xref: /titanic_41/usr/src/uts/common/io/scsi/targets/sd.c (revision c1ecd8b9404ee0d96d93f02e82c441b9bb149a3d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 #include <sys/sysevent/eventdefs.h>
68 #include <sys/sysevent/dev.h>
69 
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #endif
212 
213 
214 #ifdef	SDDEBUG
215 int	sd_force_pm_supported		= 0;
216 #endif	/* SDDEBUG */
217 
218 void *sd_state				= NULL;
219 int sd_io_time				= SD_IO_TIME;
220 int sd_failfast_enable			= 1;
221 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
222 int sd_report_pfa			= 1;
223 int sd_max_throttle			= SD_MAX_THROTTLE;
224 int sd_min_throttle			= SD_MIN_THROTTLE;
225 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
226 int sd_qfull_throttle_enable		= TRUE;
227 
228 int sd_retry_on_reservation_conflict	= 1;
229 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
230 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
231 
232 static int sd_dtype_optical_bind	= -1;
233 
234 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
235 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
236 
237 /*
238  * Global data for debug logging. To enable debug printing, sd_component_mask
239  * and sd_level_mask should be set to the desired bit patterns as outlined in
240  * sddef.h.
241  */
242 uint_t	sd_component_mask		= 0x0;
243 uint_t	sd_level_mask			= 0x0;
244 struct	sd_lun *sd_debug_un		= NULL;
245 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
246 
247 /* Note: these may go away in the future... */
248 static uint32_t	sd_xbuf_active_limit	= 512;
249 static uint32_t sd_xbuf_reserve_limit	= 16;
250 
251 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
252 
253 /*
254  * Timer value used to reset the throttle after it has been reduced
255  * (typically in response to TRAN_BUSY or STATUS_QFULL)
256  */
257 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
258 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
259 
260 /*
261  * Interval value associated with the media change scsi watch.
262  */
263 static int sd_check_media_time		= 3000000;
264 
265 /*
266  * Wait value used for in progress operations during a DDI_SUSPEND
267  */
268 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
269 
270 /*
271  * sd_label_mutex protects a static buffer used in the disk label
272  * component of the driver
273  */
274 static kmutex_t sd_label_mutex;
275 
276 /*
277  * sd_detach_mutex protects un_layer_count, un_detach_count, and
278  * un_opens_in_progress in the sd_lun structure.
279  */
280 static kmutex_t sd_detach_mutex;
281 
282 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
283 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
284 
285 /*
286  * Global buffer and mutex for debug logging
287  */
288 static char	sd_log_buf[1024];
289 static kmutex_t	sd_log_mutex;
290 
291 /*
292  * Structs and globals for recording attached lun information.
293  * This maintains a chain. Each node in the chain represents a SCSI controller.
294  * The structure records the number of luns attached to each target connected
295  * with the controller.
296  * For parallel scsi device only.
297  */
298 struct sd_scsi_hba_tgt_lun {
299 	struct sd_scsi_hba_tgt_lun	*next;
300 	dev_info_t			*pdip;
301 	int				nlun[NTARGETS_WIDE];
302 };
303 
304 /*
305  * Flag to indicate the lun is attached or detached
306  */
307 #define	SD_SCSI_LUN_ATTACH	0
308 #define	SD_SCSI_LUN_DETACH	1
309 
310 static kmutex_t	sd_scsi_target_lun_mutex;
311 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
312 
313 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
314     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
315 
316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
317     sd_scsi_target_lun_head))
318 
319 /*
320  * "Smart" Probe Caching structs, globals, #defines, etc.
321  * For parallel scsi and non-self-identify device only.
322  */
323 
324 /*
325  * The following resources and routines are implemented to support
326  * "smart" probing, which caches the scsi_probe() results in an array,
327  * in order to help avoid long probe times.
328  */
329 struct sd_scsi_probe_cache {
330 	struct	sd_scsi_probe_cache	*next;
331 	dev_info_t	*pdip;
332 	int		cache[NTARGETS_WIDE];
333 };
334 
335 static kmutex_t	sd_scsi_probe_cache_mutex;
336 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
337 
338 /*
339  * Really we only need protection on the head of the linked list, but
340  * better safe than sorry.
341  */
342 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
343     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
344 
345 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
346     sd_scsi_probe_cache_head))
347 
348 
349 /*
350  * Vendor specific data name property declarations
351  */
352 
353 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
354 
355 static sd_tunables seagate_properties = {
356 	SEAGATE_THROTTLE_VALUE,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0,
364 	0
365 };
366 
367 
368 static sd_tunables fujitsu_properties = {
369 	FUJITSU_THROTTLE_VALUE,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0,
376 	0,
377 	0
378 };
379 
380 static sd_tunables ibm_properties = {
381 	IBM_THROTTLE_VALUE,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0
390 };
391 
392 static sd_tunables purple_properties = {
393 	PURPLE_THROTTLE_VALUE,
394 	0,
395 	0,
396 	PURPLE_BUSY_RETRIES,
397 	PURPLE_RESET_RETRY_COUNT,
398 	PURPLE_RESERVE_RELEASE_TIME,
399 	0,
400 	0,
401 	0
402 };
403 
404 static sd_tunables sve_properties = {
405 	SVE_THROTTLE_VALUE,
406 	0,
407 	0,
408 	SVE_BUSY_RETRIES,
409 	SVE_RESET_RETRY_COUNT,
410 	SVE_RESERVE_RELEASE_TIME,
411 	SVE_MIN_THROTTLE_VALUE,
412 	SVE_DISKSORT_DISABLED_FLAG,
413 	0
414 };
415 
416 static sd_tunables maserati_properties = {
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	MASERATI_DISKSORT_DISABLED_FLAG,
425 	MASERATI_LUN_RESET_ENABLED_FLAG
426 };
427 
428 static sd_tunables pirus_properties = {
429 	PIRUS_THROTTLE_VALUE,
430 	0,
431 	PIRUS_NRR_COUNT,
432 	PIRUS_BUSY_RETRIES,
433 	PIRUS_RESET_RETRY_COUNT,
434 	0,
435 	PIRUS_MIN_THROTTLE_VALUE,
436 	PIRUS_DISKSORT_DISABLED_FLAG,
437 	PIRUS_LUN_RESET_ENABLED_FLAG
438 };
439 
440 #endif
441 
442 #if (defined(__sparc) && !defined(__fibre)) || \
443 	(defined(__i386) || defined(__amd64))
444 
445 
446 static sd_tunables elite_properties = {
447 	ELITE_THROTTLE_VALUE,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0
456 };
457 
458 static sd_tunables st31200n_properties = {
459 	ST31200N_THROTTLE_VALUE,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0
468 };
469 
470 #endif /* Fibre or not */
471 
472 static sd_tunables lsi_properties_scsi = {
473 	LSI_THROTTLE_VALUE,
474 	0,
475 	LSI_NOTREADY_RETRIES,
476 	0,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0
482 };
483 
484 static sd_tunables symbios_properties = {
485 	SYMBIOS_THROTTLE_VALUE,
486 	0,
487 	SYMBIOS_NOTREADY_RETRIES,
488 	0,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0
494 };
495 
496 static sd_tunables lsi_properties = {
497 	0,
498 	0,
499 	LSI_NOTREADY_RETRIES,
500 	0,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0
506 };
507 
508 static sd_tunables lsi_oem_properties = {
509 	0,
510 	0,
511 	LSI_OEM_NOTREADY_RETRIES,
512 	0,
513 	0,
514 	0,
515 	0,
516 	0,
517 	0,
518 	1
519 };
520 
521 
522 
523 #if (defined(SD_PROP_TST))
524 
525 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
526 #define	SD_TST_THROTTLE_VAL	16
527 #define	SD_TST_NOTREADY_VAL	12
528 #define	SD_TST_BUSY_VAL		60
529 #define	SD_TST_RST_RETRY_VAL	36
530 #define	SD_TST_RSV_REL_TIME	60
531 
532 static sd_tunables tst_properties = {
533 	SD_TST_THROTTLE_VAL,
534 	SD_TST_CTYPE_VAL,
535 	SD_TST_NOTREADY_VAL,
536 	SD_TST_BUSY_VAL,
537 	SD_TST_RST_RETRY_VAL,
538 	SD_TST_RSV_REL_TIME,
539 	0,
540 	0,
541 	0
542 };
543 #endif
544 
545 /* This is similar to the ANSI toupper implementation */
546 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
547 
548 /*
549  * Static Driver Configuration Table
550  *
551  * This is the table of disks which need throttle adjustment (or, perhaps
552  * something else as defined by the flags at a future time.)  device_id
553  * is a string consisting of concatenated vid (vendor), pid (product/model)
554  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
555  * the parts of the string are as defined by the sizes in the scsi_inquiry
556  * structure.  Device type is searched as far as the device_id string is
557  * defined.  Flags defines which values are to be set in the driver from the
558  * properties list.
559  *
560  * Entries below which begin and end with a "*" are a special case.
561  * These do not have a specific vendor, and the string which follows
562  * can appear anywhere in the 16 byte PID portion of the inquiry data.
563  *
564  * Entries below which begin and end with a " " (blank) are a special
565  * case. The comparison function will treat multiple consecutive blanks
566  * as equivalent to a single blank. For example, this causes a
567  * sd_disk_table entry of " NEC CDROM " to match a device's id string
568  * of  "NEC       CDROM".
569  *
570  * Note: The MD21 controller type has been obsoleted.
571  *	 ST318202F is a Legacy device
572  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
573  *	 made with an FC connection. The entries here are a legacy.
574  */
575 static sd_disk_config_t sd_disk_table[] = {
576 #if defined(__fibre) || defined(__i386) || defined(__amd64)
577 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
599 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
600 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
603 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
604 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
627 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
628 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
629 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
630 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
631 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
632 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
633 			SD_CONF_BSET_BSY_RETRY_COUNT|
634 			SD_CONF_BSET_RST_RETRIES|
635 			SD_CONF_BSET_RSV_REL_TIME,
636 		&purple_properties },
637 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
638 		SD_CONF_BSET_BSY_RETRY_COUNT|
639 		SD_CONF_BSET_RST_RETRIES|
640 		SD_CONF_BSET_RSV_REL_TIME|
641 		SD_CONF_BSET_MIN_THROTTLE|
642 		SD_CONF_BSET_DISKSORT_DISABLED,
643 		&sve_properties },
644 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
645 			SD_CONF_BSET_BSY_RETRY_COUNT|
646 			SD_CONF_BSET_RST_RETRIES|
647 			SD_CONF_BSET_RSV_REL_TIME,
648 		&purple_properties },
649 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
650 		SD_CONF_BSET_LUN_RESET_ENABLED,
651 		&maserati_properties },
652 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
653 		SD_CONF_BSET_NRR_COUNT|
654 		SD_CONF_BSET_BSY_RETRY_COUNT|
655 		SD_CONF_BSET_RST_RETRIES|
656 		SD_CONF_BSET_MIN_THROTTLE|
657 		SD_CONF_BSET_DISKSORT_DISABLED|
658 		SD_CONF_BSET_LUN_RESET_ENABLED,
659 		&pirus_properties },
660 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
661 		SD_CONF_BSET_NRR_COUNT|
662 		SD_CONF_BSET_BSY_RETRY_COUNT|
663 		SD_CONF_BSET_RST_RETRIES|
664 		SD_CONF_BSET_MIN_THROTTLE|
665 		SD_CONF_BSET_DISKSORT_DISABLED|
666 		SD_CONF_BSET_LUN_RESET_ENABLED,
667 		&pirus_properties },
668 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
669 		SD_CONF_BSET_NRR_COUNT|
670 		SD_CONF_BSET_BSY_RETRY_COUNT|
671 		SD_CONF_BSET_RST_RETRIES|
672 		SD_CONF_BSET_MIN_THROTTLE|
673 		SD_CONF_BSET_DISKSORT_DISABLED|
674 		SD_CONF_BSET_LUN_RESET_ENABLED,
675 		&pirus_properties },
676 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
677 		SD_CONF_BSET_NRR_COUNT|
678 		SD_CONF_BSET_BSY_RETRY_COUNT|
679 		SD_CONF_BSET_RST_RETRIES|
680 		SD_CONF_BSET_MIN_THROTTLE|
681 		SD_CONF_BSET_DISKSORT_DISABLED|
682 		SD_CONF_BSET_LUN_RESET_ENABLED,
683 		&pirus_properties },
684 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
685 		SD_CONF_BSET_NRR_COUNT|
686 		SD_CONF_BSET_BSY_RETRY_COUNT|
687 		SD_CONF_BSET_RST_RETRIES|
688 		SD_CONF_BSET_MIN_THROTTLE|
689 		SD_CONF_BSET_DISKSORT_DISABLED|
690 		SD_CONF_BSET_LUN_RESET_ENABLED,
691 		&pirus_properties },
692 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
693 		SD_CONF_BSET_NRR_COUNT|
694 		SD_CONF_BSET_BSY_RETRY_COUNT|
695 		SD_CONF_BSET_RST_RETRIES|
696 		SD_CONF_BSET_MIN_THROTTLE|
697 		SD_CONF_BSET_DISKSORT_DISABLED|
698 		SD_CONF_BSET_LUN_RESET_ENABLED,
699 		&pirus_properties },
700 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
701 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
702 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
703 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
704 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
705 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
706 #endif /* fibre or NON-sparc platforms */
707 #if ((defined(__sparc) && !defined(__fibre)) ||\
708 	(defined(__i386) || defined(__amd64)))
709 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
710 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
711 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
712 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
713 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
716 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
717 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
718 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
719 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
720 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
721 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
722 	    &symbios_properties },
723 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
724 	    &lsi_properties_scsi },
725 #if defined(__i386) || defined(__amd64)
726 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
727 				    | SD_CONF_BSET_READSUB_BCD
728 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
729 				    | SD_CONF_BSET_NO_READ_HEADER
730 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
731 
732 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
733 				    | SD_CONF_BSET_READSUB_BCD
734 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
735 				    | SD_CONF_BSET_NO_READ_HEADER
736 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
737 #endif /* __i386 || __amd64 */
738 #endif /* sparc NON-fibre or NON-sparc platforms */
739 
740 #if (defined(SD_PROP_TST))
741 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
742 				| SD_CONF_BSET_CTYPE
743 				| SD_CONF_BSET_NRR_COUNT
744 				| SD_CONF_BSET_FAB_DEVID
745 				| SD_CONF_BSET_NOCACHE
746 				| SD_CONF_BSET_BSY_RETRY_COUNT
747 				| SD_CONF_BSET_PLAYMSF_BCD
748 				| SD_CONF_BSET_READSUB_BCD
749 				| SD_CONF_BSET_READ_TOC_TRK_BCD
750 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
751 				| SD_CONF_BSET_NO_READ_HEADER
752 				| SD_CONF_BSET_READ_CD_XD4
753 				| SD_CONF_BSET_RST_RETRIES
754 				| SD_CONF_BSET_RSV_REL_TIME
755 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
756 #endif
757 };
758 
759 static const int sd_disk_table_size =
760 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
761 
762 
763 
764 #define	SD_INTERCONNECT_PARALLEL	0
765 #define	SD_INTERCONNECT_FABRIC		1
766 #define	SD_INTERCONNECT_FIBRE		2
767 #define	SD_INTERCONNECT_SSA		3
768 #define	SD_INTERCONNECT_SATA		4
769 #define	SD_IS_PARALLEL_SCSI(un)		\
770 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
771 #define	SD_IS_SERIAL(un)		\
772 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
773 
774 /*
775  * Definitions used by device id registration routines
776  */
777 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
778 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
779 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
780 
781 static kmutex_t sd_sense_mutex = {0};
782 
783 /*
784  * Macros for updates of the driver state
785  */
786 #define	New_state(un, s)        \
787 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
788 #define	Restore_state(un)	\
789 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
790 
791 static struct sd_cdbinfo sd_cdbtab[] = {
792 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
793 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
794 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
795 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
796 };
797 
798 /*
799  * Specifies the number of seconds that must have elapsed since the last
800  * cmd. has completed for a device to be declared idle to the PM framework.
801  */
802 static int sd_pm_idletime = 1;
803 
804 /*
805  * Internal function prototypes
806  */
807 
808 #if (defined(__fibre))
809 /*
810  * These #defines are to avoid namespace collisions that occur because this
811  * code is currently used to compile two separate driver modules: sd and ssd.
812  * All function names need to be treated this way (even if declared static)
813  * in order to allow the debugger to resolve the names properly.
814  * It is anticipated that in the near future the ssd module will be obsoleted,
815  * at which time this ugliness should go away.
816  */
817 #define	sd_log_trace			ssd_log_trace
818 #define	sd_log_info			ssd_log_info
819 #define	sd_log_err			ssd_log_err
820 #define	sdprobe				ssdprobe
821 #define	sdinfo				ssdinfo
822 #define	sd_prop_op			ssd_prop_op
823 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
824 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
825 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
826 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
827 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
828 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
829 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
830 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
831 #define	sd_spin_up_unit			ssd_spin_up_unit
832 #define	sd_enable_descr_sense		ssd_enable_descr_sense
833 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
834 #define	sd_set_mmc_caps			ssd_set_mmc_caps
835 #define	sd_read_unit_properties		ssd_read_unit_properties
836 #define	sd_process_sdconf_file		ssd_process_sdconf_file
837 #define	sd_process_sdconf_table		ssd_process_sdconf_table
838 #define	sd_sdconf_id_match		ssd_sdconf_id_match
839 #define	sd_blank_cmp			ssd_blank_cmp
840 #define	sd_chk_vers1_data		ssd_chk_vers1_data
841 #define	sd_set_vers1_properties		ssd_set_vers1_properties
842 
843 #define	sd_get_physical_geometry	ssd_get_physical_geometry
844 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
845 #define	sd_update_block_info		ssd_update_block_info
846 #define	sd_register_devid		ssd_register_devid
847 #define	sd_get_devid			ssd_get_devid
848 #define	sd_create_devid			ssd_create_devid
849 #define	sd_write_deviceid		ssd_write_deviceid
850 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
851 #define	sd_setup_pm			ssd_setup_pm
852 #define	sd_create_pm_components		ssd_create_pm_components
853 #define	sd_ddi_suspend			ssd_ddi_suspend
854 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
855 #define	sd_ddi_resume			ssd_ddi_resume
856 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
857 #define	sdpower				ssdpower
858 #define	sdattach			ssdattach
859 #define	sddetach			ssddetach
860 #define	sd_unit_attach			ssd_unit_attach
861 #define	sd_unit_detach			ssd_unit_detach
862 #define	sd_set_unit_attributes		ssd_set_unit_attributes
863 #define	sd_create_errstats		ssd_create_errstats
864 #define	sd_set_errstats			ssd_set_errstats
865 #define	sd_set_pstats			ssd_set_pstats
866 #define	sddump				ssddump
867 #define	sd_scsi_poll			ssd_scsi_poll
868 #define	sd_send_polled_RQS		ssd_send_polled_RQS
869 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
870 #define	sd_init_event_callbacks		ssd_init_event_callbacks
871 #define	sd_event_callback		ssd_event_callback
872 #define	sd_cache_control		ssd_cache_control
873 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
874 #define	sd_get_nv_sup			ssd_get_nv_sup
875 #define	sd_make_device			ssd_make_device
876 #define	sdopen				ssdopen
877 #define	sdclose				ssdclose
878 #define	sd_ready_and_valid		ssd_ready_and_valid
879 #define	sdmin				ssdmin
880 #define	sdread				ssdread
881 #define	sdwrite				ssdwrite
882 #define	sdaread				ssdaread
883 #define	sdawrite			ssdawrite
884 #define	sdstrategy			ssdstrategy
885 #define	sdioctl				ssdioctl
886 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
887 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
888 #define	sd_checksum_iostart		ssd_checksum_iostart
889 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
890 #define	sd_pm_iostart			ssd_pm_iostart
891 #define	sd_core_iostart			ssd_core_iostart
892 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
893 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
894 #define	sd_checksum_iodone		ssd_checksum_iodone
895 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
896 #define	sd_pm_iodone			ssd_pm_iodone
897 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
898 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
899 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
900 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
901 #define	sd_buf_iodone			ssd_buf_iodone
902 #define	sd_uscsi_strategy		ssd_uscsi_strategy
903 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
904 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
905 #define	sd_uscsi_iodone			ssd_uscsi_iodone
906 #define	sd_xbuf_strategy		ssd_xbuf_strategy
907 #define	sd_xbuf_init			ssd_xbuf_init
908 #define	sd_pm_entry			ssd_pm_entry
909 #define	sd_pm_exit			ssd_pm_exit
910 
911 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
912 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
913 
914 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
915 #define	sdintr				ssdintr
916 #define	sd_start_cmds			ssd_start_cmds
917 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
918 #define	sd_bioclone_alloc		ssd_bioclone_alloc
919 #define	sd_bioclone_free		ssd_bioclone_free
920 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
921 #define	sd_shadow_buf_free		ssd_shadow_buf_free
922 #define	sd_print_transport_rejected_message	\
923 					ssd_print_transport_rejected_message
924 #define	sd_retry_command		ssd_retry_command
925 #define	sd_set_retry_bp			ssd_set_retry_bp
926 #define	sd_send_request_sense_command	ssd_send_request_sense_command
927 #define	sd_start_retry_command		ssd_start_retry_command
928 #define	sd_start_direct_priority_command	\
929 					ssd_start_direct_priority_command
930 #define	sd_return_failed_command	ssd_return_failed_command
931 #define	sd_return_failed_command_no_restart	\
932 					ssd_return_failed_command_no_restart
933 #define	sd_return_command		ssd_return_command
934 #define	sd_sync_with_callback		ssd_sync_with_callback
935 #define	sdrunout			ssdrunout
936 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
937 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
938 #define	sd_reduce_throttle		ssd_reduce_throttle
939 #define	sd_restore_throttle		ssd_restore_throttle
940 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
941 #define	sd_init_cdb_limits		ssd_init_cdb_limits
942 #define	sd_pkt_status_good		ssd_pkt_status_good
943 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
944 #define	sd_pkt_status_busy		ssd_pkt_status_busy
945 #define	sd_pkt_status_reservation_conflict	\
946 					ssd_pkt_status_reservation_conflict
947 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
948 #define	sd_handle_request_sense		ssd_handle_request_sense
949 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
950 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
951 #define	sd_validate_sense_data		ssd_validate_sense_data
952 #define	sd_decode_sense			ssd_decode_sense
953 #define	sd_print_sense_msg		ssd_print_sense_msg
954 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
955 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
956 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
957 #define	sd_sense_key_medium_or_hardware_error	\
958 					ssd_sense_key_medium_or_hardware_error
959 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
960 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
961 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
962 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
963 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
964 #define	sd_sense_key_default		ssd_sense_key_default
965 #define	sd_print_retry_msg		ssd_print_retry_msg
966 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
967 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
968 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
969 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
970 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
971 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
972 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
973 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
974 #define	sd_pkt_reason_default		ssd_pkt_reason_default
975 #define	sd_reset_target			ssd_reset_target
976 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
977 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
978 #define	sd_taskq_create			ssd_taskq_create
979 #define	sd_taskq_delete			ssd_taskq_delete
980 #define	sd_target_change_task		ssd_target_change_task
981 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
982 #define	sd_media_change_task		ssd_media_change_task
983 #define	sd_handle_mchange		ssd_handle_mchange
984 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
985 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
986 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
987 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
988 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
989 					sd_send_scsi_feature_GET_CONFIGURATION
990 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
991 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
992 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
993 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
994 					ssd_send_scsi_PERSISTENT_RESERVE_IN
995 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
996 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
997 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
998 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
999 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1000 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1001 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1002 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1003 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1004 #define	sd_alloc_rqs			ssd_alloc_rqs
1005 #define	sd_free_rqs			ssd_free_rqs
1006 #define	sd_dump_memory			ssd_dump_memory
1007 #define	sd_get_media_info		ssd_get_media_info
1008 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1009 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1010 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1011 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1012 #define	sd_check_mhd			ssd_check_mhd
1013 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1014 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1015 #define	sd_sname			ssd_sname
1016 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1017 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1018 #define	sd_take_ownership		ssd_take_ownership
1019 #define	sd_reserve_release		ssd_reserve_release
1020 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1021 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1022 #define	sd_persistent_reservation_in_read_keys	\
1023 					ssd_persistent_reservation_in_read_keys
1024 #define	sd_persistent_reservation_in_read_resv	\
1025 					ssd_persistent_reservation_in_read_resv
1026 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1027 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1028 #define	sd_mhdioc_release		ssd_mhdioc_release
1029 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1030 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1031 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1032 #define	sr_change_blkmode		ssr_change_blkmode
1033 #define	sr_change_speed			ssr_change_speed
1034 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1035 #define	sr_pause_resume			ssr_pause_resume
1036 #define	sr_play_msf			ssr_play_msf
1037 #define	sr_play_trkind			ssr_play_trkind
1038 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1039 #define	sr_read_subchannel		ssr_read_subchannel
1040 #define	sr_read_tocentry		ssr_read_tocentry
1041 #define	sr_read_tochdr			ssr_read_tochdr
1042 #define	sr_read_cdda			ssr_read_cdda
1043 #define	sr_read_cdxa			ssr_read_cdxa
1044 #define	sr_read_mode1			ssr_read_mode1
1045 #define	sr_read_mode2			ssr_read_mode2
1046 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1047 #define	sr_sector_mode			ssr_sector_mode
1048 #define	sr_eject			ssr_eject
1049 #define	sr_ejected			ssr_ejected
1050 #define	sr_check_wp			ssr_check_wp
1051 #define	sd_check_media			ssd_check_media
1052 #define	sd_media_watch_cb		ssd_media_watch_cb
1053 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1054 #define	sr_volume_ctrl			ssr_volume_ctrl
1055 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1056 #define	sd_log_page_supported		ssd_log_page_supported
1057 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1058 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1059 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1060 #define	sd_range_lock			ssd_range_lock
1061 #define	sd_get_range			ssd_get_range
1062 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1063 #define	sd_range_unlock			ssd_range_unlock
1064 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1065 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1066 
1067 #define	sd_iostart_chain		ssd_iostart_chain
1068 #define	sd_iodone_chain			ssd_iodone_chain
1069 #define	sd_initpkt_map			ssd_initpkt_map
1070 #define	sd_destroypkt_map		ssd_destroypkt_map
1071 #define	sd_chain_type_map		ssd_chain_type_map
1072 #define	sd_chain_index_map		ssd_chain_index_map
1073 
1074 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1075 #define	sd_failfast_flushq		ssd_failfast_flushq
1076 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1077 
1078 #define	sd_is_lsi			ssd_is_lsi
1079 #define	sd_tg_rdwr			ssd_tg_rdwr
1080 #define	sd_tg_getinfo			ssd_tg_getinfo
1081 
1082 #endif	/* #if (defined(__fibre)) */
1083 
1084 
1085 int _init(void);
1086 int _fini(void);
1087 int _info(struct modinfo *modinfop);
1088 
1089 /*PRINTFLIKE3*/
1090 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1091 /*PRINTFLIKE3*/
1092 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1093 /*PRINTFLIKE3*/
1094 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1095 
1096 static int sdprobe(dev_info_t *devi);
1097 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1098     void **result);
1099 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1100     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1101 
1102 /*
1103  * Smart probe for parallel scsi
1104  */
1105 static void sd_scsi_probe_cache_init(void);
1106 static void sd_scsi_probe_cache_fini(void);
1107 static void sd_scsi_clear_probe_cache(void);
1108 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1109 
1110 /*
1111  * Attached luns on target for parallel scsi
1112  */
1113 static void sd_scsi_target_lun_init(void);
1114 static void sd_scsi_target_lun_fini(void);
1115 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1116 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1117 
1118 static int	sd_spin_up_unit(struct sd_lun *un);
1119 #ifdef _LP64
1120 static void	sd_enable_descr_sense(struct sd_lun *un);
1121 static void	sd_reenable_dsense_task(void *arg);
1122 #endif /* _LP64 */
1123 
1124 static void	sd_set_mmc_caps(struct sd_lun *un);
1125 
1126 static void sd_read_unit_properties(struct sd_lun *un);
1127 static int  sd_process_sdconf_file(struct sd_lun *un);
1128 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1129     int *data_list, sd_tunables *values);
1130 static void sd_process_sdconf_table(struct sd_lun *un);
1131 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1132 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1133 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1134 	int list_len, char *dataname_ptr);
1135 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1136     sd_tunables *prop_list);
1137 
1138 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1139     int reservation_flag);
1140 static int  sd_get_devid(struct sd_lun *un);
1141 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1142 static int  sd_write_deviceid(struct sd_lun *un);
1143 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1144 static int  sd_check_vpd_page_support(struct sd_lun *un);
1145 
1146 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1147 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1148 
1149 static int  sd_ddi_suspend(dev_info_t *devi);
1150 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1151 static int  sd_ddi_resume(dev_info_t *devi);
1152 static int  sd_ddi_pm_resume(struct sd_lun *un);
1153 static int  sdpower(dev_info_t *devi, int component, int level);
1154 
1155 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1156 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1157 static int  sd_unit_attach(dev_info_t *devi);
1158 static int  sd_unit_detach(dev_info_t *devi);
1159 
1160 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1161 static void sd_create_errstats(struct sd_lun *un, int instance);
1162 static void sd_set_errstats(struct sd_lun *un);
1163 static void sd_set_pstats(struct sd_lun *un);
1164 
1165 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1166 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1167 static int  sd_send_polled_RQS(struct sd_lun *un);
1168 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1169 
1170 #if (defined(__fibre))
1171 /*
1172  * Event callbacks (photon)
1173  */
1174 static void sd_init_event_callbacks(struct sd_lun *un);
1175 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1176 #endif
1177 
1178 /*
1179  * Defines for sd_cache_control
1180  */
1181 
1182 #define	SD_CACHE_ENABLE		1
1183 #define	SD_CACHE_DISABLE	0
1184 #define	SD_CACHE_NOCHANGE	-1
1185 
1186 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1187 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1188 static void  sd_get_nv_sup(struct sd_lun *un);
1189 static dev_t sd_make_device(dev_info_t *devi);
1190 
1191 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1192 	uint64_t capacity);
1193 
1194 /*
1195  * Driver entry point functions.
1196  */
1197 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1198 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1199 static int  sd_ready_and_valid(struct sd_lun *un);
1200 
1201 static void sdmin(struct buf *bp);
1202 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1203 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1204 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1205 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1206 
1207 static int sdstrategy(struct buf *bp);
1208 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1209 
1210 /*
1211  * Function prototypes for layering functions in the iostart chain.
1212  */
1213 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1218 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1219 	struct buf *bp);
1220 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1221 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1222 
1223 /*
1224  * Function prototypes for layering functions in the iodone chain.
1225  */
1226 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1227 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1228 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1229 	struct buf *bp);
1230 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1231 	struct buf *bp);
1232 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1233 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1234 	struct buf *bp);
1235 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1236 
1237 /*
1238  * Prototypes for functions to support buf(9S) based IO.
1239  */
1240 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1241 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1242 static void sd_destroypkt_for_buf(struct buf *);
1243 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1244 	struct buf *bp, int flags,
1245 	int (*callback)(caddr_t), caddr_t callback_arg,
1246 	diskaddr_t lba, uint32_t blockcount);
1247 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1248 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1249 
1250 /*
1251  * Prototypes for functions to support USCSI IO.
1252  */
1253 static int sd_uscsi_strategy(struct buf *bp);
1254 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1255 static void sd_destroypkt_for_uscsi(struct buf *);
1256 
1257 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1258 	uchar_t chain_type, void *pktinfop);
1259 
1260 static int  sd_pm_entry(struct sd_lun *un);
1261 static void sd_pm_exit(struct sd_lun *un);
1262 
1263 static void sd_pm_idletimeout_handler(void *arg);
1264 
1265 /*
1266  * sd_core internal functions (used at the sd_core_io layer).
1267  */
1268 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1269 static void sdintr(struct scsi_pkt *pktp);
1270 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1271 
1272 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1273 	enum uio_seg dataspace, int path_flag);
1274 
1275 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1276 	daddr_t blkno, int (*func)(struct buf *));
1277 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1278 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1279 static void sd_bioclone_free(struct buf *bp);
1280 static void sd_shadow_buf_free(struct buf *bp);
1281 
1282 static void sd_print_transport_rejected_message(struct sd_lun *un,
1283 	struct sd_xbuf *xp, int code);
1284 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1285     void *arg, int code);
1286 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1287     void *arg, int code);
1288 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1289     void *arg, int code);
1290 
1291 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1292 	int retry_check_flag,
1293 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1294 		int c),
1295 	void *user_arg, int failure_code,  clock_t retry_delay,
1296 	void (*statp)(kstat_io_t *));
1297 
1298 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1299 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1300 
1301 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1302 	struct scsi_pkt *pktp);
1303 static void sd_start_retry_command(void *arg);
1304 static void sd_start_direct_priority_command(void *arg);
1305 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1306 	int errcode);
1307 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1308 	struct buf *bp, int errcode);
1309 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1310 static void sd_sync_with_callback(struct sd_lun *un);
1311 static int sdrunout(caddr_t arg);
1312 
1313 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1314 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1315 
1316 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1317 static void sd_restore_throttle(void *arg);
1318 
1319 static void sd_init_cdb_limits(struct sd_lun *un);
1320 
1321 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 
1324 /*
1325  * Error handling functions
1326  */
1327 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1330 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1331 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1332 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1334 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1335 
1336 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, size_t actual_len);
1342 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1343 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 
1345 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1346 	void *arg, int code);
1347 
1348 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1349 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1350 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1351 	uint8_t *sense_datap,
1352 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_not_ready(struct sd_lun *un,
1354 	uint8_t *sense_datap,
1355 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1356 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1357 	uint8_t *sense_datap,
1358 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1359 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1360 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1361 static void sd_sense_key_unit_attention(struct sd_lun *un,
1362 	uint8_t *sense_datap,
1363 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1369 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_sense_key_default(struct sd_lun *un,
1371 	uint8_t *sense_datap,
1372 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 
1374 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1375 	void *arg, int flag);
1376 
1377 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1386 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1387 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1388 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1389 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 
1394 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1395 
1396 static void sd_start_stop_unit_callback(void *arg);
1397 static void sd_start_stop_unit_task(void *arg);
1398 
1399 static void sd_taskq_create(void);
1400 static void sd_taskq_delete(void);
1401 static void sd_target_change_task(void *arg);
1402 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1403 static void sd_media_change_task(void *arg);
1404 
1405 static int sd_handle_mchange(struct sd_lun *un);
1406 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1407 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1408 	uint32_t *lbap, int path_flag);
1409 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1410 	uint32_t *lbap, int path_flag);
1411 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1412 	int path_flag);
1413 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1414 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1415 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1416 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1417 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1418 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1419 	uchar_t usr_cmd, uchar_t *usr_bufp);
1420 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1421 	struct dk_callback *dkc);
1422 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1423 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1424 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1425 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1426 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1427 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1428 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1429 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1430 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1431 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1432 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1433 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1434 	size_t buflen, daddr_t start_block, int path_flag);
1435 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1436 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1437 	path_flag)
1438 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1439 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1440 	path_flag)
1441 
1442 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1443 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1444 	uint16_t param_ptr, int path_flag);
1445 
1446 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1447 static void sd_free_rqs(struct sd_lun *un);
1448 
1449 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1450 	uchar_t *data, int len, int fmt);
1451 static void sd_panic_for_res_conflict(struct sd_lun *un);
1452 
1453 /*
1454  * Disk Ioctl Function Prototypes
1455  */
1456 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1457 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1458 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1459 
1460 /*
1461  * Multi-host Ioctl Prototypes
1462  */
1463 static int sd_check_mhd(dev_t dev, int interval);
1464 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1465 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1466 static char *sd_sname(uchar_t status);
1467 static void sd_mhd_resvd_recover(void *arg);
1468 static void sd_resv_reclaim_thread();
1469 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1470 static int sd_reserve_release(dev_t dev, int cmd);
1471 static void sd_rmv_resv_reclaim_req(dev_t dev);
1472 static void sd_mhd_reset_notify_cb(caddr_t arg);
1473 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1474 	mhioc_inkeys_t *usrp, int flag);
1475 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1476 	mhioc_inresvs_t *usrp, int flag);
1477 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1478 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1479 static int sd_mhdioc_release(dev_t dev);
1480 static int sd_mhdioc_register_devid(dev_t dev);
1481 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1482 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1483 
1484 /*
1485  * SCSI removable prototypes
1486  */
1487 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1488 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1489 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1490 static int sr_pause_resume(dev_t dev, int mode);
1491 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1492 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1493 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1494 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1495 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1496 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1497 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1498 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1499 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1500 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1501 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1502 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1503 static int sr_eject(dev_t dev);
1504 static void sr_ejected(register struct sd_lun *un);
1505 static int sr_check_wp(dev_t dev);
1506 static int sd_check_media(dev_t dev, enum dkio_state state);
1507 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1508 static void sd_delayed_cv_broadcast(void *arg);
1509 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1510 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1511 
1512 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1513 
1514 /*
1515  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1516  */
1517 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1518 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1519 static void sd_wm_cache_destructor(void *wm, void *un);
1520 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1521 	daddr_t endb, ushort_t typ);
1522 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1523 	daddr_t endb);
1524 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1525 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1526 static void sd_read_modify_write_task(void * arg);
1527 static int
1528 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1529 	struct buf **bpp);
1530 
1531 
1532 /*
1533  * Function prototypes for failfast support.
