_timeid =
14566 				    timeout(sd_start_direct_priority_command,
14567 				    bp, SD_BSY_TIMEOUT / 500);
14568 
14569 				goto exit;
14570 			}
14571 
14572 			/*
14573 			 * For TRAN_BUSY, we want to reduce the throttle value,
14574 			 * unless we are retrying a command.
14575 			 */
14576 			if (bp != un->un_retry_bp) {
14577 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14578 			}
14579 
14580 			/*
14581 			 * Set up the bp to be tried again 10 ms later.
14582 			 * Note:x86: Is there a timeout value in the sd_lun
14583 			 * for this condition?
14584 			 */
14585 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14586 				kstat_runq_back_to_waitq);
14587 			goto exit;
14588 
14589 		case TRAN_FATAL_ERROR:
14590 			un->un_tran_fatal_count++;
14591 			/* FALLTHRU */
14592 
14593 		case TRAN_BADPKT:
14594 		default:
14595 			un->un_ncmds_in_transport--;
14596 			ASSERT(un->un_ncmds_in_transport >= 0);
14597 
14598 			/*
14599 			 * If this is our REQUEST SENSE command with a
14600 			 * transport error, we must get back the pointers
14601 			 * to the original buf, and mark the REQUEST
14602 			 * SENSE command as "available".
14603 			 */
14604 			if (bp == un->un_rqs_bp) {
14605 				bp = sd_mark_rqs_idle(un, xp);
14606 				xp = SD_GET_XBUF(bp);
14607 			} else {
14608 				/*
14609 				 * Legacy behavior: do not update transport
14610 				 * error count for request sense commands.
14611 				 */
14612 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14613 			}
14614 
14615 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14616 			sd_print_transport_rejected_message(un, xp, rval);
14617 
14618 			/*
14619 			 * We must use sd_return_failed_command_no_restart() to
14620 			 * avoid a recursive call back into sd_start_cmds().
14621 			 * However this also means that we must keep processing
14622 			 * the waitq here in order to avoid stalling.
14623 			 */
14624 			sd_return_failed_command_no_restart(un, bp, EIO);
14625 
14626 			/*
14627 			 * Notify any threads waiting in sd_ddi_suspend() that
14628 			 * a command completion has occurred.
14629 			 */
14630 			if (un->un_state == SD_STATE_SUSPENDED) {
14631 				cv_broadcast(&un->un_disk_busy_cv);
14632 			}
14633 
14634 			if (bp == immed_bp) {
14635 				/* immed_bp is gone by now, so clear this */
14636 				immed_bp = NULL;
14637 			}
14638 			break;
14639 		}
14640 
14641 	} while (immed_bp == NULL);
14642 
14643 exit:
14644 	ASSERT(mutex_owned(SD_MUTEX(un)));
14645 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14646 }
14647 
14648 
14649 /*
14650  *    Function: sd_return_command
14651  *
14652  * Description: Returns a command to its originator (with or without an
14653  *		error).  Also starts commands waiting to be transported
14654  *		to the target.
14655  *
14656  *     Context: May be called from interrupt, kernel, or timeout context
14657  */
14658 
14659 static void
14660 sd_return_command(struct sd_lun *un, struct buf *bp)
14661 {
14662 	struct sd_xbuf *xp;
14663 #if defined(__i386) || defined(__amd64)
14664 	struct scsi_pkt *pktp;
14665 #endif
14666 
14667 	ASSERT(bp != NULL);
14668 	ASSERT(un != NULL);
14669 	ASSERT(mutex_owned(SD_MUTEX(un)));
14670 	ASSERT(bp != un->un_rqs_bp);
14671 	xp = SD_GET_XBUF(bp);
14672 	ASSERT(xp != NULL);
14673 
14674 #if defined(__i386) || defined(__amd64)
14675 	pktp = SD_GET_PKTP(bp);
14676 #endif
14677 
14678 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14679 
14680 #if defined(__i386) || defined(__amd64)
14681 	/*
14682 	 * Note:x86: check for the "sdrestart failed" case.
14683 	 */
14684 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14685 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14686 		(xp->xb_pktp->pkt_resid == 0)) {
14687 
14688 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14689 			/*
14690 			 * Successfully set up next portion of cmd
14691 			 * transfer, try sending it
14692 			 */
14693 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14694 			    NULL, NULL, 0, (clock_t)0, NULL);
14695 			sd_start_cmds(un, NULL);
14696 			return;	/* Note:x86: need a return here? */
14697 		}
14698 	}
14699 #endif
14700 
14701 	/*
14702 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14703 	 * can happen if upon being re-tried the failfast bp either
14704 	 * succeeded or encountered another error (possibly even a different
14705 	 * error than the one that precipitated the failfast state, but in
14706 	 * that case it would have had to exhaust retries as well). Regardless,
14707 	 * this should not occur whenever the instance is in the active
14708 	 * failfast state.
14709 	 */
14710 	if (bp == un->un_failfast_bp) {
14711 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14712 		un->un_failfast_bp = NULL;
14713 	}
14714 
14715 	/*
14716 	 * Clear the failfast state upon successful completion of ANY cmd.
14717 	 */
14718 	if (bp->b_error == 0) {
14719 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14720 	}
14721 
14722 	/*
14723 	 * This is used if the command was retried one or more times. Show that
14724 	 * we are done with it, and allow processing of the waitq to resume.
14725 	 */
14726 	if (bp == un->un_retry_bp) {
14727 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14728 		    "sd_return_command: un:0x%p: "
14729 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14730 		un->un_retry_bp = NULL;
14731 		un->un_retry_statp = NULL;
14732 	}
14733 
14734 	SD_UPDATE_RDWR_STATS(un, bp);
14735 	SD_UPDATE_PARTITION_STATS(un, bp);
14736 
14737 	switch (un->un_state) {
14738 	case SD_STATE_SUSPENDED:
14739 		/*
14740 		 * Notify any threads waiting in sd_ddi_suspend() that
14741 		 * a command completion has occurred.
14742 		 */
14743 		cv_broadcast(&un->un_disk_busy_cv);
14744 		break;
14745 	default:
14746 		sd_start_cmds(un, NULL);
14747 		break;
14748 	}
14749 
14750 	/* Return this command up the iodone chain to its originator. */
14751 	mutex_exit(SD_MUTEX(un));
14752 
14753 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14754 	xp->xb_pktp = NULL;
14755 
14756 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14757 
14758 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14759 	mutex_enter(SD_MUTEX(un));
14760 
14761 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14762 }
14763 
14764 
14765 /*
14766  *    Function: sd_return_failed_command
14767  *
14768  * Description: Command completion when an error occurred.
14769  *
14770  *     Context: May be called from interrupt context
14771  */
14772 
14773 static void
14774 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14775 {
14776 	ASSERT(bp != NULL);
14777 	ASSERT(un != NULL);
14778 	ASSERT(mutex_owned(SD_MUTEX(un)));
14779 
14780 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14781 	    "sd_return_failed_command: entry\n");
14782 
14783 	/*
14784 	 * b_resid could already be nonzero due to a partial data
14785 	 * transfer, so do not change it here.
14786 	 */
14787 	SD_BIOERROR(bp, errcode);
14788 
14789 	sd_return_command(un, bp);
14790 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14791 	    "sd_return_failed_command: exit\n");
14792 }
14793 
14794 
14795 /*
14796  *    Function: sd_return_failed_command_no_restart
14797  *
14798  * Description: Same as sd_return_failed_command, but ensures that no
14799  *		call back into sd_start_cmds will be issued.
14800  *
14801  *     Context: May be called from interrupt context
14802  */
14803 
14804 static void
14805 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14806 	int errcode)
14807 {
14808 	struct sd_xbuf *xp;
14809 
14810 	ASSERT(bp != NULL);
14811 	ASSERT(un != NULL);
14812 	ASSERT(mutex_owned(SD_MUTEX(un)));
14813 	xp = SD_GET_XBUF(bp);
14814 	ASSERT(xp != NULL);
14815 	ASSERT(errcode != 0);
14816 
14817 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14818 	    "sd_return_failed_command_no_restart: entry\n");
14819 
14820 	/*
14821 	 * b_resid could already be nonzero due to a partial data
14822 	 * transfer, so do not change it here.
14823 	 */
14824 	SD_BIOERROR(bp, errcode);
14825 
14826 	/*
14827 	 * If this is the failfast bp, clear it. This can happen if the
14828 	 * failfast bp encounterd a fatal error when we attempted to
14829 	 * re-try it (such as a scsi_transport(9F) failure).  However
14830 	 * we should NOT be in an active failfast state if the failfast
14831 	 * bp is not NULL.
14832 	 */
14833 	if (bp == un->un_failfast_bp) {
14834 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14835 		un->un_failfast_bp = NULL;
14836 	}
14837 
14838 	if (bp == un->un_retry_bp) {
14839 		/*
14840 		 * This command was retried one or more times. Show that we are
14841 		 * done with it, and allow processing of the waitq to resume.
14842 		 */
14843 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14844 		    "sd_return_failed_command_no_restart: "
14845 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14846 		un->un_retry_bp = NULL;
14847 		un->un_retry_statp = NULL;
14848 	}
14849 
14850 	SD_UPDATE_RDWR_STATS(un, bp);
14851 	SD_UPDATE_PARTITION_STATS(un, bp);
14852 
14853 	mutex_exit(SD_MUTEX(un));
14854 
14855 	if (xp->xb_pktp != NULL) {
14856 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14857 		xp->xb_pktp = NULL;
14858 	}
14859 
14860 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14861 
14862 	mutex_enter(SD_MUTEX(un));
14863 
14864 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14865 	    "sd_return_failed_command_no_restart: exit\n");
14866 }
14867 
14868 
14869 /*
14870  *    Function: sd_retry_command
14871  *
14872  * Description: queue up a command for retry, or (optionally) fail it
14873  *		if retry counts are exhausted.
14874  *
14875  *   Arguments: un - Pointer to the sd_lun struct for the target.
14876  *
14877  *		bp - Pointer to the buf for the command to be retried.
14878  *
14879  *		retry_check_flag - Flag to see which (if any) of the retry
14880  *		   counts should be decremented/checked. If the indicated
14881  *		   retry count is exhausted, then the command will not be
14882  *		   retried; it will be failed instead. This should use a
14883  *		   value equal to one of the following:
14884  *
14885  *			SD_RETRIES_NOCHECK
14886  *			SD_RESD_RETRIES_STANDARD
14887  *			SD_RETRIES_VICTIM
14888  *
14889  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14890  *		   if the check should be made to see of FLAG_ISOLATE is set
14891  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14892  *		   not retried, it is simply failed.
14893  *
14894  *		user_funcp - Ptr to function to call before dispatching the
14895  *		   command. May be NULL if no action needs to be performed.
14896  *		   (Primarily intended for printing messages.)
14897  *
14898  *		user_arg - Optional argument to be passed along to
14899  *		   the user_funcp call.
14900  *
14901  *		failure_code - errno return code to set in the bp if the
14902  *		   command is going to be failed.
14903  *
14904  *		retry_delay - Retry delay interval in (clock_t) units. May
14905  *		   be zero which indicates that the retry should be retried
14906  *		   immediately (ie, without an intervening delay).
14907  *
14908  *		statp - Ptr to kstat function to be updated if the command
14909  *		   is queued for a delayed retry. May be NULL if no kstat
14910  *		   update is desired.
14911  *
14912  *     Context: May be called from interupt context.
14913  */
14914 
14915 static void
14916 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14917 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14918 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14919 	void (*statp)(kstat_io_t *))
14920 {
14921 	struct sd_xbuf	*xp;
14922 	struct scsi_pkt	*pktp;
14923 
14924 	ASSERT(un != NULL);
14925 	ASSERT(mutex_owned(SD_MUTEX(un)));
14926 	ASSERT(bp != NULL);
14927 	xp = SD_GET_XBUF(bp);
14928 	ASSERT(xp != NULL);
14929 	pktp = SD_GET_PKTP(bp);
14930 	ASSERT(pktp != NULL);
14931 
14932 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14933 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14934 
14935 	/*
14936 	 * If we are syncing or dumping, fail the command to avoid
14937 	 * recursively calling back into scsi_transport().
14938 	 */
14939 	if (ddi_in_panic()) {
14940 		goto fail_command_no_log;
14941 	}
14942 
14943 	/*
14944 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14945 	 * log an error and fail the command.
14946 	 */
14947 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14948 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14949 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14950 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14951 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14952 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14953 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14954 		goto fail_command;
14955 	}
14956 
14957 	/*
14958 	 * If we are suspended, then put the command onto head of the
14959 	 * wait queue since we don't want to start more commands.
14960 	 */
14961 	switch (un->un_state) {
14962 	case SD_STATE_SUSPENDED:
14963 	case SD_STATE_DUMPING:
14964 		bp->av_forw = un->un_waitq_headp;
14965 		un->un_waitq_headp = bp;
14966 		if (un->un_waitq_tailp == NULL) {
14967 			un->un_waitq_tailp = bp;
14968 		}
14969 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14970 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14971 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14972 		return;
14973 	default:
14974 		break;
14975 	}
14976 
14977 	/*
14978 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14979 	 * is set; if it is then we do not want to retry the command.
14980 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14981 	 */
14982 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14983 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14984 			goto fail_command;
14985 		}
14986 	}
14987 
14988 
14989 	/*
14990 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14991 	 * command timeout or a selection timeout has occurred. This means
14992 	 * that we were unable to establish an kind of communication with
14993 	 * the target, and subsequent retries and/or commands are likely
14994 	 * to encounter similar results and take a long time to complete.
14995 	 *
14996 	 * If this is a failfast error condition, we need to update the
14997 	 * failfast state, even if this bp does not have B_FAILFAST set.
14998 	 */
14999 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15000 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15001 			ASSERT(un->un_failfast_bp == NULL);
15002 			/*
15003 			 * If we are already in the active failfast state, and
15004 			 * another failfast error condition has been detected,
15005 			 * then fail this command if it has B_FAILFAST set.
15006 			 * If B_FAILFAST is clear, then maintain the legacy
15007 			 * behavior of retrying heroically, even tho this will
15008 			 * take a lot more time to fail the command.
15009 			 */
15010 			if (bp->b_flags & B_FAILFAST) {
15011 				goto fail_command;
15012 			}
15013 		} else {
15014 			/*
15015 			 * We're not in the active failfast state, but we
15016 			 * have a failfast error condition, so we must begin
15017 			 * transition to the next state. We do this regardless
15018 			 * of whether or not this bp has B_FAILFAST set.
15019 			 */
15020 			if (un->un_failfast_bp == NULL) {
15021 				/*
15022 				 * This is the first bp to meet a failfast
15023 				 * condition so save it on un_failfast_bp &
15024 				 * do normal retry processing. Do not enter
15025 				 * active failfast state yet. This marks
15026 				 * entry into the "failfast pending" state.
15027 				 */
15028 				un->un_failfast_bp = bp;
15029 
15030 			} else if (un->un_failfast_bp == bp) {
15031 				/*
15032 				 * This is the second time *this* bp has
15033 				 * encountered a failfast error condition,
15034 				 * so enter active failfast state & flush
15035 				 * queues as appropriate.
15036 				 */
15037 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15038 				un->un_failfast_bp = NULL;
15039 				sd_failfast_flushq(un);
15040 
15041 				/*
15042 				 * Fail this bp now if B_FAILFAST set;
15043 				 * otherwise continue with retries. (It would
15044 				 * be pretty ironic if this bp succeeded on a
15045 				 * subsequent retry after we just flushed all
15046 				 * the queues).
15047 				 */
15048 				if (bp->b_flags & B_FAILFAST) {
15049 					goto fail_command;
15050 				}
15051 
15052 #if !defined(lint) && !defined(__lint)
15053 			} else {
15054 				/*
15055 				 * If neither of the preceeding conditionals
15056 				 * was true, it means that there is some
15057 				 * *other* bp that has met an inital failfast
15058 				 * condition and is currently either being
15059 				 * retried or is waiting to be retried. In
15060 				 * that case we should perform normal retry
15061 				 * processing on *this* bp, since there is a
15062 				 * chance that the current failfast condition
15063 				 * is transient and recoverable. If that does
15064 				 * not turn out to be the case, then retries
15065 				 * will be cleared when the wait queue is
15066 				 * flushed anyway.
15067 				 */
15068 #endif
15069 			}
15070 		}
15071 	} else {
15072 		/*
15073 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15074 		 * likely were able to at least establish some level of
15075 		 * communication with the target and subsequent commands
15076 		 * and/or retries are likely to get through to the target,
15077 		 * In this case we want to be aggressive about clearing
15078 		 * the failfast state. Note that this does not affect
15079 		 * the "failfast pending" condition.
15080 		 */
15081 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15082 	}
15083 
15084 
15085 	/*
15086 	 * Check the specified retry count to see if we can still do
15087 	 * any retries with this pkt before we should fail it.
15088 	 */
15089 	switch (retry_check_flag & SD_RETRIES_MASK) {
15090 	case SD_RETRIES_VICTIM:
15091 		/*
15092 		 * Check the victim retry count. If exhausted, then fall
15093 		 * thru & check against the standard retry count.
15094 		 */
15095 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15096 			/* Increment count & proceed with the retry */
15097 			xp->xb_victim_retry_count++;
15098 			break;
15099 		}
15100 		/* Victim retries exhausted, fall back to std. retries... */
15101 		/* FALLTHRU */
15102 
15103 	case SD_RETRIES_STANDARD:
15104 		if (xp->xb_retry_count >= un->un_retry_count) {
15105 			/* Retries exhausted, fail the command */
15106 			SD_TRACE(SD_LOG_IO_CORE, un,
15107 			    "sd_retry_command: retries exhausted!\n");
15108 			/*
15109 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15110 			 * commands with nonzero pkt_resid.
15111 			 */
15112 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15113 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15114 			    (pktp->pkt_resid != 0)) {
15115 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15116 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15117 					SD_UPDATE_B_RESID(bp, pktp);
15118 				}
15119 			}
15120 			goto fail_command;
15121 		}
15122 		xp->xb_retry_count++;
15123 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15124 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15125 		break;
15126 
15127 	case SD_RETRIES_UA:
15128 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15129 			/* Retries exhausted, fail the command */
15130 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15131 			    "Unit Attention retries exhausted. "
15132 			    "Check the target.\n");
15133 			goto fail_command;
15134 		}
15135 		xp->xb_ua_retry_count++;
15136 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15137 		    "sd_retry_command: retry count:%d\n",
15138 			xp->xb_ua_retry_count);
15139 		break;
15140 
15141 	case SD_RETRIES_BUSY:
15142 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15143 			/* Retries exhausted, fail the command */
15144 			SD_TRACE(SD_LOG_IO_CORE, un,
15145 			    "sd_retry_command: retries exhausted!\n");
15146 			goto fail_command;
15147 		}
15148 		xp->xb_retry_count++;
15149 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15150 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15151 		break;
15152 
15153 	case SD_RETRIES_NOCHECK:
15154 	default:
15155 		/* No retry count to check. Just proceed with the retry */
15156 		break;
15157 	}
15158 
15159 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15160 
15161 	/*
15162 	 * If we were given a zero timeout, we must attempt to retry the
15163 	 * command immediately (ie, without a delay).
15164 	 */
15165 	if (retry_delay == 0) {
15166 		/*
15167 		 * Check some limiting conditions to see if we can actually
15168 		 * do the immediate retry.  If we cannot, then we must
15169 		 * fall back to queueing up a delayed retry.
15170 		 */
15171 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15172 			/*
15173 			 * We are at the throttle limit for the target,
15174 			 * fall back to delayed retry.
15175 			 */
15176 			retry_delay = SD_BSY_TIMEOUT;
15177 			statp = kstat_waitq_enter;
15178 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15179 			    "sd_retry_command: immed. retry hit "
15180 			    "throttle!\n");
15181 		} else {
15182 			/*
15183 			 * We're clear to proceed with the immediate retry.
15184 			 * First call the user-provided function (if any)
15185 			 */
15186 			if (user_funcp != NULL) {
15187 				(*user_funcp)(un, bp, user_arg,
15188 				    SD_IMMEDIATE_RETRY_ISSUED);
15189 #ifdef __lock_lint
15190 				sd_print_incomplete_msg(un, bp, user_arg,
15191 				    SD_IMMEDIATE_RETRY_ISSUED);
15192 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15193 				    SD_IMMEDIATE_RETRY_ISSUED);
15194 				sd_print_sense_failed_msg(un, bp, user_arg,
15195 				    SD_IMMEDIATE_RETRY_ISSUED);
15196 #endif
15197 			}
15198 
15199 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15200 			    "sd_retry_command: issuing immediate retry\n");
15201 
15202 			/*
15203 			 * Call sd_start_cmds() to transport the command to
15204 			 * the target.
15205 			 */
15206 			sd_start_cmds(un, bp);
15207 
15208 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15209 			    "sd_retry_command exit\n");
15210 			return;
15211 		}
15212 	}
15213 
15214 	/*
15215 	 * Set up to retry the command after a delay.
15216 	 * First call the user-provided function (if any)
15217 	 */
15218 	if (user_funcp != NULL) {
15219 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15220 	}
15221 
15222 	sd_set_retry_bp(un, bp, retry_delay, statp);
15223 
15224 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15225 	return;
15226 
15227 fail_command:
15228 
15229 	if (user_funcp != NULL) {
15230 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15231 	}
15232 
15233 fail_command_no_log:
15234 
15235 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15236 	    "sd_retry_command: returning failed command\n");
15237 
15238 	sd_return_failed_command(un, bp, failure_code);
15239 
15240 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15241 }
15242 
15243 
15244 /*
15245  *    Function: sd_set_retry_bp
15246  *
15247  * Description: Set up the given bp for retry.
15248  *
15249  *   Arguments: un - ptr to associated softstate
15250  *		bp - ptr to buf(9S) for the command
15251  *		retry_delay - time interval before issuing retry (may be 0)
15252  *		statp - optional pointer to kstat function
15253  *
15254  *     Context: May be called under interrupt context
15255  */
15256 
15257 static void
15258 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15259 	void (*statp)(kstat_io_t *))
15260 {
15261 	ASSERT(un != NULL);
15262 	ASSERT(mutex_owned(SD_MUTEX(un)));
15263 	ASSERT(bp != NULL);
15264 
15265 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15266 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15267 
15268 	/*
15269 	 * Indicate that the command is being retried. This will not allow any
15270 	 * other commands on the wait queue to be transported to the target
15271 	 * until this command has been completed (success or failure). The
15272 	 * "retry command" is not transported to the target until the given
15273 	 * time delay expires, unless the user specified a 0 retry_delay.
15274 	 *
15275 	 * Note: the timeout(9F) callback routine is what actually calls
15276 	 * sd_start_cmds() to transport the command, with the exception of a
15277 	 * zero retry_delay. The only current implementor of a zero retry delay
15278 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15279 	 */
15280 	if (un->un_retry_bp == NULL) {
15281 		ASSERT(un->un_retry_statp == NULL);
15282 		un->un_retry_bp = bp;
15283 
15284 		/*
15285 		 * If the user has not specified a delay the command should
15286 		 * be queued and no timeout should be scheduled.
15287 		 */
15288 		if (retry_delay == 0) {
15289 			/*
15290 			 * Save the kstat pointer that will be used in the
15291 			 * call to SD_UPDATE_KSTATS() below, so that
15292 			 * sd_start_cmds() can correctly decrement the waitq
15293 			 * count when it is time to transport this command.
15294 			 */
15295 			un->un_retry_statp = statp;
15296 			goto done;
15297 		}
15298 	}
15299 
15300 	if (un->un_retry_bp == bp) {
15301 		/*
15302 		 * Save the kstat pointer that will be used in the call to
15303 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15304 		 * correctly decrement the waitq count when it is time to
15305 		 * transport this command.
15306 		 */
15307 		un->un_retry_statp = statp;
15308 
15309 		/*
15310 		 * Schedule a timeout if:
15311 		 *   1) The user has specified a delay.
15312 		 *   2) There is not a START_STOP_UNIT callback pending.
15313 		 *
15314 		 * If no delay has been specified, then it is up to the caller
15315 		 * to ensure that IO processing continues without stalling.
15316 		 * Effectively, this means that the caller will issue the
15317 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15318 		 * callback does this after the START STOP UNIT command has
15319 		 * completed. In either of these cases we should not schedule
15320 		 * a timeout callback here.  Also don't schedule the timeout if
15321 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15322 		 */
15323 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15324 		    (un->un_direct_priority_timeid == NULL)) {
15325 			un->un_retry_timeid =
15326 			    timeout(sd_start_retry_command, un, retry_delay);
15327 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15328 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15329 			    " bp:0x%p un_retry_timeid:0x%p\n",
15330 			    un, bp, un->un_retry_timeid);
15331 		}
15332 	} else {
15333 		/*
15334 		 * We only get in here if there is already another command
15335 		 * waiting to be retried.  In this case, we just put the
15336 		 * given command onto the wait queue, so it can be transported
15337 		 * after the current retry command has completed.
15338 		 *
15339 		 * Also we have to make sure that if the command at the head
15340 		 * of the wait queue is the un_failfast_bp, that we do not
15341 		 * put ahead of it any other commands that are to be retried.
15342 		 */
15343 		if ((un->un_failfast_bp != NULL) &&
15344 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15345 			/*
15346 			 * Enqueue this command AFTER the first command on
15347 			 * the wait queue (which is also un_failfast_bp).
15348 			 */
15349 			bp->av_forw = un->un_waitq_headp->av_forw;
15350 			un->un_waitq_headp->av_forw = bp;
15351 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15352 				un->un_waitq_tailp = bp;
15353 			}
15354 		} else {
15355 			/* Enqueue this command at the head of the waitq. */
15356 			bp->av_forw = un->un_waitq_headp;
15357 			un->un_waitq_headp = bp;
15358 			if (un->un_waitq_tailp == NULL) {
15359 				un->un_waitq_tailp = bp;
15360 			}
15361 		}
15362 
15363 		if (statp == NULL) {
15364 			statp = kstat_waitq_enter;
15365 		}
15366 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15367 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15368 	}
15369 
15370 done:
15371 	if (statp != NULL) {
15372 		SD_UPDATE_KSTATS(un, statp, bp);
15373 	}
15374 
15375 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15376 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15377 }
15378 
15379 
15380 /*
15381  *    Function: sd_start_retry_command
15382  *
15383  * Description: Start the command that has been waiting on the target's
15384  *		retry queue.  Called from timeout(9F) context after the
15385  *		retry delay interval has expired.
15386  *
15387  *   Arguments: arg - pointer to associated softstate for the device.
15388  *
15389  *     Context: timeout(9F) thread context.  May not sleep.
15390  */
15391 
15392 static void
15393 sd_start_retry_command(void *arg)
15394 {
15395 	struct sd_lun *un = arg;
15396 
15397 	ASSERT(un != NULL);
15398 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15399 
15400 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15401 	    "sd_start_retry_command: entry\n");
15402 
15403 	mutex_enter(SD_MUTEX(un));
15404 
15405 	un->un_retry_timeid = NULL;
15406 
15407 	if (un->un_retry_bp != NULL) {
15408 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15409 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15410 		    un, un->un_retry_bp);
15411 		sd_start_cmds(un, un->un_retry_bp);
15412 	}
15413 
15414 	mutex_exit(SD_MUTEX(un));
15415 
15416 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15417 	    "sd_start_retry_command: exit\n");
15418 }
15419 
15420 
15421 /*
15422  *    Function: sd_start_direct_priority_command
15423  *
15424  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15425  *		received TRAN_BUSY when we called scsi_transport() to send it
15426  *		to the underlying HBA. This function is called from timeout(9F)
15427  *		context after the delay interval has expired.
15428  *
15429  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15430  *
15431  *     Context: timeout(9F) thread context.  May not sleep.
15432  */
15433 
15434 static void
15435 sd_start_direct_priority_command(void *arg)
15436 {
15437 	struct buf	*priority_bp = arg;
15438 	struct sd_lun	*un;
15439 
15440 	ASSERT(priority_bp != NULL);
15441 	un = SD_GET_UN(priority_bp);
15442 	ASSERT(un != NULL);
15443 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15444 
15445 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15446 	    "sd_start_direct_priority_command: entry\n");
15447 
15448 	mutex_enter(SD_MUTEX(un));
15449 	un->un_direct_priority_timeid = NULL;
15450 	sd_start_cmds(un, priority_bp);
15451 	mutex_exit(SD_MUTEX(un));
15452 
15453 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15454 	    "sd_start_direct_priority_command: exit\n");
15455 }
15456 
15457 
15458 /*
15459  *    Function: sd_send_request_sense_command
15460  *
15461  * Description: Sends a REQUEST SENSE command to the target
15462  *
15463  *     Context: May be called from interrupt context.
15464  */
15465 
15466 static void
15467 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15468 	struct scsi_pkt *pktp)
15469 {
15470 	ASSERT(bp != NULL);
15471 	ASSERT(un != NULL);
15472 	ASSERT(mutex_owned(SD_MUTEX(un)));
15473 
15474 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15475 	    "entry: buf:0x%p\n", bp);
15476 
15477 	/*
15478 	 * If we are syncing or dumping, then fail the command to avoid a
15479 	 * recursive callback into scsi_transport(). Also fail the command
15480 	 * if we are suspended (legacy behavior).
15481 	 */
15482 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15483 	    (un->un_state == SD_STATE_DUMPING)) {
15484 		sd_return_failed_command(un, bp, EIO);
15485 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15486 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15487 		return;
15488 	}
15489 
15490 	/*
15491 	 * Retry the failed command and don't issue the request sense if:
15492 	 *    1) the sense buf is busy
15493 	 *    2) we have 1 or more outstanding commands on the target
15494 	 *    (the sense data will be cleared or invalidated any way)
15495 	 *
15496 	 * Note: There could be an issue with not checking a retry limit here,
15497 	 * the problem is determining which retry limit to check.
15498 	 */
15499 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15500 		/* Don't retry if the command is flagged as non-retryable */
15501 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15502 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15503 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15504 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15505 			    "sd_send_request_sense_command: "
15506 			    "at full throttle, retrying exit\n");
15507 		} else {
15508 			sd_return_failed_command(un, bp, EIO);
15509 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15510 			    "sd_send_request_sense_command: "
15511 			    "at full throttle, non-retryable exit\n");
15512 		}
15513 		return;
15514 	}
15515 
15516 	sd_mark_rqs_busy(un, bp);
15517 	sd_start_cmds(un, un->un_rqs_bp);
15518 
15519 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15520 	    "sd_send_request_sense_command: exit\n");
15521 }
15522 
15523 
15524 /*
15525  *    Function: sd_mark_rqs_busy
15526  *
15527  * Description: Indicate that the request sense bp for this instance is
15528  *		in use.
15529  *
15530  *     Context: May be called under interrupt context
15531  */
15532 
15533 static void
15534 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15535 {
15536 	struct sd_xbuf	*sense_xp;
15537 
15538 	ASSERT(un != NULL);
15539 	ASSERT(bp != NULL);
15540 	ASSERT(mutex_owned(SD_MUTEX(un)));
15541 	ASSERT(un->un_sense_isbusy == 0);
15542 
15543 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15544 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15545 
15546 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15547 	ASSERT(sense_xp != NULL);
15548 
15549 	SD_INFO(SD_LOG_IO, un,
15550 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15551 
15552 	ASSERT(sense_xp->xb_pktp != NULL);
15553 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15554 	    == (FLAG_SENSING | FLAG_HEAD));
15555 
15556 	un->un_sense_isbusy = 1;
15557 	un->un_rqs_bp->b_resid = 0;
15558 	sense_xp->xb_pktp->pkt_resid  = 0;
15559 	sense_xp->xb_pktp->pkt_reason = 0;
15560 
15561 	/* So we can get back the bp at interrupt time! */
15562 	sense_xp->xb_sense_bp = bp;
15563 
15564 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15565 
15566 	/*
15567 	 * Mark this buf as awaiting sense data. (This is already set in
15568 	 * the pkt_flags for the RQS packet.)
15569 	 */
15570 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15571 
15572 	sense_xp->xb_retry_count	= 0;
15573 	sense_xp->xb_victim_retry_count = 0;
15574 	sense_xp->xb_ua_retry_count	= 0;
15575 	sense_xp->xb_dma_resid  = 0;
15576 
15577 	/* Clean up the fields for auto-request sense */
15578 	sense_xp->xb_sense_status = 0;
15579 	sense_xp->xb_sense_state  = 0;
15580 	sense_xp->xb_sense_resid  = 0;
15581 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15582 
15583 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15584 }
15585 
15586 
15587 /*
15588  *    Function: sd_mark_rqs_idle
15589  *
15590  * Description: SD_MUTEX must be held continuously through this routine
15591  *		to prevent reuse of the rqs struct before the caller can
15592  *		complete it's processing.
15593  *
15594  * Return Code: Pointer to the RQS buf
15595  *
15596  *     Context: May be called under interrupt context
15597  */
15598 
15599 static struct buf *
15600 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15601 {
15602 	struct buf *bp;
15603 	ASSERT(un != NULL);
15604 	ASSERT(sense_xp != NULL);
15605 	ASSERT(mutex_owned(SD_MUTEX(un)));
15606 	ASSERT(un->un_sense_isbusy != 0);
15607 
15608 	un->un_sense_isbusy = 0;
15609 	bp = sense_xp->xb_sense_bp;
15610 	sense_xp->xb_sense_bp = NULL;
15611 
15612 	/* This pkt is no longer interested in getting sense data */
15613 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15614 
15615 	return (bp);
15616 }
15617 
15618 
15619 
15620 /*
15621  *    Function: sd_alloc_rqs
15622  *
15623  * Description: Set up the unit to receive auto request sense data
15624  *
15625  * Return Code: DDI_SUCCESS or DDI_FAILURE
15626  *
15627  *     Context: Called under attach(9E) context
15628  */
15629 
15630 static int
15631 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15632 {
15633 	struct sd_xbuf *xp;
15634 
15635 	ASSERT(un != NULL);
15636 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15637 	ASSERT(un->un_rqs_bp == NULL);
15638 	ASSERT(un->un_rqs_pktp == NULL);
15639 
15640 	/*
15641 	 * First allocate the required buf and scsi_pkt structs, then set up
15642 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15643 	 */
15644 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15645 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15646 	if (un->un_rqs_bp == NULL) {
15647 		return (DDI_FAILURE);
15648 	}
15649 
15650 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15651 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15652 
15653 	if (un->un_rqs_pktp == NULL) {
15654 		sd_free_rqs(un);
15655 		return (DDI_FAILURE);
15656 	}
15657 
15658 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15659 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15660 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15661 
15662 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15663 
15664 	/* Set up the other needed members in the ARQ scsi_pkt. */
15665 	un->un_rqs_pktp->pkt_comp   = sdintr;
15666 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15667 	un->un_rqs_pktp->pkt_flags |=
15668 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15669 
15670 	/*
15671 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15672 	 * provide any intpkt, destroypkt routines as we take care of
15673 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15674 	 */
15675 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15676 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15677 	xp->xb_pktp = un->un_rqs_pktp;
15678 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15679 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15680 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15681 
15682 	/*
15683 	 * Save the pointer to the request sense private bp so it can
15684 	 * be retrieved in sdintr.
15685 	 */
15686 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15687 	ASSERT(un->un_rqs_bp->b_private == xp);
15688 
15689 	/*
15690 	 * See if the HBA supports auto-request sense for the specified
15691 	 * target/lun. If it does, then try to enable it (if not already
15692 	 * enabled).
15693 	 *
15694 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15695 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15696 	 * return success.  However, in both of these cases ARQ is always
15697 	 * enabled and scsi_ifgetcap will always return true. The best approach
15698 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15699 	 *
15700 	 * The 3rd case is the HBA (adp) always return enabled on
15701 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15702 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15703 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15704 	 */
15705 
15706 	if (un->un_f_is_fibre == TRUE) {
15707 		un->un_f_arq_enabled = TRUE;
15708 	} else {
15709 #if defined(__i386) || defined(__amd64)
15710 		/*
15711 		 * Circumvent the Adaptec bug, remove this code when
15712 		 * the bug is fixed
15713 		 */
15714 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15715 #endif
15716 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15717 		case 0:
15718 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15719 				"sd_alloc_rqs: HBA supports ARQ\n");
15720 			/*
15721 			 * ARQ is supported by this HBA but currently is not
15722 			 * enabled. Attempt to enable it and if successful then
15723 			 * mark this instance as ARQ enabled.
15724 			 */
15725 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15726 				== 1) {
15727 				/* Successfully enabled ARQ in the HBA */
15728 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15729 					"sd_alloc_rqs: ARQ enabled\n");
15730 				un->un_f_arq_enabled = TRUE;
15731 			} else {
15732 				/* Could not enable ARQ in the HBA */
15733 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15734 				"sd_alloc_rqs: failed ARQ enable\n");
15735 				un->un_f_arq_enabled = FALSE;
15736 			}
15737 			break;
15738 		case 1:
15739 			/*
15740 			 * ARQ is supported by this HBA and is already enabled.
15741 			 * Just mark ARQ as enabled for this instance.
15742 			 */
15743 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15744 				"sd_alloc_rqs: ARQ already enabled\n");
15745 			un->un_f_arq_enabled = TRUE;
15746 			break;
15747 		default:
15748 			/*
15749 			 * ARQ is not supported by this HBA; disable it for this
15750 			 * instance.
15751 			 */
15752 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15753 				"sd_alloc_rqs: HBA does not support ARQ\n");
15754 			un->un_f_arq_enabled = FALSE;
15755 			break;
15756 		}
15757 	}
15758 
15759 	return (DDI_SUCCESS);
15760 }
15761 
15762 
15763 /*
15764  *    Function: sd_free_rqs
15765  *
15766  * Description: Cleanup for the pre-instance RQS command.
15767  *
15768  *     Context: Kernel thread context
15769  */
15770 
15771 static void
15772 sd_free_rqs(struct sd_lun *un)
15773 {
15774 	ASSERT(un != NULL);
15775 
15776 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15777 
15778 	/*
15779 	 * If consistent memory is bound to a scsi_pkt, the pkt
15780 	 * has to be destroyed *before* freeing the consistent memory.
15781 	 * Don't change the sequence of this operations.
15782 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15783 	 * after it was freed in scsi_free_consistent_buf().
15784 	 */
15785 	if (un->un_rqs_pktp != NULL) {
15786 		scsi_destroy_pkt(un->un_rqs_pktp);
15787 		un->un_rqs_pktp = NULL;
15788 	}
15789 
15790 	if (un->un_rqs_bp != NULL) {
15791 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15792 		scsi_free_consistent_buf(un->un_rqs_bp);
15793 		un->un_rqs_bp = NULL;
15794 	}
15795 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15796 }
15797 
15798 
15799 
15800 /*
15801  *    Function: sd_reduce_throttle
15802  *
15803  * Description: Reduces the maximun # of outstanding commands on a
15804  *		target to the current number of outstanding commands.
15805  *		Queues a tiemout(9F) callback to restore the limit
15806  *		after a specified interval has elapsed.
15807  *		Typically used when we get a TRAN_BUSY return code
15808  *		back from scsi_transport().
15809  *
15810  *   Arguments: un - ptr to the sd_lun softstate struct
15811  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15812  *
15813  *     Context: May be called from interrupt context
15814  */
15815 
15816 static void
15817 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15818 {
15819 	ASSERT(un != NULL);
15820 	ASSERT(mutex_owned(SD_MUTEX(un)));
15821 	ASSERT(un->un_ncmds_in_transport >= 0);
15822 
15823 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15824 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15825 	    un, un->un_throttle, un->un_ncmds_in_transport);
15826 
15827 	if (un->un_throttle > 1) {
15828 		if (un->un_f_use_adaptive_throttle == TRUE) {
15829 			switch (throttle_type) {
15830 			case SD_THROTTLE_TRAN_BUSY:
15831 				if (un->un_busy_throttle == 0) {
15832 					un->un_busy_throttle = un->un_throttle;
15833 				}
15834 				break;
15835 			case SD_THROTTLE_QFULL:
15836 				un->un_busy_throttle = 0;
15837 				break;
15838 			default:
15839 				ASSERT(FALSE);
15840 			}
15841 
15842 			if (un->un_ncmds_in_transport > 0) {
15843 			    un->un_throttle = un->un_ncmds_in_transport;
15844 			}
15845 
15846 		} else {
15847 			if (un->un_ncmds_in_transport == 0) {
15848 				un->un_throttle = 1;
15849 			} else {
15850 				un->un_throttle = un->un_ncmds_in_transport;
15851 			}
15852 		}
15853 	}
15854 
15855 	/* Reschedule the timeout if none is currently active */
15856 	if (un->un_reset_throttle_timeid == NULL) {
15857 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15858 		    un, SD_THROTTLE_RESET_INTERVAL);
15859 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15860 		    "sd_reduce_throttle: timeout scheduled!\n");
15861 	}
15862 
15863 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15864 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15865 }
15866 
15867 
15868 
15869 /*
15870  *    Function: sd_restore_throttle
15871  *
15872  * Description: Callback function for timeout(9F).  Resets the current
15873  *		value of un->un_throttle to its default.
15874  *
15875  *   Arguments: arg - pointer to associated softstate for the device.
15876  *
15877  *     Context: May be called from interrupt context
15878  */
15879 
15880 static void
15881 sd_restore_throttle(void *arg)
15882 {
15883 	struct sd_lun	*un = arg;
15884 
15885 	ASSERT(un != NULL);
15886 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15887 
15888 	mutex_enter(SD_MUTEX(un));
15889 
15890 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15891 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15892 
15893 	un->un_reset_throttle_timeid = NULL;
15894 
15895 	if (un->un_f_use_adaptive_throttle == TRUE) {
15896 		/*
15897 		 * If un_busy_throttle is nonzero, then it contains the
15898 		 * value that un_throttle was when we got a TRAN_BUSY back
15899 		 * from scsi_transport(). We want to revert back to this
15900 		 * value.
15901 		 *
15902 		 * In the QFULL case, the throttle limit will incrementally
15903 		 * increase until it reaches max throttle.
15904 		 */
15905 		if (un->un_busy_throttle > 0) {
15906 			un->un_throttle = un->un_busy_throttle;
15907 			un->un_busy_throttle = 0;
15908 		} else {
15909 			/*
15910 			 * increase throttle by 10% open gate slowly, schedule
15911 			 * another restore if saved throttle has not been
15912 			 * reached
15913 			 */
15914 			short throttle;
15915 			if (sd_qfull_throttle_enable) {
15916 				throttle = un->un_throttle +
15917 				    max((un->un_throttle / 10), 1);
15918 				un->un_throttle =
15919 				    (throttle < un->un_saved_throttle) ?
15920 				    throttle : un->un_saved_throttle;
15921 				if (un->un_throttle < un->un_saved_throttle) {
15922 				    un->un_reset_throttle_timeid =
15923 					timeout(sd_restore_throttle,
15924 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
15925 				}
15926 			}
15927 		}
15928 
15929 		/*
15930 		 * If un_throttle has fallen below the low-water mark, we
15931 		 * restore the maximum value here (and allow it to ratchet
15932 		 * down again if necessary).
15933 		 */
15934 		if (un->un_throttle < un->un_min_throttle) {
15935 			un->un_throttle = un->un_saved_throttle;
15936 		}
15937 	} else {
15938 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15939 		    "restoring limit from 0x%x to 0x%x\n",
15940 		    un->un_throttle, un->un_saved_throttle);
15941 		un->un_throttle = un->un_saved_throttle;
15942 	}
15943 
15944 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15945 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15946 
15947 	sd_start_cmds(un, NULL);
15948 
15949 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15950 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15951 	    un, un->un_throttle);
15952 
15953 	mutex_exit(SD_MUTEX(un));
15954 
15955 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15956 }
15957 
15958 /*
15959  *    Function: sdrunout
15960  *
15961  * Description: Callback routine for scsi_init_pkt when a resource allocation
15962  *		fails.
15963  *
15964  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15965  *		soft state instance.
15966  *
15967  * Return Code: The scsi_init_pkt routine allows for the callback function to
15968  *		return a 0 indicating the callback should be rescheduled or a 1
15969  *		indicating not to reschedule. This routine always returns 1
15970  *		because the driver always provides a callback function to
15971  *		scsi_init_pkt. This results in a callback always being scheduled
15972  *		(via the scsi_init_pkt callback implementation) if a resource
15973  *		failure occurs.
15974  *
15975  *     Context: This callback function may not block or call routines that block
15976  *
15977  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15978  *		request persisting at the head of the list which cannot be
15979  *		satisfied even after multiple retries. In the future the driver
15980  *		may implement some time of maximum runout count before failing
15981  *		an I/O.
15982  */
15983 
15984 static int
15985 sdrunout(caddr_t arg)
15986 {
15987 	struct sd_lun	*un = (struct sd_lun *)arg;
15988 
15989 	ASSERT(un != NULL);
15990 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15991 
15992 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15993 
15994 	mutex_enter(SD_MUTEX(un));
15995 	sd_start_cmds(un, NULL);
15996 	mutex_exit(SD_MUTEX(un));
15997 	/*
15998 	 * This callback routine always returns 1 (i.e. do not reschedule)
15999 	 * because we always specify sdrunout as the callback handler for
16000 	 * scsi_init_pkt inside the call to sd_start_cmds.
16001 	 */
16002 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16003 	return (1);
16004 }
16005 
16006 
16007 /*
16008  *    Function: sdintr
16009  *
16010  * Description: Completion callback routine for scsi_pkt(9S) structs
16011  *		sent to the HBA driver via scsi_transport(9F).
16012  *
16013  *     Context: Interrupt context
16014  */
16015 
16016 static void
16017 sdintr(struct scsi_pkt *pktp)
16018 {
16019 	struct buf	*bp;
16020 	struct sd_xbuf	*xp;
16021 	struct sd_lun	*un;
16022 
16023 	ASSERT(pktp != NULL);
16024 	bp = (struct buf *)pktp->pkt_private;
16025 	ASSERT(bp != NULL);
16026 	xp = SD_GET_XBUF(bp);
16027 	ASSERT(xp != NULL);
16028 	ASSERT(xp->xb_pktp != NULL);
16029 	un = SD_GET_UN(bp);
16030 	ASSERT(un != NULL);
16031 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16032 
16033 #ifdef SD_FAULT_INJECTION
16034 
16035 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16036 	/* SD FaultInjection */
16037 	sd_faultinjection(pktp);
16038 
16039 #endif /* SD_FAULT_INJECTION */
16040 
16041 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16042 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16043 
16044 	mutex_enter(SD_MUTEX(un));
16045 
16046 	/* Reduce the count of the #commands currently in transport */
16047 	un->un_ncmds_in_transport--;
16048 	ASSERT(un->un_ncmds_in_transport >= 0);
16049 
16050 	/* Increment counter to indicate that the callback routine is active */
16051 	un->un_in_callback++;
16052 
16053 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16054 
16055 #ifdef	SDDEBUG
16056 	if (bp == un->un_retry_bp) {
16057 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16058 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16059 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16060 	}
16061 #endif
16062 
16063 	/*
16064 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16065 	 */
16066 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16067 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16068 			    "Device is gone\n");
16069 		sd_return_failed_command(un, bp, EIO);
16070 		goto exit;
16071 	}
16072 
16073 	/*
16074 	 * First see if the pkt has auto-request sense data with it....
16075 	 * Look at the packet state first so we don't take a performance
16076 	 * hit looking at the arq enabled flag unless absolutely necessary.
16077 	 */
16078 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16079 	    (un->un_f_arq_enabled == TRUE)) {
16080 		/*
16081 		 * The HBA did an auto request sense for this command so check
16082 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16083 		 * driver command that should not be retried.
16084 		 */
16085 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16086 			/*
16087 			 * Save the relevant sense info into the xp for the
16088 			 * original cmd.
16089 			 */
16090 			struct scsi_arq_status *asp;
16091 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16092 			xp->xb_sense_status =
16093 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16094 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16095 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16096 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16097 			    min(sizeof (struct scsi_extended_sense),
16098 			    SENSE_LENGTH));
16099 
16100 			/* fail the command */
16101 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16102 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16103 			sd_return_failed_command(un, bp, EIO);
16104 			goto exit;
16105 		}
16106 
16107 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16108 		/*
16109 		 * We want to either retry or fail this command, so free
16110 		 * the DMA resources here.  If we retry the command then
16111 		 * the DMA resources will be reallocated in sd_start_cmds().
16112 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16113 		 * causes the *entire* transfer to start over again from the
16114 		 * beginning of the request, even for PARTIAL chunks that
16115 		 * have already transferred successfully.
16116 		 */
16117 		if ((un->un_f_is_fibre == TRUE) &&
16118 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16119 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16120 			scsi_dmafree(pktp);
16121 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16122 		}
16123 #endif
16124 
16125 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16126 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16127 
16128 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16129 		goto exit;
16130 	}
16131 
16132 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16133 	if (pktp->pkt_flags & FLAG_SENSING)  {
16134 		/* This pktp is from the unit's REQUEST_SENSE command */
16135 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16136 		    "sdintr: sd_handle_request_sense\n");
16137 		sd_handle_request_sense(un, bp, xp, pktp);
16138 		goto exit;
16139 	}
16140 
16141 	/*
16142 	 * Check to see if the command successfully completed as requested;
16143 	 * this is the most common case (and also the hot performance path).
16144 	 *
16145 	 * Requirements for successful completion are:
16146 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16147 	 * In addition:
16148 	 * - A residual of zero indicates successful completion no matter what
16149 	 *   the command is.
16150 	 * - If the residual is not zero and the command is not a read or
16151 	 *   write, then it's still defined as successful completion. In other
16152 	 *   words, if the command is a read or write the residual must be
16153 	 *   zero for successful completion.
16154 	 * - If the residual is not zero and the command is a read or
16155 	 *   write, and it's a USCSICMD, then it's still defined as
16156 	 *   successful completion.
16157 	 */
16158 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16159 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16160 
16161 		/*
16162 		 * Since this command is returned with a good status, we
16163 		 * can reset the count for Sonoma failover.
16164 		 */
16165 		un->un_sonoma_failure_count = 0;
16166 
16167 		/*
16168 		 * Return all USCSI commands on good status
16169 		 */
16170 		if (pktp->pkt_resid == 0) {
16171 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16172 			    "sdintr: returning command for resid == 0\n");
16173 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16174 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16175 			SD_UPDATE_B_RESID(bp, pktp);
16176 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16177 			    "sdintr: returning command for resid != 0\n");
16178 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16179 			SD_UPDATE_B_RESID(bp, pktp);
16180 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16181 				"sdintr: returning uscsi command\n");
16182 		} else {
16183 			goto not_successful;
16184 		}
16185 		sd_return_command(un, bp);
16186 
16187 		/*
16188 		 * Decrement counter to indicate that the callback routine
16189 		 * is done.
16190 		 */
16191 		un->un_in_callback--;
16192 		ASSERT(un->un_in_callback >= 0);
16193 		mutex_exit(SD_MUTEX(un));
16194 
16195 		return;
16196 	}
16197 
16198 not_successful:
16199 
16200 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16201 	/*
16202 	 * The following is based upon knowledge of the underlying transport
16203 	 * and its use of DMA resources.  This code should be removed when
16204 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16205 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16206 	 * and sd_start_cmds().
16207 	 *
16208 	 * Free any DMA resources associated with this command if there
16209 	 * is a chance it could be retried or enqueued for later retry.
16210 	 * If we keep the DMA binding then mpxio cannot reissue the
16211 	 * command on another path whenever a path failure occurs.
16212 	 *
16213 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16214 	 * causes the *entire* transfer to start over again from the
16215 	 * beginning of the request, even for PARTIAL chunks that
16216 	 * have already transferred successfully.
16217 	 *
16218 	 * This is only done for non-uscsi commands (and also skipped for the
16219 	 * driver's internal RQS command). Also just do this for Fibre Channel
16220 	 * devices as these are the only ones that support mpxio.
16221 	 */
16222 	if ((un->un_f_is_fibre == TRUE) &&
16223 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16224 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16225 		scsi_dmafree(pktp);
16226 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16227 	}
16228 #endif
16229 
16230 	/*
16231 	 * The command did not successfully complete as requested so check
16232 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16233 	 * driver command that should not be retried so just return. If
16234 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16235 	 */
16236 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16237 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16238 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16239 		/*
16240 		 * Issue a request sense if a check condition caused the error
16241 		 * (we handle the auto request sense case above), otherwise
16242 		 * just fail the command.
16243 		 */
16244 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16245 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16246 			sd_send_request_sense_command(un, bp, pktp);
16247 		} else {
16248 			sd_return_failed_command(un, bp, EIO);
16249 		}
16250 		goto exit;
16251 	}
16252 
16253 	/*
16254 	 * The command did not successfully complete as requested so process
16255 	 * the error, retry, and/or attempt recovery.
16256 	 */
16257 	switch (pktp->pkt_reason) {
16258 	case CMD_CMPLT:
16259 		switch (SD_GET_PKT_STATUS(pktp)) {
16260 		case STATUS_GOOD:
16261 			/*
16262 			 * The command completed successfully with a non-zero
16263 			 * residual
16264 			 */
16265 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16266 			    "sdintr: STATUS_GOOD \n");
16267 			sd_pkt_status_good(un, bp, xp, pktp);
16268 			break;
16269 
16270 		case STATUS_CHECK:
16271 		case STATUS_TERMINATED:
16272 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16273 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16274 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16275 			break;
16276 
16277 		case STATUS_BUSY:
16278 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16279 			    "sdintr: STATUS_BUSY\n");
16280 			sd_pkt_status_busy(un, bp, xp, pktp);
16281 			break;
16282 
16283 		case STATUS_RESERVATION_CONFLICT:
16284 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16285 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16286 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16287 			break;
16288 
16289 		case STATUS_QFULL:
16290 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16291 			    "sdintr: STATUS_QFULL\n");
16292 			sd_pkt_status_qfull(un, bp, xp, pktp);
16293 			break;
16294 
16295 		case STATUS_MET:
16296 		case STATUS_INTERMEDIATE:
16297 		case STATUS_SCSI2:
16298 		case STATUS_INTERMEDIATE_MET:
16299 		case STATUS_ACA_ACTIVE:
16300 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16301 			    "Unexpected SCSI status received: 0x%x\n",
16302 			    SD_GET_PKT_STATUS(pktp));
16303 			sd_return_failed_command(un, bp, EIO);
16304 			break;
16305 
16306 		default:
16307 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16308 			    "Invalid SCSI status received: 0x%x\n",
16309 			    SD_GET_PKT_STATUS(pktp));
16310 			sd_return_failed_command(un, bp, EIO);
16311 			break;
16312 
16313 		}
16314 		break;
16315 
16316 	case CMD_INCOMPLETE:
16317 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16318 		    "sdintr:  CMD_INCOMPLETE\n");
16319 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16320 		break;
16321 	case CMD_TRAN_ERR:
16322 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16323 		    "sdintr: CMD_TRAN_ERR\n");
16324 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16325 		break;
16326 	case CMD_RESET:
16327 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16328 		    "sdintr: CMD_RESET \n");
16329 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16330 		break;
16331 	case CMD_ABORTED:
16332 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16333 		    "sdintr: CMD_ABORTED \n");
16334 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16335 		break;
16336 	case CMD_TIMEOUT:
16337 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16338 		    "sdintr: CMD_TIMEOUT\n");
16339 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16340 		break;
16341 	case CMD_UNX_BUS_FREE:
16342 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16343 		    "sdintr: CMD_UNX_BUS_FREE \n");
16344 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16345 		break;
16346 	case CMD_TAG_REJECT:
16347 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16348 		    "sdintr: CMD_TAG_REJECT\n");
16349 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16350 		break;
16351 	default:
16352 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16353 		    "sdintr: default\n");
16354 		sd_pkt_reason_default(un, bp, xp, pktp);
16355 		break;
16356 	}
16357 
16358 exit:
16359 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16360 
16361 	/* Decrement counter to indicate that the callback routine is done. */
16362 	un->un_in_callback--;
16363 	ASSERT(un->un_in_callback >= 0);
16364 
16365 	/*
16366 	 * At this point, the pkt has been dispatched, ie, it is either
16367 	 * being re-tried or has been returned to its caller and should
16368 	 * not be referenced.
16369 	 */
16370 
16371 	mutex_exit(SD_MUTEX(un));
16372 }
16373 
16374 
16375 /*
16376  *    Function: sd_print_incomplete_msg
16377  *
16378  * Description: Prints the error message for a CMD_INCOMPLETE error.
16379  *
16380  *   Arguments: un - ptr to associated softstate for the device.
16381  *		bp - ptr to the buf(9S) for the command.
16382  *		arg - message string ptr
16383  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16384  *			or SD_NO_RETRY_ISSUED.
16385  *
16386  *     Context: May be called under interrupt context
16387  */
16388 
16389 static void
16390 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16391 {
16392 	struct scsi_pkt	*pktp;
16393 	char	*msgp;
16394 	char	*cmdp = arg;
16395 
16396 	ASSERT(un != NULL);
16397 	ASSERT(mutex_owned(SD_MUTEX(un)));
16398 	ASSERT(bp != NULL);
16399 	ASSERT(arg != NULL);
16400 	pktp = SD_GET_PKTP(bp);
16401 	ASSERT(pktp != NULL);
16402 
16403 	switch (code) {
16404 	case SD_DELAYED_RETRY_ISSUED:
16405 	case SD_IMMEDIATE_RETRY_ISSUED:
16406 		msgp = "retrying";
16407 		break;
16408 	case SD_NO_RETRY_ISSUED:
16409 	default:
16410 		msgp = "giving up";
16411 		break;
16412 	}
16413 
16414 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16415 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16416 		    "incomplete %s- %s\n", cmdp, msgp);
16417 	}
16418 }
16419 
16420 
16421 
16422 /*
16423  *    Function: sd_pkt_status_good
16424  *
16425  * Description: Processing for a STATUS_GOOD code in pkt_status.
16426  *
16427  *     Context: May be called under interrupt context
16428  */
16429 
16430 static void
16431 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16432 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16433 {
16434 	char	*cmdp;
16435 
16436 	ASSERT(un != NULL);
16437 	ASSERT(mutex_owned(SD_MUTEX(un)));
16438 	ASSERT(bp != NULL);
16439 	ASSERT(xp != NULL);
16440 	ASSERT(pktp != NULL);
16441 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16442 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16443 	ASSERT(pktp->pkt_resid != 0);
16444 
16445 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16446 
16447 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16448 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16449 	case SCMD_READ:
16450 		cmdp = "read";
16451 		break;
16452 	case SCMD_WRITE:
16453 		cmdp = "write";
16454 		break;
16455 	default:
16456 		SD_UPDATE_B_RESID(bp, pktp);
16457 		sd_return_command(un, bp);
16458 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16459 		return;
16460 	}
16461 
16462 	/*
16463 	 * See if we can retry the read/write, preferrably immediately.
16464 	 * If retries are exhaused, then sd_retry_command() will update
16465 	 * the b_resid count.
16466 	 */
16467 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16468 	    cmdp, EIO, (clock_t)0, NULL);
16469 
16470 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16471 }
16472 
16473 
16474 
16475 
16476 
16477 /*
16478  *    Function: sd_handle_request_sense
16479  *
16480  * Description: Processing for non-auto Request Sense command.
16481  *
16482  *   Arguments: un - ptr to associated softstate
16483  *		sense_bp - ptr to buf(9S) for the RQS command
16484  *		sense_xp - ptr to the sd_xbuf for the RQS command
16485  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16486  *
16487  *     Context: May be called under interrupt context
16488  */
16489 
16490 static void
16491 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16492 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16493 {
16494 	struct buf	*cmd_bp;	/* buf for the original command */
16495 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16496 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16497 
16498 	ASSERT(un != NULL);
16499 	ASSERT(mutex_owned(SD_MUTEX(un)));
16500 	ASSERT(sense_bp != NULL);
16501 	ASSERT(sense_xp != NULL);
16502 	ASSERT(sense_pktp != NULL);
16503 
16504 	/*
16505 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16506 	 * RQS command and not the original command.
16507 	 */
16508 	ASSERT(sense_pktp == un->un_rqs_pktp);
16509 	ASSERT(sense_bp   == un->un_rqs_bp);
16510 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16511 	    (FLAG_SENSING | FLAG_HEAD));
16512 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16513 	    FLAG_SENSING) == FLAG_SENSING);
16514 
16515 	/* These are the bp, xp, and pktp for the original command */
16516 	cmd_bp = sense_xp->xb_sense_bp;
16517 	cmd_xp = SD_GET_XBUF(cmd_bp);
16518 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16519 
16520 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16521 		/*
16522 		 * The REQUEST SENSE command failed.  Release the REQUEST
16523 		 * SENSE command for re-use, get back the bp for the original
16524 		 * command, and attempt to re-try the original command if
16525 		 * FLAG_DIAGNOSE is not set in the original packet.
16526 		 */
16527 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16528 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16529 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16530 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16531 			    NULL, NULL, EIO, (clock_t)0, NULL);
16532 			return;
16533 		}
16534 	}
16535 
16536 	/*
16537 	 * Save the relevant sense info into the xp for the original cmd.
16538 	 *
16539 	 * Note: if the request sense failed the state info will be zero
16540 	 * as set in sd_mark_rqs_busy()
16541 	 */
16542 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16543 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16544 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16545 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16546 
16547 	/*
16548 	 *  Free up the RQS command....
16549 	 *  NOTE:
16550 	 *	Must do this BEFORE calling sd_validate_sense_data!
16551 	 *	sd_validate_sense_data may return the original command in
16552 	 *	which case the pkt will be freed and the flags can no
16553 	 *	longer be touched.
16554 	 *	SD_MUTEX is held through this process until the command
16555 	 *	is dispatched based upon the sense data, so there are
16556 	 *	no race conditions.
16557 	 */
16558 	(void) sd_mark_rqs_idle(un, sense_xp);
16559 
16560 	/*
16561 	 * For a retryable command see if we have valid sense data, if so then
16562 	 * turn it over to sd_decode_sense() to figure out the right course of
16563 	 * action. Just fail a non-retryable command.
16564 	 */
16565 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16566 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16567 		    SD_SENSE_DATA_IS_VALID) {
16568 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16569 		}
16570 	} else {
16571 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16572 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16573 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16574 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16575 		sd_return_failed_command(un, cmd_bp, EIO);
16576 	}
16577 }
16578 
16579 
16580 
16581 
16582 /*
16583  *    Function: sd_handle_auto_request_sense
16584  *
16585  * Description: Processing for auto-request sense information.