1534  */
1535 static void sd_failfast_flushq(struct sd_lun *un);
1536 static int sd_failfast_flushq_callback(struct buf *bp);
1537 
1538 /*
1539  * Function prototypes to check for lsi devices
1540  */
1541 static void sd_is_lsi(struct sd_lun *un);
1542 
1543 /*
1544  * Function prototypes for partial DMA support
1545  */
1546 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1547 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1548 
1549 
1550 /* Function prototypes for cmlb */
1551 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1552     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1553 
1554 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1555 
1556 /*
1557  * Constants for failfast support:
1558  *
1559  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1560  * failfast processing being performed.
1561  *
1562  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1563  * failfast processing on all bufs with B_FAILFAST set.
1564  */
1565 
1566 #define	SD_FAILFAST_INACTIVE		0
1567 #define	SD_FAILFAST_ACTIVE		1
1568 
1569 /*
1570  * Bitmask to control behavior of buf(9S) flushes when a transition to
1571  * the failfast state occurs. Optional bits include:
1572  *
1573  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1574  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1575  * be flushed.
1576  *
1577  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1578  * driver, in addition to the regular wait queue. This includes the xbuf
1579  * queues. When clear, only the driver's wait queue will be flushed.
1580  */
1581 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1582 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1583 
1584 /*
1585  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1586  * to flush all queues within the driver.
1587  */
1588 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1589 
1590 
1591 /*
1592  * SD Testing Fault Injection
1593  */
1594 #ifdef SD_FAULT_INJECTION
1595 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1596 static void sd_faultinjection(struct scsi_pkt *pktp);
1597 static void sd_injection_log(char *buf, struct sd_lun *un);
1598 #endif
1599 
1600 /*
1601  * Device driver ops vector
1602  */
1603 static struct cb_ops sd_cb_ops = {
1604 	sdopen,			/* open */
1605 	sdclose,		/* close */
1606 	sdstrategy,		/* strategy */
1607 	nodev,			/* print */
1608 	sddump,			/* dump */
1609 	sdread,			/* read */
1610 	sdwrite,		/* write */
1611 	sdioctl,		/* ioctl */
1612 	nodev,			/* devmap */
1613 	nodev,			/* mmap */
1614 	nodev,			/* segmap */
1615 	nochpoll,		/* poll */
1616 	sd_prop_op,		/* cb_prop_op */
1617 	0,			/* streamtab  */
1618 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1619 	CB_REV,			/* cb_rev */
1620 	sdaread, 		/* async I/O read entry point */
1621 	sdawrite		/* async I/O write entry point */
1622 };
1623 
1624 static struct dev_ops sd_ops = {
1625 	DEVO_REV,		/* devo_rev, */
1626 	0,			/* refcnt  */
1627 	sdinfo,			/* info */
1628 	nulldev,		/* identify */
1629 	sdprobe,		/* probe */
1630 	sdattach,		/* attach */
1631 	sddetach,		/* detach */
1632 	nodev,			/* reset */
1633 	&sd_cb_ops,		/* driver operations */
1634 	NULL,			/* bus operations */
1635 	sdpower			/* power */
1636 };
1637 
1638 
1639 /*
1640  * This is the loadable module wrapper.
1641  */
1642 #include <sys/modctl.h>
1643 
1644 static struct modldrv modldrv = {
1645 	&mod_driverops,		/* Type of module. This one is a driver */
1646 	SD_MODULE_NAME,		/* Module name. */
1647 	&sd_ops			/* driver ops */
1648 };
1649 
1650 
1651 static struct modlinkage modlinkage = {
1652 	MODREV_1,
1653 	&modldrv,
1654 	NULL
1655 };
1656 
1657 static cmlb_tg_ops_t sd_tgops = {
1658 	TG_DK_OPS_VERSION_1,
1659 	sd_tg_rdwr,
1660 	sd_tg_getinfo
1661 	};
1662 
1663 static struct scsi_asq_key_strings sd_additional_codes[] = {
1664 	0x81, 0, "Logical Unit is Reserved",
1665 	0x85, 0, "Audio Address Not Valid",
1666 	0xb6, 0, "Media Load Mechanism Failed",
1667 	0xB9, 0, "Audio Play Operation Aborted",
1668 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1669 	0x53, 2, "Medium removal prevented",
1670 	0x6f, 0, "Authentication failed during key exchange",
1671 	0x6f, 1, "Key not present",
1672 	0x6f, 2, "Key not established",
1673 	0x6f, 3, "Read without proper authentication",
1674 	0x6f, 4, "Mismatched region to this logical unit",
1675 	0x6f, 5, "Region reset count error",
1676 	0xffff, 0x0, NULL
1677 };
1678 
1679 
1680 /*
1681  * Struct for passing printing information for sense data messages
1682  */
1683 struct sd_sense_info {
1684 	int	ssi_severity;
1685 	int	ssi_pfa_flag;
1686 };
1687 
1688 /*
1689  * Table of function pointers for iostart-side routines. Separate "chains"
1690  * of layered function calls are formed by placing the function pointers
1691  * sequentially in the desired order. Functions are called according to an
1692  * incrementing table index ordering. The last function in each chain must
1693  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1694  * in the sd_iodone_chain[] array.
1695  *
1696  * Note: It may seem more natural to organize both the iostart and iodone
1697  * functions together, into an array of structures (or some similar
1698  * organization) with a common index, rather than two separate arrays which
1699  * must be maintained in synchronization. The purpose of this division is
1700  * to achieve improved performance: individual arrays allows for more
1701  * effective cache line utilization on certain platforms.
1702  */
1703 
1704 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1705 
1706 
1707 static sd_chain_t sd_iostart_chain[] = {
1708 
1709 	/* Chain for buf IO for disk drive targets (PM enabled) */
1710 	sd_mapblockaddr_iostart,	/* Index: 0 */
1711 	sd_pm_iostart,			/* Index: 1 */
1712 	sd_core_iostart,		/* Index: 2 */
1713 
1714 	/* Chain for buf IO for disk drive targets (PM disabled) */
1715 	sd_mapblockaddr_iostart,	/* Index: 3 */
1716 	sd_core_iostart,		/* Index: 4 */
1717 
1718 	/* Chain for buf IO for removable-media targets (PM enabled) */
1719 	sd_mapblockaddr_iostart,	/* Index: 5 */
1720 	sd_mapblocksize_iostart,	/* Index: 6 */
1721 	sd_pm_iostart,			/* Index: 7 */
1722 	sd_core_iostart,		/* Index: 8 */
1723 
1724 	/* Chain for buf IO for removable-media targets (PM disabled) */
1725 	sd_mapblockaddr_iostart,	/* Index: 9 */
1726 	sd_mapblocksize_iostart,	/* Index: 10 */
1727 	sd_core_iostart,		/* Index: 11 */
1728 
1729 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1730 	sd_mapblockaddr_iostart,	/* Index: 12 */
1731 	sd_checksum_iostart,		/* Index: 13 */
1732 	sd_pm_iostart,			/* Index: 14 */
1733 	sd_core_iostart,		/* Index: 15 */
1734 
1735 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1736 	sd_mapblockaddr_iostart,	/* Index: 16 */
1737 	sd_checksum_iostart,		/* Index: 17 */
1738 	sd_core_iostart,		/* Index: 18 */
1739 
1740 	/* Chain for USCSI commands (all targets) */
1741 	sd_pm_iostart,			/* Index: 19 */
1742 	sd_core_iostart,		/* Index: 20 */
1743 
1744 	/* Chain for checksumming USCSI commands (all targets) */
1745 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1746 	sd_pm_iostart,			/* Index: 22 */
1747 	sd_core_iostart,		/* Index: 23 */
1748 
1749 	/* Chain for "direct" USCSI commands (all targets) */
1750 	sd_core_iostart,		/* Index: 24 */
1751 
1752 	/* Chain for "direct priority" USCSI commands (all targets) */
1753 	sd_core_iostart,		/* Index: 25 */
1754 };
1755 
1756 /*
1757  * Macros to locate the first function of each iostart chain in the
1758  * sd_iostart_chain[] array. These are located by the index in the array.
1759  */
1760 #define	SD_CHAIN_DISK_IOSTART			0
1761 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1762 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1763 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1764 #define	SD_CHAIN_CHKSUM_IOSTART			12
1765 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1766 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1767 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1768 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1769 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1770 
1771 
1772 /*
1773  * Table of function pointers for the iodone-side routines for the driver-
1774  * internal layering mechanism.  The calling sequence for iodone routines
1775  * uses a decrementing table index, so the last routine called in a chain
1776  * must be at the lowest array index location for that chain.  The last
1777  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1778  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1779  * of the functions in an iodone side chain must correspond to the ordering
1780  * of the iostart routines for that chain.  Note that there is no iodone
1781  * side routine that corresponds to sd_core_iostart(), so there is no
1782  * entry in the table for this.
1783  */
1784 
1785 static sd_chain_t sd_iodone_chain[] = {
1786 
1787 	/* Chain for buf IO for disk drive targets (PM enabled) */
1788 	sd_buf_iodone,			/* Index: 0 */
1789 	sd_mapblockaddr_iodone,		/* Index: 1 */
1790 	sd_pm_iodone,			/* Index: 2 */
1791 
1792 	/* Chain for buf IO for disk drive targets (PM disabled) */
1793 	sd_buf_iodone,			/* Index: 3 */
1794 	sd_mapblockaddr_iodone,		/* Index: 4 */
1795 
1796 	/* Chain for buf IO for removable-media targets (PM enabled) */
1797 	sd_buf_iodone,			/* Index: 5 */
1798 	sd_mapblockaddr_iodone,		/* Index: 6 */
1799 	sd_mapblocksize_iodone,		/* Index: 7 */
1800 	sd_pm_iodone,			/* Index: 8 */
1801 
1802 	/* Chain for buf IO for removable-media targets (PM disabled) */
1803 	sd_buf_iodone,			/* Index: 9 */
1804 	sd_mapblockaddr_iodone,		/* Index: 10 */
1805 	sd_mapblocksize_iodone,		/* Index: 11 */
1806 
1807 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1808 	sd_buf_iodone,			/* Index: 12 */
1809 	sd_mapblockaddr_iodone,		/* Index: 13 */
1810 	sd_checksum_iodone,		/* Index: 14 */
1811 	sd_pm_iodone,			/* Index: 15 */
1812 
1813 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1814 	sd_buf_iodone,			/* Index: 16 */
1815 	sd_mapblockaddr_iodone,		/* Index: 17 */
1816 	sd_checksum_iodone,		/* Index: 18 */
1817 
1818 	/* Chain for USCSI commands (non-checksum targets) */
1819 	sd_uscsi_iodone,		/* Index: 19 */
1820 	sd_pm_iodone,			/* Index: 20 */
1821 
1822 	/* Chain for USCSI commands (checksum targets) */
1823 	sd_uscsi_iodone,		/* Index: 21 */
1824 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1825 	sd_pm_iodone,			/* Index: 22 */
1826 
1827 	/* Chain for "direct" USCSI commands (all targets) */
1828 	sd_uscsi_iodone,		/* Index: 24 */
1829 
1830 	/* Chain for "direct priority" USCSI commands (all targets) */
1831 	sd_uscsi_iodone,		/* Index: 25 */
1832 };
1833 
1834 
1835 /*
1836  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1837  * each iodone-side chain. These are located by the array index, but as the
1838  * iodone side functions are called in a decrementing-index order, the
1839  * highest index number in each chain must be specified (as these correspond
1840  * to the first function in the iodone chain that will be called by the core
1841  * at IO completion time).
1842  */
1843 
1844 #define	SD_CHAIN_DISK_IODONE			2
1845 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1846 #define	SD_CHAIN_RMMEDIA_IODONE			8
1847 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1848 #define	SD_CHAIN_CHKSUM_IODONE			15
1849 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1850 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1851 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1852 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1853 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1854 
1855 
1856 
1857 
1858 /*
1859  * Array to map a layering chain index to the appropriate initpkt routine.
1860  * The redundant entries are present so that the index used for accessing
1861  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1862  * with this table as well.
1863  */
1864 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1865 
1866 static sd_initpkt_t	sd_initpkt_map[] = {
1867 
1868 	/* Chain for buf IO for disk drive targets (PM enabled) */
1869 	sd_initpkt_for_buf,		/* Index: 0 */
1870 	sd_initpkt_for_buf,		/* Index: 1 */
1871 	sd_initpkt_for_buf,		/* Index: 2 */
1872 
1873 	/* Chain for buf IO for disk drive targets (PM disabled) */
1874 	sd_initpkt_for_buf,		/* Index: 3 */
1875 	sd_initpkt_for_buf,		/* Index: 4 */
1876 
1877 	/* Chain for buf IO for removable-media targets (PM enabled) */
1878 	sd_initpkt_for_buf,		/* Index: 5 */
1879 	sd_initpkt_for_buf,		/* Index: 6 */
1880 	sd_initpkt_for_buf,		/* Index: 7 */
1881 	sd_initpkt_for_buf,		/* Index: 8 */
1882 
1883 	/* Chain for buf IO for removable-media targets (PM disabled) */
1884 	sd_initpkt_for_buf,		/* Index: 9 */
1885 	sd_initpkt_for_buf,		/* Index: 10 */
1886 	sd_initpkt_for_buf,		/* Index: 11 */
1887 
1888 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1889 	sd_initpkt_for_buf,		/* Index: 12 */
1890 	sd_initpkt_for_buf,		/* Index: 13 */
1891 	sd_initpkt_for_buf,		/* Index: 14 */
1892 	sd_initpkt_for_buf,		/* Index: 15 */
1893 
1894 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1895 	sd_initpkt_for_buf,		/* Index: 16 */
1896 	sd_initpkt_for_buf,		/* Index: 17 */
1897 	sd_initpkt_for_buf,		/* Index: 18 */
1898 
1899 	/* Chain for USCSI commands (non-checksum targets) */
1900 	sd_initpkt_for_uscsi,		/* Index: 19 */
1901 	sd_initpkt_for_uscsi,		/* Index: 20 */
1902 
1903 	/* Chain for USCSI commands (checksum targets) */
1904 	sd_initpkt_for_uscsi,		/* Index: 21 */
1905 	sd_initpkt_for_uscsi,		/* Index: 22 */
1906 	sd_initpkt_for_uscsi,		/* Index: 22 */
1907 
1908 	/* Chain for "direct" USCSI commands (all targets) */
1909 	sd_initpkt_for_uscsi,		/* Index: 24 */
1910 
1911 	/* Chain for "direct priority" USCSI commands (all targets) */
1912 	sd_initpkt_for_uscsi,		/* Index: 25 */
1913 
1914 };
1915 
1916 
1917 /*
1918  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1919  * The redundant entries are present so that the index used for accessing
1920  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1921  * with this table as well.
1922  */
1923 typedef void (*sd_destroypkt_t)(struct buf *);
1924 
1925 static sd_destroypkt_t	sd_destroypkt_map[] = {
1926 
1927 	/* Chain for buf IO for disk drive targets (PM enabled) */
1928 	sd_destroypkt_for_buf,		/* Index: 0 */
1929 	sd_destroypkt_for_buf,		/* Index: 1 */
1930 	sd_destroypkt_for_buf,		/* Index: 2 */
1931 
1932 	/* Chain for buf IO for disk drive targets (PM disabled) */
1933 	sd_destroypkt_for_buf,		/* Index: 3 */
1934 	sd_destroypkt_for_buf,		/* Index: 4 */
1935 
1936 	/* Chain for buf IO for removable-media targets (PM enabled) */
1937 	sd_destroypkt_for_buf,		/* Index: 5 */
1938 	sd_destroypkt_for_buf,		/* Index: 6 */
1939 	sd_destroypkt_for_buf,		/* Index: 7 */
1940 	sd_destroypkt_for_buf,		/* Index: 8 */
1941 
1942 	/* Chain for buf IO for removable-media targets (PM disabled) */
1943 	sd_destroypkt_for_buf,		/* Index: 9 */
1944 	sd_destroypkt_for_buf,		/* Index: 10 */
1945 	sd_destroypkt_for_buf,		/* Index: 11 */
1946 
1947 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1948 	sd_destroypkt_for_buf,		/* Index: 12 */
1949 	sd_destroypkt_for_buf,		/* Index: 13 */
1950 	sd_destroypkt_for_buf,		/* Index: 14 */
1951 	sd_destroypkt_for_buf,		/* Index: 15 */
1952 
1953 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1954 	sd_destroypkt_for_buf,		/* Index: 16 */
1955 	sd_destroypkt_for_buf,		/* Index: 17 */
1956 	sd_destroypkt_for_buf,		/* Index: 18 */
1957 
1958 	/* Chain for USCSI commands (non-checksum targets) */
1959 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1960 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1961 
1962 	/* Chain for USCSI commands (checksum targets) */
1963 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1964 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1965 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1966 
1967 	/* Chain for "direct" USCSI commands (all targets) */
1968 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1969 
1970 	/* Chain for "direct priority" USCSI commands (all targets) */
1971 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1972 
1973 };
1974 
1975 
1976 
1977 /*
1978  * Array to map a layering chain index to the appropriate chain "type".
1979  * The chain type indicates a specific property/usage of the chain.
1980  * The redundant entries are present so that the index used for accessing
1981  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1982  * with this table as well.
1983  */
1984 
1985 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1986 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1987 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1988 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1989 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1990 						/* (for error recovery) */
1991 
1992 static int sd_chain_type_map[] = {
1993 
1994 	/* Chain for buf IO for disk drive targets (PM enabled) */
1995 	SD_CHAIN_BUFIO,			/* Index: 0 */
1996 	SD_CHAIN_BUFIO,			/* Index: 1 */
1997 	SD_CHAIN_BUFIO,			/* Index: 2 */
1998 
1999 	/* Chain for buf IO for disk drive targets (PM disabled) */
2000 	SD_CHAIN_BUFIO,			/* Index: 3 */
2001 	SD_CHAIN_BUFIO,			/* Index: 4 */
2002 
2003 	/* Chain for buf IO for removable-media targets (PM enabled) */
2004 	SD_CHAIN_BUFIO,			/* Index: 5 */
2005 	SD_CHAIN_BUFIO,			/* Index: 6 */
2006 	SD_CHAIN_BUFIO,			/* Index: 7 */
2007 	SD_CHAIN_BUFIO,			/* Index: 8 */
2008 
2009 	/* Chain for buf IO for removable-media targets (PM disabled) */
2010 	SD_CHAIN_BUFIO,			/* Index: 9 */
2011 	SD_CHAIN_BUFIO,			/* Index: 10 */
2012 	SD_CHAIN_BUFIO,			/* Index: 11 */
2013 
2014 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2015 	SD_CHAIN_BUFIO,			/* Index: 12 */
2016 	SD_CHAIN_BUFIO,			/* Index: 13 */
2017 	SD_CHAIN_BUFIO,			/* Index: 14 */
2018 	SD_CHAIN_BUFIO,			/* Index: 15 */
2019 
2020 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2021 	SD_CHAIN_BUFIO,			/* Index: 16 */
2022 	SD_CHAIN_BUFIO,			/* Index: 17 */
2023 	SD_CHAIN_BUFIO,			/* Index: 18 */
2024 
2025 	/* Chain for USCSI commands (non-checksum targets) */
2026 	SD_CHAIN_USCSI,			/* Index: 19 */
2027 	SD_CHAIN_USCSI,			/* Index: 20 */
2028 
2029 	/* Chain for USCSI commands (checksum targets) */
2030 	SD_CHAIN_USCSI,			/* Index: 21 */
2031 	SD_CHAIN_USCSI,			/* Index: 22 */
2032 	SD_CHAIN_USCSI,			/* Index: 22 */
2033 
2034 	/* Chain for "direct" USCSI commands (all targets) */
2035 	SD_CHAIN_DIRECT,		/* Index: 24 */
2036 
2037 	/* Chain for "direct priority" USCSI commands (all targets) */
2038 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2039 };
2040 
2041 
2042 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2043 #define	SD_IS_BUFIO(xp)			\
2044 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2045 
2046 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2047 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2048 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2049 
2050 
2051 
2052 /*
2053  * Struct, array, and macros to map a specific chain to the appropriate
2054  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2055  *
2056  * The sd_chain_index_map[] array is used at attach time to set the various
2057  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2058  * chain to be used with the instance. This allows different instances to use
2059  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2060  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2061  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2062  * dynamically & without the use of locking; and (2) a layer may update the
2063  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2064  * to allow for deferred processing of an IO within the same chain from a
2065  * different execution context.
2066  */
2067 
2068 struct sd_chain_index {
2069 	int	sci_iostart_index;
2070 	int	sci_iodone_index;
2071 };
2072 
2073 static struct sd_chain_index	sd_chain_index_map[] = {
2074 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2075 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2076 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2077 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2078 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2079 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2080 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2081 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2082 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2083 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2084 };
2085 
2086 
2087 /*
2088  * The following are indexes into the sd_chain_index_map[] array.
2089  */
2090 
2091 /* un->un_buf_chain_type must be set to one of these */
2092 #define	SD_CHAIN_INFO_DISK		0
2093 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2094 #define	SD_CHAIN_INFO_RMMEDIA		2
2095 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2096 #define	SD_CHAIN_INFO_CHKSUM		4
2097 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2098 
2099 /* un->un_uscsi_chain_type must be set to one of these */
2100 #define	SD_CHAIN_INFO_USCSI_CMD		6
2101 /* USCSI with PM disabled is the same as DIRECT */
2102 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2103 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2104 
2105 /* un->un_direct_chain_type must be set to one of these */
2106 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2107 
2108 /* un->un_priority_chain_type must be set to one of these */
2109 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2110 
2111 /* size for devid inquiries */
2112 #define	MAX_INQUIRY_SIZE		0xF0
2113 
2114 /*
2115  * Macros used by functions to pass a given buf(9S) struct along to the
2116  * next function in the layering chain for further processing.
2117  *
2118  * In the following macros, passing more than three arguments to the called
2119  * routines causes the optimizer for the SPARC compiler to stop doing tail
2120  * call elimination which results in significant performance degradation.
2121  */
2122 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2123 	((*(sd_iostart_chain[index]))(index, un, bp))
2124 
2125 #define	SD_BEGIN_IODONE(index, un, bp)	\
2126 	((*(sd_iodone_chain[index]))(index, un, bp))
2127 
2128 #define	SD_NEXT_IOSTART(index, un, bp)				\
2129 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2130 
2131 #define	SD_NEXT_IODONE(index, un, bp)				\
2132 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2133 
2134 /*
2135  *    Function: _init
2136  *
2137  * Description: This is the driver _init(9E) entry point.
2138  *
2139  * Return Code: Returns the value from mod_install(9F) or
2140  *		ddi_soft_state_init(9F) as appropriate.
2141  *
2142  *     Context: Called when driver module loaded.
2143  */
2144 
2145 int
2146 _init(void)
2147 {
2148 	int	err;
2149 
2150 	/* establish driver name from module name */
2151 	sd_label = (char *)mod_modname(&modlinkage);
2152 
2153 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2154 	    SD_MAXUNIT);
2155 
2156 	if (err != 0) {
2157 		return (err);
2158 	}
2159 
2160 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2161 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2162 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2163 
2164 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2165 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2166 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2167 
2168 	/*
2169 	 * it's ok to init here even for fibre device
2170 	 */
2171 	sd_scsi_probe_cache_init();
2172 
2173 	sd_scsi_target_lun_init();
2174 
2175 	/*
2176 	 * Creating taskq before mod_install ensures that all callers (threads)
2177 	 * that enter the module after a successful mod_install encounter
2178 	 * a valid taskq.
2179 	 */
2180 	sd_taskq_create();
2181 
2182 	err = mod_install(&modlinkage);
2183 	if (err != 0) {
2184 		/* delete taskq if install fails */
2185 		sd_taskq_delete();
2186 
2187 		mutex_destroy(&sd_detach_mutex);
2188 		mutex_destroy(&sd_log_mutex);
2189 		mutex_destroy(&sd_label_mutex);
2190 
2191 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2192 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2193 		cv_destroy(&sd_tr.srq_inprocess_cv);
2194 
2195 		sd_scsi_probe_cache_fini();
2196 
2197 		sd_scsi_target_lun_fini();
2198 
2199 		ddi_soft_state_fini(&sd_state);
2200 		return (err);
2201 	}
2202 
2203 	return (err);
2204 }
2205 
2206 
2207 /*
2208  *    Function: _fini
2209  *
2210  * Description: This is the driver _fini(9E) entry point.
2211  *
2212  * Return Code: Returns the value from mod_remove(9F)
2213  *
2214  *     Context: Called when driver module is unloaded.
2215  */
2216 
2217 int
2218 _fini(void)
2219 {
2220 	int err;
2221 
2222 	if ((err = mod_remove(&modlinkage)) != 0) {
2223 		return (err);
2224 	}
2225 
2226 	sd_taskq_delete();
2227 
2228 	mutex_destroy(&sd_detach_mutex);
2229 	mutex_destroy(&sd_log_mutex);
2230 	mutex_destroy(&sd_label_mutex);
2231 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2232 
2233 	sd_scsi_probe_cache_fini();
2234 
2235 	sd_scsi_target_lun_fini();
2236 
2237 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2238 	cv_destroy(&sd_tr.srq_inprocess_cv);
2239 
2240 	ddi_soft_state_fini(&sd_state);
2241 
2242 	return (err);
2243 }
2244 
2245 
2246 /*
2247  *    Function: _info
2248  *
2249  * Description: This is the driver _info(9E) entry point.
2250  *
2251  *   Arguments: modinfop - pointer to the driver modinfo structure
2252  *
2253  * Return Code: Returns the value from mod_info(9F).
2254  *
2255  *     Context: Kernel thread context
2256  */
2257 
2258 int
2259 _info(struct modinfo *modinfop)
2260 {
2261 	return (mod_info(&modlinkage, modinfop));
2262 }
2263 
2264 
2265 /*
2266  * The following routines implement the driver message logging facility.
2267  * They provide component- and level- based debug output filtering.
2268  * Output may also be restricted to messages for a single instance by
2269  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2270  * to NULL, then messages for all instances are printed.
2271  *
2272  * These routines have been cloned from each other due to the language
2273  * constraints of macros and variable argument list processing.
2274  */
2275 
2276 
2277 /*
2278  *    Function: sd_log_err
2279  *
2280  * Description: This routine is called by the SD_ERROR macro for debug
2281  *		logging of error conditions.
2282  *
2283  *   Arguments: comp - driver component being logged
2284  *		dev  - pointer to driver info structure
2285  *		fmt  - error string and format to be logged
2286  */
2287 
2288 static void
2289 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2290 {
2291 	va_list		ap;
2292 	dev_info_t	*dev;
2293 
2294 	ASSERT(un != NULL);
2295 	dev = SD_DEVINFO(un);
2296 	ASSERT(dev != NULL);
2297 
2298 	/*
2299 	 * Filter messages based on the global component and level masks.
2300 	 * Also print if un matches the value of sd_debug_un, or if
2301 	 * sd_debug_un is set to NULL.
2302 	 */
2303 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2304 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2305 		mutex_enter(&sd_log_mutex);
2306 		va_start(ap, fmt);
2307 		(void) vsprintf(sd_log_buf, fmt, ap);
2308 		va_end(ap);
2309 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2310 		mutex_exit(&sd_log_mutex);
2311 	}
2312 #ifdef SD_FAULT_INJECTION
2313 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2314 	if (un->sd_injection_mask & comp) {
2315 		mutex_enter(&sd_log_mutex);
2316 		va_start(ap, fmt);
2317 		(void) vsprintf(sd_log_buf, fmt, ap);
2318 		va_end(ap);
2319 		sd_injection_log(sd_log_buf, un);
2320 		mutex_exit(&sd_log_mutex);
2321 	}
2322 #endif
2323 }
2324 
2325 
2326 /*
2327  *    Function: sd_log_info
2328  *
2329  * Description: This routine is called by the SD_INFO macro for debug
2330  *		logging of general purpose informational conditions.
2331  *
2332  *   Arguments: comp - driver component being logged
2333  *		dev  - pointer to driver info structure
2334  *		fmt  - info string and format to be logged
2335  */
2336 
2337 static void
2338 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2339 {
2340 	va_list		ap;
2341 	dev_info_t	*dev;
2342 
2343 	ASSERT(un != NULL);
2344 	dev = SD_DEVINFO(un);
2345 	ASSERT(dev != NULL);
2346 
2347 	/*
2348 	 * Filter messages based on the global component and level masks.
2349 	 * Also print if un matches the value of sd_debug_un, or if
2350 	 * sd_debug_un is set to NULL.
2351 	 */
2352 	if ((sd_component_mask & component) &&
2353 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2354 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2355 		mutex_enter(&sd_log_mutex);
2356 		va_start(ap, fmt);
2357 		(void) vsprintf(sd_log_buf, fmt, ap);
2358 		va_end(ap);
2359 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2360 		mutex_exit(&sd_log_mutex);
2361 	}
2362 #ifdef SD_FAULT_INJECTION
2363 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2364 	if (un->sd_injection_mask & component) {
2365 		mutex_enter(&sd_log_mutex);
2366 		va_start(ap, fmt);
2367 		(void) vsprintf(sd_log_buf, fmt, ap);
2368 		va_end(ap);
2369 		sd_injection_log(sd_log_buf, un);
2370 		mutex_exit(&sd_log_mutex);
2371 	}
2372 #endif
2373 }
2374 
2375 
2376 /*
2377  *    Function: sd_log_trace
2378  *
2379  * Description: This routine is called by the SD_TRACE macro for debug
2380  *		logging of trace conditions (i.e. function entry/exit).
2381  *
2382  *   Arguments: comp - driver component being logged
2383  *		dev  - pointer to driver info structure
2384  *		fmt  - trace string and format to be logged
2385  */
2386 
2387 static void
2388 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2389 {
2390 	va_list		ap;
2391 	dev_info_t	*dev;
2392 
2393 	ASSERT(un != NULL);
2394 	dev = SD_DEVINFO(un);
2395 	ASSERT(dev != NULL);
2396 
2397 	/*
2398 	 * Filter messages based on the global component and level masks.
2399 	 * Also print if un matches the value of sd_debug_un, or if
2400 	 * sd_debug_un is set to NULL.
2401 	 */
2402 	if ((sd_component_mask & component) &&
2403 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2404 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2405 		mutex_enter(&sd_log_mutex);
2406 		va_start(ap, fmt);
2407 		(void) vsprintf(sd_log_buf, fmt, ap);
2408 		va_end(ap);
2409 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2410 		mutex_exit(&sd_log_mutex);
2411 	}
2412 #ifdef SD_FAULT_INJECTION
2413 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2414 	if (un->sd_injection_mask & component) {
2415 		mutex_enter(&sd_log_mutex);
2416 		va_start(ap, fmt);
2417 		(void) vsprintf(sd_log_buf, fmt, ap);
2418 		va_end(ap);
2419 		sd_injection_log(sd_log_buf, un);
2420 		mutex_exit(&sd_log_mutex);
2421 	}
2422 #endif
2423 }
2424 
2425 
2426 /*
2427  *    Function: sdprobe
2428  *
2429  * Description: This is the driver probe(9e) entry point function.
2430  *
2431  *   Arguments: devi - opaque device info handle
2432  *
2433  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2434  *              DDI_PROBE_FAILURE: If the probe failed.
2435  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2436  *				   but may be present in the future.
2437  */
2438 
2439 static int
2440 sdprobe(dev_info_t *devi)
2441 {
2442 	struct scsi_device	*devp;
2443 	int			rval;
2444 	int			instance;
2445 
2446 	/*
2447 	 * if it wasn't for pln, sdprobe could actually be nulldev
2448 	 * in the "__fibre" case.
2449 	 */
2450 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2451 		return (DDI_PROBE_DONTCARE);
2452 	}
2453 
2454 	devp = ddi_get_driver_private(devi);
2455 
2456 	if (devp == NULL) {
2457 		/* Ooops... nexus driver is mis-configured... */
2458 		return (DDI_PROBE_FAILURE);
2459 	}
2460 
2461 	instance = ddi_get_instance(devi);
2462 
2463 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2464 		return (DDI_PROBE_PARTIAL);
2465 	}
2466 
2467 	/*
2468 	 * Call the SCSA utility probe routine to see if we actually
2469 	 * have a target at this SCSI nexus.
2470 	 */
2471 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2472 	case SCSIPROBE_EXISTS:
2473 		switch (devp->sd_inq->inq_dtype) {
2474 		case DTYPE_DIRECT:
2475 			rval = DDI_PROBE_SUCCESS;
2476 			break;
2477 		case DTYPE_RODIRECT:
2478 			/* CDs etc. Can be removable media */
2479 			rval = DDI_PROBE_SUCCESS;
2480 			break;
2481 		case DTYPE_OPTICAL:
2482 			/*
2483 			 * Rewritable optical driver HP115AA
2484 			 * Can also be removable media
2485 			 */
2486 
2487 			/*
2488 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2489 			 * pre solaris 9 sparc sd behavior is required
2490 			 *
2491 			 * If first time through and sd_dtype_optical_bind
2492 			 * has not been set in /etc/system check properties
2493 			 */
2494 
2495 			if (sd_dtype_optical_bind  < 0) {
2496 				sd_dtype_optical_bind = ddi_prop_get_int
2497 				    (DDI_DEV_T_ANY, devi, 0,
2498 				    "optical-device-bind", 1);
2499 			}
2500 
2501 			if (sd_dtype_optical_bind == 0) {
2502 				rval = DDI_PROBE_FAILURE;
2503 			} else {
2504 				rval = DDI_PROBE_SUCCESS;
2505 			}
2506 			break;
2507 
2508 		case DTYPE_NOTPRESENT:
2509 		default:
2510 			rval = DDI_PROBE_FAILURE;
2511 			break;
2512 		}
2513 		break;
2514 	default:
2515 		rval = DDI_PROBE_PARTIAL;
2516 		break;
2517 	}
2518 
2519 	/*
2520 	 * This routine checks for resource allocation prior to freeing,
2521 	 * so it will take care of the "smart probing" case where a
2522 	 * scsi_probe() may or may not have been issued and will *not*
2523 	 * free previously-freed resources.
2524 	 */
2525 	scsi_unprobe(devp);
2526 	return (rval);
2527 }
2528 
2529 
2530 /*
2531  *    Function: sdinfo
2532  *
2533  * Description: This is the driver getinfo(9e) entry point function.
2534  * 		Given the device number, return the devinfo pointer from
2535  *		the scsi_device structure or the instance number
2536  *		associated with the dev_t.
2537  *
2538  *   Arguments: dip     - pointer to device info structure
2539  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2540  *			  DDI_INFO_DEVT2INSTANCE)
2541  *		arg     - driver dev_t
2542  *		resultp - user buffer for request response
2543  *
2544  * Return Code: DDI_SUCCESS
2545  *              DDI_FAILURE
2546  */
2547 /* ARGSUSED */
2548 static int
2549 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2550 {
2551 	struct sd_lun	*un;
2552 	dev_t		dev;
2553 	int		instance;
2554 	int		error;
2555 
2556 	switch (infocmd) {
2557 	case DDI_INFO_DEVT2DEVINFO:
2558 		dev = (dev_t)arg;
2559 		instance = SDUNIT(dev);
2560 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2561 			return (DDI_FAILURE);
2562 		}
2563 		*result = (void *) SD_DEVINFO(un);
2564 		error = DDI_SUCCESS;
2565 		break;
2566 	case DDI_INFO_DEVT2INSTANCE:
2567 		dev = (dev_t)arg;
2568 		instance = SDUNIT(dev);
2569 		*result = (void *)(uintptr_t)instance;
2570 		error = DDI_SUCCESS;
2571 		break;
2572 	default:
2573 		error = DDI_FAILURE;
2574 	}
2575 	return (error);
2576 }
2577 
2578 /*
2579  *    Function: sd_prop_op
2580  *
2581  * Description: This is the driver prop_op(9e) entry point function.
2582  *		Return the number of blocks for the partition in question
2583  *		or forward the request to the property facilities.
2584  *
2585  *   Arguments: dev       - device number
2586  *		dip       - pointer to device info structure
2587  *		prop_op   - property operator
2588  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2589  *		name      - pointer to property name
2590  *		valuep    - pointer or address of the user buffer
2591  *		lengthp   - property length
2592  *
2593  * Return Code: DDI_PROP_SUCCESS
2594  *              DDI_PROP_NOT_FOUND
2595  *              DDI_PROP_UNDEFINED
2596  *              DDI_PROP_NO_MEMORY
2597  *              DDI_PROP_BUF_TOO_SMALL
2598  */
2599 
2600 static int
2601 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2602 	char *name, caddr_t valuep, int *lengthp)
2603 {
2604 	struct sd_lun	*un;
2605 
2606 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2607 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2608 		    name, valuep, lengthp));
2609 
2610 	return (cmlb_prop_op(un->un_cmlbhandle,
2611 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2612 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2613 }
2614 
2615 /*
2616  * The following functions are for smart probing:
2617  * sd_scsi_probe_cache_init()
2618  * sd_scsi_probe_cache_fini()
2619  * sd_scsi_clear_probe_cache()
2620  * sd_scsi_probe_with_cache()
2621  */
2622 
2623 /*
2624  *    Function: sd_scsi_probe_cache_init
2625  *
2626  * Description: Initializes the probe response cache mutex and head pointer.
2627  *
2628  *     Context: Kernel thread context
2629  */
2630 
2631 static void
2632 sd_scsi_probe_cache_init(void)
2633 {
2634 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2635 	sd_scsi_probe_cache_head = NULL;
2636 }
2637 
2638 
2639 /*
2640  *    Function: sd_scsi_probe_cache_fini
2641  *
2642  * Description: Frees all resources associated with the probe response cache.
2643  *
2644  *     Context: Kernel thread context
2645  */
2646 
2647 static void
2648 sd_scsi_probe_cache_fini(void)
2649 {
2650 	struct sd_scsi_probe_cache *cp;
2651 	struct sd_scsi_probe_cache *ncp;
2652 
2653 	/* Clean up our smart probing linked list */
2654 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2655 		ncp = cp->next;
2656 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2657 	}
2658 	sd_scsi_probe_cache_head = NULL;
2659 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2660 }
2661 
2662 
2663 /*
2664  *    Function: sd_scsi_clear_probe_cache
2665  *
2666  * Description: This routine clears the probe response cache. This is
2667  *		done when open() returns ENXIO so that when deferred
2668  *		attach is attempted (possibly after a device has been
2669  *		turned on) we will retry the probe. Since we don't know
2670  *		which target we failed to open, we just clear the
2671  *		entire cache.
2672  *
2673  *     Context: Kernel thread context
2674  */
2675 
2676 static void
2677 sd_scsi_clear_probe_cache(void)
2678 {
2679 	struct sd_scsi_probe_cache	*cp;
2680 	int				i;
2681 
2682 	mutex_enter(&sd_scsi_probe_cache_mutex);
2683 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2684 		/*
2685 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2686 		 * force probing to be performed the next time
2687 		 * sd_scsi_probe_with_cache is called.
2688 		 */
2689 		for (i = 0; i < NTARGETS_WIDE; i++) {
2690 			cp->cache[i] = SCSIPROBE_EXISTS;
2691 		}
2692 	}
2693 	mutex_exit(&sd_scsi_probe_cache_mutex);
2694 }
2695 
2696 
2697 /*
2698  *    Function: sd_scsi_probe_with_cache
2699  *
2700  * Description: This routine implements support for a scsi device probe
2701  *		with cache. The driver maintains a cache of the target
2702  *		responses to scsi probes. If we get no response from a
2703  *		target during a probe inquiry, we remember that, and we
2704  *		avoid additional calls to scsi_probe on non-zero LUNs
2705  *		on the same target until the cache is cleared. By doing
2706  *		so we avoid the 1/4 sec selection timeout for nonzero
2707  *		LUNs. lun0 of a target is always probed.
2708  *
2709  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2710  *              waitfunc - indicates what the allocator routines should
2711  *			   do when resources are not available. This value
2712  *			   is passed on to scsi_probe() when that routine
2713  *			   is called.
2714  *
2715  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2716  *		otherwise the value returned by scsi_probe(9F).
2717  *
2718  *     Context: Kernel thread context
2719  */
2720 
2721 static int
2722 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2723 {
2724 	struct sd_scsi_probe_cache	*cp;
2725 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2726 	int		lun, tgt;
2727 
2728 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2729 	    SCSI_ADDR_PROP_LUN, 0);
2730 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2731 	    SCSI_ADDR_PROP_TARGET, -1);
2732 
2733 	/* Make sure caching enabled and target in range */
2734 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2735 		/* do it the old way (no cache) */
2736 		return (scsi_probe(devp, waitfn));
2737 	}
2738 
2739 	mutex_enter(&sd_scsi_probe_cache_mutex);
2740 
2741 	/* Find the cache for this scsi bus instance */
2742 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2743 		if (cp->pdip == pdip) {
2744 			break;
2745 		}
2746 	}
2747 
2748 	/* If we can't find a cache for this pdip, create one */
2749 	if (cp == NULL) {
2750 		int i;
2751 
2752 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2753 		    KM_SLEEP);
2754 		cp->pdip = pdip;
2755 		cp->next = sd_scsi_probe_cache_head;
2756 		sd_scsi_probe_cache_head = cp;
2757 		for (i = 0; i < NTARGETS_WIDE; i++) {
2758 			cp->cache[i] = SCSIPROBE_EXISTS;
2759 		}
2760 	}
2761 
2762 	mutex_exit(&sd_scsi_probe_cache_mutex);
2763 
2764 	/* Recompute the cache for this target if LUN zero */
2765 	if (lun == 0) {
2766 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2767 	}
2768 
2769 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2770 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2771 		return (SCSIPROBE_NORESP);
2772 	}
2773 
2774 	/* Do the actual probe; save & return the result */
2775 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2776 }
2777 
2778 
2779 /*
2780  *    Function: sd_scsi_target_lun_init
2781  *
2782  * Description: Initializes the attached lun chain mutex and head pointer.
2783  *
2784  *     Context: Kernel thread context
2785  */
2786 
2787 static void
2788 sd_scsi_target_lun_init(void)
2789 {
2790 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2791 	sd_scsi_target_lun_head = NULL;
2792 }
2793 
2794 
2795 /*
2796  *    Function: sd_scsi_target_lun_fini
2797  *
2798  * Description: Frees all resources associated with the attached lun
2799  *              chain
2800  *
2801  *     Context: Kernel thread context
2802  */
2803 
2804 static void
2805 sd_scsi_target_lun_fini(void)
2806 {
2807 	struct sd_scsi_hba_tgt_lun	*cp;
2808 	struct sd_scsi_hba_tgt_lun	*ncp;
2809 
2810 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2811 		ncp = cp->next;
2812 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2813 	}
2814 	sd_scsi_target_lun_head = NULL;
2815 	mutex_destroy(&sd_scsi_target_lun_mutex);
2816 }
2817 
2818 
2819 /*
2820  *    Function: sd_scsi_get_target_lun_count
2821  *
2822  * Description: This routine will check in the attached lun chain to see
2823  * 		how many luns are attached on the required SCSI controller
2824  * 		and target. Currently, some capabilities like tagged queue
2825  *		are supported per target based by HBA. So all luns in a
2826  *		target have the same capabilities. Based on this assumption,
2827  * 		sd should only set these capabilities once per target. This
2828  *		function is called when sd needs to decide how many luns
2829  *		already attached on a target.
2830  *
2831  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2832  *			  controller device.
2833  *              target	- The target ID on the controller's SCSI bus.
2834  *
2835  * Return Code: The number of luns attached on the required target and
2836  *		controller.
2837  *		-1 if target ID is not in parallel SCSI scope or the given
2838  * 		dip is not in the chain.
2839  *
2840  *     Context: Kernel thread context
2841  */
2842 
2843 static int
2844 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2845 {
2846 	struct sd_scsi_hba_tgt_lun	*cp;
2847 
2848 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2849 		return (-1);
2850 	}
2851 
2852 	mutex_enter(&sd_scsi_target_lun_mutex);
2853 
2854 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2855 		if (cp->pdip == dip) {
2856 			break;
2857 		}
2858 	}
2859 
2860 	mutex_exit(&sd_scsi_target_lun_mutex);
2861 
2862 	if (cp == NULL) {
2863 		return (-1);
2864 	}
2865 
2866 	return (cp->nlun[target]);
2867 }
2868 
2869 
2870 /*
2871  *    Function: sd_scsi_update_lun_on_target
2872  *
2873  * Description: This routine is used to update the attached lun chain when a
2874  *		lun is attached or detached on a target.
2875  *
2876  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2877  *                        controller device.
2878  *              target  - The target ID on the controller's SCSI bus.
2879  *		flag	- Indicate the lun is attached or detached.
2880  *
2881  *     Context: Kernel thread context
2882  */
2883 
2884 static void
2885 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2886 {
2887 	struct sd_scsi_hba_tgt_lun	*cp;
2888 
2889 	mutex_enter(&sd_scsi_target_lun_mutex);
2890 
2891 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2892 		if (cp->pdip == dip) {
2893 			break;
2894 		}
2895 	}
2896 
2897 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2898 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2899 		    KM_SLEEP);
2900 		cp->pdip = dip;
2901 		cp->next = sd_scsi_target_lun_head;
2902 		sd_scsi_target_lun_head = cp;
2903 	}
2904 
2905 	mutex_exit(&sd_scsi_target_lun_mutex);
2906 
2907 	if (cp != NULL) {
2908 		if (flag == SD_SCSI_LUN_ATTACH) {
2909 			cp->nlun[target] ++;
2910 		} else {
2911 			cp->nlun[target] --;
2912 		}
2913 	}
2914 }
2915 
2916 
2917 /*
2918  *    Function: sd_spin_up_unit
2919  *
2920  * Description: Issues the following commands to spin-up the device:
2921  *		START STOP UNIT, and INQUIRY.
2922  *
2923  *   Arguments: un - driver soft state (unit) structure
2924  *
2925  * Return Code: 0 - success
2926  *		EIO - failure
2927  *		EACCES - reservation conflict
2928  *
2929  *     Context: Kernel thread context
2930  */
2931 
2932 static int
2933 sd_spin_up_unit(struct sd_lun *un)
2934 {
2935 	size_t	resid		= 0;
2936 	int	has_conflict	= FALSE;
2937 	uchar_t *bufaddr;
2938 
2939 	ASSERT(un != NULL);
2940 
2941 	/*
2942 	 * Send a throwaway START UNIT command.
2943 	 *
2944 	 * If we fail on this, we don't care presently what precisely
2945 	 * is wrong.  EMC's arrays will also fail this with a check
2946 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2947 	 * we don't want to fail the attach because it may become
2948 	 * "active" later.
2949 	 */
2950 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2951 	    == EACCES)
2952 		has_conflict = TRUE;
2953 
2954 	/*
2955 	 * Send another INQUIRY command to the target. This is necessary for
2956 	 * non-removable media direct access devices because their INQUIRY data
2957 	 * may not be fully qualified until they are spun up (perhaps via the
2958 	 * START command above).  Note: This seems to be needed for some
2959 	 * legacy devices only.) The INQUIRY command should succeed even if a
2960 	 * Reservation Conflict is present.
2961 	 */
2962 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2963 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2964 		kmem_free(bufaddr, SUN_INQSIZE);
2965 		return (EIO);
2966 	}
2967 
2968 	/*
2969 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2970 	 * Note that this routine does not return a failure here even if the
2971 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2972 	 */
2973 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2974 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2975 	}
2976 
2977 	kmem_free(bufaddr, SUN_INQSIZE);
2978 
2979 	/* If we hit a reservation conflict above, tell the caller. */
2980 	if (has_conflict == TRUE) {
2981 		return (EACCES);
2982 	}
2983 
2984 	return (0);
2985 }
2986 
2987 #ifdef _LP64
2988 /*
2989  *    Function: sd_enable_descr_sense
2990  *
2991  * Description: This routine attempts to select descriptor sense format
2992  *		using the Control mode page.  Devices that support 64 bit
2993  *		LBAs (for >2TB luns) should also implement descriptor
2994  *		sense data so we will call this function whenever we see
2995  *		a lun larger than 2TB.  If for some reason the device
2996  *		supports 64 bit LBAs but doesn't support descriptor sense
2997  *		presumably the mode select will fail.  Everything will
2998  *		continue to work normally except that we will not get
2999  *		complete sense data for commands that fail with an LBA
3000  *		larger than 32 bits.
3001  *
3002  *   Arguments: un - driver soft state (unit) structure
3003  *
3004  *     Context: Kernel thread context only
3005  */
3006 
3007 static void
3008 sd_enable_descr_sense(struct sd_lun *un)
3009 {
3010 	uchar_t			*header;
3011 	struct mode_control_scsi3 *ctrl_bufp;
3012 	size_t			buflen;
3013 	size_t			bd_len;
3014 
3015 	/*
3016 	 * Read MODE SENSE page 0xA, Control Mode Page
3017 	 */
3018 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3019 	    sizeof (struct mode_control_scsi3);
3020 	header = kmem_zalloc(buflen, KM_SLEEP);
3021 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3022 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3023 		SD_ERROR(SD_LOG_COMMON, un,
3024 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3025 		goto eds_exit;
3026 	}
3027 
3028 	/*
3029 	 * Determine size of Block Descriptors in order to locate
3030 	 * the mode page data. ATAPI devices return 0, SCSI devices
3031 	 * should return MODE_BLK_DESC_LENGTH.
3032 	 */
3033 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3034 
3035 	/* Clear the mode data length field for MODE SELECT */
3036 	((struct mode_header *)header)->length = 0;
3037 
3038 	ctrl_bufp = (struct mode_control_scsi3 *)
3039 	    (header + MODE_HEADER_LENGTH + bd_len);
3040 
3041 	/*
3042 	 * If the page length is smaller than the expected value,
3043 	 * the target device doesn't support D_SENSE. Bail out here.
3044 	 */
3045 	if (ctrl_bufp->mode_page.length <
3046 	    sizeof (struct mode_control_scsi3) - 2) {
3047 		SD_ERROR(SD_LOG_COMMON, un,
3048 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3049 		goto eds_exit;
3050 	}
3051 
3052 	/*
3053 	 * Clear PS bit for MODE SELECT
3054 	 */
3055 	ctrl_bufp->mode_page.ps = 0;
3056 
3057 	/*
3058 	 * Set D_SENSE to enable descriptor sense format.
3059 	 */
3060 	ctrl_bufp->d_sense = 1;
3061 
3062 	/*
3063 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3064 	 */
3065 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3066 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3067 		SD_INFO(SD_LOG_COMMON, un,
3068 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3069 		goto eds_exit;
3070 	}
3071 
3072 eds_exit:
3073 	kmem_free(header, buflen);
3074 }
3075 
3076 /*
3077  *    Function: sd_reenable_dsense_task
3078  *
3079  * Description: Re-enable descriptor sense after device or bus reset
3080  *
3081  *     Context: Executes in a taskq() thread context
3082  */
3083 static void
3084 sd_reenable_dsense_task(void *arg)
3085 {
3086 	struct	sd_lun	*un = arg;
3087 
3088 	ASSERT(un != NULL);
3089 	sd_enable_descr_sense(un);
3090 }
3091 #endif /* _LP64 */
3092 
3093 /*
3094  *    Function: sd_set_mmc_caps
3095  *
3096  * Description: This routine determines if the device is MMC compliant and if
3097  *		the device supports CDDA via a mode sense of the CDVD
3098  *		capabilities mode page. Also checks if the device is a
3099  *		dvdram writable device.
3100  *
3101  *   Arguments: un - driver soft state (unit) structure
3102  *
3103  *     Context: Kernel thread context only
3104  */
3105 
3106 static void
3107 sd_set_mmc_caps(struct sd_lun *un)
3108 {
3109 	struct mode_header_grp2		*sense_mhp;
3110 	uchar_t				*sense_page;
3111 	caddr_t				buf;
3112 	int				bd_len;
3113 	int				status;
3114 	struct uscsi_cmd		com;
3115 	int				rtn;
3116 	uchar_t				*out_data_rw, *out_data_hd;
3117 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3118 
3119 	ASSERT(un != NULL);
3120 
3121 	/*
3122 	 * The flags which will be set in this function are - mmc compliant,
3123 	 * dvdram writable device, cdda support. Initialize them to FALSE
3124 	 * and if a capability is detected - it will be set to TRUE.
3125 	 */
3126 	un->un_f_mmc_cap = FALSE;
3127 	un->un_f_dvdram_writable_device = FALSE;
3128 	un->un_f_cfg_cdda = FALSE;
3129 
3130 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3131 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3132 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3133 
3134 	if (status != 0) {
3135 		/* command failed; just return */
3136 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3137 		return;
3138 	}
3139 	/*
3140 	 * If the mode sense request for the CDROM CAPABILITIES
3141 	 * page (0x2A) succeeds the device is assumed to be MMC.
3142 	 */
3143 	un->un_f_mmc_cap = TRUE;
3144 
3145 	/* Get to the page data */
3146 	sense_mhp = (struct mode_header_grp2 *)buf;
3147 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3148 	    sense_mhp->bdesc_length_lo;
3149 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3150 		/*
3151 		 * We did not get back the expected block descriptor
3152 		 * length so we cannot determine if the device supports
3153 		 * CDDA. However, we still indicate the device is MMC
3154 		 * according to the successful response to the page
3155 		 * 0x2A mode sense request.
3156 		 */
3157 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3158 		    "sd_set_mmc_caps: Mode Sense returned "
3159 		    "invalid block descriptor length\n");
3160 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3161 		return;
3162 	}
3163 
3164 	/* See if read CDDA is supported */
3165 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3166 	    bd_len);
3167 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3168 
3169 	/* See if writing DVD RAM is supported. */
3170 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3171 	if (un->un_f_dvdram_writable_device == TRUE) {
3172 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3173 		return;
3174 	}
3175 
3176 	/*
3177 	 * If the device presents DVD or CD capabilities in the mode
3178 	 * page, we can return here since a RRD will not have
3179 	 * these capabilities.
3180 	 */
3181 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3182 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3183 		return;
3184 	}
3185 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3186 
3187 	/*
3188 	 * If un->un_f_dvdram_writable_device is still FALSE,
3189 	 * check for a Removable Rigid Disk (RRD).  A RRD
3190 	 * device is identified by the features RANDOM_WRITABLE and
3191 	 * HARDWARE_DEFECT_MANAGEMENT.
3192 	 */
3193 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3194 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3195 
3196 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3197 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3198 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3199 	if (rtn != 0) {
3200 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3201 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3202 		return;
3203 	}
3204 
3205 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3206 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3207 
3208 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3209 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3210 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3211 	if (rtn == 0) {
3212 		/*
3213 		 * We have good information, check for random writable
3214 		 * and hardware defect features.
3215 		 */
3216 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3217 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3218 			un->un_f_dvdram_writable_device = TRUE;
3219 		}
3220 	}
3221 
3222 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3223 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3224 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3225 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3226 }
3227 
3228 /*
3229  *    Function: sd_check_for_writable_cd
3230  *
3231  * Description: This routine determines if the media in the device is
3232  *		writable or not. It uses the get configuration command (0x46)
3233  *		to determine if the media is writable
3234  *
3235  *   Arguments: un - driver soft state (unit) structure
3236  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3237  *                           chain and the normal command waitq, or
3238  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3239  *                           "direct" chain and bypass the normal command
3240  *                           waitq.
3241  *
3242  *     Context: Never called at interrupt context.
3243  */
3244 
3245 static void
3246 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3247 {
3248 	struct uscsi_cmd		com;
3249 	uchar_t				*out_data;
3250 	uchar_t				*rqbuf;
3251 	int				rtn;
3252 	uchar_t				*out_data_rw, *out_data_hd;
3253 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3254 	struct mode_header_grp2		*sense_mhp;
3255 	uchar_t				*sense_page;
3256 	caddr_t				buf;
3257 	int				bd_len;
3258 	int				status;
3259 
3260 	ASSERT(un != NULL);
3261 	ASSERT(mutex_owned(SD_MUTEX(un)));
3262 
3263 	/*
3264 	 * Initialize the writable media to false, if configuration info.
3265 	 * tells us otherwise then only we will set it.
3266 	 */
3267 	un->un_f_mmc_writable_media = FALSE;
3268 	mutex_exit(SD_MUTEX(un));
3269 
3270 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3271 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3272 
3273 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3274 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3275 
3276 	mutex_enter(SD_MUTEX(un));
3277 	if (rtn == 0) {
3278 		/*
3279 		 * We have good information, check for writable DVD.
3280 		 */
3281 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3282 			un->un_f_mmc_writable_media = TRUE;
3283 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3284 			kmem_free(rqbuf, SENSE_LENGTH);
3285 			return;
3286 		}
3287 	}
3288 
3289 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3290 	kmem_free(rqbuf, SENSE_LENGTH);
3291 
3292 	/*
3293 	 * Determine if this is a RRD type device.
3294 	 */
3295 	mutex_exit(SD_MUTEX(un));
3296 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3297 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3298 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3299 	mutex_enter(SD_MUTEX(un));
3300 	if (status != 0) {
3301 		/* command failed; just return */
3302 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3303 		return;
3304 	}
3305 
3306 	/* Get to the page data */
3307 	sense_mhp = (struct mode_header_grp2 *)buf;
3308 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3309 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3310 		/*
3311 		 * We did not get back the expected block descriptor length so
3312 		 * we cannot check the mode page.
3313 		 */
3314 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3315 		    "sd_check_for_writable_cd: Mode Sense returned "
3316 		    "invalid block descriptor length\n");
3317 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3318 		return;
3319 	}
3320 
3321 	/*
3322 	 * If the device presents DVD or CD capabilities in the mode
3323 	 * page, we can return here since a RRD device will not have
3324 	 * these capabilities.
3325 	 */
3326 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3327 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3328 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3329 		return;
3330 	}
3331 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3332 
3333 	/*
3334 	 * If un->un_f_mmc_writable_media is still FALSE,
3335 	 * check for RRD type media.  A RRD device is identified
3336 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3337 	 */
3338 	mutex_exit(SD_MUTEX(un));
3339 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3340 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3341 
3342 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3343 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3344 	    RANDOM_WRITABLE, path_flag);
3345 	if (rtn != 0) {
3346 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3347 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3348 		mutex_enter(SD_MUTEX(un));
3349 		return;
3350 	}
3351 
3352 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3353 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3354 
3355 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3356 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3357 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3358 	mutex_enter(SD_MUTEX(un));
3359 	if (rtn == 0) {
3360 		/*
3361 		 * We have good information, check for random writable
3362 		 * and hardware defect features as current.
3363 		 */
3364 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3365 		    (out_data_rw[10] & 0x1) &&
3366 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3367 		    (out_data_hd[10] & 0x1)) {
3368 			un->un_f_mmc_writable_media = TRUE;
3369 		}
3370 	}
3371 
3372 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3373 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3374 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3375 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3376 }
3377 
3378 /*
3379  *    Function: sd_read_unit_properties
3380  *
3381  * Description: The following implements a property lookup mechanism.
3382  *		Properties for particular disks (keyed on vendor, model
3383  *		and rev numbers) are sought in the sd.conf file via
3384  *		sd_process_sdconf_file(), and if not found there, are
3385  *		looked for in a list hardcoded in this driver via
3386  *		sd_process_sdconf_table() Once located the properties
3387  *		are used to update the driver unit structure.
3388  *
3389  *   Arguments: un - driver soft state (unit) structure
3390  */
3391 
3392 static void
3393 sd_read_unit_properties(struct sd_lun *un)
3394 {
3395 	/*
3396 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3397 	 * the "sd-config-list" property (from the sd.conf file) or if
3398 	 * there was not a match for the inquiry vid/pid. If this event
3399 	 * occurs the static driver configuration table is searched for
3400 	 * a match.
3401 	 */
3402 	ASSERT(un != NULL);
3403 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3404 		sd_process_sdconf_table(un);
3405 	}
3406 
3407 	/* check for LSI device */
3408 	sd_is_lsi(un);
3409 
3410 
3411 }
3412 
3413 
3414 /*
3415  *    Function: sd_process_sdconf_file
3416  *
3417  * Description: Use ddi_getlongprop to obtain the properties from the
3418  *		driver's config file (ie, sd.conf) and update the driver
3419  *		soft state structure accordingly.
3420  *
3421  *   Arguments: un - driver soft state (unit) structure
3422  *
3423  * Return Code: SD_SUCCESS - The properties were successfully set according
3424  *			     to the driver configuration file.
3425  *		SD_FAILURE - The driver config list was not obtained or
3426  *			     there was no vid/pid match. This indicates that
3427  *			     the static config table should be used.
3428  *
3429  * The config file has a property, "sd-config-list", which consists of
3430  * one or more duplets as follows:
3431  *
3432  *  sd-config-list=
3433  *	<duplet>,
3434  *	[<duplet>,]
3435  *	[<duplet>];
3436  *
3437  * The structure of each duplet is as follows:
3438  *
3439  *  <duplet>:= <vid+pid>,<data-property-name_list>
3440  *
3441  * The first entry of the duplet is the device ID string (the concatenated
3442  * vid & pid; not to be confused with a device_id).  This is defined in
3443  * the same way as in the sd_disk_table.
3444  *
3445  * The second part of the duplet is a string that identifies a
3446  * data-property-name-list. The data-property-name-list is defined as
3447  * follows:
3448  *
3449  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3450  *
3451  * The syntax of <data-property-name> depends on the <version> field.
3452  *
3453  * If version = SD_CONF_VERSION_1 we have the following syntax:
3454  *
3455  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3456  *
3457  * where the prop0 value will be used to set prop0 if bit0 set in the
3458  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3459  *
3460  */
3461 
3462 static int
3463 sd_process_sdconf_file(struct sd_lun *un)
3464 {
3465 	char	*config_list = NULL;
3466 	int	config_list_len;
3467 	int	len;
3468 	int	dupletlen = 0;
3469 	char	*vidptr;
3470 	int	vidlen;
3471 	char	*dnlist_ptr;
3472 	char	*dataname_ptr;
3473 	int	dnlist_len;
3474 	int	dataname_len;
3475 	int	*data_list;
3476 	int	data_list_len;
3477 	int	rval = SD_FAILURE;
3478 	int	i;
3479 
3480 	ASSERT(un != NULL);
3481 
3482 	/* Obtain the configuration list associated with the .conf file */
3483 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3484 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3485 	    != DDI_PROP_SUCCESS) {
3486 		return (SD_FAILURE);
3487 	}
3488 
3489 	/*
3490 	 * Compare vids in each duplet to the inquiry vid - if a match is
3491 	 * made, get the data value and update the soft state structure
3492 	 * accordingly.
3493 	 *
3494 	 * Note: This algorithm is complex and difficult to maintain. It should
3495 	 * be replaced with a more robust implementation.
3496 	 */
3497 	for (len = config_list_len, vidptr = config_list; len > 0;
3498 	    vidptr += dupletlen, len -= dupletlen) {
3499 		/*
3500 		 * Note: The assumption here is that each vid entry is on
3501 		 * a unique line from its associated duplet.
3502 		 */
3503 		vidlen = dupletlen = (int)strlen(vidptr);
3504 		if ((vidlen == 0) ||
3505 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3506 			dupletlen++;
3507 			continue;
3508 		}
3509 
3510 		/*
3511 		 * dnlist contains 1 or more blank separated
3512 		 * data-property-name entries
3513 		 */
3514 		dnlist_ptr = vidptr + vidlen + 1;
3515 		dnlist_len = (int)strlen(dnlist_ptr);
3516 		dupletlen += dnlist_len + 2;
3517 
3518 		/*
3519 		 * Set a pointer for the first data-property-name
3520 		 * entry in the list
3521 		 */
3522 		dataname_ptr = dnlist_ptr;
3523 		dataname_len = 0;
3524 
3525 		/*
3526 		 * Loop through all data-property-name entries in the
3527 		 * data-property-name-list setting the properties for each.
3528 		 */
3529 		while (dataname_len < dnlist_len) {
3530 			int version;
3531 
3532 			/*
3533 			 * Determine the length of the current
3534 			 * data-property-name entry by indexing until a
3535 			 * blank or NULL is encountered. When the space is
3536 			 * encountered reset it to a NULL for compliance
3537 			 * with ddi_getlongprop().
3538 			 */
3539 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3540 			    (dataname_ptr[i] != '\0')); i++) {
3541 				;
3542 			}
3543 
3544 			dataname_len += i;
3545 			/* If not null terminated, Make it so */
3546 			if (dataname_ptr[i] == ' ') {
3547 				dataname_ptr[i] = '\0';
3548 			}
3549 			dataname_len++;
3550 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3551 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3552 			    vidptr, dataname_ptr);
3553 
3554 			/* Get the data list */
3555 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3556 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3557 			    != DDI_PROP_SUCCESS) {
3558 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3559 				    "sd_process_sdconf_file: data property (%s)"
3560 				    " has no value\n", dataname_ptr);
3561 				dataname_ptr = dnlist_ptr + dataname_len;
3562 				continue;
3563 			}
3564 
3565 			version = data_list[0];
3566 
3567 			if (version == SD_CONF_VERSION_1) {
3568 				sd_tunables values;
3569 
3570 				/* Set the properties */
3571 				if (sd_chk_vers1_data(un, data_list[1],
3572 				    &data_list[2], data_list_len, dataname_ptr)
3573 				    == SD_SUCCESS) {
3574 					sd_get_tunables_from_conf(un,
3575 					    data_list[1], &data_list[2],
3576 					    &values);
3577 					sd_set_vers1_properties(un,
3578 					    data_list[1], &values);
3579 					rval = SD_SUCCESS;
3580 				} else {
3581 					rval = SD_FAILURE;
3582 				}
3583 			} else {
3584 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3585 				    "data property %s version 0x%x is invalid.",
3586 				    dataname_ptr, version);
3587 				rval = SD_FAILURE;
3588 			}
3589 			kmem_free(data_list, data_list_len);
3590 			dataname_ptr = dnlist_ptr + dataname_len;
3591 		}
3592 	}
3593 
3594 	/* free up the memory allocated by ddi_getlongprop */
3595 	if (config_list) {
3596 		kmem_free(config_list, config_list_len);
3597 	}
3598 
3599 	return (rval);
3600 }
3601 
3602 /*
3603  *    Function: sd_get_tunables_from_conf()
3604  *
3605  *
3606  *    This function reads the data list from the sd.conf file and pulls
3607  *    the values that can have numeric values as arguments and places
3608  *    the values in the appropriate sd_tunables member.
3609  *    Since the order of the data list members varies across platforms
3610  *    This function reads them from the data list in a platform specific
3611  *    order and places them into the correct sd_tunable member that is
3612  *    consistent across all platforms.
3613  */
3614 static void
3615 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3616     sd_tunables *values)
3617 {
3618 	int i;
3619 	int mask;
3620 
3621 	bzero(values, sizeof (sd_tunables));
3622 
3623 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3624 
3625 		mask = 1 << i;
3626 		if (mask > flags) {
3627 			break;
3628 		}
3629 
3630 		switch (mask & flags) {
3631 		case 0:	/* This mask bit not set in flags */
3632 			continue;
3633 		case SD_CONF_BSET_THROTTLE:
3634 			values->sdt_throttle = data_list[i];
3635 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3636 			    "sd_get_tunables_from_conf: throttle = %d\n",
3637 			    values->sdt_throttle);
3638 			break;
3639 		case SD_CONF_BSET_CTYPE:
3640 			values->sdt_ctype = data_list[i];
3641 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3642 			    "sd_get_tunables_from_conf: ctype = %d\n",
3643 			    values->sdt_ctype);
3644 			break;
3645 		case SD_CONF_BSET_NRR_COUNT:
3646 			values->sdt_not_rdy_retries = data_list[i];
3647 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3648 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3649 			    values->sdt_not_rdy_retries);
3650 			break;
3651 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3652 			values->sdt_busy_retries = data_list[i];
3653 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3654 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3655 			    values->sdt_busy_retries);
3656 			break;
3657 		case SD_CONF_BSET_RST_RETRIES:
3658 			values->sdt_reset_retries = data_list[i];
3659 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3660 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3661 			    values->sdt_reset_retries);
3662 			break;
3663 		case SD_CONF_BSET_RSV_REL_TIME:
3664 			values->sdt_reserv_rel_time = data_list[i];
3665 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3666 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3667 			    values->sdt_reserv_rel_time);
3668 			break;
3669 		case SD_CONF_BSET_MIN_THROTTLE:
3670 			values->sdt_min_throttle = data_list[i];
3671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3672 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3673 			    values->sdt_min_throttle);
3674 			break;
3675 		case SD_CONF_BSET_DISKSORT_DISABLED:
3676 			values->sdt_disk_sort_dis = data_list[i];
3677 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3678 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3679 			    values->sdt_disk_sort_dis);
3680 			break;
3681 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3682 			values->sdt_lun_reset_enable = data_list[i];
3683 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3684 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3685 			    "\n", values->sdt_lun_reset_enable);
3686 			break;
3687 		case SD_CONF_BSET_CACHE_IS_NV:
3688 			values->sdt_suppress_cache_flush = data_list[i];
3689 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3690 			    "sd_get_tunables_from_conf: \
3691 			    suppress_cache_flush = %d"
3692 			    "\n", values->sdt_suppress_cache_flush);
3693 			break;
3694 		}
3695 	}
3696 }
3697 
3698 /*
3699  *    Function: sd_process_sdconf_table
3700  *
3701  * Description: Search the static configuration table for a match on the
3702  *		inquiry vid/pid and update the driver soft state structure
3703  *		according to the table property values for the device.