16586  *
16587  *   Arguments: un - ptr to associated softstate
16588  *		bp - ptr to buf(9S) for the command
16589  *		xp - ptr to the sd_xbuf for the command
16590  *		pktp - ptr to the scsi_pkt(9S) for the command
16591  *
16592  *     Context: May be called under interrupt context
16593  */
16594 
16595 static void
16596 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16597 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16598 {
16599 	struct scsi_arq_status *asp;
16600 
16601 	ASSERT(un != NULL);
16602 	ASSERT(mutex_owned(SD_MUTEX(un)));
16603 	ASSERT(bp != NULL);
16604 	ASSERT(xp != NULL);
16605 	ASSERT(pktp != NULL);
16606 	ASSERT(pktp != un->un_rqs_pktp);
16607 	ASSERT(bp   != un->un_rqs_bp);
16608 
16609 	/*
16610 	 * For auto-request sense, we get a scsi_arq_status back from
16611 	 * the HBA, with the sense data in the sts_sensedata member.
16612 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16613 	 */
16614 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16615 
16616 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16617 		/*
16618 		 * The auto REQUEST SENSE failed; see if we can re-try
16619 		 * the original command.
16620 		 */
16621 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16622 		    "auto request sense failed (reason=%s)\n",
16623 		    scsi_rname(asp->sts_rqpkt_reason));
16624 
16625 		sd_reset_target(un, pktp);
16626 
16627 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16628 		    NULL, NULL, EIO, (clock_t)0, NULL);
16629 		return;
16630 	}
16631 
16632 	/* Save the relevant sense info into the xp for the original cmd. */
16633 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16634 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16635 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16636 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16637 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16638 
16639 	/*
16640 	 * See if we have valid sense data, if so then turn it over to
16641 	 * sd_decode_sense() to figure out the right course of action.
16642 	 */
16643 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16644 		sd_decode_sense(un, bp, xp, pktp);
16645 	}
16646 }
16647 
16648 
16649 /*
16650  *    Function: sd_print_sense_failed_msg
16651  *
16652  * Description: Print log message when RQS has failed.
16653  *
16654  *   Arguments: un - ptr to associated softstate
16655  *		bp - ptr to buf(9S) for the command
16656  *		arg - generic message string ptr
16657  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16658  *			or SD_NO_RETRY_ISSUED
16659  *
16660  *     Context: May be called from interrupt context
16661  */
16662 
16663 static void
16664 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16665 	int code)
16666 {
16667 	char	*msgp = arg;
16668 
16669 	ASSERT(un != NULL);
16670 	ASSERT(mutex_owned(SD_MUTEX(un)));
16671 	ASSERT(bp != NULL);
16672 
16673 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16674 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16675 	}
16676 }
16677 
16678 
16679 /*
16680  *    Function: sd_validate_sense_data
16681  *
16682  * Description: Check the given sense data for validity.
16683  *		If the sense data is not valid, the command will
16684  *		be either failed or retried!
16685  *
16686  * Return Code: SD_SENSE_DATA_IS_INVALID
16687  *		SD_SENSE_DATA_IS_VALID
16688  *
16689  *     Context: May be called from interrupt context
16690  */
16691 
16692 static int
16693 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16694 {
16695 	struct scsi_extended_sense *esp;
16696 	struct	scsi_pkt *pktp;
16697 	size_t	actual_len;
16698 	char	*msgp = NULL;
16699 
16700 	ASSERT(un != NULL);
16701 	ASSERT(mutex_owned(SD_MUTEX(un)));
16702 	ASSERT(bp != NULL);
16703 	ASSERT(bp != un->un_rqs_bp);
16704 	ASSERT(xp != NULL);
16705 
16706 	pktp = SD_GET_PKTP(bp);
16707 	ASSERT(pktp != NULL);
16708 
16709 	/*
16710 	 * Check the status of the RQS command (auto or manual).
16711 	 */
16712 	switch (xp->xb_sense_status & STATUS_MASK) {
16713 	case STATUS_GOOD:
16714 		break;
16715 
16716 	case STATUS_RESERVATION_CONFLICT:
16717 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16718 		return (SD_SENSE_DATA_IS_INVALID);
16719 
16720 	case STATUS_BUSY:
16721 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16722 		    "Busy Status on REQUEST SENSE\n");
16723 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16724 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16725 		return (SD_SENSE_DATA_IS_INVALID);
16726 
16727 	case STATUS_QFULL:
16728 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16729 		    "QFULL Status on REQUEST SENSE\n");
16730 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16731 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16732 		return (SD_SENSE_DATA_IS_INVALID);
16733 
16734 	case STATUS_CHECK:
16735 	case STATUS_TERMINATED:
16736 		msgp = "Check Condition on REQUEST SENSE\n";
16737 		goto sense_failed;
16738 
16739 	default:
16740 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16741 		goto sense_failed;
16742 	}
16743 
16744 	/*
16745 	 * See if we got the minimum required amount of sense data.
16746 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16747 	 * or less.
16748 	 */
16749 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16750 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16751 	    (actual_len == 0)) {
16752 		msgp = "Request Sense couldn't get sense data\n";
16753 		goto sense_failed;
16754 	}
16755 
16756 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16757 		msgp = "Not enough sense information\n";
16758 		goto sense_failed;
16759 	}
16760 
16761 	/*
16762 	 * We require the extended sense data
16763 	 */
16764 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16765 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16766 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16767 			static char tmp[8];
16768 			static char buf[148];
16769 			char *p = (char *)(xp->xb_sense_data);
16770 			int i;
16771 
16772 			mutex_enter(&sd_sense_mutex);
16773 			(void) strcpy(buf, "undecodable sense information:");
16774 			for (i = 0; i < actual_len; i++) {
16775 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16776 				(void) strcpy(&buf[strlen(buf)], tmp);
16777 			}
16778 			i = strlen(buf);
16779 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16780 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16781 			mutex_exit(&sd_sense_mutex);
16782 		}
16783 		/* Note: Legacy behavior, fail the command with no retry */
16784 		sd_return_failed_command(un, bp, EIO);
16785 		return (SD_SENSE_DATA_IS_INVALID);
16786 	}
16787 
16788 	/*
16789 	 * Check that es_code is valid (es_class concatenated with es_code
16790 	 * make up the "response code" field.  es_class will always be 7, so
16791 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16792 	 * format.
16793 	 */
16794 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16795 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16796 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16797 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16798 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16799 		goto sense_failed;
16800 	}
16801 
16802 	return (SD_SENSE_DATA_IS_VALID);
16803 
16804 sense_failed:
16805 	/*
16806 	 * If the request sense failed (for whatever reason), attempt
16807 	 * to retry the original command.
16808 	 */
16809 #if defined(__i386) || defined(__amd64)
16810 	/*
16811 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16812 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16813 	 * for both SCSI/FC.
16814 	 * The SD_RETRY_DELAY value need to be adjusted here
16815 	 * when SD_RETRY_DELAY change in sddef.h
16816 	 */
16817 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16818 	    sd_print_sense_failed_msg, msgp, EIO,
16819 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16820 #else
16821 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16822 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16823 #endif
16824 
16825 	return (SD_SENSE_DATA_IS_INVALID);
16826 }
16827 
16828 
16829 
16830 /*
16831  *    Function: sd_decode_sense
16832  *
16833  * Description: Take recovery action(s) when SCSI Sense Data is received.
16834  *
16835  *     Context: Interrupt context.
16836  */
16837 
16838 static void
16839 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16840 	struct scsi_pkt *pktp)
16841 {
16842 	struct scsi_extended_sense *esp;
16843 	struct scsi_descr_sense_hdr *sdsp;
16844 	uint8_t asc, ascq, sense_key;
16845 
16846 	ASSERT(un != NULL);
16847 	ASSERT(mutex_owned(SD_MUTEX(un)));
16848 	ASSERT(bp != NULL);
16849 	ASSERT(bp != un->un_rqs_bp);
16850 	ASSERT(xp != NULL);
16851 	ASSERT(pktp != NULL);
16852 
16853 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16854 
16855 	switch (esp->es_code) {
16856 	case CODE_FMT_DESCR_CURRENT:
16857 	case CODE_FMT_DESCR_DEFERRED:
16858 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16859 		sense_key = sdsp->ds_key;
16860 		asc = sdsp->ds_add_code;
16861 		ascq = sdsp->ds_qual_code;
16862 		break;
16863 	case CODE_FMT_VENDOR_SPECIFIC:
16864 	case CODE_FMT_FIXED_CURRENT:
16865 	case CODE_FMT_FIXED_DEFERRED:
16866 	default:
16867 		sense_key = esp->es_key;
16868 		asc = esp->es_add_code;
16869 		ascq = esp->es_qual_code;
16870 		break;
16871 	}
16872 
16873 	switch (sense_key) {
16874 	case KEY_NO_SENSE:
16875 		sd_sense_key_no_sense(un, bp, xp, pktp);
16876 		break;
16877 	case KEY_RECOVERABLE_ERROR:
16878 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16879 		break;
16880 	case KEY_NOT_READY:
16881 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16882 		break;
16883 	case KEY_MEDIUM_ERROR:
16884 	case KEY_HARDWARE_ERROR:
16885 		sd_sense_key_medium_or_hardware_error(un,
16886 		    sense_key, asc, bp, xp, pktp);
16887 		break;
16888 	case KEY_ILLEGAL_REQUEST:
16889 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16890 		break;
16891 	case KEY_UNIT_ATTENTION:
16892 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16893 		break;
16894 	case KEY_WRITE_PROTECT:
16895 	case KEY_VOLUME_OVERFLOW:
16896 	case KEY_MISCOMPARE:
16897 		sd_sense_key_fail_command(un, bp, xp, pktp);
16898 		break;
16899 	case KEY_BLANK_CHECK:
16900 		sd_sense_key_blank_check(un, bp, xp, pktp);
16901 		break;
16902 	case KEY_ABORTED_COMMAND:
16903 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16904 		break;
16905 	case KEY_VENDOR_UNIQUE:
16906 	case KEY_COPY_ABORTED:
16907 	case KEY_EQUAL:
16908 	case KEY_RESERVED:
16909 	default:
16910 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16911 		break;
16912 	}
16913 }
16914 
16915 
16916 /*
16917  *    Function: sd_dump_memory
16918  *
16919  * Description: Debug logging routine to print the contents of a user provided
16920  *		buffer. The output of the buffer is broken up into 256 byte
16921  *		segments due to a size constraint of the scsi_log.
16922  *		implementation.
16923  *
16924  *   Arguments: un - ptr to softstate
16925  *		comp - component mask
16926  *		title - "title" string to preceed data when printed
16927  *		data - ptr to data block to be printed
16928  *		len - size of data block to be printed
16929  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16930  *
16931  *     Context: May be called from interrupt context
16932  */
16933 
16934 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16935 
16936 static char *sd_dump_format_string[] = {
16937 		" 0x%02x",
16938 		" %c"
16939 };
16940 
16941 static void
16942 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16943     int len, int fmt)
16944 {
16945 	int	i, j;
16946 	int	avail_count;
16947 	int	start_offset;
16948 	int	end_offset;
16949 	size_t	entry_len;
16950 	char	*bufp;
16951 	char	*local_buf;
16952 	char	*format_string;
16953 
16954 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16955 
16956 	/*
16957 	 * In the debug version of the driver, this function is called from a
16958 	 * number of places which are NOPs in the release driver.
16959 	 * The debug driver therefore has additional methods of filtering
16960 	 * debug output.
16961 	 */
16962 #ifdef SDDEBUG
16963 	/*
16964 	 * In the debug version of the driver we can reduce the amount of debug
16965 	 * messages by setting sd_error_level to something other than
16966 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16967 	 * sd_component_mask.
16968 	 */
16969 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16970 	    (sd_error_level != SCSI_ERR_ALL)) {
16971 		return;
16972 	}
16973 	if (((sd_component_mask & comp) == 0) ||
16974 	    (sd_error_level != SCSI_ERR_ALL)) {
16975 		return;
16976 	}
16977 #else
16978 	if (sd_error_level != SCSI_ERR_ALL) {
16979 		return;
16980 	}
16981 #endif
16982 
16983 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
16984 	bufp = local_buf;
16985 	/*
16986 	 * Available length is the length of local_buf[], minus the
16987 	 * length of the title string, minus one for the ":", minus
16988 	 * one for the newline, minus one for the NULL terminator.
16989 	 * This gives the #bytes available for holding the printed
16990 	 * values from the given data buffer.
16991 	 */
16992 	if (fmt == SD_LOG_HEX) {
16993 		format_string = sd_dump_format_string[0];
16994 	} else /* SD_LOG_CHAR */ {
16995 		format_string = sd_dump_format_string[1];
16996 	}
16997 	/*
16998 	 * Available count is the number of elements from the given
16999 	 * data buffer that we can fit into the available length.
17000 	 * This is based upon the size of the format string used.
17001 	 * Make one entry and find it's size.
17002 	 */
17003 	(void) sprintf(bufp, format_string, data[0]);
17004 	entry_len = strlen(bufp);
17005 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17006 
17007 	j = 0;
17008 	while (j < len) {
17009 		bufp = local_buf;
17010 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17011 		start_offset = j;
17012 
17013 		end_offset = start_offset + avail_count;
17014 
17015 		(void) sprintf(bufp, "%s:", title);
17016 		bufp += strlen(bufp);
17017 		for (i = start_offset; ((i < end_offset) && (j < len));
17018 		    i++, j++) {
17019 			(void) sprintf(bufp, format_string, data[i]);
17020 			bufp += entry_len;
17021 		}
17022 		(void) sprintf(bufp, "\n");
17023 
17024 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17025 	}
17026 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17027 }
17028 
17029 /*
17030  *    Function: sd_print_sense_msg
17031  *
17032  * Description: Log a message based upon the given sense data.
17033  *
17034  *   Arguments: un - ptr to associated softstate
17035  *		bp - ptr to buf(9S) for the command
17036  *		arg - ptr to associate sd_sense_info struct
17037  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17038  *			or SD_NO_RETRY_ISSUED
17039  *
17040  *     Context: May be called from interrupt context
17041  */
17042 
17043 static void
17044 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17045 {
17046 	struct sd_xbuf	*xp;
17047 	struct scsi_pkt	*pktp;
17048 	struct scsi_extended_sense *sensep;
17049 	daddr_t request_blkno;
17050 	diskaddr_t err_blkno;
17051 	int severity;
17052 	int pfa_flag;
17053 	int fixed_format = TRUE;
17054 	extern struct scsi_key_strings scsi_cmds[];
17055 
17056 	ASSERT(un != NULL);
17057 	ASSERT(mutex_owned(SD_MUTEX(un)));
17058 	ASSERT(bp != NULL);
17059 	xp = SD_GET_XBUF(bp);
17060 	ASSERT(xp != NULL);
17061 	pktp = SD_GET_PKTP(bp);
17062 	ASSERT(pktp != NULL);
17063 	ASSERT(arg != NULL);
17064 
17065 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17066 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17067 
17068 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17069 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17070 		severity = SCSI_ERR_RETRYABLE;
17071 	}
17072 
17073 	/* Use absolute block number for the request block number */
17074 	request_blkno = xp->xb_blkno;
17075 
17076 	/*
17077 	 * Now try to get the error block number from the sense data
17078 	 */
17079 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
17080 	switch (sensep->es_code) {
17081 	case CODE_FMT_DESCR_CURRENT:
17082 	case CODE_FMT_DESCR_DEFERRED:
17083 		err_blkno =
17084 		    sd_extract_sense_info_descr(
17085 			(struct scsi_descr_sense_hdr *)sensep);
17086 		fixed_format = FALSE;
17087 		break;
17088 	case CODE_FMT_FIXED_CURRENT:
17089 	case CODE_FMT_FIXED_DEFERRED:
17090 	case CODE_FMT_VENDOR_SPECIFIC:
17091 	default:
17092 		/*
17093 		 * With the es_valid bit set, we assume that the error
17094 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
17095 		 * greater than 0xffffffff then the target *should* have used
17096 		 * a descriptor sense format (or it shouldn't have set
17097 		 * the es_valid bit), and we may as well ignore the
17098 		 * 32-bit value.
17099 		 */
17100 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
17101 			err_blkno = (diskaddr_t)
17102 			    ((sensep->es_info_1 << 24) |
17103 			    (sensep->es_info_2 << 16) |
17104 			    (sensep->es_info_3 << 8)  |
17105 			    (sensep->es_info_4));
17106 		} else {
17107 			err_blkno = (diskaddr_t)-1;
17108 		}
17109 		break;
17110 	}
17111 
17112 	if (err_blkno == (diskaddr_t)-1) {
17113 		/*
17114 		 * Without the es_valid bit set (for fixed format) or an
17115 		 * information descriptor (for descriptor format) we cannot
17116 		 * be certain of the error blkno, so just use the
17117 		 * request_blkno.
17118 		 */
17119 		err_blkno = (diskaddr_t)request_blkno;
17120 	} else {
17121 		/*
17122 		 * We retrieved the error block number from the information
17123 		 * portion of the sense data.
17124 		 *
17125 		 * For USCSI commands we are better off using the error
17126 		 * block no. as the requested block no. (This is the best
17127 		 * we can estimate.)
17128 		 */
17129 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17130 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17131 			request_blkno = err_blkno;
17132 		}
17133 	}
17134 
17135 	/*
17136 	 * The following will log the buffer contents for the release driver
17137 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17138 	 * level is set to verbose.
17139 	 */
17140 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17141 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17142 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17143 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17144 
17145 	if (pfa_flag == FALSE) {
17146 		/* This is normally only set for USCSI */
17147 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17148 			return;
17149 		}
17150 
17151 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17152 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17153 		    (severity < sd_error_level))) {
17154 			return;
17155 		}
17156 	}
17157 
17158 	/*
17159 	 * If the data is fixed format then check for Sonoma Failover,
17160 	 * and keep a count of how many failed I/O's.  We should not have
17161 	 * to worry about Sonoma returning descriptor format sense data,
17162 	 * and asc/ascq are in a different location in descriptor format.
17163 	 */
17164 	if (fixed_format &&
17165 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
17166 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
17167 		un->un_sonoma_failure_count++;
17168 		if (un->un_sonoma_failure_count > 1) {
17169 			return;
17170 		}
17171 	}
17172 
17173 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17174 	    request_blkno, err_blkno, scsi_cmds, sensep,
17175 	    un->un_additional_codes, NULL);
17176 }
17177 
17178 /*
17179  *    Function: sd_extract_sense_info_descr
17180  *
17181  * Description: Retrieve "information" field from descriptor format
17182  *              sense data.  Iterates through each sense descriptor
17183  *              looking for the information descriptor and returns
17184  *              the information field from that descriptor.
17185  *
17186  *     Context: May be called from interrupt context
17187  */
17188 
17189 static diskaddr_t
17190 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17191 {
17192 	diskaddr_t result;
17193 	uint8_t *descr_offset;
17194 	int valid_sense_length;
17195 	struct scsi_information_sense_descr *isd;
17196 
17197 	/*
17198 	 * Initialize result to -1 indicating there is no information
17199 	 * descriptor
17200 	 */
17201 	result = (diskaddr_t)-1;
17202 
17203 	/*
17204 	 * The first descriptor will immediately follow the header
17205 	 */
17206 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17207 
17208 	/*
17209 	 * Calculate the amount of valid sense data
17210 	 */
17211 	valid_sense_length =
17212 	    min((sizeof (struct scsi_descr_sense_hdr) +
17213 	    sdsp->ds_addl_sense_length),
17214 	    SENSE_LENGTH);
17215 
17216 	/*
17217 	 * Iterate through the list of descriptors, stopping when we
17218 	 * run out of sense data
17219 	 */
17220 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17221 	    (uint8_t *)sdsp + valid_sense_length) {
17222 		/*
17223 		 * Check if this is an information descriptor.  We can
17224 		 * use the scsi_information_sense_descr structure as a
17225 		 * template sense the first two fields are always the
17226 		 * same
17227 		 */
17228 		isd = (struct scsi_information_sense_descr *)descr_offset;
17229 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17230 			/*
17231 			 * Found an information descriptor.  Copy the
17232 			 * information field.  There will only be one
17233 			 * information descriptor so we can stop looking.
17234 			 */
17235 			result =
17236 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17237 				((diskaddr_t)isd->isd_information[1] << 48) |
17238 				((diskaddr_t)isd->isd_information[2] << 40) |
17239 				((diskaddr_t)isd->isd_information[3] << 32) |
17240 				((diskaddr_t)isd->isd_information[4] << 24) |
17241 				((diskaddr_t)isd->isd_information[5] << 16) |
17242 				((diskaddr_t)isd->isd_information[6] << 8)  |
17243 				((diskaddr_t)isd->isd_information[7]));
17244 			break;
17245 		}
17246 
17247 		/*
17248 		 * Get pointer to the next descriptor.  The "additional
17249 		 * length" field holds the length of the descriptor except
17250 		 * for the "type" and "additional length" fields, so
17251 		 * we need to add 2 to get the total length.
17252 		 */
17253 		descr_offset += (isd->isd_addl_length + 2);
17254 	}
17255 
17256 	return (result);
17257 }
17258 
17259 /*
17260  *    Function: sd_sense_key_no_sense
17261  *
17262  * Description: Recovery action when sense data was not received.
17263  *
17264  *     Context: May be called from interrupt context
17265  */
17266 
17267 static void
17268 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17269 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17270 {
17271 	struct sd_sense_info	si;
17272 
17273 	ASSERT(un != NULL);
17274 	ASSERT(mutex_owned(SD_MUTEX(un)));
17275 	ASSERT(bp != NULL);
17276 	ASSERT(xp != NULL);
17277 	ASSERT(pktp != NULL);
17278 
17279 	si.ssi_severity = SCSI_ERR_FATAL;
17280 	si.ssi_pfa_flag = FALSE;
17281 
17282 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17283 
17284 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17285 		&si, EIO, (clock_t)0, NULL);
17286 }
17287 
17288 
17289 /*
17290  *    Function: sd_sense_key_recoverable_error
17291  *
17292  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17293  *
17294  *     Context: May be called from interrupt context
17295  */
17296 
17297 static void
17298 sd_sense_key_recoverable_error(struct sd_lun *un,
17299 	uint8_t asc,
17300 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17301 {
17302 	struct sd_sense_info	si;
17303 
17304 	ASSERT(un != NULL);
17305 	ASSERT(mutex_owned(SD_MUTEX(un)));
17306 	ASSERT(bp != NULL);
17307 	ASSERT(xp != NULL);
17308 	ASSERT(pktp != NULL);
17309 
17310 	/*
17311 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17312 	 */
17313 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17314 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17315 		si.ssi_severity = SCSI_ERR_INFO;
17316 		si.ssi_pfa_flag = TRUE;
17317 	} else {
17318 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17319 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17320 		si.ssi_severity = SCSI_ERR_RECOVERED;
17321 		si.ssi_pfa_flag = FALSE;
17322 	}
17323 
17324 	if (pktp->pkt_resid == 0) {
17325 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17326 		sd_return_command(un, bp);
17327 		return;
17328 	}
17329 
17330 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17331 	    &si, EIO, (clock_t)0, NULL);
17332 }
17333 
17334 
17335 
17336 
17337 /*
17338  *    Function: sd_sense_key_not_ready
17339  *
17340  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17341  *
17342  *     Context: May be called from interrupt context
17343  */
17344 
17345 static void
17346 sd_sense_key_not_ready(struct sd_lun *un,
17347 	uint8_t asc, uint8_t ascq,
17348 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17349 {
17350 	struct sd_sense_info	si;
17351 
17352 	ASSERT(un != NULL);
17353 	ASSERT(mutex_owned(SD_MUTEX(un)));
17354 	ASSERT(bp != NULL);
17355 	ASSERT(xp != NULL);
17356 	ASSERT(pktp != NULL);
17357 
17358 	si.ssi_severity = SCSI_ERR_FATAL;
17359 	si.ssi_pfa_flag = FALSE;
17360 
17361 	/*
17362 	 * Update error stats after first NOT READY error. Disks may have
17363 	 * been powered down and may need to be restarted.  For CDROMs,
17364 	 * report NOT READY errors only if media is present.
17365 	 */
17366 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17367 	    (xp->xb_retry_count > 0)) {
17368 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17369 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17370 	}
17371 
17372 	/*
17373 	 * Just fail if the "not ready" retry limit has been reached.
17374 	 */
17375 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17376 		/* Special check for error message printing for removables. */
17377 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17378 		    (ascq >= 0x04)) {
17379 			si.ssi_severity = SCSI_ERR_ALL;
17380 		}
17381 		goto fail_command;
17382 	}
17383 
17384 	/*
17385 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17386 	 * what to do.
17387 	 */
17388 	switch (asc) {
17389 	case 0x04:	/* LOGICAL UNIT NOT READY */
17390 		/*
17391 		 * disk drives that don't spin up result in a very long delay
17392 		 * in format without warning messages. We will log a message
17393 		 * if the error level is set to verbose.
17394 		 */
17395 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17396 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17397 			    "logical unit not ready, resetting disk\n");
17398 		}
17399 
17400 		/*
17401 		 * There are different requirements for CDROMs and disks for
17402 		 * the number of retries.  If a CD-ROM is giving this, it is
17403 		 * probably reading TOC and is in the process of getting
17404 		 * ready, so we should keep on trying for a long time to make
17405 		 * sure that all types of media are taken in account (for
17406 		 * some media the drive takes a long time to read TOC).  For
17407 		 * disks we do not want to retry this too many times as this
17408 		 * can cause a long hang in format when the drive refuses to
17409 		 * spin up (a very common failure).
17410 		 */
17411 		switch (ascq) {
17412 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17413 			/*
17414 			 * Disk drives frequently refuse to spin up which
17415 			 * results in a very long hang in format without
17416 			 * warning messages.
17417 			 *
17418 			 * Note: This code preserves the legacy behavior of
17419 			 * comparing xb_retry_count against zero for fibre
17420 			 * channel targets instead of comparing against the
17421 			 * un_reset_retry_count value.  The reason for this
17422 			 * discrepancy has been so utterly lost beneath the
17423 			 * Sands of Time that even Indiana Jones could not
17424 			 * find it.
17425 			 */
17426 			if (un->un_f_is_fibre == TRUE) {
17427 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17428 					(xp->xb_retry_count > 0)) &&
17429 					(un->un_startstop_timeid == NULL)) {
17430 					scsi_log(SD_DEVINFO(un), sd_label,
17431 					CE_WARN, "logical unit not ready, "
17432 					"resetting disk\n");
17433 					sd_reset_target(un, pktp);
17434 				}
17435 			} else {
17436 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17437 					(xp->xb_retry_count >
17438 					un->un_reset_retry_count)) &&
17439 					(un->un_startstop_timeid == NULL)) {
17440 					scsi_log(SD_DEVINFO(un), sd_label,
17441 					CE_WARN, "logical unit not ready, "
17442 					"resetting disk\n");
17443 					sd_reset_target(un, pktp);
17444 				}
17445 			}
17446 			break;
17447 
17448 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17449 			/*
17450 			 * If the target is in the process of becoming
17451 			 * ready, just proceed with the retry. This can
17452 			 * happen with CD-ROMs that take a long time to
17453 			 * read TOC after a power cycle or reset.
17454 			 */
17455 			goto do_retry;
17456 
17457 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17458 			break;
17459 
17460 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17461 			/*
17462 			 * Retries cannot help here so just fail right away.
17463 			 */
17464 			goto fail_command;
17465 
17466 		case 0x88:
17467 			/*
17468 			 * Vendor-unique code for T3/T4: it indicates a
17469 			 * path problem in a mutipathed config, but as far as
17470 			 * the target driver is concerned it equates to a fatal
17471 			 * error, so we should just fail the command right away
17472 			 * (without printing anything to the console). If this
17473 			 * is not a T3/T4, fall thru to the default recovery
17474 			 * action.
17475 			 * T3/T4 is FC only, don't need to check is_fibre
17476 			 */
17477 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17478 				sd_return_failed_command(un, bp, EIO);
17479 				return;
17480 			}
17481 			/* FALLTHRU */
17482 
17483 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17484 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17485 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17486 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17487 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17488 		default:    /* Possible future codes in SCSI spec? */
17489 			/*
17490 			 * For removable-media devices, do not retry if
17491 			 * ASCQ > 2 as these result mostly from USCSI commands
17492 			 * on MMC devices issued to check status of an
17493 			 * operation initiated in immediate mode.  Also for
17494 			 * ASCQ >= 4 do not print console messages as these
17495 			 * mainly represent a user-initiated operation
17496 			 * instead of a system failure.
17497 			 */
17498 			if (un->un_f_has_removable_media) {
17499 				si.ssi_severity = SCSI_ERR_ALL;
17500 				goto fail_command;
17501 			}
17502 			break;
17503 		}
17504 
17505 		/*
17506 		 * As part of our recovery attempt for the NOT READY
17507 		 * condition, we issue a START STOP UNIT command. However
17508 		 * we want to wait for a short delay before attempting this
17509 		 * as there may still be more commands coming back from the
17510 		 * target with the check condition. To do this we use
17511 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17512 		 * the delay interval expires. (sd_start_stop_unit_callback()
17513 		 * dispatches sd_start_stop_unit_task(), which will issue
17514 		 * the actual START STOP UNIT command. The delay interval
17515 		 * is one-half of the delay that we will use to retry the
17516 		 * command that generated the NOT READY condition.
17517 		 *
17518 		 * Note that we could just dispatch sd_start_stop_unit_task()
17519 		 * from here and allow it to sleep for the delay interval,
17520 		 * but then we would be tying up the taskq thread
17521 		 * uncesessarily for the duration of the delay.
17522 		 *
17523 		 * Do not issue the START STOP UNIT if the current command
17524 		 * is already a START STOP UNIT.
17525 		 */
17526 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17527 			break;
17528 		}
17529 
17530 		/*
17531 		 * Do not schedule the timeout if one is already pending.
17532 		 */
17533 		if (un->un_startstop_timeid != NULL) {
17534 			SD_INFO(SD_LOG_ERROR, un,
17535 			    "sd_sense_key_not_ready: restart already issued to"
17536 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17537 			    ddi_get_instance(SD_DEVINFO(un)));
17538 			break;
17539 		}
17540 
17541 		/*
17542 		 * Schedule the START STOP UNIT command, then queue the command
17543 		 * for a retry.
17544 		 *
17545 		 * Note: A timeout is not scheduled for this retry because we
17546 		 * want the retry to be serial with the START_STOP_UNIT. The
17547 		 * retry will be started when the START_STOP_UNIT is completed
17548 		 * in sd_start_stop_unit_task.
17549 		 */
17550 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17551 		    un, SD_BSY_TIMEOUT / 2);
17552 		xp->xb_retry_count++;
17553 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17554 		return;
17555 
17556 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17557 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17558 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17559 			    "unit does not respond to selection\n");
17560 		}
17561 		break;
17562 
17563 	case 0x3A:	/* MEDIUM NOT PRESENT */
17564 		if (sd_error_level >= SCSI_ERR_FATAL) {
17565 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17566 			    "Caddy not inserted in drive\n");
17567 		}
17568 
17569 		sr_ejected(un);
17570 		un->un_mediastate = DKIO_EJECTED;
17571 		/* The state has changed, inform the media watch routines */
17572 		cv_broadcast(&un->un_state_cv);
17573 		/* Just fail if no media is present in the drive. */
17574 		goto fail_command;
17575 
17576 	default:
17577 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17578 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17579 			    "Unit not Ready. Additional sense code 0x%x\n",
17580 			    asc);
17581 		}
17582 		break;
17583 	}
17584 
17585 do_retry:
17586 
17587 	/*
17588 	 * Retry the command, as some targets may report NOT READY for
17589 	 * several seconds after being reset.
17590 	 */
17591 	xp->xb_retry_count++;
17592 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17593 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17594 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17595 
17596 	return;
17597 
17598 fail_command:
17599 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17600 	sd_return_failed_command(un, bp, EIO);
17601 }
17602 
17603 
17604 
17605 /*
17606  *    Function: sd_sense_key_medium_or_hardware_error
17607  *
17608  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17609  *		sense key.
17610  *
17611  *     Context: May be called from interrupt context
17612  */
17613 
17614 static void
17615 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17616 	int sense_key, uint8_t asc,
17617 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17618 {
17619 	struct sd_sense_info	si;
17620 
17621 	ASSERT(un != NULL);
17622 	ASSERT(mutex_owned(SD_MUTEX(un)));
17623 	ASSERT(bp != NULL);
17624 	ASSERT(xp != NULL);
17625 	ASSERT(pktp != NULL);
17626 
17627 	si.ssi_severity = SCSI_ERR_FATAL;
17628 	si.ssi_pfa_flag = FALSE;
17629 
17630 	if (sense_key == KEY_MEDIUM_ERROR) {
17631 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17632 	}
17633 
17634 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17635 
17636 	if ((un->un_reset_retry_count != 0) &&
17637 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17638 		mutex_exit(SD_MUTEX(un));
17639 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17640 		if (un->un_f_allow_bus_device_reset == TRUE) {
17641 
17642 			boolean_t try_resetting_target = B_TRUE;
17643 
17644 			/*
17645 			 * We need to be able to handle specific ASC when we are
17646 			 * handling a KEY_HARDWARE_ERROR. In particular
17647 			 * taking the default action of resetting the target may
17648 			 * not be the appropriate way to attempt recovery.
17649 			 * Resetting a target because of a single LUN failure
17650 			 * victimizes all LUNs on that target.
17651 			 *
17652 			 * This is true for the LSI arrays, if an LSI
17653 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17654 			 * should trust it.
17655 			 */
17656 
17657 			if (sense_key == KEY_HARDWARE_ERROR) {
17658 				switch (asc) {
17659 				case 0x84:
17660 					if (SD_IS_LSI(un)) {
17661 						try_resetting_target = B_FALSE;
17662 					}
17663 					break;
17664 				default:
17665 					break;
17666 				}
17667 			}
17668 
17669 			if (try_resetting_target == B_TRUE) {
17670 				int reset_retval = 0;
17671 				if (un->un_f_lun_reset_enabled == TRUE) {
17672 					SD_TRACE(SD_LOG_IO_CORE, un,
17673 					    "sd_sense_key_medium_or_hardware_"
17674 					    "error: issuing RESET_LUN\n");
17675 					reset_retval =
17676 					    scsi_reset(SD_ADDRESS(un),
17677 					    RESET_LUN);
17678 				}
17679 				if (reset_retval == 0) {
17680 					SD_TRACE(SD_LOG_IO_CORE, un,
17681 					    "sd_sense_key_medium_or_hardware_"
17682 					    "error: issuing RESET_TARGET\n");
17683 					(void) scsi_reset(SD_ADDRESS(un),
17684 					    RESET_TARGET);
17685 				}
17686 			}
17687 		}
17688 		mutex_enter(SD_MUTEX(un));
17689 	}
17690 
17691 	/*
17692 	 * This really ought to be a fatal error, but we will retry anyway
17693 	 * as some drives report this as a spurious error.
17694 	 */
17695 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17696 	    &si, EIO, (clock_t)0, NULL);
17697 }
17698 
17699 
17700 
17701 /*
17702  *    Function: sd_sense_key_illegal_request
17703  *
17704  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17705  *
17706  *     Context: May be called from interrupt context
17707  */
17708 
17709 static void
17710 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17711 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17712 {
17713 	struct sd_sense_info	si;
17714 
17715 	ASSERT(un != NULL);
17716 	ASSERT(mutex_owned(SD_MUTEX(un)));
17717 	ASSERT(bp != NULL);
17718 	ASSERT(xp != NULL);
17719 	ASSERT(pktp != NULL);
17720 
17721 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17722 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17723 
17724 	si.ssi_severity = SCSI_ERR_INFO;
17725 	si.ssi_pfa_flag = FALSE;
17726 
17727 	/* Pointless to retry if the target thinks it's an illegal request */
17728 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17729 	sd_return_failed_command(un, bp, EIO);
17730 }
17731 
17732 
17733 
17734 
17735 /*
17736  *    Function: sd_sense_key_unit_attention
17737  *
17738  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17739  *
17740  *     Context: May be called from interrupt context
17741  */
17742 
17743 static void
17744 sd_sense_key_unit_attention(struct sd_lun *un,
17745 	uint8_t asc,
17746 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17747 {
17748 	/*
17749 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17750 	 * like Sonoma can return UNIT ATTENTION close to a minute
17751 	 * under certain conditions.
17752 	 */
17753 	int	retry_check_flag = SD_RETRIES_UA;
17754 	boolean_t	kstat_updated = B_FALSE;
17755 	struct	sd_sense_info		si;
17756 
17757 	ASSERT(un != NULL);
17758 	ASSERT(mutex_owned(SD_MUTEX(un)));
17759 	ASSERT(bp != NULL);
17760 	ASSERT(xp != NULL);
17761 	ASSERT(pktp != NULL);
17762 
17763 	si.ssi_severity = SCSI_ERR_INFO;
17764 	si.ssi_pfa_flag = FALSE;
17765 
17766 
17767 	switch (asc) {
17768 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17769 		if (sd_report_pfa != 0) {
17770 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17771 			si.ssi_pfa_flag = TRUE;
17772 			retry_check_flag = SD_RETRIES_STANDARD;
17773 			goto do_retry;
17774 		}
17775 		break;
17776 
17777 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17778 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17779 			un->un_resvd_status |=
17780 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17781 		}
17782 		/* FALLTHRU */
17783 
17784 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17785 		if (!un->un_f_has_removable_media) {
17786 			break;
17787 		}
17788 
17789 		/*
17790 		 * When we get a unit attention from a removable-media device,
17791 		 * it may be in a state that will take a long time to recover
17792 		 * (e.g., from a reset).  Since we are executing in interrupt
17793 		 * context here, we cannot wait around for the device to come
17794 		 * back. So hand this command off to sd_media_change_task()
17795 		 * for deferred processing under taskq thread context. (Note
17796 		 * that the command still may be failed if a problem is
17797 		 * encountered at a later time.)
17798 		 */
17799 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17800 		    KM_NOSLEEP) == 0) {
17801 			/*
17802 			 * Cannot dispatch the request so fail the command.
17803 			 */
17804 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17805 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17806 			si.ssi_severity = SCSI_ERR_FATAL;
17807 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17808 			sd_return_failed_command(un, bp, EIO);
17809 		}
17810 
17811 		/*
17812 		 * If failed to dispatch sd_media_change_task(), we already
17813 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17814 		 * we should update kstat later if it encounters an error. So,
17815 		 * we update kstat_updated flag here.
17816 		 */
17817 		kstat_updated = B_TRUE;
17818 
17819 		/*
17820 		 * Either the command has been successfully dispatched to a
17821 		 * task Q for retrying, or the dispatch failed. In either case
17822 		 * do NOT retry again by calling sd_retry_command. This sets up
17823 		 * two retries of the same command and when one completes and
17824 		 * frees the resources the other will access freed memory,
17825 		 * a bad thing.
17826 		 */
17827 		return;
17828 
17829 	default:
17830 		break;
17831 	}
17832 
17833 	/*
17834 	 * Update kstat if we haven't done that.
17835 	 */
17836 	if (!kstat_updated) {
17837 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17838 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17839 	}
17840 
17841 do_retry:
17842 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17843 	    EIO, SD_UA_RETRY_DELAY, NULL);
17844 }
17845 
17846 
17847 
17848 /*
17849  *    Function: sd_sense_key_fail_command
17850  *
17851  * Description: Use to fail a command when we don't like the sense key that
17852  *		was returned.
17853  *
17854  *     Context: May be called from interrupt context
17855  */
17856 
17857 static void
17858 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17859 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17860 {
17861 	struct sd_sense_info	si;
17862 
17863 	ASSERT(un != NULL);
17864 	ASSERT(mutex_owned(SD_MUTEX(un)));
17865 	ASSERT(bp != NULL);
17866 	ASSERT(xp != NULL);
17867 	ASSERT(pktp != NULL);
17868 
17869 	si.ssi_severity = SCSI_ERR_FATAL;
17870 	si.ssi_pfa_flag = FALSE;
17871 
17872 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17873 	sd_return_failed_command(un, bp, EIO);
17874 }
17875 
17876 
17877 
17878 /*
17879  *    Function: sd_sense_key_blank_check
17880  *
17881  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17882  *		Has no monetary connotation.
17883  *
17884  *     Context: May be called from interrupt context
17885  */
17886 
17887 static void
17888 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17889 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17890 {
17891 	struct sd_sense_info	si;
17892 
17893 	ASSERT(un != NULL);
17894 	ASSERT(mutex_owned(SD_MUTEX(un)));
17895 	ASSERT(bp != NULL);
17896 	ASSERT(xp != NULL);
17897 	ASSERT(pktp != NULL);
17898 
17899 	/*
17900 	 * Blank check is not fatal for removable devices, therefore
17901 	 * it does not require a console message.
17902 	 */
17903 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
17904 	    SCSI_ERR_FATAL;
17905 	si.ssi_pfa_flag = FALSE;
17906 
17907 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17908 	sd_return_failed_command(un, bp, EIO);
17909 }
17910 
17911 
17912 
17913 
17914 /*
17915  *    Function: sd_sense_key_aborted_command
17916  *
17917  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17918  *
17919  *     Context: May be called from interrupt context
17920  */
17921 
17922 static void
17923 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17924 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17925 {
17926 	struct sd_sense_info	si;
17927 
17928 	ASSERT(un != NULL);
17929 	ASSERT(mutex_owned(SD_MUTEX(un)));
17930 	ASSERT(bp != NULL);
17931 	ASSERT(xp != NULL);
17932 	ASSERT(pktp != NULL);
17933 
17934 	si.ssi_severity = SCSI_ERR_FATAL;
17935 	si.ssi_pfa_flag = FALSE;
17936 
17937 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17938 
17939 	/*
17940 	 * This really ought to be a fatal error, but we will retry anyway
17941 	 * as some drives report this as a spurious error.
17942 	 */
17943 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17944 	    &si, EIO, (clock_t)0, NULL);
17945 }
17946 
17947 
17948 
17949 /*
17950  *    Function: sd_sense_key_default
17951  *
17952  * Description: Default recovery action for several SCSI sense keys (basically
17953  *		attempts a retry).
17954  *
17955  *     Context: May be called from interrupt context
17956  */
17957 
17958 static void
17959 sd_sense_key_default(struct sd_lun *un,
17960 	int sense_key,
17961 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17962 {
17963 	struct sd_sense_info	si;
17964 
17965 	ASSERT(un != NULL);
17966 	ASSERT(mutex_owned(SD_MUTEX(un)));
17967 	ASSERT(bp != NULL);
17968 	ASSERT(xp != NULL);
17969 	ASSERT(pktp != NULL);
17970 
17971 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17972 
17973 	/*
17974 	 * Undecoded sense key.	Attempt retries and hope that will fix
17975 	 * the problem.  Otherwise, we're dead.
17976 	 */
17977 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17978 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17979 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17980 	}
17981 
17982 	si.ssi_severity = SCSI_ERR_FATAL;
17983 	si.ssi_pfa_flag = FALSE;
17984 
17985 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17986 	    &si, EIO, (clock_t)0, NULL);
17987 }
17988 
17989 
17990 
17991 /*
17992  *    Function: sd_print_retry_msg
17993  *
17994  * Description: Print a message indicating the retry action being taken.
17995  *
17996  *   Arguments: un - ptr to associated softstate
17997  *		bp - ptr to buf(9S) for the command
17998  *		arg - not used.
17999  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18000  *			or SD_NO_RETRY_ISSUED
18001  *
18002  *     Context: May be called from interrupt context
18003  */
18004 /* ARGSUSED */
18005 static void
18006 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18007 {
18008 	struct sd_xbuf	*xp;
18009 	struct scsi_pkt *pktp;
18010 	char *reasonp;
18011 	char *msgp;
18012 
18013 	ASSERT(un != NULL);
18014 	ASSERT(mutex_owned(SD_MUTEX(un)));
18015 	ASSERT(bp != NULL);
18016 	pktp = SD_GET_PKTP(bp);
18017 	ASSERT(pktp != NULL);
18018 	xp = SD_GET_XBUF(bp);
18019 	ASSERT(xp != NULL);
18020 
18021 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18022 	mutex_enter(&un->un_pm_mutex);
18023 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18024 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18025 	    (pktp->pkt_flags & FLAG_SILENT)) {
18026 		mutex_exit(&un->un_pm_mutex);
18027 		goto update_pkt_reason;
18028 	}
18029 	mutex_exit(&un->un_pm_mutex);
18030 
18031 	/*
18032 	 * Suppress messages if they are all the same pkt_reason; with
18033 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18034 	 * If we are in panic, then suppress the retry messages.
18035 	 */
18036 	switch (flag) {
18037 	case SD_NO_RETRY_ISSUED:
18038 		msgp = "giving up";
18039 		break;
18040 	case SD_IMMEDIATE_RETRY_ISSUED:
18041 	case SD_DELAYED_RETRY_ISSUED:
18042 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18043 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18044 		    (sd_error_level != SCSI_ERR_ALL))) {
18045 			return;
18046 		}
18047 		msgp = "retrying command";
18048 		break;
18049 	default:
18050 		goto update_pkt_reason;
18051 	}
18052 
18053 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18054 	    scsi_rname(pktp->pkt_reason));
18055 
18056 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18057 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18058 
18059 update_pkt_reason:
18060 	/*
18061 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18062 	 * This is to prevent multiple console messages for the same failure
18063 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18064 	 * when the command is retried successfully because there still may be
18065 	 * more commands coming back with the same value of pktp->pkt_reason.
18066 	 */
18067 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18068 		un->un_last_pkt_reason = pktp->pkt_reason;
18069 	}
18070 }
18071 
18072 
18073 /*
18074  *    Function: sd_print_cmd_incomplete_msg
18075  *
18076  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18077  *
18078  *   Arguments: un - ptr to associated softstate
18079  *		bp - ptr to buf(9S) for the command
18080  *		arg - passed to sd_print_retry_msg()
18081  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18082  *			or SD_NO_RETRY_ISSUED
18083  *
18084  *     Context: May be called from interrupt context
18085  */
18086 
18087 static void
18088 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18089 	int code)
18090 {
18091 	dev_info_t	*dip;
18092 
18093 	ASSERT(un != NULL);
18094 	ASSERT(mutex_owned(SD_MUTEX(un)));
18095 	ASSERT(bp != NULL);
18096 
18097 	switch (code) {
18098 	case SD_NO_RETRY_ISSUED:
18099 		/* Command was failed. Someone turned off this target? */
18100 		if (un->un_state != SD_STATE_OFFLINE) {
18101 			/*
18102 			 * Suppress message if we are detaching and
18103 			 * device has been disconnected
18104 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18105 			 * private interface and not part of the DDI
18106 			 */
18107 			dip = un->un_sd->sd_dev;
18108 			if (!(DEVI_IS_DETACHING(dip) &&
18109 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18110 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18111 				"disk not responding to selection\n");
18112 			}
18113 			New_state(un, SD_STATE_OFFLINE);
18114 		}
18115 		break;
18116 
18117 	case SD_DELAYED_RETRY_ISSUED:
18118 	case SD_IMMEDIATE_RETRY_ISSUED:
18119 	default:
18120 		/* Command was successfully queued for retry */
18121 		sd_print_retry_msg(un, bp, arg, code);
18122 		break;
18123 	}
18124 }
18125 
18126 
18127 /*
18128  *    Function: sd_pkt_reason_cmd_incomplete
18129  *
18130  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18131  *
18132  *     Context: May be called from interrupt context
18133  */
18134 
18135 static void
18136 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18137 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18138 {
18139 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18140 
18141 	ASSERT(un != NULL);
18142 	ASSERT(mutex_owned(SD_MUTEX(un)));
18143 	ASSERT(bp != NULL);
18144 	ASSERT(xp != NULL);
18145 	ASSERT(pktp != NULL);
18146 
18147 	/* Do not do a reset if selection did not complete */
18148 	/* Note: Should this not just check the bit? */
18149 	if (pktp->pkt_state != STATE_GOT_BUS) {
18150 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18151 		sd_reset_target(un, pktp);
18152 	}
18153 
18154 	/*
18155 	 * If the target was not successfully selected, then set
18156 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18157 	 * with the target, and further retries and/or commands are
18158 	 * likely to take a long time.
18159 	 */
18160 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18161 		flag |= SD_RETRIES_FAILFAST;
18162 	}
18163 
18164 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18165 
18166 	sd_retry_command(un, bp, flag,
18167 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18168 }
18169 
18170 
18171 
18172 /*
18173  *    Function: sd_pkt_reason_cmd_tran_err
18174  *
18175  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18176  *
18177  *     Context: May be called from interrupt context
18178  */
18179 
18180 static void
18181 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18182 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18183 {
18184 	ASSERT(un != NULL);
18185 	ASSERT(mutex_owned(SD_MUTEX(un)));
18186 	ASSERT(bp != NULL);
18187 	ASSERT(xp != NULL);
18188 	ASSERT(pktp != NULL);
18189 
18190 	/*
18191 	 * Do not reset if we got a parity error, or if
18192 	 * selection did not complete.
18193 	 */
18194 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18195 	/* Note: Should this not just check the bit for pkt_state? */
18196 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18197 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18198 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18199 		sd_reset_target(un, pktp);
18200 	}
18201 
18202 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18203 
18204 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18205 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18206 }
18207 
18208 
18209 
18210 /*
18211  *    Function: sd_pkt_reason_cmd_reset
18212  *
18213  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18214  *
18215  *     Context: May be called from interrupt context
18216  */
18217 
18218 static void
18219 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18220 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18221 {
18222 	ASSERT(un != NULL);
18223 	ASSERT(mutex_owned(SD_MUTEX(un)));
18224 	ASSERT(bp != NULL);
18225 	ASSERT(xp != NULL);
18226 	ASSERT(pktp != NULL);
18227 
18228 	/* The target may still be running the command, so try to reset. */
18229 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18230 	sd_reset_target(un, pktp);
18231 
18232 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18233 
18234 	/*
18235 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18236 	 * reset because another target on this bus caused it. The target
18237 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18238 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18239 	 */
18240 
18241 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18242 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18243 }
18244 
18245 
18246 
18247 
18248 /*
18249  *    Function: sd_pkt_reason_cmd_aborted
18250  *
18251  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18252  *
18253  *     Context: May be called from interrupt context
18254  */
18255 
18256 static void
18257 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18258 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18259 {
18260 	ASSERT(un != NULL);
18261 	ASSERT(mutex_owned(SD_MUTEX(un)));
18262 	ASSERT(bp != NULL);
18263 	ASSERT(xp != NULL);
18264 	ASSERT(pktp != NULL);
18265 
18266 	/* The target may still be running the command, so try to reset. */
18267 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18268 	sd_reset_target(un, pktp);
18269 
18270 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18271 
18272 	/*
18273 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18274 	 * aborted because another target on this bus caused it. The target
18275 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18276 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18277 	 */
18278 
18279 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18280 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18281 }
18282 
18283 
18284 
18285 /*
18286  *    Function: sd_pkt_reason_cmd_timeout
18287  *
18288  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18289  *
18290  *     Context: May be called from interrupt context
18291  */
18292 
18293 static void
18294 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18295 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18296 {
18297 	ASSERT(un != NULL);
18298 	ASSERT(mutex_owned(SD_MUTEX(un)));
18299 	ASSERT(bp != NULL);
18300 	ASSERT(xp != NULL);
18301 	ASSERT(pktp != NULL);
18302 
18303 
18304 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18305 	sd_reset_target(un, pktp);
18306 
18307 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18308 
18309 	/*
18310 	 * A command timeout indicates that we could not establish
18311 	 * communication with the target, so set SD_RETRIES_FAILFAST
18312 	 * as further retries/commands are likely to take a long time.
18313 	 */
18314 	sd_retry_command(un, bp,
18315 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18316 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18317 }
18318 
18319 
18320 
18321 /*
18322  *    Function: sd_pkt_reason_cmd_unx_bus_free
18323  *
18324  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18325  *
18326  *     Context: May be called from interrupt context
18327  */
18328 
18329 static void
18330 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18331 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18332 {
18333 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18334 
18335 	ASSERT(un != NULL);
18336 	ASSERT(mutex_owned(SD_MUTEX(un)));
18337 	ASSERT(bp != NULL);
18338 	ASSERT(xp != NULL);
18339 	ASSERT(pktp != NULL);
18340 
18341 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18342 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18343 
18344 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18345 	    sd_print_retry_msg : NULL;
18346 
18347 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18348 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18349 }
18350 
18351 
18352 /*
18353  *    Function: sd_pkt_reason_cmd_tag_reject
18354  *
18355  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18356  *
18357  *     Context: May be called from interrupt context
18358  */
18359 
18360 static void
18361 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18362 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18363 {
18364 	ASSERT(un != NULL);
18365 	ASSERT(mutex_owned(SD_MUTEX(un)));
18366 	ASSERT(bp != NULL);
18367 	ASSERT(xp != NULL);
18368 	ASSERT(pktp != NULL);
18369 
18370 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18371 	pktp->pkt_flags = 0;
18372 	un->un_tagflags = 0;
18373 	if (un->un_f_opt_queueing == TRUE) {
18374 		un->un_throttle = min(un->un_throttle, 3);
18375 	} else {
18376 		un->un_throttle = 1;
18377 	}
18378 	mutex_exit(SD_MUTEX(un));
18379 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18380 	mutex_enter(SD_MUTEX(un));
18381 
18382 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18383 
18384 	/* Legacy behavior not to check retry counts here. */
18385 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18386 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18387 }
18388 
18389 
18390 /*
18391  *    Function: sd_pkt_reason_default
18392  *
18393  * Description: Default recovery actions for SCSA pkt_reason values that
18394  *		do not have more explicit recovery actions.
18395  *
18396  *     Context: May be called from interrupt context
18397  */
18398 
18399 static void
18400 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18401 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18402 {
18403 	ASSERT(un != NULL);
18404 	ASSERT(mutex_owned(SD_MUTEX(un)));
18405 	ASSERT(bp != NULL);
18406 	ASSERT(xp != NULL);
18407 	ASSERT(pktp != NULL);
18408 
18409 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18410 	sd_reset_target(un, pktp);
18411 
18412 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18413 
18414 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18415 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18416 }
18417 
18418 
18419 
18420 /*
18421  *    Function: sd_pkt_status_check_condition
18422  *
18423  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18424  *
18425  *     Context: May be called from interrupt context
18426  */
18427 
18428 static void
18429 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18430 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18431 {
18432 	ASSERT(un != NULL);
18433 	ASSERT(mutex_owned(SD_MUTEX(un)));
18434 	ASSERT(bp != NULL);
18435 	ASSERT(xp != NULL);
18436 	ASSERT(pktp != NULL);
18437 
18438 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18439 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18440 
18441 	/*
18442 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18443 	 * command will be retried after the request sense). Otherwise, retry
18444 	 * the command. Note: we are issuing the request sense even though the
18445 	 * retry limit may have been reached for the failed command.
18446 	 */
18447 	if (un->un_f_arq_enabled == FALSE) {
18448 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18449 		    "no ARQ, sending request sense command\n");
18450 		sd_send_request_sense_command(un, bp, pktp);
18451 	} else {
18452 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18453 		    "ARQ,retrying request sense command\n");
18454 #if defined(__i386) || defined(__amd64)
18455 		/*
18456 		 * The SD_RETRY_DELAY value need to be adjusted here
18457 		 * when SD_RETRY_DELAY change in sddef.h
18458 		 */
18459 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18460 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18461 			NULL);
18462 #else
18463 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18464 		    EIO, SD_RETRY_DELAY, NULL);
18465 #endif
18466 	}
18467 
18468 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18469 }
18470 
18471 
18472 /*
18473  *    Function: sd_pkt_status_busy
18474  *
18475  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18476  *
18477  *     Context: May be called from interrupt context
18478  */
18479 
18480 static void
18481 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18482 	struct scsi_pkt *pktp)
18483 {
18484 	ASSERT(un != NULL);
18485 	ASSERT(mutex_owned(SD_MUTEX(un)));
18486 	ASSERT(bp != NULL);
18487 	ASSERT(xp != NULL);
18488 	ASSERT(pktp != NULL);
18489 
18490 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18491 	    "sd_pkt_status_busy: entry\n");
18492 
18493 	/* If retries are exhausted, just fail the command. */
18494 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18495 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18496 		    "device busy too long\n");
18497 		sd_return_failed_command(un, bp, EIO);
18498 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18499 		    "sd_pkt_status_busy: exit\n");
18500 		return;
18501 	}
18502 	xp->xb_retry_count++;
18503 
18504 	/*
18505 	 * Try to reset the target. However, we do not want to perform
18506 	 * more than one reset if the device continues to fail. The reset
18507 	 * will be performed when the retry count reaches the reset
18508 	 * threshold.  This threshold should be set such that at least
18509 	 * one retry is issued before the reset is performed.
18510 	 */
18511 	if (xp->xb_retry_count ==
18512 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18513 		int rval = 0;
18514 		mutex_exit(SD_MUTEX(un));
18515 		if (un->un_f_allow_bus_device_reset == TRUE) {
18516 			/*
18517 			 * First try to reset the LUN; if we cannot then
18518 			 * try to reset the target.
18519 			 */
18520 			if (un->un_f_lun_reset_enabled == TRUE) {
18521 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18522 				    "sd_pkt_status_busy: RESET_LUN\n");
18523 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18524 			}
18525 			if (rval == 0) {
18526 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18527 				    "sd_pkt_status_busy: RESET_TARGET\n");
18528 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18529 			}
18530 		}
18531 		if (rval == 0) {
18532 			/*
18533 			 * If the RESET_LUN and/or RESET_TARGET failed,
18534 			 * try RESET_ALL
18535 			 */
18536 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18537 			    "sd_pkt_status_busy: RESET_ALL\n");
18538 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18539 		}
18540 		mutex_enter(SD_MUTEX(un));
18541 		if (rval == 0) {
18542 			/*
18543 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18544 			 * At this point we give up & fail the command.
18545 			 */
18546 			sd_return_failed_command(un, bp, EIO);
18547 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18548 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18549 			return;
18550 		}
18551 	}
18552 
18553 	/*
18554 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18555 	 * we have already checked the retry counts above.
18556 	 */
18557 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18558 	    EIO, SD_BSY_TIMEOUT, NULL);
18559 
18560 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18561 	    "sd_pkt_status_busy: exit\n");
18562 }
18563 
18564 
18565 /*
18566  *    Function: sd_pkt_status_reservation_conflict
18567  *
18568  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18569  *		command status.
18570  *
18571  *     Context: May be called from interrupt context
18572  */
18573 
18574 static void
18575 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18576 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18577 {
18578 	ASSERT(un != NULL);
18579 	ASSERT(mutex_owned(SD_MUTEX(un)));
18580 	ASSERT(bp != NULL);
18581 	ASSERT(xp != NULL);
18582 	ASSERT(pktp != NULL);
18583 
18584 	/*
18585 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18586 	 * conflict could be due to various reasons like incorrect keys, not
18587 	 * registered or not reserved etc. So, we return EACCES to the caller.
18588 	 */
18589 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18590 		int cmd = SD_GET_PKT_OPCODE(pktp);
18591 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18592 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18593 			sd_return_failed_command(un, bp, EACCES);
18594 			return;
18595 		}
18596 	}
18597 
18598 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18599 
18600 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18601 		if (sd_failfast_enable != 0) {
18602 			/* By definition, we must panic here.... */
18603 			sd_panic_for_res_conflict(un);
18604 			/*NOTREACHED*/
18605 		}
18606 		SD_ERROR(SD_LOG_IO, un,
18607 		    "sd_handle_resv_conflict: Disk Reserved\n");
18608 		sd_return_failed_command(un, bp, EACCES);
18609 		return;
18610 	}
18611 
18612 	/*
18613 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18614 	 * property is set (default is 1). Retries will not succeed
18615 	 * on a disk reserved by another initiator. HA systems
18616 	 * may reset this via sd.conf to avoid these retries.
18617 	 *
18618 	 * Note: The legacy return code for this failure is EIO, however EACCES
18619 	 * seems more appropriate for a reservation conflict.
18620 	 */
18621 	if (sd_retry_on_reservation_conflict == 0) {
18622 		SD_ERROR(SD_LOG_IO, un,
18623 		    "sd_handle_resv_conflict: Device Reserved\n");
18624 		sd_return_failed_command(un, bp, EIO);
18625 		return;
18626 	}
18627 
18628 	/*
18629 	 * Retry the command if we can.
18630 	 *
18631 	 * Note: The legacy return code for this failure is EIO, however EACCES
18632 	 * seems more appropriate for a reservation conflict.
18633 	 */
18634 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18635 	    (clock_t)2, NULL);
18636 }
18637 
18638 
18639 
18640 /*
18641  *    Function: sd_pkt_status_qfull
18642  *
18643  * Description: Handle a QUEUE FULL condition from the target.  This can
18644  *		occur if the HBA does not handle the queue full condition.
18645  *		(Basically this means third-party HBAs as Sun HBAs will
18646  *		handle the queue full condition.)  Note that if there are
18647  *		some commands already in the transport, then the queue full
18648  *		has occurred because the queue for this nexus is actually
18649  *		full. If there are no commands in the transport, then the
18650  *		queue full is resulting from some other initiator or lun
18651  *		consuming all the resources at the target.
18652  *
18653  *     Context: May be called from interrupt context
18654  */
18655 
18656 static void
18657 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18658 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18659 {
18660 	ASSERT(un != NULL);
18661 	ASSERT(mutex_owned(SD_MUTEX(un)));
18662 	ASSERT(bp != NULL);
18663 	ASSERT(xp != NULL);
18664 	ASSERT(pktp != NULL);
18665 
18666 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18667 	    "sd_pkt_status_qfull: entry\n");
18668 
18669 	/*
18670 	 * Just lower the QFULL throttle and retry the command.  Note that
18671 	 * we do not limit the number of retries here.
18672 	 */
18673 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18674 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18675 	    SD_RESTART_TIMEOUT, NULL);
18676 
18677 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18678 	    "sd_pkt_status_qfull: exit\n");
18679 }
18680 
18681 
18682 /*
18683  *    Function: sd_reset_target
18684  *
18685  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18686  *		RESET_TARGET, or RESET_ALL.
18687  *
18688  *     Context: May be called under interrupt context.
18689  */
18690 
18691 static void
18692 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18693 {
18694 	int rval = 0;
18695 
18696 	ASSERT(un != NULL);
18697 	ASSERT(mutex_owned(SD_MUTEX(un)));
18698 	ASSERT(pktp != NULL);
18699 
18700 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18701 
18702 	/*
18703 	 * No need to reset if the transport layer has already done so.