3704  *
3705  *		The form of a configuration table entry is:
3706  *		  <vid+pid>,<flags>,<property-data>
3707  *		  "SEAGATE ST42400N",1,0x40000,
3708  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3709  *
3710  *   Arguments: un - driver soft state (unit) structure
3711  */
3712 
3713 static void
3714 sd_process_sdconf_table(struct sd_lun *un)
3715 {
3716 	char	*id = NULL;
3717 	int	table_index;
3718 	int	idlen;
3719 
3720 	ASSERT(un != NULL);
3721 	for (table_index = 0; table_index < sd_disk_table_size;
3722 	    table_index++) {
3723 		id = sd_disk_table[table_index].device_id;
3724 		idlen = strlen(id);
3725 		if (idlen == 0) {
3726 			continue;
3727 		}
3728 
3729 		/*
3730 		 * The static configuration table currently does not
3731 		 * implement version 10 properties. Additionally,
3732 		 * multiple data-property-name entries are not
3733 		 * implemented in the static configuration table.
3734 		 */
3735 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3736 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3737 			    "sd_process_sdconf_table: disk %s\n", id);
3738 			sd_set_vers1_properties(un,
3739 			    sd_disk_table[table_index].flags,
3740 			    sd_disk_table[table_index].properties);
3741 			break;
3742 		}
3743 	}
3744 }
3745 
3746 
3747 /*
3748  *    Function: sd_sdconf_id_match
3749  *
3750  * Description: This local function implements a case sensitive vid/pid
3751  *		comparison as well as the boundary cases of wild card and
3752  *		multiple blanks.
3753  *
3754  *		Note: An implicit assumption made here is that the scsi
3755  *		inquiry structure will always keep the vid, pid and
3756  *		revision strings in consecutive sequence, so they can be
3757  *		read as a single string. If this assumption is not the
3758  *		case, a separate string, to be used for the check, needs
3759  *		to be built with these strings concatenated.
3760  *
3761  *   Arguments: un - driver soft state (unit) structure
3762  *		id - table or config file vid/pid
3763  *		idlen  - length of the vid/pid (bytes)
3764  *
3765  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3766  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3767  */
3768 
3769 static int
3770 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3771 {
3772 	struct scsi_inquiry	*sd_inq;
3773 	int 			rval = SD_SUCCESS;
3774 
3775 	ASSERT(un != NULL);
3776 	sd_inq = un->un_sd->sd_inq;
3777 	ASSERT(id != NULL);
3778 
3779 	/*
3780 	 * We use the inq_vid as a pointer to a buffer containing the
3781 	 * vid and pid and use the entire vid/pid length of the table
3782 	 * entry for the comparison. This works because the inq_pid
3783 	 * data member follows inq_vid in the scsi_inquiry structure.
3784 	 */
3785 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3786 		/*
3787 		 * The user id string is compared to the inquiry vid/pid
3788 		 * using a case insensitive comparison and ignoring
3789 		 * multiple spaces.
3790 		 */
3791 		rval = sd_blank_cmp(un, id, idlen);
3792 		if (rval != SD_SUCCESS) {
3793 			/*
3794 			 * User id strings that start and end with a "*"
3795 			 * are a special case. These do not have a
3796 			 * specific vendor, and the product string can
3797 			 * appear anywhere in the 16 byte PID portion of
3798 			 * the inquiry data. This is a simple strstr()
3799 			 * type search for the user id in the inquiry data.
3800 			 */
3801 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3802 				char	*pidptr = &id[1];
3803 				int	i;
3804 				int	j;
3805 				int	pidstrlen = idlen - 2;
3806 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3807 				    pidstrlen;
3808 
3809 				if (j < 0) {
3810 					return (SD_FAILURE);
3811 				}
3812 				for (i = 0; i < j; i++) {
3813 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3814 					    pidptr, pidstrlen) == 0) {
3815 						rval = SD_SUCCESS;
3816 						break;
3817 					}
3818 				}
3819 			}
3820 		}
3821 	}
3822 	return (rval);
3823 }
3824 
3825 
3826 /*
3827  *    Function: sd_blank_cmp
3828  *
3829  * Description: If the id string starts and ends with a space, treat
3830  *		multiple consecutive spaces as equivalent to a single
3831  *		space. For example, this causes a sd_disk_table entry
3832  *		of " NEC CDROM " to match a device's id string of
3833  *		"NEC       CDROM".
3834  *
3835  *		Note: The success exit condition for this routine is if
3836  *		the pointer to the table entry is '\0' and the cnt of
3837  *		the inquiry length is zero. This will happen if the inquiry
3838  *		string returned by the device is padded with spaces to be
3839  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3840  *		SCSI spec states that the inquiry string is to be padded with
3841  *		spaces.
3842  *
3843  *   Arguments: un - driver soft state (unit) structure
3844  *		id - table or config file vid/pid
3845  *		idlen  - length of the vid/pid (bytes)
3846  *
3847  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3848  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3849  */
3850 
3851 static int
3852 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3853 {
3854 	char		*p1;
3855 	char		*p2;
3856 	int		cnt;
3857 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3858 	    sizeof (SD_INQUIRY(un)->inq_pid);
3859 
3860 	ASSERT(un != NULL);
3861 	p2 = un->un_sd->sd_inq->inq_vid;
3862 	ASSERT(id != NULL);
3863 	p1 = id;
3864 
3865 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3866 		/*
3867 		 * Note: string p1 is terminated by a NUL but string p2
3868 		 * isn't.  The end of p2 is determined by cnt.
3869 		 */
3870 		for (;;) {
3871 			/* skip over any extra blanks in both strings */
3872 			while ((*p1 != '\0') && (*p1 == ' ')) {
3873 				p1++;
3874 			}
3875 			while ((cnt != 0) && (*p2 == ' ')) {
3876 				p2++;
3877 				cnt--;
3878 			}
3879 
3880 			/* compare the two strings */
3881 			if ((cnt == 0) ||
3882 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3883 				break;
3884 			}
3885 			while ((cnt > 0) &&
3886 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3887 				p1++;
3888 				p2++;
3889 				cnt--;
3890 			}
3891 		}
3892 	}
3893 
3894 	/* return SD_SUCCESS if both strings match */
3895 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3896 }
3897 
3898 
3899 /*
3900  *    Function: sd_chk_vers1_data
3901  *
3902  * Description: Verify the version 1 device properties provided by the
3903  *		user via the configuration file
3904  *
3905  *   Arguments: un	     - driver soft state (unit) structure
3906  *		flags	     - integer mask indicating properties to be set
3907  *		prop_list    - integer list of property values
3908  *		list_len     - length of user provided data
3909  *
3910  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3911  *		SD_FAILURE - Indicates the user provided data is invalid
3912  */
3913 
3914 static int
3915 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3916     int list_len, char *dataname_ptr)
3917 {
3918 	int i;
3919 	int mask = 1;
3920 	int index = 0;
3921 
3922 	ASSERT(un != NULL);
3923 
3924 	/* Check for a NULL property name and list */
3925 	if (dataname_ptr == NULL) {
3926 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3927 		    "sd_chk_vers1_data: NULL data property name.");
3928 		return (SD_FAILURE);
3929 	}
3930 	if (prop_list == NULL) {
3931 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3932 		    "sd_chk_vers1_data: %s NULL data property list.",
3933 		    dataname_ptr);
3934 		return (SD_FAILURE);
3935 	}
3936 
3937 	/* Display a warning if undefined bits are set in the flags */
3938 	if (flags & ~SD_CONF_BIT_MASK) {
3939 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3940 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3941 		    "Properties not set.",
3942 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3943 		return (SD_FAILURE);
3944 	}
3945 
3946 	/*
3947 	 * Verify the length of the list by identifying the highest bit set
3948 	 * in the flags and validating that the property list has a length
3949 	 * up to the index of this bit.
3950 	 */
3951 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3952 		if (flags & mask) {
3953 			index++;
3954 		}
3955 		mask = 1 << i;
3956 	}
3957 	if ((list_len / sizeof (int)) < (index + 2)) {
3958 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3959 		    "sd_chk_vers1_data: "
3960 		    "Data property list %s size is incorrect. "
3961 		    "Properties not set.", dataname_ptr);
3962 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3963 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3964 		return (SD_FAILURE);
3965 	}
3966 	return (SD_SUCCESS);
3967 }
3968 
3969 
3970 /*
3971  *    Function: sd_set_vers1_properties
3972  *
3973  * Description: Set version 1 device properties based on a property list
3974  *		retrieved from the driver configuration file or static
3975  *		configuration table. Version 1 properties have the format:
3976  *
3977  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3978  *
3979  *		where the prop0 value will be used to set prop0 if bit0
3980  *		is set in the flags
3981  *
3982  *   Arguments: un	     - driver soft state (unit) structure
3983  *		flags	     - integer mask indicating properties to be set
3984  *		prop_list    - integer list of property values
3985  */
3986 
3987 static void
3988 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3989 {
3990 	ASSERT(un != NULL);
3991 
3992 	/*
3993 	 * Set the flag to indicate cache is to be disabled. An attempt
3994 	 * to disable the cache via sd_cache_control() will be made
3995 	 * later during attach once the basic initialization is complete.
3996 	 */
3997 	if (flags & SD_CONF_BSET_NOCACHE) {
3998 		un->un_f_opt_disable_cache = TRUE;
3999 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4000 		    "sd_set_vers1_properties: caching disabled flag set\n");
4001 	}
4002 
4003 	/* CD-specific configuration parameters */
4004 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4005 		un->un_f_cfg_playmsf_bcd = TRUE;
4006 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4007 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4008 	}
4009 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4010 		un->un_f_cfg_readsub_bcd = TRUE;
4011 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4012 		    "sd_set_vers1_properties: readsub_bcd set\n");
4013 	}
4014 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4015 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4016 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4017 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4018 	}
4019 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4020 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4021 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4022 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4023 	}
4024 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4025 		un->un_f_cfg_no_read_header = TRUE;
4026 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4027 		    "sd_set_vers1_properties: no_read_header set\n");
4028 	}
4029 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4030 		un->un_f_cfg_read_cd_xd4 = TRUE;
4031 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4033 	}
4034 
4035 	/* Support for devices which do not have valid/unique serial numbers */
4036 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4037 		un->un_f_opt_fab_devid = TRUE;
4038 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4039 		    "sd_set_vers1_properties: fab_devid bit set\n");
4040 	}
4041 
4042 	/* Support for user throttle configuration */
4043 	if (flags & SD_CONF_BSET_THROTTLE) {
4044 		ASSERT(prop_list != NULL);
4045 		un->un_saved_throttle = un->un_throttle =
4046 		    prop_list->sdt_throttle;
4047 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4048 		    "sd_set_vers1_properties: throttle set to %d\n",
4049 		    prop_list->sdt_throttle);
4050 	}
4051 
4052 	/* Set the per disk retry count according to the conf file or table. */
4053 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4054 		ASSERT(prop_list != NULL);
4055 		if (prop_list->sdt_not_rdy_retries) {
4056 			un->un_notready_retry_count =
4057 			    prop_list->sdt_not_rdy_retries;
4058 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4059 			    "sd_set_vers1_properties: not ready retry count"
4060 			    " set to %d\n", un->un_notready_retry_count);
4061 		}
4062 	}
4063 
4064 	/* The controller type is reported for generic disk driver ioctls */
4065 	if (flags & SD_CONF_BSET_CTYPE) {
4066 		ASSERT(prop_list != NULL);
4067 		switch (prop_list->sdt_ctype) {
4068 		case CTYPE_CDROM:
4069 			un->un_ctype = prop_list->sdt_ctype;
4070 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4071 			    "sd_set_vers1_properties: ctype set to "
4072 			    "CTYPE_CDROM\n");
4073 			break;
4074 		case CTYPE_CCS:
4075 			un->un_ctype = prop_list->sdt_ctype;
4076 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4077 			    "sd_set_vers1_properties: ctype set to "
4078 			    "CTYPE_CCS\n");
4079 			break;
4080 		case CTYPE_ROD:		/* RW optical */
4081 			un->un_ctype = prop_list->sdt_ctype;
4082 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4083 			    "sd_set_vers1_properties: ctype set to "
4084 			    "CTYPE_ROD\n");
4085 			break;
4086 		default:
4087 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4088 			    "sd_set_vers1_properties: Could not set "
4089 			    "invalid ctype value (%d)",
4090 			    prop_list->sdt_ctype);
4091 		}
4092 	}
4093 
4094 	/* Purple failover timeout */
4095 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4096 		ASSERT(prop_list != NULL);
4097 		un->un_busy_retry_count =
4098 		    prop_list->sdt_busy_retries;
4099 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4100 		    "sd_set_vers1_properties: "
4101 		    "busy retry count set to %d\n",
4102 		    un->un_busy_retry_count);
4103 	}
4104 
4105 	/* Purple reset retry count */
4106 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4107 		ASSERT(prop_list != NULL);
4108 		un->un_reset_retry_count =
4109 		    prop_list->sdt_reset_retries;
4110 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4111 		    "sd_set_vers1_properties: "
4112 		    "reset retry count set to %d\n",
4113 		    un->un_reset_retry_count);
4114 	}
4115 
4116 	/* Purple reservation release timeout */
4117 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4118 		ASSERT(prop_list != NULL);
4119 		un->un_reserve_release_time =
4120 		    prop_list->sdt_reserv_rel_time;
4121 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4122 		    "sd_set_vers1_properties: "
4123 		    "reservation release timeout set to %d\n",
4124 		    un->un_reserve_release_time);
4125 	}
4126 
4127 	/*
4128 	 * Driver flag telling the driver to verify that no commands are pending
4129 	 * for a device before issuing a Test Unit Ready. This is a workaround
4130 	 * for a firmware bug in some Seagate eliteI drives.
4131 	 */
4132 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4133 		un->un_f_cfg_tur_check = TRUE;
4134 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4135 		    "sd_set_vers1_properties: tur queue check set\n");
4136 	}
4137 
4138 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4139 		un->un_min_throttle = prop_list->sdt_min_throttle;
4140 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4141 		    "sd_set_vers1_properties: min throttle set to %d\n",
4142 		    un->un_min_throttle);
4143 	}
4144 
4145 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4146 		un->un_f_disksort_disabled =
4147 		    (prop_list->sdt_disk_sort_dis != 0) ?
4148 		    TRUE : FALSE;
4149 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4150 		    "sd_set_vers1_properties: disksort disabled "
4151 		    "flag set to %d\n",
4152 		    prop_list->sdt_disk_sort_dis);
4153 	}
4154 
4155 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4156 		un->un_f_lun_reset_enabled =
4157 		    (prop_list->sdt_lun_reset_enable != 0) ?
4158 		    TRUE : FALSE;
4159 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4160 		    "sd_set_vers1_properties: lun reset enabled "
4161 		    "flag set to %d\n",
4162 		    prop_list->sdt_lun_reset_enable);
4163 	}
4164 
4165 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4166 		un->un_f_suppress_cache_flush =
4167 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4168 		    TRUE : FALSE;
4169 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4170 		    "sd_set_vers1_properties: suppress_cache_flush "
4171 		    "flag set to %d\n",
4172 		    prop_list->sdt_suppress_cache_flush);
4173 	}
4174 
4175 	/*
4176 	 * Validate the throttle values.
4177 	 * If any of the numbers are invalid, set everything to defaults.
4178 	 */
4179 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4180 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4181 	    (un->un_min_throttle > un->un_throttle)) {
4182 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4183 		un->un_min_throttle = sd_min_throttle;
4184 	}
4185 }
4186 
4187 /*
4188  *   Function: sd_is_lsi()
4189  *
4190  *   Description: Check for lsi devices, step through the static device
4191  *	table to match vid/pid.
4192  *
4193  *   Args: un - ptr to sd_lun
4194  *
4195  *   Notes:  When creating new LSI property, need to add the new LSI property
4196  *		to this function.
4197  */
4198 static void
4199 sd_is_lsi(struct sd_lun *un)
4200 {
4201 	char	*id = NULL;
4202 	int	table_index;
4203 	int	idlen;
4204 	void	*prop;
4205 
4206 	ASSERT(un != NULL);
4207 	for (table_index = 0; table_index < sd_disk_table_size;
4208 	    table_index++) {
4209 		id = sd_disk_table[table_index].device_id;
4210 		idlen = strlen(id);
4211 		if (idlen == 0) {
4212 			continue;
4213 		}
4214 
4215 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4216 			prop = sd_disk_table[table_index].properties;
4217 			if (prop == &lsi_properties ||
4218 			    prop == &lsi_oem_properties ||
4219 			    prop == &lsi_properties_scsi ||
4220 			    prop == &symbios_properties) {
4221 				un->un_f_cfg_is_lsi = TRUE;
4222 			}
4223 			break;
4224 		}
4225 	}
4226 }
4227 
4228 /*
4229  *    Function: sd_get_physical_geometry
4230  *
4231  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4232  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4233  *		target, and use this information to initialize the physical
4234  *		geometry cache specified by pgeom_p.
4235  *
4236  *		MODE SENSE is an optional command, so failure in this case
4237  *		does not necessarily denote an error. We want to use the
4238  *		MODE SENSE commands to derive the physical geometry of the
4239  *		device, but if either command fails, the logical geometry is
4240  *		used as the fallback for disk label geometry in cmlb.
4241  *
4242  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4243  *		have already been initialized for the current target and
4244  *		that the current values be passed as args so that we don't
4245  *		end up ever trying to use -1 as a valid value. This could
4246  *		happen if either value is reset while we're not holding
4247  *		the mutex.
4248  *
4249  *   Arguments: un - driver soft state (unit) structure
4250  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4251  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4252  *			to use the USCSI "direct" chain and bypass the normal
4253  *			command waitq.
4254  *
4255  *     Context: Kernel thread only (can sleep).
4256  */
4257 
4258 static int
4259 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4260 	diskaddr_t capacity, int lbasize, int path_flag)
4261 {
4262 	struct	mode_format	*page3p;
4263 	struct	mode_geometry	*page4p;
4264 	struct	mode_header	*headerp;
4265 	int	sector_size;
4266 	int	nsect;
4267 	int	nhead;
4268 	int	ncyl;
4269 	int	intrlv;
4270 	int	spc;
4271 	diskaddr_t	modesense_capacity;
4272 	int	rpm;
4273 	int	bd_len;
4274 	int	mode_header_length;
4275 	uchar_t	*p3bufp;
4276 	uchar_t	*p4bufp;
4277 	int	cdbsize;
4278 	int 	ret = EIO;
4279 
4280 	ASSERT(un != NULL);
4281 
4282 	if (lbasize == 0) {
4283 		if (ISCD(un)) {
4284 			lbasize = 2048;
4285 		} else {
4286 			lbasize = un->un_sys_blocksize;
4287 		}
4288 	}
4289 	pgeom_p->g_secsize = (unsigned short)lbasize;
4290 
4291 	/*
4292 	 * If the unit is a cd/dvd drive MODE SENSE page three
4293 	 * and MODE SENSE page four are reserved (see SBC spec
4294 	 * and MMC spec). To prevent soft errors just return
4295 	 * using the default LBA size.
4296 	 */
4297 	if (ISCD(un))
4298 		return (ret);
4299 
4300 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4301 
4302 	/*
4303 	 * Retrieve MODE SENSE page 3 - Format Device Page
4304 	 */
4305 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4306 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4307 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4308 	    != 0) {
4309 		SD_ERROR(SD_LOG_COMMON, un,
4310 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4311 		goto page3_exit;
4312 	}
4313 
4314 	/*
4315 	 * Determine size of Block Descriptors in order to locate the mode
4316 	 * page data.  ATAPI devices return 0, SCSI devices should return
4317 	 * MODE_BLK_DESC_LENGTH.
4318 	 */
4319 	headerp = (struct mode_header *)p3bufp;
4320 	if (un->un_f_cfg_is_atapi == TRUE) {
4321 		struct mode_header_grp2 *mhp =
4322 		    (struct mode_header_grp2 *)headerp;
4323 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4324 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4325 	} else {
4326 		mode_header_length = MODE_HEADER_LENGTH;
4327 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4328 	}
4329 
4330 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4331 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4332 		    "received unexpected bd_len of %d, page3\n", bd_len);
4333 		goto page3_exit;
4334 	}
4335 
4336 	page3p = (struct mode_format *)
4337 	    ((caddr_t)headerp + mode_header_length + bd_len);
4338 
4339 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4340 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4341 		    "mode sense pg3 code mismatch %d\n",
4342 		    page3p->mode_page.code);
4343 		goto page3_exit;
4344 	}
4345 
4346 	/*
4347 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4348 	 * complete successfully; otherwise, revert to the logical geometry.
4349 	 * So, we need to save everything in temporary variables.
4350 	 */
4351 	sector_size = BE_16(page3p->data_bytes_sect);
4352 
4353 	/*
4354 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4355 	 */
4356 	if (sector_size == 0) {
4357 		sector_size = un->un_sys_blocksize;
4358 	} else {
4359 		sector_size &= ~(un->un_sys_blocksize - 1);
4360 	}
4361 
4362 	nsect  = BE_16(page3p->sect_track);
4363 	intrlv = BE_16(page3p->interleave);
4364 
4365 	SD_INFO(SD_LOG_COMMON, un,
4366 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4367 	SD_INFO(SD_LOG_COMMON, un,
4368 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4369 	    page3p->mode_page.code, nsect, sector_size);
4370 	SD_INFO(SD_LOG_COMMON, un,
4371 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4372 	    BE_16(page3p->track_skew),
4373 	    BE_16(page3p->cylinder_skew));
4374 
4375 
4376 	/*
4377 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4378 	 */
4379 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4380 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4381 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4382 	    != 0) {
4383 		SD_ERROR(SD_LOG_COMMON, un,
4384 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4385 		goto page4_exit;
4386 	}
4387 
4388 	/*
4389 	 * Determine size of Block Descriptors in order to locate the mode
4390 	 * page data.  ATAPI devices return 0, SCSI devices should return
4391 	 * MODE_BLK_DESC_LENGTH.
4392 	 */
4393 	headerp = (struct mode_header *)p4bufp;
4394 	if (un->un_f_cfg_is_atapi == TRUE) {
4395 		struct mode_header_grp2 *mhp =
4396 		    (struct mode_header_grp2 *)headerp;
4397 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4398 	} else {
4399 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4400 	}
4401 
4402 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4403 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4404 		    "received unexpected bd_len of %d, page4\n", bd_len);
4405 		goto page4_exit;
4406 	}
4407 
4408 	page4p = (struct mode_geometry *)
4409 	    ((caddr_t)headerp + mode_header_length + bd_len);
4410 
4411 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4412 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4413 		    "mode sense pg4 code mismatch %d\n",
4414 		    page4p->mode_page.code);
4415 		goto page4_exit;
4416 	}
4417 
4418 	/*
4419 	 * Stash the data now, after we know that both commands completed.
4420 	 */
4421 
4422 
4423 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4424 	spc   = nhead * nsect;
4425 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4426 	rpm   = BE_16(page4p->rpm);
4427 
4428 	modesense_capacity = spc * ncyl;
4429 
4430 	SD_INFO(SD_LOG_COMMON, un,
4431 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4432 	SD_INFO(SD_LOG_COMMON, un,
4433 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4434 	SD_INFO(SD_LOG_COMMON, un,
4435 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4436 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4437 	    (void *)pgeom_p, capacity);
4438 
4439 	/*
4440 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4441 	 * the product of C * H * S returned by MODE SENSE >= that returned
4442 	 * by read capacity. This is an idiosyncrasy of the original x86
4443 	 * disk subsystem.
4444 	 */
4445 	if (modesense_capacity >= capacity) {
4446 		SD_INFO(SD_LOG_COMMON, un,
4447 		    "sd_get_physical_geometry: adjusting acyl; "
4448 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4449 		    (modesense_capacity - capacity + spc - 1) / spc);
4450 		if (sector_size != 0) {
4451 			/* 1243403: NEC D38x7 drives don't support sec size */
4452 			pgeom_p->g_secsize = (unsigned short)sector_size;
4453 		}
4454 		pgeom_p->g_nsect    = (unsigned short)nsect;
4455 		pgeom_p->g_nhead    = (unsigned short)nhead;
4456 		pgeom_p->g_capacity = capacity;
4457 		pgeom_p->g_acyl	    =
4458 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4459 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4460 	}
4461 
4462 	pgeom_p->g_rpm    = (unsigned short)rpm;
4463 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4464 	ret = 0;
4465 
4466 	SD_INFO(SD_LOG_COMMON, un,
4467 	    "sd_get_physical_geometry: mode sense geometry:\n");
4468 	SD_INFO(SD_LOG_COMMON, un,
4469 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4470 	    nsect, sector_size, intrlv);
4471 	SD_INFO(SD_LOG_COMMON, un,
4472 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4473 	    nhead, ncyl, rpm, modesense_capacity);
4474 	SD_INFO(SD_LOG_COMMON, un,
4475 	    "sd_get_physical_geometry: (cached)\n");
4476 	SD_INFO(SD_LOG_COMMON, un,
4477 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4478 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4479 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4480 	SD_INFO(SD_LOG_COMMON, un,
4481 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4482 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4483 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4484 
4485 page4_exit:
4486 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4487 page3_exit:
4488 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4489 
4490 	return (ret);
4491 }
4492 
4493 /*
4494  *    Function: sd_get_virtual_geometry
4495  *
4496  * Description: Ask the controller to tell us about the target device.
4497  *
4498  *   Arguments: un - pointer to softstate
4499  *		capacity - disk capacity in #blocks
4500  *		lbasize - disk block size in bytes
4501  *
4502  *     Context: Kernel thread only
4503  */
4504 
4505 static int
4506 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4507     diskaddr_t capacity, int lbasize)
4508 {
4509 	uint_t	geombuf;
4510 	int	spc;
4511 
4512 	ASSERT(un != NULL);
4513 
4514 	/* Set sector size, and total number of sectors */
4515 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4516 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4517 
4518 	/* Let the HBA tell us its geometry */
4519 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4520 
4521 	/* A value of -1 indicates an undefined "geometry" property */
4522 	if (geombuf == (-1)) {
4523 		return (EINVAL);
4524 	}
4525 
4526 	/* Initialize the logical geometry cache. */
4527 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4528 	lgeom_p->g_nsect   = geombuf & 0xffff;
4529 	lgeom_p->g_secsize = un->un_sys_blocksize;
4530 
4531 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4532 
4533 	/*
4534 	 * Note: The driver originally converted the capacity value from
4535 	 * target blocks to system blocks. However, the capacity value passed
4536 	 * to this routine is already in terms of system blocks (this scaling
4537 	 * is done when the READ CAPACITY command is issued and processed).
4538 	 * This 'error' may have gone undetected because the usage of g_ncyl
4539 	 * (which is based upon g_capacity) is very limited within the driver
4540 	 */
4541 	lgeom_p->g_capacity = capacity;
4542 
4543 	/*
4544 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4545 	 * hba may return zero values if the device has been removed.
4546 	 */
4547 	if (spc == 0) {
4548 		lgeom_p->g_ncyl = 0;
4549 	} else {
4550 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4551 	}
4552 	lgeom_p->g_acyl = 0;
4553 
4554 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4555 	return (0);
4556 
4557 }
4558 /*
4559  *    Function: sd_update_block_info
4560  *
4561  * Description: Calculate a byte count to sector count bitshift value
4562  *		from sector size.
4563  *
4564  *   Arguments: un: unit struct.
4565  *		lbasize: new target sector size
4566  *		capacity: new target capacity, ie. block count
4567  *
4568  *     Context: Kernel thread context
4569  */
4570 
4571 static void
4572 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4573 {
4574 	if (lbasize != 0) {
4575 		un->un_tgt_blocksize = lbasize;
4576 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4577 	}
4578 
4579 	if (capacity != 0) {
4580 		un->un_blockcount		= capacity;
4581 		un->un_f_blockcount_is_valid	= TRUE;
4582 	}
4583 }
4584 
4585 
4586 /*
4587  *    Function: sd_register_devid
4588  *
4589  * Description: This routine will obtain the device id information from the
4590  *		target, obtain the serial number, and register the device
4591  *		id with the ddi framework.
4592  *
4593  *   Arguments: devi - the system's dev_info_t for the device.
4594  *		un - driver soft state (unit) structure
4595  *		reservation_flag - indicates if a reservation conflict
4596  *		occurred during attach
4597  *
4598  *     Context: Kernel Thread
4599  */
4600 static void
4601 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4602 {
4603 	int		rval		= 0;
4604 	uchar_t		*inq80		= NULL;
4605 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4606 	size_t		inq80_resid	= 0;
4607 	uchar_t		*inq83		= NULL;
4608 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4609 	size_t		inq83_resid	= 0;
4610 	int		dlen, len;
4611 	char		*sn;
4612 
4613 	ASSERT(un != NULL);
4614 	ASSERT(mutex_owned(SD_MUTEX(un)));
4615 	ASSERT((SD_DEVINFO(un)) == devi);
4616 
4617 	/*
4618 	 * If transport has already registered a devid for this target
4619 	 * then that takes precedence over the driver's determination
4620 	 * of the devid.
4621 	 */
4622 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4623 		ASSERT(un->un_devid);
4624 		return; /* use devid registered by the transport */
4625 	}
4626 
4627 	/*
4628 	 * This is the case of antiquated Sun disk drives that have the
4629 	 * FAB_DEVID property set in the disk_table.  These drives
4630 	 * manage the devid's by storing them in last 2 available sectors
4631 	 * on the drive and have them fabricated by the ddi layer by calling
4632 	 * ddi_devid_init and passing the DEVID_FAB flag.
4633 	 */
4634 	if (un->un_f_opt_fab_devid == TRUE) {
4635 		/*
4636 		 * Depending on EINVAL isn't reliable, since a reserved disk
4637 		 * may result in invalid geometry, so check to make sure a
4638 		 * reservation conflict did not occur during attach.
4639 		 */
4640 		if ((sd_get_devid(un) == EINVAL) &&
4641 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4642 			/*
4643 			 * The devid is invalid AND there is no reservation
4644 			 * conflict.  Fabricate a new devid.
4645 			 */
4646 			(void) sd_create_devid(un);
4647 		}
4648 
4649 		/* Register the devid if it exists */
4650 		if (un->un_devid != NULL) {
4651 			(void) ddi_devid_register(SD_DEVINFO(un),
4652 			    un->un_devid);
4653 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4654 			    "sd_register_devid: Devid Fabricated\n");
4655 		}
4656 		return;
4657 	}
4658 
4659 	/*
4660 	 * We check the availability of the World Wide Name (0x83) and Unit
4661 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4662 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4663 	 * 0x83 is available, that is the best choice.  Our next choice is
4664 	 * 0x80.  If neither are available, we munge the devid from the device
4665 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4666 	 * to fabricate a devid for non-Sun qualified disks.
4667 	 */
4668 	if (sd_check_vpd_page_support(un) == 0) {
4669 		/* collect page 80 data if available */
4670 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4671 
4672 			mutex_exit(SD_MUTEX(un));
4673 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4674 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4675 			    0x01, 0x80, &inq80_resid);
4676 
4677 			if (rval != 0) {
4678 				kmem_free(inq80, inq80_len);
4679 				inq80 = NULL;
4680 				inq80_len = 0;
4681 			} else if (ddi_prop_exists(
4682 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4683 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4684 			    INQUIRY_SERIAL_NO) == 0) {
4685 				/*
4686 				 * If we don't already have a serial number
4687 				 * property, do quick verify of data returned
4688 				 * and define property.
4689 				 */
4690 				dlen = inq80_len - inq80_resid;
4691 				len = (size_t)inq80[3];
4692 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4693 					/*
4694 					 * Ensure sn termination, skip leading
4695 					 * blanks, and create property
4696 					 * 'inquiry-serial-no'.
4697 					 */
4698 					sn = (char *)&inq80[4];
4699 					sn[len] = 0;
4700 					while (*sn && (*sn == ' '))
4701 						sn++;
4702 					if (*sn) {
4703 						(void) ddi_prop_update_string(
4704 						    DDI_DEV_T_NONE,
4705 						    SD_DEVINFO(un),
4706 						    INQUIRY_SERIAL_NO, sn);
4707 					}
4708 				}
4709 			}
4710 			mutex_enter(SD_MUTEX(un));
4711 		}
4712 
4713 		/* collect page 83 data if available */
4714 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4715 			mutex_exit(SD_MUTEX(un));
4716 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4717 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4718 			    0x01, 0x83, &inq83_resid);
4719 
4720 			if (rval != 0) {
4721 				kmem_free(inq83, inq83_len);
4722 				inq83 = NULL;
4723 				inq83_len = 0;
4724 			}
4725 			mutex_enter(SD_MUTEX(un));
4726 		}
4727 	}
4728 
4729 	/* encode best devid possible based on data available */
4730 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4731 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4732 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4733 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4734 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4735 
4736 		/* devid successfully encoded, register devid */
4737 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4738 
4739 	} else {
4740 		/*
4741 		 * Unable to encode a devid based on data available.
4742 		 * This is not a Sun qualified disk.  Older Sun disk
4743 		 * drives that have the SD_FAB_DEVID property
4744 		 * set in the disk_table and non Sun qualified
4745 		 * disks are treated in the same manner.  These
4746 		 * drives manage the devid's by storing them in
4747 		 * last 2 available sectors on the drive and
4748 		 * have them fabricated by the ddi layer by
4749 		 * calling ddi_devid_init and passing the
4750 		 * DEVID_FAB flag.
4751 		 * Create a fabricate devid only if there's no
4752 		 * fabricate devid existed.
4753 		 */
4754 		if (sd_get_devid(un) == EINVAL) {
4755 			(void) sd_create_devid(un);
4756 		}
4757 		un->un_f_opt_fab_devid = TRUE;
4758 
4759 		/* Register the devid if it exists */
4760 		if (un->un_devid != NULL) {
4761 			(void) ddi_devid_register(SD_DEVINFO(un),
4762 			    un->un_devid);
4763 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4764 			    "sd_register_devid: devid fabricated using "
4765 			    "ddi framework\n");
4766 		}
4767 	}
4768 
4769 	/* clean up resources */
4770 	if (inq80 != NULL) {
4771 		kmem_free(inq80, inq80_len);
4772 	}
4773 	if (inq83 != NULL) {
4774 		kmem_free(inq83, inq83_len);
4775 	}
4776 }
4777 
4778 
4779 
4780 /*
4781  *    Function: sd_get_devid
4782  *
4783  * Description: This routine will return 0 if a valid device id has been
4784  *		obtained from the target and stored in the soft state. If a
4785  *		valid device id has not been previously read and stored, a
4786  *		read attempt will be made.
4787  *
4788  *   Arguments: un - driver soft state (unit) structure
4789  *
4790  * Return Code: 0 if we successfully get the device id
4791  *
4792  *     Context: Kernel Thread
4793  */
4794 
4795 static int
4796 sd_get_devid(struct sd_lun *un)
4797 {
4798 	struct dk_devid		*dkdevid;
4799 	ddi_devid_t		tmpid;
4800 	uint_t			*ip;
4801 	size_t			sz;
4802 	diskaddr_t		blk;
4803 	int			status;
4804 	int			chksum;
4805 	int			i;
4806 	size_t			buffer_size;
4807 
4808 	ASSERT(un != NULL);
4809 	ASSERT(mutex_owned(SD_MUTEX(un)));
4810 
4811 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4812 	    un);
4813 
4814 	if (un->un_devid != NULL) {
4815 		return (0);
4816 	}
4817 
4818 	mutex_exit(SD_MUTEX(un));
4819 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4820 	    (void *)SD_PATH_DIRECT) != 0) {
4821 		mutex_enter(SD_MUTEX(un));
4822 		return (EINVAL);
4823 	}
4824 
4825 	/*
4826 	 * Read and verify device id, stored in the reserved cylinders at the
4827 	 * end of the disk. Backup label is on the odd sectors of the last
4828 	 * track of the last cylinder. Device id will be on track of the next
4829 	 * to last cylinder.
4830 	 */
4831 	mutex_enter(SD_MUTEX(un));
4832 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4833 	mutex_exit(SD_MUTEX(un));
4834 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4835 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4836 	    SD_PATH_DIRECT);
4837 	if (status != 0) {
4838 		goto error;
4839 	}
4840 
4841 	/* Validate the revision */
4842 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4843 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4844 		status = EINVAL;
4845 		goto error;
4846 	}
4847 
4848 	/* Calculate the checksum */
4849 	chksum = 0;
4850 	ip = (uint_t *)dkdevid;
4851 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4852 	    i++) {
4853 		chksum ^= ip[i];
4854 	}
4855 
4856 	/* Compare the checksums */
4857 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4858 		status = EINVAL;
4859 		goto error;
4860 	}
4861 
4862 	/* Validate the device id */
4863 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4864 		status = EINVAL;
4865 		goto error;
4866 	}
4867 
4868 	/*
4869 	 * Store the device id in the driver soft state
4870 	 */
4871 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4872 	tmpid = kmem_alloc(sz, KM_SLEEP);
4873 
4874 	mutex_enter(SD_MUTEX(un));
4875 
4876 	un->un_devid = tmpid;
4877 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4878 
4879 	kmem_free(dkdevid, buffer_size);
4880 
4881 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4882 
4883 	return (status);
4884 error:
4885 	mutex_enter(SD_MUTEX(un));
4886 	kmem_free(dkdevid, buffer_size);
4887 	return (status);
4888 }
4889 
4890 
4891 /*
4892  *    Function: sd_create_devid
4893  *
4894  * Description: This routine will fabricate the device id and write it
4895  *		to the disk.
4896  *
4897  *   Arguments: un - driver soft state (unit) structure
4898  *
4899  * Return Code: value of the fabricated device id
4900  *
4901  *     Context: Kernel Thread
4902  */
4903 
4904 static ddi_devid_t
4905 sd_create_devid(struct sd_lun *un)
4906 {
4907 	ASSERT(un != NULL);
4908 
4909 	/* Fabricate the devid */
4910 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4911 	    == DDI_FAILURE) {
4912 		return (NULL);
4913 	}
4914 
4915 	/* Write the devid to disk */
4916 	if (sd_write_deviceid(un) != 0) {
4917 		ddi_devid_free(un->un_devid);
4918 		un->un_devid = NULL;
4919 	}
4920 
4921 	return (un->un_devid);
4922 }
4923 
4924 
4925 /*
4926  *    Function: sd_write_deviceid
4927  *
4928  * Description: This routine will write the device id to the disk
4929  *		reserved sector.
4930  *
4931  *   Arguments: un - driver soft state (unit) structure
4932  *
4933  * Return Code: EINVAL
4934  *		value returned by sd_send_scsi_cmd
4935  *
4936  *     Context: Kernel Thread
4937  */
4938 
4939 static int
4940 sd_write_deviceid(struct sd_lun *un)
4941 {
4942 	struct dk_devid		*dkdevid;
4943 	diskaddr_t		blk;
4944 	uint_t			*ip, chksum;
4945 	int			status;
4946 	int			i;
4947 
4948 	ASSERT(mutex_owned(SD_MUTEX(un)));
4949 
4950 	mutex_exit(SD_MUTEX(un));
4951 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4952 	    (void *)SD_PATH_DIRECT) != 0) {
4953 		mutex_enter(SD_MUTEX(un));
4954 		return (-1);
4955 	}
4956 
4957 
4958 	/* Allocate the buffer */
4959 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4960 
4961 	/* Fill in the revision */
4962 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
4963 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
4964 
4965 	/* Copy in the device id */
4966 	mutex_enter(SD_MUTEX(un));
4967 	bcopy(un->un_devid, &dkdevid->dkd_devid,
4968 	    ddi_devid_sizeof(un->un_devid));
4969 	mutex_exit(SD_MUTEX(un));
4970 
4971 	/* Calculate the checksum */
4972 	chksum = 0;
4973 	ip = (uint_t *)dkdevid;
4974 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4975 	    i++) {
4976 		chksum ^= ip[i];
4977 	}
4978 
4979 	/* Fill-in checksum */
4980 	DKD_FORMCHKSUM(chksum, dkdevid);
4981 
4982 	/* Write the reserved sector */
4983 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
4984 	    SD_PATH_DIRECT);
4985 
4986 	kmem_free(dkdevid, un->un_sys_blocksize);
4987 
4988 	mutex_enter(SD_MUTEX(un));
4989 	return (status);
4990 }
4991 
4992 
4993 /*
4994  *    Function: sd_check_vpd_page_support
4995  *
4996  * Description: This routine sends an inquiry command with the EVPD bit set and
4997  *		a page code of 0x00 to the device. It is used to determine which
4998  *		vital product pages are available to find the devid. We are
4999  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5000  *		device does not support that command.
5001  *
5002  *   Arguments: un  - driver soft state (unit) structure
5003  *
5004  * Return Code: 0 - success
5005  *		1 - check condition
5006  *
5007  *     Context: This routine can sleep.
5008  */
5009 
5010 static int
5011 sd_check_vpd_page_support(struct sd_lun *un)
5012 {
5013 	uchar_t	*page_list	= NULL;
5014 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5015 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5016 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5017 	int    	rval		= 0;
5018 	int	counter;
5019 
5020 	ASSERT(un != NULL);
5021 	ASSERT(mutex_owned(SD_MUTEX(un)));
5022 
5023 	mutex_exit(SD_MUTEX(un));
5024 
5025 	/*
5026 	 * We'll set the page length to the maximum to save figuring it out
5027 	 * with an additional call.
5028 	 */
5029 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5030 
5031 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5032 	    page_code, NULL);
5033 
5034 	mutex_enter(SD_MUTEX(un));
5035 
5036 	/*
5037 	 * Now we must validate that the device accepted the command, as some
5038 	 * drives do not support it.  If the drive does support it, we will
5039 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5040 	 * not, we return -1.
5041 	 */
5042 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5043 		/* Loop to find one of the 2 pages we need */
5044 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5045 
5046 		/*
5047 		 * Pages are returned in ascending order, and 0x83 is what we
5048 		 * are hoping for.
5049 		 */
5050 		while ((page_list[counter] <= 0x86) &&
5051 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5052 		    VPD_HEAD_OFFSET))) {
5053 			/*
5054 			 * Add 3 because page_list[3] is the number of
5055 			 * pages minus 3
5056 			 */
5057 
5058 			switch (page_list[counter]) {
5059 			case 0x00:
5060 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5061 				break;
5062 			case 0x80:
5063 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5064 				break;
5065 			case 0x81:
5066 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5067 				break;
5068 			case 0x82:
5069 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5070 				break;
5071 			case 0x83:
5072 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5073 				break;
5074 			case 0x86:
5075 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5076 				break;
5077 			}
5078 			counter++;
5079 		}
5080 
5081 	} else {
5082 		rval = -1;
5083 
5084 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5085 		    "sd_check_vpd_page_support: This drive does not implement "
5086 		    "VPD pages.\n");
5087 	}
5088 
5089 	kmem_free(page_list, page_length);
5090 
5091 	return (rval);
5092 }
5093 
5094 
5095 /*
5096  *    Function: sd_setup_pm
5097  *
5098  * Description: Initialize Power Management on the device
5099  *
5100  *     Context: Kernel Thread
5101  */
5102 
5103 static void
5104 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5105 {
5106 	uint_t	log_page_size;
5107 	uchar_t	*log_page_data;
5108 	int	rval;
5109 
5110 	/*
5111 	 * Since we are called from attach, holding a mutex for
5112 	 * un is unnecessary. Because some of the routines called
5113 	 * from here require SD_MUTEX to not be held, assert this
5114 	 * right up front.
5115 	 */
5116 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5117 	/*
5118 	 * Since the sd device does not have the 'reg' property,
5119 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5120 	 * The following code is to tell cpr that this device
5121 	 * DOES need to be suspended and resumed.
5122 	 */
5123 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5124 	    "pm-hardware-state", "needs-suspend-resume");
5125 
5126 	/*
5127 	 * This complies with the new power management framework
5128 	 * for certain desktop machines. Create the pm_components
5129 	 * property as a string array property.
5130 	 */
5131 	if (un->un_f_pm_supported) {
5132 		/*
5133 		 * not all devices have a motor, try it first.
5134 		 * some devices may return ILLEGAL REQUEST, some
5135 		 * will hang
5136 		 * The following START_STOP_UNIT is used to check if target
5137 		 * device has a motor.
5138 		 */
5139 		un->un_f_start_stop_supported = TRUE;
5140 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5141 		    SD_PATH_DIRECT) != 0) {
5142 			un->un_f_start_stop_supported = FALSE;
5143 		}
5144 
5145 		/*
5146 		 * create pm properties anyways otherwise the parent can't
5147 		 * go to sleep
5148 		 */
5149 		(void) sd_create_pm_components(devi, un);
5150 		un->un_f_pm_is_enabled = TRUE;
5151 		return;
5152 	}
5153 
5154 	if (!un->un_f_log_sense_supported) {
5155 		un->un_power_level = SD_SPINDLE_ON;
5156 		un->un_f_pm_is_enabled = FALSE;
5157 		return;
5158 	}
5159 
5160 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5161 
5162 #ifdef	SDDEBUG
5163 	if (sd_force_pm_supported) {
5164 		/* Force a successful result */
5165 		rval = 1;
5166 	}
5167 #endif
5168 
5169 	/*
5170 	 * If the start-stop cycle counter log page is not supported
5171 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5172 	 * then we should not create the pm_components property.
5173 	 */
5174 	if (rval == -1) {
5175 		/*
5176 		 * Error.
5177 		 * Reading log sense failed, most likely this is
5178 		 * an older drive that does not support log sense.
5179 		 * If this fails auto-pm is not supported.
5180 		 */
5181 		un->un_power_level = SD_SPINDLE_ON;
5182 		un->un_f_pm_is_enabled = FALSE;
5183 
5184 	} else if (rval == 0) {
5185 		/*
5186 		 * Page not found.
5187 		 * The start stop cycle counter is implemented as page
5188 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5189 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5190 		 */
5191 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5192 			/*
5193 			 * Page found, use this one.
5194 			 */
5195 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5196 			un->un_f_pm_is_enabled = TRUE;
5197 		} else {
5198 			/*
5199 			 * Error or page not found.
5200 			 * auto-pm is not supported for this device.
5201 			 */
5202 			un->un_power_level = SD_SPINDLE_ON;
5203 			un->un_f_pm_is_enabled = FALSE;
5204 		}
5205 	} else {
5206 		/*
5207 		 * Page found, use it.
5208 		 */
5209 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5210 		un->un_f_pm_is_enabled = TRUE;
5211 	}
5212 
5213 
5214 	if (un->un_f_pm_is_enabled == TRUE) {
5215 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5216 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5217 
5218 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5219 		    log_page_size, un->un_start_stop_cycle_page,
5220 		    0x01, 0, SD_PATH_DIRECT);
5221 #ifdef	SDDEBUG
5222 		if (sd_force_pm_supported) {
5223 			/* Force a successful result */
5224 			rval = 0;
5225 		}
5226 #endif
5227 
5228 		/*
5229 		 * If the Log sense for Page( Start/stop cycle counter page)
5230 		 * succeeds, then power management is supported and we can
5231 		 * enable auto-pm.
5232 		 */
5233 		if (rval == 0)  {
5234 			(void) sd_create_pm_components(devi, un);
5235 		} else {
5236 			un->un_power_level = SD_SPINDLE_ON;
5237 			un->un_f_pm_is_enabled = FALSE;
5238 		}
5239 
5240 		kmem_free(log_page_data, log_page_size);
5241 	}
5242 }
5243 
5244 
5245 /*
5246  *    Function: sd_create_pm_components
5247  *
5248  * Description: Initialize PM property.
5249  *
5250  *     Context: Kernel thread context
5251  */
5252 
5253 static void
5254 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5255 {
5256 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5257 
5258 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5259 
5260 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5261 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5262 		/*
5263 		 * When components are initially created they are idle,
5264 		 * power up any non-removables.
5265 		 * Note: the return value of pm_raise_power can't be used
5266 		 * for determining if PM should be enabled for this device.
5267 		 * Even if you check the return values and remove this
5268 		 * property created above, the PM framework will not honor the
5269 		 * change after the first call to pm_raise_power. Hence,
5270 		 * removal of that property does not help if pm_raise_power
5271 		 * fails. In the case of removable media, the start/stop
5272 		 * will fail if the media is not present.
5273 		 */
5274 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5275 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5276 			mutex_enter(SD_MUTEX(un));
5277 			un->un_power_level = SD_SPINDLE_ON;
5278 			mutex_enter(&un->un_pm_mutex);
5279 			/* Set to on and not busy. */
5280 			un->un_pm_count = 0;
5281 		} else {
5282 			mutex_enter(SD_MUTEX(un));
5283 			un->un_power_level = SD_SPINDLE_OFF;
5284 			mutex_enter(&un->un_pm_mutex);
5285 			/* Set to off. */
5286 			un->un_pm_count = -1;
5287 		}
5288 		mutex_exit(&un->un_pm_mutex);
5289 		mutex_exit(SD_MUTEX(un));
5290 	} else {
5291 		un->un_power_level = SD_SPINDLE_ON;
5292 		un->un_f_pm_is_enabled = FALSE;
5293 	}
5294 }
5295 
5296 
5297 /*
5298  *    Function: sd_ddi_suspend
5299  *
5300  * Description: Performs system power-down operations. This includes
5301  *		setting the drive state to indicate its suspended so
5302  *		that no new commands will be accepted. Also, wait for
5303  *		all commands that are in transport or queued to a timer
5304  *		for retry to complete. All timeout threads are cancelled.
5305  *
5306  * Return Code: DDI_FAILURE or DDI_SUCCESS
5307  *
5308  *     Context: Kernel thread context
5309  */
5310 
5311 static int
5312 sd_ddi_suspend(dev_info_t *devi)
5313 {
5314 	struct	sd_lun	*un;
5315 	clock_t		wait_cmds_complete;
5316 
5317 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5318 	if (un == NULL) {
5319 		return (DDI_FAILURE);
5320 	}
5321 
5322 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5323 
5324 	mutex_enter(SD_MUTEX(un));
5325 
5326 	/* Return success if the device is already suspended. */
5327 	if (un->un_state == SD_STATE_SUSPENDED) {
5328 		mutex_exit(SD_MUTEX(un));
5329 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5330 		    "device already suspended, exiting\n");
5331 		return (DDI_SUCCESS);
5332 	}
5333 
5334 	/* Return failure if the device is being used by HA */
5335 	if (un->un_resvd_status &
5336 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5337 		mutex_exit(SD_MUTEX(un));
5338 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5339 		    "device in use by HA, exiting\n");
5340 		return (DDI_FAILURE);
5341 	}
5342 
5343 	/*
5344 	 * Return failure if the device is in a resource wait
5345 	 * or power changing state.
5346 	 */
5347 	if ((un->un_state == SD_STATE_RWAIT) ||
5348 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5349 		mutex_exit(SD_MUTEX(un));
5350 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5351 		    "device in resource wait state, exiting\n");
5352 		return (DDI_FAILURE);
5353 	}
5354 
5355 
5356 	un->un_save_state = un->un_last_state;
5357 	New_state(un, SD_STATE_SUSPENDED);
5358 
5359 	/*
5360 	 * Wait for all commands that are in transport or queued to a timer
5361 	 * for retry to complete.
5362 	 *
5363 	 * While waiting, no new commands will be accepted or sent because of
5364 	 * the new state we set above.
5365 	 *
5366 	 * Wait till current operation has completed. If we are in the resource
5367 	 * wait state (with an intr outstanding) then we need to wait till the
5368 	 * intr completes and starts the next cmd. We want to wait for
5369 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5370 	 */
5371 	wait_cmds_complete = ddi_get_lbolt() +
5372 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5373 
5374 	while (un->un_ncmds_in_transport != 0) {
5375 		/*
5376 		 * Fail if commands do not finish in the specified time.
5377 		 */
5378 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5379 		    wait_cmds_complete) == -1) {
5380 			/*
5381 			 * Undo the state changes made above. Everything
5382 			 * must go back to it's original value.
5383 			 */
5384 			Restore_state(un);
5385 			un->un_last_state = un->un_save_state;
5386 			/* Wake up any threads that might be waiting. */
5387 			cv_broadcast(&un->un_suspend_cv);
5388 			mutex_exit(SD_MUTEX(un));
5389 			SD_ERROR(SD_LOG_IO_PM, un,
5390 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5391 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5392 			return (DDI_FAILURE);
5393 		}
5394 	}
5395 
5396 	/*
5397 	 * Cancel SCSI watch thread and timeouts, if any are active
5398 	 */
5399 
5400 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5401 		opaque_t temp_token = un->un_swr_token;
5402 		mutex_exit(SD_MUTEX(un));
5403 		scsi_watch_suspend(temp_token);
5404 		mutex_enter(SD_MUTEX(un));
5405 	}
5406 
5407 	if (un->un_reset_throttle_timeid != NULL) {
5408 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5409 		un->un_reset_throttle_timeid = NULL;
5410 		mutex_exit(SD_MUTEX(un));
5411 		(void) untimeout(temp_id);
5412 		mutex_enter(SD_MUTEX(un));
5413 	}
5414 
5415 	if (un->un_dcvb_timeid != NULL) {
5416 		timeout_id_t temp_id = un->un_dcvb_timeid;
5417 		un->un_dcvb_timeid = NULL;
5418 		mutex_exit(SD_MUTEX(un));
5419 		(void) untimeout(temp_id);
5420 		mutex_enter(SD_MUTEX(un));
5421 	}
5422 
5423 	mutex_enter(&un->un_pm_mutex);
5424 	if (un->un_pm_timeid != NULL) {
5425 		timeout_id_t temp_id = un->un_pm_timeid;
5426 		un->un_pm_timeid = NULL;
5427 		mutex_exit(&un->un_pm_mutex);
5428 		mutex_exit(SD_MUTEX(un));
5429 		(void) untimeout(temp_id);
5430 		mutex_enter(SD_MUTEX(un));
5431 	} else {
5432 		mutex_exit(&un->un_pm_mutex);
5433 	}
5434 
5435 	if (un->un_retry_timeid != NULL) {
5436 		timeout_id_t temp_id = un->un_retry_timeid;
5437 		un->un_retry_timeid = NULL;
5438 		mutex_exit(SD_MUTEX(un));
5439 		(void) untimeout(temp_id);
5440 		mutex_enter(SD_MUTEX(un));
5441 
5442 		if (un->un_retry_bp != NULL) {
5443 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5444 			un->un_waitq_headp = un->un_retry_bp;
5445 			if (un->un_waitq_tailp == NULL) {
5446 				un->un_waitq_tailp = un->un_retry_bp;
5447 			}
5448 			un->un_retry_bp = NULL;
5449 			un->un_retry_statp = NULL;
5450 		}
5451 	}
5452 
5453 	if (un->un_direct_priority_timeid != NULL) {
5454 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5455 		un->un_direct_priority_timeid = NULL;
5456 		mutex_exit(SD_MUTEX(un));
5457 		(void) untimeout(temp_id);
5458 		mutex_enter(SD_MUTEX(un));
5459 	}
5460 
5461 	if (un->un_f_is_fibre == TRUE) {
5462 		/*
5463 		 * Remove callbacks for insert and remove events
5464 		 */
5465 		if (un->un_insert_event != NULL) {
5466 			mutex_exit(SD_MUTEX(un));
5467 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5468 			mutex_enter(SD_MUTEX(un));
5469 			un->un_insert_event = NULL;
5470 		}
5471 
5472 		if (un->un_remove_event != NULL) {
5473 			mutex_exit(SD_MUTEX(un));
5474 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5475 			mutex_enter(SD_MUTEX(un));
5476 			un->un_remove_event = NULL;
5477 		}
5478 	}
5479 
5480 	mutex_exit(SD_MUTEX(un));
5481 
5482 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5483 
5484 	return (DDI_SUCCESS);
5485 }
5486 
5487 
5488 /*
5489  *    Function: sd_ddi_pm_suspend
5490  *
5491  * Description: Set the drive state to low power.
5492  *		Someone else is required to actually change the drive
5493  *		power level.
5494  *
5495  *   Arguments: un - driver soft state (unit) structure
5496  *
5497  * Return Code: DDI_FAILURE or DDI_SUCCESS
5498  *
5499  *     Context: Kernel thread context
5500  */
5501 
5502 static int
5503 sd_ddi_pm_suspend(struct sd_lun *un)
5504 {
5505 	ASSERT(un != NULL);
5506 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5507 
5508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5509 	mutex_enter(SD_MUTEX(un));
5510 
5511 	/*
5512 	 * Exit if power management is not enabled for this device, or if
5513 	 * the device is being used by HA.
5514 	 */
5515 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5516 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5517 		mutex_exit(SD_MUTEX(un));
5518 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5519 		return (DDI_SUCCESS);
5520 	}
5521 
5522 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5523 	    un->un_ncmds_in_driver);
5524 
5525 	/*
5526 	 * See if the device is not busy, ie.:
5527 	 *    - we have no commands in the driver for this device
5528 	 *    - not waiting for resources
5529 	 */
5530 	if ((un->un_ncmds_in_driver == 0) &&
5531 	    (un->un_state != SD_STATE_RWAIT)) {
5532 		/*
5533 		 * The device is not busy, so it is OK to go to low power state.
5534 		 * Indicate low power, but rely on someone else to actually
5535 		 * change it.
5536 		 */
5537 		mutex_enter(&un->un_pm_mutex);
5538 		un->un_pm_count = -1;
5539 		mutex_exit(&un->un_pm_mutex);
5540 		un->un_power_level = SD_SPINDLE_OFF;
5541 	}
5542 
5543 	mutex_exit(SD_MUTEX(un));
5544 
5545 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5546 
5547 	return (DDI_SUCCESS);
5548 }
5549 
5550 
5551 /*
5552  *    Function: sd_ddi_resume
5553  *
5554  * Description: Performs system power-up operations..
5555  *
5556  * Return Code: DDI_SUCCESS
5557  *		DDI_FAILURE
5558  *
5559  *     Context: Kernel thread context
5560  */
5561 
5562 static int
5563 sd_ddi_resume(dev_info_t *devi)
5564 {
5565 	struct	sd_lun	*un;
5566 
5567 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5568 	if (un == NULL) {
5569 		return (DDI_FAILURE);
5570 	}
5571 
5572 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5573 
5574 	mutex_enter(SD_MUTEX(un));
5575 	Restore_state(un);
5576 
5577 	/*
5578 	 * Restore the state which was saved to give the
5579 	 * the right state in un_last_state
5580 	 */
5581 	un->un_last_state = un->un_save_state;
5582 	/*
5583 	 * Note: throttle comes back at full.
5584 	 * Also note: this MUST be done before calling pm_raise_power
5585 	 * otherwise the system can get hung in biowait. The scenario where
5586 	 * this'll happen is under cpr suspend. Writing of the system
5587 	 * state goes through sddump, which writes 0 to un_throttle. If
5588 	 * writing the system state then fails, example if the partition is
5589 	 * too small, then cpr attempts a resume. If throttle isn't restored
5590 	 * from the saved value until after calling pm_raise_power then
5591 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5592 	 * in biowait.
5593 	 */
5594 	un->un_throttle = un->un_saved_throttle;
5595 
5596 	/*
5597 	 * The chance of failure is very rare as the only command done in power
5598 	 * entry point is START command when you transition from 0->1 or
5599 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5600 	 * which suspend was done. Ignore the return value as the resume should
5601 	 * not be failed. In the case of removable media the media need not be
5602 	 * inserted and hence there is a chance that raise power will fail with
5603 	 * media not present.
5604 	 */
5605 	if (un->un_f_attach_spinup) {
5606 		mutex_exit(SD_MUTEX(un));
5607 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5608 		mutex_enter(SD_MUTEX(un));
5609 	}
5610 
5611 	/*
5612 	 * Don't broadcast to the suspend cv and therefore possibly
5613 	 * start I/O until after power has been restored.
5614 	 */
5615 	cv_broadcast(&un->un_suspend_cv);
5616 	cv_broadcast(&un->un_state_cv);
5617 
5618 	/* restart thread */
5619 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5620 		scsi_watch_resume(un->un_swr_token);
5621 	}
5622 
5623 #if (defined(__fibre))
5624 	if (un->un_f_is_fibre == TRUE) {
5625 		/*
5626 		 * Add callbacks for insert and remove events
5627 		 */
5628 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5629 			sd_init_event_callbacks(un);
5630 		}
5631 	}
5632 #endif
5633 
5634 	/*
5635 	 * Transport any pending commands to the target.
5636 	 *
5637 	 * If this is a low-activity device commands in queue will have to wait
5638 	 * until new commands come in, which may take awhile. Also, we
5639 	 * specifically don't check un_ncmds_in_transport because we know that
5640 	 * there really are no commands in progress after the unit was
5641 	 * suspended and we could have reached the throttle level, been
5642 	 * suspended, and have no new commands coming in for awhile. Highly
5643 	 * unlikely, but so is the low-activity disk scenario.
5644 	 */
5645 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5646 
5647 	sd_start_cmds(un, NULL);
5648 	mutex_exit(SD_MUTEX(un));
5649 
5650 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5651 
5652 	return (DDI_SUCCESS);
5653 }
5654 
5655 
5656 /*
5657  *    Function: sd_ddi_pm_resume
5658  *
5659  * Description: Set the drive state to powered on.
5660  *		Someone else is required to actually change the drive
5661  *		power level.
5662  *
5663  *   Arguments: un - driver soft state (unit) structure
5664  *
5665  * Return Code: DDI_SUCCESS
5666  *
5667  *     Context: Kernel thread context
5668  */
5669 
5670 static int
5671 sd_ddi_pm_resume(struct sd_lun *un)
5672 {
5673 	ASSERT(un != NULL);
5674 
5675 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5676 	mutex_enter(SD_MUTEX(un));
5677 	un->un_power_level = SD_SPINDLE_ON;
5678 
5679 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5680 	mutex_enter(&un->un_pm_mutex);
5681 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5682 		un->un_pm_count++;
5683 		ASSERT(un->un_pm_count == 0);
5684 		/*
5685 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5686 		 * un_suspend_cv is for a system resume, not a power management
5687 		 * device resume. (4297749)
5688 		 *	 cv_broadcast(&un->un_suspend_cv);
5689 		 */
5690 	}
5691 	mutex_exit(&un->un_pm_mutex);
5692 	mutex_exit(SD_MUTEX(un));
5693 
5694 	return (DDI_SUCCESS);
5695 }
5696 
5697 
5698 /*
5699  *    Function: sd_pm_idletimeout_handler
5700  *
5701  * Description: A timer routine that's active only while a device is busy.
5702  *		The purpose is to extend slightly the pm framework's busy
5703  *		view of the device to prevent busy/idle thrashing for
5704  *		back-to-back commands. Do this by comparing the current time
5705  *		to the time at which the last command completed and when the
5706  *		difference is greater than sd_pm_idletime, call
5707  *		pm_idle_component. In addition to indicating idle to the pm
5708  *		framework, update the chain type to again use the internal pm
5709  *		layers of the driver.
5710  *
5711  *   Arguments: arg - driver soft state (unit) structure
5712  *
5713  *     Context: Executes in a timeout(9F) thread context
5714  */
5715 
5716 static void
5717 sd_pm_idletimeout_handler(void *arg)
5718 {
5719 	struct sd_lun *un = arg;
5720 
5721 	time_t	now;
5722 
5723 	mutex_enter(&sd_detach_mutex);
5724 	if (un->un_detach_count != 0) {
5725 		/* Abort if the instance is detaching */
5726 		mutex_exit(&sd_detach_mutex);
5727 		return;
5728 	}
5729 	mutex_exit(&sd_detach_mutex);
5730 
5731 	now = ddi_get_time();
5732 	/*
5733 	 * Grab both mutexes, in the proper order, since we're accessing
5734 	 * both PM and softstate variables.
5735 	 */
5736 	mutex_enter(SD_MUTEX(un));
5737 	mutex_enter(&un->un_pm_mutex);
5738 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5739 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5740 		/*
5741 		 * Update the chain types.
5742 		 * This takes affect on the next new command received.
5743 		 */
5744 		if (un->un_f_non_devbsize_supported) {
5745 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5746 		} else {
5747 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5748 		}
5749 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5750 
5751 		SD_TRACE(SD_LOG_IO_PM, un,
5752 		    "sd_pm_idletimeout_handler: idling device\n");
5753 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5754 		un->un_pm_idle_timeid = NULL;
5755 	} else {
5756 		un->un_pm_idle_timeid =
5757 		    timeout(sd_pm_idletimeout_handler, un,
5758 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5759 	}
5760 	mutex_exit(&un->un_pm_mutex);
5761 	mutex_exit(SD_MUTEX(un));
5762 }
5763 
5764 
5765 /*
5766  *    Function: sd_pm_timeout_handler
5767  *
5768  * Description: Callback to tell framework we are idle.
5769  *
5770  *     Context: timeout(9f) thread context.
5771  */
5772 
5773 static void
5774 sd_pm_timeout_handler(void *arg)
5775 {
5776 	struct sd_lun *un = arg;
5777 
5778 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5779 	mutex_enter(&un->un_pm_mutex);
5780 	un->un_pm_timeid = NULL;
5781 	mutex_exit(&un->un_pm_mutex);
5782 }
5783 
5784 
5785 /*
5786  *    Function: sdpower
5787  *
5788  * Description: PM entry point.
5789  *
5790  * Return Code: DDI_SUCCESS
5791  *		DDI_FAILURE
5792  *
5793  *     Context: Kernel thread context
5794  */
5795 
5796 static int
5797 sdpower(dev_info_t *devi, int component, int level)
5798 {
5799 	struct sd_lun	*un;
5800 	int		instance;
5801 	int		rval = DDI_SUCCESS;
5802 	uint_t		i, log_page_size, maxcycles, ncycles;
5803 	uchar_t		*log_page_data;
5804 	int		log_sense_page;
5805 	int		medium_present;
5806 	time_t		intvlp;
5807 	dev_t		dev;
5808 	struct pm_trans_data	sd_pm_tran_data;
5809 	uchar_t		save_state;
5810 	int		sval;
5811 	uchar_t		state_before_pm;
5812 	int		got_semaphore_here;
5813 
5814 	instance = ddi_get_instance(devi);
5815 
5816 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5817 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5818 	    component != 0) {
5819 		return (DDI_FAILURE);
5820 	}
5821 
5822 	dev = sd_make_device(SD_DEVINFO(un));
5823 
5824 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5825 
5826 	/*
5827 	 * Must synchronize power down with close.
5828 	 * Attempt to decrement/acquire the open/close semaphore,
5829 	 * but do NOT wait on it. If it's not greater than zero,
5830 	 * ie. it can't be decremented without waiting, then
5831 	 * someone else, either open or close, already has it
5832 	 * and the try returns 0. Use that knowledge here to determine
5833 	 * if it's OK to change the device power level.
5834 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5835 	 * here.
5836 	 */
5837 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5838 
5839 	mutex_enter(SD_MUTEX(un));
5840 
5841 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5842 	    un->un_ncmds_in_driver);
5843 
5844 	/*
5845 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5846 	 * already being processed in the driver, or if the semaphore was
5847 	 * not gotten here it indicates an open or close is being processed.
5848 	 * At the same time somebody is requesting to go low power which
5849 	 * can't happen, therefore we need to return failure.
5850 	 */
5851 	if ((level == SD_SPINDLE_OFF) &&
5852 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5853 		mutex_exit(SD_MUTEX(un));
5854 
5855 		if (got_semaphore_here != 0) {
5856 			sema_v(&un->un_semoclose);
5857 		}
5858 		SD_TRACE(SD_LOG_IO_PM, un,
5859 		    "sdpower: exit, device has queued cmds.\n");
5860 		return (DDI_FAILURE);
5861 	}
5862 
5863 	/*
5864 	 * if it is OFFLINE that means the disk is completely dead
5865 	 * in our case we have to put the disk in on or off by sending commands
5866 	 * Of course that will fail anyway so return back here.
5867 	 *
5868 	 * Power changes to a device that's OFFLINE or SUSPENDED
5869 	 * are not allowed.
5870 	 */
5871 	if ((un->un_state == SD_STATE_OFFLINE) ||
5872 	    (un->un_state == SD_STATE_SUSPENDED)) {
5873 		mutex_exit(SD_MUTEX(un));
5874 
5875 		if (got_semaphore_here != 0) {
5876 			sema_v(&un->un_semoclose);
5877 		}
5878 		SD_TRACE(SD_LOG_IO_PM, un,
5879 		    "sdpower: exit, device is off-line.\n");
5880 		return (DDI_FAILURE);
5881 	}
5882 
5883 	/*
5884 	 * Change the device's state to indicate it's power level
5885 	 * is being changed. Do this to prevent a power off in the
5886 	 * middle of commands, which is especially bad on devices
5887 	 * that are really powered off instead of just spun down.
5888 	 */
5889 	state_before_pm = un->un_state;
5890 	un->un_state = SD_STATE_PM_CHANGING;
5891 
5892 	mutex_exit(SD_MUTEX(un));
5893 
5894 	/*
5895 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5896 	 * bypass the following checking, otherwise, check the log
5897 	 * sense information for this device
5898 	 */
5899 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5900 		/*
5901 		 * Get the log sense information to understand whether the
5902 		 * the powercycle counts have gone beyond the threshhold.