18704 	 */
18705 	if ((pktp->pkt_statistics &
18706 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18707 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18708 		    "sd_reset_target: no reset\n");
18709 		return;
18710 	}
18711 
18712 	mutex_exit(SD_MUTEX(un));
18713 
18714 	if (un->un_f_allow_bus_device_reset == TRUE) {
18715 		if (un->un_f_lun_reset_enabled == TRUE) {
18716 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18717 			    "sd_reset_target: RESET_LUN\n");
18718 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18719 		}
18720 		if (rval == 0) {
18721 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18722 			    "sd_reset_target: RESET_TARGET\n");
18723 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18724 		}
18725 	}
18726 
18727 	if (rval == 0) {
18728 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18729 		    "sd_reset_target: RESET_ALL\n");
18730 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18731 	}
18732 
18733 	mutex_enter(SD_MUTEX(un));
18734 
18735 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18736 }
18737 
18738 
18739 /*
18740  *    Function: sd_media_change_task
18741  *
18742  * Description: Recovery action for CDROM to become available.
18743  *
18744  *     Context: Executes in a taskq() thread context
18745  */
18746 
18747 static void
18748 sd_media_change_task(void *arg)
18749 {
18750 	struct	scsi_pkt	*pktp = arg;
18751 	struct	sd_lun		*un;
18752 	struct	buf		*bp;
18753 	struct	sd_xbuf		*xp;
18754 	int	err		= 0;
18755 	int	retry_count	= 0;
18756 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18757 	struct	sd_sense_info	si;
18758 
18759 	ASSERT(pktp != NULL);
18760 	bp = (struct buf *)pktp->pkt_private;
18761 	ASSERT(bp != NULL);
18762 	xp = SD_GET_XBUF(bp);
18763 	ASSERT(xp != NULL);
18764 	un = SD_GET_UN(bp);
18765 	ASSERT(un != NULL);
18766 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18767 	ASSERT(un->un_f_monitor_media_state);
18768 
18769 	si.ssi_severity = SCSI_ERR_INFO;
18770 	si.ssi_pfa_flag = FALSE;
18771 
18772 	/*
18773 	 * When a reset is issued on a CDROM, it takes a long time to
18774 	 * recover. First few attempts to read capacity and other things
18775 	 * related to handling unit attention fail (with a ASC 0x4 and
18776 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18777 	 * to limit the retries in other cases of genuine failures like
18778 	 * no media in drive.
18779 	 */
18780 	while (retry_count++ < retry_limit) {
18781 		if ((err = sd_handle_mchange(un)) == 0) {
18782 			break;
18783 		}
18784 		if (err == EAGAIN) {
18785 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18786 		}
18787 		/* Sleep for 0.5 sec. & try again */
18788 		delay(drv_usectohz(500000));
18789 	}
18790 
18791 	/*
18792 	 * Dispatch (retry or fail) the original command here,
18793 	 * along with appropriate console messages....
18794 	 *
18795 	 * Must grab the mutex before calling sd_retry_command,
18796 	 * sd_print_sense_msg and sd_return_failed_command.
18797 	 */
18798 	mutex_enter(SD_MUTEX(un));
18799 	if (err != SD_CMD_SUCCESS) {
18800 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18801 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18802 		si.ssi_severity = SCSI_ERR_FATAL;
18803 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18804 		sd_return_failed_command(un, bp, EIO);
18805 	} else {
18806 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18807 		    &si, EIO, (clock_t)0, NULL);
18808 	}
18809 	mutex_exit(SD_MUTEX(un));
18810 }
18811 
18812 
18813 
18814 /*
18815  *    Function: sd_handle_mchange
18816  *
18817  * Description: Perform geometry validation & other recovery when CDROM
18818  *		has been removed from drive.
18819  *
18820  * Return Code: 0 for success
18821  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18822  *		sd_send_scsi_READ_CAPACITY()
18823  *
18824  *     Context: Executes in a taskq() thread context
18825  */
18826 
18827 static int
18828 sd_handle_mchange(struct sd_lun *un)
18829 {
18830 	uint64_t	capacity;
18831 	uint32_t	lbasize;
18832 	int		rval;
18833 
18834 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18835 	ASSERT(un->un_f_monitor_media_state);
18836 
18837 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18838 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18839 		return (rval);
18840 	}
18841 
18842 	mutex_enter(SD_MUTEX(un));
18843 	sd_update_block_info(un, lbasize, capacity);
18844 
18845 	if (un->un_errstats != NULL) {
18846 		struct	sd_errstats *stp =
18847 		    (struct sd_errstats *)un->un_errstats->ks_data;
18848 		stp->sd_capacity.value.ui64 = (uint64_t)
18849 		    ((uint64_t)un->un_blockcount *
18850 		    (uint64_t)un->un_tgt_blocksize);
18851 	}
18852 
18853 	/*
18854 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18855 	 * valid geometry.
18856 	 */
18857 	un->un_f_geometry_is_valid = FALSE;
18858 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18859 	if (un->un_f_geometry_is_valid == FALSE) {
18860 		mutex_exit(SD_MUTEX(un));
18861 		return (EIO);
18862 	}
18863 
18864 	mutex_exit(SD_MUTEX(un));
18865 
18866 	/*
18867 	 * Try to lock the door
18868 	 */
18869 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18870 	    SD_PATH_DIRECT_PRIORITY));
18871 }
18872 
18873 
18874 /*
18875  *    Function: sd_send_scsi_DOORLOCK
18876  *
18877  * Description: Issue the scsi DOOR LOCK command
18878  *
18879  *   Arguments: un    - pointer to driver soft state (unit) structure for
18880  *			this target.
18881  *		flag  - SD_REMOVAL_ALLOW
18882  *			SD_REMOVAL_PREVENT
18883  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18884  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18885  *			to use the USCSI "direct" chain and bypass the normal
18886  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18887  *			command is issued as part of an error recovery action.
18888  *
18889  * Return Code: 0   - Success
18890  *		errno return code from sd_send_scsi_cmd()
18891  *
18892  *     Context: Can sleep.
18893  */
18894 
18895 static int
18896 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18897 {
18898 	union scsi_cdb		cdb;
18899 	struct uscsi_cmd	ucmd_buf;
18900 	struct scsi_extended_sense	sense_buf;
18901 	int			status;
18902 
18903 	ASSERT(un != NULL);
18904 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18905 
18906 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18907 
18908 	/* already determined doorlock is not supported, fake success */
18909 	if (un->un_f_doorlock_supported == FALSE) {
18910 		return (0);
18911 	}
18912 
18913 	bzero(&cdb, sizeof (cdb));
18914 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18915 
18916 	cdb.scc_cmd = SCMD_DOORLOCK;
18917 	cdb.cdb_opaque[4] = (uchar_t)flag;
18918 
18919 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18920 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18921 	ucmd_buf.uscsi_bufaddr	= NULL;
18922 	ucmd_buf.uscsi_buflen	= 0;
18923 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18924 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18925 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18926 	ucmd_buf.uscsi_timeout	= 15;
18927 
18928 	SD_TRACE(SD_LOG_IO, un,
18929 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18930 
18931 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18932 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18933 
18934 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18935 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18936 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18937 		/* fake success and skip subsequent doorlock commands */
18938 		un->un_f_doorlock_supported = FALSE;
18939 		return (0);
18940 	}
18941 
18942 	return (status);
18943 }
18944 
18945 /*
18946  *    Function: sd_send_scsi_READ_CAPACITY
18947  *
18948  * Description: This routine uses the scsi READ CAPACITY command to determine
18949  *		the device capacity in number of blocks and the device native
18950  *		block size. If this function returns a failure, then the
18951  *		values in *capp and *lbap are undefined.  If the capacity
18952  *		returned is 0xffffffff then the lun is too large for a
18953  *		normal READ CAPACITY command and the results of a
18954  *		READ CAPACITY 16 will be used instead.
18955  *
18956  *   Arguments: un   - ptr to soft state struct for the target
18957  *		capp - ptr to unsigned 64-bit variable to receive the
18958  *			capacity value from the command.
18959  *		lbap - ptr to unsigned 32-bit varaible to receive the
18960  *			block size value from the command
18961  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18962  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18963  *			to use the USCSI "direct" chain and bypass the normal
18964  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18965  *			command is issued as part of an error recovery action.
18966  *
18967  * Return Code: 0   - Success
18968  *		EIO - IO error
18969  *		EACCES - Reservation conflict detected
18970  *		EAGAIN - Device is becoming ready
18971  *		errno return code from sd_send_scsi_cmd()
18972  *
18973  *     Context: Can sleep.  Blocks until command completes.
18974  */
18975 
18976 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18977 
18978 static int
18979 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18980 	int path_flag)
18981 {
18982 	struct	scsi_extended_sense	sense_buf;
18983 	struct	uscsi_cmd	ucmd_buf;
18984 	union	scsi_cdb	cdb;
18985 	uint32_t		*capacity_buf;
18986 	uint64_t		capacity;
18987 	uint32_t		lbasize;
18988 	int			status;
18989 
18990 	ASSERT(un != NULL);
18991 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18992 	ASSERT(capp != NULL);
18993 	ASSERT(lbap != NULL);
18994 
18995 	SD_TRACE(SD_LOG_IO, un,
18996 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18997 
18998 	/*
18999 	 * First send a READ_CAPACITY command to the target.
19000 	 * (This command is mandatory under SCSI-2.)
19001 	 *
19002 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19003 	 * Medium Indicator bit is cleared.  The address field must be
19004 	 * zero if the PMI bit is zero.
19005 	 */
19006 	bzero(&cdb, sizeof (cdb));
19007 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19008 
19009 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19010 
19011 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19012 
19013 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19014 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19015 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19016 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19017 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19018 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19019 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19020 	ucmd_buf.uscsi_timeout	= 60;
19021 
19022 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19023 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19024 
19025 	switch (status) {
19026 	case 0:
19027 		/* Return failure if we did not get valid capacity data. */
19028 		if (ucmd_buf.uscsi_resid != 0) {
19029 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19030 			return (EIO);
19031 		}
19032 
19033 		/*
19034 		 * Read capacity and block size from the READ CAPACITY 10 data.
19035 		 * This data may be adjusted later due to device specific
19036 		 * issues.
19037 		 *
19038 		 * According to the SCSI spec, the READ CAPACITY 10
19039 		 * command returns the following:
19040 		 *
19041 		 *  bytes 0-3: Maximum logical block address available.
19042 		 *		(MSB in byte:0 & LSB in byte:3)
19043 		 *
19044 		 *  bytes 4-7: Block length in bytes
19045 		 *		(MSB in byte:4 & LSB in byte:7)
19046 		 *
19047 		 */
19048 		capacity = BE_32(capacity_buf[0]);
19049 		lbasize = BE_32(capacity_buf[1]);
19050 
19051 		/*
19052 		 * Done with capacity_buf
19053 		 */
19054 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19055 
19056 		/*
19057 		 * if the reported capacity is set to all 0xf's, then
19058 		 * this disk is too large and requires SBC-2 commands.
19059 		 * Reissue the request using READ CAPACITY 16.
19060 		 */
19061 		if (capacity == 0xffffffff) {
19062 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19063 			    &lbasize, path_flag);
19064 			if (status != 0) {
19065 				return (status);
19066 			}
19067 		}
19068 		break;	/* Success! */
19069 	case EIO:
19070 		switch (ucmd_buf.uscsi_status) {
19071 		case STATUS_RESERVATION_CONFLICT:
19072 			status = EACCES;
19073 			break;
19074 		case STATUS_CHECK:
19075 			/*
19076 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19077 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19078 			 */
19079 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19080 			    (sense_buf.es_add_code  == 0x04) &&
19081 			    (sense_buf.es_qual_code == 0x01)) {
19082 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19083 				return (EAGAIN);
19084 			}
19085 			break;
19086 		default:
19087 			break;
19088 		}
19089 		/* FALLTHRU */
19090 	default:
19091 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19092 		return (status);
19093 	}
19094 
19095 	/*
19096 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19097 	 * (2352 and 0 are common) so for these devices always force the value
19098 	 * to 2048 as required by the ATAPI specs.
19099 	 */
19100 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19101 		lbasize = 2048;
19102 	}
19103 
19104 	/*
19105 	 * Get the maximum LBA value from the READ CAPACITY data.
19106 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19107 	 * was cleared when issuing the command. This means that the LBA
19108 	 * returned from the device is the LBA of the last logical block
19109 	 * on the logical unit.  The actual logical block count will be
19110 	 * this value plus one.
19111 	 *
19112 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19113 	 * so scale the capacity value to reflect this.
19114 	 */
19115 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19116 
19117 #if defined(__i386) || defined(__amd64)
19118 	/*
19119 	 * On x86, compensate for off-by-1 error (number of sectors on
19120 	 * media)  (1175930)
19121 	 */
19122 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
19123 	    (lbasize == un->un_sys_blocksize)) {
19124 		capacity -= 1;
19125 	}
19126 #endif
19127 
19128 	/*
19129 	 * Copy the values from the READ CAPACITY command into the space
19130 	 * provided by the caller.
19131 	 */
19132 	*capp = capacity;
19133 	*lbap = lbasize;
19134 
19135 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19136 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19137 
19138 	/*
19139 	 * Both the lbasize and capacity from the device must be nonzero,
19140 	 * otherwise we assume that the values are not valid and return
19141 	 * failure to the caller. (4203735)
19142 	 */
19143 	if ((capacity == 0) || (lbasize == 0)) {
19144 		return (EIO);
19145 	}
19146 
19147 	return (0);
19148 }
19149 
19150 /*
19151  *    Function: sd_send_scsi_READ_CAPACITY_16
19152  *
19153  * Description: This routine uses the scsi READ CAPACITY 16 command to
19154  *		determine the device capacity in number of blocks and the
19155  *		device native block size.  If this function returns a failure,
19156  *		then the values in *capp and *lbap are undefined.
19157  *		This routine should always be called by
19158  *		sd_send_scsi_READ_CAPACITY which will appy any device
19159  *		specific adjustments to capacity and lbasize.
19160  *
19161  *   Arguments: un   - ptr to soft state struct for the target
19162  *		capp - ptr to unsigned 64-bit variable to receive the
19163  *			capacity value from the command.
19164  *		lbap - ptr to unsigned 32-bit varaible to receive the
19165  *			block size value from the command
19166  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19167  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19168  *			to use the USCSI "direct" chain and bypass the normal
19169  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19170  *			this command is issued as part of an error recovery
19171  *			action.
19172  *
19173  * Return Code: 0   - Success
19174  *		EIO - IO error
19175  *		EACCES - Reservation conflict detected
19176  *		EAGAIN - Device is becoming ready
19177  *		errno return code from sd_send_scsi_cmd()
19178  *
19179  *     Context: Can sleep.  Blocks until command completes.
19180  */
19181 
19182 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19183 
19184 static int
19185 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19186 	uint32_t *lbap, int path_flag)
19187 {
19188 	struct	scsi_extended_sense	sense_buf;
19189 	struct	uscsi_cmd	ucmd_buf;
19190 	union	scsi_cdb	cdb;
19191 	uint64_t		*capacity16_buf;
19192 	uint64_t		capacity;
19193 	uint32_t		lbasize;
19194 	int			status;
19195 
19196 	ASSERT(un != NULL);
19197 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19198 	ASSERT(capp != NULL);
19199 	ASSERT(lbap != NULL);
19200 
19201 	SD_TRACE(SD_LOG_IO, un,
19202 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19203 
19204 	/*
19205 	 * First send a READ_CAPACITY_16 command to the target.
19206 	 *
19207 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19208 	 * Medium Indicator bit is cleared.  The address field must be
19209 	 * zero if the PMI bit is zero.
19210 	 */
19211 	bzero(&cdb, sizeof (cdb));
19212 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19213 
19214 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19215 
19216 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19217 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19218 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19219 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19220 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19221 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19222 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19223 	ucmd_buf.uscsi_timeout	= 60;
19224 
19225 	/*
19226 	 * Read Capacity (16) is a Service Action In command.  One
19227 	 * command byte (0x9E) is overloaded for multiple operations,
19228 	 * with the second CDB byte specifying the desired operation
19229 	 */
19230 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19231 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19232 
19233 	/*
19234 	 * Fill in allocation length field
19235 	 */
19236 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19237 
19238 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19239 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19240 
19241 	switch (status) {
19242 	case 0:
19243 		/* Return failure if we did not get valid capacity data. */
19244 		if (ucmd_buf.uscsi_resid > 20) {
19245 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19246 			return (EIO);
19247 		}
19248 
19249 		/*
19250 		 * Read capacity and block size from the READ CAPACITY 10 data.
19251 		 * This data may be adjusted later due to device specific
19252 		 * issues.
19253 		 *
19254 		 * According to the SCSI spec, the READ CAPACITY 10
19255 		 * command returns the following:
19256 		 *
19257 		 *  bytes 0-7: Maximum logical block address available.
19258 		 *		(MSB in byte:0 & LSB in byte:7)
19259 		 *
19260 		 *  bytes 8-11: Block length in bytes
19261 		 *		(MSB in byte:8 & LSB in byte:11)
19262 		 *
19263 		 */
19264 		capacity = BE_64(capacity16_buf[0]);
19265 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19266 
19267 		/*
19268 		 * Done with capacity16_buf
19269 		 */
19270 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19271 
19272 		/*
19273 		 * if the reported capacity is set to all 0xf's, then
19274 		 * this disk is too large.  This could only happen with
19275 		 * a device that supports LBAs larger than 64 bits which
19276 		 * are not defined by any current T10 standards.
19277 		 */
19278 		if (capacity == 0xffffffffffffffff) {
19279 			return (EIO);
19280 		}
19281 		break;	/* Success! */
19282 	case EIO:
19283 		switch (ucmd_buf.uscsi_status) {
19284 		case STATUS_RESERVATION_CONFLICT:
19285 			status = EACCES;
19286 			break;
19287 		case STATUS_CHECK:
19288 			/*
19289 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19290 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19291 			 */
19292 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19293 			    (sense_buf.es_add_code  == 0x04) &&
19294 			    (sense_buf.es_qual_code == 0x01)) {
19295 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19296 				return (EAGAIN);
19297 			}
19298 			break;
19299 		default:
19300 			break;
19301 		}
19302 		/* FALLTHRU */
19303 	default:
19304 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19305 		return (status);
19306 	}
19307 
19308 	*capp = capacity;
19309 	*lbap = lbasize;
19310 
19311 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19312 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19313 
19314 	return (0);
19315 }
19316 
19317 
19318 /*
19319  *    Function: sd_send_scsi_START_STOP_UNIT
19320  *
19321  * Description: Issue a scsi START STOP UNIT command to the target.
19322  *
19323  *   Arguments: un    - pointer to driver soft state (unit) structure for
19324  *			this target.
19325  *		flag  - SD_TARGET_START
19326  *			SD_TARGET_STOP
19327  *			SD_TARGET_EJECT
19328  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19329  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19330  *			to use the USCSI "direct" chain and bypass the normal
19331  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19332  *			command is issued as part of an error recovery action.
19333  *
19334  * Return Code: 0   - Success
19335  *		EIO - IO error
19336  *		EACCES - Reservation conflict detected
19337  *		ENXIO  - Not Ready, medium not present
19338  *		errno return code from sd_send_scsi_cmd()
19339  *
19340  *     Context: Can sleep.
19341  */
19342 
19343 static int
19344 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19345 {
19346 	struct	scsi_extended_sense	sense_buf;
19347 	union scsi_cdb		cdb;
19348 	struct uscsi_cmd	ucmd_buf;
19349 	int			status;
19350 
19351 	ASSERT(un != NULL);
19352 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19353 
19354 	SD_TRACE(SD_LOG_IO, un,
19355 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19356 
19357 	if (un->un_f_check_start_stop &&
19358 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19359 	    (un->un_f_start_stop_supported != TRUE)) {
19360 		return (0);
19361 	}
19362 
19363 	bzero(&cdb, sizeof (cdb));
19364 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19365 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19366 
19367 	cdb.scc_cmd = SCMD_START_STOP;
19368 	cdb.cdb_opaque[4] = (uchar_t)flag;
19369 
19370 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19371 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19372 	ucmd_buf.uscsi_bufaddr	= NULL;
19373 	ucmd_buf.uscsi_buflen	= 0;
19374 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19375 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19376 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19377 	ucmd_buf.uscsi_timeout	= 200;
19378 
19379 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19380 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19381 
19382 	switch (status) {
19383 	case 0:
19384 		break;	/* Success! */
19385 	case EIO:
19386 		switch (ucmd_buf.uscsi_status) {
19387 		case STATUS_RESERVATION_CONFLICT:
19388 			status = EACCES;
19389 			break;
19390 		case STATUS_CHECK:
19391 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19392 				switch (sense_buf.es_key) {
19393 				case KEY_ILLEGAL_REQUEST:
19394 					status = ENOTSUP;
19395 					break;
19396 				case KEY_NOT_READY:
19397 					if (sense_buf.es_add_code == 0x3A) {
19398 						status = ENXIO;
19399 					}
19400 					break;
19401 				default:
19402 					break;
19403 				}
19404 			}
19405 			break;
19406 		default:
19407 			break;
19408 		}
19409 		break;
19410 	default:
19411 		break;
19412 	}
19413 
19414 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19415 
19416 	return (status);
19417 }
19418 
19419 
19420 /*
19421  *    Function: sd_start_stop_unit_callback
19422  *
19423  * Description: timeout(9F) callback to begin recovery process for a
19424  *		device that has spun down.
19425  *
19426  *   Arguments: arg - pointer to associated softstate struct.
19427  *
19428  *     Context: Executes in a timeout(9F) thread context
19429  */
19430 
19431 static void
19432 sd_start_stop_unit_callback(void *arg)
19433 {
19434 	struct sd_lun	*un = arg;
19435 	ASSERT(un != NULL);
19436 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19437 
19438 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19439 
19440 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19441 }
19442 
19443 
19444 /*
19445  *    Function: sd_start_stop_unit_task
19446  *
19447  * Description: Recovery procedure when a drive is spun down.
19448  *
19449  *   Arguments: arg - pointer to associated softstate struct.
19450  *
19451  *     Context: Executes in a taskq() thread context
19452  */
19453 
19454 static void
19455 sd_start_stop_unit_task(void *arg)
19456 {
19457 	struct sd_lun	*un = arg;
19458 
19459 	ASSERT(un != NULL);
19460 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19461 
19462 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19463 
19464 	/*
19465 	 * Some unformatted drives report not ready error, no need to
19466 	 * restart if format has been initiated.
19467 	 */
19468 	mutex_enter(SD_MUTEX(un));
19469 	if (un->un_f_format_in_progress == TRUE) {
19470 		mutex_exit(SD_MUTEX(un));
19471 		return;
19472 	}
19473 	mutex_exit(SD_MUTEX(un));
19474 
19475 	/*
19476 	 * When a START STOP command is issued from here, it is part of a
19477 	 * failure recovery operation and must be issued before any other
19478 	 * commands, including any pending retries. Thus it must be sent
19479 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19480 	 * succeeds or not, we will start I/O after the attempt.
19481 	 */
19482 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19483 	    SD_PATH_DIRECT_PRIORITY);
19484 
19485 	/*
19486 	 * The above call blocks until the START_STOP_UNIT command completes.
19487 	 * Now that it has completed, we must re-try the original IO that
19488 	 * received the NOT READY condition in the first place. There are
19489 	 * three possible conditions here:
19490 	 *
19491 	 *  (1) The original IO is on un_retry_bp.
19492 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19493 	 *	is NULL.
19494 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19495 	 *	points to some other, unrelated bp.
19496 	 *
19497 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19498 	 * as the argument. If un_retry_bp is NULL, this will initiate
19499 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19500 	 * then this will process the bp on un_retry_bp. That may or may not
19501 	 * be the original IO, but that does not matter: the important thing
19502 	 * is to keep the IO processing going at this point.
19503 	 *
19504 	 * Note: This is a very specific error recovery sequence associated
19505 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19506 	 * serialize the I/O with completion of the spin-up.
19507 	 */
19508 	mutex_enter(SD_MUTEX(un));
19509 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19510 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19511 	    un, un->un_retry_bp);
19512 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19513 	sd_start_cmds(un, un->un_retry_bp);
19514 	mutex_exit(SD_MUTEX(un));
19515 
19516 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19517 }
19518 
19519 
19520 /*
19521  *    Function: sd_send_scsi_INQUIRY
19522  *
19523  * Description: Issue the scsi INQUIRY command.
19524  *
19525  *   Arguments: un
19526  *		bufaddr
19527  *		buflen
19528  *		evpd
19529  *		page_code
19530  *		page_length
19531  *
19532  * Return Code: 0   - Success
19533  *		errno return code from sd_send_scsi_cmd()
19534  *
19535  *     Context: Can sleep. Does not return until command is completed.
19536  */
19537 
19538 static int
19539 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19540 	uchar_t evpd, uchar_t page_code, size_t *residp)
19541 {
19542 	union scsi_cdb		cdb;
19543 	struct uscsi_cmd	ucmd_buf;
19544 	int			status;
19545 
19546 	ASSERT(un != NULL);
19547 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19548 	ASSERT(bufaddr != NULL);
19549 
19550 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19551 
19552 	bzero(&cdb, sizeof (cdb));
19553 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19554 	bzero(bufaddr, buflen);
19555 
19556 	cdb.scc_cmd = SCMD_INQUIRY;
19557 	cdb.cdb_opaque[1] = evpd;
19558 	cdb.cdb_opaque[2] = page_code;
19559 	FORMG0COUNT(&cdb, buflen);
19560 
19561 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19562 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19563 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19564 	ucmd_buf.uscsi_buflen	= buflen;
19565 	ucmd_buf.uscsi_rqbuf	= NULL;
19566 	ucmd_buf.uscsi_rqlen	= 0;
19567 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19568 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19569 
19570 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19571 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19572 
19573 	if ((status == 0) && (residp != NULL)) {
19574 		*residp = ucmd_buf.uscsi_resid;
19575 	}
19576 
19577 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19578 
19579 	return (status);
19580 }
19581 
19582 
19583 /*
19584  *    Function: sd_send_scsi_TEST_UNIT_READY
19585  *
19586  * Description: Issue the scsi TEST UNIT READY command.
19587  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19588  *		prevent retrying failed commands. Use this when the intent
19589  *		is either to check for device readiness, to clear a Unit
19590  *		Attention, or to clear any outstanding sense data.
19591  *		However under specific conditions the expected behavior
19592  *		is for retries to bring a device ready, so use the flag
19593  *		with caution.
19594  *
19595  *   Arguments: un
19596  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19597  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19598  *			0: dont check for media present, do retries on cmd.
19599  *
19600  * Return Code: 0   - Success
19601  *		EIO - IO error
19602  *		EACCES - Reservation conflict detected
19603  *		ENXIO  - Not Ready, medium not present
19604  *		errno return code from sd_send_scsi_cmd()
19605  *
19606  *     Context: Can sleep. Does not return until command is completed.
19607  */
19608 
19609 static int
19610 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19611 {
19612 	struct	scsi_extended_sense	sense_buf;
19613 	union scsi_cdb		cdb;
19614 	struct uscsi_cmd	ucmd_buf;
19615 	int			status;
19616 
19617 	ASSERT(un != NULL);
19618 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19619 
19620 	SD_TRACE(SD_LOG_IO, un,
19621 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19622 
19623 	/*
19624 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19625 	 * timeouts when they receive a TUR and the queue is not empty. Check
19626 	 * the configuration flag set during attach (indicating the drive has
19627 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19628 	 * TUR. If there are
19629 	 * pending commands return success, this is a bit arbitrary but is ok
19630 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19631 	 * configurations.
19632 	 */
19633 	if (un->un_f_cfg_tur_check == TRUE) {
19634 		mutex_enter(SD_MUTEX(un));
19635 		if (un->un_ncmds_in_transport != 0) {
19636 			mutex_exit(SD_MUTEX(un));
19637 			return (0);
19638 		}
19639 		mutex_exit(SD_MUTEX(un));
19640 	}
19641 
19642 	bzero(&cdb, sizeof (cdb));
19643 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19644 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19645 
19646 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19647 
19648 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19649 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19650 	ucmd_buf.uscsi_bufaddr	= NULL;
19651 	ucmd_buf.uscsi_buflen	= 0;
19652 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19653 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19654 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19655 
19656 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19657 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19658 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19659 	}
19660 	ucmd_buf.uscsi_timeout	= 60;
19661 
19662 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19663 	    UIO_SYSSPACE, UIO_SYSSPACE,
19664 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19665 
19666 	switch (status) {
19667 	case 0:
19668 		break;	/* Success! */
19669 	case EIO:
19670 		switch (ucmd_buf.uscsi_status) {
19671 		case STATUS_RESERVATION_CONFLICT:
19672 			status = EACCES;
19673 			break;
19674 		case STATUS_CHECK:
19675 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19676 				break;
19677 			}
19678 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19679 			    (sense_buf.es_key == KEY_NOT_READY) &&
19680 			    (sense_buf.es_add_code == 0x3A)) {
19681 				status = ENXIO;
19682 			}
19683 			break;
19684 		default:
19685 			break;
19686 		}
19687 		break;
19688 	default:
19689 		break;
19690 	}
19691 
19692 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19693 
19694 	return (status);
19695 }
19696 
19697 
19698 /*
19699  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19700  *
19701  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19702  *
19703  *   Arguments: un
19704  *
19705  * Return Code: 0   - Success
19706  *		EACCES
19707  *		ENOTSUP
19708  *		errno return code from sd_send_scsi_cmd()
19709  *
19710  *     Context: Can sleep. Does not return until command is completed.
19711  */
19712 
19713 static int
19714 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19715 	uint16_t data_len, uchar_t *data_bufp)
19716 {
19717 	struct scsi_extended_sense	sense_buf;
19718 	union scsi_cdb		cdb;
19719 	struct uscsi_cmd	ucmd_buf;
19720 	int			status;
19721 	int			no_caller_buf = FALSE;
19722 
19723 	ASSERT(un != NULL);
19724 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19725 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19726 
19727 	SD_TRACE(SD_LOG_IO, un,
19728 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19729 
19730 	bzero(&cdb, sizeof (cdb));
19731 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19732 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19733 	if (data_bufp == NULL) {
19734 		/* Allocate a default buf if the caller did not give one */
19735 		ASSERT(data_len == 0);
19736 		data_len  = MHIOC_RESV_KEY_SIZE;
19737 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19738 		no_caller_buf = TRUE;
19739 	}
19740 
19741 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19742 	cdb.cdb_opaque[1] = usr_cmd;
19743 	FORMG1COUNT(&cdb, data_len);
19744 
19745 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19746 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19747 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19748 	ucmd_buf.uscsi_buflen	= data_len;
19749 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19750 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19751 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19752 	ucmd_buf.uscsi_timeout	= 60;
19753 
19754 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19755 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19756 
19757 	switch (status) {
19758 	case 0:
19759 		break;	/* Success! */
19760 	case EIO:
19761 		switch (ucmd_buf.uscsi_status) {
19762 		case STATUS_RESERVATION_CONFLICT:
19763 			status = EACCES;
19764 			break;
19765 		case STATUS_CHECK:
19766 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19767 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19768 				status = ENOTSUP;
19769 			}
19770 			break;
19771 		default:
19772 			break;
19773 		}
19774 		break;
19775 	default:
19776 		break;
19777 	}
19778 
19779 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19780 
19781 	if (no_caller_buf == TRUE) {
19782 		kmem_free(data_bufp, data_len);
19783 	}
19784 
19785 	return (status);
19786 }
19787 
19788 
19789 /*
19790  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19791  *
19792  * Description: This routine is the driver entry point for handling CD-ROM
19793  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19794  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19795  *		device.
19796  *
19797  *   Arguments: un  -   Pointer to soft state struct for the target.
19798  *		usr_cmd SCSI-3 reservation facility command (one of
19799  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19800  *			SD_SCSI3_PREEMPTANDABORT)
19801  *		usr_bufp - user provided pointer register, reserve descriptor or
19802  *			preempt and abort structure (mhioc_register_t,
19803  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19804  *
19805  * Return Code: 0   - Success
19806  *		EACCES
19807  *		ENOTSUP
19808  *		errno return code from sd_send_scsi_cmd()
19809  *
19810  *     Context: Can sleep. Does not return until command is completed.
19811  */
19812 
19813 static int
19814 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19815 	uchar_t	*usr_bufp)
19816 {
19817 	struct scsi_extended_sense	sense_buf;
19818 	union scsi_cdb		cdb;
19819 	struct uscsi_cmd	ucmd_buf;
19820 	int			status;
19821 	uchar_t			data_len = sizeof (sd_prout_t);
19822 	sd_prout_t		*prp;
19823 
19824 	ASSERT(un != NULL);
19825 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19826 	ASSERT(data_len == 24);	/* required by scsi spec */
19827 
19828 	SD_TRACE(SD_LOG_IO, un,
19829 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19830 
19831 	if (usr_bufp == NULL) {
19832 		return (EINVAL);
19833 	}
19834 
19835 	bzero(&cdb, sizeof (cdb));
19836 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19837 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19838 	prp = kmem_zalloc(data_len, KM_SLEEP);
19839 
19840 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19841 	cdb.cdb_opaque[1] = usr_cmd;
19842 	FORMG1COUNT(&cdb, data_len);
19843 
19844 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19845 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19846 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19847 	ucmd_buf.uscsi_buflen	= data_len;
19848 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19849 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19850 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19851 	ucmd_buf.uscsi_timeout	= 60;
19852 
19853 	switch (usr_cmd) {
19854 	case SD_SCSI3_REGISTER: {
19855 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19856 
19857 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19858 		bcopy(ptr->newkey.key, prp->service_key,
19859 		    MHIOC_RESV_KEY_SIZE);
19860 		prp->aptpl = ptr->aptpl;
19861 		break;
19862 	}
19863 	case SD_SCSI3_RESERVE:
19864 	case SD_SCSI3_RELEASE: {
19865 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19866 
19867 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19868 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19869 		cdb.cdb_opaque[2] = ptr->type;
19870 		break;
19871 	}
19872 	case SD_SCSI3_PREEMPTANDABORT: {
19873 		mhioc_preemptandabort_t *ptr =
19874 		    (mhioc_preemptandabort_t *)usr_bufp;
19875 
19876 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19877 		bcopy(ptr->victim_key.key, prp->service_key,
19878 		    MHIOC_RESV_KEY_SIZE);
19879 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19880 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19881 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19882 		break;
19883 	}
19884 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19885 	{
19886 		mhioc_registerandignorekey_t *ptr;
19887 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19888 		bcopy(ptr->newkey.key,
19889 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19890 		prp->aptpl = ptr->aptpl;
19891 		break;
19892 	}
19893 	default:
19894 		ASSERT(FALSE);
19895 		break;
19896 	}
19897 
19898 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19899 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19900 
19901 	switch (status) {
19902 	case 0:
19903 		break;	/* Success! */
19904 	case EIO:
19905 		switch (ucmd_buf.uscsi_status) {
19906 		case STATUS_RESERVATION_CONFLICT:
19907 			status = EACCES;
19908 			break;
19909 		case STATUS_CHECK:
19910 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19911 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19912 				status = ENOTSUP;
19913 			}
19914 			break;
19915 		default:
19916 			break;
19917 		}
19918 		break;
19919 	default:
19920 		break;
19921 	}
19922 
19923 	kmem_free(prp, data_len);
19924 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19925 	return (status);
19926 }
19927 
19928 
19929 /*
19930  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19931  *
19932  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19933  *
19934  *   Arguments: un - pointer to the target's soft state struct
19935  *
19936  * Return Code: 0 - success
19937  *		errno-type error code
19938  *
19939  *     Context: kernel thread context only.
19940  */
19941 
19942 static int
19943 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
19944 {
19945 	struct sd_uscsi_info	*uip;
19946 	struct uscsi_cmd	*uscmd;
19947 	union scsi_cdb		*cdb;
19948 	struct buf		*bp;
19949 	int			rval = 0;
19950 
19951 	SD_TRACE(SD_LOG_IO, un,
19952 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19953 
19954 	ASSERT(un != NULL);
19955 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19956 
19957 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
19958 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
19959 
19960 	/*
19961 	 * First get some memory for the uscsi_cmd struct and cdb
19962 	 * and initialize for SYNCHRONIZE_CACHE cmd.
19963 	 */
19964 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
19965 	uscmd->uscsi_cdblen = CDB_GROUP1;
19966 	uscmd->uscsi_cdb = (caddr_t)cdb;
19967 	uscmd->uscsi_bufaddr = NULL;
19968 	uscmd->uscsi_buflen = 0;
19969 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
19970 	uscmd->uscsi_rqlen = SENSE_LENGTH;
19971 	uscmd->uscsi_rqresid = SENSE_LENGTH;
19972 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
19973 	uscmd->uscsi_timeout = sd_io_time;
19974 
19975 	/*
19976 	 * Allocate an sd_uscsi_info struct and fill it with the info
19977 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
19978 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
19979 	 * since we allocate the buf here in this function, we do not
19980 	 * need to preserve the prior contents of b_private.
19981 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
19982 	 */
19983 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
19984 	uip->ui_flags = SD_PATH_DIRECT;
19985 	uip->ui_cmdp  = uscmd;
19986 
19987 	bp = getrbuf(KM_SLEEP);
19988 	bp->b_private = uip;
19989 
19990 	/*
19991 	 * Setup buffer to carry uscsi request.
19992 	 */
19993 	bp->b_flags  = B_BUSY;
19994 	bp->b_bcount = 0;
19995 	bp->b_blkno  = 0;
19996 
19997 	if (dkc != NULL) {
19998 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
19999 		uip->ui_dkc = *dkc;
20000 	}
20001 
20002 	bp->b_edev = SD_GET_DEV(un);
20003 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20004 
20005 	(void) sd_uscsi_strategy(bp);
20006 
20007 	/*
20008 	 * If synchronous request, wait for completion
20009 	 * If async just return and let b_iodone callback
20010 	 * cleanup.
20011 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20012 	 * but it was also incremented in sd_uscsi_strategy(), so
20013 	 * we should be ok.
20014 	 */
20015 	if (dkc == NULL) {
20016 		(void) biowait(bp);
20017 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20018 	}
20019 
20020 	return (rval);
20021 }
20022 
20023 
20024 static int
20025 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20026 {
20027 	struct sd_uscsi_info *uip;
20028 	struct uscsi_cmd *uscmd;
20029 	struct scsi_extended_sense *sense_buf;
20030 	struct sd_lun *un;
20031 	int status;
20032 
20033 	uip = (struct sd_uscsi_info *)(bp->b_private);
20034 	ASSERT(uip != NULL);
20035 
20036 	uscmd = uip->ui_cmdp;
20037 	ASSERT(uscmd != NULL);
20038 
20039 	sense_buf = (struct scsi_extended_sense *)uscmd->uscsi_rqbuf;
20040 	ASSERT(sense_buf != NULL);
20041 
20042 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20043 	ASSERT(un != NULL);
20044 
20045 	status = geterror(bp);
20046 	switch (status) {
20047 	case 0:
20048 		break;	/* Success! */
20049 	case EIO:
20050 		switch (uscmd->uscsi_status) {
20051 		case STATUS_RESERVATION_CONFLICT:
20052 			/* Ignore reservation conflict */
20053 			status = 0;
20054 			goto done;
20055 
20056 		case STATUS_CHECK:
20057 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20058 			    (sense_buf->es_key == KEY_ILLEGAL_REQUEST)) {
20059 				/* Ignore Illegal Request error */
20060 				mutex_enter(SD_MUTEX(un));
20061 				un->un_f_sync_cache_supported = FALSE;
20062 				mutex_exit(SD_MUTEX(un));
20063 				status = ENOTSUP;
20064 				goto done;
20065 			}
20066 			break;
20067 		default:
20068 			break;
20069 		}
20070 		/* FALLTHRU */
20071 	default:
20072 		/* Ignore error if the media is not present */
20073 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
20074 			status = 0;
20075 			goto done;
20076 		}
20077 		/* If we reach this, we had an error */
20078 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20079 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20080 		break;
20081 	}
20082 
20083 done:
20084 	if (uip->ui_dkc.dkc_callback != NULL) {
20085 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20086 	}
20087 
20088 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20089 	freerbuf(bp);
20090 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20091 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20092 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20093 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20094 
20095 	return (status);
20096 }
20097 
20098 
20099 /*
20100  *    Function: sd_send_scsi_GET_CONFIGURATION
20101  *
20102  * Description: Issues the get configuration command to the device.
20103  *		Called from sd_check_for_writable_cd & sd_get_media_info
20104  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20105  *   Arguments: un
20106  *		ucmdbuf
20107  *		rqbuf
20108  *		rqbuflen
20109  *		bufaddr
20110  *		buflen
20111  *
20112  * Return Code: 0   - Success
20113  *		errno return code from sd_send_scsi_cmd()
20114  *
20115  *     Context: Can sleep. Does not return until command is completed.
20116  *
20117  */
20118 
20119 static int
20120 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20121 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20122 {
20123 	char	cdb[CDB_GROUP1];
20124 	int	status;
20125 
20126 	ASSERT(un != NULL);
20127 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20128 	ASSERT(bufaddr != NULL);
20129 	ASSERT(ucmdbuf != NULL);
20130 	ASSERT(rqbuf != NULL);
20131 
20132 	SD_TRACE(SD_LOG_IO, un,
20133 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20134 
20135 	bzero(cdb, sizeof (cdb));
20136 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20137 	bzero(rqbuf, rqbuflen);
20138 	bzero(bufaddr, buflen);
20139 
20140 	/*
20141 	 * Set up cdb field for the get configuration command.
20142 	 */
20143 	cdb[0] = SCMD_GET_CONFIGURATION;
20144 	cdb[1] = 0x02;  /* Requested Type */
20145 	cdb[8] = SD_PROFILE_HEADER_LEN;
20146 	ucmdbuf->uscsi_cdb = cdb;
20147 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20148 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20149 	ucmdbuf->uscsi_buflen = buflen;
20150 	ucmdbuf->uscsi_timeout = sd_io_time;
20151 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20152 	ucmdbuf->uscsi_rqlen = rqbuflen;
20153 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20154 
20155 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20156 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20157 
20158 	switch (status) {
20159 	case 0:
20160 		break;  /* Success! */
20161 	case EIO:
20162 		switch (ucmdbuf->uscsi_status) {
20163 		case STATUS_RESERVATION_CONFLICT:
20164 			status = EACCES;
20165 			break;
20166 		default:
20167 			break;
20168 		}
20169 		break;
20170 	default:
20171 		break;
20172 	}
20173 
20174 	if (status == 0) {
20175 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20176 		    "sd_send_scsi_GET_CONFIGURATION: data",
20177 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20178 	}
20179 
20180 	SD_TRACE(SD_LOG_IO, un,
20181 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20182 
20183 	return (status);
20184 }
20185 
20186 /*
20187  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20188  *
20189  * Description: Issues the get configuration command to the device to
20190  *              retrieve a specfic feature. Called from
20191  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20192  *   Arguments: un
20193  *              ucmdbuf
20194  *              rqbuf
20195  *              rqbuflen
20196  *              bufaddr
20197  *              buflen
20198  *		feature
20199  *
20200  * Return Code: 0   - Success
20201  *              errno return code from sd_send_scsi_cmd()
20202  *
20203  *     Context: Can sleep. Does not return until command is completed.
20204  *
20205  */
20206 static int
20207 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20208 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20209 	uchar_t *bufaddr, uint_t buflen, char feature)
20210 {
20211 	char    cdb[CDB_GROUP1];
20212 	int	status;
20213 
20214 	ASSERT(un != NULL);
20215 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20216 	ASSERT(bufaddr != NULL);
20217 	ASSERT(ucmdbuf != NULL);
20218 	ASSERT(rqbuf != NULL);
20219 
20220 	SD_TRACE(SD_LOG_IO, un,
20221 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20222 
20223 	bzero(cdb, sizeof (cdb));
20224 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20225 	bzero(rqbuf, rqbuflen);
20226 	bzero(bufaddr, buflen);
20227 
20228 	/*
20229 	 * Set up cdb field for the get configuration command.
20230 	 */
20231 	cdb[0] = SCMD_GET_CONFIGURATION;
20232 	cdb[1] = 0x02;  /* Requested Type */
20233 	cdb[3] = feature;
20234 	cdb[8] = buflen;
20235 	ucmdbuf->uscsi_cdb = cdb;
20236 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20237 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20238 	ucmdbuf->uscsi_buflen = buflen;
20239 	ucmdbuf->uscsi_timeout = sd_io_time;
20240 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20241 	ucmdbuf->uscsi_rqlen = rqbuflen;
20242 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20243 
20244 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20245 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20246 
20247 	switch (status) {
20248 	case 0:
20249 		break;  /* Success! */
20250 	case EIO:
20251 		switch (ucmdbuf->uscsi_status) {
20252 		case STATUS_RESERVATION_CONFLICT:
20253 			status = EACCES;
20254 			break;
20255 		default:
20256 			break;
20257 		}
20258 		break;
20259 	default:
20260 		break;
20261 	}
20262 
20263 	if (status == 0) {
20264 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20265 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20266 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20267 	}
20268 
20269 	SD_TRACE(SD_LOG_IO, un,
20270 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20271 
20272 	return (status);
20273 }
20274 
20275 
20276 /*
20277  *    Function: sd_send_scsi_MODE_SENSE
20278  *
20279  * Description: Utility function for issuing a scsi MODE SENSE command.
20280  *		Note: This routine uses a consistent implementation for Group0,
20281  *		Group1, and Group2 commands across all platforms. ATAPI devices
20282  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20283  *
20284  *   Arguments: un - pointer to the softstate struct for the target.
20285  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20286  *			  CDB_GROUP[1|2] (10 byte).
20287  *		bufaddr - buffer for page data retrieved from the target.
20288  *		buflen - size of page to be retrieved.
20289  *		page_code - page code of data to be retrieved from the target.
20290  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20291  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20292  *			to use the USCSI "direct" chain and bypass the normal
20293  *			command waitq.
20294  *
20295  * Return Code: 0   - Success
20296  *		errno return code from sd_send_scsi_cmd()
20297  *
20298  *     Context: Can sleep. Does not return until command is completed.
20299  */
20300 
20301 static int
20302 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20303 	size_t buflen,  uchar_t page_code, int path_flag)
20304 {
20305 	struct	scsi_extended_sense	sense_buf;
20306 	union scsi_cdb		cdb;
20307 	struct uscsi_cmd	ucmd_buf;
20308 	int			status;
20309 
20310 	ASSERT(un != NULL);
20311 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20312 	ASSERT(bufaddr != NULL);
20313 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20314 	    (cdbsize == CDB_GROUP2));
20315 
20316 	SD_TRACE(SD_LOG_IO, un,
20317 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20318 
20319 	bzero(&cdb, sizeof (cdb));
20320 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20321 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20322 	bzero(bufaddr, buflen);
20323 
20324 	if (cdbsize == CDB_GROUP0) {
20325 		cdb.scc_cmd = SCMD_MODE_SENSE;
20326 		cdb.cdb_opaque[2] = page_code;
20327 		FORMG0COUNT(&cdb, buflen);
20328 	} else {
20329 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20330 		cdb.cdb_opaque[2] = page_code;
20331 		FORMG1COUNT(&cdb, buflen);
20332 	}
20333 
20334 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20335 
20336 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20337 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20338 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20339 	ucmd_buf.uscsi_buflen	= buflen;
20340 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20341 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20342 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20343 	ucmd_buf.uscsi_timeout	= 60;
20344 
20345 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20346 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20347 
20348 	switch (status) {
20349 	case 0:
20350 		break;	/* Success! */
20351 	case EIO:
20352 		switch (ucmd_buf.uscsi_status) {
20353 		case STATUS_RESERVATION_CONFLICT:
20354 			status = EACCES;
20355 			break;
20356 		default:
20357 			break;
20358 		}
20359 		break;
20360 	default:
20361 		break;
20362 	}
20363 
20364 	if (status == 0) {
20365 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20366 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20367 	}
20368 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20369 
20370 	return (status);
20371 }
20372 
20373 
20374 /*
20375  *    Function: sd_send_scsi_MODE_SELECT
20376  *
20377  * Description: Utility function for issuing a scsi MODE SELECT command.
20378  *		Note: This routine uses a consistent implementation for Group0,
20379  *		Group1, and Group2 commands across all platforms. ATAPI devices
20380  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20381  *
20382  *   Arguments: un - pointer to the softstate struct for the target.
20383  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20384  *			  CDB_GROUP[1|2] (10 byte).
20385  *		bufaddr - buffer for page data retrieved from the target.
20386  *		buflen - size of page to be retrieved.
20387  *		save_page - boolean to determin if SP bit should be set.
20388  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20389  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20390  *			to use the USCSI "direct" chain and bypass the normal
20391  *			command waitq.
20392  *
20393  * Return Code: 0   - Success
20394  *		errno return code from sd_send_scsi_cmd()
20395  *
20396  *     Context: Can sleep. Does not return until command is completed.
20397  */
20398 
20399 static int
20400 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20401 	size_t buflen,  uchar_t save_page, int path_flag)
20402 {
20403 	struct	scsi_extended_sense	sense_buf;
20404 	union scsi_cdb		cdb;
20405 	struct uscsi_cmd	ucmd_buf;
20406 	int			status;
20407 
20408 	ASSERT(un != NULL);
20409 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20410 	ASSERT(bufaddr != NULL);
20411 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20412 	    (cdbsize == CDB_GROUP2));
20413 
20414 	SD_TRACE(SD_LOG_IO, un,
20415 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20416 
20417 	bzero(&cdb, sizeof (cdb));
20418 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20419 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20420 
20421 	/* Set the PF bit for many third party drives */
20422 	cdb.cdb_opaque[1] = 0x10;
20423 
20424 	/* Set the savepage(SP) bit if given */
20425 	if (save_page == SD_SAVE_PAGE) {
20426 		cdb.cdb_opaque[1] |= 0x01;
20427 	}
20428 
20429 	if (cdbsize == CDB_GROUP0) {
20430 		cdb.scc_cmd = SCMD_MODE_SELECT;
20431 		FORMG0COUNT(&cdb, buflen);
20432 	} else {
20433 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20434 		FORMG1COUNT(&cdb, buflen);
20435 	}
20436 
20437 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20438 
20439 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20440 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20441 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20442 	ucmd_buf.uscsi_buflen	= buflen;
20443 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20444 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20445 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20446 	ucmd_buf.uscsi_timeout	= 60;
20447 
20448 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20449 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20450 
20451 	switch (status) {
20452 	case 0:
20453 		break;	/* Success! */
20454 	case EIO:
20455 		switch (ucmd_buf.uscsi_status) {
20456 		case STATUS_RESERVATION_CONFLICT:
20457 			status = EACCES;
20458 			break;
20459 		default:
20460 			break;
20461 		}
20462 		break;
20463 	default:
20464 		break;
20465 	}
20466 
20467 	if (status == 0) {
20468 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20469 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20470 	}
20471 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20472 
20473 	return (status);
20474 }
20475 
20476 
20477 /*
20478  *    Function: sd_send_scsi_RDWR
20479  *
20480  * Description: Issue a scsi READ or WRITE command with the given parameters.
20481  *
20482  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20483  *		cmd:	 SCMD_READ or SCMD_WRITE
20484  *		bufaddr: Address of caller's buffer to receive the RDWR data
20485  *		buflen:  Length of caller's buffer receive the RDWR data.
20486  *		start_block: Block number for the start of the RDWR operation.
20487  *			 (Assumes target-native block size.)
20488  *		residp:  Pointer to variable to receive the redisual of the
20489  *			 RDWR operation (may be NULL of no residual requested).
20490  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20491  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20492  *			to use the USCSI "direct" chain and bypass the normal
20493  *			command waitq.
20494  *
20495  * Return Code: 0   - Success
20496  *		errno return code from sd_send_scsi_cmd()
20497  *
20498  *     Context: Can sleep. Does not return until command is completed.
20499  */
20500 
20501 static int
20502 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20503 	size_t buflen, daddr_t start_block, int path_flag)
20504 {
20505 	struct	scsi_extended_sense	sense_buf;
20506 	union scsi_cdb		cdb;
20507 	struct uscsi_cmd	ucmd_buf;
20508 	uint32_t		block_count;
20509 	int			status;
20510 	int			cdbsize;
20511 	uchar_t			flag;
20512 
20513 	ASSERT(un != NULL);
20514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20515 	ASSERT(bufaddr != NULL);
20516 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20517 
20518 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20519 
20520 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20521 		return (EINVAL);
20522 	}
20523 
20524 	mutex_enter(SD_MUTEX(un));
20525 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20526 	mutex_exit(SD_MUTEX(un));
20527 
20528 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20529 
20530 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20531 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20532 	    bufaddr, buflen, start_block, block_count);
20533 
20534 	bzero(&cdb, sizeof (cdb));
20535 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20536 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20537 
20538 	/* Compute CDB size to use */
20539 	if (start_block > 0xffffffff)
20540 		cdbsize = CDB_GROUP4;
20541 	else if ((start_block & 0xFFE00000) ||
20542 	    (un->un_f_cfg_is_atapi == TRUE))
20543 		cdbsize = CDB_GROUP1;
20544 	else
20545 		cdbsize = CDB_GROUP0;
20546 
20547 	switch (cdbsize) {
20548 	case CDB_GROUP0:	/* 6-byte CDBs */
20549 		cdb.scc_cmd = cmd;
20550 		FORMG0ADDR(&cdb, start_block);
20551 		FORMG0COUNT(&cdb, block_count);
20552 		break;
20553 	case CDB_GROUP1:	/* 10-byte CDBs */
20554 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20555 		FORMG1ADDR(&cdb, start_block);
20556 		FORMG1COUNT(&cdb, block_count);
20557 		break;
20558 	case CDB_GROUP4:	/* 16-byte CDBs */
20559 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20560 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20561 		FORMG4COUNT(&cdb, block_count);
20562 		break;
20563 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20564 	default:
20565 		/* All others reserved */
20566 		return (EINVAL);
20567 	}
20568 
20569 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20570 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20571 
20572 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20573 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20574 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20575 	ucmd_buf.uscsi_buflen	= buflen;
20576 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20577 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20578 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20579 	ucmd_buf.uscsi_timeout	= 60;
20580 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20581 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20582 	switch (status) {
20583 	case 0:
20584 		break;	/* Success! */
20585 	case EIO:
20586 		switch (ucmd_buf.uscsi_status) {
20587 		case STATUS_RESERVATION_CONFLICT:
20588 			status = EACCES;
20589 			break;
20590 		default:
20591 			break;
20592 		}
20593 		break;
20594 	default:
20595 		break;
20596 	}
20597 
20598 	if (status == 0) {
20599 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20600 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20601 	}
20602 
20603 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20604 
20605 	return (status);
20606 }
20607 
20608 
20609 /*
20610  *    Function: sd_send_scsi_LOG_SENSE
20611  *
20612  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20613  *
20614  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20615  *
20616  * Return Code: 0   - Success
20617  *		errno return code from sd_send_scsi_cmd()
20618  *
20619  *     Context: Can sleep. Does not return until command is completed.
20620  */
20621 
20622 static int
20623 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20624 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20625 	int path_flag)
20626 
20627 {
20628 	struct	scsi_extended_sense	sense_buf;
20629 	union scsi_cdb		cdb;
20630 	struct uscsi_cmd	ucmd_buf;
20631 	int			status;
20632 
20633 	ASSERT(un != NULL);
20634 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20635 
20636 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20637 
20638 	bzero(&cdb, sizeof (cdb));
20639 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20640 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20641 
20642 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20643 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20644 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20645 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20646 	FORMG1COUNT(&cdb, buflen);
20647 
20648 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20649 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20650 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20651 	ucmd_buf.uscsi_buflen	= buflen;
20652 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20653 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20654 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20655 	ucmd_buf.uscsi_timeout	= 60;
20656 
20657 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20658 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20659 
20660 	switch (status) {
20661 	case 0:
20662 		break;
20663 	case EIO:
20664 		switch (ucmd_buf.uscsi_status) {
20665 		case STATUS_RESERVATION_CONFLICT:
20666 			status = EACCES;
20667 			break;
20668 		case STATUS_CHECK:
20669 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20670 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20671 			    (sense_buf.es_add_code == 0x24)) {
20672 				/*
20673 				 * ASC 0x24: INVALID FIELD IN CDB
20674 				 */
20675 				switch (page_code) {
20676 				case START_STOP_CYCLE_PAGE:
20677 					/*
20678 					 * The start stop cycle counter is
20679 					 * implemented as page 0x31 in earlier
20680 					 * generation disks. In new generation
20681 					 * disks the start stop cycle counter is
20682 					 * implemented as page 0xE. To properly
20683 					 * handle this case if an attempt for
20684 					 * log page 0xE is made and fails we
20685 					 * will try again using page 0x31.
20686 					 *
20687 					 * Network storage BU committed to
20688 					 * maintain the page 0x31 for this
20689 					 * purpose and will not have any other
20690 					 * page implemented with page code 0x31
20691 					 * until all disks transition to the
20692 					 * standard page.
20693 					 */
20694 					mutex_enter(SD_MUTEX(un));
20695 					un->un_start_stop_cycle_page =
20696 					    START_STOP_CYCLE_VU_PAGE;
20697 					cdb.cdb_opaque[2] =
20698 					    (char)(page_control << 6) |
20699 					    un->un_start_stop_cycle_page;
20700 					mutex_exit(SD_MUTEX(un));
20701 					status = sd_send_scsi_cmd(
20702 					    SD_GET_DEV(un), &ucmd_buf,
20703 					    UIO_SYSSPACE, UIO_SYSSPACE,
20704 					    UIO_SYSSPACE, path_flag);
20705 
20706 					break;
20707 				case TEMPERATURE_PAGE:
20708 					status = ENOTTY;
20709 					break;
20710 				default:
20711 					break;
20712 				}
20713 			}
20714 			break;
20715 		default:
20716 			break;
20717 		}
20718 		break;
20719 	default:
20720 		break;
20721 	}
20722 
20723 	if (status == 0) {
20724 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20725 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20726 	}
20727 
20728 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20729 
20730 	return (status);
20731 }
20732 
20733 
20734 /*
20735  *    Function: sdioctl
20736  *
20737  * Description: Driver's ioctl(9e) entry point function.
20738  *
20739  *   Arguments: dev     - device number
20740  *		cmd     - ioctl operation to be performed
20741  *		arg     - user argument, contains data to be set or reference
20742  *			  parameter for get
20743  *		flag    - bit flag, indicating open settings, 32/64 bit type
20744  *		cred_p  - user credential pointer
20745  *		rval_p  - calling process return value (OPT)
20746  *
20747  * Return Code: EINVAL
20748  *		ENOTTY
20749  *		ENXIO
20750  *		EIO
20751  *		EFAULT
20752  *		ENOTSUP
20753  *		EPERM
20754  *
20755  *     Context: Called from the device switch at normal priority.
20756  */
20757 
20758 static int
20759 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20760 {
20761 	struct sd_lun	*un = NULL;
20762 	int		geom_validated = FALSE;
20763 	int		err = 0;
20764 	int		i = 0;
20765 	cred_t		*cr;
20766 
20767 	/*
20768 	 * All device accesses go thru sdstrategy where we check on suspend
20769 	 * status
20770 	 */
20771 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20772 		return (ENXIO);
20773 	}
20774 
20775 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20776 
20777 	/*
20778 	 * Moved this wait from sd_uscsi_strategy to here for
20779 	 * reasons of deadlock prevention. Internal driver commands,
20780 	 * specifically those to change a devices power level, result
20781 	 * in a call to sd_uscsi_strategy.
20782 	 */
20783 	mutex_enter(SD_MUTEX(un));
20784 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20785 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20786 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20787 	}
20788 	/*
20789 	 * Twiddling the counter here protects commands from now
20790 	 * through to the top of sd_uscsi_strategy. Without the
20791 	 * counter inc. a power down, for example, could get in
20792 	 * after the above check for state is made and before
20793 	 * execution gets to the top of sd_uscsi_strategy.
20794 	 * That would cause problems.