5903 		 */
5904 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5905 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5906 
5907 		mutex_enter(SD_MUTEX(un));
5908 		log_sense_page = un->un_start_stop_cycle_page;
5909 		mutex_exit(SD_MUTEX(un));
5910 
5911 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5912 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5913 #ifdef	SDDEBUG
5914 		if (sd_force_pm_supported) {
5915 			/* Force a successful result */
5916 			rval = 0;
5917 		}
5918 #endif
5919 		if (rval != 0) {
5920 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5921 			    "Log Sense Failed\n");
5922 			kmem_free(log_page_data, log_page_size);
5923 			/* Cannot support power management on those drives */
5924 
5925 			if (got_semaphore_here != 0) {
5926 				sema_v(&un->un_semoclose);
5927 			}
5928 			/*
5929 			 * On exit put the state back to it's original value
5930 			 * and broadcast to anyone waiting for the power
5931 			 * change completion.
5932 			 */
5933 			mutex_enter(SD_MUTEX(un));
5934 			un->un_state = state_before_pm;
5935 			cv_broadcast(&un->un_suspend_cv);
5936 			mutex_exit(SD_MUTEX(un));
5937 			SD_TRACE(SD_LOG_IO_PM, un,
5938 			    "sdpower: exit, Log Sense Failed.\n");
5939 			return (DDI_FAILURE);
5940 		}
5941 
5942 		/*
5943 		 * From the page data - Convert the essential information to
5944 		 * pm_trans_data
5945 		 */
5946 		maxcycles =
5947 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5948 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5949 
5950 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5951 
5952 		ncycles =
5953 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5954 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5955 
5956 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5957 
5958 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5959 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5960 			    log_page_data[8+i];
5961 		}
5962 
5963 		kmem_free(log_page_data, log_page_size);
5964 
5965 		/*
5966 		 * Call pm_trans_check routine to get the Ok from
5967 		 * the global policy
5968 		 */
5969 
5970 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
5971 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
5972 
5973 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
5974 #ifdef	SDDEBUG
5975 		if (sd_force_pm_supported) {
5976 			/* Force a successful result */
5977 			rval = 1;
5978 		}
5979 #endif
5980 		switch (rval) {
5981 		case 0:
5982 			/*
5983 			 * Not Ok to Power cycle or error in parameters passed
5984 			 * Would have given the advised time to consider power
5985 			 * cycle. Based on the new intvlp parameter we are
5986 			 * supposed to pretend we are busy so that pm framework
5987 			 * will never call our power entry point. Because of
5988 			 * that install a timeout handler and wait for the
5989 			 * recommended time to elapse so that power management
5990 			 * can be effective again.
5991 			 *
5992 			 * To effect this behavior, call pm_busy_component to
5993 			 * indicate to the framework this device is busy.
5994 			 * By not adjusting un_pm_count the rest of PM in
5995 			 * the driver will function normally, and independent
5996 			 * of this but because the framework is told the device
5997 			 * is busy it won't attempt powering down until it gets
5998 			 * a matching idle. The timeout handler sends this.
5999 			 * Note: sd_pm_entry can't be called here to do this
6000 			 * because sdpower may have been called as a result
6001 			 * of a call to pm_raise_power from within sd_pm_entry.
6002 			 *
6003 			 * If a timeout handler is already active then
6004 			 * don't install another.
6005 			 */
6006 			mutex_enter(&un->un_pm_mutex);
6007 			if (un->un_pm_timeid == NULL) {
6008 				un->un_pm_timeid =
6009 				    timeout(sd_pm_timeout_handler,
6010 				    un, intvlp * drv_usectohz(1000000));
6011 				mutex_exit(&un->un_pm_mutex);
6012 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6013 			} else {
6014 				mutex_exit(&un->un_pm_mutex);
6015 			}
6016 			if (got_semaphore_here != 0) {
6017 				sema_v(&un->un_semoclose);
6018 			}
6019 			/*
6020 			 * On exit put the state back to it's original value
6021 			 * and broadcast to anyone waiting for the power
6022 			 * change completion.
6023 			 */
6024 			mutex_enter(SD_MUTEX(un));
6025 			un->un_state = state_before_pm;
6026 			cv_broadcast(&un->un_suspend_cv);
6027 			mutex_exit(SD_MUTEX(un));
6028 
6029 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6030 			    "trans check Failed, not ok to power cycle.\n");
6031 			return (DDI_FAILURE);
6032 
6033 		case -1:
6034 			if (got_semaphore_here != 0) {
6035 				sema_v(&un->un_semoclose);
6036 			}
6037 			/*
6038 			 * On exit put the state back to it's original value
6039 			 * and broadcast to anyone waiting for the power
6040 			 * change completion.
6041 			 */
6042 			mutex_enter(SD_MUTEX(un));
6043 			un->un_state = state_before_pm;
6044 			cv_broadcast(&un->un_suspend_cv);
6045 			mutex_exit(SD_MUTEX(un));
6046 			SD_TRACE(SD_LOG_IO_PM, un,
6047 			    "sdpower: exit, trans check command Failed.\n");
6048 			return (DDI_FAILURE);
6049 		}
6050 	}
6051 
6052 	if (level == SD_SPINDLE_OFF) {
6053 		/*
6054 		 * Save the last state... if the STOP FAILS we need it
6055 		 * for restoring
6056 		 */
6057 		mutex_enter(SD_MUTEX(un));
6058 		save_state = un->un_last_state;
6059 		/*
6060 		 * There must not be any cmds. getting processed
6061 		 * in the driver when we get here. Power to the
6062 		 * device is potentially going off.
6063 		 */
6064 		ASSERT(un->un_ncmds_in_driver == 0);
6065 		mutex_exit(SD_MUTEX(un));
6066 
6067 		/*
6068 		 * For now suspend the device completely before spindle is
6069 		 * turned off
6070 		 */
6071 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6072 			if (got_semaphore_here != 0) {
6073 				sema_v(&un->un_semoclose);
6074 			}
6075 			/*
6076 			 * On exit put the state back to it's original value
6077 			 * and broadcast to anyone waiting for the power
6078 			 * change completion.
6079 			 */
6080 			mutex_enter(SD_MUTEX(un));
6081 			un->un_state = state_before_pm;
6082 			cv_broadcast(&un->un_suspend_cv);
6083 			mutex_exit(SD_MUTEX(un));
6084 			SD_TRACE(SD_LOG_IO_PM, un,
6085 			    "sdpower: exit, PM suspend Failed.\n");
6086 			return (DDI_FAILURE);
6087 		}
6088 	}
6089 
6090 	/*
6091 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6092 	 * close, or strategy. Dump no long uses this routine, it uses it's
6093 	 * own code so it can be done in polled mode.
6094 	 */
6095 
6096 	medium_present = TRUE;
6097 
6098 	/*
6099 	 * When powering up, issue a TUR in case the device is at unit
6100 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6101 	 * a deadlock on un_pm_busy_cv will occur.
6102 	 */
6103 	if (level == SD_SPINDLE_ON) {
6104 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6105 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6106 	}
6107 
6108 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6109 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6110 
6111 	sval = sd_send_scsi_START_STOP_UNIT(un,
6112 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6113 	    SD_PATH_DIRECT);
6114 	/* Command failed, check for media present. */
6115 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6116 		medium_present = FALSE;
6117 	}
6118 
6119 	/*
6120 	 * The conditions of interest here are:
6121 	 *   if a spindle off with media present fails,
6122 	 *	then restore the state and return an error.
6123 	 *   else if a spindle on fails,
6124 	 *	then return an error (there's no state to restore).
6125 	 * In all other cases we setup for the new state
6126 	 * and return success.
6127 	 */
6128 	switch (level) {
6129 	case SD_SPINDLE_OFF:
6130 		if ((medium_present == TRUE) && (sval != 0)) {
6131 			/* The stop command from above failed */
6132 			rval = DDI_FAILURE;
6133 			/*
6134 			 * The stop command failed, and we have media
6135 			 * present. Put the level back by calling the
6136 			 * sd_pm_resume() and set the state back to
6137 			 * it's previous value.
6138 			 */
6139 			(void) sd_ddi_pm_resume(un);
6140 			mutex_enter(SD_MUTEX(un));
6141 			un->un_last_state = save_state;
6142 			mutex_exit(SD_MUTEX(un));
6143 			break;
6144 		}
6145 		/*
6146 		 * The stop command from above succeeded.
6147 		 */
6148 		if (un->un_f_monitor_media_state) {
6149 			/*
6150 			 * Terminate watch thread in case of removable media
6151 			 * devices going into low power state. This is as per
6152 			 * the requirements of pm framework, otherwise commands
6153 			 * will be generated for the device (through watch
6154 			 * thread), even when the device is in low power state.
6155 			 */
6156 			mutex_enter(SD_MUTEX(un));
6157 			un->un_f_watcht_stopped = FALSE;
6158 			if (un->un_swr_token != NULL) {
6159 				opaque_t temp_token = un->un_swr_token;
6160 				un->un_f_watcht_stopped = TRUE;
6161 				un->un_swr_token = NULL;
6162 				mutex_exit(SD_MUTEX(un));
6163 				(void) scsi_watch_request_terminate(temp_token,
6164 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6165 			} else {
6166 				mutex_exit(SD_MUTEX(un));
6167 			}
6168 		}
6169 		break;
6170 
6171 	default:	/* The level requested is spindle on... */
6172 		/*
6173 		 * Legacy behavior: return success on a failed spinup
6174 		 * if there is no media in the drive.
6175 		 * Do this by looking at medium_present here.
6176 		 */
6177 		if ((sval != 0) && medium_present) {
6178 			/* The start command from above failed */
6179 			rval = DDI_FAILURE;
6180 			break;
6181 		}
6182 		/*
6183 		 * The start command from above succeeded
6184 		 * Resume the devices now that we have
6185 		 * started the disks
6186 		 */
6187 		(void) sd_ddi_pm_resume(un);
6188 
6189 		/*
6190 		 * Resume the watch thread since it was suspended
6191 		 * when the device went into low power mode.
6192 		 */
6193 		if (un->un_f_monitor_media_state) {
6194 			mutex_enter(SD_MUTEX(un));
6195 			if (un->un_f_watcht_stopped == TRUE) {
6196 				opaque_t temp_token;
6197 
6198 				un->un_f_watcht_stopped = FALSE;
6199 				mutex_exit(SD_MUTEX(un));
6200 				temp_token = scsi_watch_request_submit(
6201 				    SD_SCSI_DEVP(un),
6202 				    sd_check_media_time,
6203 				    SENSE_LENGTH, sd_media_watch_cb,
6204 				    (caddr_t)dev);
6205 				mutex_enter(SD_MUTEX(un));
6206 				un->un_swr_token = temp_token;
6207 			}
6208 			mutex_exit(SD_MUTEX(un));
6209 		}
6210 	}
6211 	if (got_semaphore_here != 0) {
6212 		sema_v(&un->un_semoclose);
6213 	}
6214 	/*
6215 	 * On exit put the state back to it's original value
6216 	 * and broadcast to anyone waiting for the power
6217 	 * change completion.
6218 	 */
6219 	mutex_enter(SD_MUTEX(un));
6220 	un->un_state = state_before_pm;
6221 	cv_broadcast(&un->un_suspend_cv);
6222 	mutex_exit(SD_MUTEX(un));
6223 
6224 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6225 
6226 	return (rval);
6227 }
6228 
6229 
6230 
6231 /*
6232  *    Function: sdattach
6233  *
6234  * Description: Driver's attach(9e) entry point function.
6235  *
6236  *   Arguments: devi - opaque device info handle
6237  *		cmd  - attach  type
6238  *
6239  * Return Code: DDI_SUCCESS
6240  *		DDI_FAILURE
6241  *
6242  *     Context: Kernel thread context
6243  */
6244 
6245 static int
6246 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6247 {
6248 	switch (cmd) {
6249 	case DDI_ATTACH:
6250 		return (sd_unit_attach(devi));
6251 	case DDI_RESUME:
6252 		return (sd_ddi_resume(devi));
6253 	default:
6254 		break;
6255 	}
6256 	return (DDI_FAILURE);
6257 }
6258 
6259 
6260 /*
6261  *    Function: sddetach
6262  *
6263  * Description: Driver's detach(9E) entry point function.
6264  *
6265  *   Arguments: devi - opaque device info handle
6266  *		cmd  - detach  type
6267  *
6268  * Return Code: DDI_SUCCESS
6269  *		DDI_FAILURE
6270  *
6271  *     Context: Kernel thread context
6272  */
6273 
6274 static int
6275 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6276 {
6277 	switch (cmd) {
6278 	case DDI_DETACH:
6279 		return (sd_unit_detach(devi));
6280 	case DDI_SUSPEND:
6281 		return (sd_ddi_suspend(devi));
6282 	default:
6283 		break;
6284 	}
6285 	return (DDI_FAILURE);
6286 }
6287 
6288 
6289 /*
6290  *     Function: sd_sync_with_callback
6291  *
6292  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6293  *		 state while the callback routine is active.
6294  *
6295  *    Arguments: un: softstate structure for the instance
6296  *
6297  *	Context: Kernel thread context
6298  */
6299 
6300 static void
6301 sd_sync_with_callback(struct sd_lun *un)
6302 {
6303 	ASSERT(un != NULL);
6304 
6305 	mutex_enter(SD_MUTEX(un));
6306 
6307 	ASSERT(un->un_in_callback >= 0);
6308 
6309 	while (un->un_in_callback > 0) {
6310 		mutex_exit(SD_MUTEX(un));
6311 		delay(2);
6312 		mutex_enter(SD_MUTEX(un));
6313 	}
6314 
6315 	mutex_exit(SD_MUTEX(un));
6316 }
6317 
6318 /*
6319  *    Function: sd_unit_attach
6320  *
6321  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6322  *		the soft state structure for the device and performs
6323  *		all necessary structure and device initializations.
6324  *
6325  *   Arguments: devi: the system's dev_info_t for the device.
6326  *
6327  * Return Code: DDI_SUCCESS if attach is successful.
6328  *		DDI_FAILURE if any part of the attach fails.
6329  *
6330  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6331  *		Kernel thread context only.  Can sleep.
6332  */
6333 
6334 static int
6335 sd_unit_attach(dev_info_t *devi)
6336 {
6337 	struct	scsi_device	*devp;
6338 	struct	sd_lun		*un;
6339 	char			*variantp;
6340 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6341 	int	instance;
6342 	int	rval;
6343 	int	wc_enabled;
6344 	int	tgt;
6345 	uint64_t	capacity;
6346 	uint_t		lbasize = 0;
6347 	dev_info_t	*pdip = ddi_get_parent(devi);
6348 	int		offbyone = 0;
6349 	int		geom_label_valid = 0;
6350 #if defined(__sparc)
6351 	int		max_xfer_size;
6352 #endif
6353 
6354 	/*
6355 	 * Retrieve the target driver's private data area. This was set
6356 	 * up by the HBA.
6357 	 */
6358 	devp = ddi_get_driver_private(devi);
6359 
6360 	/*
6361 	 * Retrieve the target ID of the device.
6362 	 */
6363 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6364 	    SCSI_ADDR_PROP_TARGET, -1);
6365 
6366 	/*
6367 	 * Since we have no idea what state things were left in by the last
6368 	 * user of the device, set up some 'default' settings, ie. turn 'em
6369 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6370 	 * Do this before the scsi_probe, which sends an inquiry.
6371 	 * This is a fix for bug (4430280).
6372 	 * Of special importance is wide-xfer. The drive could have been left
6373 	 * in wide transfer mode by the last driver to communicate with it,
6374 	 * this includes us. If that's the case, and if the following is not
6375 	 * setup properly or we don't re-negotiate with the drive prior to
6376 	 * transferring data to/from the drive, it causes bus parity errors,
6377 	 * data overruns, and unexpected interrupts. This first occurred when
6378 	 * the fix for bug (4378686) was made.
6379 	 */
6380 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6381 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6382 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6383 
6384 	/*
6385 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6386 	 * on a target. Setting it per lun instance actually sets the
6387 	 * capability of this target, which affects those luns already
6388 	 * attached on the same target. So during attach, we can only disable
6389 	 * this capability only when no other lun has been attached on this
6390 	 * target. By doing this, we assume a target has the same tagged-qing
6391 	 * capability for every lun. The condition can be removed when HBA
6392 	 * is changed to support per lun based tagged-qing capability.
6393 	 */
6394 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6395 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6396 	}
6397 
6398 	/*
6399 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6400 	 * This call will allocate and fill in the scsi_inquiry structure
6401 	 * and point the sd_inq member of the scsi_device structure to it.
6402 	 * If the attach succeeds, then this memory will not be de-allocated
6403 	 * (via scsi_unprobe()) until the instance is detached.
6404 	 */
6405 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6406 		goto probe_failed;
6407 	}
6408 
6409 	/*
6410 	 * Check the device type as specified in the inquiry data and
6411 	 * claim it if it is of a type that we support.
6412 	 */
6413 	switch (devp->sd_inq->inq_dtype) {
6414 	case DTYPE_DIRECT:
6415 		break;
6416 	case DTYPE_RODIRECT:
6417 		break;
6418 	case DTYPE_OPTICAL:
6419 		break;
6420 	case DTYPE_NOTPRESENT:
6421 	default:
6422 		/* Unsupported device type; fail the attach. */
6423 		goto probe_failed;
6424 	}
6425 
6426 	/*
6427 	 * Allocate the soft state structure for this unit.
6428 	 *
6429 	 * We rely upon this memory being set to all zeroes by
6430 	 * ddi_soft_state_zalloc().  We assume that any member of the
6431 	 * soft state structure that is not explicitly initialized by
6432 	 * this routine will have a value of zero.
6433 	 */
6434 	instance = ddi_get_instance(devp->sd_dev);
6435 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6436 		goto probe_failed;
6437 	}
6438 
6439 	/*
6440 	 * Retrieve a pointer to the newly-allocated soft state.
6441 	 *
6442 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6443 	 * was successful, unless something has gone horribly wrong and the
6444 	 * ddi's soft state internals are corrupt (in which case it is
6445 	 * probably better to halt here than just fail the attach....)
6446 	 */
6447 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6448 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6449 		    instance);
6450 		/*NOTREACHED*/
6451 	}
6452 
6453 	/*
6454 	 * Link the back ptr of the driver soft state to the scsi_device
6455 	 * struct for this lun.
6456 	 * Save a pointer to the softstate in the driver-private area of
6457 	 * the scsi_device struct.
6458 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6459 	 * we first set un->un_sd below.
6460 	 */
6461 	un->un_sd = devp;
6462 	devp->sd_private = (opaque_t)un;
6463 
6464 	/*
6465 	 * The following must be after devp is stored in the soft state struct.
6466 	 */
6467 #ifdef SDDEBUG
6468 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6469 	    "%s_unit_attach: un:0x%p instance:%d\n",
6470 	    ddi_driver_name(devi), un, instance);
6471 #endif
6472 
6473 	/*
6474 	 * Set up the device type and node type (for the minor nodes).
6475 	 * By default we assume that the device can at least support the
6476 	 * Common Command Set. Call it a CD-ROM if it reports itself
6477 	 * as a RODIRECT device.
6478 	 */
6479 	switch (devp->sd_inq->inq_dtype) {
6480 	case DTYPE_RODIRECT:
6481 		un->un_node_type = DDI_NT_CD_CHAN;
6482 		un->un_ctype	 = CTYPE_CDROM;
6483 		break;
6484 	case DTYPE_OPTICAL:
6485 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6486 		un->un_ctype	 = CTYPE_ROD;
6487 		break;
6488 	default:
6489 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6490 		un->un_ctype	 = CTYPE_CCS;
6491 		break;
6492 	}
6493 
6494 	/*
6495 	 * Try to read the interconnect type from the HBA.
6496 	 *
6497 	 * Note: This driver is currently compiled as two binaries, a parallel
6498 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6499 	 * differences are determined at compile time. In the future a single
6500 	 * binary will be provided and the interconnect type will be used to
6501 	 * differentiate between fibre and parallel scsi behaviors. At that time
6502 	 * it will be necessary for all fibre channel HBAs to support this
6503 	 * property.
6504 	 *
6505 	 * set un_f_is_fiber to TRUE ( default fiber )
6506 	 */
6507 	un->un_f_is_fibre = TRUE;
6508 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6509 	case INTERCONNECT_SSA:
6510 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6511 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6512 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6513 		break;
6514 	case INTERCONNECT_PARALLEL:
6515 		un->un_f_is_fibre = FALSE;
6516 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6517 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6518 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6519 		break;
6520 	case INTERCONNECT_SATA:
6521 		un->un_f_is_fibre = FALSE;
6522 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6523 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6524 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6525 		break;
6526 	case INTERCONNECT_FIBRE:
6527 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6528 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6529 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6530 		break;
6531 	case INTERCONNECT_FABRIC:
6532 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6533 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6534 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6535 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6536 		break;
6537 	default:
6538 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6539 		/*
6540 		 * The HBA does not support the "interconnect-type" property
6541 		 * (or did not provide a recognized type).
6542 		 *
6543 		 * Note: This will be obsoleted when a single fibre channel
6544 		 * and parallel scsi driver is delivered. In the meantime the
6545 		 * interconnect type will be set to the platform default.If that
6546 		 * type is not parallel SCSI, it means that we should be
6547 		 * assuming "ssd" semantics. However, here this also means that
6548 		 * the FC HBA is not supporting the "interconnect-type" property
6549 		 * like we expect it to, so log this occurrence.
6550 		 */
6551 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6552 		if (!SD_IS_PARALLEL_SCSI(un)) {
6553 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6554 			    "sd_unit_attach: un:0x%p Assuming "
6555 			    "INTERCONNECT_FIBRE\n", un);
6556 		} else {
6557 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6558 			    "sd_unit_attach: un:0x%p Assuming "
6559 			    "INTERCONNECT_PARALLEL\n", un);
6560 			un->un_f_is_fibre = FALSE;
6561 		}
6562 #else
6563 		/*
6564 		 * Note: This source will be implemented when a single fibre
6565 		 * channel and parallel scsi driver is delivered. The default
6566 		 * will be to assume that if a device does not support the
6567 		 * "interconnect-type" property it is a parallel SCSI HBA and
6568 		 * we will set the interconnect type for parallel scsi.
6569 		 */
6570 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6571 		un->un_f_is_fibre = FALSE;
6572 #endif
6573 		break;
6574 	}
6575 
6576 	if (un->un_f_is_fibre == TRUE) {
6577 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6578 		    SCSI_VERSION_3) {
6579 			switch (un->un_interconnect_type) {
6580 			case SD_INTERCONNECT_FIBRE:
6581 			case SD_INTERCONNECT_SSA:
6582 				un->un_node_type = DDI_NT_BLOCK_WWN;
6583 				break;
6584 			default:
6585 				break;
6586 			}
6587 		}
6588 	}
6589 
6590 	/*
6591 	 * Initialize the Request Sense command for the target
6592 	 */
6593 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6594 		goto alloc_rqs_failed;
6595 	}
6596 
6597 	/*
6598 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6599 	 * with separate binary for sd and ssd.
6600 	 *
6601 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6602 	 * The hardcoded values will go away when Sparc uses 1 binary
6603 	 * for sd and ssd.  This hardcoded values need to match
6604 	 * SD_RETRY_COUNT in sddef.h
6605 	 * The value used is base on interconnect type.
6606 	 * fibre = 3, parallel = 5
6607 	 */
6608 #if defined(__i386) || defined(__amd64)
6609 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6610 #else
6611 	un->un_retry_count = SD_RETRY_COUNT;
6612 #endif
6613 
6614 	/*
6615 	 * Set the per disk retry count to the default number of retries
6616 	 * for disks and CDROMs. This value can be overridden by the
6617 	 * disk property list or an entry in sd.conf.
6618 	 */
6619 	un->un_notready_retry_count =
6620 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6621 	    : DISK_NOT_READY_RETRY_COUNT(un);
6622 
6623 	/*
6624 	 * Set the busy retry count to the default value of un_retry_count.
6625 	 * This can be overridden by entries in sd.conf or the device
6626 	 * config table.
6627 	 */
6628 	un->un_busy_retry_count = un->un_retry_count;
6629 
6630 	/*
6631 	 * Init the reset threshold for retries.  This number determines
6632 	 * how many retries must be performed before a reset can be issued
6633 	 * (for certain error conditions). This can be overridden by entries
6634 	 * in sd.conf or the device config table.
6635 	 */
6636 	un->un_reset_retry_count = (un->un_retry_count / 2);
6637 
6638 	/*
6639 	 * Set the victim_retry_count to the default un_retry_count
6640 	 */
6641 	un->un_victim_retry_count = (2 * un->un_retry_count);
6642 
6643 	/*
6644 	 * Set the reservation release timeout to the default value of
6645 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6646 	 * device config table.
6647 	 */
6648 	un->un_reserve_release_time = 5;
6649 
6650 	/*
6651 	 * Set up the default maximum transfer size. Note that this may
6652 	 * get updated later in the attach, when setting up default wide
6653 	 * operations for disks.
6654 	 */
6655 #if defined(__i386) || defined(__amd64)
6656 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6657 	un->un_partial_dma_supported = 1;
6658 #else
6659 	un->un_max_xfer_size = (uint_t)maxphys;
6660 #endif
6661 
6662 	/*
6663 	 * Get "allow bus device reset" property (defaults to "enabled" if
6664 	 * the property was not defined). This is to disable bus resets for
6665 	 * certain kinds of error recovery. Note: In the future when a run-time
6666 	 * fibre check is available the soft state flag should default to
6667 	 * enabled.
6668 	 */
6669 	if (un->un_f_is_fibre == TRUE) {
6670 		un->un_f_allow_bus_device_reset = TRUE;
6671 	} else {
6672 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6673 		    "allow-bus-device-reset", 1) != 0) {
6674 			un->un_f_allow_bus_device_reset = TRUE;
6675 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6676 			    "sd_unit_attach: un:0x%p Bus device reset "
6677 			    "enabled\n", un);
6678 		} else {
6679 			un->un_f_allow_bus_device_reset = FALSE;
6680 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6681 			    "sd_unit_attach: un:0x%p Bus device reset "
6682 			    "disabled\n", un);
6683 		}
6684 	}
6685 
6686 	/*
6687 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6688 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6689 	 *
6690 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6691 	 * property. The new "variant" property with a value of "atapi" has been
6692 	 * introduced so that future 'variants' of standard SCSI behavior (like
6693 	 * atapi) could be specified by the underlying HBA drivers by supplying
6694 	 * a new value for the "variant" property, instead of having to define a
6695 	 * new property.
6696 	 */
6697 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6698 		un->un_f_cfg_is_atapi = TRUE;
6699 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6700 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6701 	}
6702 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6703 	    &variantp) == DDI_PROP_SUCCESS) {
6704 		if (strcmp(variantp, "atapi") == 0) {
6705 			un->un_f_cfg_is_atapi = TRUE;
6706 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6707 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6708 		}
6709 		ddi_prop_free(variantp);
6710 	}
6711 
6712 	un->un_cmd_timeout	= SD_IO_TIME;
6713 
6714 	/* Info on current states, statuses, etc. (Updated frequently) */
6715 	un->un_state		= SD_STATE_NORMAL;
6716 	un->un_last_state	= SD_STATE_NORMAL;
6717 
6718 	/* Control & status info for command throttling */
6719 	un->un_throttle		= sd_max_throttle;
6720 	un->un_saved_throttle	= sd_max_throttle;
6721 	un->un_min_throttle	= sd_min_throttle;
6722 
6723 	if (un->un_f_is_fibre == TRUE) {
6724 		un->un_f_use_adaptive_throttle = TRUE;
6725 	} else {
6726 		un->un_f_use_adaptive_throttle = FALSE;
6727 	}
6728 
6729 	/* Removable media support. */
6730 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6731 	un->un_mediastate		= DKIO_NONE;
6732 	un->un_specified_mediastate	= DKIO_NONE;
6733 
6734 	/* CVs for suspend/resume (PM or DR) */
6735 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6736 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6737 
6738 	/* Power management support. */
6739 	un->un_power_level = SD_SPINDLE_UNINIT;
6740 
6741 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6742 	un->un_f_wcc_inprog = 0;
6743 
6744 	/*
6745 	 * The open/close semaphore is used to serialize threads executing
6746 	 * in the driver's open & close entry point routines for a given
6747 	 * instance.
6748 	 */
6749 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6750 
6751 	/*
6752 	 * The conf file entry and softstate variable is a forceful override,
6753 	 * meaning a non-zero value must be entered to change the default.
6754 	 */
6755 	un->un_f_disksort_disabled = FALSE;
6756 
6757 	/*
6758 	 * Retrieve the properties from the static driver table or the driver
6759 	 * configuration file (.conf) for this unit and update the soft state
6760 	 * for the device as needed for the indicated properties.
6761 	 * Note: the property configuration needs to occur here as some of the
6762 	 * following routines may have dependencies on soft state flags set
6763 	 * as part of the driver property configuration.
6764 	 */
6765 	sd_read_unit_properties(un);
6766 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6767 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6768 
6769 	/*
6770 	 * Only if a device has "hotpluggable" property, it is
6771 	 * treated as hotpluggable device. Otherwise, it is
6772 	 * regarded as non-hotpluggable one.
6773 	 */
6774 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6775 	    -1) != -1) {
6776 		un->un_f_is_hotpluggable = TRUE;
6777 	}
6778 
6779 	/*
6780 	 * set unit's attributes(flags) according to "hotpluggable" and
6781 	 * RMB bit in INQUIRY data.
6782 	 */
6783 	sd_set_unit_attributes(un, devi);
6784 
6785 	/*
6786 	 * By default, we mark the capacity, lbasize, and geometry
6787 	 * as invalid. Only if we successfully read a valid capacity
6788 	 * will we update the un_blockcount and un_tgt_blocksize with the
6789 	 * valid values (the geometry will be validated later).
6790 	 */
6791 	un->un_f_blockcount_is_valid	= FALSE;
6792 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6793 
6794 	/*
6795 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6796 	 * otherwise.
6797 	 */
6798 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6799 	un->un_blockcount = 0;
6800 
6801 	/*
6802 	 * Set up the per-instance info needed to determine the correct
6803 	 * CDBs and other info for issuing commands to the target.
6804 	 */
6805 	sd_init_cdb_limits(un);
6806 
6807 	/*
6808 	 * Set up the IO chains to use, based upon the target type.
6809 	 */
6810 	if (un->un_f_non_devbsize_supported) {
6811 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6812 	} else {
6813 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6814 	}
6815 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6816 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6817 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6818 
6819 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6820 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6821 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6822 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6823 
6824 
6825 	if (ISCD(un)) {
6826 		un->un_additional_codes = sd_additional_codes;
6827 	} else {
6828 		un->un_additional_codes = NULL;
6829 	}
6830 
6831 	/*
6832 	 * Create the kstats here so they can be available for attach-time
6833 	 * routines that send commands to the unit (either polled or via
6834 	 * sd_send_scsi_cmd).
6835 	 *
6836 	 * Note: This is a critical sequence that needs to be maintained:
6837 	 *	1) Instantiate the kstats here, before any routines using the
6838 	 *	   iopath (i.e. sd_send_scsi_cmd).
6839 	 *	2) Instantiate and initialize the partition stats
6840 	 *	   (sd_set_pstats).
6841 	 *	3) Initialize the error stats (sd_set_errstats), following
6842 	 *	   sd_validate_geometry(),sd_register_devid(),
6843 	 *	   and sd_cache_control().
6844 	 */
6845 
6846 	un->un_stats = kstat_create(sd_label, instance,
6847 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6848 	if (un->un_stats != NULL) {
6849 		un->un_stats->ks_lock = SD_MUTEX(un);
6850 		kstat_install(un->un_stats);
6851 	}
6852 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6853 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6854 
6855 	sd_create_errstats(un, instance);
6856 	if (un->un_errstats == NULL) {
6857 		goto create_errstats_failed;
6858 	}
6859 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6860 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6861 
6862 	/*
6863 	 * The following if/else code was relocated here from below as part
6864 	 * of the fix for bug (4430280). However with the default setup added
6865 	 * on entry to this routine, it's no longer absolutely necessary for
6866 	 * this to be before the call to sd_spin_up_unit.
6867 	 */
6868 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6869 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
6870 		    (devp->sd_inq->inq_ansi == 5)) &&
6871 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
6872 
6873 		/*
6874 		 * If tagged queueing is supported by the target
6875 		 * and by the host adapter then we will enable it
6876 		 */
6877 		un->un_tagflags = 0;
6878 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
6879 		    (un->un_f_arq_enabled == TRUE)) {
6880 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6881 			    1, 1) == 1) {
6882 				un->un_tagflags = FLAG_STAG;
6883 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6884 				    "sd_unit_attach: un:0x%p tag queueing "
6885 				    "enabled\n", un);
6886 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6887 			    "untagged-qing", 0) == 1) {
6888 				un->un_f_opt_queueing = TRUE;
6889 				un->un_saved_throttle = un->un_throttle =
6890 				    min(un->un_throttle, 3);
6891 			} else {
6892 				un->un_f_opt_queueing = FALSE;
6893 				un->un_saved_throttle = un->un_throttle = 1;
6894 			}
6895 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6896 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6897 			/* The Host Adapter supports internal queueing. */
6898 			un->un_f_opt_queueing = TRUE;
6899 			un->un_saved_throttle = un->un_throttle =
6900 			    min(un->un_throttle, 3);
6901 		} else {
6902 			un->un_f_opt_queueing = FALSE;
6903 			un->un_saved_throttle = un->un_throttle = 1;
6904 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6905 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6906 		}
6907 
6908 		/*
6909 		 * Enable large transfers for SATA/SAS drives
6910 		 */
6911 		if (SD_IS_SERIAL(un)) {
6912 			un->un_max_xfer_size =
6913 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6914 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6915 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6916 			    "sd_unit_attach: un:0x%p max transfer "
6917 			    "size=0x%x\n", un, un->un_max_xfer_size);
6918 
6919 		}
6920 
6921 		/* Setup or tear down default wide operations for disks */
6922 
6923 		/*
6924 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6925 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6926 		 * system and be set to different values. In the future this
6927 		 * code may need to be updated when the ssd module is
6928 		 * obsoleted and removed from the system. (4299588)
6929 		 */
6930 		if (SD_IS_PARALLEL_SCSI(un) &&
6931 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6932 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6933 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6934 			    1, 1) == 1) {
6935 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6936 				    "sd_unit_attach: un:0x%p Wide Transfer "
6937 				    "enabled\n", un);
6938 			}
6939 
6940 			/*
6941 			 * If tagged queuing has also been enabled, then
6942 			 * enable large xfers
6943 			 */
6944 			if (un->un_saved_throttle == sd_max_throttle) {
6945 				un->un_max_xfer_size =
6946 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6947 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6948 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6949 				    "sd_unit_attach: un:0x%p max transfer "
6950 				    "size=0x%x\n", un, un->un_max_xfer_size);
6951 			}
6952 		} else {
6953 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6954 			    0, 1) == 1) {
6955 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6956 				    "sd_unit_attach: un:0x%p "
6957 				    "Wide Transfer disabled\n", un);
6958 			}
6959 		}
6960 	} else {
6961 		un->un_tagflags = FLAG_STAG;
6962 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6963 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6964 	}
6965 
6966 	/*
6967 	 * If this target supports LUN reset, try to enable it.