20795 	 */
20796 	un->un_ncmds_in_driver++;
20797 
20798 	if ((un->un_f_geometry_is_valid == FALSE) &&
20799 	    (flag & (FNDELAY | FNONBLOCK))) {
20800 		switch (cmd) {
20801 		case CDROMPAUSE:
20802 		case CDROMRESUME:
20803 		case CDROMPLAYMSF:
20804 		case CDROMPLAYTRKIND:
20805 		case CDROMREADTOCHDR:
20806 		case CDROMREADTOCENTRY:
20807 		case CDROMSTOP:
20808 		case CDROMSTART:
20809 		case CDROMVOLCTRL:
20810 		case CDROMSUBCHNL:
20811 		case CDROMREADMODE2:
20812 		case CDROMREADMODE1:
20813 		case CDROMREADOFFSET:
20814 		case CDROMSBLKMODE:
20815 		case CDROMGBLKMODE:
20816 		case CDROMGDRVSPEED:
20817 		case CDROMSDRVSPEED:
20818 		case CDROMCDDA:
20819 		case CDROMCDXA:
20820 		case CDROMSUBCODE:
20821 			if (!ISCD(un)) {
20822 				un->un_ncmds_in_driver--;
20823 				ASSERT(un->un_ncmds_in_driver >= 0);
20824 				mutex_exit(SD_MUTEX(un));
20825 				return (ENOTTY);
20826 			}
20827 			break;
20828 		case FDEJECT:
20829 		case DKIOCEJECT:
20830 		case CDROMEJECT:
20831 			if (!un->un_f_eject_media_supported) {
20832 				un->un_ncmds_in_driver--;
20833 				ASSERT(un->un_ncmds_in_driver >= 0);
20834 				mutex_exit(SD_MUTEX(un));
20835 				return (ENOTTY);
20836 			}
20837 			break;
20838 		case DKIOCSVTOC:
20839 		case DKIOCSETEFI:
20840 		case DKIOCSMBOOT:
20841 		case DKIOCFLUSHWRITECACHE:
20842 			mutex_exit(SD_MUTEX(un));
20843 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20844 			if (err != 0) {
20845 				mutex_enter(SD_MUTEX(un));
20846 				un->un_ncmds_in_driver--;
20847 				ASSERT(un->un_ncmds_in_driver >= 0);
20848 				mutex_exit(SD_MUTEX(un));
20849 				return (EIO);
20850 			}
20851 			mutex_enter(SD_MUTEX(un));
20852 			/* FALLTHROUGH */
20853 		case DKIOCREMOVABLE:
20854 		case DKIOCHOTPLUGGABLE:
20855 		case DKIOCINFO:
20856 		case DKIOCGMEDIAINFO:
20857 		case MHIOCENFAILFAST:
20858 		case MHIOCSTATUS:
20859 		case MHIOCTKOWN:
20860 		case MHIOCRELEASE:
20861 		case MHIOCGRP_INKEYS:
20862 		case MHIOCGRP_INRESV:
20863 		case MHIOCGRP_REGISTER:
20864 		case MHIOCGRP_RESERVE:
20865 		case MHIOCGRP_PREEMPTANDABORT:
20866 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20867 		case CDROMCLOSETRAY:
20868 		case USCSICMD:
20869 			goto skip_ready_valid;
20870 		default:
20871 			break;
20872 		}
20873 
20874 		mutex_exit(SD_MUTEX(un));
20875 		err = sd_ready_and_valid(un);
20876 		mutex_enter(SD_MUTEX(un));
20877 		if (err == SD_READY_NOT_VALID) {
20878 			switch (cmd) {
20879 			case DKIOCGAPART:
20880 			case DKIOCGGEOM:
20881 			case DKIOCSGEOM:
20882 			case DKIOCGVTOC:
20883 			case DKIOCSVTOC:
20884 			case DKIOCSAPART:
20885 			case DKIOCG_PHYGEOM:
20886 			case DKIOCG_VIRTGEOM:
20887 				err = ENOTSUP;
20888 				un->un_ncmds_in_driver--;
20889 				ASSERT(un->un_ncmds_in_driver >= 0);
20890 				mutex_exit(SD_MUTEX(un));
20891 				return (err);
20892 			}
20893 		}
20894 		if (err != SD_READY_VALID) {
20895 			switch (cmd) {
20896 			case DKIOCSTATE:
20897 			case CDROMGDRVSPEED:
20898 			case CDROMSDRVSPEED:
20899 			case FDEJECT:	/* for eject command */
20900 			case DKIOCEJECT:
20901 			case CDROMEJECT:
20902 			case DKIOCGETEFI:
20903 			case DKIOCSGEOM:
20904 			case DKIOCREMOVABLE:
20905 			case DKIOCHOTPLUGGABLE:
20906 			case DKIOCSAPART:
20907 			case DKIOCSETEFI:
20908 				break;
20909 			default:
20910 				if (un->un_f_has_removable_media) {
20911 					err = ENXIO;
20912 				} else {
20913 					/* Do not map EACCES to EIO */
20914 					if (err != EACCES)
20915 						err = EIO;
20916 				}
20917 				un->un_ncmds_in_driver--;
20918 				ASSERT(un->un_ncmds_in_driver >= 0);
20919 				mutex_exit(SD_MUTEX(un));
20920 				return (err);
20921 			}
20922 		}
20923 		geom_validated = TRUE;
20924 	}
20925 	if ((un->un_f_geometry_is_valid == TRUE) &&
20926 	    (un->un_solaris_size > 0)) {
20927 		/*
20928 		 * the "geometry_is_valid" flag could be true if we
20929 		 * have an fdisk table but no Solaris partition
20930 		 */
20931 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20932 			/* it is EFI, so return ENOTSUP for these */
20933 			switch (cmd) {
20934 			case DKIOCGAPART:
20935 			case DKIOCGGEOM:
20936 			case DKIOCGVTOC:
20937 			case DKIOCSVTOC:
20938 			case DKIOCSAPART:
20939 				err = ENOTSUP;
20940 				un->un_ncmds_in_driver--;
20941 				ASSERT(un->un_ncmds_in_driver >= 0);
20942 				mutex_exit(SD_MUTEX(un));
20943 				return (err);
20944 			}
20945 		}
20946 	}
20947 
20948 skip_ready_valid:
20949 	mutex_exit(SD_MUTEX(un));
20950 
20951 	switch (cmd) {
20952 	case DKIOCINFO:
20953 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20954 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20955 		break;
20956 
20957 	case DKIOCGMEDIAINFO:
20958 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20959 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20960 		break;
20961 
20962 	case DKIOCGGEOM:
20963 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20964 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20965 		    geom_validated);
20966 		break;
20967 
20968 	case DKIOCSGEOM:
20969 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20970 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20971 		break;
20972 
20973 	case DKIOCGAPART:
20974 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20975 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20976 		    geom_validated);
20977 		break;
20978 
20979 	case DKIOCSAPART:
20980 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20981 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20982 		break;
20983 
20984 	case DKIOCGVTOC:
20985 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20986 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20987 		    geom_validated);
20988 		break;
20989 
20990 	case DKIOCGETEFI:
20991 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
20992 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
20993 		break;
20994 
20995 	case DKIOCPARTITION:
20996 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
20997 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
20998 		break;
20999 
21000 	case DKIOCSVTOC:
21001 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21002 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21003 		break;
21004 
21005 	case DKIOCSETEFI:
21006 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21007 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21008 		break;
21009 
21010 	case DKIOCGMBOOT:
21011 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21012 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21013 		break;
21014 
21015 	case DKIOCSMBOOT:
21016 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21017 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21018 		break;
21019 
21020 	case DKIOCLOCK:
21021 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21022 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21023 		    SD_PATH_STANDARD);
21024 		break;
21025 
21026 	case DKIOCUNLOCK:
21027 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21028 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21029 		    SD_PATH_STANDARD);
21030 		break;
21031 
21032 	case DKIOCSTATE: {
21033 		enum dkio_state		state;
21034 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21035 
21036 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21037 			err = EFAULT;
21038 		} else {
21039 			err = sd_check_media(dev, state);
21040 			if (err == 0) {
21041 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21042 				    sizeof (int), flag) != 0)
21043 					err = EFAULT;
21044 			}
21045 		}
21046 		break;
21047 	}
21048 
21049 	case DKIOCREMOVABLE:
21050 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21051 		/*
21052 		 * At present, vold only does automount for removable-media
21053 		 * devices, in order not to break current applications, we
21054 		 * still let hopluggable devices pretend to be removable media
21055 		 * devices for vold. In the near future, once vold is EOL'ed,
21056 		 * we should remove this workaround.
21057 		 */
21058 		if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) {
21059 			i = 1;
21060 		} else {
21061 			i = 0;
21062 		}
21063 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21064 			err = EFAULT;
21065 		} else {
21066 			err = 0;
21067 		}
21068 		break;
21069 
21070 	case DKIOCHOTPLUGGABLE:
21071 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21072 		if (un->un_f_is_hotpluggable) {
21073 			i = 1;
21074 		} else {
21075 			i = 0;
21076 		}
21077 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21078 			err = EFAULT;
21079 		} else {
21080 			err = 0;
21081 		}
21082 		break;
21083 
21084 	case DKIOCGTEMPERATURE:
21085 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21086 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21087 		break;
21088 
21089 	case MHIOCENFAILFAST:
21090 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21091 		if ((err = drv_priv(cred_p)) == 0) {
21092 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21093 		}
21094 		break;
21095 
21096 	case MHIOCTKOWN:
21097 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21098 		if ((err = drv_priv(cred_p)) == 0) {
21099 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21100 		}
21101 		break;
21102 
21103 	case MHIOCRELEASE:
21104 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21105 		if ((err = drv_priv(cred_p)) == 0) {
21106 			err = sd_mhdioc_release(dev);
21107 		}
21108 		break;
21109 
21110 	case MHIOCSTATUS:
21111 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21112 		if ((err = drv_priv(cred_p)) == 0) {
21113 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21114 			case 0:
21115 				err = 0;
21116 				break;
21117 			case EACCES:
21118 				*rval_p = 1;
21119 				err = 0;
21120 				break;
21121 			default:
21122 				err = EIO;
21123 				break;
21124 			}
21125 		}
21126 		break;
21127 
21128 	case MHIOCQRESERVE:
21129 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21130 		if ((err = drv_priv(cred_p)) == 0) {
21131 			err = sd_reserve_release(dev, SD_RESERVE);
21132 		}
21133 		break;
21134 
21135 	case MHIOCREREGISTERDEVID:
21136 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21137 		if (drv_priv(cred_p) == EPERM) {
21138 			err = EPERM;
21139 		} else if (!un->un_f_devid_supported) {
21140 			err = ENOTTY;
21141 		} else {
21142 			err = sd_mhdioc_register_devid(dev);
21143 		}
21144 		break;
21145 
21146 	case MHIOCGRP_INKEYS:
21147 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21148 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21149 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21150 				err = ENOTSUP;
21151 			} else {
21152 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21153 				    flag);
21154 			}
21155 		}
21156 		break;
21157 
21158 	case MHIOCGRP_INRESV:
21159 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21160 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21161 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21162 				err = ENOTSUP;
21163 			} else {
21164 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21165 			}
21166 		}
21167 		break;
21168 
21169 	case MHIOCGRP_REGISTER:
21170 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21171 		if ((err = drv_priv(cred_p)) != EPERM) {
21172 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21173 				err = ENOTSUP;
21174 			} else if (arg != NULL) {
21175 				mhioc_register_t reg;
21176 				if (ddi_copyin((void *)arg, &reg,
21177 				    sizeof (mhioc_register_t), flag) != 0) {
21178 					err = EFAULT;
21179 				} else {
21180 					err =
21181 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21182 					    un, SD_SCSI3_REGISTER,
21183 					    (uchar_t *)&reg);
21184 				}
21185 			}
21186 		}
21187 		break;
21188 
21189 	case MHIOCGRP_RESERVE:
21190 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21191 		if ((err = drv_priv(cred_p)) != EPERM) {
21192 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21193 				err = ENOTSUP;
21194 			} else if (arg != NULL) {
21195 				mhioc_resv_desc_t resv_desc;
21196 				if (ddi_copyin((void *)arg, &resv_desc,
21197 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21198 					err = EFAULT;
21199 				} else {
21200 					err =
21201 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21202 					    un, SD_SCSI3_RESERVE,
21203 					    (uchar_t *)&resv_desc);
21204 				}
21205 			}
21206 		}
21207 		break;
21208 
21209 	case MHIOCGRP_PREEMPTANDABORT:
21210 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21211 		if ((err = drv_priv(cred_p)) != EPERM) {
21212 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21213 				err = ENOTSUP;
21214 			} else if (arg != NULL) {
21215 				mhioc_preemptandabort_t preempt_abort;
21216 				if (ddi_copyin((void *)arg, &preempt_abort,
21217 				    sizeof (mhioc_preemptandabort_t),
21218 				    flag) != 0) {
21219 					err = EFAULT;
21220 				} else {
21221 					err =
21222 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21223 					    un, SD_SCSI3_PREEMPTANDABORT,
21224 					    (uchar_t *)&preempt_abort);
21225 				}
21226 			}
21227 		}
21228 		break;
21229 
21230 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21231 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21232 		if ((err = drv_priv(cred_p)) != EPERM) {
21233 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21234 				err = ENOTSUP;
21235 			} else if (arg != NULL) {
21236 				mhioc_registerandignorekey_t r_and_i;
21237 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21238 				    sizeof (mhioc_registerandignorekey_t),
21239 				    flag) != 0) {
21240 					err = EFAULT;
21241 				} else {
21242 					err =
21243 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21244 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21245 					    (uchar_t *)&r_and_i);
21246 				}
21247 			}
21248 		}
21249 		break;
21250 
21251 	case USCSICMD:
21252 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21253 		cr = ddi_get_cred();
21254 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21255 			err = EPERM;
21256 		} else {
21257 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21258 		}
21259 		break;
21260 
21261 	case CDROMPAUSE:
21262 	case CDROMRESUME:
21263 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21264 		if (!ISCD(un)) {
21265 			err = ENOTTY;
21266 		} else {
21267 			err = sr_pause_resume(dev, cmd);
21268 		}
21269 		break;
21270 
21271 	case CDROMPLAYMSF:
21272 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21273 		if (!ISCD(un)) {
21274 			err = ENOTTY;
21275 		} else {
21276 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21277 		}
21278 		break;
21279 
21280 	case CDROMPLAYTRKIND:
21281 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21282 #if defined(__i386) || defined(__amd64)
21283 		/*
21284 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21285 		 */
21286 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21287 #else
21288 		if (!ISCD(un)) {
21289 #endif
21290 			err = ENOTTY;
21291 		} else {
21292 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21293 		}
21294 		break;
21295 
21296 	case CDROMREADTOCHDR:
21297 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21298 		if (!ISCD(un)) {
21299 			err = ENOTTY;
21300 		} else {
21301 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21302 		}
21303 		break;
21304 
21305 	case CDROMREADTOCENTRY:
21306 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21307 		if (!ISCD(un)) {
21308 			err = ENOTTY;
21309 		} else {
21310 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21311 		}
21312 		break;
21313 
21314 	case CDROMSTOP:
21315 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21316 		if (!ISCD(un)) {
21317 			err = ENOTTY;
21318 		} else {
21319 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21320 			    SD_PATH_STANDARD);
21321 		}
21322 		break;
21323 
21324 	case CDROMSTART:
21325 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21326 		if (!ISCD(un)) {
21327 			err = ENOTTY;
21328 		} else {
21329 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21330 			    SD_PATH_STANDARD);
21331 		}
21332 		break;
21333 
21334 	case CDROMCLOSETRAY:
21335 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21336 		if (!ISCD(un)) {
21337 			err = ENOTTY;
21338 		} else {
21339 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21340 			    SD_PATH_STANDARD);
21341 		}
21342 		break;
21343 
21344 	case FDEJECT:	/* for eject command */
21345 	case DKIOCEJECT:
21346 	case CDROMEJECT:
21347 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21348 		if (!un->un_f_eject_media_supported) {
21349 			err = ENOTTY;
21350 		} else {
21351 			err = sr_eject(dev);
21352 		}
21353 		break;
21354 
21355 	case CDROMVOLCTRL:
21356 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21357 		if (!ISCD(un)) {
21358 			err = ENOTTY;
21359 		} else {
21360 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21361 		}
21362 		break;
21363 
21364 	case CDROMSUBCHNL:
21365 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21366 		if (!ISCD(un)) {
21367 			err = ENOTTY;
21368 		} else {
21369 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21370 		}
21371 		break;
21372 
21373 	case CDROMREADMODE2:
21374 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21375 		if (!ISCD(un)) {
21376 			err = ENOTTY;
21377 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21378 			/*
21379 			 * If the drive supports READ CD, use that instead of
21380 			 * switching the LBA size via a MODE SELECT
21381 			 * Block Descriptor
21382 			 */
21383 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21384 		} else {
21385 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21386 		}
21387 		break;
21388 
21389 	case CDROMREADMODE1:
21390 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21391 		if (!ISCD(un)) {
21392 			err = ENOTTY;
21393 		} else {
21394 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21395 		}
21396 		break;
21397 
21398 	case CDROMREADOFFSET:
21399 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21400 		if (!ISCD(un)) {
21401 			err = ENOTTY;
21402 		} else {
21403 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21404 			    flag);
21405 		}
21406 		break;
21407 
21408 	case CDROMSBLKMODE:
21409 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21410 		/*
21411 		 * There is no means of changing block size in case of atapi
21412 		 * drives, thus return ENOTTY if drive type is atapi
21413 		 */
21414 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21415 			err = ENOTTY;
21416 		} else if (un->un_f_mmc_cap == TRUE) {
21417 
21418 			/*
21419 			 * MMC Devices do not support changing the
21420 			 * logical block size
21421 			 *
21422 			 * Note: EINVAL is being returned instead of ENOTTY to
21423 			 * maintain consistancy with the original mmc
21424 			 * driver update.
21425 			 */
21426 			err = EINVAL;
21427 		} else {
21428 			mutex_enter(SD_MUTEX(un));
21429 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21430 			    (un->un_ncmds_in_transport > 0)) {
21431 				mutex_exit(SD_MUTEX(un));
21432 				err = EINVAL;
21433 			} else {
21434 				mutex_exit(SD_MUTEX(un));
21435 				err = sr_change_blkmode(dev, cmd, arg, flag);
21436 			}
21437 		}
21438 		break;
21439 
21440 	case CDROMGBLKMODE:
21441 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21442 		if (!ISCD(un)) {
21443 			err = ENOTTY;
21444 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21445 		    (un->un_f_blockcount_is_valid != FALSE)) {
21446 			/*
21447 			 * Drive is an ATAPI drive so return target block
21448 			 * size for ATAPI drives since we cannot change the
21449 			 * blocksize on ATAPI drives. Used primarily to detect
21450 			 * if an ATAPI cdrom is present.
21451 			 */
21452 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21453 			    sizeof (int), flag) != 0) {
21454 				err = EFAULT;
21455 			} else {
21456 				err = 0;
21457 			}
21458 
21459 		} else {
21460 			/*
21461 			 * Drive supports changing block sizes via a Mode
21462 			 * Select.
21463 			 */
21464 			err = sr_change_blkmode(dev, cmd, arg, flag);
21465 		}
21466 		break;
21467 
21468 	case CDROMGDRVSPEED:
21469 	case CDROMSDRVSPEED:
21470 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21471 		if (!ISCD(un)) {
21472 			err = ENOTTY;
21473 		} else if (un->un_f_mmc_cap == TRUE) {
21474 			/*
21475 			 * Note: In the future the driver implementation
21476 			 * for getting and
21477 			 * setting cd speed should entail:
21478 			 * 1) If non-mmc try the Toshiba mode page
21479 			 *    (sr_change_speed)
21480 			 * 2) If mmc but no support for Real Time Streaming try
21481 			 *    the SET CD SPEED (0xBB) command
21482 			 *   (sr_atapi_change_speed)
21483 			 * 3) If mmc and support for Real Time Streaming
21484 			 *    try the GET PERFORMANCE and SET STREAMING
21485 			 *    commands (not yet implemented, 4380808)
21486 			 */
21487 			/*
21488 			 * As per recent MMC spec, CD-ROM speed is variable
21489 			 * and changes with LBA. Since there is no such
21490 			 * things as drive speed now, fail this ioctl.
21491 			 *
21492 			 * Note: EINVAL is returned for consistancy of original
21493 			 * implementation which included support for getting
21494 			 * the drive speed of mmc devices but not setting
21495 			 * the drive speed. Thus EINVAL would be returned
21496 			 * if a set request was made for an mmc device.
21497 			 * We no longer support get or set speed for
21498 			 * mmc but need to remain consistant with regard
21499 			 * to the error code returned.
21500 			 */
21501 			err = EINVAL;
21502 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21503 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21504 		} else {
21505 			err = sr_change_speed(dev, cmd, arg, flag);
21506 		}
21507 		break;
21508 
21509 	case CDROMCDDA:
21510 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21511 		if (!ISCD(un)) {
21512 			err = ENOTTY;
21513 		} else {
21514 			err = sr_read_cdda(dev, (void *)arg, flag);
21515 		}
21516 		break;
21517 
21518 	case CDROMCDXA:
21519 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21520 		if (!ISCD(un)) {
21521 			err = ENOTTY;
21522 		} else {
21523 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21524 		}
21525 		break;
21526 
21527 	case CDROMSUBCODE:
21528 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21529 		if (!ISCD(un)) {
21530 			err = ENOTTY;
21531 		} else {
21532 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21533 		}
21534 		break;
21535 
21536 	case DKIOCPARTINFO: {
21537 		/*
21538 		 * Return parameters describing the selected disk slice.
21539 		 * Note: this ioctl is for the intel platform only
21540 		 */
21541 #if defined(__i386) || defined(__amd64)
21542 		int part;
21543 
21544 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21545 		part = SDPART(dev);
21546 
21547 		/* don't check un_solaris_size for pN */
21548 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21549 			err = EIO;
21550 		} else {
21551 			struct part_info p;
21552 
21553 			p.p_start = (daddr_t)un->un_offset[part];
21554 			p.p_length = (int)un->un_map[part].dkl_nblk;
21555 #ifdef _MULTI_DATAMODEL
21556 			switch (ddi_model_convert_from(flag & FMODELS)) {
21557 			case DDI_MODEL_ILP32:
21558 			{
21559 				struct part_info32 p32;
21560 
21561 				p32.p_start = (daddr32_t)p.p_start;
21562 				p32.p_length = p.p_length;
21563 				if (ddi_copyout(&p32, (void *)arg,
21564 				    sizeof (p32), flag))
21565 					err = EFAULT;
21566 				break;
21567 			}
21568 
21569 			case DDI_MODEL_NONE:
21570 			{
21571 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21572 				    flag))
21573 					err = EFAULT;
21574 				break;
21575 			}
21576 			}
21577 #else /* ! _MULTI_DATAMODEL */
21578 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21579 				err = EFAULT;
21580 #endif /* _MULTI_DATAMODEL */
21581 		}
21582 #else
21583 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21584 		err = ENOTTY;
21585 #endif
21586 		break;
21587 	}
21588 
21589 	case DKIOCG_PHYGEOM: {
21590 		/* Return the driver's notion of the media physical geometry */
21591 #if defined(__i386) || defined(__amd64)
21592 		struct dk_geom	disk_geom;
21593 		struct dk_geom	*dkgp = &disk_geom;
21594 
21595 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21596 		mutex_enter(SD_MUTEX(un));
21597 
21598 		if (un->un_g.dkg_nhead != 0 &&
21599 		    un->un_g.dkg_nsect != 0) {
21600 			/*
21601 			 * We succeeded in getting a geometry, but
21602 			 * right now it is being reported as just the
21603 			 * Solaris fdisk partition, just like for
21604 			 * DKIOCGGEOM. We need to change that to be
21605 			 * correct for the entire disk now.
21606 			 */
21607 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21608 			dkgp->dkg_acyl = 0;
21609 			dkgp->dkg_ncyl = un->un_blockcount /
21610 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21611 		} else {
21612 			bzero(dkgp, sizeof (struct dk_geom));
21613 			/*
21614 			 * This disk does not have a Solaris VTOC
21615 			 * so we must present a physical geometry
21616 			 * that will remain consistent regardless
21617 			 * of how the disk is used. This will ensure
21618 			 * that the geometry does not change regardless
21619 			 * of the fdisk partition type (ie. EFI, FAT32,
21620 			 * Solaris, etc).
21621 			 */
21622 			if (ISCD(un)) {
21623 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21624 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21625 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21626 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21627 			} else {
21628 				/*
21629 				 * Invalid un_blockcount can generate invalid
21630 				 * dk_geom and may result in division by zero
21631 				 * system failure. Should make sure blockcount
21632 				 * is valid before using it here.
21633 				 */
21634 				if (un->un_f_blockcount_is_valid == FALSE) {
21635 					mutex_exit(SD_MUTEX(un));
21636 					err = EIO;
21637 
21638 					break;
21639 				}
21640 				sd_convert_geometry(un->un_blockcount, dkgp);
21641 				dkgp->dkg_acyl = 0;
21642 				dkgp->dkg_ncyl = un->un_blockcount /
21643 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21644 			}
21645 		}
21646 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21647 
21648 		if (ddi_copyout(dkgp, (void *)arg,
21649 		    sizeof (struct dk_geom), flag)) {
21650 			mutex_exit(SD_MUTEX(un));
21651 			err = EFAULT;
21652 		} else {
21653 			mutex_exit(SD_MUTEX(un));
21654 			err = 0;
21655 		}
21656 #else
21657 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21658 		err = ENOTTY;
21659 #endif
21660 		break;
21661 	}
21662 
21663 	case DKIOCG_VIRTGEOM: {
21664 		/* Return the driver's notion of the media's logical geometry */
21665 #if defined(__i386) || defined(__amd64)
21666 		struct dk_geom	disk_geom;
21667 		struct dk_geom	*dkgp = &disk_geom;
21668 
21669 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21670 		mutex_enter(SD_MUTEX(un));
21671 		/*
21672 		 * If there is no HBA geometry available, or
21673 		 * if the HBA returned us something that doesn't
21674 		 * really fit into an Int 13/function 8 geometry
21675 		 * result, just fail the ioctl.  See PSARC 1998/313.
21676 		 */
21677 		if (un->un_lgeom.g_nhead == 0 ||
21678 		    un->un_lgeom.g_nsect == 0 ||
21679 		    un->un_lgeom.g_ncyl > 1024) {
21680 			mutex_exit(SD_MUTEX(un));
21681 			err = EINVAL;
21682 		} else {
21683 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21684 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21685 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21686 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21687 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21688 
21689 			if (ddi_copyout(dkgp, (void *)arg,
21690 			    sizeof (struct dk_geom), flag)) {
21691 				mutex_exit(SD_MUTEX(un));
21692 				err = EFAULT;
21693 			} else {
21694 				mutex_exit(SD_MUTEX(un));
21695 				err = 0;
21696 			}
21697 		}
21698 #else
21699 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21700 		err = ENOTTY;
21701 #endif
21702 		break;
21703 	}
21704 #ifdef SDDEBUG
21705 /* RESET/ABORTS testing ioctls */
21706 	case DKIOCRESET: {
21707 		int	reset_level;
21708 
21709 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21710 			err = EFAULT;
21711 		} else {
21712 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21713 			    "reset_level = 0x%lx\n", reset_level);
21714 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21715 				err = 0;
21716 			} else {
21717 				err = EIO;
21718 			}
21719 		}
21720 		break;
21721 	}
21722 
21723 	case DKIOCABORT:
21724 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21725 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21726 			err = 0;
21727 		} else {
21728 			err = EIO;
21729 		}
21730 		break;
21731 #endif
21732 
21733 #ifdef SD_FAULT_INJECTION
21734 /* SDIOC FaultInjection testing ioctls */
21735 	case SDIOCSTART:
21736 	case SDIOCSTOP:
21737 	case SDIOCINSERTPKT:
21738 	case SDIOCINSERTXB:
21739 	case SDIOCINSERTUN:
21740 	case SDIOCINSERTARQ:
21741 	case SDIOCPUSH:
21742 	case SDIOCRETRIEVE:
21743 	case SDIOCRUN:
21744 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21745 		    "SDIOC detected cmd:0x%X:\n", cmd);
21746 		/* call error generator */
21747 		sd_faultinjection_ioctl(cmd, arg, un);
21748 		err = 0;
21749 		break;
21750 
21751 #endif /* SD_FAULT_INJECTION */
21752 
21753 	case DKIOCFLUSHWRITECACHE:
21754 		{
21755 			struct dk_callback *dkc = (struct dk_callback *)arg;
21756 
21757 			mutex_enter(SD_MUTEX(un));
21758 			if (!un->un_f_sync_cache_supported ||
21759 			    !un->un_f_write_cache_enabled) {
21760 				err = un->un_f_sync_cache_supported ?
21761 					0 : ENOTSUP;
21762 				mutex_exit(SD_MUTEX(un));
21763 				if ((flag & FKIOCTL) && dkc != NULL &&
21764 				    dkc->dkc_callback != NULL) {
21765 					(*dkc->dkc_callback)(dkc->dkc_cookie,
21766 					    err);
21767 					/*
21768 					 * Did callback and reported error.
21769 					 * Since we did a callback, ioctl
21770 					 * should return 0.
21771 					 */
21772 					err = 0;
21773 				}
21774 				break;
21775 			}
21776 			mutex_exit(SD_MUTEX(un));
21777 
21778 			if ((flag & FKIOCTL) && dkc != NULL &&
21779 			    dkc->dkc_callback != NULL) {
21780 				/* async SYNC CACHE request */
21781 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
21782 			} else {
21783 				/* synchronous SYNC CACHE request */
21784 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21785 			}
21786 		}
21787 		break;
21788 
21789 	default:
21790 		err = ENOTTY;
21791 		break;
21792 	}
21793 	mutex_enter(SD_MUTEX(un));
21794 	un->un_ncmds_in_driver--;
21795 	ASSERT(un->un_ncmds_in_driver >= 0);
21796 	mutex_exit(SD_MUTEX(un));
21797 
21798 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21799 	return (err);
21800 }
21801 
21802 
21803 /*
21804  *    Function: sd_uscsi_ioctl
21805  *
21806  * Description: This routine is the driver entry point for handling USCSI ioctl
21807  *		requests (USCSICMD).
21808  *
21809  *   Arguments: dev	- the device number
21810  *		arg	- user provided scsi command
21811  *		flag	- this argument is a pass through to ddi_copyxxx()
21812  *			  directly from the mode argument of ioctl().
21813  *
21814  * Return Code: code returned by sd_send_scsi_cmd
21815  *		ENXIO
21816  *		EFAULT
21817  *		EAGAIN
21818  */
21819 
21820 static int
21821 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21822 {
21823 #ifdef _MULTI_DATAMODEL
21824 	/*
21825 	 * For use when a 32 bit app makes a call into a
21826 	 * 64 bit ioctl
21827 	 */
21828 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21829 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21830 	model_t			model;
21831 #endif /* _MULTI_DATAMODEL */
21832 	struct uscsi_cmd	*scmd = NULL;
21833 	struct sd_lun		*un = NULL;
21834 	enum uio_seg		uioseg;
21835 	char			cdb[CDB_GROUP0];
21836 	int			rval = 0;
21837 
21838 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21839 		return (ENXIO);
21840 	}
21841 
21842 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21843 
21844 	scmd = (struct uscsi_cmd *)
21845 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21846 
21847 #ifdef _MULTI_DATAMODEL
21848 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21849 	case DDI_MODEL_ILP32:
21850 	{
21851 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21852 			rval = EFAULT;
21853 			goto done;
21854 		}
21855 		/*
21856 		 * Convert the ILP32 uscsi data from the
21857 		 * application to LP64 for internal use.
21858 		 */
21859 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21860 		break;
21861 	}
21862 	case DDI_MODEL_NONE:
21863 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21864 			rval = EFAULT;
21865 			goto done;
21866 		}
21867 		break;
21868 	}
21869 #else /* ! _MULTI_DATAMODEL */
21870 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21871 		rval = EFAULT;
21872 		goto done;
21873 	}
21874 #endif /* _MULTI_DATAMODEL */
21875 
21876 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21877 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21878 	if (un->un_f_format_in_progress == TRUE) {
21879 		rval = EAGAIN;
21880 		goto done;
21881 	}
21882 
21883 	/*
21884 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21885 	 * we will have a valid cdb[0] to test.
21886 	 */
21887 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21888 	    (cdb[0] == SCMD_FORMAT)) {
21889 		SD_TRACE(SD_LOG_IOCTL, un,
21890 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21891 		mutex_enter(SD_MUTEX(un));
21892 		un->un_f_format_in_progress = TRUE;
21893 		mutex_exit(SD_MUTEX(un));
21894 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21895 		    SD_PATH_STANDARD);
21896 		mutex_enter(SD_MUTEX(un));
21897 		un->un_f_format_in_progress = FALSE;
21898 		mutex_exit(SD_MUTEX(un));
21899 	} else {
21900 		SD_TRACE(SD_LOG_IOCTL, un,
21901 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21902 		/*
21903 		 * It's OK to fall into here even if the ddi_copyin()
21904 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21905 		 * does this same copyin and will return the EFAULT
21906 		 * if it fails.
21907 		 */
21908 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21909 		    SD_PATH_STANDARD);
21910 	}
21911 #ifdef _MULTI_DATAMODEL
21912 	switch (model) {
21913 	case DDI_MODEL_ILP32:
21914 		/*
21915 		 * Convert back to ILP32 before copyout to the
21916 		 * application
21917 		 */
21918 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21919 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21920 			if (rval != 0) {
21921 				rval = EFAULT;
21922 			}
21923 		}
21924 		break;
21925 	case DDI_MODEL_NONE:
21926 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21927 			if (rval != 0) {
21928 				rval = EFAULT;
21929 			}
21930 		}
21931 		break;
21932 	}
21933 #else /* ! _MULTI_DATAMODE */
21934 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21935 		if (rval != 0) {
21936 			rval = EFAULT;
21937 		}
21938 	}
21939 #endif /* _MULTI_DATAMODE */
21940 done:
21941 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21942 
21943 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21944 
21945 	return (rval);
21946 }
21947 
21948 
21949 /*
21950  *    Function: sd_dkio_ctrl_info
21951  *
21952  * Description: This routine is the driver entry point for handling controller
21953  *		information ioctl requests (DKIOCINFO).
21954  *
21955  *   Arguments: dev  - the device number
21956  *		arg  - pointer to user provided dk_cinfo structure
21957  *		       specifying the controller type and attributes.
21958  *		flag - this argument is a pass through to ddi_copyxxx()
21959  *		       directly from the mode argument of ioctl().
21960  *
21961  * Return Code: 0
21962  *		EFAULT
21963  *		ENXIO
21964  */
21965 
21966 static int
21967 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21968 {
21969 	struct sd_lun	*un = NULL;
21970 	struct dk_cinfo	*info;
21971 	dev_info_t	*pdip;
21972 	int		lun, tgt;
21973 
21974 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21975 		return (ENXIO);
21976 	}
21977 
21978 	info = (struct dk_cinfo *)
21979 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21980 
21981 	switch (un->un_ctype) {
21982 	case CTYPE_CDROM:
21983 		info->dki_ctype = DKC_CDROM;
21984 		break;
21985 	default:
21986 		info->dki_ctype = DKC_SCSI_CCS;
21987 		break;
21988 	}
21989 	pdip = ddi_get_parent(SD_DEVINFO(un));
21990 	info->dki_cnum = ddi_get_instance(pdip);
21991 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21992 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21993 	} else {
21994 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21995 		    DK_DEVLEN - 1);
21996 	}
21997 
21998 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21999 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22000 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22001 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22002 
22003 	/* Unit Information */
22004 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22005 	info->dki_slave = ((tgt << 3) | lun);
22006 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22007 	    DK_DEVLEN - 1);
22008 	info->dki_flags = DKI_FMTVOL;
22009 	info->dki_partition = SDPART(dev);
22010 
22011 	/* Max Transfer size of this device in blocks */
22012 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22013 	info->dki_addr = 0;
22014 	info->dki_space = 0;
22015 	info->dki_prio = 0;
22016 	info->dki_vec = 0;
22017 
22018 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22019 		kmem_free(info, sizeof (struct dk_cinfo));
22020 		return (EFAULT);
22021 	} else {
22022 		kmem_free(info, sizeof (struct dk_cinfo));
22023 		return (0);
22024 	}
22025 }
22026 
22027 
22028 /*
22029  *    Function: sd_get_media_info
22030  *
22031  * Description: This routine is the driver entry point for handling ioctl
22032  *		requests for the media type or command set profile used by the
22033  *		drive to operate on the media (DKIOCGMEDIAINFO).
22034  *
22035  *   Arguments: dev	- the device number
22036  *		arg	- pointer to user provided dk_minfo structure
22037  *			  specifying the media type, logical block size and
22038  *			  drive capacity.
22039  *		flag	- this argument is a pass through to ddi_copyxxx()
22040  *			  directly from the mode argument of ioctl().
22041  *
22042  * Return Code: 0
22043  *		EACCESS
22044  *		EFAULT
22045  *		ENXIO
22046  *		EIO
22047  */
22048 
22049 static int
22050 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22051 {
22052 	struct sd_lun		*un = NULL;
22053 	struct uscsi_cmd	com;
22054 	struct scsi_inquiry	*sinq;
22055 	struct dk_minfo		media_info;
22056 	u_longlong_t		media_capacity;
22057 	uint64_t		capacity;
22058 	uint_t			lbasize;
22059 	uchar_t			*out_data;
22060 	uchar_t			*rqbuf;
22061 	int			rval = 0;
22062 	int			rtn;
22063 
22064 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22065 	    (un->un_state == SD_STATE_OFFLINE)) {
22066 		return (ENXIO);
22067 	}
22068 
22069 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22070 
22071 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22072 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22073 
22074 	/* Issue a TUR to determine if the drive is ready with media present */
22075 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22076 	if (rval == ENXIO) {
22077 		goto done;
22078 	}
22079 
22080 	/* Now get configuration data */
22081 	if (ISCD(un)) {
22082 		media_info.dki_media_type = DK_CDROM;
22083 
22084 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22085 		if (un->un_f_mmc_cap == TRUE) {
22086 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22087 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22088 
22089 			if (rtn) {
22090 				/*
22091 				 * Failed for other than an illegal request
22092 				 * or command not supported
22093 				 */
22094 				if ((com.uscsi_status == STATUS_CHECK) &&
22095 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22096 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22097 					    (rqbuf[12] != 0x20)) {
22098 						rval = EIO;
22099 						goto done;
22100 					}
22101 				}
22102 			} else {
22103 				/*
22104 				 * The GET CONFIGURATION command succeeded
22105 				 * so set the media type according to the
22106 				 * returned data
22107 				 */
22108 				media_info.dki_media_type = out_data[6];
22109 				media_info.dki_media_type <<= 8;
22110 				media_info.dki_media_type |= out_data[7];
22111 			}
22112 		}
22113 	} else {
22114 		/*
22115 		 * The profile list is not available, so we attempt to identify
22116 		 * the media type based on the inquiry data
22117 		 */
22118 		sinq = un->un_sd->sd_inq;
22119 		if (sinq->inq_qual == 0) {
22120 			/* This is a direct access device */
22121 			media_info.dki_media_type = DK_FIXED_DISK;
22122 
22123 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22124 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22125 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22126 					media_info.dki_media_type = DK_ZIP;
22127 				} else if (
22128 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22129 					media_info.dki_media_type = DK_JAZ;
22130 				}
22131 			}
22132 		} else {
22133 			/* Not a CD or direct access so return unknown media */
22134 			media_info.dki_media_type = DK_UNKNOWN;
22135 		}
22136 	}
22137 
22138 	/* Now read the capacity so we can provide the lbasize and capacity */
22139 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22140 	    SD_PATH_DIRECT)) {
22141 	case 0:
22142 		break;
22143 	case EACCES:
22144 		rval = EACCES;
22145 		goto done;
22146 	default:
22147 		rval = EIO;
22148 		goto done;
22149 	}
22150 
22151 	media_info.dki_lbsize = lbasize;
22152 	media_capacity = capacity;
22153 
22154 	/*
22155 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22156 	 * un->un_sys_blocksize chunks. So we need to convert it into
22157 	 * cap.lbasize chunks.
22158 	 */
22159 	media_capacity *= un->un_sys_blocksize;
22160 	media_capacity /= lbasize;
22161 	media_info.dki_capacity = media_capacity;
22162 
22163 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22164 		rval = EFAULT;
22165 		/* Put goto. Anybody might add some code below in future */
22166 		goto done;
22167 	}
22168 done:
22169 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22170 	kmem_free(rqbuf, SENSE_LENGTH);
22171 	return (rval);
22172 }
22173 
22174 
22175 /*
22176  *    Function: sd_dkio_get_geometry
22177  *
22178  * Description: This routine is the driver entry point for handling user
22179  *		requests to get the device geometry (DKIOCGGEOM).
22180  *
22181  *   Arguments: dev  - the device number
22182  *		arg  - pointer to user provided dk_geom structure specifying
22183  *			the controller's notion of the current geometry.
22184  *		flag - this argument is a pass through to ddi_copyxxx()
22185  *		       directly from the mode argument of ioctl().
22186  *		geom_validated - flag indicating if the device geometry has been
22187  *				 previously validated in the sdioctl routine.
22188  *
22189  * Return Code: 0
22190  *		EFAULT
22191  *		ENXIO
22192  *		EIO
22193  */
22194 
22195 static int
22196 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22197 {
22198 	struct sd_lun	*un = NULL;
22199 	struct dk_geom	*tmp_geom = NULL;
22200 	int		rval = 0;
22201 
22202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22203 		return (ENXIO);
22204 	}
22205 
22206 #if defined(__i386) || defined(__amd64)
22207 	if (un->un_solaris_size == 0) {
22208 		return (EIO);
22209 	}
22210 #endif
22211 	if (geom_validated == FALSE) {
22212 		/*
22213 		 * sd_validate_geometry does not spin a disk up
22214 		 * if it was spun down. We need to make sure it
22215 		 * is ready.
22216 		 */
22217 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22218 			return (rval);
22219 		}
22220 		mutex_enter(SD_MUTEX(un));
22221 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22222 		mutex_exit(SD_MUTEX(un));
22223 	}
22224 	if (rval)
22225 		return (rval);
22226 
22227 	/*
22228 	 * Make a local copy of the soft state geometry to avoid some potential
22229 	 * race conditions associated with holding the mutex and updating the
22230 	 * write_reinstruct value
22231 	 */
22232 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22233 	mutex_enter(SD_MUTEX(un));
22234 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22235 	mutex_exit(SD_MUTEX(un));
22236 
22237 	if (tmp_geom->dkg_write_reinstruct == 0) {
22238 		tmp_geom->dkg_write_reinstruct =
22239 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22240 		    sd_rot_delay) / (int)60000);
22241 	}
22242 
22243 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22244 	    flag);
22245 	if (rval != 0) {
22246 		rval = EFAULT;
22247 	}
22248 
22249 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22250 	return (rval);
22251 
22252 }
22253 
22254 
22255 /*
22256  *    Function: sd_dkio_set_geometry
22257  *
22258  * Description: This routine is the driver entry point for handling user
22259  *		requests to set the device geometry (DKIOCSGEOM). The actual
22260  *		device geometry is not updated, just the driver "notion" of it.
22261  *
22262  *   Arguments: dev  - the device number
22263  *		arg  - pointer to user provided dk_geom structure used to set
22264  *			the controller's notion of the current geometry.
22265  *		flag - this argument is a pass through to ddi_copyxxx()
22266  *		       directly from the mode argument of ioctl().
22267  *
22268  * Return Code: 0
22269  *		EFAULT
22270  *		ENXIO
22271  *		EIO
22272  */
22273 
22274 static int
22275 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22276 {
22277 	struct sd_lun	*un = NULL;
22278 	struct dk_geom	*tmp_geom;
22279 	struct dk_map	*lp;
22280 	int		rval = 0;
22281 	int		i;
22282 
22283 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22284 		return (ENXIO);
22285 	}
22286 
22287 #if defined(__i386) || defined(__amd64)
22288 	if (un->un_solaris_size == 0) {
22289 		return (EIO);
22290 	}
22291 #endif
22292 	/*
22293 	 * We need to copy the user specified geometry into local
22294 	 * storage and then update the softstate. We don't want to hold
22295 	 * the mutex and copyin directly from the user to the soft state
22296 	 */
22297 	tmp_geom = (struct dk_geom *)
22298 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22299 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22300 	if (rval != 0) {
22301 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22302 		return (EFAULT);
22303 	}
22304 
22305 	mutex_enter(SD_MUTEX(un));
22306 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22307 	for (i = 0; i < NDKMAP; i++) {
22308 		lp  = &un->un_map[i];
22309 		un->un_offset[i] =
22310 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22311 #if defined(__i386) || defined(__amd64)
22312 		un->un_offset[i] += un->un_solaris_offset;
22313 #endif
22314 	}
22315 	un->un_f_geometry_is_valid = FALSE;
22316 	mutex_exit(SD_MUTEX(un));
22317 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22318 
22319 	return (rval);
22320 }
22321 
22322 
22323 /*
22324  *    Function: sd_dkio_get_partition
22325  *
22326  * Description: This routine is the driver entry point for handling user
22327  *		requests to get the partition table (DKIOCGAPART).
22328  *
22329  *   Arguments: dev  - the device number
22330  *		arg  - pointer to user provided dk_allmap structure specifying
22331  *			the controller's notion of the current partition table.
22332  *		flag - this argument is a pass through to ddi_copyxxx()
22333  *		       directly from the mode argument of ioctl().
22334  *		geom_validated - flag indicating if the device geometry has been
22335  *				 previously validated in the sdioctl routine.
22336  *
22337  * Return Code: 0
22338  *		EFAULT
22339  *		ENXIO
22340  *		EIO
22341  */
22342 
22343 static int
22344 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22345 {
22346 	struct sd_lun	*un = NULL;
22347 	int		rval = 0;
22348 	int		size;
22349 
22350 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22351 		return (ENXIO);
22352 	}
22353 
22354 #if defined(__i386) || defined(__amd64)
22355 	if (un->un_solaris_size == 0) {
22356 		return (EIO);
22357 	}
22358 #endif
22359 	/*
22360 	 * Make sure the geometry is valid before getting the partition
22361 	 * information.
22362 	 */
22363 	mutex_enter(SD_MUTEX(un));
22364 	if (geom_validated == FALSE) {
22365 		/*
22366 		 * sd_validate_geometry does not spin a disk up
22367 		 * if it was spun down. We need to make sure it
22368 		 * is ready before validating the geometry.
22369 		 */
22370 		mutex_exit(SD_MUTEX(un));
22371 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22372 			return (rval);
22373 		}
22374 		mutex_enter(SD_MUTEX(un));
22375 
22376 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22377 			mutex_exit(SD_MUTEX(un));
22378 			return (rval);
22379 		}
22380 	}
22381 	mutex_exit(SD_MUTEX(un));
22382 
22383 #ifdef _MULTI_DATAMODEL
22384 	switch (ddi_model_convert_from(flag & FMODELS)) {
22385 	case DDI_MODEL_ILP32: {
22386 		struct dk_map32 dk_map32[NDKMAP];
22387 		int		i;
22388 
22389 		for (i = 0; i < NDKMAP; i++) {
22390 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22391 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22392 		}
22393 		size = NDKMAP * sizeof (struct dk_map32);
22394 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22395 		if (rval != 0) {
22396 			rval = EFAULT;
22397 		}
22398 		break;
22399 	}
22400 	case DDI_MODEL_NONE:
22401 		size = NDKMAP * sizeof (struct dk_map);
22402 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22403 		if (rval != 0) {
22404 			rval = EFAULT;
22405 		}
22406 		break;
22407 	}
22408 #else /* ! _MULTI_DATAMODEL */
22409 	size = NDKMAP * sizeof (struct dk_map);
22410 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22411 	if (rval != 0) {
22412 		rval = EFAULT;
22413 	}
22414 #endif /* _MULTI_DATAMODEL */
22415 	return (rval);
22416 }
22417 
22418 
22419 /*
22420  *    Function: sd_dkio_set_partition
22421  *
22422  * Description: This routine is the driver entry point for handling user
22423  *		requests to set the partition table (DKIOCSAPART). The actual
22424  *		device partition is not updated.
22425  *
22426  *   Arguments: dev  - the device number
22427  *		arg  - pointer to user provided dk_allmap structure used to set
22428  *			the controller's notion of the partition table.
22429  *		flag - this argument is a pass through to ddi_copyxxx()
22430  *		       directly from the mode argument of ioctl().
22431  *
22432  * Return Code: 0
22433  *		EINVAL
22434  *		EFAULT
22435  *		ENXIO
22436  *		EIO
22437  */
22438 
22439 static int
22440 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22441 {
22442 	struct sd_lun	*un = NULL;
22443 	struct dk_map	dk_map[NDKMAP];
22444 	struct dk_map	*lp;
22445 	int		rval = 0;
22446 	int		size;
22447 	int		i;
22448 #if defined(_SUNOS_VTOC_16)
22449 	struct dkl_partition	*vp;
22450 #endif
22451 
22452 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22453 		return (ENXIO);
22454 	}
22455 
22456 	/*
22457 	 * Set the map for all logical partitions.  We lock
22458 	 * the priority just to make sure an interrupt doesn't
22459 	 * come in while the map is half updated.
22460 	 */
22461 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22462 	mutex_enter(SD_MUTEX(un));
22463 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22464 		mutex_exit(SD_MUTEX(un));
22465 		return (ENOTSUP);
22466 	}
22467 	mutex_exit(SD_MUTEX(un));
22468 	if (un->un_solaris_size == 0) {
22469 		return (EIO);
22470 	}
22471 
22472 #ifdef _MULTI_DATAMODEL
22473 	switch (ddi_model_convert_from(flag & FMODELS)) {
22474 	case DDI_MODEL_ILP32: {
22475 		struct dk_map32 dk_map32[NDKMAP];
22476 
22477 		size = NDKMAP * sizeof (struct dk_map32);
22478 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22479 		if (rval != 0) {
22480 			return (EFAULT);
22481 		}
22482 		for (i = 0; i < NDKMAP; i++) {
22483 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22484 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22485 		}
22486 		break;
22487 	}
22488 	case DDI_MODEL_NONE:
22489 		size = NDKMAP * sizeof (struct dk_map);
22490 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22491 		if (rval != 0) {
22492 			return (EFAULT);
22493 		}
22494 		break;
22495 	}
22496 #else /* ! _MULTI_DATAMODEL */
22497 	size = NDKMAP * sizeof (struct dk_map);
22498 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22499 	if (rval != 0) {
22500 		return (EFAULT);
22501 	}
22502 #endif /* _MULTI_DATAMODEL */
22503 
22504 	mutex_enter(SD_MUTEX(un));
22505 	/* Note: The size used in this bcopy is set based upon the data model */
22506 	bcopy(dk_map, un->un_map, size);
22507 #if defined(_SUNOS_VTOC_16)
22508 	vp = (struct dkl_partition *)&(un->un_vtoc);
22509 #endif	/* defined(_SUNOS_VTOC_16) */
22510 	for (i = 0; i < NDKMAP; i++) {
22511 		lp  = &un->un_map[i];
22512 		un->un_offset[i] =
22513 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22514 #if defined(_SUNOS_VTOC_16)
22515 		vp->p_start = un->un_offset[i];
22516 		vp->p_size = lp->dkl_nblk;
22517 		vp++;
22518 #endif	/* defined(_SUNOS_VTOC_16) */
22519 #if defined(__i386) || defined(__amd64)
22520 		un->un_offset[i] += un->un_solaris_offset;
22521 #endif
22522 	}
22523 	mutex_exit(SD_MUTEX(un));
22524 	return (rval);
22525 }
22526 
22527 
22528 /*
22529  *    Function: sd_dkio_get_vtoc
22530  *
22531  * Description: This routine is the driver entry point for handling user
22532  *		requests to get the current volume table of contents
22533  *		(DKIOCGVTOC).
22534  *
22535  *   Arguments: dev  - the device number
22536  *		arg  - pointer to user provided vtoc structure specifying
22537  *			the current vtoc.
22538  *		flag - this argument is a pass through to ddi_copyxxx()
22539  *		       directly from the mode argument of ioctl().
22540  *		geom_validated - flag indicating if the device geometry has been
22541  *				 previously validated in the sdioctl routine.
22542  *
22543  * Return Code: 0
22544  *		EFAULT
22545  *		ENXIO
22546  *		EIO
22547  */
22548 
22549 static int
22550 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22551 {
22552 	struct sd_lun	*un = NULL;
22553 #if defined(_SUNOS_VTOC_8)
22554 	struct vtoc	user_vtoc;
22555 #endif	/* defined(_SUNOS_VTOC_8) */
22556 	int		rval = 0;
22557 
22558 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22559 		return (ENXIO);
22560 	}
22561 
22562 	mutex_enter(SD_MUTEX(un));
22563 	if (geom_validated == FALSE) {
22564 		/*
22565 		 * sd_validate_geometry does not spin a disk up
22566 		 * if it was spun down. We need to make sure it
22567 		 * is ready.
22568 		 */
22569 		mutex_exit(SD_MUTEX(un));
22570 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22571 			return (rval);
22572 		}
22573 		mutex_enter(SD_MUTEX(un));
22574 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22575 			mutex_exit(SD_MUTEX(un));
22576 			return (rval);
22577 		}
22578 	}
22579 
22580 #if defined(_SUNOS_VTOC_8)
22581 	sd_build_user_vtoc(un, &user_vtoc);
22582 	mutex_exit(SD_MUTEX(un));
22583 
22584 #ifdef _MULTI_DATAMODEL
22585 	switch (ddi_model_convert_from(flag & FMODELS)) {
22586 	case DDI_MODEL_ILP32: {
22587 		struct vtoc32 user_vtoc32;
22588 
22589 		vtoctovtoc32(user_vtoc, user_vtoc32);
22590 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22591 		    sizeof (struct vtoc32), flag)) {
22592 			return (EFAULT);
22593 		}
22594 		break;
22595 	}
22596 
22597 	case DDI_MODEL_NONE:
22598 		if (ddi_copyout(&user_vtoc, (void *)arg,
22599 		    sizeof (struct vtoc), flag)) {
22600 			return (EFAULT);
22601 		}
22602 		break;
22603 	}
22604 #else /* ! _MULTI_DATAMODEL */
22605 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22606 		return (EFAULT);
22607 	}
22608 #endif /* _MULTI_DATAMODEL */
22609 
22610 #elif defined(_SUNOS_VTOC_16)
22611 	mutex_exit(SD_MUTEX(un));
22612 
22613 #ifdef _MULTI_DATAMODEL
22614 	/*
22615 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22616 	 * 32-bit to maintain compatibility with existing on-disk
22617 	 * structures.  Thus, we need to convert the structure when copying
22618 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22619 	 * program.  If the target is a 32-bit program, then no conversion
22620 	 * is necessary.
22621 	 */
22622 	/* LINTED: logical expression always true: op "||" */
22623 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22624 	switch (ddi_model_convert_from(flag & FMODELS)) {
22625 	case DDI_MODEL_ILP32:
22626 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22627 		    sizeof (un->un_vtoc), flag)) {
22628 			return (EFAULT);
22629 		}
22630 		break;
22631 
22632 	case DDI_MODEL_NONE: {
22633 		struct vtoc user_vtoc;
22634 
22635 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22636 		if (ddi_copyout(&user_vtoc, (void *)arg,
22637 		    sizeof (struct vtoc), flag)) {
22638 			return (EFAULT);
22639 		}
22640 		break;
22641 	}
22642 	}
22643 #else /* ! _MULTI_DATAMODEL */
22644 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22645 	    flag)) {
22646 		return (EFAULT);
22647 	}
22648 #endif /* _MULTI_DATAMODEL */
22649 #else
22650 #error "No VTOC format defined."
22651 #endif
22652 
22653 	return (rval);
22654 }
22655 
22656 static int
22657 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22658 {
22659 	struct sd_lun	*un = NULL;
22660 	dk_efi_t	user_efi;
22661 	int		rval = 0;
22662 	void		*buffer;
22663 
22664 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22665 		return (ENXIO);
22666 
22667 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22668 		return (EFAULT);
22669 
22670 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22671 
22672 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22673 	    (user_efi.dki_length > un->un_max_xfer_size))
22674 		return (EINVAL);
22675 
22676 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22677 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22678 	    user_efi.dki_lba, SD_PATH_DIRECT);
22679 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22680 	    user_efi.dki_length, flag) != 0)
22681 		rval = EFAULT;
22682 
22683 	kmem_free(buffer, user_efi.dki_length);
22684 	return (rval);
22685 }
22686 
22687 /*
22688  *    Function: sd_build_user_vtoc
22689  *
22690  * Description: This routine populates a pass by reference variable with the
22691  *		current volume table of contents.
22692  *
22693  *   Arguments: un - driver soft state (unit) structure
22694  *		user_vtoc - pointer to vtoc structure to be populated
22695  */
22696 
22697 static void
22698 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22699 {
22700 	struct dk_map2		*lpart;
22701 	struct dk_map		*lmap;
22702 	struct partition	*vpart;
22703 	int			nblks;
22704 	int			i;
22705 
22706 	ASSERT(mutex_owned(SD_MUTEX(un)));
22707 
22708 	/*
22709 	 * Return vtoc structure fields in the provided VTOC area, addressed
22710 	 * by *vtoc.
22711 	 */
22712 	bzero(user_vtoc, sizeof (struct vtoc));
22713 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22714 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22715 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22716 	user_vtoc->v_sanity	= VTOC_SANE;
22717 	user_vtoc->v_version	= un->un_vtoc.v_version;
22718 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22719 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22720 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22721 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22722 	    sizeof (un->un_vtoc.v_reserved));
22723 	/*
22724 	 * Convert partitioning information.
22725 	 *
22726 	 * Note the conversion from starting cylinder number
22727 	 * to starting sector number.
22728 	 */
22729 	lmap = un->un_map;
22730 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22731 	vpart = user_vtoc->v_part;
22732 
22733 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22734 
22735 	for (i = 0; i < V_NUMPAR; i++) {
22736 		vpart->p_tag	= lpart->p_tag;
22737 		vpart->p_flag	= lpart->p_flag;
22738 		vpart->p_start	= lmap->dkl_cylno * nblks;
22739 		vpart->p_size	= lmap->dkl_nblk;
22740 		lmap++;
22741 		lpart++;
22742 		vpart++;
22743 
22744 		/* (4364927) */
22745 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22746 	}
22747 
22748 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22749 }
22750 
22751 static int
22752 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22753 {
22754 	struct sd_lun		*un = NULL;
22755 	struct partition64	p64;
22756 	int			rval = 0;
22757 	uint_t			nparts;
22758 	efi_gpe_t		*partitions;
22759 	efi_gpt_t		*buffer;
22760 	diskaddr_t		gpe_lba;
22761 
22762 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22763 		return (ENXIO);
22764 	}
22765 
22766 	if (ddi_copyin((const void *)arg, &p64,
22767 	    sizeof (struct partition64), flag)) {
22768 		return (EFAULT);
22769 	}
22770 
22771 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22772 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22773 		1, SD_PATH_DIRECT);
22774 	if (rval != 0)
22775 		goto done_error;
22776 
22777 	sd_swap_efi_gpt(buffer);
22778 
22779 	if ((rval = sd_validate_efi(buffer)) != 0)
22780 		goto done_error;
22781 
22782 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22783 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22784 	if (p64.p_partno > nparts) {
22785 		/* couldn't find it */
22786 		rval = ESRCH;
22787 		goto done_error;
22788 	}
22789 	/*
22790 	 * if we're dealing with a partition that's out of the normal
22791 	 * 16K block, adjust accordingly
22792 	 */
22793 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22794 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22795 			gpe_lba, SD_PATH_DIRECT);
22796 	if (rval) {
22797 		goto done_error;
22798 	}
22799 	partitions = (efi_gpe_t *)buffer;
22800 
22801 	sd_swap_efi_gpe(nparts, partitions);
22802 
22803 	partitions += p64.p_partno;
22804 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22805 	    sizeof (struct uuid));
22806 	p64.p_start = partitions->efi_gpe_StartingLBA;
22807 	p64.p_size = partitions->efi_gpe_EndingLBA -
22808 			p64.p_start + 1;
22809 
22810 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22811 		rval = EFAULT;
22812 
22813 done_error:
22814 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22815 	return (rval);
22816 }
22817 
22818 
22819 /*
22820  *    Function: sd_dkio_set_vtoc
22821  *
22822  * Description: This routine is the driver entry point for handling user
22823  *		requests to set the current volume table of contents
22824  *		(DKIOCSVTOC).
22825  *
22826  *   Arguments: dev  - the device number
22827  *		arg  - pointer to user provided vtoc structure used to set the
22828  *			current vtoc.
22829  *		flag - this argument is a pass through to ddi_copyxxx()
22830  *		       directly from the mode argument of ioctl().
22831  *
22832  * Return Code: 0
22833  *		EFAULT
22834  *		ENXIO
22835  *		EINVAL
22836  *		ENOTSUP
22837  */
22838 
22839 static int
22840 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22841 {
22842 	struct sd_lun	*un = NULL;
22843 	struct vtoc	user_vtoc;
22844 	int		rval = 0;
22845 
22846 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22847 		return (ENXIO);
22848 	}
22849 
22850 #if defined(__i386) || defined(__amd64)
22851 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22852 		return (EINVAL);
22853 	}
22854 #endif
22855 
22856 #ifdef _MULTI_DATAMODEL
22857 	switch (ddi_model_convert_from(flag & FMODELS)) {
22858 	case DDI_MODEL_ILP32: {
22859 		struct vtoc32 user_vtoc32;
22860 
22861 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22862 		    sizeof (struct vtoc32), flag)) {
22863 			return (EFAULT);
22864 		}
22865 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22866 		break;
22867 	}
22868 
22869 	case DDI_MODEL_NONE:
22870 		if (ddi_copyin((const void *)arg, &user_vtoc,
22871 		    sizeof (struct vtoc), flag)) {
22872 			return (EFAULT);
22873 		}
22874 		break;
22875 	}
22876 #else /* ! _MULTI_DATAMODEL */
22877 	if (ddi_copyin((const void *)arg, &user_vtoc,
22878 	    sizeof (struct vtoc), flag)) {
22879 		return (EFAULT);
22880 	}
22881 #endif /* _MULTI_DATAMODEL */
22882 
22883 	mutex_enter(SD_MUTEX(un));
22884 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22885 		mutex_exit(SD_MUTEX(un));
22886 		return (ENOTSUP);
22887 	}
22888 	if (un->un_g.dkg_ncyl == 0) {
22889 		mutex_exit(SD_MUTEX(un));
22890 		return (EINVAL);
22891 	}
22892 
22893 	mutex_exit(SD_MUTEX(un));
22894 	sd_clear_efi(un);
22895 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22896 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22897 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22898 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22899 	    un->un_node_type, NULL);
22900 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22901 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22902 	    un->un_node_type, NULL);
22903 	mutex_enter(SD_MUTEX(un));
22904 
22905 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22906 		if ((rval = sd_write_label(dev)) == 0) {
22907 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22908 			    != 0) {
22909 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22910 				    "sd_dkio_set_vtoc: "
22911 				    "Failed validate geometry\n");
22912 			}
22913 		}
22914 	}
22915 
22916 	/*
22917 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22918 	 * devid anyway, what can it hurt? Also preserve the device id by
22919 	 * writing to the disk acyl for the case where a devid has been
22920 	 * fabricated.
22921 	 */
22922 	if (un->un_f_devid_supported &&
22923 	    (un->un_f_opt_fab_devid == TRUE)) {
22924 		if (un->un_devid == NULL) {
22925 			sd_register_devid(un, SD_DEVINFO(un),
22926 			    SD_TARGET_IS_UNRESERVED);
22927 		} else {
22928 			/*
22929 			 * The device id for this disk has been
22930 			 * fabricated. Fabricated device id's are
22931 			 * managed by storing them in the last 2
22932 			 * available sectors on the drive. The device
22933 			 * id must be preserved by writing it back out
22934 			 * to this location.
22935 			 */
22936 			if (sd_write_deviceid(un) != 0) {
22937 				ddi_devid_free(un->un_devid);
22938 				un->un_devid = NULL;
22939 			}
22940 		}
22941 	}
22942 	mutex_exit(SD_MUTEX(un));
22943 	return (rval);
22944 }
22945 
22946 
22947 /*
22948  *    Function: sd_build_label_vtoc
22949  *
22950  * Description: This routine updates the driver soft state current volume table
22951  *		of contents based on a user specified vtoc.
22952  *
22953  *   Arguments: un - driver soft state (unit) structure
22954  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22955  *			    to update the driver soft state.