6968 	 */
6969 	if (un->un_f_lun_reset_enabled) {
6970 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6971 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6972 			    "un:0x%p lun_reset capability set\n", un);
6973 		} else {
6974 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6975 			    "un:0x%p lun-reset capability not set\n", un);
6976 		}
6977 	}
6978 
6979 	/*
6980 	 * Adjust the maximum transfer size. This is to fix
6981 	 * the problem of partial DMA support on SPARC. Some
6982 	 * HBA driver, like aac, has very small dma_attr_maxxfer
6983 	 * size, which requires partial DMA support on SPARC.
6984 	 * In the future the SPARC pci nexus driver may solve
6985 	 * the problem instead of this fix.
6986 	 */
6987 #if defined(__sparc)
6988 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
6989 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
6990 		un->un_max_xfer_size = max_xfer_size;
6991 		un->un_partial_dma_supported = 1;
6992 	}
6993 #endif
6994 
6995 	/*
6996 	 * Set PKT_DMA_PARTIAL flag.
6997 	 */
6998 	if (un->un_partial_dma_supported == 1) {
6999 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7000 	} else {
7001 		un->un_pkt_flags = 0;
7002 	}
7003 
7004 	/*
7005 	 * At this point in the attach, we have enough info in the
7006 	 * soft state to be able to issue commands to the target.
7007 	 *
7008 	 * All command paths used below MUST issue their commands as
7009 	 * SD_PATH_DIRECT. This is important as intermediate layers
7010 	 * are not all initialized yet (such as PM).
7011 	 */
7012 
7013 	/*
7014 	 * Send a TEST UNIT READY command to the device. This should clear
7015 	 * any outstanding UNIT ATTENTION that may be present.
7016 	 *
7017 	 * Note: Don't check for success, just track if there is a reservation,
7018 	 * this is a throw away command to clear any unit attentions.
7019 	 *
7020 	 * Note: This MUST be the first command issued to the target during
7021 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7022 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7023 	 * with attempts at spinning up a device with no media.
7024 	 */
7025 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7026 		reservation_flag = SD_TARGET_IS_RESERVED;
7027 	}
7028 
7029 	/*
7030 	 * If the device is NOT a removable media device, attempt to spin
7031 	 * it up (using the START_STOP_UNIT command) and read its capacity
7032 	 * (using the READ CAPACITY command).  Note, however, that either
7033 	 * of these could fail and in some cases we would continue with
7034 	 * the attach despite the failure (see below).
7035 	 */
7036 	if (un->un_f_descr_format_supported) {
7037 		switch (sd_spin_up_unit(un)) {
7038 		case 0:
7039 			/*
7040 			 * Spin-up was successful; now try to read the
7041 			 * capacity.  If successful then save the results
7042 			 * and mark the capacity & lbasize as valid.
7043 			 */
7044 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7045 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7046 
7047 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7048 			    &lbasize, SD_PATH_DIRECT)) {
7049 			case 0: {
7050 				if (capacity > DK_MAX_BLOCKS) {
7051 #ifdef _LP64
7052 					if (capacity + 1 >
7053 					    SD_GROUP1_MAX_ADDRESS) {
7054 						/*
7055 						 * Enable descriptor format
7056 						 * sense data so that we can
7057 						 * get 64 bit sense data
7058 						 * fields.
7059 						 */
7060 						sd_enable_descr_sense(un);
7061 					}
7062 #else
7063 					/* 32-bit kernels can't handle this */
7064 					scsi_log(SD_DEVINFO(un),
7065 					    sd_label, CE_WARN,
7066 					    "disk has %llu blocks, which "
7067 					    "is too large for a 32-bit "
7068 					    "kernel", capacity);
7069 
7070 #if defined(__i386) || defined(__amd64)
7071 					/*
7072 					 * 1TB disk was treated as (1T - 512)B
7073 					 * in the past, so that it might have
7074 					 * valid VTOC and solaris partitions,
7075 					 * we have to allow it to continue to
7076 					 * work.
7077 					 */
7078 					if (capacity -1 > DK_MAX_BLOCKS)
7079 #endif
7080 					goto spinup_failed;
7081 #endif
7082 				}
7083 
7084 				/*
7085 				 * Here it's not necessary to check the case:
7086 				 * the capacity of the device is bigger than
7087 				 * what the max hba cdb can support. Because
7088 				 * sd_send_scsi_READ_CAPACITY will retrieve
7089 				 * the capacity by sending USCSI command, which
7090 				 * is constrained by the max hba cdb. Actually,
7091 				 * sd_send_scsi_READ_CAPACITY will return
7092 				 * EINVAL when using bigger cdb than required
7093 				 * cdb length. Will handle this case in
7094 				 * "case EINVAL".
7095 				 */
7096 
7097 				/*
7098 				 * The following relies on
7099 				 * sd_send_scsi_READ_CAPACITY never
7100 				 * returning 0 for capacity and/or lbasize.
7101 				 */
7102 				sd_update_block_info(un, lbasize, capacity);
7103 
7104 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7105 				    "sd_unit_attach: un:0x%p capacity = %ld "
7106 				    "blocks; lbasize= %ld.\n", un,
7107 				    un->un_blockcount, un->un_tgt_blocksize);
7108 
7109 				break;
7110 			}
7111 			case EINVAL:
7112 				/*
7113 				 * In the case where the max-cdb-length property
7114 				 * is smaller than the required CDB length for
7115 				 * a SCSI device, a target driver can fail to
7116 				 * attach to that device.
7117 				 */
7118 				scsi_log(SD_DEVINFO(un),
7119 				    sd_label, CE_WARN,
7120 				    "disk capacity is too large "
7121 				    "for current cdb length");
7122 				goto spinup_failed;
7123 			case EACCES:
7124 				/*
7125 				 * Should never get here if the spin-up
7126 				 * succeeded, but code it in anyway.
7127 				 * From here, just continue with the attach...
7128 				 */
7129 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7130 				    "sd_unit_attach: un:0x%p "
7131 				    "sd_send_scsi_READ_CAPACITY "
7132 				    "returned reservation conflict\n", un);
7133 				reservation_flag = SD_TARGET_IS_RESERVED;
7134 				break;
7135 			default:
7136 				/*
7137 				 * Likewise, should never get here if the
7138 				 * spin-up succeeded. Just continue with
7139 				 * the attach...
7140 				 */
7141 				break;
7142 			}
7143 			break;
7144 		case EACCES:
7145 			/*
7146 			 * Device is reserved by another host.  In this case
7147 			 * we could not spin it up or read the capacity, but
7148 			 * we continue with the attach anyway.
7149 			 */
7150 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7151 			    "sd_unit_attach: un:0x%p spin-up reservation "
7152 			    "conflict.\n", un);
7153 			reservation_flag = SD_TARGET_IS_RESERVED;
7154 			break;
7155 		default:
7156 			/* Fail the attach if the spin-up failed. */
7157 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7158 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7159 			goto spinup_failed;
7160 		}
7161 	}
7162 
7163 	/*
7164 	 * Check to see if this is a MMC drive
7165 	 */
7166 	if (ISCD(un)) {
7167 		sd_set_mmc_caps(un);
7168 	}
7169 
7170 
7171 	/*
7172 	 * Add a zero-length attribute to tell the world we support
7173 	 * kernel ioctls (for layered drivers)
7174 	 */
7175 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7176 	    DDI_KERNEL_IOCTL, NULL, 0);
7177 
7178 	/*
7179 	 * Add a boolean property to tell the world we support
7180 	 * the B_FAILFAST flag (for layered drivers)
7181 	 */
7182 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7183 	    "ddi-failfast-supported", NULL, 0);
7184 
7185 	/*
7186 	 * Initialize power management
7187 	 */
7188 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7189 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7190 	sd_setup_pm(un, devi);
7191 	if (un->un_f_pm_is_enabled == FALSE) {
7192 		/*
7193 		 * For performance, point to a jump table that does
7194 		 * not include pm.
7195 		 * The direct and priority chains don't change with PM.
7196 		 *
7197 		 * Note: this is currently done based on individual device
7198 		 * capabilities. When an interface for determining system
7199 		 * power enabled state becomes available, or when additional
7200 		 * layers are added to the command chain, these values will
7201 		 * have to be re-evaluated for correctness.
7202 		 */
7203 		if (un->un_f_non_devbsize_supported) {
7204 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7205 		} else {
7206 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7207 		}
7208 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7209 	}
7210 
7211 	/*
7212 	 * This property is set to 0 by HA software to avoid retries
7213 	 * on a reserved disk. (The preferred property name is
7214 	 * "retry-on-reservation-conflict") (1189689)
7215 	 *
7216 	 * Note: The use of a global here can have unintended consequences. A
7217 	 * per instance variable is preferable to match the capabilities of
7218 	 * different underlying hba's (4402600)
7219 	 */
7220 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7221 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7222 	    sd_retry_on_reservation_conflict);
7223 	if (sd_retry_on_reservation_conflict != 0) {
7224 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7225 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7226 		    sd_retry_on_reservation_conflict);
7227 	}
7228 
7229 	/* Set up options for QFULL handling. */
7230 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7231 	    "qfull-retries", -1)) != -1) {
7232 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7233 		    rval, 1);
7234 	}
7235 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7236 	    "qfull-retry-interval", -1)) != -1) {
7237 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7238 		    rval, 1);
7239 	}
7240 
7241 	/*
7242 	 * This just prints a message that announces the existence of the
7243 	 * device. The message is always printed in the system logfile, but
7244 	 * only appears on the console if the system is booted with the
7245 	 * -v (verbose) argument.
7246 	 */
7247 	ddi_report_dev(devi);
7248 
7249 	un->un_mediastate = DKIO_NONE;
7250 
7251 	cmlb_alloc_handle(&un->un_cmlbhandle);
7252 
7253 #if defined(__i386) || defined(__amd64)
7254 	/*
7255 	 * On x86, compensate for off-by-1 legacy error
7256 	 */
7257 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7258 	    (lbasize == un->un_sys_blocksize))
7259 		offbyone = CMLB_OFF_BY_ONE;
7260 #endif
7261 
7262 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7263 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7264 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7265 	    (void *)SD_PATH_DIRECT) != 0) {
7266 		goto cmlb_attach_failed;
7267 	}
7268 
7269 
7270 	/*
7271 	 * Read and validate the device's geometry (ie, disk label)
7272 	 * A new unformatted drive will not have a valid geometry, but
7273 	 * the driver needs to successfully attach to this device so
7274 	 * the drive can be formatted via ioctls.
7275 	 */
7276 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7277 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7278 
7279 	mutex_enter(SD_MUTEX(un));
7280 
7281 	/*
7282 	 * Read and initialize the devid for the unit.
7283 	 */
7284 	if (un->un_f_devid_supported) {
7285 		sd_register_devid(un, devi, reservation_flag);
7286 	}
7287 	mutex_exit(SD_MUTEX(un));
7288 
7289 #if (defined(__fibre))
7290 	/*
7291 	 * Register callbacks for fibre only.  You can't do this solely
7292 	 * on the basis of the devid_type because this is hba specific.
7293 	 * We need to query our hba capabilities to find out whether to
7294 	 * register or not.
7295 	 */
7296 	if (un->un_f_is_fibre) {
7297 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7298 			sd_init_event_callbacks(un);
7299 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7300 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7301 			    un);
7302 		}
7303 	}
7304 #endif
7305 
7306 	if (un->un_f_opt_disable_cache == TRUE) {
7307 		/*
7308 		 * Disable both read cache and write cache.  This is
7309 		 * the historic behavior of the keywords in the config file.
7310 		 */
7311 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7312 		    0) {
7313 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7314 			    "sd_unit_attach: un:0x%p Could not disable "
7315 			    "caching", un);
7316 			goto devid_failed;
7317 		}
7318 	}
7319 
7320 	/*
7321 	 * Check the value of the WCE bit now and
7322 	 * set un_f_write_cache_enabled accordingly.
7323 	 */
7324 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7325 	mutex_enter(SD_MUTEX(un));
7326 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7327 	mutex_exit(SD_MUTEX(un));
7328 
7329 	/*
7330 	 * Check the value of the NV_SUP bit and set
7331 	 * un_f_suppress_cache_flush accordingly.
7332 	 */
7333 	sd_get_nv_sup(un);
7334 
7335 	/*
7336 	 * Find out what type of reservation this disk supports.
7337 	 */
7338 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7339 	case 0:
7340 		/*
7341 		 * SCSI-3 reservations are supported.
7342 		 */
7343 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7344 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7345 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7346 		break;
7347 	case ENOTSUP:
7348 		/*
7349 		 * The PERSISTENT RESERVE IN command would not be recognized by
7350 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7351 		 */
7352 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7353 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7354 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7355 		break;
7356 	default:
7357 		/*
7358 		 * default to SCSI-3 reservations
7359 		 */
7360 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7361 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7362 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7363 		break;
7364 	}
7365 
7366 	/*
7367 	 * Set the pstat and error stat values here, so data obtained during the
7368 	 * previous attach-time routines is available.
7369 	 *
7370 	 * Note: This is a critical sequence that needs to be maintained:
7371 	 *	1) Instantiate the kstats before any routines using the iopath
7372 	 *	   (i.e. sd_send_scsi_cmd).
7373 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7374 	 *	   stats (sd_set_pstats)here, following
7375 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7376 	 *	   sd_cache_control().
7377 	 */
7378 
7379 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7380 		sd_set_pstats(un);
7381 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7382 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7383 	}
7384 
7385 	sd_set_errstats(un);
7386 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7387 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7388 
7389 
7390 	/*
7391 	 * After successfully attaching an instance, we record the information
7392 	 * of how many luns have been attached on the relative target and
7393 	 * controller for parallel SCSI. This information is used when sd tries
7394 	 * to set the tagged queuing capability in HBA.
7395 	 */
7396 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7397 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7398 	}
7399 
7400 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7401 	    "sd_unit_attach: un:0x%p exit success\n", un);
7402 
7403 	return (DDI_SUCCESS);
7404 
7405 	/*
7406 	 * An error occurred during the attach; clean up & return failure.
7407 	 */
7408 
7409 devid_failed:
7410 
7411 setup_pm_failed:
7412 	ddi_remove_minor_node(devi, NULL);
7413 
7414 cmlb_attach_failed:
7415 	/*
7416 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7417 	 */
7418 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7419 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7420 
7421 	/*
7422 	 * Refer to the comments of setting tagged-qing in the beginning of
7423 	 * sd_unit_attach. We can only disable tagged queuing when there is
7424 	 * no lun attached on the target.
7425 	 */
7426 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7427 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7428 	}
7429 
7430 	if (un->un_f_is_fibre == FALSE) {
7431 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7432 	}
7433 
7434 spinup_failed:
7435 
7436 	mutex_enter(SD_MUTEX(un));
7437 
7438 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7439 	if (un->un_direct_priority_timeid != NULL) {
7440 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7441 		un->un_direct_priority_timeid = NULL;
7442 		mutex_exit(SD_MUTEX(un));
7443 		(void) untimeout(temp_id);
7444 		mutex_enter(SD_MUTEX(un));
7445 	}
7446 
7447 	/* Cancel any pending start/stop timeouts */
7448 	if (un->un_startstop_timeid != NULL) {
7449 		timeout_id_t temp_id = un->un_startstop_timeid;
7450 		un->un_startstop_timeid = NULL;
7451 		mutex_exit(SD_MUTEX(un));
7452 		(void) untimeout(temp_id);
7453 		mutex_enter(SD_MUTEX(un));
7454 	}
7455 
7456 	/* Cancel any pending reset-throttle timeouts */
7457 	if (un->un_reset_throttle_timeid != NULL) {
7458 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7459 		un->un_reset_throttle_timeid = NULL;
7460 		mutex_exit(SD_MUTEX(un));
7461 		(void) untimeout(temp_id);
7462 		mutex_enter(SD_MUTEX(un));
7463 	}
7464 
7465 	/* Cancel any pending retry timeouts */
7466 	if (un->un_retry_timeid != NULL) {
7467 		timeout_id_t temp_id = un->un_retry_timeid;
7468 		un->un_retry_timeid = NULL;
7469 		mutex_exit(SD_MUTEX(un));
7470 		(void) untimeout(temp_id);
7471 		mutex_enter(SD_MUTEX(un));
7472 	}
7473 
7474 	/* Cancel any pending delayed cv broadcast timeouts */
7475 	if (un->un_dcvb_timeid != NULL) {
7476 		timeout_id_t temp_id = un->un_dcvb_timeid;
7477 		un->un_dcvb_timeid = NULL;
7478 		mutex_exit(SD_MUTEX(un));
7479 		(void) untimeout(temp_id);
7480 		mutex_enter(SD_MUTEX(un));
7481 	}
7482 
7483 	mutex_exit(SD_MUTEX(un));
7484 
7485 	/* There should not be any in-progress I/O so ASSERT this check */
7486 	ASSERT(un->un_ncmds_in_transport == 0);
7487 	ASSERT(un->un_ncmds_in_driver == 0);
7488 
7489 	/* Do not free the softstate if the callback routine is active */
7490 	sd_sync_with_callback(un);
7491 
7492 	/*
7493 	 * Partition stats apparently are not used with removables. These would
7494 	 * not have been created during attach, so no need to clean them up...
7495 	 */
7496 	if (un->un_errstats != NULL) {
7497 		kstat_delete(un->un_errstats);
7498 		un->un_errstats = NULL;
7499 	}
7500 
7501 create_errstats_failed:
7502 
7503 	if (un->un_stats != NULL) {
7504 		kstat_delete(un->un_stats);
7505 		un->un_stats = NULL;
7506 	}
7507 
7508 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7509 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7510 
7511 	ddi_prop_remove_all(devi);
7512 	sema_destroy(&un->un_semoclose);
7513 	cv_destroy(&un->un_state_cv);
7514 
7515 getrbuf_failed:
7516 
7517 	sd_free_rqs(un);
7518 
7519 alloc_rqs_failed:
7520 
7521 	devp->sd_private = NULL;
7522 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7523 
7524 get_softstate_failed:
7525 	/*
7526 	 * Note: the man pages are unclear as to whether or not doing a
7527 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7528 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7529 	 * ddi_get_soft_state() fails.  The implication seems to be
7530 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7531 	 */
7532 	ddi_soft_state_free(sd_state, instance);
7533 
7534 probe_failed:
7535 	scsi_unprobe(devp);
7536 
7537 	return (DDI_FAILURE);
7538 }
7539 
7540 
7541 /*
7542  *    Function: sd_unit_detach
7543  *
7544  * Description: Performs DDI_DETACH processing for sddetach().
7545  *
7546  * Return Code: DDI_SUCCESS
7547  *		DDI_FAILURE
7548  *
7549  *     Context: Kernel thread context
7550  */
7551 
7552 static int
7553 sd_unit_detach(dev_info_t *devi)
7554 {
7555 	struct scsi_device	*devp;
7556 	struct sd_lun		*un;
7557 	int			i;
7558 	int			tgt;
7559 	dev_t			dev;
7560 	dev_info_t		*pdip = ddi_get_parent(devi);
7561 	int			instance = ddi_get_instance(devi);
7562 
7563 	mutex_enter(&sd_detach_mutex);
7564 
7565 	/*
7566 	 * Fail the detach for any of the following:
7567 	 *  - Unable to get the sd_lun struct for the instance
7568 	 *  - A layered driver has an outstanding open on the instance
7569 	 *  - Another thread is already detaching this instance
7570 	 *  - Another thread is currently performing an open
7571 	 */
7572 	devp = ddi_get_driver_private(devi);
7573 	if ((devp == NULL) ||
7574 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7575 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7576 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7577 		mutex_exit(&sd_detach_mutex);
7578 		return (DDI_FAILURE);
7579 	}
7580 
7581 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7582 
7583 	/*
7584 	 * Mark this instance as currently in a detach, to inhibit any
7585 	 * opens from a layered driver.
7586 	 */
7587 	un->un_detach_count++;
7588 	mutex_exit(&sd_detach_mutex);
7589 
7590 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7591 	    SCSI_ADDR_PROP_TARGET, -1);
7592 
7593 	dev = sd_make_device(SD_DEVINFO(un));
7594 
7595 #ifndef lint
7596 	_NOTE(COMPETING_THREADS_NOW);
7597 #endif
7598 
7599 	mutex_enter(SD_MUTEX(un));
7600 
7601 	/*
7602 	 * Fail the detach if there are any outstanding layered
7603 	 * opens on this device.
7604 	 */
7605 	for (i = 0; i < NDKMAP; i++) {
7606 		if (un->un_ocmap.lyropen[i] != 0) {
7607 			goto err_notclosed;
7608 		}
7609 	}
7610 
7611 	/*
7612 	 * Verify there are NO outstanding commands issued to this device.
7613 	 * ie, un_ncmds_in_transport == 0.
7614 	 * It's possible to have outstanding commands through the physio
7615 	 * code path, even though everything's closed.
7616 	 */
7617 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7618 	    (un->un_direct_priority_timeid != NULL) ||
7619 	    (un->un_state == SD_STATE_RWAIT)) {
7620 		mutex_exit(SD_MUTEX(un));
7621 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7622 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7623 		goto err_stillbusy;
7624 	}
7625 
7626 	/*
7627 	 * If we have the device reserved, release the reservation.
7628 	 */
7629 	if ((un->un_resvd_status & SD_RESERVE) &&
7630 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7631 		mutex_exit(SD_MUTEX(un));
7632 		/*
7633 		 * Note: sd_reserve_release sends a command to the device
7634 		 * via the sd_ioctlcmd() path, and can sleep.
7635 		 */
7636 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7637 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7638 			    "sd_dr_detach: Cannot release reservation \n");
7639 		}
7640 	} else {
7641 		mutex_exit(SD_MUTEX(un));
7642 	}
7643 
7644 	/*
7645 	 * Untimeout any reserve recover, throttle reset, restart unit
7646 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7647 	 * from getting nulled by their callback functions.
7648 	 */
7649 	mutex_enter(SD_MUTEX(un));
7650 	if (un->un_resvd_timeid != NULL) {
7651 		timeout_id_t temp_id = un->un_resvd_timeid;
7652 		un->un_resvd_timeid = NULL;
7653 		mutex_exit(SD_MUTEX(un));
7654 		(void) untimeout(temp_id);
7655 		mutex_enter(SD_MUTEX(un));
7656 	}
7657 
7658 	if (un->un_reset_throttle_timeid != NULL) {
7659 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7660 		un->un_reset_throttle_timeid = NULL;
7661 		mutex_exit(SD_MUTEX(un));
7662 		(void) untimeout(temp_id);
7663 		mutex_enter(SD_MUTEX(un));
7664 	}
7665 
7666 	if (un->un_startstop_timeid != NULL) {
7667 		timeout_id_t temp_id = un->un_startstop_timeid;
7668 		un->un_startstop_timeid = NULL;
7669 		mutex_exit(SD_MUTEX(un));
7670 		(void) untimeout(temp_id);
7671 		mutex_enter(SD_MUTEX(un));
7672 	}
7673 
7674 	if (un->un_dcvb_timeid != NULL) {
7675 		timeout_id_t temp_id = un->un_dcvb_timeid;
7676 		un->un_dcvb_timeid = NULL;
7677 		mutex_exit(SD_MUTEX(un));
7678 		(void) untimeout(temp_id);
7679 	} else {
7680 		mutex_exit(SD_MUTEX(un));
7681 	}
7682 
7683 	/* Remove any pending reservation reclaim requests for this device */
7684 	sd_rmv_resv_reclaim_req(dev);
7685 
7686 	mutex_enter(SD_MUTEX(un));
7687 
7688 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7689 	if (un->un_direct_priority_timeid != NULL) {
7690 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7691 		un->un_direct_priority_timeid = NULL;
7692 		mutex_exit(SD_MUTEX(un));
7693 		(void) untimeout(temp_id);
7694 		mutex_enter(SD_MUTEX(un));
7695 	}
7696 
7697 	/* Cancel any active multi-host disk watch thread requests */
7698 	if (un->un_mhd_token != NULL) {
7699 		mutex_exit(SD_MUTEX(un));
7700 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7701 		if (scsi_watch_request_terminate(un->un_mhd_token,
7702 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7703 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7704 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7705 			/*
7706 			 * Note: We are returning here after having removed
7707 			 * some driver timeouts above. This is consistent with
7708 			 * the legacy implementation but perhaps the watch
7709 			 * terminate call should be made with the wait flag set.
7710 			 */
7711 			goto err_stillbusy;
7712 		}
7713 		mutex_enter(SD_MUTEX(un));
7714 		un->un_mhd_token = NULL;
7715 	}
7716 
7717 	if (un->un_swr_token != NULL) {
7718 		mutex_exit(SD_MUTEX(un));
7719 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7720 		if (scsi_watch_request_terminate(un->un_swr_token,
7721 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7722 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7723 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7724 			/*
7725 			 * Note: We are returning here after having removed
7726 			 * some driver timeouts above. This is consistent with
7727 			 * the legacy implementation but perhaps the watch
7728 			 * terminate call should be made with the wait flag set.
7729 			 */
7730 			goto err_stillbusy;
7731 		}
7732 		mutex_enter(SD_MUTEX(un));
7733 		un->un_swr_token = NULL;
7734 	}
7735 
7736 	mutex_exit(SD_MUTEX(un));
7737 
7738 	/*
7739 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7740 	 * if we have not registered one.
7741 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7742 	 */
7743 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7744 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7745 
7746 	/*
7747 	 * protect the timeout pointers from getting nulled by
7748 	 * their callback functions during the cancellation process.
7749 	 * In such a scenario untimeout can be invoked with a null value.
7750 	 */
7751 	_NOTE(NO_COMPETING_THREADS_NOW);
7752 
7753 	mutex_enter(&un->un_pm_mutex);
7754 	if (un->un_pm_idle_timeid != NULL) {
7755 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7756 		un->un_pm_idle_timeid = NULL;
7757 		mutex_exit(&un->un_pm_mutex);
7758 
7759 		/*
7760 		 * Timeout is active; cancel it.
7761 		 * Note that it'll never be active on a device
7762 		 * that does not support PM therefore we don't
7763 		 * have to check before calling pm_idle_component.
7764 		 */
7765 		(void) untimeout(temp_id);
7766 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7767 		mutex_enter(&un->un_pm_mutex);
7768 	}
7769 
7770 	/*
7771 	 * Check whether there is already a timeout scheduled for power
7772 	 * management. If yes then don't lower the power here, that's.
7773 	 * the timeout handler's job.
7774 	 */
7775 	if (un->un_pm_timeid != NULL) {
7776 		timeout_id_t temp_id = un->un_pm_timeid;
7777 		un->un_pm_timeid = NULL;
7778 		mutex_exit(&un->un_pm_mutex);
7779 		/*
7780 		 * Timeout is active; cancel it.
7781 		 * Note that it'll never be active on a device
7782 		 * that does not support PM therefore we don't
7783 		 * have to check before calling pm_idle_component.
7784 		 */
7785 		(void) untimeout(temp_id);
7786 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7787 
7788 	} else {
7789 		mutex_exit(&un->un_pm_mutex);
7790 		if ((un->un_f_pm_is_enabled == TRUE) &&
7791 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7792 		    DDI_SUCCESS)) {
7793 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7794 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7795 			/*
7796 			 * Fix for bug: 4297749, item # 13
7797 			 * The above test now includes a check to see if PM is
7798 			 * supported by this device before call
7799 			 * pm_lower_power().
7800 			 * Note, the following is not dead code. The call to
7801 			 * pm_lower_power above will generate a call back into
7802 			 * our sdpower routine which might result in a timeout
7803 			 * handler getting activated. Therefore the following
7804 			 * code is valid and necessary.
7805 			 */
7806 			mutex_enter(&un->un_pm_mutex);
7807 			if (un->un_pm_timeid != NULL) {
7808 				timeout_id_t temp_id = un->un_pm_timeid;
7809 				un->un_pm_timeid = NULL;
7810 				mutex_exit(&un->un_pm_mutex);
7811 				(void) untimeout(temp_id);
7812 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7813 			} else {
7814 				mutex_exit(&un->un_pm_mutex);
7815 			}
7816 		}
7817 	}
7818 
7819 	/*
7820 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7821 	 * Relocated here from above to be after the call to
7822 	 * pm_lower_power, which was getting errors.
7823 	 */
7824 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7825 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7826 
7827 	/*
7828 	 * Currently, tagged queuing is supported per target based by HBA.
7829 	 * Setting this per lun instance actually sets the capability of this
7830 	 * target in HBA, which affects those luns already attached on the
7831 	 * same target. So during detach, we can only disable this capability
7832 	 * only when this is the only lun left on this target. By doing
7833 	 * this, we assume a target has the same tagged queuing capability
7834 	 * for every lun. The condition can be removed when HBA is changed to
7835 	 * support per lun based tagged queuing capability.
7836 	 */
7837 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7838 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7839 	}
7840 
7841 	if (un->un_f_is_fibre == FALSE) {
7842 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7843 	}
7844 
7845 	/*
7846 	 * Remove any event callbacks, fibre only
7847 	 */
7848 	if (un->un_f_is_fibre == TRUE) {
7849 		if ((un->un_insert_event != NULL) &&
7850 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7851 		    DDI_SUCCESS)) {
7852 			/*
7853 			 * Note: We are returning here after having done
7854 			 * substantial cleanup above. This is consistent
7855 			 * with the legacy implementation but this may not
7856 			 * be the right thing to do.
7857 			 */
7858 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7859 			    "sd_dr_detach: Cannot cancel insert event\n");
7860 			goto err_remove_event;
7861 		}
7862 		un->un_insert_event = NULL;
7863 
7864 		if ((un->un_remove_event != NULL) &&
7865 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7866 		    DDI_SUCCESS)) {
7867 			/*
7868 			 * Note: We are returning here after having done
7869 			 * substantial cleanup above. This is consistent
7870 			 * with the legacy implementation but this may not
7871 			 * be the right thing to do.
7872 			 */
7873 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7874 			    "sd_dr_detach: Cannot cancel remove event\n");
7875 			goto err_remove_event;
7876 		}
7877 		un->un_remove_event = NULL;
7878 	}
7879 
7880 	/* Do not free the softstate if the callback routine is active */
7881 	sd_sync_with_callback(un);
7882 
7883 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7884 	cmlb_free_handle(&un->un_cmlbhandle);
7885 
7886 	/*
7887 	 * Hold the detach mutex here, to make sure that no other threads ever
7888 	 * can access a (partially) freed soft state structure.
7889 	 */
7890 	mutex_enter(&sd_detach_mutex);
7891 
7892 	/*
7893 	 * Clean up the soft state struct.
7894 	 * Cleanup is done in reverse order of allocs/inits.
7895 	 * At this point there should be no competing threads anymore.
7896 	 */
7897 
7898 	/* Unregister and free device id. */
7899 	ddi_devid_unregister(devi);
7900 	if (un->un_devid) {
7901 		ddi_devid_free(un->un_devid);
7902 		un->un_devid = NULL;
7903 	}
7904 
7905 	/*
7906 	 * Destroy wmap cache if it exists.
7907 	 */
7908 	if (un->un_wm_cache != NULL) {
7909 		kmem_cache_destroy(un->un_wm_cache);
7910 		un->un_wm_cache = NULL;
7911 	}
7912 
7913 	/*
7914 	 * kstat cleanup is done in detach for all device types (4363169).
7915 	 * We do not want to fail detach if the device kstats are not deleted
7916 	 * since there is a confusion about the devo_refcnt for the device.
7917 	 * We just delete the kstats and let detach complete successfully.
7918 	 */
7919 	if (un->un_stats != NULL) {
7920 		kstat_delete(un->un_stats);
7921 		un->un_stats = NULL;
7922 	}
7923 	if (un->un_errstats != NULL) {
7924 		kstat_delete(un->un_errstats);
7925 		un->un_errstats = NULL;
7926 	}
7927 
7928 	/* Remove partition stats */
7929 	if (un->un_f_pkstats_enabled) {
7930 		for (i = 0; i < NSDMAP; i++) {
7931 			if (un->un_pstats[i] != NULL) {
7932 				kstat_delete(un->un_pstats[i]);
7933 				un->un_pstats[i] = NULL;
7934 			}
7935 		}
7936 	}
7937 
7938 	/* Remove xbuf registration */
7939 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7940 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7941 
7942 	/* Remove driver properties */
7943 	ddi_prop_remove_all(devi);
7944 
7945 	mutex_destroy(&un->un_pm_mutex);
7946 	cv_destroy(&un->un_pm_busy_cv);
7947 
7948 	cv_destroy(&un->un_wcc_cv);
7949 
7950 	/* Open/close semaphore */
7951 	sema_destroy(&un->un_semoclose);
7952 
7953 	/* Removable media condvar. */
7954 	cv_destroy(&un->un_state_cv);
7955 
7956 	/* Suspend/resume condvar. */
7957 	cv_destroy(&un->un_suspend_cv);
7958 	cv_destroy(&un->un_disk_busy_cv);
7959 
7960 	sd_free_rqs(un);
7961 
7962 	/* Free up soft state */
7963 	devp->sd_private = NULL;
7964 
7965 	bzero(un, sizeof (struct sd_lun));
7966 	ddi_soft_state_free(sd_state, instance);
7967 
7968 	mutex_exit(&sd_detach_mutex);
7969 
7970 	/* This frees up the INQUIRY data associated with the device. */
7971 	scsi_unprobe(devp);
7972 
7973 	/*
7974 	 * After successfully detaching an instance, we update the information
7975 	 * of how many luns have been attached in the relative target and
7976 	 * controller for parallel SCSI. This information is used when sd tries
7977 	 * to set the tagged queuing capability in HBA.
7978 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7979 	 * check if the device is parallel SCSI. However, we don't need to
7980 	 * check here because we've already checked during attach. No device
7981 	 * that is not parallel SCSI is in the chain.
7982 	 */
7983 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7984 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7985 	}
7986 
7987 	return (DDI_SUCCESS);
7988 
7989 err_notclosed:
7990 	mutex_exit(SD_MUTEX(un));
7991 
7992 err_stillbusy:
7993 	_NOTE(NO_COMPETING_THREADS_NOW);
7994 
7995 err_remove_event:
7996 	mutex_enter(&sd_detach_mutex);
7997 	un->un_detach_count--;
7998 	mutex_exit(&sd_detach_mutex);
7999 
8000 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8001 	return (DDI_FAILURE);
8002 }
8003 
8004 
8005 /*
8006  *    Function: sd_create_errstats
8007  *
8008  * Description: This routine instantiates the device error stats.