22956  *
22957  * Return Code: 0
22958  *		EINVAL
22959  */
22960 
22961 static int
22962 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22963 {
22964 	struct dk_map		*lmap;
22965 	struct partition	*vpart;
22966 	int			nblks;
22967 #if defined(_SUNOS_VTOC_8)
22968 	int			ncyl;
22969 	struct dk_map2		*lpart;
22970 #endif	/* defined(_SUNOS_VTOC_8) */
22971 	int			i;
22972 
22973 	ASSERT(mutex_owned(SD_MUTEX(un)));
22974 
22975 	/* Sanity-check the vtoc */
22976 	if (user_vtoc->v_sanity != VTOC_SANE ||
22977 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22978 	    user_vtoc->v_nparts != V_NUMPAR) {
22979 		return (EINVAL);
22980 	}
22981 
22982 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22983 	if (nblks == 0) {
22984 		return (EINVAL);
22985 	}
22986 
22987 #if defined(_SUNOS_VTOC_8)
22988 	vpart = user_vtoc->v_part;
22989 	for (i = 0; i < V_NUMPAR; i++) {
22990 		if ((vpart->p_start % nblks) != 0) {
22991 			return (EINVAL);
22992 		}
22993 		ncyl = vpart->p_start / nblks;
22994 		ncyl += vpart->p_size / nblks;
22995 		if ((vpart->p_size % nblks) != 0) {
22996 			ncyl++;
22997 		}
22998 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22999 			return (EINVAL);
23000 		}
23001 		vpart++;
23002 	}
23003 #endif	/* defined(_SUNOS_VTOC_8) */
23004 
23005 	/* Put appropriate vtoc structure fields into the disk label */
23006 #if defined(_SUNOS_VTOC_16)
23007 	/*
23008 	 * The vtoc is always a 32bit data structure to maintain the
23009 	 * on-disk format. Convert "in place" instead of bcopying it.
23010 	 */
23011 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23012 
23013 	/*
23014 	 * in the 16-slice vtoc, starting sectors are expressed in
23015 	 * numbers *relative* to the start of the Solaris fdisk partition.
23016 	 */
23017 	lmap = un->un_map;
23018 	vpart = user_vtoc->v_part;
23019 
23020 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23021 		lmap->dkl_cylno = vpart->p_start / nblks;
23022 		lmap->dkl_nblk = vpart->p_size;
23023 	}
23024 
23025 #elif defined(_SUNOS_VTOC_8)
23026 
23027 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23028 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23029 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23030 
23031 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23032 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23033 
23034 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23035 
23036 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23037 
23038 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23039 	    sizeof (un->un_vtoc.v_reserved));
23040 
23041 	/*
23042 	 * Note the conversion from starting sector number
23043 	 * to starting cylinder number.
23044 	 * Return error if division results in a remainder.
23045 	 */
23046 	lmap = un->un_map;
23047 	lpart = un->un_vtoc.v_part;
23048 	vpart = user_vtoc->v_part;
23049 
23050 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23051 		lpart->p_tag  = vpart->p_tag;
23052 		lpart->p_flag = vpart->p_flag;
23053 		lmap->dkl_cylno = vpart->p_start / nblks;
23054 		lmap->dkl_nblk = vpart->p_size;
23055 
23056 		lmap++;
23057 		lpart++;
23058 		vpart++;
23059 
23060 		/* (4387723) */
23061 #ifdef _LP64
23062 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23063 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23064 		} else {
23065 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23066 		}
23067 #else
23068 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23069 #endif
23070 	}
23071 
23072 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23073 #else
23074 #error "No VTOC format defined."
23075 #endif
23076 	return (0);
23077 }
23078 
23079 /*
23080  *    Function: sd_clear_efi
23081  *
23082  * Description: This routine clears all EFI labels.
23083  *
23084  *   Arguments: un - driver soft state (unit) structure
23085  *
23086  * Return Code: void
23087  */
23088 
23089 static void
23090 sd_clear_efi(struct sd_lun *un)
23091 {
23092 	efi_gpt_t	*gpt;
23093 	uint_t		lbasize;
23094 	uint64_t	cap;
23095 	int rval;
23096 
23097 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23098 
23099 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23100 
23101 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23102 		goto done;
23103 	}
23104 
23105 	sd_swap_efi_gpt(gpt);
23106 	rval = sd_validate_efi(gpt);
23107 	if (rval == 0) {
23108 		/* clear primary */
23109 		bzero(gpt, sizeof (efi_gpt_t));
23110 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23111 			SD_PATH_DIRECT))) {
23112 			SD_INFO(SD_LOG_IO_PARTITION, un,
23113 				"sd_clear_efi: clear primary label failed\n");
23114 		}
23115 	}
23116 	/* the backup */
23117 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23118 	    SD_PATH_DIRECT);
23119 	if (rval) {
23120 		goto done;
23121 	}
23122 	/*
23123 	 * The MMC standard allows READ CAPACITY to be
23124 	 * inaccurate by a bounded amount (in the interest of
23125 	 * response latency).  As a result, failed READs are
23126 	 * commonplace (due to the reading of metadata and not
23127 	 * data). Depending on the per-Vendor/drive Sense data,
23128 	 * the failed READ can cause many (unnecessary) retries.
23129 	 */
23130 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23131 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23132 		SD_PATH_DIRECT)) != 0) {
23133 		goto done;
23134 	}
23135 	sd_swap_efi_gpt(gpt);
23136 	rval = sd_validate_efi(gpt);
23137 	if (rval == 0) {
23138 		/* clear backup */
23139 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23140 			cap-1);
23141 		bzero(gpt, sizeof (efi_gpt_t));
23142 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23143 		    cap-1, SD_PATH_DIRECT))) {
23144 			SD_INFO(SD_LOG_IO_PARTITION, un,
23145 				"sd_clear_efi: clear backup label failed\n");
23146 		}
23147 	}
23148 
23149 done:
23150 	kmem_free(gpt, sizeof (efi_gpt_t));
23151 }
23152 
23153 /*
23154  *    Function: sd_set_vtoc
23155  *
23156  * Description: This routine writes data to the appropriate positions
23157  *
23158  *   Arguments: un - driver soft state (unit) structure
23159  *              dkl  - the data to be written
23160  *
23161  * Return: void
23162  */
23163 
23164 static int
23165 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23166 {
23167 	void			*shadow_buf;
23168 	uint_t			label_addr;
23169 	int			sec;
23170 	int			blk;
23171 	int			head;
23172 	int			cyl;
23173 	int			rval;
23174 
23175 #if defined(__i386) || defined(__amd64)
23176 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23177 #else
23178 	/* Write the primary label at block 0 of the solaris partition. */
23179 	label_addr = 0;
23180 #endif
23181 
23182 	if (NOT_DEVBSIZE(un)) {
23183 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23184 		/*
23185 		 * Read the target's first block.
23186 		 */
23187 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23188 		    un->un_tgt_blocksize, label_addr,
23189 		    SD_PATH_STANDARD)) != 0) {
23190 			goto exit;
23191 		}
23192 		/*
23193 		 * Copy the contents of the label into the shadow buffer
23194 		 * which is of the size of target block size.
23195 		 */
23196 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23197 	}
23198 
23199 	/* Write the primary label */
23200 	if (NOT_DEVBSIZE(un)) {
23201 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23202 		    label_addr, SD_PATH_STANDARD);
23203 	} else {
23204 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23205 		    label_addr, SD_PATH_STANDARD);
23206 	}
23207 	if (rval != 0) {
23208 		return (rval);
23209 	}
23210 
23211 	/*
23212 	 * Calculate where the backup labels go.  They are always on
23213 	 * the last alternate cylinder, but some older drives put them
23214 	 * on head 2 instead of the last head.	They are always on the
23215 	 * first 5 odd sectors of the appropriate track.
23216 	 *
23217 	 * We have no choice at this point, but to believe that the
23218 	 * disk label is valid.	 Use the geometry of the disk
23219 	 * as described in the label.
23220 	 */
23221 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23222 	head = dkl->dkl_nhead - 1;
23223 
23224 	/*
23225 	 * Write and verify the backup labels. Make sure we don't try to
23226 	 * write past the last cylinder.
23227 	 */
23228 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23229 		blk = (daddr_t)(
23230 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23231 		    (head * dkl->dkl_nsect) + sec);
23232 #if defined(__i386) || defined(__amd64)
23233 		blk += un->un_solaris_offset;
23234 #endif
23235 		if (NOT_DEVBSIZE(un)) {
23236 			uint64_t	tblk;
23237 			/*
23238 			 * Need to read the block first for read modify write.
23239 			 */
23240 			tblk = (uint64_t)blk;
23241 			blk = (int)((tblk * un->un_sys_blocksize) /
23242 			    un->un_tgt_blocksize);
23243 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23244 			    un->un_tgt_blocksize, blk,
23245 			    SD_PATH_STANDARD)) != 0) {
23246 				goto exit;
23247 			}
23248 			/*
23249 			 * Modify the shadow buffer with the label.
23250 			 */
23251 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23252 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23253 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23254 		} else {
23255 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23256 			    blk, SD_PATH_STANDARD);
23257 			SD_INFO(SD_LOG_IO_PARTITION, un,
23258 			"sd_set_vtoc: wrote backup label %d\n", blk);
23259 		}
23260 		if (rval != 0) {
23261 			goto exit;
23262 		}
23263 	}
23264 exit:
23265 	if (NOT_DEVBSIZE(un)) {
23266 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23267 	}
23268 	return (rval);
23269 }
23270 
23271 /*
23272  *    Function: sd_clear_vtoc
23273  *
23274  * Description: This routine clears out the VTOC labels.
23275  *
23276  *   Arguments: un - driver soft state (unit) structure
23277  *
23278  * Return: void
23279  */
23280 
23281 static void
23282 sd_clear_vtoc(struct sd_lun *un)
23283 {
23284 	struct dk_label		*dkl;
23285 
23286 	mutex_exit(SD_MUTEX(un));
23287 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23288 	mutex_enter(SD_MUTEX(un));
23289 	/*
23290 	 * sd_set_vtoc uses these fields in order to figure out
23291 	 * where to overwrite the backup labels
23292 	 */
23293 	dkl->dkl_apc    = un->un_g.dkg_apc;
23294 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23295 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23296 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23297 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23298 	mutex_exit(SD_MUTEX(un));
23299 	(void) sd_set_vtoc(un, dkl);
23300 	kmem_free(dkl, sizeof (struct dk_label));
23301 
23302 	mutex_enter(SD_MUTEX(un));
23303 }
23304 
23305 /*
23306  *    Function: sd_write_label
23307  *
23308  * Description: This routine will validate and write the driver soft state vtoc
23309  *		contents to the device.
23310  *
23311  *   Arguments: dev - the device number
23312  *
23313  * Return Code: the code returned by sd_send_scsi_cmd()
23314  *		0
23315  *		EINVAL
23316  *		ENXIO
23317  *		ENOMEM
23318  */
23319 
23320 static int
23321 sd_write_label(dev_t dev)
23322 {
23323 	struct sd_lun		*un;
23324 	struct dk_label		*dkl;
23325 	short			sum;
23326 	short			*sp;
23327 	int			i;
23328 	int			rval;
23329 
23330 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23331 	    (un->un_state == SD_STATE_OFFLINE)) {
23332 		return (ENXIO);
23333 	}
23334 	ASSERT(mutex_owned(SD_MUTEX(un)));
23335 	mutex_exit(SD_MUTEX(un));
23336 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23337 	mutex_enter(SD_MUTEX(un));
23338 
23339 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23340 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23341 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23342 	dkl->dkl_apc	= un->un_g.dkg_apc;
23343 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23344 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23345 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23346 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23347 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23348 
23349 #if defined(_SUNOS_VTOC_8)
23350 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23351 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23352 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23353 	for (i = 0; i < NDKMAP; i++) {
23354 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23355 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23356 	}
23357 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23358 #elif defined(_SUNOS_VTOC_16)
23359 	dkl->dkl_skew	= un->un_dkg_skew;
23360 #else
23361 #error "No VTOC format defined."
23362 #endif
23363 
23364 	dkl->dkl_magic			= DKL_MAGIC;
23365 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23366 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23367 
23368 	/* Construct checksum for the new disk label */
23369 	sum = 0;
23370 	sp = (short *)dkl;
23371 	i = sizeof (struct dk_label) / sizeof (short);
23372 	while (i--) {
23373 		sum ^= *sp++;
23374 	}
23375 	dkl->dkl_cksum = sum;
23376 
23377 	mutex_exit(SD_MUTEX(un));
23378 
23379 	rval = sd_set_vtoc(un, dkl);
23380 exit:
23381 	kmem_free(dkl, sizeof (struct dk_label));
23382 	mutex_enter(SD_MUTEX(un));
23383 	return (rval);
23384 }
23385 
23386 static int
23387 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23388 {
23389 	struct sd_lun	*un = NULL;
23390 	dk_efi_t	user_efi;
23391 	int		rval = 0;
23392 	void		*buffer;
23393 
23394 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23395 		return (ENXIO);
23396 
23397 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23398 		return (EFAULT);
23399 
23400 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23401 
23402 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23403 	    (user_efi.dki_length > un->un_max_xfer_size))
23404 		return (EINVAL);
23405 
23406 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23407 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23408 		rval = EFAULT;
23409 	} else {
23410 		/*
23411 		 * let's clear the vtoc labels and clear the softstate
23412 		 * vtoc.
23413 		 */
23414 		mutex_enter(SD_MUTEX(un));
23415 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23416 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23417 				"sd_dkio_set_efi: CLEAR VTOC\n");
23418 			sd_clear_vtoc(un);
23419 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23420 			mutex_exit(SD_MUTEX(un));
23421 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23422 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23423 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23424 			    S_IFBLK,
23425 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23426 			    un->un_node_type, NULL);
23427 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23428 			    S_IFCHR,
23429 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23430 			    un->un_node_type, NULL);
23431 		} else
23432 			mutex_exit(SD_MUTEX(un));
23433 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23434 		    user_efi.dki_lba, SD_PATH_DIRECT);
23435 		if (rval == 0) {
23436 			mutex_enter(SD_MUTEX(un));
23437 			un->un_f_geometry_is_valid = FALSE;
23438 			mutex_exit(SD_MUTEX(un));
23439 		}
23440 	}
23441 	kmem_free(buffer, user_efi.dki_length);
23442 	return (rval);
23443 }
23444 
23445 /*
23446  *    Function: sd_dkio_get_mboot
23447  *
23448  * Description: This routine is the driver entry point for handling user
23449  *		requests to get the current device mboot (DKIOCGMBOOT)
23450  *
23451  *   Arguments: dev  - the device number
23452  *		arg  - pointer to user provided mboot structure specifying
23453  *			the current mboot.
23454  *		flag - this argument is a pass through to ddi_copyxxx()
23455  *		       directly from the mode argument of ioctl().
23456  *
23457  * Return Code: 0
23458  *		EINVAL
23459  *		EFAULT
23460  *		ENXIO
23461  */
23462 
23463 static int
23464 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23465 {
23466 	struct sd_lun	*un;
23467 	struct mboot	*mboot;
23468 	int		rval;
23469 	size_t		buffer_size;
23470 
23471 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23472 	    (un->un_state == SD_STATE_OFFLINE)) {
23473 		return (ENXIO);
23474 	}
23475 
23476 	if (!un->un_f_mboot_supported || arg == NULL) {
23477 		return (EINVAL);
23478 	}
23479 
23480 	/*
23481 	 * Read the mboot block, located at absolute block 0 on the target.
23482 	 */
23483 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23484 
23485 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23486 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23487 
23488 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23489 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23490 	    SD_PATH_STANDARD)) == 0) {
23491 		if (ddi_copyout(mboot, (void *)arg,
23492 		    sizeof (struct mboot), flag) != 0) {
23493 			rval = EFAULT;
23494 		}
23495 	}
23496 	kmem_free(mboot, buffer_size);
23497 	return (rval);
23498 }
23499 
23500 
23501 /*
23502  *    Function: sd_dkio_set_mboot
23503  *
23504  * Description: This routine is the driver entry point for handling user
23505  *		requests to validate and set the device master boot
23506  *		(DKIOCSMBOOT).
23507  *
23508  *   Arguments: dev  - the device number
23509  *		arg  - pointer to user provided mboot structure used to set the
23510  *			master boot.
23511  *		flag - this argument is a pass through to ddi_copyxxx()
23512  *		       directly from the mode argument of ioctl().
23513  *
23514  * Return Code: 0
23515  *		EINVAL
23516  *		EFAULT
23517  *		ENXIO
23518  */
23519 
23520 static int
23521 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23522 {
23523 	struct sd_lun	*un = NULL;
23524 	struct mboot	*mboot = NULL;
23525 	int		rval;
23526 	ushort_t	magic;
23527 
23528 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23529 		return (ENXIO);
23530 	}
23531 
23532 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23533 
23534 	if (!un->un_f_mboot_supported) {
23535 		return (EINVAL);
23536 	}
23537 
23538 	if (arg == NULL) {
23539 		return (EINVAL);
23540 	}
23541 
23542 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23543 
23544 	if (ddi_copyin((const void *)arg, mboot,
23545 	    sizeof (struct mboot), flag) != 0) {
23546 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23547 		return (EFAULT);
23548 	}
23549 
23550 	/* Is this really a master boot record? */
23551 	magic = LE_16(mboot->signature);
23552 	if (magic != MBB_MAGIC) {
23553 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23554 		return (EINVAL);
23555 	}
23556 
23557 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23558 	    SD_PATH_STANDARD);
23559 
23560 	mutex_enter(SD_MUTEX(un));
23561 #if defined(__i386) || defined(__amd64)
23562 	if (rval == 0) {
23563 		/*
23564 		 * mboot has been written successfully.
23565 		 * update the fdisk and vtoc tables in memory
23566 		 */
23567 		rval = sd_update_fdisk_and_vtoc(un);
23568 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23569 			mutex_exit(SD_MUTEX(un));
23570 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23571 			return (rval);
23572 		}
23573 	}
23574 
23575 	/*
23576 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23577 	 * Also preserve the device id by writing to the disk acyl for the case
23578 	 * where a devid has been fabricated.
23579 	 */
23580 	if (un->un_f_devid_supported && un->un_f_opt_fab_devid) {
23581 		if (un->un_devid == NULL) {
23582 			sd_register_devid(un, SD_DEVINFO(un),
23583 			    SD_TARGET_IS_UNRESERVED);
23584 		} else {
23585 			/*
23586 			 * The device id for this disk has been
23587 			 * fabricated. Fabricated device id's are
23588 			 * managed by storing them in the last 2
23589 			 * available sectors on the drive. The device
23590 			 * id must be preserved by writing it back out
23591 			 * to this location.
23592 			 */
23593 			if (sd_write_deviceid(un) != 0) {
23594 				ddi_devid_free(un->un_devid);
23595 				un->un_devid = NULL;
23596 			}
23597 		}
23598 	}
23599 
23600 #ifdef __lock_lint
23601 	sd_setup_default_geometry(un);
23602 #endif
23603 
23604 #else
23605 	if (rval == 0) {
23606 		/*
23607 		 * mboot has been written successfully.
23608 		 * set up the default geometry and VTOC
23609 		 */
23610 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23611 			sd_setup_default_geometry(un);
23612 	}
23613 #endif
23614 	mutex_exit(SD_MUTEX(un));
23615 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23616 	return (rval);
23617 }
23618 
23619 
23620 /*
23621  *    Function: sd_setup_default_geometry
23622  *
23623  * Description: This local utility routine sets the default geometry as part of
23624  *		setting the device mboot.
23625  *
23626  *   Arguments: un - driver soft state (unit) structure
23627  *
23628  * Note: This may be redundant with sd_build_default_label.
23629  */
23630 
23631 static void
23632 sd_setup_default_geometry(struct sd_lun *un)
23633 {
23634 	/* zero out the soft state geometry and partition table. */
23635 	bzero(&un->un_g, sizeof (struct dk_geom));
23636 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23637 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23638 	un->un_asciilabel[0] = '\0';
23639 
23640 	/*
23641 	 * For the rpm, we use the minimum for the disk.
23642 	 * For the head, cyl and number of sector per track,
23643 	 * if the capacity <= 1GB, head = 64, sect = 32.
23644 	 * else head = 255, sect 63
23645 	 * Note: the capacity should be equal to C*H*S values.
23646 	 * This will cause some truncation of size due to
23647 	 * round off errors. For CD-ROMs, this truncation can
23648 	 * have adverse side effects, so returning ncyl and
23649 	 * nhead as 1. The nsect will overflow for most of
23650 	 * CD-ROMs as nsect is of type ushort.
23651 	 */
23652 	if (ISCD(un)) {
23653 		un->un_g.dkg_ncyl = 1;
23654 		un->un_g.dkg_nhead = 1;
23655 		un->un_g.dkg_nsect = un->un_blockcount;
23656 	} else {
23657 		if (un->un_blockcount <= 0x1000) {
23658 			/* Needed for unlabeled SCSI floppies. */
23659 			un->un_g.dkg_nhead = 2;
23660 			un->un_g.dkg_ncyl = 80;
23661 			un->un_g.dkg_pcyl = 80;
23662 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23663 		} else if (un->un_blockcount <= 0x200000) {
23664 			un->un_g.dkg_nhead = 64;
23665 			un->un_g.dkg_nsect = 32;
23666 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23667 		} else {
23668 			un->un_g.dkg_nhead = 255;
23669 			un->un_g.dkg_nsect = 63;
23670 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23671 		}
23672 		un->un_blockcount = un->un_g.dkg_ncyl *
23673 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23674 	}
23675 	un->un_g.dkg_acyl = 0;
23676 	un->un_g.dkg_bcyl = 0;
23677 	un->un_g.dkg_intrlv = 1;
23678 	un->un_g.dkg_rpm = 200;
23679 	un->un_g.dkg_read_reinstruct = 0;
23680 	un->un_g.dkg_write_reinstruct = 0;
23681 	if (un->un_g.dkg_pcyl == 0) {
23682 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23683 	}
23684 
23685 	un->un_map['a'-'a'].dkl_cylno = 0;
23686 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23687 	un->un_map['c'-'a'].dkl_cylno = 0;
23688 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23689 	un->un_f_geometry_is_valid = FALSE;
23690 }
23691 
23692 
23693 #if defined(__i386) || defined(__amd64)
23694 /*
23695  *    Function: sd_update_fdisk_and_vtoc
23696  *
23697  * Description: This local utility routine updates the device fdisk and vtoc
23698  *		as part of setting the device mboot.
23699  *
23700  *   Arguments: un - driver soft state (unit) structure
23701  *
23702  * Return Code: 0 for success or errno-type return code.
23703  *
23704  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23705  *		these did exist seperately in x86 sd.c!!!
23706  */
23707 
23708 static int
23709 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23710 {
23711 	static char	labelstring[128];
23712 	static char	buf[256];
23713 	char		*label = 0;
23714 	int		count;
23715 	int		label_rc = 0;
23716 	int		gvalid = un->un_f_geometry_is_valid;
23717 	int		fdisk_rval;
23718 	int		lbasize;
23719 	int		capacity;
23720 
23721 	ASSERT(mutex_owned(SD_MUTEX(un)));
23722 
23723 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23724 		return (EINVAL);
23725 	}
23726 
23727 	if (un->un_f_blockcount_is_valid == FALSE) {
23728 		return (EINVAL);
23729 	}
23730 
23731 #if defined(_SUNOS_VTOC_16)
23732 	/*
23733 	 * Set up the "whole disk" fdisk partition; this should always
23734 	 * exist, regardless of whether the disk contains an fdisk table
23735 	 * or vtoc.
23736 	 */
23737 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23738 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23739 #endif	/* defined(_SUNOS_VTOC_16) */
23740 
23741 	/*
23742 	 * copy the lbasize and capacity so that if they're
23743 	 * reset while we're not holding the SD_MUTEX(un), we will
23744 	 * continue to use valid values after the SD_MUTEX(un) is
23745 	 * reacquired.
23746 	 */
23747 	lbasize  = un->un_tgt_blocksize;
23748 	capacity = un->un_blockcount;
23749 
23750 	/*
23751 	 * refresh the logical and physical geometry caches.
23752 	 * (data from mode sense format/rigid disk geometry pages,
23753 	 * and scsi_ifgetcap("geometry").
23754 	 */
23755 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23756 
23757 	/*
23758 	 * Only DIRECT ACCESS devices will have Sun labels.
23759 	 * CD's supposedly have a Sun label, too
23760 	 */
23761 	if (un->un_f_vtoc_label_supported) {
23762 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23763 		    SD_PATH_DIRECT);
23764 		if (fdisk_rval == SD_CMD_FAILURE) {
23765 			ASSERT(mutex_owned(SD_MUTEX(un)));
23766 			return (EIO);
23767 		}
23768 
23769 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23770 			ASSERT(mutex_owned(SD_MUTEX(un)));
23771 			return (EACCES);
23772 		}
23773 
23774 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23775 			/*
23776 			 * Found fdisk table but no Solaris partition entry,
23777 			 * so don't call sd_uselabel() and don't create
23778 			 * a default label.
23779 			 */
23780 			label_rc = 0;
23781 			un->un_f_geometry_is_valid = TRUE;
23782 			goto no_solaris_partition;
23783 		}
23784 
23785 #if defined(_SUNOS_VTOC_8)
23786 		label = (char *)un->un_asciilabel;
23787 #elif defined(_SUNOS_VTOC_16)
23788 		label = (char *)un->un_vtoc.v_asciilabel;
23789 #else
23790 #error "No VTOC format defined."
23791 #endif
23792 	} else if (capacity < 0) {
23793 		ASSERT(mutex_owned(SD_MUTEX(un)));
23794 		return (EINVAL);
23795 	}
23796 
23797 	/*
23798 	 * For Removable media We reach here if we have found a
23799 	 * SOLARIS PARTITION.
23800 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23801 	 * PARTITION has changed from the previous one, hence we will setup a
23802 	 * default VTOC in this case.
23803 	 */
23804 	if (un->un_f_geometry_is_valid == FALSE) {
23805 		sd_build_default_label(un);
23806 		label_rc = 0;
23807 	}
23808 
23809 no_solaris_partition:
23810 	if ((!un->un_f_has_removable_media ||
23811 	    (un->un_f_has_removable_media &&
23812 	    un->un_mediastate == DKIO_EJECTED)) &&
23813 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
23814 		/*
23815 		 * Print out a message indicating who and what we are.
23816 		 * We do this only when we happen to really validate the
23817 		 * geometry. We may call sd_validate_geometry() at other
23818 		 * times, ioctl()'s like Get VTOC in which case we
23819 		 * don't want to print the label.
23820 		 * If the geometry is valid, print the label string,
23821 		 * else print vendor and product info, if available
23822 		 */
23823 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23824 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23825 		} else {
23826 			mutex_enter(&sd_label_mutex);
23827 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23828 			    labelstring);
23829 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23830 			    &labelstring[64]);
23831 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23832 			    labelstring, &labelstring[64]);
23833 			if (un->un_f_blockcount_is_valid == TRUE) {
23834 				(void) sprintf(&buf[strlen(buf)],
23835 				    ", %" PRIu64 " %u byte blocks\n",
23836 				    un->un_blockcount,
23837 				    un->un_tgt_blocksize);
23838 			} else {
23839 				(void) sprintf(&buf[strlen(buf)],
23840 				    ", (unknown capacity)\n");
23841 			}
23842 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23843 			mutex_exit(&sd_label_mutex);
23844 		}
23845 	}
23846 
23847 #if defined(_SUNOS_VTOC_16)
23848 	/*
23849 	 * If we have valid geometry, set up the remaining fdisk partitions.
23850 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23851 	 * we set it to an entirely bogus value.
23852 	 */
23853 	for (count = 0; count < FD_NUMPART; count++) {
23854 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23855 		un->un_map[FDISK_P1 + count].dkl_nblk =
23856 		    un->un_fmap[count].fmap_nblk;
23857 		un->un_offset[FDISK_P1 + count] =
23858 		    un->un_fmap[count].fmap_start;
23859 	}
23860 #endif
23861 
23862 	for (count = 0; count < NDKMAP; count++) {
23863 #if defined(_SUNOS_VTOC_8)
23864 		struct dk_map *lp  = &un->un_map[count];
23865 		un->un_offset[count] =
23866 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23867 #elif defined(_SUNOS_VTOC_16)
23868 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23869 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23870 #else
23871 #error "No VTOC format defined."
23872 #endif
23873 	}
23874 
23875 	ASSERT(mutex_owned(SD_MUTEX(un)));
23876 	return (label_rc);
23877 }
23878 #endif
23879 
23880 
23881 /*
23882  *    Function: sd_check_media
23883  *
23884  * Description: This utility routine implements the functionality for the
23885  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23886  *		driver state changes from that specified by the user
23887  *		(inserted or ejected). For example, if the user specifies
23888  *		DKIO_EJECTED and the current media state is inserted this
23889  *		routine will immediately return DKIO_INSERTED. However, if the
23890  *		current media state is not inserted the user thread will be
23891  *		blocked until the drive state changes. If DKIO_NONE is specified
23892  *		the user thread will block until a drive state change occurs.
23893  *
23894  *   Arguments: dev  - the device number
23895  *		state  - user pointer to a dkio_state, updated with the current
23896  *			drive state at return.
23897  *
23898  * Return Code: ENXIO
23899  *		EIO
23900  *		EAGAIN
23901  *		EINTR
23902  */
23903 
23904 static int
23905 sd_check_media(dev_t dev, enum dkio_state state)
23906 {
23907 	struct sd_lun		*un = NULL;
23908 	enum dkio_state		prev_state;
23909 	opaque_t		token = NULL;
23910 	int			rval = 0;
23911 
23912 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23913 		return (ENXIO);
23914 	}
23915 
23916 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23917 
23918 	mutex_enter(SD_MUTEX(un));
23919 
23920 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23921 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23922 
23923 	prev_state = un->un_mediastate;
23924 
23925 	/* is there anything to do? */
23926 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23927 		/*
23928 		 * submit the request to the scsi_watch service;
23929 		 * scsi_media_watch_cb() does the real work
23930 		 */
23931 		mutex_exit(SD_MUTEX(un));
23932 
23933 		/*
23934 		 * This change handles the case where a scsi watch request is
23935 		 * added to a device that is powered down. To accomplish this
23936 		 * we power up the device before adding the scsi watch request,
23937 		 * since the scsi watch sends a TUR directly to the device
23938 		 * which the device cannot handle if it is powered down.
23939 		 */
23940 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23941 			mutex_enter(SD_MUTEX(un));
23942 			goto done;
23943 		}
23944 
23945 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23946 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23947 		    (caddr_t)dev);
23948 
23949 		sd_pm_exit(un);
23950 
23951 		mutex_enter(SD_MUTEX(un));
23952 		if (token == NULL) {
23953 			rval = EAGAIN;
23954 			goto done;
23955 		}
23956 
23957 		/*
23958 		 * This is a special case IOCTL that doesn't return
23959 		 * until the media state changes. Routine sdpower
23960 		 * knows about and handles this so don't count it
23961 		 * as an active cmd in the driver, which would
23962 		 * keep the device busy to the pm framework.
23963 		 * If the count isn't decremented the device can't
23964 		 * be powered down.
23965 		 */
23966 		un->un_ncmds_in_driver--;
23967 		ASSERT(un->un_ncmds_in_driver >= 0);
23968 
23969 		/*
23970 		 * if a prior request had been made, this will be the same
23971 		 * token, as scsi_watch was designed that way.
23972 		 */
23973 		un->un_swr_token = token;
23974 		un->un_specified_mediastate = state;
23975 
23976 		/*
23977 		 * now wait for media change
23978 		 * we will not be signalled unless mediastate == state but it is
23979 		 * still better to test for this condition, since there is a
23980 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23981 		 */
23982 		SD_TRACE(SD_LOG_COMMON, un,
23983 		    "sd_check_media: waiting for media state change\n");
23984 		while (un->un_mediastate == state) {
23985 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23986 				SD_TRACE(SD_LOG_COMMON, un,
23987 				    "sd_check_media: waiting for media state "
23988 				    "was interrupted\n");
23989 				un->un_ncmds_in_driver++;
23990 				rval = EINTR;
23991 				goto done;
23992 			}
23993 			SD_TRACE(SD_LOG_COMMON, un,
23994 			    "sd_check_media: received signal, state=%x\n",
23995 			    un->un_mediastate);
23996 		}
23997 		/*
23998 		 * Inc the counter to indicate the device once again
23999 		 * has an active outstanding cmd.
24000 		 */
24001 		un->un_ncmds_in_driver++;
24002 	}
24003 
24004 	/* invalidate geometry */
24005 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24006 		sr_ejected(un);
24007 	}
24008 
24009 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24010 		uint64_t	capacity;
24011 		uint_t		lbasize;
24012 
24013 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24014 		mutex_exit(SD_MUTEX(un));
24015 		/*
24016 		 * Since the following routines use SD_PATH_DIRECT, we must
24017 		 * call PM directly before the upcoming disk accesses. This
24018 		 * may cause the disk to be power/spin up.
24019 		 */
24020 
24021 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24022 			rval = sd_send_scsi_READ_CAPACITY(un,
24023 			    &capacity,
24024 			    &lbasize, SD_PATH_DIRECT);
24025 			if (rval != 0) {
24026 				sd_pm_exit(un);
24027 				mutex_enter(SD_MUTEX(un));
24028 				goto done;
24029 			}
24030 		} else {
24031 			rval = EIO;
24032 			mutex_enter(SD_MUTEX(un));
24033 			goto done;
24034 		}
24035 		mutex_enter(SD_MUTEX(un));
24036 
24037 		sd_update_block_info(un, lbasize, capacity);
24038 
24039 		un->un_f_geometry_is_valid	= FALSE;
24040 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24041 
24042 		mutex_exit(SD_MUTEX(un));
24043 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24044 		    SD_PATH_DIRECT);
24045 		sd_pm_exit(un);
24046 
24047 		mutex_enter(SD_MUTEX(un));
24048 	}
24049 done:
24050 	un->un_f_watcht_stopped = FALSE;
24051 	if (un->un_swr_token) {
24052 		/*
24053 		 * Use of this local token and the mutex ensures that we avoid
24054 		 * some race conditions associated with terminating the
24055 		 * scsi watch.
24056 		 */
24057 		token = un->un_swr_token;
24058 		un->un_swr_token = (opaque_t)NULL;
24059 		mutex_exit(SD_MUTEX(un));
24060 		(void) scsi_watch_request_terminate(token,
24061 		    SCSI_WATCH_TERMINATE_WAIT);
24062 		mutex_enter(SD_MUTEX(un));
24063 	}
24064 
24065 	/*
24066 	 * Update the capacity kstat value, if no media previously
24067 	 * (capacity kstat is 0) and a media has been inserted
24068 	 * (un_f_blockcount_is_valid == TRUE)
24069 	 */
24070 	if (un->un_errstats) {
24071 		struct sd_errstats	*stp = NULL;
24072 
24073 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24074 		if ((stp->sd_capacity.value.ui64 == 0) &&
24075 		    (un->un_f_blockcount_is_valid == TRUE)) {
24076 			stp->sd_capacity.value.ui64 =
24077 			    (uint64_t)((uint64_t)un->un_blockcount *
24078 			    un->un_sys_blocksize);
24079 		}
24080 	}
24081 	mutex_exit(SD_MUTEX(un));
24082 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24083 	return (rval);
24084 }
24085 
24086 
24087 /*
24088  *    Function: sd_delayed_cv_broadcast
24089  *
24090  * Description: Delayed cv_broadcast to allow for target to recover from media
24091  *		insertion.
24092  *
24093  *   Arguments: arg - driver soft state (unit) structure
24094  */
24095 
24096 static void
24097 sd_delayed_cv_broadcast(void *arg)
24098 {
24099 	struct sd_lun *un = arg;
24100 
24101 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24102 
24103 	mutex_enter(SD_MUTEX(un));
24104 	un->un_dcvb_timeid = NULL;
24105 	cv_broadcast(&un->un_state_cv);
24106 	mutex_exit(SD_MUTEX(un));
24107 }
24108 
24109 
24110 /*
24111  *    Function: sd_media_watch_cb
24112  *
24113  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24114  *		routine processes the TUR sense data and updates the driver
24115  *		state if a transition has occurred. The user thread
24116  *		(sd_check_media) is then signalled.
24117  *
24118  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24119  *			among multiple watches that share this callback function
24120  *		resultp - scsi watch facility result packet containing scsi
24121  *			  packet, status byte and sense data
24122  *
24123  * Return Code: 0 for success, -1 for failure
24124  */
24125 
24126 static int
24127 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24128 {
24129 	struct sd_lun			*un;
24130 	struct scsi_status		*statusp = resultp->statusp;
24131 	struct scsi_extended_sense	*sensep = resultp->sensep;
24132 	enum dkio_state			state = DKIO_NONE;
24133 	dev_t				dev = (dev_t)arg;
24134 	uchar_t				actual_sense_length;
24135 
24136 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24137 		return (-1);
24138 	}
24139 	actual_sense_length = resultp->actual_sense_length;
24140 
24141 	mutex_enter(SD_MUTEX(un));
24142 	SD_TRACE(SD_LOG_COMMON, un,
24143 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24144 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24145 
24146 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24147 		un->un_mediastate = DKIO_DEV_GONE;
24148 		cv_broadcast(&un->un_state_cv);
24149 		mutex_exit(SD_MUTEX(un));
24150 
24151 		return (0);
24152 	}
24153 
24154 	/*
24155 	 * If there was a check condition then sensep points to valid sense data
24156 	 * If status was not a check condition but a reservation or busy status
24157 	 * then the new state is DKIO_NONE
24158 	 */
24159 	if (sensep != NULL) {
24160 		SD_INFO(SD_LOG_COMMON, un,
24161 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24162 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
24163 		/* This routine only uses up to 13 bytes of sense data. */
24164 		if (actual_sense_length >= 13) {
24165 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
24166 				if (sensep->es_add_code == 0x28) {
24167 					state = DKIO_INSERTED;
24168 				}
24169 			} else {
24170 				/*
24171 				 * if 02/04/02  means that the host
24172 				 * should send start command. Explicitly
24173 				 * leave the media state as is
24174 				 * (inserted) as the media is inserted
24175 				 * and host has stopped device for PM
24176 				 * reasons. Upon next true read/write
24177 				 * to this media will bring the
24178 				 * device to the right state good for
24179 				 * media access.
24180 				 */
24181 				if ((sensep->es_key == KEY_NOT_READY) &&
24182 				    (sensep->es_add_code == 0x3a)) {
24183 					state = DKIO_EJECTED;
24184 				}
24185 
24186 				/*
24187 				 * If the drivge is busy with an operation
24188 				 * or long write, keep the media in an
24189 				 * inserted state.
24190 				 */
24191 
24192 				if ((sensep->es_key == KEY_NOT_READY) &&
24193 				    (sensep->es_add_code == 0x04) &&
24194 				    ((sensep->es_qual_code == 0x02) ||
24195 				    (sensep->es_qual_code == 0x07) ||
24196 				    (sensep->es_qual_code == 0x08))) {
24197 					state = DKIO_INSERTED;
24198 				}
24199 			}
24200 		}
24201 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24202 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24203 		state = DKIO_INSERTED;
24204 	}
24205 
24206 	SD_TRACE(SD_LOG_COMMON, un,
24207 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24208 	    state, un->un_specified_mediastate);
24209 
24210 	/*
24211 	 * now signal the waiting thread if this is *not* the specified state;
24212 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24213 	 * to recover
24214 	 */
24215 	if (state != un->un_specified_mediastate) {
24216 		un->un_mediastate = state;
24217 		if (state == DKIO_INSERTED) {
24218 			/*
24219 			 * delay the signal to give the drive a chance
24220 			 * to do what it apparently needs to do
24221 			 */
24222 			SD_TRACE(SD_LOG_COMMON, un,
24223 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24224 			if (un->un_dcvb_timeid == NULL) {
24225 				un->un_dcvb_timeid =
24226 				    timeout(sd_delayed_cv_broadcast, un,
24227 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24228 			}
24229 		} else {
24230 			SD_TRACE(SD_LOG_COMMON, un,
24231 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24232 			cv_broadcast(&un->un_state_cv);
24233 		}
24234 	}
24235 	mutex_exit(SD_MUTEX(un));
24236 	return (0);
24237 }
24238 
24239 
24240 /*
24241  *    Function: sd_dkio_get_temp
24242  *
24243  * Description: This routine is the driver entry point for handling ioctl
24244  *		requests to get the disk temperature.
24245  *
24246  *   Arguments: dev  - the device number
24247  *		arg  - pointer to user provided dk_temperature structure.
24248  *		flag - this argument is a pass through to ddi_copyxxx()
24249  *		       directly from the mode argument of ioctl().
24250  *
24251  * Return Code: 0
24252  *		EFAULT
24253  *		ENXIO
24254  *		EAGAIN
24255  */
24256 
24257 static int
24258 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24259 {
24260 	struct sd_lun		*un = NULL;
24261 	struct dk_temperature	*dktemp = NULL;
24262 	uchar_t			*temperature_page;
24263 	int			rval = 0;
24264 	int			path_flag = SD_PATH_STANDARD;
24265 
24266 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24267 		return (ENXIO);
24268 	}
24269 
24270 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24271 
24272 	/* copyin the disk temp argument to get the user flags */
24273 	if (ddi_copyin((void *)arg, dktemp,
24274 	    sizeof (struct dk_temperature), flag) != 0) {
24275 		rval = EFAULT;
24276 		goto done;
24277 	}
24278 
24279 	/* Initialize the temperature to invalid. */
24280 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24281 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24282 
24283 	/*
24284 	 * Note: Investigate removing the "bypass pm" semantic.
24285 	 * Can we just bypass PM always?
24286 	 */
24287 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24288 		path_flag = SD_PATH_DIRECT;
24289 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24290 		mutex_enter(&un->un_pm_mutex);
24291 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24292 			/*
24293 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24294 			 * in low power mode, we can not wake it up, Need to
24295 			 * return EAGAIN.
24296 			 */
24297 			mutex_exit(&un->un_pm_mutex);
24298 			rval = EAGAIN;
24299 			goto done;
24300 		} else {
24301 			/*
24302 			 * Indicate to PM the device is busy. This is required
24303 			 * to avoid a race - i.e. the ioctl is issuing a
24304 			 * command and the pm framework brings down the device
24305 			 * to low power mode (possible power cut-off on some
24306 			 * platforms).
24307 			 */
24308 			mutex_exit(&un->un_pm_mutex);
24309 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24310 				rval = EAGAIN;
24311 				goto done;
24312 			}
24313 		}
24314 	}
24315 
24316 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24317 
24318 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24319 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24320 		goto done2;
24321 	}
24322 
24323 	/*
24324 	 * For the current temperature verify that the parameter length is 0x02
24325 	 * and the parameter code is 0x00
24326 	 */
24327 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24328 	    (temperature_page[5] == 0x00)) {
24329 		if (temperature_page[9] == 0xFF) {
24330 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24331 		} else {
24332 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24333 		}
24334 	}
24335 
24336 	/*
24337 	 * For the reference temperature verify that the parameter
24338 	 * length is 0x02 and the parameter code is 0x01
24339 	 */
24340 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24341 	    (temperature_page[11] == 0x01)) {
24342 		if (temperature_page[15] == 0xFF) {
24343 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24344 		} else {
24345 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24346 		}
24347 	}
24348 
24349 	/* Do the copyout regardless of the temperature commands status. */
24350 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24351 	    flag) != 0) {
24352 		rval = EFAULT;
24353 	}
24354 
24355 done2:
24356 	if (path_flag == SD_PATH_DIRECT) {
24357 		sd_pm_exit(un);
24358 	}
24359 
24360 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24361 done:
24362 	if (dktemp != NULL) {
24363 		kmem_free(dktemp, sizeof (struct dk_temperature));
24364 	}
24365 
24366 	return (rval);
24367 }
24368 
24369 
24370 /*
24371  *    Function: sd_log_page_supported
24372  *
24373  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24374  *		supported log pages.
24375  *
24376  *   Arguments: un -
24377  *		log_page -
24378  *
24379  * Return Code: -1 - on error (log sense is optional and may not be supported).
24380  *		0  - log page not found.
24381  *  		1  - log page found.
24382  */
24383 
24384 static int
24385 sd_log_page_supported(struct sd_lun *un, int log_page)
24386 {
24387 	uchar_t *log_page_data;
24388 	int	i;
24389 	int	match = 0;
24390 	int	log_size;
24391 
24392 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24393 
24394 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24395 	    SD_PATH_DIRECT) != 0) {
24396 		SD_ERROR(SD_LOG_COMMON, un,
24397 		    "sd_log_page_supported: failed log page retrieval\n");
24398 		kmem_free(log_page_data, 0xFF);
24399 		return (-1);
24400 	}
24401 	log_size = log_page_data[3];
24402 
24403 	/*
24404 	 * The list of supported log pages start from the fourth byte. Check
24405 	 * until we run out of log pages or a match is found.
24406 	 */
24407 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24408 		if (log_page_data[i] == log_page) {
24409 			match++;
24410 		}
24411 	}
24412 	kmem_free(log_page_data, 0xFF);
24413 	return (match);
24414 }
24415 
24416 
24417 /*
24418  *    Function: sd_mhdioc_failfast
24419  *
24420  * Description: This routine is the driver entry point for handling ioctl
24421  *		requests to enable/disable the multihost failfast option.
24422  *		(MHIOCENFAILFAST)
24423  *
24424  *   Arguments: dev	- the device number
24425  *		arg	- user specified probing interval.
24426  *		flag	- this argument is a pass through to ddi_copyxxx()
24427  *			  directly from the mode argument of ioctl().
24428  *
24429  * Return Code: 0
24430  *		EFAULT
24431  *		ENXIO
24432  */
24433 
24434 static int
24435 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24436 {
24437 	struct sd_lun	*un = NULL;
24438 	int		mh_time;
24439 	int		rval = 0;
24440 
24441 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24442 		return (ENXIO);
24443 	}
24444 
24445 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24446 		return (EFAULT);
24447 
24448 	if (mh_time) {
24449 		mutex_enter(SD_MUTEX(un));
24450 		un->un_resvd_status |= SD_FAILFAST;
24451 		mutex_exit(SD_MUTEX(un));
24452 		/*
24453 		 * If mh_time is INT_MAX, then this ioctl is being used for
24454 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24455 		 */
24456 		if (mh_time != INT_MAX) {
24457 			rval = sd_check_mhd(dev, mh_time);
24458 		}
24459 	} else {
24460 		(void) sd_check_mhd(dev, 0);
24461 		mutex_enter(SD_MUTEX(un));
24462 		un->un_resvd_status &= ~SD_FAILFAST;
24463 		mutex_exit(SD_MUTEX(un));
24464 	}
24465 	return (rval);
24466 }
24467 
24468 
24469 /*
24470  *    Function: sd_mhdioc_takeown
24471  *
24472  * Description: This routine is the driver entry point for handling ioctl
24473  *		requests to forcefully acquire exclusive access rights to the
24474  *		multihost disk (MHIOCTKOWN).
24475  *
24476  *   Arguments: dev	- the device number
24477  *		arg	- user provided structure specifying the delay
24478  *			  parameters in milliseconds
24479  *		flag	- this argument is a pass through to ddi_copyxxx()
24480  *			  directly from the mode argument of ioctl().
24481  *
24482  * Return Code: 0
24483  *		EFAULT
24484  *		ENXIO
24485  */
24486 
24487 static int
24488 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24489 {
24490 	struct sd_lun		*un = NULL;
24491 	struct mhioctkown	*tkown = NULL;
24492 	int			rval = 0;
24493 
24494 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24495 		return (ENXIO);
24496 	}
24497 
24498 	if (arg != NULL) {
24499 		tkown = (struct mhioctkown *)
24500 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24501 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24502 		if (rval != 0) {
24503 			rval = EFAULT;
24504 			goto error;
24505 		}
24506 	}
24507 
24508 	rval = sd_take_ownership(dev, tkown);
24509 	mutex_enter(SD_MUTEX(un));
24510 	if (rval == 0) {
24511 		un->un_resvd_status |= SD_RESERVE;
24512 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24513 			sd_reinstate_resv_delay =
24514 			    tkown->reinstate_resv_delay * 1000;
24515 		} else {
24516 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24517 		}
24518 		/*
24519 		 * Give the scsi_watch routine interval set by
24520 		 * the MHIOCENFAILFAST ioctl precedence here.
24521 		 */
24522 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24523 			mutex_exit(SD_MUTEX(un));
24524 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24525 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24526 			    "sd_mhdioc_takeown : %d\n",
24527 			    sd_reinstate_resv_delay);
24528 		} else {
24529 			mutex_exit(SD_MUTEX(un));
24530 		}
24531 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24532 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24533 	} else {
24534 		un->un_resvd_status &= ~SD_RESERVE;
24535 		mutex_exit(SD_MUTEX(un));
24536 	}
24537 
24538 error:
24539 	if (tkown != NULL) {
24540 		kmem_free(tkown, sizeof (struct mhioctkown));
24541 	}
24542 	return (rval);
24543 }
24544 
24545 
24546 /*
24547  *    Function: sd_mhdioc_release
24548  *
24549  * Description: This routine is the driver entry point for handling ioctl
24550  *		requests to release exclusive access rights to the multihost
24551  *		disk (MHIOCRELEASE).
24552  *
24553  *   Arguments: dev	- the device number
24554  *
24555  * Return Code: 0
24556  *		ENXIO
24557  */
24558 
24559 static int
24560 sd_mhdioc_release(dev_t dev)
24561 {
24562 	struct sd_lun		*un = NULL;
24563 	timeout_id_t		resvd_timeid_save;
24564 	int			resvd_status_save;
24565 	int			rval = 0;
24566 
24567 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24568 		return (ENXIO);
24569 	}
24570 
24571 	mutex_enter(SD_MUTEX(un));
24572 	resvd_status_save = un->un_resvd_status;
24573 	un->un_resvd_status &=
24574 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24575 	if (un->un_resvd_timeid) {
24576 		resvd_timeid_save = un->un_resvd_timeid;
24577 		un->un_resvd_timeid = NULL;
24578 		mutex_exit(SD_MUTEX(un));
24579 		(void) untimeout(resvd_timeid_save);
24580 	} else {
24581 		mutex_exit(SD_MUTEX(un));
24582 	}
24583 
24584 	/*
24585 	 * destroy any pending timeout thread that may be attempting to
24586 	 * reinstate reservation on this device.
24587 	 */
24588 	sd_rmv_resv_reclaim_req(dev);
24589 
24590 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24591 		mutex_enter(SD_MUTEX(un));
24592 		if ((un->un_mhd_token) &&
24593 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24594 			mutex_exit(SD_MUTEX(un));
24595 			(void) sd_check_mhd(dev, 0);
24596 		} else {
24597 			mutex_exit(SD_MUTEX(un));
24598 		}
24599 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24600 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24601 	} else {
24602 		/*
24603 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24604 		 */
24605 		mutex_enter(SD_MUTEX(un));
24606 		un->un_resvd_status = resvd_status_save;
24607 		mutex_exit(SD_MUTEX(un));
24608 	}
24609 	return (rval);
24610 }
24611 
24612 
24613 /*
24614  *    Function: sd_mhdioc_register_devid
24615  *
24616  * Description: This routine is the driver entry point for handling ioctl
24617  *		requests to register the device id (MHIOCREREGISTERDEVID).
24618  *
24619  *		Note: The implementation for this ioctl has been updated to
24620  *		be consistent with the original PSARC case (1999/357)
24621  *		(4375899, 4241671, 4220005)
24622  *
24623  *   Arguments: dev	- the device number
24624  *
24625  * Return Code: 0
24626  *		ENXIO
24627  */
24628 
24629 static int
24630 sd_mhdioc_register_devid(dev_t dev)
24631 {
24632 	struct sd_lun	*un = NULL;
24633 	int		rval = 0;
24634 
24635 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24636 		return (ENXIO);
24637 	}
24638 
24639 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24640 
24641 	mutex_enter(SD_MUTEX(un));
24642 
24643 	/* If a devid already exists, de-register it */
24644 	if (un->un_devid != NULL) {
24645 		ddi_devid_unregister(SD_DEVINFO(un));
24646 		/*
24647 		 * After unregister devid, needs to free devid memory
24648 		 */
24649 		ddi_devid_free(un->un_devid);
24650 		un->un_devid = NULL;
24651 	}
24652 
24653 	/* Check for reservation conflict */
24654 	mutex_exit(SD_MUTEX(un));
24655 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24656 	mutex_enter(SD_MUTEX(un));
24657 
24658 	switch (rval) {
24659 	case 0:
24660 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24661 		break;
24662 	case EACCES:
24663 		break;
24664 	default:
24665 		rval = EIO;
24666 	}
24667 
24668 	mutex_exit(SD_MUTEX(un));
24669 	return (rval);
24670 }
24671 
24672 
24673 /*
24674  *    Function: sd_mhdioc_inkeys
24675  *
24676  * Description: This routine is the driver entry point for handling ioctl
24677  *		requests to issue the SCSI-3 Persistent In Read Keys command
24678  *		to the device (MHIOCGRP_INKEYS).
24679  *
24680  *   Arguments: dev	- the device number
24681  *		arg	- user provided in_keys structure
24682  *		flag	- this argument is a pass through to ddi_copyxxx()
24683  *			  directly from the mode argument of ioctl().
24684  *
24685  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24686  *		ENXIO
24687  *		EFAULT
24688  */
24689 
24690 static int
24691 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24692 {
24693 	struct sd_lun		*un;
24694 	mhioc_inkeys_t		inkeys;
24695 	int			rval = 0;
24696 
24697 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24698 		return (ENXIO);
24699 	}
24700 
24701 #ifdef _MULTI_DATAMODEL
24702 	switch (ddi_model_convert_from(flag & FMODELS)) {
24703 	case DDI_MODEL_ILP32: {
24704 		struct mhioc_inkeys32	inkeys32;
24705 
24706 		if (ddi_copyin(arg, &inkeys32,
24707 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24708 			return (EFAULT);
24709 		}
24710 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24711 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24712 		    &inkeys, flag)) != 0) {
24713 			return (rval);
24714 		}
24715 		inkeys32.generation = inkeys.generation;
24716 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24717 		    flag) != 0) {
24718 			return (EFAULT);
24719 		}
24720 		break;
24721 	}
24722 	case DDI_MODEL_NONE:
24723 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24724 		    flag) != 0) {
24725 			return (EFAULT);
24726 		}
24727 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24728 		    &inkeys, flag)) != 0) {
24729 			return (rval);
24730 		}
24731 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24732 		    flag) != 0) {
24733 			return (EFAULT);
24734 		}
24735 		break;
24736 	}
24737 
24738 #else /* ! _MULTI_DATAMODEL */
24739 
24740 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24741 		return (EFAULT);
24742 	}
24743 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24744 	if (rval != 0) {
24745 		return (rval);
24746 	}
24747 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24748 		return (EFAULT);
24749 	}
24750 
24751 #endif /* _MULTI_DATAMODEL */
24752 
24753 	return (rval);
24754 }
24755 
24756 
24757 /*
24758  *    Function: sd_mhdioc_inresv
24759  *
24760  * Description: This routine is the driver entry point for handling ioctl
24761  *		requests to issue the SCSI-3 Persistent In Read Reservations
24762  *		command to the device (MHIOCGRP_INKEYS).
24763  *
24764  *   Arguments: dev	- the device number
24765  *		arg	- user provided in_resv structure
24766  *		flag	- this argument is a pass through to ddi_copyxxx()
24767  *			  directly from the mode argument of ioctl().
24768  *
24769  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24770  *		ENXIO
24771  *		EFAULT
24772  */
24773 
24774 static int
24775 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24776 {
24777 	struct sd_lun		*un;
24778 	mhioc_inresvs_t		inresvs;
24779 	int			rval = 0;
24780 
24781 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24782 		return (ENXIO);
24783 	}
24784 
24785 #ifdef _MULTI_DATAMODEL
24786 
24787 	switch (ddi_model_convert_from(flag & FMODELS)) {
24788 	case DDI_MODEL_ILP32: {
24789 		struct mhioc_inresvs32	inresvs32;
24790 
24791 		if (ddi_copyin(arg, &inresvs32,
24792 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24793 			return (EFAULT);
24794 		}
24795 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24796 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24797 		    &inresvs, flag)) != 0) {
24798 			return (rval);
24799 		}
24800 		inresvs32.generation = inresvs.generation;
24801 		if (ddi_copyout(&inresvs32, arg,
24802 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24803 			return (EFAULT);
24804 		}
24805 		break;
24806 	}
24807 	case DDI_MODEL_NONE:
24808 		if (ddi_copyin(arg, &inresvs,
24809 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24810 			return (EFAULT);
24811 		}
24812 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24813 		    &inresvs, flag)) != 0) {
24814 			return (rval);
24815 		}
24816 		if (ddi_copyout(&inresvs, arg,
24817 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24818 			return (EFAULT);
24819 		}
24820 		break;
24821 	}
24822 
24823 #else /* ! _MULTI_DATAMODEL */
24824 
24825 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24826 		return (EFAULT);
24827 	}
24828 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24829 	if (rval != 0) {
24830 		return (rval);
24831 	}
24832 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24833 		return (EFAULT);
24834 	}
24835 
24836 #endif /* ! _MULTI_DATAMODEL */
24837 
24838 	return (rval);
24839 }
24840 
24841 
24842 /*
24843  * The following routines support the clustering functionality described below
24844  * and implement lost reservation reclaim functionality.
24845  *
24846  * Clustering
24847  * ----------
24848  * The clustering code uses two different, independent forms of SCSI
24849  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24850  * Persistent Group Reservations. For any particular disk, it will use either
24851  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24852  *
24853  * SCSI-2
24854  * The cluster software takes ownership of a multi-hosted disk by issuing the
24855  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24856  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24857  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24858  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24859  * meaning of failfast is that if the driver (on this host) ever encounters the
24860  * scsi error return code RESERVATION_CONFLICT from the device, it should
24861  * immediately panic the host. The motivation for this ioctl is that if this
24862  * host does encounter reservation conflict, the underlying cause is that some
24863  * other host of the cluster has decided that this host is no longer in the
24864  * cluster and has seized control of the disks for itself. Since this host is no
24865  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24866  * does two things:
24867  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24868  *      error to panic the host
24869  *      (b) it sets up a periodic timer to test whether this host still has
24870  *      "access" (in that no other host has reserved the device):  if the
24871  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24872  *      purpose of that periodic timer is to handle scenarios where the host is
24873  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24874  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24875  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24876  * the device itself.
24877  *
24878  * SCSI-3 PGR
24879  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24880  * facility is supported through the shared multihost disk ioctls
24881  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24882  * MHIOCGRP_PREEMPTANDABORT)
24883  *
24884  * Reservation Reclaim:
24885  * --------------------
24886  * To support the lost reservation reclaim operations this driver creates a
24887  * single thread to handle reinstating reservations on all devices that have
24888  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24889  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24890  * and the reservation reclaim thread loops through the requests to regain the
24891  * lost reservations.
24892  */
24893 
24894 /*
24895  *    Function: sd_check_mhd()
24896  *
24897  * Description: This function sets up and submits a scsi watch request or
24898  *		terminates an existing watch request. This routine is used in
24899  *		support of reservation reclaim.
24900  *
24901  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24902  *			 among multiple watches that share the callback function
24903  *		interval - the number of microseconds specifying the watch
24904  *			   interval for issuing TEST UNIT READY commands. If
24905  *			   set to 0 the watch should be terminated. If the
24906  *			   interval is set to 0 and if the device is required
24907  *			   to hold reservation while disabling failfast, the
24908  *			   watch is restarted with an interval of
24909  *			   reinstate_resv_delay.
24910  *
24911  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24912  *		ENXIO      - Indicates an invalid device was specified
24913  *		EAGAIN     - Unable to submit the scsi watch request
24914  */
24915 
24916 static int
24917 sd_check_mhd(dev_t dev, int interval)
24918 {
24919 	struct sd_lun	*un;
24920 	opaque_t	token;
24921 
24922 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24923 		return (ENXIO);
24924 	}
24925 
24926 	/* is this a watch termination request? */
24927 	if (interval == 0) {
24928 		mutex_enter(SD_MUTEX(un));
24929 		/* if there is an existing watch task then terminate it */
24930 		if (un->un_mhd_token) {
24931 			token = un->un_mhd_token;
24932 			un->un_mhd_token = NULL;
24933 			mutex_exit(SD_MUTEX(un));
24934 			(void) scsi_watch_request_terminate(token,
24935 			    SCSI_WATCH_TERMINATE_WAIT);
24936 			mutex_enter(SD_MUTEX(un));
24937 		} else {
24938 			mutex_exit(SD_MUTEX(un));
24939 			/*
24940 			 * Note: If we return here we don't check for the
24941 			 * failfast case. This is the original legacy
24942 			 * implementation but perhaps we should be checking
24943 			 * the failfast case.
24944 			 */
24945 			return (0);
24946 		}
24947 		/*
24948 		 * If the device is required to hold reservation while
24949 		 * disabling failfast, we need to restart the scsi_watch
24950 		 * routine with an interval of reinstate_resv_delay.
24951 		 */
24952 		if (un->un_resvd_status & SD_RESERVE) {
24953 			interval = sd_reinstate_resv_delay/1000;
24954 		} else {
24955 			/* no failfast so bail */
24956 			mutex_exit(SD_MUTEX(un));
24957 			return (0);
24958 		}
24959 		mutex_exit(SD_MUTEX(un));
24960 	}
24961 
24962 	/*
24963 	 * adjust minimum time interval to 1 second,
24964 	 * and convert from msecs to usecs
24965 	 */
24966 	if (interval > 0 && interval < 1000) {
24967 		interval = 1000;
24968 	}
24969 	interval *= 1000;
24970 
24971 	/*
24972 	 * submit the request to the scsi_watch service
24973 	 */
24974 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24975 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24976 	if (token == NULL) {
24977 		return (EAGAIN);
24978 	}
24979 
24980 	/*
24981 	 * save token for termination later on
24982 	 */
24983 	mutex_enter(SD_MUTEX(un));
24984 	un->un_mhd_token = token;
24985 	mutex_exit(SD_MUTEX(un));
24986 	return (0);
24987 }
24988 
24989 
24990 /*
24991  *    Function: sd_mhd_watch_cb()
24992  *
24993  * Description: This function is the call back function used by the scsi watch
24994  *		facility. The scsi watch facility sends the "Test Unit Ready"
24995  *		and processes the status. If applicable (i.e. a "Unit Attention"
24996  *		status and automatic "Request Sense" not used) the scsi watch
24997  *		facility will send a "Request Sense" and retrieve the sense data
24998  *		to be passed to this callback function. In either case the
24999  *		automatic "Request Sense" or the facility submitting one, this
25000  *		callback is passed the status and sense data.
25001  *
25002  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25003  *			among multiple watches that share this callback function
25004  *		resultp - scsi watch facility result packet containing scsi
25005  *			  packet, status byte and sense data
25006  *
25007  * Return Code: 0 - continue the watch task
25008  *		non-zero - terminate the watch task
25009  */
25010 
25011 static int
25012 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25013 {
25014 	struct sd_lun			*un;
25015 	struct scsi_status		*statusp;
25016 	struct scsi_extended_sense	*sensep;
25017 	struct scsi_pkt			*pkt;
25018 	uchar_t				actual_sense_length;
25019 	dev_t  				dev = (dev_t)arg;
25020 
25021 	ASSERT(resultp != NULL);
25022 	statusp			= resultp->statusp;
25023 	sensep			= resultp->sensep;
25024 	pkt			= resultp->pkt;
25025 	actual_sense_length	= resultp->actual_sense_length;
25026 
25027 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25028 		return (ENXIO);
25029 	}
25030 
25031 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25032 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25033 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25034 
25035 	/* Begin processing of the status and/or sense data */
25036 	if (pkt->pkt_reason != CMD_CMPLT) {
25037 		/* Handle the incomplete packet */
25038 		sd_mhd_watch_incomplete(un, pkt);
25039 		return (0);
25040 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25041 		if (*((unsigned char *)statusp)
25042 		    == STATUS_RESERVATION_CONFLICT) {
25043 			/*
25044 			 * Handle a reservation conflict by panicking if
25045 			 * configured for failfast or by logging the conflict
25046 			 * and updating the reservation status
25047 			 */
25048 			mutex_enter(SD_MUTEX(un));
25049 			if ((un->un_resvd_status & SD_FAILFAST) &&
25050 			    (sd_failfast_enable)) {
25051 				sd_panic_for_res_conflict(un);
25052 				/*NOTREACHED*/
25053 			}
25054 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25055 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25056 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25057 			mutex_exit(SD_MUTEX(un));
25058 		}
25059 	}
25060 
25061 	if (sensep != NULL) {
25062 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25063 			mutex_enter(SD_MUTEX(un));
25064 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
25065 			    (un->un_resvd_status & SD_RESERVE)) {
25066 				/*
25067 				 * The additional sense code indicates a power
25068 				 * on or bus device reset has occurred; update
25069 				 * the reservation status.
25070 				 */
25071 				un->un_resvd_status |=
25072 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25073 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25074 				    "sd_mhd_watch_cb: Lost Reservation\n");
25075 			}
25076 		} else {
25077 			return (0);
25078 		}
25079 	} else {
25080 		mutex_enter(SD_MUTEX(un));
25081 	}
25082 
25083 	if ((un->un_resvd_status & SD_RESERVE) &&
25084 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25085 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25086 			/*
25087 			 * A reset occurred in between the last probe and this
25088 			 * one so if a timeout is pending cancel it.
25089 			 */
25090 			if (un->un_resvd_timeid) {
25091 				timeout_id_t temp_id = un->un_resvd_timeid;
25092 				un->un_resvd_timeid = NULL;
25093 				mutex_exit(SD_MUTEX(un));
25094 				(void) untimeout(temp_id);
25095 				mutex_enter(SD_MUTEX(un));
25096 			}
25097 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25098 		}
25099 		if (un->un_resvd_timeid == 0) {
25100 			/* Schedule a timeout to handle the lost reservation */
25101 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25102 			    (void *)dev,
25103 			    drv_usectohz(sd_reinstate_resv_delay));
25104 		}
25105 	}
25106 	mutex_exit(SD_MUTEX(un));
25107 	return (0);
25108 }
25109 
25110 
25111 /*
25112  *    Function: sd_mhd_watch_incomplete()
25113  *
25114  * Description: This function is used to find out why a scsi pkt sent by the
25115  *		scsi watch facility was not completed. Under some scenarios this
25116  *		routine will return. Otherwise it will send a bus reset to see
25117  *		if the drive is still online.
25118  *
25119  *   Arguments: un  - driver soft state (unit) structure
25120  *		pkt - incomplete scsi pkt
25121  */
25122 
25123 static void
25124 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25125 {
25126 	int	be_chatty;
25127 	int	perr;
25128 
25129 	ASSERT(pkt != NULL);
25130 	ASSERT(un != NULL);
25131 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25132 	perr		= (pkt->pkt_statistics & STAT_PERR);
25133 
25134 	mutex_enter(SD_MUTEX(un));
25135 	if (un->un_state == SD_STATE_DUMPING) {
25136 		mutex_exit(SD_MUTEX(un));
25137 		return;
25138 	}
25139 
25140 	switch (pkt->pkt_reason) {
25141 	case CMD_UNX_BUS_FREE:
25142 		/*
25143 		 * If we had a parity error that caused the target to drop BSY*,
25144 		 * don't be chatty about it.
25145 		 */
25146 		if (perr && be_chatty) {
25147 			be_chatty = 0;
25148 		}
25149 		break;
25150 	case CMD_TAG_REJECT:
25151 		/*
25152 		 * The SCSI-2 spec states that a tag reject will be sent by the
25153 		 * target if tagged queuing is not supported. A tag reject may
25154 		 * also be sent during certain initialization periods or to
25155 		 * control internal resources. For the latter case the target
25156 		 * may also return Queue Full.
25157 		 *
25158 		 * If this driver receives a tag reject from a target that is
25159 		 * going through an init period or controlling internal
25160 		 * resources tagged queuing will be disabled. This is a less
25161 		 * than optimal behavior but the driver is unable to determine
25162 		 * the target state and assumes tagged queueing is not supported
25163 		 */
25164 		pkt->pkt_flags = 0;
25165 		un->un_tagflags = 0;
25166 
25167 		if (un->un_f_opt_queueing == TRUE) {
25168 			un->un_throttle = min(un->un_throttle, 3);
25169 		} else {
25170 			un->un_throttle = 1;
25171 		}
25172 		mutex_exit(SD_MUTEX(un));
25173 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25174 		mutex_enter(SD_MUTEX(un));
25175 		break;
25176 	case CMD_INCOMPLETE:
25177 		/*
25178 		 * The transport stopped with an abnormal state, fallthrough and
25179 		 * reset the target and/or bus unless selection did not complete
25180 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25181 		 * go through a target/bus reset
25182 		 */
25183 		if (pkt->pkt_state == STATE_GOT_BUS) {
25184 			break;
25185 		}
25186 		/*FALLTHROUGH*/
25187 
25188 	case CMD_TIMEOUT:
25189 	default:
25190 		/*
25191 		 * The lun may still be running the command, so a lun reset
25192 		 * should be attempted. If the lun reset fails or cannot be
25193 		 * issued, than try a target reset. Lastly try a bus reset.
25194 		 */
25195 		if ((pkt->pkt_statistics &
25196 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25197 			int reset_retval = 0;
25198 			mutex_exit(SD_MUTEX(un));
25199 			if (un->un_f_allow_bus_device_reset == TRUE) {
25200 				if (un->un_f_lun_reset_enabled == TRUE) {
25201 					reset_retval =
25202 					    scsi_reset(SD_ADDRESS(un),
25203 					    RESET_LUN);
25204 				}
25205 				if (reset_retval == 0) {
25206 					reset_retval =
25207 					    scsi_reset(SD_ADDRESS(un),
25208 					    RESET_TARGET);
25209 				}
25210 			}
25211 			if (reset_retval == 0) {
25212 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25213 			}
25214 			mutex_enter(SD_MUTEX(un));
25215 		}
25216 		break;
25217 	}
25218 
25219 	/* A device/bus reset has occurred; update the reservation status. */
25220 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25221 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25222 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25223 			un->un_resvd_status |=
25224 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25225 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25226 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25227 		}
25228 	}
25229 
25230 	/*
25231 	 * The disk has been turned off; Update the device state.
25232 	 *
25233 	 * Note: Should we be offlining the disk here?
25234 	 */
25235 	if (pkt->pkt_state == STATE_GOT_BUS) {
25236 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25237 		    "Disk not responding to selection\n");
25238 		if (un->un_state != SD_STATE_OFFLINE) {
25239 			New_state(un, SD_STATE_OFFLINE);
25240 		}
25241 	} else if (be_chatty) {
25242 		/*
25243 		 * suppress messages if they are all the same pkt reason;
25244 		 * with TQ, many (up to 256) are returned with the same
25245 		 * pkt_reason
25246 		 */
25247 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25248 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25249 			    "sd_mhd_watch_incomplete: "
25250 			    "SCSI transport failed: reason '%s'\n",
25251 			    scsi_rname(pkt->pkt_reason));
25252 		}
25253 	}
25254 	un->un_last_pkt_reason = pkt->pkt_reason;
25255 	mutex_exit(SD_MUTEX(un));
25256 }
25257 
25258 
25259 /*
25260  *    Function: sd_sname()
25261  *
25262  * Description: This is a simple little routine to return a string containing
25263  *		a printable description of command status byte for use in
25264  *		logging.
25265  *
25266  *   Arguments: status - pointer to a status byte
25267  *
25268  * Return Code: char * - string containing status description.
25269  */
25270 
25271 static char *
25272 sd_sname(uchar_t status)
25273 {
25274 	switch (status & STATUS_MASK) {
25275 	case STATUS_GOOD:
25276 		return ("good status");
25277 	case STATUS_CHECK:
25278 		return ("check condition");
25279 	case STATUS_MET:
25280 		return ("condition met");
25281 	case STATUS_BUSY:
25282 		return ("busy");
25283 	case STATUS_INTERMEDIATE:
25284 		return ("intermediate");
25285 	case STATUS_INTERMEDIATE_MET:
25286 		return ("intermediate - condition met");
25287 	case STATUS_RESERVATION_CONFLICT:
25288 		return ("reservation_conflict");
25289 	case STATUS_TERMINATED:
25290 		return ("command terminated");
25291 	case STATUS_QFULL:
25292 		return ("queue full");
25293 	default:
25294 		return ("<unknown status>");
25295 	}
25296 }
25297 
25298 
25299 /*
25300  *    Function: sd_mhd_resvd_recover()
25301  *
25302  * Description: This function adds a reservation entry to the
25303  *		sd_resv_reclaim_request list and signals the reservation
25304  *		reclaim thread that there is work pending. If the reservation
25305  *		reclaim thread has not been previously created this function
25306  *		will kick it off.
25307  *
25308  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25309  *			among multiple watches that share this callback function
25310  *
25311  *     Context: This routine is called by timeout() and is run in interrupt
25312  *		context. It must not sleep or call other functions which may
25313  *		sleep.
25314  */
25315 
25316 static void
25317 sd_mhd_resvd_recover(void *arg)
25318 {
25319 	dev_t			dev = (dev_t)arg;
25320 	struct sd_lun		*un;
25321 	struct sd_thr_request	*sd_treq = NULL;
25322 	struct sd_thr_request	*sd_cur = NULL;
25323 	struct sd_thr_request	*sd_prev = NULL;
25324 	int			already_there = 0;
25325 
25326 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25327 		return;
25328 	}
25329 
25330 	mutex_enter(SD_MUTEX(un));
25331 	un->un_resvd_timeid = NULL;
25332 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25333 		/*
25334 		 * There was a reset so don't issue the reserve, allow the
25335 		 * sd_mhd_watch_cb callback function to notice this and
25336 		 * reschedule the timeout for reservation.
25337 		 */
25338 		mutex_exit(SD_MUTEX(un));
25339 		return;
25340 	}
25341 	mutex_exit(SD_MUTEX(un));
25342 
25343 	/*
25344 	 * Add this device to the sd_resv_reclaim_request list and the
25345 	 * sd_resv_reclaim_thread should take care of the rest.
25346 	 *
25347 	 * Note: We can't sleep in this context so if the memory allocation
25348 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25349 	 * reschedule the timeout for reservation.  (4378460)
25350 	 */
25351 	sd_treq = (struct sd_thr_request *)
25352 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25353 	if (sd_treq == NULL) {
25354 		return;
25355 	}
25356 
25357 	sd_treq->sd_thr_req_next = NULL;
25358 	sd_treq->dev = dev;
25359 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25360 	if (sd_tr.srq_thr_req_head == NULL) {
25361 		sd_tr.srq_thr_req_head = sd_treq;
25362 	} else {
25363 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25364 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25365 			if (sd_cur->dev == dev) {
25366 				/*
25367 				 * already in Queue so don't log
25368 				 * another request for the device
25369 				 */
25370 				already_there = 1;
25371 				break;
25372 			}
25373 			sd_prev = sd_cur;
25374 		}
25375 		if (!already_there) {
25376 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25377 			    "logging request for %lx\n", dev);
25378 			sd_prev->sd_thr_req_next = sd_treq;
25379 		} else {
25380 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25381 		}
25382 	}
25383 
25384 	/*
25385 	 * Create a kernel thread to do the reservation reclaim and free up this
25386 	 * thread. We cannot block this thread while we go away to do the
25387 	 * reservation reclaim
25388 	 */
25389 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25390 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25391 		    sd_resv_reclaim_thread, NULL,
25392 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25393 
25394 	/* Tell the reservation reclaim thread that it has work to do */
25395 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25396 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25397 }
25398 
25399 /*
25400  *    Function: sd_resv_reclaim_thread()
25401  *
25402  * Description: This function implements the reservation reclaim operations
25403  *
25404  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25405  *		      among multiple watches that share this callback function
25406  */
25407 
25408 static void
25409 sd_resv_reclaim_thread()
25410 {
25411 	struct sd_lun		*un;
25412 	struct sd_thr_request	*sd_mhreq;
25413 
25414 	/* Wait for work */
25415 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25416 	if (sd_tr.srq_thr_req_head == NULL) {
25417 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25418 		    &sd_tr.srq_resv_reclaim_mutex);
25419 	}
25420 
25421 	/* Loop while we have work */
25422 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25423 		un = ddi_get_soft_state(sd_state,
25424 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25425 		if (un == NULL) {
25426 			/*
25427 			 * softstate structure is NULL so just
25428 			 * dequeue the request and continue
25429 			 */
25430 			sd_tr.srq_thr_req_head =
25431 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25432 			kmem_free(sd_tr.srq_thr_cur_req,
25433 			    sizeof (struct sd_thr_request));
25434 			continue;
25435 		}
25436 
25437 		/* dequeue the request */
25438 		sd_mhreq = sd_tr.srq_thr_cur_req;
25439 		sd_tr.srq_thr_req_head =
25440 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25441 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25442 
25443 		/*
25444 		 * Reclaim reservation only if SD_RESERVE is still set. There
25445 		 * may have been a call to MHIOCRELEASE before we got here.
25446 		 */
25447 		mutex_enter(SD_MUTEX(un));
25448 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25449 			/*
25450 			 * Note: The SD_LOST_RESERVE flag is cleared before
25451 			 * reclaiming the reservation. If this is done after the
25452 			 * call to sd_reserve_release a reservation loss in the
25453 			 * window between pkt completion of reserve cmd and
25454 			 * mutex_enter below may not be recognized
25455 			 */
25456 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25457 			mutex_exit(SD_MUTEX(un));
25458 
25459 			if (sd_reserve_release(sd_mhreq->dev,
25460 			    SD_RESERVE) == 0) {
25461 				mutex_enter(SD_MUTEX(un));
25462 				un->un_resvd_status |= SD_RESERVE;
25463 				mutex_exit(SD_MUTEX(un));
25464 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25465 				    "sd_resv_reclaim_thread: "
25466 				    "Reservation Recovered\n");
25467 			} else {
25468 				mutex_enter(SD_MUTEX(un));
25469 				un->un_resvd_status |= SD_LOST_RESERVE;
25470 				mutex_exit(SD_MUTEX(un));
25471 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25472 				    "sd_resv_reclaim_thread: Failed "
25473 				    "Reservation Recovery\n");
25474 			}
25475 		} else {
25476 			mutex_exit(SD_MUTEX(un));
25477 		}
25478 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25479 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25480 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25481 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25482 		/*
25483 		 * wakeup the destroy thread if anyone is waiting on
25484 		 * us to complete.
25485 		 */
25486 		cv_signal(&sd_tr.srq_inprocess_cv);
25487 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25488 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25489 	}
25490 
25491 	/*
25492 	 * cleanup the sd_tr structure now that this thread will not exist
25493 	 */
25494 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25495 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25496 	sd_tr.srq_resv_reclaim_thread = NULL;
25497 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25498 	thread_exit();
25499 }
25500 
25501 
25502 /*
25503  *    Function: sd_rmv_resv_reclaim_req()
25504  *
25505  * Description: This function removes any pending reservation reclaim requests
25506  *		for the specified device.
25507  *
25508  *   Arguments: dev - the device 'dev_t'
25509  */
25510 
25511 static void
25512 sd_rmv_resv_reclaim_req(dev_t dev)
25513 {
25514 	struct sd_thr_request *sd_mhreq;
25515 	struct sd_thr_request *sd_prev;
25516 
25517 	/* Remove a reservation reclaim request from the list */
25518 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25519 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25520 		/*
25521 		 * We are attempting to reinstate reservation for
25522 		 * this device. We wait for sd_reserve_release()
25523 		 * to return before we return.
25524 		 */
25525 		cv_wait(&sd_tr.srq_inprocess_cv,
25526 		    &sd_tr.srq_resv_reclaim_mutex);
25527 	} else {
25528 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25529 		if (sd_mhreq && sd_mhreq->dev == dev) {
25530 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25531 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25532 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25533 			return;
25534 		}
25535 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25536 			if (sd_mhreq && sd_mhreq->dev == dev) {
25537 				break;
25538 			}
25539 			sd_prev = sd_mhreq;
25540 		}
25541 		if (sd_mhreq != NULL) {
25542 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25543 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25544 		}
25545 	}
25546 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25547 }
25548 
25549 
25550 /*
25551  *    Function: sd_mhd_reset_notify_cb()
25552  *
25553  * Description: This is a call back function for scsi_reset_notify. This
25554  *		function updates the softstate reserved status and logs the
25555  *		reset. The driver scsi watch facility callback function
25556  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25557  *		will reclaim the reservation.
25558  *
25559  *   Arguments: arg  - driver soft state (unit) structure
25560  */
25561 
25562 static void
25563 sd_mhd_reset_notify_cb(caddr_t arg)
25564 {
25565 	struct sd_lun *un = (struct sd_lun *)arg;
25566 
25567 	mutex_enter(SD_MUTEX(un));
25568 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25569 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25570 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25571 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25572 	}
25573 	mutex_exit(SD_MUTEX(un));
25574 }
25575 
25576 
25577 /*
25578  *    Function: sd_take_ownership()
25579  *
25580  * Description: This routine implements an algorithm to achieve a stable
25581  *		reservation on disks which don't implement priority reserve,
25582  *		and makes sure that other host lose re-reservation attempts.
25583  *		This algorithm contains of a loop that keeps issuing the RESERVE
25584  *		for some period of time (min_ownership_delay, default 6 seconds)
25585  *		During that loop, it looks to see if there has been a bus device
25586  *		reset or bus reset (both of which cause an existing reservation
25587  *		to be lost). If the reservation is lost issue RESERVE until a
25588  *		period of min_ownership_delay with no resets has gone by, or
25589  *		until max_ownership_delay has expired. This loop ensures that
25590  *		the host really did manage to reserve the device, in spite of
25591  *		resets. The looping for min_ownership_delay (default six
25592  *		seconds) is important to early generation clustering products,
25593  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25594  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25595  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25596  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25597  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25598  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25599  *		no longer "owns" the disk and will have panicked itself.  Thus,
25600  *		the host issuing the MHIOCTKOWN is assured (with timing
25601  *		dependencies) that by the time it actually starts to use the
25602  *		disk for real work, the old owner is no longer accessing it.
25603  *
25604  *		min_ownership_delay is the minimum amount of time for which the
25605  *		disk must be reserved continuously devoid of resets before the
25606  *		MHIOCTKOWN ioctl will return success.
25607  *
25608  *		max_ownership_delay indicates the amount of time by which the
25609  *		take ownership should succeed or timeout with an error.
25610  *
25611  *   Arguments: dev - the device 'dev_t'
25612  *		*p  - struct containing timing info.
25613  *
25614  * Return Code: 0 for success or error code
25615  */
25616 
25617 static int
25618 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25619 {
25620 	struct sd_lun	*un;
25621 	int		rval;
25622 	int		err;
25623 	int		reservation_count   = 0;
25624 	int		min_ownership_delay =  6000000; /* in usec */
25625 	int		max_ownership_delay = 30000000; /* in usec */
25626 	clock_t		start_time;	/* starting time of this algorithm */
25627 	clock_t		end_time;	/* time limit for giving up */
25628 	clock_t		ownership_time;	/* time limit for stable ownership */
25629 	clock_t		current_time;
25630 	clock_t		previous_current_time;
25631 
25632 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25633 		return (ENXIO);
25634 	}
25635 
25636 	/*
25637 	 * Attempt a device reservation. A priority reservation is requested.
25638 	 */
25639 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25640 	    != SD_SUCCESS) {
25641 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25642 		    "sd_take_ownership: return(1)=%d\n", rval);
25643 		return (rval);
25644 	}
25645 
25646 	/* Update the softstate reserved status to indicate the reservation */
25647 	mutex_enter(SD_MUTEX(un));
25648 	un->un_resvd_status |= SD_RESERVE;
25649 	un->un_resvd_status &=
25650 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25651 	mutex_exit(SD_MUTEX(un));
25652 
25653 	if (p != NULL) {
25654 		if (p->min_ownership_delay != 0) {
25655 			min_ownership_delay = p->min_ownership_delay * 1000;
25656 		}
25657 		if (p->max_ownership_delay != 0) {
25658 			max_ownership_delay = p->max_ownership_delay * 1000;
25659 		}
25660 	}
25661 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25662 	    "sd_take_ownership: min, max delays: %d, %d\n",
25663 	    min_ownership_delay, max_ownership_delay);
25664 
25665 	start_time = ddi_get_lbolt();
25666 	current_time	= start_time;
25667 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25668 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25669 
25670 	while (current_time - end_time < 0) {
25671 		delay(drv_usectohz(500000));
25672 
25673 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25674 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25675 				mutex_enter(SD_MUTEX(un));
25676 				rval = (un->un_resvd_status &
25677 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25678 				mutex_exit(SD_MUTEX(un));
25679 				break;
25680 			}
25681 		}
25682 		previous_current_time = current_time;
25683 		current_time = ddi_get_lbolt();
25684 		mutex_enter(SD_MUTEX(un));
25685 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25686 			ownership_time = ddi_get_lbolt() +
25687 			    drv_usectohz(min_ownership_delay);
25688 			reservation_count = 0;
25689 		} else {
25690 			reservation_count++;
25691 		}
25692 		un->un_resvd_status |= SD_RESERVE;
25693 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25694 		mutex_exit(SD_MUTEX(un));
25695 
25696 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25697 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25698 		    "reservation=%s\n", (current_time - previous_current_time),
25699 		    reservation_count ? "ok" : "reclaimed");
25700 
25701 		if (current_time - ownership_time >= 0 &&
25702 		    reservation_count >= 4) {
25703 			rval = 0; /* Achieved a stable ownership */
25704 			break;
25705 		}
25706 		if (current_time - end_time >= 0) {
25707 			rval = EACCES; /* No ownership in max possible time */
25708 			break;
25709 		}
25710 	}
25711 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25712 	    "sd_take_ownership: return(2)=%d\n", rval);
25713 	return (rval);
25714 }
25715 
25716 
25717 /*
25718  *    Function: sd_reserve_release()
25719  *
25720  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25721  *		PRIORITY RESERVE commands based on a user specified command type
25722  *
25723  *   Arguments: dev - the device 'dev_t'
25724  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25725  *		      SD_RESERVE, SD_RELEASE
25726  *
25727  * Return Code: 0 or Error Code
25728  */
25729 
25730 static int
25731 sd_reserve_release(dev_t dev, int cmd)
25732 {
25733 	struct uscsi_cmd	*com = NULL;
25734 	struct sd_lun		*un = NULL;
25735 	char			cdb[CDB_GROUP0];
25736 	int			rval;
25737 
25738 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25739 	    (cmd == SD_PRIORITY_RESERVE));
25740 
25741 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25742 		return (ENXIO);
25743 	}
25744 
25745 	/* instantiate and initialize the command and cdb */
25746 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25747 	bzero(cdb, CDB_GROUP0);
25748 	com->uscsi_flags   = USCSI_SILENT;
25749 	com->uscsi_timeout = un->un_reserve_release_time;
25750 	com->uscsi_cdblen  = CDB_GROUP0;
25751 	com->uscsi_cdb	   = cdb;
25752 	if (cmd == SD_RELEASE) {
25753 		cdb[0] = SCMD_RELEASE;
25754 	} else {
25755 		cdb[0] = SCMD_RESERVE;
25756 	}
25757 
25758 	/* Send the command. */
25759 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25760 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25761 
25762 	/*
25763 	 * "break" a reservation that is held by another host, by issuing a
25764 	 * reset if priority reserve is desired, and we could not get the
25765 	 * device.
25766 	 */
25767 	if ((cmd == SD_PRIORITY_RESERVE) &&
25768 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25769 		/*
25770 		 * First try to reset the LUN. If we cannot, then try a target
25771 		 * reset, followed by a bus reset if the target reset fails.
25772 		 */
25773 		int reset_retval = 0;
25774 		if (un->un_f_lun_reset_enabled == TRUE) {
25775 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25776 		}
25777 		if (reset_retval == 0) {
25778 			/* The LUN reset either failed or was not issued */
25779 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25780 		}
25781 		if ((reset_retval == 0) &&
25782 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25783 			rval = EIO;
25784 			kmem_free(com, sizeof (*com));
25785 			return (rval);
25786 		}
25787 
25788 		bzero(com, sizeof (struct uscsi_cmd));
25789 		com->uscsi_flags   = USCSI_SILENT;
25790 		com->uscsi_cdb	   = cdb;
25791 		com->uscsi_cdblen  = CDB_GROUP0;
25792 		com->uscsi_timeout = 5;
25793 
25794 		/*
25795 		 * Reissue the last reserve command, this time without request
25796 		 * sense.  Assume that it is just a regular reserve command.
25797 		 */
25798 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25799 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25800 	}
25801 
25802 	/* Return an error if still getting a reservation conflict. */
25803 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25804 		rval = EACCES;
25805 	}
25806 
25807 	kmem_free(com, sizeof (*com));
25808 	return (rval);
25809 }
25810 
25811 
25812 #define	SD_NDUMP_RETRIES	12
25813 /*
25814  *	System Crash Dump routine
25815  */
25816 
25817 static int
25818 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25819 {
25820 	int		instance;
25821 	int		partition;
25822 	int		i;
25823 	int		err;
25824 	struct sd_lun	*un;
25825 	struct dk_map	*lp;
25826 	struct scsi_pkt *wr_pktp;
25827 	struct buf	*wr_bp;
25828 	struct buf	wr_buf;
25829 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25830 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25831 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25832 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25833 	size_t		io_start_offset;
25834 	int		doing_rmw = FALSE;
25835 	int		rval;
25836 #if defined(__i386) || defined(__amd64)
25837 	ssize_t dma_resid;
25838 	daddr_t oblkno;
25839 #endif
25840 
25841 	instance = SDUNIT(dev);
25842 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25843 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25844 		return (ENXIO);
25845 	}
25846 
25847 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25848 
25849 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25850 
25851 	partition = SDPART(dev);
25852 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25853 
25854 	/* Validate blocks to dump at against partition size. */
25855 	lp = &un->un_map[partition];
25856 	if ((blkno + nblk) > lp->dkl_nblk) {
25857 		SD_TRACE(SD_LOG_DUMP, un,
25858 		    "sddump: dump range larger than partition: "
25859 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25860 		    blkno, nblk, lp->dkl_nblk);
25861 		return (EINVAL);
25862 	}
25863 
25864 	mutex_enter(&un->un_pm_mutex);
25865 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25866 		struct scsi_pkt *start_pktp;
25867 
25868 		mutex_exit(&un->un_pm_mutex);
25869 
25870 		/*
25871 		 * use pm framework to power on HBA 1st
25872 		 */
25873 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25874 
25875 		/*
25876 		 * Dump no long uses sdpower to power on a device, it's
25877 		 * in-line here so it can be done in polled mode.
25878 		 */
25879 
25880 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25881 
25882 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25883 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25884 
25885 		if (start_pktp == NULL) {
25886 			/* We were not given a SCSI packet, fail. */
25887 			return (EIO);
25888 		}
25889 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25890 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25891 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25892 		start_pktp->pkt_flags = FLAG_NOINTR;
25893 
25894 		mutex_enter(SD_MUTEX(un));
25895 		SD_FILL_SCSI1_LUN(un, start_pktp);
25896 		mutex_exit(SD_MUTEX(un));
25897 		/*
25898 		 * Scsi_poll returns 0 (success) if the command completes and
25899 		 * the status block is STATUS_GOOD.
25900 		 */
25901 		if (sd_scsi_poll(un, start_pktp) != 0) {
25902 			scsi_destroy_pkt(start_pktp);
25903 			return (EIO);
25904 		}
25905 		scsi_destroy_pkt(start_pktp);
25906 		(void) sd_ddi_pm_resume(un);
25907 	} else {
25908 		mutex_exit(&un->un_pm_mutex);
25909 	}
25910 
25911 	mutex_enter(SD_MUTEX(un));
25912 	un->un_throttle = 0;
25913 
25914 	/*
25915 	 * The first time through, reset the specific target device.
25916 	 * However, when cpr calls sddump we know that sd is in a
25917 	 * a good state so no bus reset is required.
25918 	 * Clear sense data via Request Sense cmd.
25919 	 * In sddump we don't care about allow_bus_device_reset anymore
25920 	 */
25921 
25922 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25923 	    (un->un_state != SD_STATE_DUMPING)) {
25924 
25925 		New_state(un, SD_STATE_DUMPING);
25926 
25927 		if (un->un_f_is_fibre == FALSE) {
25928 			mutex_exit(SD_MUTEX(un));
25929 			/*
25930 			 * Attempt a bus reset for parallel scsi.
25931 			 *
25932 			 * Note: A bus reset is required because on some host
25933 			 * systems (i.e. E420R) a bus device reset is
25934 			 * insufficient to reset the state of the target.
25935 			 *
25936 			 * Note: Don't issue the reset for fibre-channel,
25937 			 * because this tends to hang the bus (loop) for
25938 			 * too long while everyone is logging out and in
25939 			 * and the deadman timer for dumping will fire
25940 			 * before the dump is complete.
25941 			 */
25942 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25943 				mutex_enter(SD_MUTEX(un));
25944 				Restore_state(un);
25945 				mutex_exit(SD_MUTEX(un));
25946 				return (EIO);
25947 			}
25948 
25949 			/* Delay to give the device some recovery time. */
25950 			drv_usecwait(10000);
25951 
25952 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25953 				SD_INFO(SD_LOG_DUMP, un,
25954 					"sddump: sd_send_polled_RQS failed\n");
25955 			}
25956 			mutex_enter(SD_MUTEX(un));
25957 		}
25958 	}
25959 
25960 	/*
25961 	 * Convert the partition-relative block number to a
25962 	 * disk physical block number.
25963 	 */
25964 	blkno += un->un_offset[partition];
25965 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25966 
25967 
25968 	/*
25969 	 * Check if the device has a non-512 block size.
25970 	 */
25971 	wr_bp = NULL;
25972 	if (NOT_DEVBSIZE(un)) {
25973 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25974 		tgt_byte_count = nblk * un->un_sys_blocksize;
25975 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25976 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25977 			doing_rmw = TRUE;
25978 			/*
25979 			 * Calculate the block number and number of block
25980 			 * in terms of the media block size.
25981 			 */
25982 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25983 			tgt_nblk =
25984 			    ((tgt_byte_offset + tgt_byte_count +
25985 				(un->un_tgt_blocksize - 1)) /
25986 				un->un_tgt_blocksize) - tgt_blkno;
25987 
25988 			/*
25989 			 * Invoke the routine which is going to do read part
25990 			 * of read-modify-write.
25991 			 * Note that this routine returns a pointer to
25992 			 * a valid bp in wr_bp.
25993 			 */
25994 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25995 			    &wr_bp);
25996 			if (err) {
25997 				mutex_exit(SD_MUTEX(un));
25998 				return (err);
25999 			}
26000 			/*
26001 			 * Offset is being calculated as -
26002 			 * (original block # * system block size) -
26003 			 * (new block # * target block size)
26004 			 */
26005 			io_start_offset =
26006 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26007 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26008 
26009 			ASSERT((io_start_offset >= 0) &&
26010 			    (io_start_offset < un->un_tgt_blocksize));
26011 			/*
26012 			 * Do the modify portion of read modify write.
26013 			 */
26014 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26015 			    (size_t)nblk * un->un_sys_blocksize);
26016 		} else {
26017 			doing_rmw = FALSE;
26018 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26019 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26020 		}
26021 
26022 		/* Convert blkno and nblk to target blocks */
26023 		blkno = tgt_blkno;
26024 		nblk = tgt_nblk;
26025 	} else {
26026 		wr_bp = &wr_buf;
26027 		bzero(wr_bp, sizeof (struct buf));
26028 		wr_bp->b_flags		= B_BUSY;
26029 		wr_bp->b_un.b_addr	= addr;
26030 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26031 		wr_bp->b_resid		= 0;
26032 	}
26033 
26034 	mutex_exit(SD_MUTEX(un));
26035 
26036 	/*
26037 	 * Obtain a SCSI packet for the write command.
26038 	 * It should be safe to call the allocator here without
26039 	 * worrying about being locked for DVMA mapping because
26040 	 * the address we're passed is already a DVMA mapping
26041 	 *
26042 	 * We are also not going to worry about semaphore ownership
26043 	 * in the dump buffer. Dumping is single threaded at present.
26044 	 */
26045 
26046 	wr_pktp = NULL;
26047 
26048 #if defined(__i386) || defined(__amd64)
26049 	dma_resid = wr_bp->b_bcount;
26050 	oblkno = blkno;
26051 	while (dma_resid != 0) {
26052 #endif
26053 
26054 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26055 		wr_bp->b_flags &= ~B_ERROR;
26056 
26057 #if defined(__i386) || defined(__amd64)
26058 		blkno = oblkno +
26059 			((wr_bp->b_bcount - dma_resid) /
26060 			    un->un_tgt_blocksize);
26061 		nblk = dma_resid / un->un_tgt_blocksize;
26062 
26063 		if (wr_pktp) {
26064 			/* Partial DMA transfers after initial transfer */
26065 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26066 			    blkno, nblk);
26067 		} else {
26068 			/* Initial transfer */
26069 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26070 			    un->un_pkt_flags, NULL_FUNC, NULL,
26071 			    blkno, nblk);
26072 		}
26073 #else
26074 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26075 		    0, NULL_FUNC, NULL, blkno, nblk);
26076 #endif
26077 
26078 		if (rval == 0) {
26079 			/* We were given a SCSI packet, continue. */
26080 			break;
26081 		}
26082 
26083 		if (i == 0) {
26084 			if (wr_bp->b_flags & B_ERROR) {
26085 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26086 				    "no resources for dumping; "
26087 				    "error code: 0x%x, retrying",
26088 				    geterror(wr_bp));
26089 			} else {
26090 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26091 				    "no resources for dumping; retrying");
26092 			}
26093 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26094 			if (wr_bp->b_flags & B_ERROR) {
26095 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26096 				    "no resources for dumping; error code: "
26097 				    "0x%x, retrying\n", geterror(wr_bp));
26098 			}
26099 		} else {
26100 			if (wr_bp->b_flags & B_ERROR) {
26101 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26102 				    "no resources for dumping; "
26103 				    "error code: 0x%x, retries failed, "
26104 				    "giving up.\n", geterror(wr_bp));
26105 			} else {
26106 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26107 				    "no resources for dumping; "
26108 				    "retries failed, giving up.\n");
26109 			}
26110 			mutex_enter(SD_MUTEX(un));
26111 			Restore_state(un);
26112 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26113 				mutex_exit(SD_MUTEX(un));
26114 				scsi_free_consistent_buf(wr_bp);
26115 			} else {
26116 				mutex_exit(SD_MUTEX(un));
26117 			}
26118 			return (EIO);
26119 		}
26120 		drv_usecwait(10000);
26121 	}
26122 
26123 #if defined(__i386) || defined(__amd64)
26124 	/*
26125 	 * save the resid from PARTIAL_DMA
26126 	 */
26127 	dma_resid = wr_pktp->pkt_resid;
26128 	if (dma_resid != 0)
26129 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26130 	wr_pktp->pkt_resid = 0;
26131 #endif
26132 
26133 	/* SunBug 1222170 */
26134 	wr_pktp->pkt_flags = FLAG_NOINTR;
26135 
26136 	err = EIO;
26137 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26138 
26139 		/*
26140 		 * Scsi_poll returns 0 (success) if the command completes and
26141 		 * the status block is STATUS_GOOD.  We should only check
26142 		 * errors if this condition is not true.  Even then we should
26143 		 * send our own request sense packet only if we have a check
26144 		 * condition and auto request sense has not been performed by
26145 		 * the hba.
26146 		 */
26147 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26148 
26149 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26150 		    (wr_pktp->pkt_resid == 0)) {
26151 			err = SD_SUCCESS;
26152 			break;
26153 		}
26154 
26155 		/*
26156 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26157 		 */
26158 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26159 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26160 			    "Device is gone\n");
26161 			break;
26162 		}
26163 
26164 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26165 			SD_INFO(SD_LOG_DUMP, un,
26166 			    "sddump: write failed with CHECK, try # %d\n", i);
26167 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26168 				(void) sd_send_polled_RQS(un);
26169 			}
26170 
26171 			continue;
26172 		}
26173 
26174 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26175 			int reset_retval = 0;
26176 
26177 			SD_INFO(SD_LOG_DUMP, un,
26178 			    "sddump: write failed with BUSY, try # %d\n", i);
26179 
26180 			if (un->un_f_lun_reset_enabled == TRUE) {
26181 				reset_retval = scsi_reset(SD_ADDRESS(un),
26182 				    RESET_LUN);
26183 			}
26184 			if (reset_retval == 0) {
26185 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26186 			}
26187 			(void) sd_send_polled_RQS(un);
26188 
26189 		} else {
26190 			SD_INFO(SD_LOG_DUMP, un,
26191 			    "sddump: write failed with 0x%x, try # %d\n",
26192 			    SD_GET_PKT_STATUS(wr_pktp), i);
26193 			mutex_enter(SD_MUTEX(un));
26194 			sd_reset_target(un, wr_pktp);
26195 			mutex_exit(SD_MUTEX(un));
26196 		}
26197 
26198 		/*
26199 		 * If we are not getting anywhere with lun/target resets,
26200 		 * let's reset the bus.
26201 		 */
26202 		if (i == SD_NDUMP_RETRIES/2) {
26203 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26204 			(void) sd_send_polled_RQS(un);
26205 		}
26206 
26207 	}
26208 #if defined(__i386) || defined(__amd64)
26209 	}	/* dma_resid */
26210 #endif
26211 
26212 	scsi_destroy_pkt(wr_pktp);
26213 	mutex_enter(SD_MUTEX(un));
26214 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26215 		mutex_exit(SD_MUTEX(un));
26216 		scsi_free_consistent_buf(wr_bp);
26217 	} else {
26218 		mutex_exit(SD_MUTEX(un));
26219 	}
26220 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26221 	return (err);
26222 }
26223 
26224 /*
26225  *    Function: sd_scsi_poll()
26226  *
26227  * Description: This is a wrapper for the scsi_poll call.
26228  *
26229  *   Arguments: sd_lun - The unit structure
26230  *              scsi_pkt - The scsi packet being sent to the device.
26231  *
26232  * Return Code: 0 - Command completed successfully with good status
26233  *             -1 - Command failed.  This could indicate a check condition
26234  *                  or other status value requiring recovery action.
26235  *
26236  */
26237 
26238 static int
26239 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26240 {
26241 	int status;
26242 
26243 	ASSERT(un != NULL);
26244 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26245 	ASSERT(pktp != NULL);
26246 
26247 	status = SD_SUCCESS;
26248 
26249 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26250 		pktp->pkt_flags |= un->un_tagflags;
26251 		pktp->pkt_flags &= ~FLAG_NODISCON;
26252 	}
26253 
26254 	status = sd_ddi_scsi_poll(pktp);
26255 	/*
26256 	 * Scsi_poll returns 0 (success) if the command completes and the
26257 	 * status block is STATUS_GOOD.  We should only check errors if this
26258 	 * condition is not true.  Even then we should send our own request
26259 	 * sense packet only if we have a check condition and auto
26260 	 * request sense has not been performed by the hba.
26261 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26262 	 */
26263 	if ((status != SD_SUCCESS) &&
26264 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26265 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26266 	    (pktp->pkt_reason != CMD_DEV_GONE))
26267 		(void) sd_send_polled_RQS(un);
26268 
26269 	return (status);
26270 }
26271 
26272 /*
26273  *    Function: sd_send_polled_RQS()
26274  *
26275  * Description: This sends the request sense command to a device.
26276  *
26277  *   Arguments: sd_lun - The unit structure
26278  *
26279  * Return Code: 0 - Command completed successfully with good status
26280  *             -1 - Command failed.
26281  *
26282  */
26283 
26284 static int
26285 sd_send_polled_RQS(struct sd_lun *un)
26286 {
26287 	int	ret_val;
26288 	struct	scsi_pkt	*rqs_pktp;
26289 	struct	buf		*rqs_bp;
26290 
26291 	ASSERT(un != NULL);
26292 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26293 
26294 	ret_val = SD_SUCCESS;
26295 
26296 	rqs_pktp = un->un_rqs_pktp;
26297 	rqs_bp	 = un->un_rqs_bp;
26298 
26299 	mutex_enter(SD_MUTEX(un));
26300 
26301 	if (un->un_sense_isbusy) {
26302 		ret_val = SD_FAILURE;
26303 		mutex_exit(SD_MUTEX(un));
26304 		return (ret_val);
26305 	}
26306 
26307 	/*
26308 	 * If the request sense buffer (and packet) is not in use,
26309 	 * let's set the un_sense_isbusy and send our packet
26310 	 */
26311 	un->un_sense_isbusy 	= 1;
26312 	rqs_pktp->pkt_resid  	= 0;
26313 	rqs_pktp->pkt_reason 	= 0;
26314 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26315 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26316 
26317 	mutex_exit(SD_MUTEX(un));
26318 
26319 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26320 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26321 
26322 	/*
26323 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26324 	 * axle - it has a call into us!
26325 	 */
26326 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26327 		SD_INFO(SD_LOG_COMMON, un,
26328 		    "sd_send_polled_RQS: RQS failed\n");
26329 	}
26330 
26331 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26332 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26333 
26334 	mutex_enter(SD_MUTEX(un));
26335 	un->un_sense_isbusy = 0;
26336 	mutex_exit(SD_MUTEX(un));
26337 
26338 	return (ret_val);
26339 }
26340 
26341 /*
26342  * Defines needed for localized version of the scsi_poll routine.
26343  */
26344 #define	SD_CSEC		10000			/* usecs */
26345 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26346 
26347 
26348 /*
26349  *    Function: sd_ddi_scsi_poll()
26350  *
26351  * Description: Localized version of the scsi_poll routine.  The purpose is to
26352  *		send a scsi_pkt to a device as a polled command.  This version
26353  *		is to ensure more robust handling of transport errors.
26354  *		Specifically this routine cures not ready, coming ready
26355  *		transition for power up and reset of sonoma's.  This can take
26356  *		up to 45 seconds for power-on and 20 seconds for reset of a
26357  * 		sonoma lun.
26358  *
26359  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26360  *
26361  * Return Code: 0 - Command completed successfully with good status
26362  *             -1 - Command failed.
26363  *
26364  */
26365 
26366 static int
26367 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26368 {
26369 	int busy_count;
26370 	int timeout;
26371 	int rval = SD_FAILURE;
26372 	int savef;
26373 	struct scsi_extended_sense *sensep;
26374 	long savet;
26375 	void (*savec)();
26376 	/*
26377 	 * The following is defined in machdep.c and is used in determining if
26378 	 * the scsi transport system will do polled I/O instead of interrupt
26379 	 * I/O when called from xx_dump().
26380 	 */
26381 	extern int do_polled_io;
26382 
26383 	/*
26384 	 * save old flags in pkt, to restore at end
26385 	 */
26386 	savef = pkt->pkt_flags;
26387 	savec = pkt->pkt_comp;
26388 	savet = pkt->pkt_time;
26389 
26390 	pkt->pkt_flags |= FLAG_NOINTR;
26391 
26392 	/*
26393 	 * XXX there is nothing in the SCSA spec that states that we should not
26394 	 * do a callback for polled cmds; however, removing this will break sd
26395 	 * and probably other target drivers
26396 	 */
26397 	pkt->pkt_comp = NULL;
26398 
26399 	/*
26400 	 * we don't like a polled command without timeout.
26401 	 * 60 seconds seems long enough.
26402 	 */
26403 	if (pkt->pkt_time == 0) {
26404 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26405 	}
26406 
26407 	/*
26408 	 * Send polled cmd.
26409 	 *
26410 	 * We do some error recovery for various errors.  Tran_busy,
26411 	 * queue full, and non-dispatched commands are retried every 10 msec.
26412 	 * as they are typically transient failures.  Busy status and Not
26413 	 * Ready are retried every second as this status takes a while to
26414 	 * change.  Unit attention is retried for pkt_time (60) times
26415 	 * with no delay.
26416 	 */
26417 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26418 
26419 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26420 		int rc;
26421 		int poll_delay;
26422 
26423 		/*
26424 		 * Initialize pkt status variables.
26425 		 */
26426 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26427 
26428 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26429 			if (rc != TRAN_BUSY) {
26430 				/* Transport failed - give up. */
26431 				break;
26432 			} else {
26433 				/* Transport busy - try again. */
26434 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26435 			}
26436 		} else {
26437 			/*
26438 			 * Transport accepted - check pkt status.
26439 			 */
26440 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26441 			if (pkt->pkt_reason == CMD_CMPLT &&
26442 			    rc == STATUS_CHECK &&
26443 			    pkt->pkt_state & STATE_ARQ_DONE) {
26444 				struct scsi_arq_status *arqstat =
26445 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26446 
26447 				sensep = &arqstat->sts_sensedata;
26448 			} else {
26449 				sensep = NULL;
26450 			}
26451 
26452 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26453 			    (rc == STATUS_GOOD)) {
26454 				/* No error - we're done */
26455 				rval = SD_SUCCESS;
26456 				break;
26457 
26458 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26459 				/* Lost connection - give up */
26460 				break;
26461 
26462 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26463 			    (pkt->pkt_state == 0)) {
26464 				/* Pkt not dispatched - try again. */
26465 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26466 
26467 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26468 			    (rc == STATUS_QFULL)) {
26469 				/* Queue full - try again. */
26470 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26471 
26472 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26473 			    (rc == STATUS_BUSY)) {
26474 				/* Busy - try again. */
26475 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26476 				busy_count += (SD_SEC_TO_CSEC - 1);
26477 
26478 			} else if ((sensep != NULL) &&
26479 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26480 				/* Unit Attention - try again */
26481 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26482 				continue;
26483 
26484 			} else if ((sensep != NULL) &&
26485 			    (sensep->es_key == KEY_NOT_READY) &&
26486 			    (sensep->es_add_code == 0x04) &&
26487 			    (sensep->es_qual_code == 0x01)) {
26488 				/* Not ready -> ready - try again. */
26489 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26490 				busy_count += (SD_SEC_TO_CSEC - 1);
26491 
26492 			} else {
26493 				/* BAD status - give up. */
26494 				break;
26495 			}
26496 		}
26497 
26498 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26499 		    !do_polled_io) {
26500 			delay(drv_usectohz(poll_delay));
26501 		} else {
26502 			/* we busy wait during cpr_dump or interrupt threads */
26503 			drv_usecwait(poll_delay);
26504 		}
26505 	}
26506 
26507 	pkt->pkt_flags = savef;
26508 	pkt->pkt_comp = savec;
26509 	pkt->pkt_time = savet;
26510 	return (rval);
26511 }
26512 
26513 
26514 /*
26515  *    Function: sd_persistent_reservation_in_read_keys
26516  *
26517  * Description: This routine is the driver entry point for handling CD-ROM
26518  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26519  *		by sending the SCSI-3 PRIN commands to the device.
26520  *		Processes the read keys command response by copying the
26521  *		reservation key information into the user provided buffer.
26522  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26523  *
26524  *   Arguments: un   -  Pointer to soft state struct for the target.
26525  *		usrp -	user provided pointer to multihost Persistent In Read
26526  *			Keys structure (mhioc_inkeys_t)
26527  *		flag -	this argument is a pass through to ddi_copyxxx()
26528  *			directly from the mode argument of ioctl().
26529  *
26530  * Return Code: 0   - Success
26531  *		EACCES
26532  *		ENOTSUP
26533  *		errno return code from sd_send_scsi_cmd()
26534  *
26535  *     Context: Can sleep. Does not return until command is completed.
26536  */
26537 
26538 static int
26539 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26540     mhioc_inkeys_t *usrp, int flag)
26541 {
26542 #ifdef _MULTI_DATAMODEL
26543 	struct mhioc_key_list32	li32;
26544 #endif
26545 	sd_prin_readkeys_t	*in;
26546 	mhioc_inkeys_t		*ptr;
26547 	mhioc_key_list_t	li;
26548 	uchar_t			*data_bufp;
26549 	int 			data_len;
26550 	int			rval;
26551 	size_t			copysz;
26552 
26553 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26554 		return (EINVAL);
26555 	}
26556 	bzero(&li, sizeof (mhioc_key_list_t));
26557 
26558 	/*
26559 	 * Get the listsize from user
26560 	 */
26561 #ifdef _MULTI_DATAMODEL
26562 
26563 	switch (ddi_model_convert_from(flag & FMODELS)) {
26564 	case DDI_MODEL_ILP32:
26565 		copysz = sizeof (struct mhioc_key_list32);
26566 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26567 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26568 			    "sd_persistent_reservation_in_read_keys: "
26569 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26570 			rval = EFAULT;
26571 			goto done;
26572 		}
26573 		li.listsize = li32.listsize;
26574 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26575 		break;
26576 
26577 	case DDI_MODEL_NONE:
26578 		copysz = sizeof (mhioc_key_list_t);
26579 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26580 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26581 			    "sd_persistent_reservation_in_read_keys: "
26582 			    "failed ddi_copyin: mhioc_key_list_t\n");
26583 			rval = EFAULT;
26584 			goto done;
26585 		}
26586 		break;
26587 	}
26588 
26589 #else /* ! _MULTI_DATAMODEL */
26590 	copysz = sizeof (mhioc_key_list_t);
26591 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26592 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26593 		    "sd_persistent_reservation_in_read_keys: "
26594 		    "failed ddi_copyin: mhioc_key_list_t\n");
26595 		rval = EFAULT;
26596 		goto done;
26597 	}
26598 #endif
26599 
26600 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26601 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26602 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26603 
26604 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26605 	    data_len, data_bufp)) != 0) {
26606 		goto done;
26607 	}
26608 	in = (sd_prin_readkeys_t *)data_bufp;
26609 	ptr->generation = BE_32(in->generation);
26610 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26611 
26612 	/*
26613 	 * Return the min(listsize, listlen) keys
26614 	 */
26615 #ifdef _MULTI_DATAMODEL
26616 
26617 	switch (ddi_model_convert_from(flag & FMODELS)) {
26618 	case DDI_MODEL_ILP32:
26619 		li32.listlen = li.listlen;
26620 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26621 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26622 			    "sd_persistent_reservation_in_read_keys: "
26623 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26624 			rval = EFAULT;
26625 			goto done;
26626 		}
26627 		break;
26628 
26629 	case DDI_MODEL_NONE:
26630 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26631 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26632 			    "sd_persistent_reservation_in_read_keys: "
26633 			    "failed ddi_copyout: mhioc_key_list_t\n");
26634 			rval = EFAULT;
26635 			goto done;
26636 		}
26637 		break;
26638 	}
26639 
26640 #else /* ! _MULTI_DATAMODEL */
26641 
26642 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26643 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26644 		    "sd_persistent_reservation_in_read_keys: "
26645 		    "failed ddi_copyout: mhioc_key_list_t\n");
26646 		rval = EFAULT;
26647 		goto done;
26648 	}
26649 
26650 #endif /* _MULTI_DATAMODEL */
26651 
26652 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26653 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26654 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26655 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26656 		    "sd_persistent_reservation_in_read_keys: "
26657 		    "failed ddi_copyout: keylist\n");
26658 		rval = EFAULT;
26659 	}
26660 done:
26661 	kmem_free(data_bufp, data_len);
26662 	return (rval);
26663 }
26664 
26665 
26666 /*
26667  *    Function: sd_persistent_reservation_in_read_resv
26668  *
26669  * Description: This routine is the driver entry point for handling CD-ROM
26670  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26671  *		by sending the SCSI-3 PRIN commands to the device.
26672  *		Process the read persistent reservations command response by
26673  *		copying the reservation information into the user provided
26674  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26675  *
26676  *   Arguments: un   -  Pointer to soft state struct for the target.
26677  *		usrp -	user provided pointer to multihost Persistent In Read
26678  *			Keys structure (mhioc_inkeys_t)
26679  *		flag -	this argument is a pass through to ddi_copyxxx()
26680  *			directly from the mode argument of ioctl().
26681  *
26682  * Return Code: 0   - Success
26683  *		EACCES
26684  *		ENOTSUP
26685  *		errno return code from sd_send_scsi_cmd()
26686  *
26687  *     Context: Can sleep. Does not return until command is completed.
26688  */
26689 
26690 static int
26691 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26692     mhioc_inresvs_t *usrp, int flag)
26693 {
26694 #ifdef _MULTI_DATAMODEL
26695 	struct mhioc_resv_desc_list32 resvlist32;
26696 #endif
26697 	sd_prin_readresv_t	*in;
26698 	mhioc_inresvs_t		*ptr;
26699 	sd_readresv_desc_t	*readresv_ptr;
26700 	mhioc_resv_desc_list_t	resvlist;
26701 	mhioc_resv_desc_t 	resvdesc;
26702 	uchar_t			*data_bufp;
26703 	int 			data_len;
26704 	int			rval;
26705 	int			i;
26706 	size_t			copysz;
26707 	mhioc_resv_desc_t	*bufp;
26708 
26709 	if ((ptr = usrp) == NULL) {
26710 		return (EINVAL);
26711 	}
26712 
26713 	/*
26714 	 * Get the listsize from user
26715 	 */
26716 #ifdef _MULTI_DATAMODEL
26717 	switch (ddi_model_convert_from(flag & FMODELS)) {
26718 	case DDI_MODEL_ILP32:
26719 		copysz = sizeof (struct mhioc_resv_desc_list32);
26720 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26721 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26722 			    "sd_persistent_reservation_in_read_resv: "
26723 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26724 			rval = EFAULT;
26725 			goto done;
26726 		}
26727 		resvlist.listsize = resvlist32.listsize;
26728 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26729 		break;
26730 
26731 	case DDI_MODEL_NONE:
26732 		copysz = sizeof (mhioc_resv_desc_list_t);
26733 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26734 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26735 			    "sd_persistent_reservation_in_read_resv: "
26736 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26737 			rval = EFAULT;
26738 			goto done;
26739 		}
26740 		break;
26741 	}
26742 #else /* ! _MULTI_DATAMODEL */
26743 	copysz = sizeof (mhioc_resv_desc_list_t);
26744 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26745 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26746 		    "sd_persistent_reservation_in_read_resv: "
26747 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26748 		rval = EFAULT;
26749 		goto done;
26750 	}
26751 #endif /* ! _MULTI_DATAMODEL */
26752 
26753 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26754 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26755 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26756 
26757 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26758 	    data_len, data_bufp)) != 0) {
26759 		goto done;
26760 	}
26761 	in = (sd_prin_readresv_t *)data_bufp;
26762 	ptr->generation = BE_32(in->generation);
26763 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26764 
26765 	/*
26766 	 * Return the min(listsize, listlen( keys
26767 	 */
26768 #ifdef _MULTI_DATAMODEL
26769 
26770 	switch (ddi_model_convert_from(flag & FMODELS)) {
26771 	case DDI_MODEL_ILP32:
26772 		resvlist32.listlen = resvlist.listlen;
26773 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26774 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26775 			    "sd_persistent_reservation_in_read_resv: "
26776 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26777 			rval = EFAULT;
26778 			goto done;
26779 		}
26780 		break;
26781 
26782 	case DDI_MODEL_NONE:
26783 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26784 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26785 			    "sd_persistent_reservation_in_read_resv: "
26786 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26787 			rval = EFAULT;
26788 			goto done;
26789 		}
26790 		break;
26791 	}
26792 
26793 #else /* ! _MULTI_DATAMODEL */
26794 
26795 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26796 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26797 		    "sd_persistent_reservation_in_read_resv: "
26798 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26799 		rval = EFAULT;
26800 		goto done;
26801 	}
26802 
26803 #endif /* ! _MULTI_DATAMODEL */
26804 
26805 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26806 	bufp = resvlist.list;
26807 	copysz = sizeof (mhioc_resv_desc_t);
26808 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26809 	    i++, readresv_ptr++, bufp++) {
26810 
26811 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26812 		    MHIOC_RESV_KEY_SIZE);
26813 		resvdesc.type  = readresv_ptr->type;
26814 		resvdesc.scope = readresv_ptr->scope;
26815 		resvdesc.scope_specific_addr =
26816 		    BE_32(readresv_ptr->scope_specific_addr);
26817 
26818 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26819 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26820 			    "sd_persistent_reservation_in_read_resv: "
26821 			    "failed ddi_copyout: resvlist\n");
26822 			rval = EFAULT;
26823 			goto done;
26824 		}
26825 	}
26826 done:
26827 	kmem_free(data_bufp, data_len);
26828 	return (rval);
26829 }
26830 
26831 
26832 /*
26833  *    Function: sr_change_blkmode()
26834  *
26835  * Description: This routine is the driver entry point for handling CD-ROM
26836  *		block mode ioctl requests. Support for returning and changing
26837  *		the current block size in use by the device is implemented. The
26838  *		LBA size is changed via a MODE SELECT Block Descriptor.
26839  *
26840  *		This routine issues a mode sense with an allocation length of
26841  *		12 bytes for the mode page header and a single block descriptor.
26842  *
26843  *   Arguments: dev - the device 'dev_t'
26844  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26845  *		      CDROMSBLKMODE (set)
26846  *		data - current block size or requested block size
26847  *		flag - this argument is a pass through to ddi_copyxxx() directly
26848  *		       from the mode argument of ioctl().
26849  *
26850  * Return Code: the code returned by sd_send_scsi_cmd()
26851  *		EINVAL if invalid arguments are provided
26852  *		EFAULT if ddi_copyxxx() fails
26853  *		ENXIO if fail ddi_get_soft_state
26854  *		EIO if invalid mode sense block descriptor length
26855  *
26856  */
26857 
26858 static int
26859 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26860 {
26861 	struct sd_lun			*un = NULL;
26862 	struct mode_header		*sense_mhp, *select_mhp;
26863 	struct block_descriptor		*sense_desc, *select_desc;
26864 	int				current_bsize;
26865 	int				rval = EINVAL;
26866 	uchar_t				*sense = NULL;
26867 	uchar_t				*select = NULL;
26868 
26869 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26870 
26871 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26872 		return (ENXIO);
26873 	}
26874 
26875 	/*
26876 	 * The block length is changed via the Mode Select block descriptor, the
26877 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26878 	 * required as part of this routine. Therefore the mode sense allocation
26879 	 * length is specified to be the length of a mode page header and a
26880 	 * block descriptor.
26881 	 */
26882 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26883 
26884 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26885 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26886 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26887 		    "sr_change_blkmode: Mode Sense Failed\n");
26888 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26889 		return (rval);
26890 	}
26891 
26892 	/* Check the block descriptor len to handle only 1 block descriptor */
26893 	sense_mhp = (struct mode_header *)sense;
26894 	if ((sense_mhp->bdesc_length == 0) ||
26895 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26896 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26897 		    "sr_change_blkmode: Mode Sense returned invalid block"
26898 		    " descriptor length\n");
26899 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26900 		return (EIO);
26901 	}
26902 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26903 	current_bsize = ((sense_desc->blksize_hi << 16) |
26904 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26905 
26906 	/* Process command */
26907 	switch (cmd) {
26908 	case CDROMGBLKMODE:
26909 		/* Return the block size obtained during the mode sense */
26910 		if (ddi_copyout(&current_bsize, (void *)data,
26911 		    sizeof (int), flag) != 0)
26912 			rval = EFAULT;
26913 		break;
26914 	case CDROMSBLKMODE:
26915 		/* Validate the requested block size */
26916 		switch (data) {
26917 		case CDROM_BLK_512:
26918 		case CDROM_BLK_1024:
26919 		case CDROM_BLK_2048:
26920 		case CDROM_BLK_2056:
26921 		case CDROM_BLK_2336:
26922 		case CDROM_BLK_2340:
26923 		case CDROM_BLK_2352:
26924 		case CDROM_BLK_2368:
26925 		case CDROM_BLK_2448:
26926 		case CDROM_BLK_2646:
26927 		case CDROM_BLK_2647:
26928 			break;
26929 		default:
26930 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26931 			    "sr_change_blkmode: "
26932 			    "Block Size '%ld' Not Supported\n", data);
26933 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26934 			return (EINVAL);
26935 		}
26936 
26937 		/*
26938 		 * The current block size matches the requested block size so
26939 		 * there is no need to send the mode select to change the size
26940 		 */
26941 		if (current_bsize == data) {
26942 			break;
26943 		}
26944 
26945 		/* Build the select data for the requested block size */
26946 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26947 		select_mhp = (struct mode_header *)select;
26948 		select_desc =
26949 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26950 		/*
26951 		 * The LBA size is changed via the block descriptor, so the
26952 		 * descriptor is built according to the user data
26953 		 */
26954 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26955 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26956 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26957 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26958 
26959 		/* Send the mode select for the requested block size */
26960 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26961 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26962 		    SD_PATH_STANDARD)) != 0) {
26963 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26964 			    "sr_change_blkmode: Mode Select Failed\n");
26965 			/*
26966 			 * The mode select failed for the requested block size,
26967 			 * so reset the data for the original block size and
26968 			 * send it to the target. The error is indicated by the
26969 			 * return value for the failed mode select.
26970 			 */
26971 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26972 			select_desc->blksize_mid = sense_desc->blksize_mid;
26973 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26974 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26975 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26976 			    SD_PATH_STANDARD);
26977 		} else {
26978 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26979 			mutex_enter(SD_MUTEX(un));
26980 			sd_update_block_info(un, (uint32_t)data, 0);
26981 
26982 			mutex_exit(SD_MUTEX(un));
26983 		}
26984 		break;
26985 	default:
26986 		/* should not reach here, but check anyway */
26987 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26988 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26989 		rval = EINVAL;
26990 		break;
26991 	}
26992 
26993 	if (select) {
26994 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26995 	}
26996 	if (sense) {
26997 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26998 	}
26999 	return (rval);
27000 }
27001 
27002 
27003 /*
27004  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27005  * implement driver support for getting and setting the CD speed. The command
27006  * set used will be based on the device type. If the device has not been
27007  * identified as MMC the Toshiba vendor specific mode page will be used. If
27008  * the device is MMC but does not support the Real Time Streaming feature
27009  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27010  * be used to read the speed.
27011  */
27012 
27013 /*
27014  *    Function: sr_change_speed()
27015  *
27016  * Description: This routine is the driver entry point for handling CD-ROM
27017  *		drive speed ioctl requests for devices supporting the Toshiba
27018  *		vendor specific drive speed mode page. Support for returning
27019  *		and changing the current drive speed in use by the device is
27020  *		implemented.
27021  *
27022  *   Arguments: dev - the device 'dev_t'
27023  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27024  *		      CDROMSDRVSPEED (set)
27025  *		data - current drive speed or requested drive speed
27026  *		flag - this argument is a pass through to ddi_copyxxx() directly
27027  *		       from the mode argument of ioctl().
27028  *
27029  * Return Code: the code returned by sd_send_scsi_cmd()
27030  *		EINVAL if invalid arguments are provided
27031  *		EFAULT if ddi_copyxxx() fails
27032  *		ENXIO if fail ddi_get_soft_state
27033  *		EIO if invalid mode sense block descriptor length
27034  */
27035 
27036 static int
27037 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27038 {
27039 	struct sd_lun			*un = NULL;
27040 	struct mode_header		*sense_mhp, *select_mhp;
27041 	struct mode_speed		*sense_page, *select_page;
27042 	int				current_speed;
27043 	int				rval = EINVAL;
27044 	int				bd_len;
27045 	uchar_t				*sense = NULL;
27046 	uchar_t				*select = NULL;
27047 
27048 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27049 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27050 		return (ENXIO);
27051 	}
27052 
27053 	/*
27054 	 * Note: The drive speed is being modified here according to a Toshiba
27055 	 * vendor specific mode page (0x31).
27056 	 */
27057 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27058 
27059 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27060 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27061 	    SD_PATH_STANDARD)) != 0) {
27062 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27063 		    "sr_change_speed: Mode Sense Failed\n");
27064 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27065 		return (rval);
27066 	}
27067 	sense_mhp  = (struct mode_header *)sense;
27068 
27069 	/* Check the block descriptor len to handle only 1 block descriptor */
27070 	bd_len = sense_mhp->bdesc_length;
27071 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27072 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27073 		    "sr_change_speed: Mode Sense returned invalid block "
27074 		    "descriptor length\n");
27075 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27076 		return (EIO);
27077 	}
27078 
27079 	sense_page = (struct mode_speed *)
27080 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27081 	current_speed = sense_page->speed;
27082 
27083 	/* Process command */
27084 	switch (cmd) {
27085 	case CDROMGDRVSPEED:
27086 		/* Return the drive speed obtained during the mode sense */
27087 		if (current_speed == 0x2) {
27088 			current_speed = CDROM_TWELVE_SPEED;
27089 		}
27090 		if (ddi_copyout(&current_speed, (void *)data,
27091 		    sizeof (int), flag) != 0) {
27092 			rval = EFAULT;
27093 		}
27094 		break;
27095 	case CDROMSDRVSPEED:
27096 		/* Validate the requested drive speed */
27097 		switch ((uchar_t)data) {
27098 		case CDROM_TWELVE_SPEED:
27099 			data = 0x2;
27100 			/*FALLTHROUGH*/
27101 		case CDROM_NORMAL_SPEED:
27102 		case CDROM_DOUBLE_SPEED:
27103 		case CDROM_QUAD_SPEED:
27104 		case CDROM_MAXIMUM_SPEED:
27105 			break;
27106 		default:
27107 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27108 			    "sr_change_speed: "
27109 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27110 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27111 			return (EINVAL);
27112 		}
27113 
27114 		/*
27115 		 * The current drive speed matches the requested drive speed so
27116 		 * there is no need to send the mode select to change the speed
27117 		 */
27118 		if (current_speed == data) {
27119 			break;
27120 		}
27121 
27122 		/* Build the select data for the requested drive speed */
27123 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27124 		select_mhp = (struct mode_header *)select;
27125 		select_mhp->bdesc_length = 0;
27126 		select_page =
27127 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27128 		select_page =
27129 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27130 		select_page->mode_page.code = CDROM_MODE_SPEED;
27131 		select_page->mode_page.length = 2;
27132 		select_page->speed = (uchar_t)data;
27133 
27134 		/* Send the mode select for the requested block size */
27135 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27136 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27137 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27138 			/*
27139 			 * The mode select failed for the requested drive speed,
27140 			 * so reset the data for the original drive speed and
27141 			 * send it to the target. The error is indicated by the
27142 			 * return value for the failed mode select.
27143 			 */
27144 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27145 			    "sr_drive_speed: Mode Select Failed\n");
27146 			select_page->speed = sense_page->speed;
27147 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27148 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27149 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27150 		}
27151 		break;
27152 	default:
27153 		/* should not reach here, but check anyway */
27154 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27155 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27156 		rval = EINVAL;
27157 		break;
27158 	}
27159 
27160 	if (select) {
27161 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27162 	}
27163 	if (sense) {
27164 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27165 	}
27166 
27167 	return (rval);
27168 }
27169 
27170 
27171 /*
27172  *    Function: sr_atapi_change_speed()
27173  *
27174  * Description: This routine is the driver entry point for handling CD-ROM
27175  *		drive speed ioctl requests for MMC devices that do not support
27176  *		the Real Time Streaming feature (0x107).
27177  *
27178  *		Note: This routine will use the SET SPEED command which may not
27179  *		be supported by all devices.
27180  *
27181  *   Arguments: dev- the device 'dev_t'
27182  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27183  *		     CDROMSDRVSPEED (set)
27184  *		data- current drive speed or requested drive speed
27185  *		flag- this argument is a pass through to ddi_copyxxx() directly
27186  *		      from the mode argument of ioctl().
27187  *
27188  * Return Code: the code returned by sd_send_scsi_cmd()
27189  *		EINVAL if invalid arguments are provided
27190  *		EFAULT if ddi_copyxxx() fails
27191  *		ENXIO if fail ddi_get_soft_state
27192  *		EIO if invalid mode sense block descriptor length
27193  */
27194 
27195 static int
27196 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27197 {
27198 	struct sd_lun			*un;
27199 	struct uscsi_cmd		*com = NULL;
27200 	struct mode_header_grp2		*sense_mhp;
27201 	uchar_t				*sense_page;
27202 	uchar_t				*sense = NULL;
27203 	char				cdb[CDB_GROUP5];
27204 	int				bd_len;
27205 	int				current_speed = 0;
27206 	int				max_speed = 0;
27207 	int				rval;
27208 
27209 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27210 
27211 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27212 		return (ENXIO);
27213 	}
27214 
27215 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27216 
27217 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27218 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27219 	    SD_PATH_STANDARD)) != 0) {
27220 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27221 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27222 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27223 		return (rval);
27224 	}
27225 
27226 	/* Check the block descriptor len to handle only 1 block descriptor */
27227 	sense_mhp = (struct mode_header_grp2 *)sense;
27228 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27229 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27230 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27231 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27232 		    "block descriptor length\n");
27233 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27234 		return (EIO);
27235 	}
27236 
27237 	/* Calculate the current and maximum drive speeds */
27238 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27239 	current_speed = (sense_page[14] << 8) | sense_page[15];
27240 	max_speed = (sense_page[8] << 8) | sense_page[9];
27241 
27242 	/* Process the command */
27243 	switch (cmd) {
27244 	case CDROMGDRVSPEED:
27245 		current_speed /= SD_SPEED_1X;
27246 		if (ddi_copyout(&current_speed, (void *)data,
27247 		    sizeof (int), flag) != 0)
27248 			rval = EFAULT;
27249 		break;
27250 	case CDROMSDRVSPEED:
27251 		/* Convert the speed code to KB/sec */
27252 		switch ((uchar_t)data) {
27253 		case CDROM_NORMAL_SPEED:
27254 			current_speed = SD_SPEED_1X;
27255 			break;
27256 		case CDROM_DOUBLE_SPEED:
27257 			current_speed = 2 * SD_SPEED_1X;
27258 			break;
27259 		case CDROM_QUAD_SPEED:
27260 			current_speed = 4 * SD_SPEED_1X;
27261 			break;
27262 		case CDROM_TWELVE_SPEED:
27263 			current_speed = 12 * SD_SPEED_1X;
27264 			break;
27265 		case CDROM_MAXIMUM_SPEED:
27266 			current_speed = 0xffff;
27267 			break;
27268 		default:
27269 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27270 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27271 			    (uchar_t)data);
27272 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27273 			return (EINVAL);
27274 		}
27275 
27276 		/* Check the request against the drive's max speed. */
27277 		if (current_speed != 0xffff) {
27278 			if (current_speed > max_speed) {
27279 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27280 				return (EINVAL);
27281 			}
27282 		}
27283 
27284 		/*
27285 		 * Build and send the SET SPEED command
27286 		 *
27287 		 * Note: The SET SPEED (0xBB) command used in this routine is
27288 		 * obsolete per the SCSI MMC spec but still supported in the
27289 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27290 		 * therefore the command is still implemented in this routine.
27291 		 */
27292 		bzero(cdb, sizeof (cdb));
27293 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27294 		cdb[2] = (uchar_t)(current_speed >> 8);
27295 		cdb[3] = (uchar_t)current_speed;
27296 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27297 		com->uscsi_cdb	   = (caddr_t)cdb;
27298 		com->uscsi_cdblen  = CDB_GROUP5;
27299 		com->uscsi_bufaddr = NULL;
27300 		com->uscsi_buflen  = 0;
27301 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27302 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27303 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27304 		break;
27305 	default:
27306 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27307 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27308 		rval = EINVAL;
27309 	}
27310 
27311 	if (sense) {
27312 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27313 	}
27314 	if (com) {
27315 		kmem_free(com, sizeof (*com));
27316 	}
27317 	return (rval);
27318 }
27319 
27320 
27321 /*
27322  *    Function: sr_pause_resume()
27323  *
27324  * Description: This routine is the driver entry point for handling CD-ROM
27325  *		pause/resume ioctl requests. This only affects the audio play
27326  *		operation.
27327  *
27328  *   Arguments: dev - the device 'dev_t'
27329  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27330  *		      for setting the resume bit of the cdb.
27331  *
27332  * Return Code: the code returned by sd_send_scsi_cmd()
27333  *		EINVAL if invalid mode specified
27334  *
27335  */
27336 
27337 static int
27338 sr_pause_resume(dev_t dev, int cmd)
27339 {
27340 	struct sd_lun		*un;
27341 	struct uscsi_cmd	*com;
27342 	char			cdb[CDB_GROUP1];
27343 	int			rval;
27344 
27345 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27346 		return (ENXIO);
27347 	}
27348 
27349 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27350 	bzero(cdb, CDB_GROUP1);
27351 	cdb[0] = SCMD_PAUSE_RESUME;
27352 	switch (cmd) {
27353 	case CDROMRESUME:
27354 		cdb[8] = 1;
27355 		break;
27356 	case CDROMPAUSE:
27357 		cdb[8] = 0;
27358 		break;
27359 	default:
27360 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27361 		    " Command '%x' Not Supported\n", cmd);
27362 		rval = EINVAL;
27363 		goto done;
27364 	}
27365 
27366 	com->uscsi_cdb    = cdb;
27367 	com->uscsi_cdblen = CDB_GROUP1;
27368 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27369 
27370 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27371 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27372 
27373 done:
27374 	kmem_free(com, sizeof (*com));
27375 	return (rval);
27376 }
27377 
27378 
27379 /*
27380  *    Function: sr_play_msf()
27381  *
27382  * Description: This routine is the driver entry point for handling CD-ROM
27383  *		ioctl requests to output the audio signals at the specified
27384  *		starting address and continue the audio play until the specified
27385  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27386  *		Frame (MSF) format.
27387  *
27388  *   Arguments: dev	- the device 'dev_t'
27389  *		data	- pointer to user provided audio msf structure,
27390  *		          specifying start/end addresses.
27391  *		flag	- this argument is a pass through to ddi_copyxxx()
27392  *		          directly from the mode argument of ioctl().
27393  *
27394  * Return Code: the code returned by sd_send_scsi_cmd()
27395  *		EFAULT if ddi_copyxxx() fails
27396  *		ENXIO if fail ddi_get_soft_state
27397  *		EINVAL if data pointer is NULL
27398  */
27399 
27400 static int
27401 sr_play_msf(dev_t dev, caddr_t data, int flag)
27402 {
27403 	struct sd_lun		*un;
27404 	struct uscsi_cmd	*com;
27405 	struct cdrom_msf	msf_struct;
27406 	struct cdrom_msf	*msf = &msf_struct;
27407 	char			cdb[CDB_GROUP1];
27408 	int			rval;
27409 
27410 	if (data == NULL) {
27411 		return (EINVAL);
27412 	}
27413 
27414 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27415 		return (ENXIO);
27416 	}
27417 
27418 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27419 		return (EFAULT);
27420 	}
27421 
27422 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27423 	bzero(cdb, CDB_GROUP1);
27424 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27425 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27426 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27427 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27428 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27429 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27430 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27431 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27432 	} else {
27433 		cdb[3] = msf->cdmsf_min0;
27434 		cdb[4] = msf->cdmsf_sec0;
27435 		cdb[5] = msf->cdmsf_frame0;
27436 		cdb[6] = msf->cdmsf_min1;
27437 		cdb[7] = msf->cdmsf_sec1;
27438 		cdb[8] = msf->cdmsf_frame1;
27439 	}
27440 	com->uscsi_cdb    = cdb;
27441 	com->uscsi_cdblen = CDB_GROUP1;
27442 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27443 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27444 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27445 	kmem_free(com, sizeof (*com));
27446 	return (rval);
27447 }
27448 
27449 
27450 /*
27451  *    Function: sr_play_trkind()
27452  *
27453  * Description: This routine is the driver entry point for handling CD-ROM
27454  *		ioctl requests to output the audio signals at the specified
27455  *		starting address and continue the audio play until the specified
27456  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27457  *		format.
27458  *
27459  *   Arguments: dev	- the device 'dev_t'
27460  *		data	- pointer to user provided audio track/index structure,
27461  *		          specifying start/end addresses.
27462  *		flag	- this argument is a pass through to ddi_copyxxx()
27463  *		          directly from the mode argument of ioctl().
27464  *
27465  * Return Code: the code returned by sd_send_scsi_cmd()
27466  *		EFAULT if ddi_copyxxx() fails
27467  *		ENXIO if fail ddi_get_soft_state
27468  *		EINVAL if data pointer is NULL
27469  */
27470 
27471 static int
27472 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27473 {
27474 	struct cdrom_ti		ti_struct;
27475 	struct cdrom_ti		*ti = &ti_struct;
27476 	struct uscsi_cmd	*com = NULL;
27477 	char			cdb[CDB_GROUP1];
27478 	int			rval;
27479 
27480 	if (data == NULL) {
27481 		return (EINVAL);
27482 	}
27483 
27484 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27485 		return (EFAULT);
27486 	}
27487 
27488 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27489 	bzero(cdb, CDB_GROUP1);
27490 	cdb[0] = SCMD_PLAYAUDIO_TI;
27491 	cdb[4] = ti->cdti_trk0;
27492 	cdb[5] = ti->cdti_ind0;
27493 	cdb[7] = ti->cdti_trk1;
27494 	cdb[8] = ti->cdti_ind1;
27495 	com->uscsi_cdb    = cdb;
27496 	com->uscsi_cdblen = CDB_GROUP1;
27497 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27498 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27499 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27500 	kmem_free(com, sizeof (*com));
27501 	return (rval);
27502 }
27503 
27504 
27505 /*
27506  *    Function: sr_read_all_subcodes()
27507  *
27508  * Description: This routine is the driver entry point for handling CD-ROM
27509  *		ioctl requests to return raw subcode data while the target is
27510  *		playing audio (CDROMSUBCODE).
27511  *
27512  *   Arguments: dev	- the device 'dev_t'
27513  *		data	- pointer to user provided cdrom subcode structure,
27514  *		          specifying the transfer length and address.
27515  *		flag	- this argument is a pass through to ddi_copyxxx()
27516  *		          directly from the mode argument of ioctl().
27517  *
27518  * Return Code: the code returned by sd_send_scsi_cmd()
27519  *		EFAULT if ddi_copyxxx() fails
27520  *		ENXIO if fail ddi_get_soft_state
27521  *		EINVAL if data pointer is NULL
27522  */
27523 
27524 static int
27525 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27526 {
27527 	struct sd_lun		*un = NULL;
27528 	struct uscsi_cmd	*com = NULL;
27529 	struct cdrom_subcode	*subcode = NULL;
27530 	int			rval;
27531 	size_t			buflen;
27532 	char			cdb[CDB_GROUP5];
27533 
27534 #ifdef _MULTI_DATAMODEL
27535 	/* To support ILP32 applications in an LP64 world */
27536 	struct cdrom_subcode32		cdrom_subcode32;
27537 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27538 #endif
27539 	if (data == NULL) {
27540 		return (EINVAL);
27541 	}
27542 
27543 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27544 		return (ENXIO);
27545 	}
27546 
27547 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27548 
27549 #ifdef _MULTI_DATAMODEL
27550 	switch (ddi_model_convert_from(flag & FMODELS)) {
27551 	case DDI_MODEL_ILP32:
27552 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27553 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27554 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27555 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27556 			return (EFAULT);
27557 		}
27558 		/* Convert the ILP32 uscsi data from the application to LP64 */
27559 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27560 		break;
27561 	case DDI_MODEL_NONE:
27562 		if (ddi_copyin(data, subcode,
27563 		    sizeof (struct cdrom_subcode), flag)) {
27564 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27565 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27566 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27567 			return (EFAULT);
27568 		}
27569 		break;
27570 	}
27571 #else /* ! _MULTI_DATAMODEL */
27572 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27573 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27574 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27575 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27576 		return (EFAULT);
27577 	}
27578 #endif /* _MULTI_DATAMODEL */
27579 
27580 	/*
27581 	 * Since MMC-2 expects max 3 bytes for length, check if the
27582 	 * length input is greater than 3 bytes
27583 	 */
27584 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27585 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27586 		    "sr_read_all_subcodes: "
27587 		    "cdrom transfer length too large: %d (limit %d)\n",
27588 		    subcode->cdsc_length, 0xFFFFFF);
27589 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27590 		return (EINVAL);
27591 	}
27592 
27593 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27594 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27595 	bzero(cdb, CDB_GROUP5);
27596 
27597 	if (un->un_f_mmc_cap == TRUE) {
27598 		cdb[0] = (char)SCMD_READ_CD;
27599 		cdb[2] = (char)0xff;
27600 		cdb[3] = (char)0xff;
27601 		cdb[4] = (char)0xff;
27602 		cdb[5] = (char)0xff;
27603 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27604 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27605 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27606 		cdb[10] = 1;
27607 	} else {
27608 		/*
27609 		 * Note: A vendor specific command (0xDF) is being used her to
27610 		 * request a read of all subcodes.
27611 		 */
27612 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27613 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27614 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27615 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27616 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27617 	}
27618 	com->uscsi_cdb	   = cdb;
27619 	com->uscsi_cdblen  = CDB_GROUP5;
27620 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27621 	com->uscsi_buflen  = buflen;
27622 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27623 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27624 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27625 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27626 	kmem_free(com, sizeof (*com));
27627 	return (rval);
27628 }
27629 
27630 
27631 /*
27632  *    Function: sr_read_subchannel()
27633  *
27634  * Description: This routine is the driver entry point for handling CD-ROM
27635  *		ioctl requests to return the Q sub-channel data of the CD
27636  *		current position block. (CDROMSUBCHNL) The data includes the
27637  *		track number, index number, absolute CD-ROM address (LBA or MSF
27638  *		format per the user) , track relative CD-ROM address (LBA or MSF
27639  *		format per the user), control data and audio status.
27640  *
27641  *   Arguments: dev	- the device 'dev_t'
27642  *		data	- pointer to user provided cdrom sub-channel structure
27643  *		flag	- this argument is a pass through to ddi_copyxxx()
27644  *		          directly from the mode argument of ioctl().
27645  *
27646  * Return Code: the code returned by sd_send_scsi_cmd()
27647  *		EFAULT if ddi_copyxxx() fails
27648  *		ENXIO if fail ddi_get_soft_state
27649  *		EINVAL if data pointer is NULL
27650  */
27651 
27652 static int
27653 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27654 {
27655 	struct sd_lun		*un;
27656 	struct uscsi_cmd	*com;
27657 	struct cdrom_subchnl	subchanel;
27658 	struct cdrom_subchnl	*subchnl = &subchanel;
27659 	char			cdb[CDB_GROUP1];
27660 	caddr_t			buffer;
27661 	int			rval;
27662 
27663 	if (data == NULL) {
27664 		return (EINVAL);
27665 	}
27666 
27667 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27668 	    (un->un_state == SD_STATE_OFFLINE)) {
27669 		return (ENXIO);
27670 	}
27671 
27672 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27673 		return (EFAULT);
27674 	}
27675 
27676 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27677 	bzero(cdb, CDB_GROUP1);
27678 	cdb[0] = SCMD_READ_SUBCHANNEL;
27679 	/* Set the MSF bit based on the user requested address format */
27680 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27681 	/*
27682 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27683 	 * returned
27684 	 */
27685 	cdb[2] = 0x40;
27686 	/*
27687 	 * Set byte 3 to specify the return data format. A value of 0x01
27688 	 * indicates that the CD-ROM current position should be returned.
27689 	 */
27690 	cdb[3] = 0x01;
27691 	cdb[8] = 0x10;
27692 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27693 	com->uscsi_cdb	   = cdb;
27694 	com->uscsi_cdblen  = CDB_GROUP1;
27695 	com->uscsi_bufaddr = buffer;
27696 	com->uscsi_buflen  = 16;
27697 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27698 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27699 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27700 	if (rval != 0) {
27701 		kmem_free(buffer, 16);
27702 		kmem_free(com, sizeof (*com));
27703 		return (rval);
27704 	}
27705 
27706 	/* Process the returned Q sub-channel data */
27707 	subchnl->cdsc_audiostatus = buffer[1];
27708 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27709 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27710 	subchnl->cdsc_trk	= buffer[6];
27711 	subchnl->cdsc_ind	= buffer[7];
27712 	if (subchnl->cdsc_format & CDROM_LBA) {
27713 		subchnl->cdsc_absaddr.lba =
27714 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27715 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27716 		subchnl->cdsc_reladdr.lba =
27717 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27718 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27719 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27720 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27721 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27722 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27723 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27724 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27725 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27726 	} else {
27727 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27728 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27729 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27730 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27731 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27732 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27733 	}
27734 	kmem_free(buffer, 16);
27735 	kmem_free(com, sizeof (*com));
27736 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27737 	    != 0) {
27738 		return (EFAULT);
27739 	}
27740 	return (rval);
27741 }
27742 
27743 
27744 /*
27745  *    Function: sr_read_tocentry()
27746  *
27747  * Description: This routine is the driver entry point for handling CD-ROM
27748  *		ioctl requests to read from the Table of Contents (TOC)
27749  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27750  *		fields, the starting address (LBA or MSF format per the user)
27751  *		and the data mode if the user specified track is a data track.
27752  *
27753  *		Note: The READ HEADER (0x44) command used in this routine is
27754  *		obsolete per the SCSI MMC spec but still supported in the
27755  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27756  *		therefore the command is still implemented in this routine.
27757  *
27758  *   Arguments: dev	- the device 'dev_t'
27759  *		data	- pointer to user provided toc entry structure,
27760  *			  specifying the track # and the address format
27761  *			  (LBA or MSF).
27762  *		flag	- this argument is a pass through to ddi_copyxxx()
27763  *		          directly from the mode argument of ioctl().
27764  *
27765  * Return Code: the code returned by sd_send_scsi_cmd()
27766  *		EFAULT if ddi_copyxxx() fails
27767  *		ENXIO if fail ddi_get_soft_state
27768  *		EINVAL if data pointer is NULL
27769  */
27770 
27771 static int
27772 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27773 {
27774 	struct sd_lun		*un = NULL;
27775 	struct uscsi_cmd	*com;
27776 	struct cdrom_tocentry	toc_entry;
27777 	struct cdrom_tocentry	*entry = &toc_entry;
27778 	caddr_t			buffer;
27779 	int			rval;
27780 	char			cdb[CDB_GROUP1];
27781 
27782 	if (data == NULL) {
27783 		return (EINVAL);
27784 	}
27785 
27786 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27787 	    (un->un_state == SD_STATE_OFFLINE)) {
27788 		return (ENXIO);
27789 	}
27790 
27791 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27792 		return (EFAULT);
27793 	}
27794 
27795 	/* Validate the requested track and address format */
27796 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27797 		return (EINVAL);
27798 	}
27799 
27800 	if (entry->cdte_track == 0) {
27801 		return (EINVAL);
27802 	}
27803 
27804 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27805 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27806 	bzero(cdb, CDB_GROUP1);
27807 
27808 	cdb[0] = SCMD_READ_TOC;
27809 	/* Set the MSF bit based on the user requested address format  */
27810 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27811 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27812 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27813 	} else {
27814 		cdb[6] = entry->cdte_track;
27815 	}
27816 
27817 	/*
27818 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27819 	 * (4 byte TOC response header + 8 byte track descriptor)
27820 	 */
27821 	cdb[8] = 12;
27822 	com->uscsi_cdb	   = cdb;
27823 	com->uscsi_cdblen  = CDB_GROUP1;
27824 	com->uscsi_bufaddr = buffer;
27825 	com->uscsi_buflen  = 0x0C;
27826 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27827 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27828 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27829 	if (rval != 0) {
27830 		kmem_free(buffer, 12);
27831 		kmem_free(com, sizeof (*com));
27832 		return (rval);
27833 	}
27834 
27835 	/* Process the toc entry */
27836 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27837 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27838 	if (entry->cdte_format & CDROM_LBA) {
27839 		entry->cdte_addr.lba =
27840 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27841 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27842 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27843 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27844 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27845 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27846 		/*
27847 		 * Send a READ TOC command using the LBA address format to get
27848 		 * the LBA for the track requested so it can be used in the
27849 		 * READ HEADER request
27850 		 *
27851 		 * Note: The MSF bit of the READ HEADER command specifies the
27852 		 * output format. The block address specified in that command
27853 		 * must be in LBA format.
27854 		 */
27855 		cdb[1] = 0;
27856 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27857 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27858 		if (rval != 0) {
27859 			kmem_free(buffer, 12);
27860 			kmem_free(com, sizeof (*com));
27861 			return (rval);
27862 		}
27863 	} else {
27864 		entry->cdte_addr.msf.minute	= buffer[9];
27865 		entry->cdte_addr.msf.second	= buffer[10];
27866 		entry->cdte_addr.msf.frame	= buffer[11];
27867 		/*
27868 		 * Send a READ TOC command using the LBA address format to get
27869 		 * the LBA for the track requested so it can be used in the
27870 		 * READ HEADER request
27871 		 *
27872 		 * Note: The MSF bit of the READ HEADER command specifies the
27873 		 * output format. The block address specified in that command
27874 		 * must be in LBA format.
27875 		 */
27876 		cdb[1] = 0;
27877 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27878 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27879 		if (rval != 0) {
27880 			kmem_free(buffer, 12);
27881 			kmem_free(com, sizeof (*com));
27882 			return (rval);
27883 		}
27884 	}
27885 
27886 	/*
27887 	 * Build and send the READ HEADER command to determine the data mode of
27888 	 * the user specified track.
27889 	 */
27890 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27891 	    (entry->cdte_track != CDROM_LEADOUT)) {
27892 		bzero(cdb, CDB_GROUP1);
27893 		cdb[0] = SCMD_READ_HEADER;
27894 		cdb[2] = buffer[8];
27895 		cdb[3] = buffer[9];
27896 		cdb[4] = buffer[10];
27897 		cdb[5] = buffer[11];
27898 		cdb[8] = 0x08;
27899 		com->uscsi_buflen = 0x08;
27900 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27901 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27902 		if (rval == 0) {
27903 			entry->cdte_datamode = buffer[0];
27904 		} else {
27905 			/*
27906 			 * READ HEADER command failed, since this is
27907 			 * obsoleted in one spec, its better to return
27908 			 * -1 for an invlid track so that we can still
27909 			 * recieve the rest of the TOC data.
27910 			 */
27911 			entry->cdte_datamode = (uchar_t)-1;
27912 		}
27913 	} else {
27914 		entry->cdte_datamode = (uchar_t)-1;
27915 	}
27916 
27917 	kmem_free(buffer, 12);
27918 	kmem_free(com, sizeof (*com));
27919 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27920 		return (EFAULT);
27921 
27922 	return (rval);
27923 }
27924 
27925 
27926 /*
27927  *    Function: sr_read_tochdr()
27928  *
27929  * Description: This routine is the driver entry point for handling CD-ROM
27930  * 		ioctl requests to read the Table of Contents (TOC) header
27931  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27932  *		and ending track numbers
27933  *
27934  *   Arguments: dev	- the device 'dev_t'
27935  *		data	- pointer to user provided toc header structure,
27936  *			  specifying the starting and ending track numbers.
27937  *		flag	- this argument is a pass through to ddi_copyxxx()
27938  *			  directly from the mode argument of ioctl().
27939  *
27940  * Return Code: the code returned by sd_send_scsi_cmd()
27941  *		EFAULT if ddi_copyxxx() fails
27942  *		ENXIO if fail ddi_get_soft_state
27943  *		EINVAL if data pointer is NULL
27944  */
27945 
27946 static int
27947 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27948 {
27949 	struct sd_lun		*un;
27950 	struct uscsi_cmd	*com;
27951 	struct cdrom_tochdr	toc_header;
27952 	struct cdrom_tochdr	*hdr = &toc_header;
27953 	char			cdb[CDB_GROUP1];
27954 	int			rval;
27955 	caddr_t			buffer;
27956 
27957 	if (data == NULL) {
27958 		return (EINVAL);
27959 	}
27960 
27961 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27962 	    (un->un_state == SD_STATE_OFFLINE)) {
27963 		return (ENXIO);
27964 	}
27965 
27966 	buffer = kmem_zalloc(4, KM_SLEEP);
27967 	bzero(cdb, CDB_GROUP1);
27968 	cdb[0] = SCMD_READ_TOC;
27969 	/*
27970 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27971 	 * that the TOC header should be returned
27972 	 */
27973 	cdb[6] = 0x00;
27974 	/*
27975 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27976 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27977 	 */
27978 	cdb[8] = 0x04;
27979 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27980 	com->uscsi_cdb	   = cdb;
27981 	com->uscsi_cdblen  = CDB_GROUP1;
27982 	com->uscsi_bufaddr = buffer;
27983 	com->uscsi_buflen  = 0x04;
27984 	com->uscsi_timeout = 300;
27985 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27986 
27987 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27988 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27989 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27990 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27991 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27992 	} else {
27993 		hdr->cdth_trk0 = buffer[2];
27994 		hdr->cdth_trk1 = buffer[3];
27995 	}
27996 	kmem_free(buffer, 4);
27997 	kmem_free(com, sizeof (*com));
27998 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27999 		return (EFAULT);
28000 	}
28001 	return (rval);
28002 }
28003 
28004 
28005 /*
28006  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28007  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28008  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28009  * digital audio and extended architecture digital audio. These modes are
28010  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28011  * MMC specs.
28012  *
28013  * In addition to support for the various data formats these routines also
28014  * include support for devices that implement only the direct access READ
28015  * commands (0x08, 0x28), devices that implement the READ_CD commands
28016  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28017  * READ CDXA commands (0xD8, 0xDB)
28018  */
28019 
28020 /*
28021  *    Function: sr_read_mode1()
28022  *
28023  * Description: This routine is the driver entry point for handling CD-ROM
28024  *		ioctl read mode1 requests (CDROMREADMODE1).
28025  *
28026  *   Arguments: dev	- the device 'dev_t'
28027  *		data	- pointer to user provided cd read structure specifying
28028  *			  the lba buffer address and length.
28029  *		flag	- this argument is a pass through to ddi_copyxxx()
28030  *			  directly from the mode argument of ioctl().
28031  *
28032  * Return Code: the code returned by sd_send_scsi_cmd()
28033  *		EFAULT if ddi_copyxxx() fails
28034  *		ENXIO if fail ddi_get_soft_state
28035  *		EINVAL if data pointer is NULL
28036  */
28037 
28038 static int
28039 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28040 {
28041 	struct sd_lun		*un;
28042 	struct cdrom_read	mode1_struct;
28043 	struct cdrom_read	*mode1 = &mode1_struct;
28044 	int			rval;
28045 #ifdef _MULTI_DATAMODEL
28046 	/* To support ILP32 applications in an LP64 world */
28047 	struct cdrom_read32	cdrom_read32;
28048 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28049 #endif /* _MULTI_DATAMODEL */
28050 
28051 	if (data == NULL) {
28052 		return (EINVAL);
28053 	}
28054 
28055 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28056 	    (un->un_state == SD_STATE_OFFLINE)) {
28057 		return (ENXIO);
28058 	}
28059 
28060 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28061 	    "sd_read_mode1: entry: un:0x%p\n", un);
28062 
28063 #ifdef _MULTI_DATAMODEL
28064 	switch (ddi_model_convert_from(flag & FMODELS)) {
28065 	case DDI_MODEL_ILP32:
28066 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28067 			return (EFAULT);
28068 		}
28069 		/* Convert the ILP32 uscsi data from the application to LP64 */
28070 		cdrom_read32tocdrom_read(cdrd32, mode1);
28071 		break;
28072 	case DDI_MODEL_NONE:
28073 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28074 			return (EFAULT);
28075 		}
28076 	}
28077 #else /* ! _MULTI_DATAMODEL */
28078 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28079 		return (EFAULT);
28080 	}
28081 #endif /* _MULTI_DATAMODEL */
28082 
28083 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28084 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28085 
28086 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28087 	    "sd_read_mode1: exit: un:0x%p\n", un);
28088 
28089 	return (rval);
28090 }
28091 
28092 
28093 /*
28094  *    Function: sr_read_cd_mode2()
28095  *
28096  * Description: This routine is the driver entry point for handling CD-ROM
28097  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28098  *		support the READ CD (0xBE) command or the 1st generation
28099  *		READ CD (0xD4) command.
28100  *
28101  *   Arguments: dev	- the device 'dev_t'
28102  *		data	- pointer to user provided cd read structure specifying
28103  *			  the lba buffer address and length.
28104  *		flag	- this argument is a pass through to ddi_copyxxx()
28105  *			  directly from the mode argument of ioctl().
28106  *
28107  * Return Code: the code returned by sd_send_scsi_cmd()
28108  *		EFAULT if ddi_copyxxx() fails
28109  *		ENXIO if fail ddi_get_soft_state
28110  *		EINVAL if data pointer is NULL
28111  */
28112 
28113 static int
28114 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28115 {
28116 	struct sd_lun		*un;
28117 	struct uscsi_cmd	*com;
28118 	struct cdrom_read	mode2_struct;
28119 	struct cdrom_read	*mode2 = &mode2_struct;
28120 	uchar_t			cdb[CDB_GROUP5];
28121 	int			nblocks;
28122 	int			rval;
28123 #ifdef _MULTI_DATAMODEL
28124 	/*  To support ILP32 applications in an LP64 world */
28125 	struct cdrom_read32	cdrom_read32;
28126 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28127 #endif /* _MULTI_DATAMODEL */
28128 
28129 	if (data == NULL) {
28130 		return (EINVAL);
28131 	}
28132 
28133 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28134 	    (un->un_state == SD_STATE_OFFLINE)) {
28135 		return (ENXIO);
28136 	}
28137 
28138 #ifdef _MULTI_DATAMODEL
28139 	switch (ddi_model_convert_from(flag & FMODELS)) {
28140 	case DDI_MODEL_ILP32:
28141 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28142 			return (EFAULT);
28143 		}
28144 		/* Convert the ILP32 uscsi data from the application to LP64 */
28145 		cdrom_read32tocdrom_read(cdrd32, mode2);
28146 		break;
28147 	case DDI_MODEL_NONE:
28148 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28149 			return (EFAULT);
28150 		}
28151 		break;
28152 	}
28153 
28154 #else /* ! _MULTI_DATAMODEL */
28155 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28156 		return (EFAULT);
28157 	}
28158 #endif /* _MULTI_DATAMODEL */
28159 
28160 	bzero(cdb, sizeof (cdb));
28161 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28162 		/* Read command supported by 1st generation atapi drives */
28163 		cdb[0] = SCMD_READ_CDD4;
28164 	} else {
28165 		/* Universal CD Access Command */
28166 		cdb[0] = SCMD_READ_CD;
28167 	}
28168 
28169 	/*
28170 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28171 	 */
28172 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28173 
28174 	/* set the start address */
28175 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28176 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28177 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28178 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28179 
28180 	/* set the transfer length */
28181 	nblocks = mode2->cdread_buflen / 2336;
28182 	cdb[6] = (uchar_t)(nblocks >> 16);
28183 	cdb[7] = (uchar_t)(nblocks >> 8);
28184 	cdb[8] = (uchar_t)nblocks;
28185 
28186 	/* set the filter bits */
28187 	cdb[9] = CDROM_READ_CD_USERDATA;
28188 
28189 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28190 	com->uscsi_cdb = (caddr_t)cdb;
28191 	com->uscsi_cdblen = sizeof (cdb);
28192 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28193 	com->uscsi_buflen = mode2->cdread_buflen;
28194 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28195 
28196 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28197 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28198 	kmem_free(com, sizeof (*com));
28199 	return (rval);
28200 }
28201 
28202 
28203 /*
28204  *    Function: sr_read_mode2()
28205  *
28206  * Description: This routine is the driver entry point for handling CD-ROM
28207  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28208  *		do not support the READ CD (0xBE) command.
28209  *
28210  *   Arguments: dev	- the device 'dev_t'
28211  *		data	- pointer to user provided cd read structure specifying
28212  *			  the lba buffer address and length.
28213  *		flag	- this argument is a pass through to ddi_copyxxx()
28214  *			  directly from the mode argument of ioctl().
28215  *
28216  * Return Code: the code returned by sd_send_scsi_cmd()
28217  *		EFAULT if ddi_copyxxx() fails
28218  *		ENXIO if fail ddi_get_soft_state
28219  *		EINVAL if data pointer is NULL
28220  *		EIO if fail to reset block size
28221  *		EAGAIN if commands are in progress in the driver
28222  */
28223 
28224 static int
28225 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28226 {
28227 	struct sd_lun		*un;
28228 	struct cdrom_read	mode2_struct;
28229 	struct cdrom_read	*mode2 = &mode2_struct;
28230 	int			rval;
28231 	uint32_t		restore_blksize;
28232 	struct uscsi_cmd	*com;
28233 	uchar_t			cdb[CDB_GROUP0];
28234 	int			nblocks;
28235 
28236 #ifdef _MULTI_DATAMODEL
28237 	/* To support ILP32 applications in an LP64 world */
28238 	struct cdrom_read32	cdrom_read32;
28239 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28240 #endif /* _MULTI_DATAMODEL */
28241 
28242 	if (data == NULL) {
28243 		return (EINVAL);
28244 	}
28245 
28246 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28247 	    (un->un_state == SD_STATE_OFFLINE)) {
28248 		return (ENXIO);
28249 	}
28250 
28251 	/*
28252 	 * Because this routine will update the device and driver block size
28253 	 * being used we want to make sure there are no commands in progress.
28254 	 * If commands are in progress the user will have to try again.
28255 	 *
28256 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28257 	 * in sdioctl to protect commands from sdioctl through to the top of
28258 	 * sd_uscsi_strategy. See sdioctl for details.
28259 	 */
28260 	mutex_enter(SD_MUTEX(un));
28261 	if (un->un_ncmds_in_driver != 1) {
28262 		mutex_exit(SD_MUTEX(un));
28263 		return (EAGAIN);
28264 	}
28265 	mutex_exit(SD_MUTEX(un));
28266 
28267 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28268 	    "sd_read_mode2: entry: un:0x%p\n", un);
28269 
28270 #ifdef _MULTI_DATAMODEL
28271 	switch (ddi_model_convert_from(flag & FMODELS)) {
28272 	case DDI_MODEL_ILP32:
28273 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28274 			return (EFAULT);
28275 		}
28276 		/* Convert the ILP32 uscsi data from the application to LP64 */
28277 		cdrom_read32tocdrom_read(cdrd32, mode2);
28278 		break;
28279 	case DDI_MODEL_NONE:
28280 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28281 			return (EFAULT);
28282 		}
28283 		break;
28284 	}
28285 #else /* ! _MULTI_DATAMODEL */
28286 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28287 		return (EFAULT);
28288 	}
28289 #endif /* _MULTI_DATAMODEL */
28290 
28291 	/* Store the current target block size for restoration later */
28292 	restore_blksize = un->un_tgt_blocksize;
28293 
28294 	/* Change the device and soft state target block size to 2336 */
28295 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28296 		rval = EIO;
28297 		goto done;
28298 	}
28299 
28300 
28301 	bzero(cdb, sizeof (cdb));
28302 
28303 	/* set READ operation */
28304 	cdb[0] = SCMD_READ;
28305 
28306 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28307 	mode2->cdread_lba >>= 2;
28308 
28309 	/* set the start address */
28310 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28311 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28312 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28313 
28314 	/* set the transfer length */
28315 	nblocks = mode2->cdread_buflen / 2336;
28316 	cdb[4] = (uchar_t)nblocks & 0xFF;
28317 
28318 	/* build command */
28319 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28320 	com->uscsi_cdb = (caddr_t)cdb;
28321 	com->uscsi_cdblen = sizeof (cdb);
28322 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28323 	com->uscsi_buflen = mode2->cdread_buflen;
28324 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28325 
28326 	/*
28327 	 * Issue SCSI command with user space address for read buffer.
28328 	 *
28329 	 * This sends the command through main channel in the driver.
28330 	 *
28331 	 * Since this is accessed via an IOCTL call, we go through the
28332 	 * standard path, so that if the device was powered down, then
28333 	 * it would be 'awakened' to handle the command.
28334 	 */
28335 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28336 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28337 
28338 	kmem_free(com, sizeof (*com));
28339 
28340 	/* Restore the device and soft state target block size */
28341 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28342 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28343 		    "can't do switch back to mode 1\n");
28344 		/*
28345 		 * If sd_send_scsi_READ succeeded we still need to report
28346 		 * an error because we failed to reset the block size
28347 		 */
28348 		if (rval == 0) {
28349 			rval = EIO;
28350 		}
28351 	}
28352 
28353 done:
28354 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28355 	    "sd_read_mode2: exit: un:0x%p\n", un);
28356 
28357 	return (rval);
28358 }
28359 
28360 
28361 /*
28362  *    Function: sr_sector_mode()
28363  *
28364  * Description: This utility function is used by sr_read_mode2 to set the target
28365  *		block size based on the user specified size. This is a legacy
28366  *		implementation based upon a vendor specific mode page
28367  *
28368  *   Arguments: dev	- the device 'dev_t'
28369  *		data	- flag indicating if block size is being set to 2336 or
28370  *			  512.
28371  *
28372  * Return Code: the code returned by sd_send_scsi_cmd()
28373  *		EFAULT if ddi_copyxxx() fails
28374  *		ENXIO if fail ddi_get_soft_state
28375  *		EINVAL if data pointer is NULL
28376  */
28377 
28378 static int
28379 sr_sector_mode(dev_t dev, uint32_t blksize)
28380 {
28381 	struct sd_lun	*un;
28382 	uchar_t		*sense;
28383 	uchar_t		*select;
28384 	int		rval;
28385 
28386 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28387 	    (un->un_state == SD_STATE_OFFLINE)) {
28388 		return (ENXIO);
28389 	}
28390 
28391 	sense = kmem_zalloc(20, KM_SLEEP);
28392 
28393 	/* Note: This is a vendor specific mode page (0x81) */
28394 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28395 	    SD_PATH_STANDARD)) != 0) {
28396 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28397 		    "sr_sector_mode: Mode Sense failed\n");
28398 		kmem_free(sense, 20);
28399 		return (rval);
28400 	}
28401 	select = kmem_zalloc(20, KM_SLEEP);
28402 	select[3] = 0x08;
28403 	select[10] = ((blksize >> 8) & 0xff);
28404 	select[11] = (blksize & 0xff);
28405 	select[12] = 0x01;
28406 	select[13] = 0x06;
28407 	select[14] = sense[14];
28408 	select[15] = sense[15];
28409 	if (blksize == SD_MODE2_BLKSIZE) {
28410 		select[14] |= 0x01;
28411 	}
28412 
28413 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28414 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28415 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28416 		    "sr_sector_mode: Mode Select failed\n");
28417 	} else {
28418 		/*
28419 		 * Only update the softstate block size if we successfully
28420 		 * changed the device block mode.
28421 		 */
28422 		mutex_enter(SD_MUTEX(un));
28423 		sd_update_block_info(un, blksize, 0);
28424 		mutex_exit(SD_MUTEX(un));
28425 	}
28426 	kmem_free(sense, 20);
28427 	kmem_free(select, 20);
28428 	return (rval);
28429 }
28430 
28431 
28432 /*
28433  *    Function: sr_read_cdda()
28434  *
28435  * Description: This routine is the driver entry point for handling CD-ROM
28436  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28437  *		the target supports CDDA these requests are handled via a vendor
28438  *		specific command (0xD8) If the target does not support CDDA
28439  *		these requests are handled via the READ CD command (0xBE).
28440  *
28441  *   Arguments: dev	- the device 'dev_t'
28442  *		data	- pointer to user provided CD-DA structure specifying
28443  *			  the track starting address, transfer length, and
28444  *			  subcode options.
28445  *		flag	- this argument is a pass through to ddi_copyxxx()
28446  *			  directly from the mode argument of ioctl().
28447  *
28448  * Return Code: the code returned by sd_send_scsi_cmd()
28449  *		EFAULT if ddi_copyxxx() fails
28450  *		ENXIO if fail ddi_get_soft_state
28451  *		EINVAL if invalid arguments are provided
28452  *		ENOTTY
28453  */
28454 
28455 static int
28456 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28457 {
28458 	struct sd_lun			*un;
28459 	struct uscsi_cmd		*com;
28460 	struct cdrom_cdda		*cdda;
28461 	int				rval;
28462 	size_t				buflen;
28463 	char				cdb[CDB_GROUP5];
28464 
28465 #ifdef _MULTI_DATAMODEL
28466 	/* To support ILP32 applications in an LP64 world */
28467 	struct cdrom_cdda32	cdrom_cdda32;
28468 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28469 #endif /* _MULTI_DATAMODEL */
28470 
28471 	if (data == NULL) {
28472 		return (EINVAL);
28473 	}
28474 
28475 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28476 		return (ENXIO);
28477 	}
28478 
28479 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28480 
28481 #ifdef _MULTI_DATAMODEL
28482 	switch (ddi_model_convert_from(flag & FMODELS)) {
28483 	case DDI_MODEL_ILP32:
28484 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28485 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28486 			    "sr_read_cdda: ddi_copyin Failed\n");
28487 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28488 			return (EFAULT);
28489 		}
28490 		/* Convert the ILP32 uscsi data from the application to LP64 */
28491 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28492 		break;
28493 	case DDI_MODEL_NONE:
28494 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28495 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28496 			    "sr_read_cdda: ddi_copyin Failed\n");
28497 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28498 			return (EFAULT);
28499 		}
28500 		break;
28501 	}
28502 #else /* ! _MULTI_DATAMODEL */
28503 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28504 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28505 		    "sr_read_cdda: ddi_copyin Failed\n");
28506 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28507 		return (EFAULT);
28508 	}
28509 #endif /* _MULTI_DATAMODEL */
28510 
28511 	/*
28512 	 * Since MMC-2 expects max 3 bytes for length, check if the
28513 	 * length input is greater than 3 bytes
28514 	 */
28515 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28516 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28517 		    "cdrom transfer length too large: %d (limit %d)\n",
28518 		    cdda->cdda_length, 0xFFFFFF);
28519 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28520 		return (EINVAL);
28521 	}
28522 
28523 	switch (cdda->cdda_subcode) {
28524 	case CDROM_DA_NO_SUBCODE:
28525 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28526 		break;
28527 	case CDROM_DA_SUBQ:
28528 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28529 		break;
28530 	case CDROM_DA_ALL_SUBCODE:
28531 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28532 		break;
28533 	case CDROM_DA_SUBCODE_ONLY:
28534 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28535 		break;
28536 	default:
28537 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28538 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28539 		    cdda->cdda_subcode);
28540 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28541 		return (EINVAL);
28542 	}
28543 
28544 	/* Build and send the command */
28545 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28546 	bzero(cdb, CDB_GROUP5);
28547 
28548 	if (un->un_f_cfg_cdda == TRUE) {
28549 		cdb[0] = (char)SCMD_READ_CD;
28550 		cdb[1] = 0x04;
28551 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28552 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28553 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28554 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28555 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28556 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28557 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28558 		cdb[9] = 0x10;
28559 		switch (cdda->cdda_subcode) {
28560 		case CDROM_DA_NO_SUBCODE :
28561 			cdb[10] = 0x0;
28562 			break;
28563 		case CDROM_DA_SUBQ :
28564 			cdb[10] = 0x2;
28565 			break;
28566 		case CDROM_DA_ALL_SUBCODE :
28567 			cdb[10] = 0x1;
28568 			break;
28569 		case CDROM_DA_SUBCODE_ONLY :
28570 			/* FALLTHROUGH */
28571 		default :
28572 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28573 			kmem_free(com, sizeof (*com));
28574 			return (ENOTTY);
28575 		}
28576 	} else {
28577 		cdb[0] = (char)SCMD_READ_CDDA;
28578 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28579 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28580 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28581 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28582 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28583 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28584 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28585 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28586 		cdb[10] = cdda->cdda_subcode;
28587 	}
28588 
28589 	com->uscsi_cdb = cdb;
28590 	com->uscsi_cdblen = CDB_GROUP5;
28591 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28592 	com->uscsi_buflen = buflen;
28593 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28594 
28595 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28596 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28597 
28598 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28599 	kmem_free(com, sizeof (*com));
28600 	return (rval);
28601 }
28602 
28603 
28604 /*
28605  *    Function: sr_read_cdxa()
28606  *
28607  * Description: This routine is the driver entry point for handling CD-ROM
28608  *		ioctl requests to return CD-XA (Extended Architecture) data.
28609  *		(CDROMCDXA).
28610  *
28611  *   Arguments: dev	- the device 'dev_t'
28612  *		data	- pointer to user provided CD-XA structure specifying
28613  *			  the data starting address, transfer length, and format
28614  *		flag	- this argument is a pass through to ddi_copyxxx()
28615  *			  directly from the mode argument of ioctl().
28616  *
28617  * Return Code: the code returned by sd_send_scsi_cmd()
28618  *		EFAULT if ddi_copyxxx() fails
28619  *		ENXIO if fail ddi_get_soft_state
28620  *		EINVAL if data pointer is NULL
28621  */
28622 
28623 static int
28624 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28625 {
28626 	struct sd_lun		*un;
28627 	struct uscsi_cmd	*com;
28628 	struct cdrom_cdxa	*cdxa;
28629 	int			rval;
28630 	size_t			buflen;
28631 	char			cdb[CDB_GROUP5];
28632 	uchar_t			read_flags;
28633 
28634 #ifdef _MULTI_DATAMODEL
28635 	/* To support ILP32 applications in an LP64 world */
28636 	struct cdrom_cdxa32		cdrom_cdxa32;
28637 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28638 #endif /* _MULTI_DATAMODEL */
28639 
28640 	if (data == NULL) {
28641 		return (EINVAL);
28642 	}
28643 
28644 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28645 		return (ENXIO);
28646 	}
28647 
28648 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28649 
28650 #ifdef _MULTI_DATAMODEL
28651 	switch (ddi_model_convert_from(flag & FMODELS)) {
28652 	case DDI_MODEL_ILP32:
28653 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28654 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28655 			return (EFAULT);
28656 		}
28657 		/*
28658 		 * Convert the ILP32 uscsi data from the
28659 		 * application to LP64 for internal use.
28660 		 */
28661 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28662 		break;
28663 	case DDI_MODEL_NONE:
28664 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28665 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28666 			return (EFAULT);
28667 		}
28668 		break;
28669 	}
28670 #else /* ! _MULTI_DATAMODEL */
28671 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28672 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28673 		return (EFAULT);
28674 	}
28675 #endif /* _MULTI_DATAMODEL */
28676 
28677 	/*
28678 	 * Since MMC-2 expects max 3 bytes for length, check if the
28679 	 * length input is greater than 3 bytes
28680 	 */
28681 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28682 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28683 		    "cdrom transfer length too large: %d (limit %d)\n",
28684 		    cdxa->cdxa_length, 0xFFFFFF);
28685 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28686 		return (EINVAL);
28687 	}
28688 
28689 	switch (cdxa->cdxa_format) {
28690 	case CDROM_XA_DATA:
28691 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28692 		read_flags = 0x10;
28693 		break;
28694 	case CDROM_XA_SECTOR_DATA:
28695 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28696 		read_flags = 0xf8;
28697 		break;
28698 	case CDROM_XA_DATA_W_ERROR:
28699 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28700 		read_flags = 0xfc;
28701 		break;
28702 	default:
28703 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28704 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28705 		    cdxa->cdxa_format);
28706 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28707 		return (EINVAL);
28708 	}
28709 
28710 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28711 	bzero(cdb, CDB_GROUP5);
28712 	if (un->un_f_mmc_cap == TRUE) {
28713 		cdb[0] = (char)SCMD_READ_CD;
28714 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28715 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28716 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28717 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28718 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28719 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28720 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28721 		cdb[9] = (char)read_flags;
28722 	} else {
28723 		/*
28724 		 * Note: A vendor specific command (0xDB) is being used her to
28725 		 * request a read of all subcodes.
28726 		 */
28727 		cdb[0] = (char)SCMD_READ_CDXA;
28728 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28729 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28730 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28731 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28732 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28733 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28734 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28735 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28736 		cdb[10] = cdxa->cdxa_format;
28737 	}
28738 	com->uscsi_cdb	   = cdb;
28739 	com->uscsi_cdblen  = CDB_GROUP5;
28740 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28741 	com->uscsi_buflen  = buflen;
28742 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28743 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28744 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28745 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28746 	kmem_free(com, sizeof (*com));
28747 	return (rval);
28748 }
28749 
28750 
28751 /*
28752  *    Function: sr_eject()
28753  *
28754  * Description: This routine is the driver entry point for handling CD-ROM
28755  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28756  *
28757  *   Arguments: dev	- the device 'dev_t'
28758  *
28759  * Return Code: the code returned by sd_send_scsi_cmd()
28760  */
28761 
28762 static int
28763 sr_eject(dev_t dev)
28764 {
28765 	struct sd_lun	*un;
28766 	int		rval;
28767 
28768 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28769 	    (un->un_state == SD_STATE_OFFLINE)) {
28770 		return (ENXIO);
28771 	}
28772 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28773 	    SD_PATH_STANDARD)) != 0) {
28774 		return (rval);
28775 	}
28776 
28777 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28778 	    SD_PATH_STANDARD);
28779 
28780 	if (rval == 0) {
28781 		mutex_enter(SD_MUTEX(un));
28782 		sr_ejected(un);
28783 		un->un_mediastate = DKIO_EJECTED;
28784 		cv_broadcast(&un->un_state_cv);
28785 		mutex_exit(SD_MUTEX(un));
28786 	}
28787 	return (rval);
28788 }
28789 
28790 
28791 /*
28792  *    Function: sr_ejected()
28793  *
28794  * Description: This routine updates the soft state structure to invalidate the
28795  *		geometry information after the media has been ejected or a
28796  *		media eject has been detected.
28797  *
28798  *   Arguments: un - driver soft state (unit) structure
28799  */
28800 
28801 static void
28802 sr_ejected(struct sd_lun *un)
28803 {
28804 	struct sd_errstats *stp;
28805 
28806 	ASSERT(un != NULL);
28807 	ASSERT(mutex_owned(SD_MUTEX(un)));
28808 
28809 	un->un_f_blockcount_is_valid	= FALSE;
28810 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28811 	un->un_f_geometry_is_valid	= FALSE;
28812 
28813 	if (un->un_errstats != NULL) {
28814 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28815 		stp->sd_capacity.value.ui64 = 0;
28816 	}
28817 }
28818 
28819 
28820 /*
28821  *    Function: sr_check_wp()
28822  *
28823  * Description: This routine checks the write protection of a removable media
28824  *		disk via the write protect bit of the Mode Page Header device
28825  *		specific field.  This routine has been implemented to use the
28826  *		error recovery mode page for all device types.
28827  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28828  *
28829  *   Arguments: dev		- the device 'dev_t'
28830  *
28831  * Return Code: int indicating if the device is write protected (1) or not (0)
28832  *
28833  *     Context: Kernel thread.
28834  *
28835  */
28836 
28837 static int
28838 sr_check_wp(dev_t dev)
28839 {
28840 	struct sd_lun	*un;
28841 	uchar_t		device_specific;
28842 	uchar_t		*sense;
28843 	int		hdrlen;
28844 	int		rval;
28845 	int		retry_flag = FALSE;
28846 
28847 	/*
28848 	 * Note: The return codes for this routine should be reworked to
28849 	 * properly handle the case of a NULL softstate.
28850 	 */
28851 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28852 		return (FALSE);
28853 	}
28854 
28855 	if (un->un_f_cfg_is_atapi == TRUE) {
28856 		retry_flag = TRUE;
28857 	}
28858 
28859 retry:
28860 	if (un->un_f_cfg_is_atapi == TRUE) {
28861 		/*
28862 		 * The mode page contents are not required; set the allocation
28863 		 * length for the mode page header only
28864 		 */
28865 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28866 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28867 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28868 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28869 		device_specific =
28870 		    ((struct mode_header_grp2 *)sense)->device_specific;
28871 	} else {
28872 		hdrlen = MODE_HEADER_LENGTH;
28873 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28874 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28875 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28876 		device_specific =
28877 		    ((struct mode_header *)sense)->device_specific;
28878 	}
28879 
28880 	if (rval != 0) {
28881 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28882 			/*
28883 			 * For an Atapi Zip drive, observed the drive
28884 			 * reporting check condition for the first attempt.
28885 			 * Sense data indicating power on or bus device/reset.
28886 			 * Hence in case of failure need to try at least once
28887 			 * for Atapi devices.
28888 			 */
28889 			retry_flag = FALSE;
28890 			kmem_free(sense, hdrlen);
28891 			goto retry;
28892 		} else {
28893 			/*
28894 			 * Write protect mode sense failed; not all disks
28895 			 * understand this query. Return FALSE assuming that
28896 			 * these devices are not writable.
28897 			 */
28898 			rval = FALSE;
28899 		}
28900 	} else {
28901 		if (device_specific & WRITE_PROTECT) {
28902 			rval = TRUE;
28903 		} else {
28904 			rval = FALSE;
28905 		}
28906 	}
28907 	kmem_free(sense, hdrlen);
28908 	return (rval);
28909 }
28910 
28911 
28912 /*
28913  *    Function: sr_volume_ctrl()
28914  *
28915  * Description: This routine is the driver entry point for handling CD-ROM
28916  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28917  *
28918  *   Arguments: dev	- the device 'dev_t'
28919  *		data	- pointer to user audio volume control structure
28920  *		flag	- this argument is a pass through to ddi_copyxxx()
28921  *			  directly from the mode argument of ioctl().
28922  *
28923  * Return Code: the code returned by sd_send_scsi_cmd()
28924  *		EFAULT if ddi_copyxxx() fails
28925  *		ENXIO if fail ddi_get_soft_state
28926  *		EINVAL if data pointer is NULL
28927  *
28928  */
28929 
28930 static int
28931 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28932 {
28933 	struct sd_lun		*un;
28934 	struct cdrom_volctrl    volume;
28935 	struct cdrom_volctrl    *vol = &volume;
28936 	uchar_t			*sense_page;
28937 	uchar_t			*select_page;
28938 	uchar_t			*sense;
28939 	uchar_t			*select;
28940 	int			sense_buflen;
28941 	int			select_buflen;
28942 	int			rval;
28943 
28944 	if (data == NULL) {
28945 		return (EINVAL);
28946 	}
28947 
28948 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28949 	    (un->un_state == SD_STATE_OFFLINE)) {
28950 		return (ENXIO);
28951 	}
28952 
28953 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28954 		return (EFAULT);
28955 	}
28956 
28957 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28958 		struct mode_header_grp2		*sense_mhp;
28959 		struct mode_header_grp2		*select_mhp;
28960 		int				bd_len;
28961 
28962 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28963 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28964 		    MODEPAGE_AUDIO_CTRL_LEN;
28965 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28966 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28967 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28968 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28969 		    SD_PATH_STANDARD)) != 0) {
28970 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28971 			    "sr_volume_ctrl: Mode Sense Failed\n");
28972 			kmem_free(sense, sense_buflen);
28973 			kmem_free(select, select_buflen);
28974 			return (rval);
28975 		}
28976 		sense_mhp = (struct mode_header_grp2 *)sense;
28977 		select_mhp = (struct mode_header_grp2 *)select;
28978 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28979 		    sense_mhp->bdesc_length_lo;
28980 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28981 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28982 			    "sr_volume_ctrl: Mode Sense returned invalid "
28983 			    "block descriptor length\n");
28984 			kmem_free(sense, sense_buflen);
28985 			kmem_free(select, select_buflen);
28986 			return (EIO);
28987 		}
28988 		sense_page = (uchar_t *)
28989 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28990 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28991 		select_mhp->length_msb = 0;
28992 		select_mhp->length_lsb = 0;
28993 		select_mhp->bdesc_length_hi = 0;
28994 		select_mhp->bdesc_length_lo = 0;
28995 	} else {
28996 		struct mode_header		*sense_mhp, *select_mhp;
28997 
28998 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28999 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29000 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29001 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29002 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29003 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29004 		    SD_PATH_STANDARD)) != 0) {
29005 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29006 			    "sr_volume_ctrl: Mode Sense Failed\n");
29007 			kmem_free(sense, sense_buflen);
29008 			kmem_free(select, select_buflen);
29009 			return (rval);
29010 		}
29011 		sense_mhp  = (struct mode_header *)sense;
29012 		select_mhp = (struct mode_header *)select;
29013 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29014 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29015 			    "sr_volume_ctrl: Mode Sense returned invalid "
29016 			    "block descriptor length\n");
29017 			kmem_free(sense, sense_buflen);
29018 			kmem_free(select, select_buflen);
29019 			return (EIO);
29020 		}
29021 		sense_page = (uchar_t *)
29022 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29023 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29024 		select_mhp->length = 0;
29025 		select_mhp->bdesc_length = 0;
29026 	}
29027 	/*
29028 	 * Note: An audio control data structure could be created and overlayed
29029 	 * on the following in place of the array indexing method implemented.
29030 	 */
29031 
29032 	/* Build the select data for the user volume data */
29033 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29034 	select_page[1] = 0xE;
29035 	/* Set the immediate bit */
29036 	select_page[2] = 0x04;
29037 	/* Zero out reserved fields */
29038 	select_page[3] = 0x00;
29039 	select_page[4] = 0x00;
29040 	/* Return sense data for fields not to be modified */
29041 	select_page[5] = sense_page[5];
29042 	select_page[6] = sense_page[6];
29043 	select_page[7] = sense_page[7];
29044 	/* Set the user specified volume levels for channel 0 and 1 */
29045 	select_page[8] = 0x01;
29046 	select_page[9] = vol->channel0;
29047 	select_page[10] = 0x02;
29048 	select_page[11] = vol->channel1;
29049 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29050 	select_page[12] = sense_page[12];
29051 	select_page[13] = sense_page[13];
29052 	select_page[14] = sense_page[14];
29053 	select_page[15] = sense_page[15];
29054 
29055 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29056 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29057 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29058 	} else {
29059 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29060 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29061 	}
29062 
29063 	kmem_free(sense, sense_buflen);
29064 	kmem_free(select, select_buflen);
29065 	return (rval);
29066 }
29067 
29068 
29069 /*
29070  *    Function: sr_read_sony_session_offset()
29071  *
29072  * Description: This routine is the driver entry point for handling CD-ROM
29073  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29074  *		The address of the first track in the last session of a
29075  *		multi-session CD-ROM is returned
29076  *
29077  *		Note: This routine uses a vendor specific key value in the
29078  *		command control field without implementing any vendor check here
29079  *		or in the ioctl routine.
29080  *
29081  *   Arguments: dev	- the device 'dev_t'
29082  *		data	- pointer to an int to hold the requested address
29083  *		flag	- this argument is a pass through to ddi_copyxxx()
29084  *			  directly from the mode argument of ioctl().
29085  *
29086  * Return Code: the code returned by sd_send_scsi_cmd()
29087  *		EFAULT if ddi_copyxxx() fails
29088  *		ENXIO if fail ddi_get_soft_state
29089  *		EINVAL if data pointer is NULL
29090  */
29091 
29092 static int
29093 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29094 {
29095 	struct sd_lun		*un;
29096 	struct uscsi_cmd	*com;
29097 	caddr_t			buffer;
29098 	char			cdb[CDB_GROUP1];
29099 	int			session_offset = 0;
29100 	int			rval;
29101 
29102 	if (data == NULL) {
29103 		return (EINVAL);
29104 	}
29105 
29106 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29107 	    (un->un_state == SD_STATE_OFFLINE)) {
29108 		return (ENXIO);
29109 	}
29110 
29111 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29112 	bzero(cdb, CDB_GROUP1);
29113 	cdb[0] = SCMD_READ_TOC;
29114 	/*
29115 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29116 	 * (4 byte TOC response header + 8 byte response data)
29117 	 */
29118 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29119 	/* Byte 9 is the control byte. A vendor specific value is used */
29120 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29121 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29122 	com->uscsi_cdb = cdb;
29123 	com->uscsi_cdblen = CDB_GROUP1;
29124 	com->uscsi_bufaddr = buffer;
29125 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29126 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29127 
29128 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29129 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29130 	if (rval != 0) {
29131 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29132 		kmem_free(com, sizeof (*com));
29133 		return (rval);
29134 	}
29135 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29136 		session_offset =
29137 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29138 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29139 		/*
29140 		 * Offset returned offset in current lbasize block's. Convert to
29141 		 * 2k block's to return to the user
29142 		 */
29143 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29144 			session_offset >>= 2;
29145 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29146 			session_offset >>= 1;
29147 		}
29148 	}
29149 
29150 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29151 		rval = EFAULT;
29152 	}
29153 
29154 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29155 	kmem_free(com, sizeof (*com));
29156 	return (rval);
29157 }
29158 
29159 
29160 /*
29161  *    Function: sd_wm_cache_constructor()
29162  *
29163  * Description: Cache Constructor for the wmap cache for the read/modify/write
29164  * 		devices.
29165  *
29166  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29167  *		un	- sd_lun structure for the device.
29168  *		flag	- the km flags passed to constructor
29169  *
29170  * Return Code: 0 on success.
29171  *		-1 on failure.
29172  */
29173 
29174 /*ARGSUSED*/
29175 static int
29176 sd_wm_cache_constructor(void *wm, void *un, int flags)
29177 {
29178 	bzero(wm, sizeof (struct sd_w_map));
29179 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29180 	return (0);
29181 }
29182 
29183 
29184 /*
29185  *    Function: sd_wm_cache_destructor()
29186  *
29187  * Description: Cache destructor for the wmap cache for the read/modify/write
29188  * 		devices.
29189  *
29190  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29191  *		un	- sd_lun structure for the device.
29192  */
29193 /*ARGSUSED*/
29194 static void
29195 sd_wm_cache_destructor(void *wm, void *un)
29196 {
29197 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29198 }
29199 
29200 
29201 /*
29202  *    Function: sd_range_lock()
29203  *
29204  * Description: Lock the range of blocks specified as parameter to ensure
29205  *		that read, modify write is atomic and no other i/o writes
29206  *		to the same location. The range is specified in terms
29207  *		of start and end blocks. Block numbers are the actual
29208  *		media block numbers and not system.
29209  *
29210  *   Arguments: un	- sd_lun structure for the device.
29211  *		startb - The starting block number
29212  *		endb - The end block number
29213  *		typ - type of i/o - simple/read_modify_write
29214  *
29215  * Return Code: wm  - pointer to the wmap structure.
29216  *
29217  *     Context: This routine can sleep.
29218  */
29219 
29220 static struct sd_w_map *
29221 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29222 {
29223 	struct sd_w_map *wmp = NULL;
29224 	struct sd_w_map *sl_wmp = NULL;
29225 	struct sd_w_map *tmp_wmp;
29226 	wm_state state = SD_WM_CHK_LIST;
29227 
29228 
29229 	ASSERT(un != NULL);
29230 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29231 
29232 	mutex_enter(SD_MUTEX(un));
29233 
29234 	while (state != SD_WM_DONE) {
29235 
29236 		switch (state) {
29237 		case SD_WM_CHK_LIST:
29238 			/*
29239 			 * This is the starting state. Check the wmap list
29240 			 * to see if the range is currently available.
29241 			 */
29242 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29243 				/*
29244 				 * If this is a simple write and no rmw
29245 				 * i/o is pending then try to lock the
29246 				 * range as the range should be available.
29247 				 */
29248 				state = SD_WM_LOCK_RANGE;
29249 			} else {
29250 				tmp_wmp = sd_get_range(un, startb, endb);
29251 				if (tmp_wmp != NULL) {
29252 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29253 						/*
29254 						 * Should not keep onlist wmps
29255 						 * while waiting this macro
29256 						 * will also do wmp = NULL;
29257 						 */
29258 						FREE_ONLIST_WMAP(un, wmp);
29259 					}
29260 					/*
29261 					 * sl_wmp is the wmap on which wait
29262 					 * is done, since the tmp_wmp points
29263 					 * to the inuse wmap, set sl_wmp to
29264 					 * tmp_wmp and change the state to sleep
29265 					 */
29266 					sl_wmp = tmp_wmp;
29267 					state = SD_WM_WAIT_MAP;
29268 				} else {
29269 					state = SD_WM_LOCK_RANGE;
29270 				}
29271 
29272 			}
29273 			break;
29274 
29275 		case SD_WM_LOCK_RANGE:
29276 			ASSERT(un->un_wm_cache);
29277 			/*
29278 			 * The range need to be locked, try to get a wmap.
29279 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29280 			 * if possible as we will have to release the sd mutex
29281 			 * if we have to sleep.
29282 			 */
29283 			if (wmp == NULL)
29284 				wmp = kmem_cache_alloc(un->un_wm_cache,
29285 				    KM_NOSLEEP);
29286 			if (wmp == NULL) {
29287 				mutex_exit(SD_MUTEX(un));
29288 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29289 				    (sd_lun::un_wm_cache))
29290 				wmp = kmem_cache_alloc(un->un_wm_cache,
29291 				    KM_SLEEP);
29292 				mutex_enter(SD_MUTEX(un));
29293 				/*
29294 				 * we released the mutex so recheck and go to
29295 				 * check list state.
29296 				 */
29297 				state = SD_WM_CHK_LIST;
29298 			} else {
29299 				/*
29300 				 * We exit out of state machine since we
29301 				 * have the wmap. Do the housekeeping first.
29302 				 * place the wmap on the wmap list if it is not
29303 				 * on it already and then set the state to done.
29304 				 */
29305 				wmp->wm_start = startb;
29306 				wmp->wm_end = endb;
29307 				wmp->wm_flags = typ | SD_WM_BUSY;
29308 				if (typ & SD_WTYPE_RMW) {
29309 					un->un_rmw_count++;
29310 				}
29311 				/*
29312 				 * If not already on the list then link
29313 				 */
29314 				if (!ONLIST(un, wmp)) {
29315 					wmp->wm_next = un->un_wm;
29316 					wmp->wm_prev = NULL;
29317 					if (wmp->wm_next)
29318 						wmp->wm_next->wm_prev = wmp;
29319 					un->un_wm = wmp;
29320 				}
29321 				state = SD_WM_DONE;
29322 			}
29323 			break;
29324 
29325 		case SD_WM_WAIT_MAP:
29326 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29327 			/*
29328 			 * Wait is done on sl_wmp, which is set in the
29329 			 * check_list state.
29330 			 */
29331 			sl_wmp->wm_wanted_count++;
29332 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29333 			sl_wmp->wm_wanted_count--;
29334 			/*
29335 			 * We can reuse the memory from the completed sl_wmp
29336 			 * lock range for our new lock, but only if noone is
29337 			 * waiting for it.
29338 			 */
29339 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29340 			if (sl_wmp->wm_wanted_count == 0) {
29341 				if (wmp != NULL)
29342 					CHK_N_FREEWMP(un, wmp);
29343 				wmp = sl_wmp;
29344 			}
29345 			sl_wmp = NULL;
29346 			/*
29347 			 * After waking up, need to recheck for availability of
29348 			 * range.
29349 			 */
29350 			state = SD_WM_CHK_LIST;
29351 			break;
29352 
29353 		default:
29354 			panic("sd_range_lock: "
29355 			    "Unknown state %d in sd_range_lock", state);
29356 			/*NOTREACHED*/
29357 		} /* switch(state) */
29358 
29359 	} /* while(state != SD_WM_DONE) */
29360 
29361 	mutex_exit(SD_MUTEX(un));
29362 
29363 	ASSERT(wmp != NULL);
29364 
29365 	return (wmp);
29366 }
29367 
29368 
29369 /*
29370  *    Function: sd_get_range()
29371  *
29372  * Description: Find if there any overlapping I/O to this one
29373  *		Returns the write-map of 1st such I/O, NULL otherwise.
29374  *
29375  *   Arguments: un	- sd_lun structure for the device.
29376  *		startb - The starting block number
29377  *		endb - The end block number
29378  *
29379  * Return Code: wm  - pointer to the wmap structure.
29380  */
29381 
29382 static struct sd_w_map *
29383 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29384 {
29385 	struct sd_w_map *wmp;
29386 
29387 	ASSERT(un != NULL);
29388 
29389 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29390 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29391 			continue;
29392 		}
29393 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29394 			break;
29395 		}
29396 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29397 			break;
29398 		}
29399 	}
29400 
29401 	return (wmp);
29402 }
29403 
29404 
29405 /*
29406  *    Function: sd_free_inlist_wmap()
29407  *
29408  * Description: Unlink and free a write map struct.
29409  *
29410  *   Arguments: un      - sd_lun structure for the device.
29411  *		wmp	- sd_w_map which needs to be unlinked.
29412  */
29413 
29414 static void
29415 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29416 {
29417 	ASSERT(un != NULL);
29418 
29419 	if (un->un_wm == wmp) {
29420 		un->un_wm = wmp->wm_next;
29421 	} else {
29422 		wmp->wm_prev->wm_next = wmp->wm_next;
29423 	}
29424 
29425 	if (wmp->wm_next) {
29426 		wmp->wm_next->wm_prev = wmp->wm_prev;
29427 	}
29428 
29429 	wmp->wm_next = wmp->wm_prev = NULL;
29430 
29431 	kmem_cache_free(un->un_wm_cache, wmp);
29432 }
29433 
29434 
29435 /*
29436  *    Function: sd_range_unlock()
29437  *
29438  * Description: Unlock the range locked by wm.
29439  *		Free write map if nobody else is waiting on it.
29440  *
29441  *   Arguments: un      - sd_lun structure for the device.
29442  *              wmp     - sd_w_map which needs to be unlinked.
29443  */
29444 
29445 static void
29446 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29447 {
29448 	ASSERT(un != NULL);
29449 	ASSERT(wm != NULL);
29450 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29451 
29452 	mutex_enter(SD_MUTEX(un));
29453 
29454 	if (wm->wm_flags & SD_WTYPE_RMW) {
29455 		un->un_rmw_count--;
29456 	}
29457 
29458 	if (wm->wm_wanted_count) {
29459 		wm->wm_flags = 0;
29460 		/*
29461 		 * Broadcast that the wmap is available now.
29462 		 */
29463 		cv_broadcast(&wm->wm_avail);
29464 	} else {
29465 		/*
29466 		 * If no one is waiting on the map, it should be free'ed.
29467 		 */
29468 		sd_free_inlist_wmap(un, wm);
29469 	}
29470 
29471 	mutex_exit(SD_MUTEX(un));
29472 }
29473 
29474 
29475 /*
29476  *    Function: sd_read_modify_write_task
29477  *
29478  * Description: Called from a taskq thread to initiate the write phase of
29479  *		a read-modify-write request.  This is used for targets where
29480  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29481  *
29482  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29483  *
29484  *     Context: Called under taskq thread context.
29485  */
29486 
29487 static void
29488 sd_read_modify_write_task(void *arg)
29489 {
29490 	struct sd_mapblocksize_info	*bsp;
29491 	struct buf	*bp;
29492 	struct sd_xbuf	*xp;
29493 	struct sd_lun	*un;
29494 
29495 	bp = arg;	/* The bp is given in arg */
29496 	ASSERT(bp != NULL);
29497 
29498 	/* Get the pointer to the layer-private data struct */
29499 	xp = SD_GET_XBUF(bp);
29500 	ASSERT(xp != NULL);
29501 	bsp = xp->xb_private;
29502 	ASSERT(bsp != NULL);
29503 
29504 	un = SD_GET_UN(bp);
29505 	ASSERT(un != NULL);
29506 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29507 
29508 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29509 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29510 
29511 	/*
29512 	 * This is the write phase of a read-modify-write request, called
29513 	 * under the context of a taskq thread in response to the completion
29514 	 * of the read portion of the rmw request completing under interrupt
29515 	 * context. The write request must be sent from here down the iostart
29516 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29517 	 * we use the layer index saved in the layer-private data area.
29518 	 */
29519 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29520 
29521 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29522 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29523 }
29524 
29525 
29526 /*
29527  *    Function: sddump_do_read_of_rmw()
29528  *
29529  * Description: This routine will be called from sddump, If sddump is called
29530  *		with an I/O which not aligned on device blocksize boundary
29531  *		then the write has to be converted to read-modify-write.
29532  *		Do the read part here in order to keep sddump simple.
29533  *		Note - That the sd_mutex is held across the call to this
29534  *		routine.
29535  *
29536  *   Arguments: un	- sd_lun
29537  *		blkno	- block number in terms of media block size.
29538  *		nblk	- number of blocks.
29539  *		bpp	- pointer to pointer to the buf structure. On return
29540  *			from this function, *bpp points to the valid buffer
29541  *			to which the write has to be done.
29542  *
29543  * Return Code: 0 for success or errno-type return code
29544  */
29545 
29546 static int
29547 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29548 	struct buf **bpp)
29549 {
29550 	int err;
29551 	int i;
29552 	int rval;
29553 	struct buf *bp;
29554 	struct scsi_pkt *pkt = NULL;
29555 	uint32_t target_blocksize;
29556 
29557 	ASSERT(un != NULL);
29558 	ASSERT(mutex_owned(SD_MUTEX(un)));
29559 
29560 	target_blocksize = un->un_tgt_blocksize;
29561 
29562 	mutex_exit(SD_MUTEX(un));
29563 
29564 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29565 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29566 	if (bp == NULL) {
29567 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29568 		    "no resources for dumping; giving up");
29569 		err = ENOMEM;
29570 		goto done;
29571 	}
29572 
29573 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29574 	    blkno, nblk);
29575 	if (rval != 0) {
29576 		scsi_free_consistent_buf(bp);
29577 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29578 		    "no resources for dumping; giving up");
29579 		err = ENOMEM;
29580 		goto done;
29581 	}
29582 
29583 	pkt->pkt_flags |= FLAG_NOINTR;
29584 
29585 	err = EIO;
29586 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29587 
29588 		/*
29589 		 * Scsi_poll returns 0 (success) if the command completes and
29590 		 * the status block is STATUS_GOOD.  We should only check
29591 		 * errors if this condition is not true.  Even then we should
29592 		 * send our own request sense packet only if we have a check
29593 		 * condition and auto request sense has not been performed by
29594 		 * the hba.
29595 		 */
29596 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29597 
29598 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29599 			err = 0;
29600 			break;
29601 		}
29602 
29603 		/*
29604 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29605 		 * no need to read RQS data.
29606 		 */
29607 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29608 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29609 			    "Device is gone\n");
29610 			break;
29611 		}
29612 
29613 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29614 			SD_INFO(SD_LOG_DUMP, un,
29615 			    "sddump: read failed with CHECK, try # %d\n", i);
29616 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29617 				(void) sd_send_polled_RQS(un);
29618 			}
29619 
29620 			continue;
29621 		}
29622 
29623 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29624 			int reset_retval = 0;
29625 
29626 			SD_INFO(SD_LOG_DUMP, un,
29627 			    "sddump: read failed with BUSY, try # %d\n", i);
29628 
29629 			if (un->un_f_lun_reset_enabled == TRUE) {
29630 				reset_retval = scsi_reset(SD_ADDRESS(un),
29631 				    RESET_LUN);
29632 			}
29633 			if (reset_retval == 0) {
29634 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29635 			}
29636 			(void) sd_send_polled_RQS(un);
29637 
29638 		} else {
29639 			SD_INFO(SD_LOG_DUMP, un,
29640 			    "sddump: read failed with 0x%x, try # %d\n",
29641 			    SD_GET_PKT_STATUS(pkt), i);
29642 			mutex_enter(SD_MUTEX(un));
29643 			sd_reset_target(un, pkt);
29644 			mutex_exit(SD_MUTEX(un));
29645 		}
29646 
29647 		/*
29648 		 * If we are not getting anywhere with lun/target resets,
29649 		 * let's reset the bus.
29650 		 */
29651 		if (i > SD_NDUMP_RETRIES/2) {
29652 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29653 			(void) sd_send_polled_RQS(un);
29654 		}
29655 
29656 	}
29657 	scsi_destroy_pkt(pkt);
29658 
29659 	if (err != 0) {
29660 		scsi_free_consistent_buf(bp);
29661 		*bpp = NULL;
29662 	} else {
29663 		*bpp = bp;
29664 	}
29665 
29666 done:
29667 	mutex_enter(SD_MUTEX(un));
29668 	return (err);
29669 }
29670 
29671 
29672 /*
29673  *    Function: sd_failfast_flushq
29674  *
29675  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29676  *		in b_flags and move them onto the failfast queue, then kick
29677  *		off a thread to return all bp's on the failfast queue to
29678  *		their owners with an error set.
29679  *
29680  *   Arguments: un - pointer to the soft state struct for the instance.
29681  *
29682  *     Context: may execute in interrupt context.
29683  */
29684 
29685 static void
29686 sd_failfast_flushq(struct sd_lun *un)
29687 {
29688 	struct buf *bp;
29689 	struct buf *next_waitq_bp;
29690 	struct buf *prev_waitq_bp = NULL;
29691 
29692 	ASSERT(un != NULL);
29693 	ASSERT(mutex_owned(SD_MUTEX(un)));
29694 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29695 	ASSERT(un->un_failfast_bp == NULL);
29696 
29697 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29698 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29699 
29700 	/*
29701 	 * Check if we should flush all bufs when entering failfast state, or
29702 	 * just those with B_FAILFAST set.
29703 	 */
29704 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29705 		/*
29706 		 * Move *all* bp's on the wait queue to the failfast flush
29707 		 * queue, including those that do NOT have B_FAILFAST set.
29708 		 */
29709 		if (un->un_failfast_headp == NULL) {
29710 			ASSERT(un->un_failfast_tailp == NULL);
29711 			un->un_failfast_headp = un->un_waitq_headp;
29712 		} else {
29713 			ASSERT(un->un_failfast_tailp != NULL);
29714 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29715 		}
29716 
29717 		un->un_failfast_tailp = un->un_waitq_tailp;
29718 
29719 		/* update kstat for each bp moved out of the waitq */
29720 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29721 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29722 		}
29723 
29724 		/* empty the waitq */
29725 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29726 
29727 	} else {
29728 		/*
29729 		 * Go thru the wait queue, pick off all entries with
29730 		 * B_FAILFAST set, and move these onto the failfast queue.
29731 		 */
29732 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29733 			/*
29734 			 * Save the pointer to the next bp on the wait queue,
29735 			 * so we get to it on the next iteration of this loop.
29736 			 */
29737 			next_waitq_bp = bp->av_forw;
29738 
29739 			/*
29740 			 * If this bp from the wait queue does NOT have
29741 			 * B_FAILFAST set, just move on to the next element
29742 			 * in the wait queue. Note, this is the only place
29743 			 * where it is correct to set prev_waitq_bp.
29744 			 */
29745 			if ((bp->b_flags & B_FAILFAST) == 0) {
29746 				prev_waitq_bp = bp;
29747 				continue;
29748 			}
29749 
29750 			/*
29751 			 * Remove the bp from the wait queue.
29752 			 */
29753 			if (bp == un->un_waitq_headp) {
29754 				/* The bp is the first element of the waitq. */
29755 				un->un_waitq_headp = next_waitq_bp;
29756 				if (un->un_waitq_headp == NULL) {
29757 					/* The wait queue is now empty */
29758 					un->un_waitq_tailp = NULL;
29759 				}
29760 			} else {
29761 				/*
29762 				 * The bp is either somewhere in the middle
29763 				 * or at the end of the wait queue.
29764 				 */
29765 				ASSERT(un->un_waitq_headp != NULL);
29766 				ASSERT(prev_waitq_bp != NULL);
29767 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29768 				    == 0);
29769 				if (bp == un->un_waitq_tailp) {
29770 					/* bp is the last entry on the waitq. */
29771 					ASSERT(next_waitq_bp == NULL);
29772 					un->un_waitq_tailp = prev_waitq_bp;
29773 				}
29774 				prev_waitq_bp->av_forw = next_waitq_bp;
29775 			}
29776 			bp->av_forw = NULL;
29777 
29778 			/*
29779 			 * update kstat since the bp is moved out of
29780 			 * the waitq
29781 			 */
29782 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29783 
29784 			/*
29785 			 * Now put the bp onto the failfast queue.
29786 			 */
29787 			if (un->un_failfast_headp == NULL) {
29788 				/* failfast queue is currently empty */
29789 				ASSERT(un->un_failfast_tailp == NULL);
29790 				un->un_failfast_headp =
29791 				    un->un_failfast_tailp = bp;
29792 			} else {
29793 				/* Add the bp to the end of the failfast q */
29794 				ASSERT(un->un_failfast_tailp != NULL);
29795 				ASSERT(un->un_failfast_tailp->b_flags &
29796 				    B_FAILFAST);
29797 				un->un_failfast_tailp->av_forw = bp;
29798 				un->un_failfast_tailp = bp;
29799 			}
29800 		}
29801 	}
29802 
29803 	/*
29804 	 * Now return all bp's on the failfast queue to their owners.
29805 	 */
29806 	while ((bp = un->un_failfast_headp) != NULL) {
29807 
29808 		un->un_failfast_headp = bp->av_forw;
29809 		if (un->un_failfast_headp == NULL) {
29810 			un->un_failfast_tailp = NULL;
29811 		}
29812 
29813 		/*
29814 		 * We want to return the bp with a failure error code, but
29815 		 * we do not want a call to sd_start_cmds() to occur here,
29816 		 * so use sd_return_failed_command_no_restart() instead of
29817 		 * sd_return_failed_command().
29818 		 */
29819 		sd_return_failed_command_no_restart(un, bp, EIO);
29820 	}
29821 
29822 	/* Flush the xbuf queues if required. */
29823 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29824 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29825 	}
29826 
29827 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29828 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29829 }
29830 
29831 
29832 /*
29833  *    Function: sd_failfast_flushq_callback
29834  *
29835  * Description: Return TRUE if the given bp meets the criteria for failfast
29836  *		flushing. Used with ddi_xbuf_flushq(9F).
29837  *
29838  *   Arguments: bp - ptr to buf struct to be examined.
29839  *
29840  *     Context: Any
29841  */
29842 
29843 static int
29844 sd_failfast_flushq_callback(struct buf *bp)
29845 {
29846 	/*
29847 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29848 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29849 	 */
29850 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29851 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29852 }
29853 
29854 
29855 
29856 #if defined(__i386) || defined(__amd64)
29857 /*
29858  * Function: sd_setup_next_xfer
29859  *
29860  * Description: Prepare next I/O operation using DMA_PARTIAL
29861  *
29862  */
29863 
29864 static int
29865 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29866     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29867 {
29868 	ssize_t	num_blks_not_xfered;
29869 	daddr_t	strt_blk_num;
29870 	ssize_t	bytes_not_xfered;
29871 	int	rval;
29872 
29873 	ASSERT(pkt->pkt_resid == 0);
29874 
29875 	/*
29876 	 * Calculate next block number and amount to be transferred.
29877 	 *
29878 	 * How much data NOT transfered to the HBA yet.
29879 	 */
29880 	bytes_not_xfered = xp->xb_dma_resid;
29881 
29882 	/*
29883 	 * figure how many blocks NOT transfered to the HBA yet.
29884 	 */
29885 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29886 
29887 	/*
29888 	 * set starting block number to the end of what WAS transfered.
29889 	 */
29890 	strt_blk_num = xp->xb_blkno +
29891 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29892 
29893 	/*
29894 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29895 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29896 	 * the disk mutex here.
29897 	 */
29898 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29899 	    strt_blk_num, num_blks_not_xfered);
29900 
29901 	if (rval == 0) {
29902 
29903 		/*
29904 		 * Success.
29905 		 *
29906 		 * Adjust things if there are still more blocks to be
29907 		 * transfered.
29908 		 */
29909 		xp->xb_dma_resid = pkt->pkt_resid;
29910 		pkt->pkt_resid = 0;
29911 
29912 		return (1);
29913 	}
29914 
29915 	/*
29916 	 * There's really only one possible return value from
29917 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29918 	 * returns NULL.
29919 	 */
29920 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29921 
29922 	bp->b_resid = bp->b_bcount;
29923 	bp->b_flags |= B_ERROR;
29924 
29925 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29926 	    "Error setting up next portion of DMA transfer\n");
29927 
29928 	return (0);
29929 }
29930 #endif
29931 
29932 /*
29933  *    Function: sd_panic_for_res_conflict
29934  *
29935  * Description: Call panic with a string formated with "Reservation Conflict"
29936  *		and a human readable identifier indicating the SD instance
29937  *		that experienced the reservation conflict.
29938  *
29939  *   Arguments: un - pointer to the soft state struct for the instance.
29940  *
29941  *     Context: may execute in interrupt context.
29942  */
29943 
29944 #define	SD_RESV_CONFLICT_FMT_LEN 40
29945 void
29946 sd_panic_for_res_conflict(struct sd_lun *un)
29947 {
29948 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
29949 	char path_str[MAXPATHLEN];
29950 
29951 	(void) snprintf(panic_str, sizeof (panic_str),
29952 	    "Reservation Conflict\nDisk: %s",
29953 	    ddi_pathname(SD_DEVINFO(un), path_str));
29954 
29955 	panic(panic_str);
29956 }
29957 
29958 /*
29959  * Note: The following sd_faultinjection_ioctl( ) routines implement
29960  * driver support for handling fault injection for error analysis
29961  * causing faults in multiple layers of the driver.
29962  *
29963  */
29964 
29965 #ifdef SD_FAULT_INJECTION
29966 static uint_t   sd_fault_injection_on = 0;
29967 
29968 /*
29969  *    Function: sd_faultinjection_ioctl()
29970  *
29971  * Description: This routine is the driver entry point for handling
29972  *              faultinjection ioctls to inject errors into the
29973  *              layer model
29974  *
29975  *   Arguments: cmd	- the ioctl cmd recieved
29976  *		arg	- the arguments from user and returns
29977  */
29978 
29979 static void
29980 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29981 
29982 	uint_t i;
29983 	uint_t rval;
29984 
29985 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29986 
29987 	mutex_enter(SD_MUTEX(un));
29988 
29989 	switch (cmd) {
29990 	case SDIOCRUN:
29991 		/* Allow pushed faults to be injected */
29992 		SD_INFO(SD_LOG_SDTEST, un,
29993 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29994 
29995 		sd_fault_injection_on = 1;
29996 
29997 		SD_INFO(SD_LOG_IOERR, un,
29998 		    "sd_faultinjection_ioctl: run finished\n");
29999 		break;
30000 
30001 	case SDIOCSTART:
30002 		/* Start Injection Session */
30003 		SD_INFO(SD_LOG_SDTEST, un,
30004 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30005 
30006 		sd_fault_injection_on = 0;
30007 		un->sd_injection_mask = 0xFFFFFFFF;
30008 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30009 			un->sd_fi_fifo_pkt[i] = NULL;
30010 			un->sd_fi_fifo_xb[i] = NULL;
30011 			un->sd_fi_fifo_un[i] = NULL;
30012 			un->sd_fi_fifo_arq[i] = NULL;
30013 		}
30014 		un->sd_fi_fifo_start = 0;
30015 		un->sd_fi_fifo_end = 0;
30016 
30017 		mutex_enter(&(un->un_fi_mutex));
30018 		un->sd_fi_log[0] = '\0';
30019 		un->sd_fi_buf_len = 0;
30020 		mutex_exit(&(un->un_fi_mutex));
30021 
30022 		SD_INFO(SD_LOG_IOERR, un,
30023 		    "sd_faultinjection_ioctl: start finished\n");
30024 		break;
30025 
30026 	case SDIOCSTOP:
30027 		/* Stop Injection Session */
30028 		SD_INFO(SD_LOG_SDTEST, un,
30029 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30030 		sd_fault_injection_on = 0;
30031 		un->sd_injection_mask = 0x0;
30032 
30033 		/* Empty stray or unuseds structs from fifo */
30034 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30035 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30036 				kmem_free(un->sd_fi_fifo_pkt[i],
30037 				    sizeof (struct sd_fi_pkt));
30038 			}
30039 			if (un->sd_fi_fifo_xb[i] != NULL) {
30040 				kmem_free(un->sd_fi_fifo_xb[i],
30041 				    sizeof (struct sd_fi_xb));
30042 			}
30043 			if (un->sd_fi_fifo_un[i] != NULL) {
30044 				kmem_free(un->sd_fi_fifo_un[i],
30045 				    sizeof (struct sd_fi_un));
30046 			}
30047 			if (un->sd_fi_fifo_arq[i] != NULL) {
30048 				kmem_free(un->sd_fi_fifo_arq[i],
30049 				    sizeof (struct sd_fi_arq));
30050 			}
30051 			un->sd_fi_fifo_pkt[i] = NULL;
30052 			un->sd_fi_fifo_un[i] = NULL;
30053 			un->sd_fi_fifo_xb[i] = NULL;
30054 			un->sd_fi_fifo_arq[i] = NULL;
30055 		}
30056 		un->sd_fi_fifo_start = 0;
30057 		un->sd_fi_fifo_end = 0;
30058 
30059 		SD_INFO(SD_LOG_IOERR, un,
30060 		    "sd_faultinjection_ioctl: stop finished\n");
30061 		break;
30062 
30063 	case SDIOCINSERTPKT:
30064 		/* Store a packet struct to be pushed onto fifo */
30065 		SD_INFO(SD_LOG_SDTEST, un,
30066 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30067 
30068 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30069 
30070 		sd_fault_injection_on = 0;
30071 
30072 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30073 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30074 			kmem_free(un->sd_fi_fifo_pkt[i],
30075 			    sizeof (struct sd_fi_pkt));
30076 		}
30077 		if (arg != NULL) {
30078 			un->sd_fi_fifo_pkt[i] =
30079 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30080 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30081 				/* Alloc failed don't store anything */
30082 				break;
30083 			}
30084 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30085 			    sizeof (struct sd_fi_pkt), 0);
30086 			if (rval == -1) {
30087 				kmem_free(un->sd_fi_fifo_pkt[i],
30088 				    sizeof (struct sd_fi_pkt));
30089 				un->sd_fi_fifo_pkt[i] = NULL;
30090 			}
30091 		} else {
30092 			SD_INFO(SD_LOG_IOERR, un,
30093 			    "sd_faultinjection_ioctl: pkt null\n");
30094 		}
30095 		break;
30096 
30097 	case SDIOCINSERTXB:
30098 		/* Store a xb struct to be pushed onto fifo */
30099 		SD_INFO(SD_LOG_SDTEST, un,
30100 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30101 
30102 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30103 
30104 		sd_fault_injection_on = 0;
30105 
30106 		if (un->sd_fi_fifo_xb[i] != NULL) {
30107 			kmem_free(un->sd_fi_fifo_xb[i],
30108 			    sizeof (struct sd_fi_xb));
30109 			un->sd_fi_fifo_xb[i] = NULL;
30110 		}
30111 		if (arg != NULL) {
30112 			un->sd_fi_fifo_xb[i] =
30113 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30114 			if (un->sd_fi_fifo_xb[i] == NULL) {
30115 				/* Alloc failed don't store anything */
30116 				break;
30117 			}
30118 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30119 			    sizeof (struct sd_fi_xb), 0);
30120 
30121 			if (rval == -1) {
30122 				kmem_free(un->sd_fi_fifo_xb[i],
30123 				    sizeof (struct sd_fi_xb));
30124 				un->sd_fi_fifo_xb[i] = NULL;
30125 			}
30126 		} else {
30127 			SD_INFO(SD_LOG_IOERR, un,
30128 			    "sd_faultinjection_ioctl: xb null\n");
30129 		}
30130 		break;
30131 
30132 	case SDIOCINSERTUN:
30133 		/* Store a un struct to be pushed onto fifo */
30134 		SD_INFO(SD_LOG_SDTEST, un,
30135 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30136 
30137 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30138 
30139 		sd_fault_injection_on = 0;
30140 
30141 		if (un->sd_fi_fifo_un[i] != NULL) {
30142 			kmem_free(un->sd_fi_fifo_un[i],
30143 			    sizeof (struct sd_fi_un));
30144 			un->sd_fi_fifo_un[i] = NULL;
30145 		}
30146 		if (arg != NULL) {
30147 			un->sd_fi_fifo_un[i] =
30148 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30149 			if (un->sd_fi_fifo_un[i] == NULL) {
30150 				/* Alloc failed don't store anything */
30151 				break;
30152 			}
30153 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30154 			    sizeof (struct sd_fi_un), 0);
30155 			if (rval == -1) {
30156 				kmem_free(un->sd_fi_fifo_un[i],
30157 				    sizeof (struct sd_fi_un));
30158 				un->sd_fi_fifo_un[i] = NULL;
30159 			}
30160 
30161 		} else {
30162 			SD_INFO(SD_LOG_IOERR, un,
30163 			    "sd_faultinjection_ioctl: un null\n");
30164 		}
30165 
30166 		break;
30167 
30168 	case SDIOCINSERTARQ:
30169 		/* Store a arq struct to be pushed onto fifo */
30170 		SD_INFO(SD_LOG_SDTEST, un,
30171 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30172 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30173 
30174 		sd_fault_injection_on = 0;
30175 
30176 		if (un->sd_fi_fifo_arq[i] != NULL) {
30177 			kmem_free(un->sd_fi_fifo_arq[i],
30178 			    sizeof (struct sd_fi_arq));
30179 			un->sd_fi_fifo_arq[i] = NULL;
30180 		}
30181 		if (arg != NULL) {
30182 			un->sd_fi_fifo_arq[i] =
30183 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30184 			if (un->sd_fi_fifo_arq[i] == NULL) {
30185 				/* Alloc failed don't store anything */
30186 				break;
30187 			}
30188 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30189 			    sizeof (struct sd_fi_arq), 0);
30190 			if (rval == -1) {
30191 				kmem_free(un->sd_fi_fifo_arq[i],
30192 				    sizeof (struct sd_fi_arq));
30193 				un->sd_fi_fifo_arq[i] = NULL;
30194 			}
30195 
30196 		} else {
30197 			SD_INFO(SD_LOG_IOERR, un,
30198 			    "sd_faultinjection_ioctl: arq null\n");
30199 		}
30200 
30201 		break;
30202 
30203 	case SDIOCPUSH:
30204 		/* Push stored xb, pkt, un, and arq onto fifo */
30205 		sd_fault_injection_on = 0;
30206 
30207 		if (arg != NULL) {
30208 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30209 			if (rval != -1 &&
30210 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30211 				un->sd_fi_fifo_end += i;
30212 			}
30213 		} else {
30214 			SD_INFO(SD_LOG_IOERR, un,
30215 			    "sd_faultinjection_ioctl: push arg null\n");
30216 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30217 				un->sd_fi_fifo_end++;
30218 			}
30219 		}
30220 		SD_INFO(SD_LOG_IOERR, un,
30221 		    "sd_faultinjection_ioctl: push to end=%d\n",
30222 		    un->sd_fi_fifo_end);
30223 		break;
30224 
30225 	case SDIOCRETRIEVE:
30226 		/* Return buffer of log from Injection session */
30227 		SD_INFO(SD_LOG_SDTEST, un,
30228 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30229 
30230 		sd_fault_injection_on = 0;
30231 
30232 		mutex_enter(&(un->un_fi_mutex));
30233 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30234 		    un->sd_fi_buf_len+1, 0);
30235 		mutex_exit(&(un->un_fi_mutex));
30236 
30237 		if (rval == -1) {
30238 			/*
30239 			 * arg is possibly invalid setting
30240 			 * it to NULL for return
30241 			 */
30242 			arg = NULL;
30243 		}
30244 		break;
30245 	}
30246 
30247 	mutex_exit(SD_MUTEX(un));
30248 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30249 			    " exit\n");
30250 }
30251 
30252 
30253 /*
30254  *    Function: sd_injection_log()
30255  *
30256  * Description: This routine adds buff to the already existing injection log
30257  *              for retrieval via faultinjection_ioctl for use in fault
30258  *              detection and recovery
30259  *
30260  *   Arguments: buf - the string to add to the log
30261  */
30262 
30263 static void
30264 sd_injection_log(char *buf, struct sd_lun *un)
30265 {
30266 	uint_t len;
30267 
30268 	ASSERT(un != NULL);
30269 	ASSERT(buf != NULL);
30270 
30271 	mutex_enter(&(un->un_fi_mutex));
30272 
30273 	len = min(strlen(buf), 255);
30274 	/* Add logged value to Injection log to be returned later */
30275 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30276 		uint_t	offset = strlen((char *)un->sd_fi_log);
30277 		char *destp = (char *)un->sd_fi_log + offset;
30278 		int i;
30279 		for (i = 0; i < len; i++) {
30280 			*destp++ = *buf++;
30281 		}
30282 		un->sd_fi_buf_len += len;
30283 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30284 	}
30285 
30286 	mutex_exit(&(un->un_fi_mutex));
30287 }
30288 
30289 
30290 /*
30291  *    Function: sd_faultinjection()
30292  *
30293  * Description: This routine takes the pkt and changes its
30294  *		content based on error injection scenerio.
30295  *
30296  *   Arguments: pktp	- packet to be changed
30297  */
30298 
30299 static void
30300 sd_faultinjection(struct scsi_pkt *pktp)
30301 {
30302 	uint_t i;
30303 	struct sd_fi_pkt *fi_pkt;
30304 	struct sd_fi_xb *fi_xb;
30305 	struct sd_fi_un *fi_un;
30306 	struct sd_fi_arq *fi_arq;
30307 	struct buf *bp;
30308 	struct sd_xbuf *xb;
30309 	struct sd_lun *un;
30310 
30311 	ASSERT(pktp != NULL);
30312 
30313 	/* pull bp xb and un from pktp */
30314 	bp = (struct buf *)pktp->pkt_private;
30315 	xb = SD_GET_XBUF(bp);
30316 	un = SD_GET_UN(bp);
30317 
30318 	ASSERT(un != NULL);
30319 
30320 	mutex_enter(SD_MUTEX(un));
30321 
30322 	SD_TRACE(SD_LOG_SDTEST, un,
30323 	    "sd_faultinjection: entry Injection from sdintr\n");
30324 
30325 	/* if injection is off return */
30326 	if (sd_fault_injection_on == 0 ||
30327 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30328 		mutex_exit(SD_MUTEX(un));
30329 		return;
30330 	}
30331 
30332 
30333 	/* take next set off fifo */
30334 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30335 
30336 	fi_pkt = un->sd_fi_fifo_pkt[i];
30337 	fi_xb = un->sd_fi_fifo_xb[i];
30338 	fi_un = un->sd_fi_fifo_un[i];
30339 	fi_arq = un->sd_fi_fifo_arq[i];
30340 
30341 
30342 	/* set variables accordingly */
30343 	/* set pkt if it was on fifo */
30344 	if (fi_pkt != NULL) {
30345 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30346 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30347 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30348 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30349 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30350 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30351 
30352 	}
30353 
30354 	/* set xb if it was on fifo */
30355 	if (fi_xb != NULL) {
30356 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30357 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30358 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30359 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30360 		    "xb_victim_retry_count");
30361 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30362 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30363 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30364 
30365 		/* copy in block data from sense */
30366 		if (fi_xb->xb_sense_data[0] != -1) {
30367 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30368 			    SENSE_LENGTH);
30369 		}
30370 
30371 		/* copy in extended sense codes */
30372 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30373 		    "es_code");
30374 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30375 		    "es_key");
30376 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30377 		    "es_add_code");
30378 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30379 		    es_qual_code, "es_qual_code");
30380 	}
30381 
30382 	/* set un if it was on fifo */
30383 	if (fi_un != NULL) {
30384 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30385 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30386 		SD_CONDSET(un, un, un_reset_retry_count,
30387 		    "un_reset_retry_count");
30388 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30389 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30390 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30391 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30392 		    "un_f_geometry_is_valid");
30393 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30394 		    "un_f_allow_bus_device_reset");
30395 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30396 
30397 	}
30398 
30399 	/* copy in auto request sense if it was on fifo */
30400 	if (fi_arq != NULL) {
30401 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30402 	}
30403 
30404 	/* free structs */
30405 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30406 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30407 	}
30408 	if (un->sd_fi_fifo_xb[i] != NULL) {
30409 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30410 	}
30411 	if (un->sd_fi_fifo_un[i] != NULL) {
30412 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30413 	}
30414 	if (un->sd_fi_fifo_arq[i] != NULL) {
30415 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30416 	}
30417 
30418 	/*
30419 	 * kmem_free does not gurantee to set to NULL
30420 	 * since we uses these to determine if we set
30421 	 * values or not lets confirm they are always
30422 	 * NULL after free
30423 	 */
30424 	un->sd_fi_fifo_pkt[i] = NULL;
30425 	un->sd_fi_fifo_un[i] = NULL;
30426 	un->sd_fi_fifo_xb[i] = NULL;
30427 	un->sd_fi_fifo_arq[i] = NULL;
30428 
30429 	un->sd_fi_fifo_start++;
30430 
30431 	mutex_exit(SD_MUTEX(un));
30432 
30433 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30434 }
30435 
30436 #endif /* SD_FAULT_INJECTION */
30437 
30438 /*
30439  * This routine is invoked in sd_unit_attach(). Before calling it, the
30440  * properties in conf file should be processed already, and "hotpluggable"
30441  * property was processed also.
30442  *
30443  * The sd driver distinguishes 3 different type of devices: removable media,
30444  * non-removable media, and hotpluggable. Below the differences are defined:
30445  *
30446  * 1. Device ID
30447  *
30448  *     The device ID of a device is used to identify this device. Refer to
30449  *     ddi_devid_register(9F).
30450  *
30451  *     For a non-removable media disk device which can provide 0x80 or 0x83
30452  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30453  *     device ID is created to identify this device. For other non-removable
30454  *     media devices, a default device ID is created only if this device has
30455  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30456  *
30457  *     -------------------------------------------------------
30458  *     removable media   hotpluggable  | Can Have Device ID
30459  *     -------------------------------------------------------
30460  *         false             false     |     Yes
30461  *         false             true      |     Yes
30462  *         true                x       |     No
30463  *     ------------------------------------------------------
30464  *
30465  *
30466  * 2. SCSI group 4 commands
30467  *
30468  *     In SCSI specs, only some commands in group 4 command set can use
30469  *     8-byte addresses that can be used to access >2TB storage spaces.
30470  *     Other commands have no such capability. Without supporting group4,
30471  *     it is impossible to make full use of storage spaces of a disk with
30472  *     capacity larger than 2TB.
30473  *
30474  *     -----------------------------------------------
30475  *     removable media   hotpluggable   LP64  |  Group
30476  *     -----------------------------------------------
30477  *           false          false       false |   1
30478  *           false          false       true  |   4
30479  *           false          true        false |   1
30480  *           false          true        true  |   4
30481  *           true             x           x   |   5
30482  *     -----------------------------------------------
30483  *
30484  *
30485  * 3. Check for VTOC Label
30486  *
30487  *     If a direct-access disk has no EFI label, sd will check if it has a
30488  *     valid VTOC label. Now, sd also does that check for removable media
30489  *     and hotpluggable devices.
30490  *
30491  *     --------------------------------------------------------------
30492  *     Direct-Access   removable media    hotpluggable |  Check Label
30493  *     -------------------------------------------------------------
30494  *         false          false           false        |   No
30495  *         false          false           true         |   No
30496  *         false          true            false        |   Yes
30497  *         false          true            true         |   Yes
30498  *         true            x                x          |   Yes
30499  *     --------------------------------------------------------------
30500  *
30501  *
30502  * 4. Building default VTOC label
30503  *
30504  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30505  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30506  *     create default VTOC for them. Currently sd creates default VTOC label
30507  *     for all devices on x86 platform (VTOC_16), but only for removable
30508  *     media devices on SPARC (VTOC_8).
30509  *
30510  *     -----------------------------------------------------------
30511  *       removable media hotpluggable platform   |   Default Label
30512  *     -----------------------------------------------------------
30513  *             false          false    sparc     |     No
30514  *             false          true      x86      |     Yes
30515  *             false          true     sparc     |     Yes
30516  *             true             x        x       |     Yes
30517  *     ----------------------------------------------------------
30518  *
30519  *
30520  * 5. Supported blocksizes of target devices
30521  *
30522  *     Sd supports non-512-byte blocksize for removable media devices only.
30523  *     For other devices, only 512-byte blocksize is supported. This may be
30524  *     changed in near future because some RAID devices require non-512-byte
30525  *     blocksize
30526  *
30527  *     -----------------------------------------------------------
30528  *     removable media    hotpluggable    | non-512-byte blocksize
30529  *     -----------------------------------------------------------
30530  *           false          false         |   No
30531  *           false          true          |   No
30532  *           true             x           |   Yes
30533  *     -----------------------------------------------------------
30534  *
30535  *
30536  * 6. Automatic mount & unmount (i.e. vold)
30537  *
30538  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30539  *     if a device is removable media device. It return 1 for removable media
30540  *     devices, and 0 for others.
30541  *
30542  *     Vold treats a device as removable one only if DKIOREMOVABLE returns 1.
30543  *     And it does automounting only for removable media devices. In order to
30544  *     preserve users' experience and let vold continue to do automounting for
30545  *     USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk
30546  *     devices.
30547  *
30548  *      ------------------------------------------------------
30549  *       removable media    hotpluggable   |  automatic mount
30550  *      ------------------------------------------------------
30551  *             false          false        |   No
30552  *             false          true         |   Yes
30553  *             true             x          |   Yes
30554  *      ------------------------------------------------------
30555  *
30556  *
30557  * 7. fdisk partition management
30558  *
30559  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30560  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30561  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30562  *     fdisk partitions on both x86 and SPARC platform.
30563  *
30564  *     -----------------------------------------------------------
30565  *       platform   removable media  USB/1394  |  fdisk supported
30566  *     -----------------------------------------------------------
30567  *        x86         X               X        |       true
30568  *     ------------------------------------------------------------
30569  *        sparc       X               X        |       false
30570  *     ------------------------------------------------------------
30571  *
30572  *
30573  * 8. MBOOT/MBR
30574  *
30575  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30576  *     read/write mboot for removable media devices on sparc platform.
30577  *
30578  *     -----------------------------------------------------------
30579  *       platform   removable media  USB/1394  |  mboot supported
30580  *     -----------------------------------------------------------
30581  *        x86         X               X        |       true
30582  *     ------------------------------------------------------------
30583  *        sparc      false           false     |       false
30584  *        sparc      false           true      |       true
30585  *        sparc      true            false     |       true
30586  *        sparc      true            true      |       true
30587  *     ------------------------------------------------------------
30588  *
30589  *
30590  * 9.  error handling during opening device
30591  *
30592  *     If failed to open a disk device, an errno is returned. For some kinds
30593  *     of errors, different errno is returned depending on if this device is
30594  *     a removable media device. This brings USB/1394 hard disks in line with
30595  *     expected hard disk behavior. It is not expected that this breaks any
30596  *     application.
30597  *
30598  *     ------------------------------------------------------
30599  *       removable media    hotpluggable   |  errno
30600  *     ------------------------------------------------------
30601  *             false          false        |   EIO
30602  *             false          true         |   EIO
30603  *             true             x          |   ENXIO
30604  *     ------------------------------------------------------
30605  *
30606  *
30607  * 10. off-by-1 workaround (bug 1175930, and 4996920) (x86 only)
30608  *
30609  *     [ this is a bit of very ugly history, soon to be removed ]
30610  *
30611  *     SCSI READ_CAPACITY command returns the last valid logical block number
30612  *     which starts from 0. So real capacity is larger than the returned
30613  *     value by 1. However, because scdk.c (which was EOL'ed) directly used
30614  *     the logical block number as capacity of disk devices, off-by-1 work-
30615  *     around was applied. This workaround causes fixed SCSI disk to loss a
30616  *     sector on x86 platform, and precludes exchanging fixed hard disks
30617  *     between sparc and x86.
30618  *
30619  *     ------------------------------------------------------
30620  *       removable media    hotplug        |   Off-by-1 works
30621  *     -------------------------------------------------------
30622  *             false          false        |     Yes
30623  *             false          true         |     No
30624  *             true           false        |     No
30625  *             true           true         |     No
30626  *     ------------------------------------------------------
30627  *
30628  *
30629  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30630  *
30631  *     These IOCTLs are applicable only to removable media devices.
30632  *
30633  *     -----------------------------------------------------------
30634  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30635  *     -----------------------------------------------------------
30636  *             false          false        |     No
30637  *             false          true         |     No
30638  *             true            x           |     Yes
30639  *     -----------------------------------------------------------
30640  *
30641  *
30642  * 12. Kstats for partitions
30643  *
30644  *     sd creates partition kstat for non-removable media devices. USB and
30645  *     Firewire hard disks now have partition kstats
30646  *
30647  *      ------------------------------------------------------
30648  *       removable media    hotplugable    |   kstat
30649  *      ------------------------------------------------------
30650  *             false          false        |    Yes
30651  *             false          true         |    Yes
30652  *             true             x          |    No
30653  *       ------------------------------------------------------
30654  *
30655  *
30656  * 13. Removable media & hotpluggable properties
30657  *
30658  *     Sd driver creates a "removable-media" property for removable media
30659  *     devices. Parent nexus drivers create a "hotpluggable" property if
30660  *     it supports hotplugging.
30661  *
30662  *     ---------------------------------------------------------------------
30663  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30664  *     ---------------------------------------------------------------------
30665  *       false            false       |    No                   No
30666  *       false            true        |    No                   Yes
30667  *       true             false       |    Yes                  No
30668  *       true             true        |    Yes                  Yes
30669  *     ---------------------------------------------------------------------
30670  *
30671  *
30672  * 14. Power Management
30673  *
30674  *     sd only power manages removable media devices or devices that support
30675  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30676  *
30677  *     A parent nexus that supports hotplugging can also set "pm-capable"
30678  *     if the disk can be power managed.
30679  *
30680  *     ------------------------------------------------------------
30681  *       removable media hotpluggable pm-capable  |   power manage
30682  *     ------------------------------------------------------------
30683  *             false          false     false     |     No
30684  *             false          false     true      |     Yes
30685  *             false          true      false     |     No
30686  *             false          true      true      |     Yes
30687  *             true             x        x        |     Yes
30688  *     ------------------------------------------------------------
30689  *
30690  *      USB and firewire hard disks can now be power managed independently
30691  *      of the framebuffer
30692  *
30693  *
30694  * 15. Support for USB disks with capacity larger than 1TB
30695  *
30696  *     Currently, sd doesn't permit a fixed disk device with capacity
30697  *     larger than 1TB to be used in a 32-bit operating system environment.
30698  *     However, sd doesn't do that for removable media devices. Instead, it
30699  *     assumes that removable media devices cannot have a capacity larger
30700  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30701  *     supported, which can cause some unexpected results.
30702  *
30703  *     ---------------------------------------------------------------------
30704  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30705  *     ---------------------------------------------------------------------
30706  *             false          false  |   true         |     no
30707  *             false          true   |   true         |     no
30708  *             true           false  |   true         |     Yes
30709  *             true           true   |   true         |     Yes
30710  *     ---------------------------------------------------------------------
30711  *
30712  *
30713  * 16. Check write-protection at open time
30714  *
30715  *     When a removable media device is being opened for writing without NDELAY
30716  *     flag, sd will check if this device is writable. If attempting to open
30717  *     without NDELAY flag a write-protected device, this operation will abort.
30718  *
30719  *     ------------------------------------------------------------
30720  *       removable media    USB/1394   |   WP Check
30721  *     ------------------------------------------------------------
30722  *             false          false    |     No
30723  *             false          true     |     No
30724  *             true           false    |     Yes
30725  *             true           true     |     Yes
30726  *     ------------------------------------------------------------
30727  *
30728  *
30729  * 17. syslog when corrupted VTOC is encountered
30730  *
30731  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30732  *      for fixed SCSI disks.
30733  *     ------------------------------------------------------------
30734  *       removable media    USB/1394   |   print syslog
30735  *     ------------------------------------------------------------
30736  *             false          false    |     Yes
30737  *             false          true     |     No
30738  *             true           false    |     No
30739  *             true           true     |     No
30740  *     ------------------------------------------------------------
30741  */
30742 static void
30743 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30744 {
30745 	int	pm_capable_prop;
30746 
30747 	ASSERT(un->un_sd);
30748 	ASSERT(un->un_sd->sd_inq);
30749 
30750 #if defined(_SUNOS_VTOC_16)
30751 	/*
30752 	 * For VTOC_16 devices, the default label will be created for all
30753 	 * devices. (see sd_build_default_label)
30754 	 */
30755 	un->un_f_default_vtoc_supported = TRUE;
30756 #endif
30757 
30758 	if (un->un_sd->sd_inq->inq_rmb) {
30759 		/*
30760 		 * The media of this device is removable. And for this kind
30761 		 * of devices, it is possible to change medium after openning
30762 		 * devices. Thus we should support this operation.
30763 		 */
30764 		un->un_f_has_removable_media = TRUE;
30765 
30766 #if defined(_SUNOS_VTOC_8)
30767 		/*
30768 		 * Note: currently, for VTOC_8 devices, default label is
30769 		 * created for removable and hotpluggable devices only.
30770 		 */
30771 		un->un_f_default_vtoc_supported = TRUE;
30772 #endif
30773 		/*
30774 		 * support non-512-byte blocksize of removable media devices
30775 		 */
30776 		un->un_f_non_devbsize_supported = TRUE;
30777 
30778 		/*
30779 		 * Assume that all removable media devices support DOOR_LOCK
30780 		 */
30781 		un->un_f_doorlock_supported = TRUE;
30782 
30783 		/*
30784 		 * For a removable media device, it is possible to be opened
30785 		 * with NDELAY flag when there is no media in drive, in this
30786 		 * case we don't care if device is writable. But if without
30787 		 * NDELAY flag, we need to check if media is write-protected.
30788 		 */
30789 		un->un_f_chk_wp_open = TRUE;
30790 
30791 		/*
30792 		 * need to start a SCSI watch thread to monitor media state,
30793 		 * when media is being inserted or ejected, notify syseventd.
30794 		 */
30795 		un->un_f_monitor_media_state = TRUE;
30796 
30797 		/*
30798 		 * Some devices don't support START_STOP_UNIT command.
30799 		 * Therefore, we'd better check if a device supports it
30800 		 * before sending it.
30801 		 */
30802 		un->un_f_check_start_stop = TRUE;
30803 
30804 		/*
30805 		 * support eject media ioctl:
30806 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30807 		 */
30808 		un->un_f_eject_media_supported = TRUE;
30809 
30810 		/*
30811 		 * Because many removable-media devices don't support
30812 		 * LOG_SENSE, we couldn't use this command to check if
30813 		 * a removable media device support power-management.
30814 		 * We assume that they support power-management via
30815 		 * START_STOP_UNIT command and can be spun up and down
30816 		 * without limitations.
30817 		 */
30818 		un->un_f_pm_supported = TRUE;
30819 
30820 		/*
30821 		 * Need to create a zero length (Boolean) property
30822 		 * removable-media for the removable media devices.
30823 		 * Note that the return value of the property is not being
30824 		 * checked, since if unable to create the property
30825 		 * then do not want the attach to fail altogether. Consistent
30826 		 * with other property creation in attach.
30827 		 */
30828 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30829 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30830 
30831 	} else {
30832 		/*
30833 		 * create device ID for device
30834 		 */
30835 		un->un_f_devid_supported = TRUE;
30836 
30837 		/*
30838 		 * Spin up non-removable-media devices once it is attached
30839 		 */
30840 		un->un_f_attach_spinup = TRUE;
30841 
30842 		/*
30843 		 * According to SCSI specification, Sense data has two kinds of
30844 		 * format: fixed format, and descriptor format. At present, we
30845 		 * don't support descriptor format sense data for removable
30846 		 * media.
30847 		 */
30848 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30849 			un->un_f_descr_format_supported = TRUE;
30850 		}
30851 
30852 		/*
30853 		 * kstats are created only for non-removable media devices.
30854 		 *
30855 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30856 		 * default is 1, so they are enabled by default.
30857 		 */
30858 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30859 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30860 			"enable-partition-kstats", 1));
30861 
30862 		/*
30863 		 * Check if HBA has set the "pm-capable" property.
30864 		 * If "pm-capable" exists and is non-zero then we can
30865 		 * power manage the device without checking the start/stop
30866 		 * cycle count log sense page.
30867 		 *
30868 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
30869 		 * then we should not power manage the device.
30870 		 *
30871 		 * If "pm-capable" doesn't exist then pm_capable_prop will
30872 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30873 		 * sd will check the start/stop cycle count log sense page
30874 		 * and power manage the device if the cycle count limit has
30875 		 * not been exceeded.
30876 		 */
30877 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30878 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30879 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
30880 			un->un_f_log_sense_supported = TRUE;
30881 		} else {
30882 			/*
30883 			 * pm-capable property exists.
30884 			 *
30885 			 * Convert "TRUE" values for pm_capable_prop to
30886 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
30887 			 * later. "TRUE" values are any values except
30888 			 * SD_PM_CAPABLE_FALSE (0) and
30889 			 * SD_PM_CAPABLE_UNDEFINED (-1)
30890 			 */
30891 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
30892 				un->un_f_log_sense_supported = FALSE;
30893 			} else {
30894 				un->un_f_pm_supported = TRUE;
30895 			}
30896 
30897 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30898 			    "sd_unit_attach: un:0x%p pm-capable "
30899 			    "property set to %d.\n", un, un->un_f_pm_supported);
30900 		}
30901 	}
30902 
30903 	if (un->un_f_is_hotpluggable) {
30904 #if defined(_SUNOS_VTOC_8)
30905 		/*
30906 		 * Note: currently, for VTOC_8 devices, default label is
30907 		 * created for removable and hotpluggable devices only.
30908 		 */
30909 		un->un_f_default_vtoc_supported = TRUE;
30910 #endif
30911 
30912 		/*
30913 		 * Temporarily, let hotpluggable devices pretend to be
30914 		 * removable-media devices for vold.
30915 		 */
30916 		un->un_f_monitor_media_state = TRUE;
30917 
30918 		un->un_f_check_start_stop = TRUE;
30919 
30920 	}
30921 
30922 	/*
30923 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
30924 	 * labels.
30925 	 */
30926 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
30927 	    (un->un_sd->sd_inq->inq_rmb)) {
30928 		/*
30929 		 * Direct access devices have disk label
30930 		 */
30931 		un->un_f_vtoc_label_supported = TRUE;
30932 	}
30933 
30934 	/*
30935 	 * Fdisk partitions are supported for all direct access devices on
30936 	 * x86 platform, and just for removable media and hotpluggable
30937 	 * devices on SPARC platform. Later, we will set the following flag
30938 	 * to FALSE if current device is not removable media or hotpluggable
30939 	 * device and if sd works on SAPRC platform.
30940 	 */
30941 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30942 		un->un_f_mboot_supported = TRUE;
30943 	}
30944 
30945 	if (!un->un_f_is_hotpluggable &&
30946 	    !un->un_sd->sd_inq->inq_rmb) {
30947 
30948 #if defined(_SUNOS_VTOC_8)
30949 		/*
30950 		 * Don't support fdisk on fixed disk
30951 		 */
30952 		un->un_f_mboot_supported = FALSE;
30953 #endif
30954 
30955 		/*
30956 		 * Fixed disk support SYNC CACHE
30957 		 */
30958 		un->un_f_sync_cache_supported = TRUE;
30959 
30960 		/*
30961 		 * For fixed disk, if its VTOC is not valid, we will write
30962 		 * errlog into system log
30963 		 */
30964 		if (un->un_f_vtoc_label_supported)
30965 			un->un_f_vtoc_errlog_supported = TRUE;
30966 	}
30967 }
30968