8009  *
8010  *		Note: During attach the stats are instantiated first so they are
8011  *		available for attach-time routines that utilize the driver
8012  *		iopath to send commands to the device. The stats are initialized
8013  *		separately so data obtained during some attach-time routines is
8014  *		available. (4362483)
8015  *
8016  *   Arguments: un - driver soft state (unit) structure
8017  *		instance - driver instance
8018  *
8019  *     Context: Kernel thread context
8020  */
8021 
8022 static void
8023 sd_create_errstats(struct sd_lun *un, int instance)
8024 {
8025 	struct	sd_errstats	*stp;
8026 	char	kstatmodule_err[KSTAT_STRLEN];
8027 	char	kstatname[KSTAT_STRLEN];
8028 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8029 
8030 	ASSERT(un != NULL);
8031 
8032 	if (un->un_errstats != NULL) {
8033 		return;
8034 	}
8035 
8036 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8037 	    "%serr", sd_label);
8038 	(void) snprintf(kstatname, sizeof (kstatname),
8039 	    "%s%d,err", sd_label, instance);
8040 
8041 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8042 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8043 
8044 	if (un->un_errstats == NULL) {
8045 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8046 		    "sd_create_errstats: Failed kstat_create\n");
8047 		return;
8048 	}
8049 
8050 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8051 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8052 	    KSTAT_DATA_UINT32);
8053 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8054 	    KSTAT_DATA_UINT32);
8055 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8056 	    KSTAT_DATA_UINT32);
8057 	kstat_named_init(&stp->sd_vid,		"Vendor",
8058 	    KSTAT_DATA_CHAR);
8059 	kstat_named_init(&stp->sd_pid,		"Product",
8060 	    KSTAT_DATA_CHAR);
8061 	kstat_named_init(&stp->sd_revision,	"Revision",
8062 	    KSTAT_DATA_CHAR);
8063 	kstat_named_init(&stp->sd_serial,	"Serial No",
8064 	    KSTAT_DATA_CHAR);
8065 	kstat_named_init(&stp->sd_capacity,	"Size",
8066 	    KSTAT_DATA_ULONGLONG);
8067 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8068 	    KSTAT_DATA_UINT32);
8069 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8070 	    KSTAT_DATA_UINT32);
8071 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8072 	    KSTAT_DATA_UINT32);
8073 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8074 	    KSTAT_DATA_UINT32);
8075 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8076 	    KSTAT_DATA_UINT32);
8077 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8078 	    KSTAT_DATA_UINT32);
8079 
8080 	un->un_errstats->ks_private = un;
8081 	un->un_errstats->ks_update  = nulldev;
8082 
8083 	kstat_install(un->un_errstats);
8084 }
8085 
8086 
8087 /*
8088  *    Function: sd_set_errstats
8089  *
8090  * Description: This routine sets the value of the vendor id, product id,
8091  *		revision, serial number, and capacity device error stats.
8092  *
8093  *		Note: During attach the stats are instantiated first so they are
8094  *		available for attach-time routines that utilize the driver
8095  *		iopath to send commands to the device. The stats are initialized
8096  *		separately so data obtained during some attach-time routines is
8097  *		available. (4362483)
8098  *
8099  *   Arguments: un - driver soft state (unit) structure
8100  *
8101  *     Context: Kernel thread context
8102  */
8103 
8104 static void
8105 sd_set_errstats(struct sd_lun *un)
8106 {
8107 	struct	sd_errstats	*stp;
8108 
8109 	ASSERT(un != NULL);
8110 	ASSERT(un->un_errstats != NULL);
8111 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8112 	ASSERT(stp != NULL);
8113 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8114 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8115 	(void) strncpy(stp->sd_revision.value.c,
8116 	    un->un_sd->sd_inq->inq_revision, 4);
8117 
8118 	/*
8119 	 * All the errstats are persistent across detach/attach,
8120 	 * so reset all the errstats here in case of the hot
8121 	 * replacement of disk drives, except for not changed
8122 	 * Sun qualified drives.
8123 	 */
8124 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8125 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8126 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8127 		stp->sd_softerrs.value.ui32 = 0;
8128 		stp->sd_harderrs.value.ui32 = 0;
8129 		stp->sd_transerrs.value.ui32 = 0;
8130 		stp->sd_rq_media_err.value.ui32 = 0;
8131 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8132 		stp->sd_rq_nodev_err.value.ui32 = 0;
8133 		stp->sd_rq_recov_err.value.ui32 = 0;
8134 		stp->sd_rq_illrq_err.value.ui32 = 0;
8135 		stp->sd_rq_pfa_err.value.ui32 = 0;
8136 	}
8137 
8138 	/*
8139 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8140 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8141 	 * (4376302))
8142 	 */
8143 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8144 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8145 		    sizeof (SD_INQUIRY(un)->inq_serial));
8146 	}
8147 
8148 	if (un->un_f_blockcount_is_valid != TRUE) {
8149 		/*
8150 		 * Set capacity error stat to 0 for no media. This ensures
8151 		 * a valid capacity is displayed in response to 'iostat -E'
8152 		 * when no media is present in the device.
8153 		 */
8154 		stp->sd_capacity.value.ui64 = 0;
8155 	} else {
8156 		/*
8157 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8158 		 * capacity.
8159 		 *
8160 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8161 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8162 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8163 		 */
8164 		stp->sd_capacity.value.ui64 = (uint64_t)
8165 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8166 	}
8167 }
8168 
8169 
8170 /*
8171  *    Function: sd_set_pstats
8172  *
8173  * Description: This routine instantiates and initializes the partition
8174  *              stats for each partition with more than zero blocks.
8175  *		(4363169)
8176  *
8177  *   Arguments: un - driver soft state (unit) structure
8178  *
8179  *     Context: Kernel thread context
8180  */
8181 
8182 static void
8183 sd_set_pstats(struct sd_lun *un)
8184 {
8185 	char	kstatname[KSTAT_STRLEN];
8186 	int	instance;
8187 	int	i;
8188 	diskaddr_t	nblks = 0;
8189 	char	*partname = NULL;
8190 
8191 	ASSERT(un != NULL);
8192 
8193 	instance = ddi_get_instance(SD_DEVINFO(un));
8194 
8195 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8196 	for (i = 0; i < NSDMAP; i++) {
8197 
8198 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8199 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8200 			continue;
8201 		mutex_enter(SD_MUTEX(un));
8202 
8203 		if ((un->un_pstats[i] == NULL) &&
8204 		    (nblks != 0)) {
8205 
8206 			(void) snprintf(kstatname, sizeof (kstatname),
8207 			    "%s%d,%s", sd_label, instance,
8208 			    partname);
8209 
8210 			un->un_pstats[i] = kstat_create(sd_label,
8211 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8212 			    1, KSTAT_FLAG_PERSISTENT);
8213 			if (un->un_pstats[i] != NULL) {
8214 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8215 				kstat_install(un->un_pstats[i]);
8216 			}
8217 		}
8218 		mutex_exit(SD_MUTEX(un));
8219 	}
8220 }
8221 
8222 
8223 #if (defined(__fibre))
8224 /*
8225  *    Function: sd_init_event_callbacks
8226  *
8227  * Description: This routine initializes the insertion and removal event
8228  *		callbacks. (fibre only)
8229  *
8230  *   Arguments: un - driver soft state (unit) structure
8231  *
8232  *     Context: Kernel thread context
8233  */
8234 
8235 static void
8236 sd_init_event_callbacks(struct sd_lun *un)
8237 {
8238 	ASSERT(un != NULL);
8239 
8240 	if ((un->un_insert_event == NULL) &&
8241 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8242 	    &un->un_insert_event) == DDI_SUCCESS)) {
8243 		/*
8244 		 * Add the callback for an insertion event
8245 		 */
8246 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8247 		    un->un_insert_event, sd_event_callback, (void *)un,
8248 		    &(un->un_insert_cb_id));
8249 	}
8250 
8251 	if ((un->un_remove_event == NULL) &&
8252 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8253 	    &un->un_remove_event) == DDI_SUCCESS)) {
8254 		/*
8255 		 * Add the callback for a removal event
8256 		 */
8257 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8258 		    un->un_remove_event, sd_event_callback, (void *)un,
8259 		    &(un->un_remove_cb_id));
8260 	}
8261 }
8262 
8263 
8264 /*
8265  *    Function: sd_event_callback
8266  *
8267  * Description: This routine handles insert/remove events (photon). The
8268  *		state is changed to OFFLINE which can be used to supress
8269  *		error msgs. (fibre only)
8270  *
8271  *   Arguments: un - driver soft state (unit) structure
8272  *
8273  *     Context: Callout thread context
8274  */
8275 /* ARGSUSED */
8276 static void
8277 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8278     void *bus_impldata)
8279 {
8280 	struct sd_lun *un = (struct sd_lun *)arg;
8281 
8282 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8283 	if (event == un->un_insert_event) {
8284 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8285 		mutex_enter(SD_MUTEX(un));
8286 		if (un->un_state == SD_STATE_OFFLINE) {
8287 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8288 				un->un_state = un->un_last_state;
8289 			} else {
8290 				/*
8291 				 * We have gone through SUSPEND/RESUME while
8292 				 * we were offline. Restore the last state
8293 				 */
8294 				un->un_state = un->un_save_state;
8295 			}
8296 		}
8297 		mutex_exit(SD_MUTEX(un));
8298 
8299 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8300 	} else if (event == un->un_remove_event) {
8301 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8302 		mutex_enter(SD_MUTEX(un));
8303 		/*
8304 		 * We need to handle an event callback that occurs during
8305 		 * the suspend operation, since we don't prevent it.
8306 		 */
8307 		if (un->un_state != SD_STATE_OFFLINE) {
8308 			if (un->un_state != SD_STATE_SUSPENDED) {
8309 				New_state(un, SD_STATE_OFFLINE);
8310 			} else {
8311 				un->un_last_state = SD_STATE_OFFLINE;
8312 			}
8313 		}
8314 		mutex_exit(SD_MUTEX(un));
8315 	} else {
8316 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8317 		    "!Unknown event\n");
8318 	}
8319 
8320 }
8321 #endif
8322 
8323 /*
8324  *    Function: sd_cache_control()
8325  *
8326  * Description: This routine is the driver entry point for setting
8327  *		read and write caching by modifying the WCE (write cache
8328  *		enable) and RCD (read cache disable) bits of mode
8329  *		page 8 (MODEPAGE_CACHING).
8330  *
8331  *   Arguments: un - driver soft state (unit) structure
8332  *		rcd_flag - flag for controlling the read cache
8333  *		wce_flag - flag for controlling the write cache
8334  *
8335  * Return Code: EIO
8336  *		code returned by sd_send_scsi_MODE_SENSE and
8337  *		sd_send_scsi_MODE_SELECT
8338  *
8339  *     Context: Kernel Thread
8340  */
8341 
8342 static int
8343 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8344 {
8345 	struct mode_caching	*mode_caching_page;
8346 	uchar_t			*header;
8347 	size_t			buflen;
8348 	int			hdrlen;
8349 	int			bd_len;
8350 	int			rval = 0;
8351 	struct mode_header_grp2	*mhp;
8352 
8353 	ASSERT(un != NULL);
8354 
8355 	/*
8356 	 * Do a test unit ready, otherwise a mode sense may not work if this
8357 	 * is the first command sent to the device after boot.
8358 	 */
8359 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8360 
8361 	if (un->un_f_cfg_is_atapi == TRUE) {
8362 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8363 	} else {
8364 		hdrlen = MODE_HEADER_LENGTH;
8365 	}
8366 
8367 	/*
8368 	 * Allocate memory for the retrieved mode page and its headers.  Set
8369 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8370 	 * we get all of the mode sense data otherwise, the mode select
8371 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8372 	 */
8373 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8374 	    sizeof (struct mode_cache_scsi3);
8375 
8376 	header = kmem_zalloc(buflen, KM_SLEEP);
8377 
8378 	/* Get the information from the device. */
8379 	if (un->un_f_cfg_is_atapi == TRUE) {
8380 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8381 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8382 	} else {
8383 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8384 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8385 	}
8386 	if (rval != 0) {
8387 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8388 		    "sd_cache_control: Mode Sense Failed\n");
8389 		kmem_free(header, buflen);
8390 		return (rval);
8391 	}
8392 
8393 	/*
8394 	 * Determine size of Block Descriptors in order to locate
8395 	 * the mode page data. ATAPI devices return 0, SCSI devices
8396 	 * should return MODE_BLK_DESC_LENGTH.
8397 	 */
8398 	if (un->un_f_cfg_is_atapi == TRUE) {
8399 		mhp	= (struct mode_header_grp2 *)header;
8400 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8401 	} else {
8402 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8403 	}
8404 
8405 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8406 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8407 		    "sd_cache_control: Mode Sense returned invalid "
8408 		    "block descriptor length\n");
8409 		kmem_free(header, buflen);
8410 		return (EIO);
8411 	}
8412 
8413 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8414 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8415 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8416 		    " caching page code mismatch %d\n",
8417 		    mode_caching_page->mode_page.code);
8418 		kmem_free(header, buflen);
8419 		return (EIO);
8420 	}
8421 
8422 	/* Check the relevant bits on successful mode sense. */
8423 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8424 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8425 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8426 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8427 
8428 		size_t sbuflen;
8429 		uchar_t save_pg;
8430 
8431 		/*
8432 		 * Construct select buffer length based on the
8433 		 * length of the sense data returned.
8434 		 */
8435 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8436 		    sizeof (struct mode_page) +
8437 		    (int)mode_caching_page->mode_page.length;
8438 
8439 		/*
8440 		 * Set the caching bits as requested.
8441 		 */
8442 		if (rcd_flag == SD_CACHE_ENABLE)
8443 			mode_caching_page->rcd = 0;
8444 		else if (rcd_flag == SD_CACHE_DISABLE)
8445 			mode_caching_page->rcd = 1;
8446 
8447 		if (wce_flag == SD_CACHE_ENABLE)
8448 			mode_caching_page->wce = 1;
8449 		else if (wce_flag == SD_CACHE_DISABLE)
8450 			mode_caching_page->wce = 0;
8451 
8452 		/*
8453 		 * Save the page if the mode sense says the
8454 		 * drive supports it.
8455 		 */
8456 		save_pg = mode_caching_page->mode_page.ps ?
8457 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8458 
8459 		/* Clear reserved bits before mode select. */
8460 		mode_caching_page->mode_page.ps = 0;
8461 
8462 		/*
8463 		 * Clear out mode header for mode select.
8464 		 * The rest of the retrieved page will be reused.
8465 		 */
8466 		bzero(header, hdrlen);
8467 
8468 		if (un->un_f_cfg_is_atapi == TRUE) {
8469 			mhp = (struct mode_header_grp2 *)header;
8470 			mhp->bdesc_length_hi = bd_len >> 8;
8471 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8472 		} else {
8473 			((struct mode_header *)header)->bdesc_length = bd_len;
8474 		}
8475 
8476 		/* Issue mode select to change the cache settings */
8477 		if (un->un_f_cfg_is_atapi == TRUE) {
8478 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8479 			    sbuflen, save_pg, SD_PATH_DIRECT);
8480 		} else {
8481 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8482 			    sbuflen, save_pg, SD_PATH_DIRECT);
8483 		}
8484 	}
8485 
8486 	kmem_free(header, buflen);
8487 	return (rval);
8488 }
8489 
8490 
8491 /*
8492  *    Function: sd_get_write_cache_enabled()
8493  *
8494  * Description: This routine is the driver entry point for determining if
8495  *		write caching is enabled.  It examines the WCE (write cache
8496  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8497  *
8498  *   Arguments: un - driver soft state (unit) structure
8499  *		is_enabled - pointer to int where write cache enabled state
8500  *		is returned (non-zero -> write cache enabled)
8501  *
8502  *
8503  * Return Code: EIO
8504  *		code returned by sd_send_scsi_MODE_SENSE
8505  *
8506  *     Context: Kernel Thread
8507  *
8508  * NOTE: If ioctl is added to disable write cache, this sequence should
8509  * be followed so that no locking is required for accesses to
8510  * un->un_f_write_cache_enabled:
8511  * 	do mode select to clear wce
8512  * 	do synchronize cache to flush cache
8513  * 	set un->un_f_write_cache_enabled = FALSE
8514  *
8515  * Conversely, an ioctl to enable the write cache should be done
8516  * in this order:
8517  * 	set un->un_f_write_cache_enabled = TRUE
8518  * 	do mode select to set wce
8519  */
8520 
8521 static int
8522 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8523 {
8524 	struct mode_caching	*mode_caching_page;
8525 	uchar_t			*header;
8526 	size_t			buflen;
8527 	int			hdrlen;
8528 	int			bd_len;
8529 	int			rval = 0;
8530 
8531 	ASSERT(un != NULL);
8532 	ASSERT(is_enabled != NULL);
8533 
8534 	/* in case of error, flag as enabled */
8535 	*is_enabled = TRUE;
8536 
8537 	/*
8538 	 * Do a test unit ready, otherwise a mode sense may not work if this
8539 	 * is the first command sent to the device after boot.
8540 	 */
8541 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8542 
8543 	if (un->un_f_cfg_is_atapi == TRUE) {
8544 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8545 	} else {
8546 		hdrlen = MODE_HEADER_LENGTH;
8547 	}
8548 
8549 	/*
8550 	 * Allocate memory for the retrieved mode page and its headers.  Set
8551 	 * a pointer to the page itself.
8552 	 */
8553 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8554 	header = kmem_zalloc(buflen, KM_SLEEP);
8555 
8556 	/* Get the information from the device. */
8557 	if (un->un_f_cfg_is_atapi == TRUE) {
8558 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8559 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8560 	} else {
8561 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8562 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8563 	}
8564 	if (rval != 0) {
8565 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8566 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8567 		kmem_free(header, buflen);
8568 		return (rval);
8569 	}
8570 
8571 	/*
8572 	 * Determine size of Block Descriptors in order to locate
8573 	 * the mode page data. ATAPI devices return 0, SCSI devices
8574 	 * should return MODE_BLK_DESC_LENGTH.
8575 	 */
8576 	if (un->un_f_cfg_is_atapi == TRUE) {
8577 		struct mode_header_grp2	*mhp;
8578 		mhp	= (struct mode_header_grp2 *)header;
8579 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8580 	} else {
8581 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8582 	}
8583 
8584 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8585 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8586 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8587 		    "block descriptor length\n");
8588 		kmem_free(header, buflen);
8589 		return (EIO);
8590 	}
8591 
8592 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8593 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8594 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8595 		    " caching page code mismatch %d\n",
8596 		    mode_caching_page->mode_page.code);
8597 		kmem_free(header, buflen);
8598 		return (EIO);
8599 	}
8600 	*is_enabled = mode_caching_page->wce;
8601 
8602 	kmem_free(header, buflen);
8603 	return (0);
8604 }
8605 
8606 /*
8607  *    Function: sd_get_nv_sup()
8608  *
8609  * Description: This routine is the driver entry point for
8610  * determining whether non-volatile cache is supported. This
8611  * determination process works as follows:
8612  *
8613  * 1. sd first queries sd.conf on whether
8614  * suppress_cache_flush bit is set for this device.
8615  *
8616  * 2. if not there, then queries the internal disk table.
8617  *
8618  * 3. if either sd.conf or internal disk table specifies
8619  * cache flush be suppressed, we don't bother checking
8620  * NV_SUP bit.
8621  *
8622  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8623  * the optional INQUIRY VPD page 0x86. If the device
8624  * supports VPD page 0x86, sd examines the NV_SUP
8625  * (non-volatile cache support) bit in the INQUIRY VPD page
8626  * 0x86:
8627  *   o If NV_SUP bit is set, sd assumes the device has a
8628  *   non-volatile cache and set the
8629  *   un_f_sync_nv_supported to TRUE.
8630  *   o Otherwise cache is not non-volatile,
8631  *   un_f_sync_nv_supported is set to FALSE.
8632  *
8633  * Arguments: un - driver soft state (unit) structure
8634  *
8635  * Return Code:
8636  *
8637  *     Context: Kernel Thread
8638  */
8639 
8640 static void
8641 sd_get_nv_sup(struct sd_lun *un)
8642 {
8643 	int		rval		= 0;
8644 	uchar_t		*inq86		= NULL;
8645 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8646 	size_t		inq86_resid	= 0;
8647 	struct		dk_callback *dkc;
8648 
8649 	ASSERT(un != NULL);
8650 
8651 	mutex_enter(SD_MUTEX(un));
8652 
8653 	/*
8654 	 * Be conservative on the device's support of
8655 	 * SYNC_NV bit: un_f_sync_nv_supported is
8656 	 * initialized to be false.
8657 	 */
8658 	un->un_f_sync_nv_supported = FALSE;
8659 
8660 	/*
8661 	 * If either sd.conf or internal disk table
8662 	 * specifies cache flush be suppressed, then
8663 	 * we don't bother checking NV_SUP bit.
8664 	 */
8665 	if (un->un_f_suppress_cache_flush == TRUE) {
8666 		mutex_exit(SD_MUTEX(un));
8667 		return;
8668 	}
8669 
8670 	if (sd_check_vpd_page_support(un) == 0 &&
8671 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8672 		mutex_exit(SD_MUTEX(un));
8673 		/* collect page 86 data if available */
8674 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8675 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8676 		    0x01, 0x86, &inq86_resid);
8677 
8678 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8679 			SD_TRACE(SD_LOG_COMMON, un,
8680 			    "sd_get_nv_sup: \
8681 			    successfully get VPD page: %x \
8682 			    PAGE LENGTH: %x BYTE 6: %x\n",
8683 			    inq86[1], inq86[3], inq86[6]);
8684 
8685 			mutex_enter(SD_MUTEX(un));
8686 			/*
8687 			 * check the value of NV_SUP bit: only if the device
8688 			 * reports NV_SUP bit to be 1, the
8689 			 * un_f_sync_nv_supported bit will be set to true.
8690 			 */
8691 			if (inq86[6] & SD_VPD_NV_SUP) {
8692 				un->un_f_sync_nv_supported = TRUE;
8693 			}
8694 			mutex_exit(SD_MUTEX(un));
8695 		}
8696 		kmem_free(inq86, inq86_len);
8697 	} else {
8698 		mutex_exit(SD_MUTEX(un));
8699 	}
8700 
8701 	/*
8702 	 * Send a SYNC CACHE command to check whether
8703 	 * SYNC_NV bit is supported. This command should have
8704 	 * un_f_sync_nv_supported set to correct value.
8705 	 */
8706 	mutex_enter(SD_MUTEX(un));
8707 	if (un->un_f_sync_nv_supported) {
8708 		mutex_exit(SD_MUTEX(un));
8709 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8710 		dkc->dkc_flag = FLUSH_VOLATILE;
8711 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8712 
8713 		/*
8714 		 * Send a TEST UNIT READY command to the device. This should
8715 		 * clear any outstanding UNIT ATTENTION that may be present.
8716 		 */
8717 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8718 
8719 		kmem_free(dkc, sizeof (struct dk_callback));
8720 	} else {
8721 		mutex_exit(SD_MUTEX(un));
8722 	}
8723 
8724 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8725 	    un_f_suppress_cache_flush is set to %d\n",
8726 	    un->un_f_suppress_cache_flush);
8727 }
8728 
8729 /*
8730  *    Function: sd_make_device
8731  *
8732  * Description: Utility routine to return the Solaris device number from
8733  *		the data in the device's dev_info structure.
8734  *
8735  * Return Code: The Solaris device number
8736  *
8737  *     Context: Any
8738  */
8739 
8740 static dev_t
8741 sd_make_device(dev_info_t *devi)
8742 {
8743 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8744 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8745 }
8746 
8747 
8748 /*
8749  *    Function: sd_pm_entry
8750  *
8751  * Description: Called at the start of a new command to manage power
8752  *		and busy status of a device. This includes determining whether
8753  *		the current power state of the device is sufficient for
8754  *		performing the command or whether it must be changed.
8755  *		The PM framework is notified appropriately.
8756  *		Only with a return status of DDI_SUCCESS will the
8757  *		component be busy to the framework.
8758  *
8759  *		All callers of sd_pm_entry must check the return status
8760  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8761  *		of DDI_FAILURE indicates the device failed to power up.
8762  *		In this case un_pm_count has been adjusted so the result
8763  *		on exit is still powered down, ie. count is less than 0.
8764  *		Calling sd_pm_exit with this count value hits an ASSERT.
8765  *
8766  * Return Code: DDI_SUCCESS or DDI_FAILURE
8767  *
8768  *     Context: Kernel thread context.
8769  */
8770 
8771 static int
8772 sd_pm_entry(struct sd_lun *un)
8773 {
8774 	int return_status = DDI_SUCCESS;
8775 
8776 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8777 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8778 
8779 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8780 
8781 	if (un->un_f_pm_is_enabled == FALSE) {
8782 		SD_TRACE(SD_LOG_IO_PM, un,
8783 		    "sd_pm_entry: exiting, PM not enabled\n");
8784 		return (return_status);
8785 	}
8786 
8787 	/*
8788 	 * Just increment a counter if PM is enabled. On the transition from
8789 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8790 	 * the count with each IO and mark the device as idle when the count
8791 	 * hits 0.
8792 	 *
8793 	 * If the count is less than 0 the device is powered down. If a powered
8794 	 * down device is successfully powered up then the count must be
8795 	 * incremented to reflect the power up. Note that it'll get incremented
8796 	 * a second time to become busy.
8797 	 *
8798 	 * Because the following has the potential to change the device state
8799 	 * and must release the un_pm_mutex to do so, only one thread can be
8800 	 * allowed through at a time.
8801 	 */
8802 
8803 	mutex_enter(&un->un_pm_mutex);
8804 	while (un->un_pm_busy == TRUE) {
8805 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8806 	}
8807 	un->un_pm_busy = TRUE;
8808 
8809 	if (un->un_pm_count < 1) {
8810 
8811 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8812 
8813 		/*
8814 		 * Indicate we are now busy so the framework won't attempt to
8815 		 * power down the device. This call will only fail if either
8816 		 * we passed a bad component number or the device has no
8817 		 * components. Neither of these should ever happen.
8818 		 */
8819 		mutex_exit(&un->un_pm_mutex);
8820 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8821 		ASSERT(return_status == DDI_SUCCESS);
8822 
8823 		mutex_enter(&un->un_pm_mutex);
8824 
8825 		if (un->un_pm_count < 0) {
8826 			mutex_exit(&un->un_pm_mutex);
8827 
8828 			SD_TRACE(SD_LOG_IO_PM, un,
8829 			    "sd_pm_entry: power up component\n");
8830 
8831 			/*
8832 			 * pm_raise_power will cause sdpower to be called
8833 			 * which brings the device power level to the
8834 			 * desired state, ON in this case. If successful,
8835 			 * un_pm_count and un_power_level will be updated
8836 			 * appropriately.
8837 			 */
8838 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8839 			    SD_SPINDLE_ON);
8840 
8841 			mutex_enter(&un->un_pm_mutex);
8842 
8843 			if (return_status != DDI_SUCCESS) {
8844 				/*
8845 				 * Power up failed.
8846 				 * Idle the device and adjust the count
8847 				 * so the result on exit is that we're
8848 				 * still powered down, ie. count is less than 0.
8849 				 */
8850 				SD_TRACE(SD_LOG_IO_PM, un,
8851 				    "sd_pm_entry: power up failed,"
8852 				    " idle the component\n");
8853 
8854 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8855 				un->un_pm_count--;
8856 			} else {
8857 				/*
8858 				 * Device is powered up, verify the
8859 				 * count is non-negative.
8860 				 * This is debug only.
8861 				 */
8862 				ASSERT(un->un_pm_count == 0);
8863 			}
8864 		}
8865 
8866 		if (return_status == DDI_SUCCESS) {
8867 			/*
8868 			 * For performance, now that the device has been tagged
8869 			 * as busy, and it's known to be powered up, update the
8870 			 * chain types to use jump tables that do not include
8871 			 * pm. This significantly lowers the overhead and
8872 			 * therefore improves performance.
8873 			 */
8874 
8875 			mutex_exit(&un->un_pm_mutex);
8876 			mutex_enter(SD_MUTEX(un));
8877 			SD_TRACE(SD_LOG_IO_PM, un,
8878 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8879 			    un->un_uscsi_chain_type);
8880 
8881 			if (un->un_f_non_devbsize_supported) {
8882 				un->un_buf_chain_type =
8883 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8884 			} else {
8885 				un->un_buf_chain_type =
8886 				    SD_CHAIN_INFO_DISK_NO_PM;
8887 			}
8888 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8889 
8890 			SD_TRACE(SD_LOG_IO_PM, un,
8891 			    "             changed  uscsi_chain_type to   %d\n",
8892 			    un->un_uscsi_chain_type);
8893 			mutex_exit(SD_MUTEX(un));
8894 			mutex_enter(&un->un_pm_mutex);
8895 
8896 			if (un->un_pm_idle_timeid == NULL) {
8897 				/* 300 ms. */
8898 				un->un_pm_idle_timeid =
8899 				    timeout(sd_pm_idletimeout_handler, un,
8900 				    (drv_usectohz((clock_t)300000)));
8901 				/*
8902 				 * Include an extra call to busy which keeps the
8903 				 * device busy with-respect-to the PM layer
8904 				 * until the timer fires, at which time it'll
8905 				 * get the extra idle call.
8906 				 */
8907 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8908 			}
8909 		}
8910 	}
8911 	un->un_pm_busy = FALSE;
8912 	/* Next... */
8913 	cv_signal(&un->un_pm_busy_cv);
8914 
8915 	un->un_pm_count++;
8916 
8917 	SD_TRACE(SD_LOG_IO_PM, un,
8918 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8919 
8920 	mutex_exit(&un->un_pm_mutex);
8921 
8922 	return (return_status);
8923 }
8924 
8925 
8926 /*
8927  *    Function: sd_pm_exit
8928  *
8929  * Description: Called at the completion of a command to manage busy
8930  *		status for the device. If the device becomes idle the
8931  *		PM framework is notified.
8932  *
8933  *     Context: Kernel thread context
8934  */
8935 
8936 static void
8937 sd_pm_exit(struct sd_lun *un)
8938 {
8939 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8940 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8941 
8942 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8943 
8944 	/*
8945 	 * After attach the following flag is only read, so don't
8946 	 * take the penalty of acquiring a mutex for it.
8947 	 */
8948 	if (un->un_f_pm_is_enabled == TRUE) {
8949 
8950 		mutex_enter(&un->un_pm_mutex);
8951 		un->un_pm_count--;
8952 
8953 		SD_TRACE(SD_LOG_IO_PM, un,
8954 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8955 
8956 		ASSERT(un->un_pm_count >= 0);
8957 		if (un->un_pm_count == 0) {
8958 			mutex_exit(&un->un_pm_mutex);
8959 
8960 			SD_TRACE(SD_LOG_IO_PM, un,
8961 			    "sd_pm_exit: idle component\n");
8962 
8963 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8964 
8965 		} else {
8966 			mutex_exit(&un->un_pm_mutex);
8967 		}
8968 	}
8969 
8970 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8971 }
8972 
8973 
8974 /*
8975  *    Function: sdopen
8976  *
8977  * Description: Driver's open(9e) entry point function.
8978  *
8979  *   Arguments: dev_i   - pointer to device number
8980  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8981  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8982  *		cred_p  - user credential pointer
8983  *
8984  * Return Code: EINVAL
8985  *		ENXIO
8986  *		EIO
8987  *		EROFS
8988  *		EBUSY
8989  *
8990  *     Context: Kernel thread context
8991  */
8992 /* ARGSUSED */
8993 static int
8994 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8995 {
8996 	struct sd_lun	*un;
8997 	int		nodelay;
8998 	int		part;
8999 	uint64_t	partmask;
9000 	int		instance;
9001 	dev_t		dev;
9002 	int		rval = EIO;
9003 	diskaddr_t	nblks = 0;
9004 	diskaddr_t	label_cap;
9005 
9006 	/* Validate the open type */
9007 	if (otyp >= OTYPCNT) {
9008 		return (EINVAL);
9009 	}
9010 
9011 	dev = *dev_p;
9012 	instance = SDUNIT(dev);
9013 	mutex_enter(&sd_detach_mutex);
9014 
9015 	/*
9016 	 * Fail the open if there is no softstate for the instance, or
9017 	 * if another thread somewhere is trying to detach the instance.
9018 	 */
9019 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9020 	    (un->un_detach_count != 0)) {
9021 		mutex_exit(&sd_detach_mutex);
9022 		/*
9023 		 * The probe cache only needs to be cleared when open (9e) fails
9024 		 * with ENXIO (4238046).
9025 		 */
9026 		/*
9027 		 * un-conditionally clearing probe cache is ok with
9028 		 * separate sd/ssd binaries
9029 		 * x86 platform can be an issue with both parallel
9030 		 * and fibre in 1 binary
9031 		 */
9032 		sd_scsi_clear_probe_cache();
9033 		return (ENXIO);
9034 	}
9035 
9036 	/*
9037 	 * The un_layer_count is to prevent another thread in specfs from
9038 	 * trying to detach the instance, which can happen when we are
9039 	 * called from a higher-layer driver instead of thru specfs.
9040 	 * This will not be needed when DDI provides a layered driver
9041 	 * interface that allows specfs to know that an instance is in
9042 	 * use by a layered driver & should not be detached.
9043 	 *
9044 	 * Note: the semantics for layered driver opens are exactly one
9045 	 * close for every open.
9046 	 */
9047 	if (otyp == OTYP_LYR) {
9048 		un->un_layer_count++;
9049 	}
9050 
9051 	/*
9052 	 * Keep a count of the current # of opens in progress. This is because
9053 	 * some layered drivers try to call us as a regular open. This can
9054 	 * cause problems that we cannot prevent, however by keeping this count
9055 	 * we can at least keep our open and detach routines from racing against
9056 	 * each other under such conditions.
9057 	 */
9058 	un->un_opens_in_progress++;
9059 	mutex_exit(&sd_detach_mutex);
9060 
9061 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9062 	part	 = SDPART(dev);
9063 	partmask = 1 << part;
9064 
9065 	/*
9066 	 * We use a semaphore here in order to serialize
9067 	 * open and close requests on the device.
9068 	 */
9069 	sema_p(&un->un_semoclose);
9070 
9071 	mutex_enter(SD_MUTEX(un));
9072 
9073 	/*
9074 	 * All device accesses go thru sdstrategy() where we check
9075 	 * on suspend status but there could be a scsi_poll command,
9076 	 * which bypasses sdstrategy(), so we need to check pm
9077 	 * status.
9078 	 */
9079 
9080 	if (!nodelay) {
9081 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9082 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9083 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9084 		}
9085 
9086 		mutex_exit(SD_MUTEX(un));
9087 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9088 			rval = EIO;
9089 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9090 			    "sdopen: sd_pm_entry failed\n");
9091 			goto open_failed_with_pm;
9092 		}
9093 		mutex_enter(SD_MUTEX(un));
9094 	}
9095 
9096 	/* check for previous exclusive open */
9097 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9098 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9099 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9100 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9101 
9102 	if (un->un_exclopen & (partmask)) {
9103 		goto excl_open_fail;
9104 	}
9105 
9106 	if (flag & FEXCL) {
9107 		int i;
9108 		if (un->un_ocmap.lyropen[part]) {
9109 			goto excl_open_fail;
9110 		}
9111 		for (i = 0; i < (OTYPCNT - 1); i++) {
9112 			if (un->un_ocmap.regopen[i] & (partmask)) {
9113 				goto excl_open_fail;
9114 			}
9115 		}
9116 	}
9117 
9118 	/*
9119 	 * Check the write permission if this is a removable media device,
9120 	 * NDELAY has not been set, and writable permission is requested.
9121 	 *
9122 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9123 	 * attempt will fail with EIO as part of the I/O processing. This is a
9124 	 * more permissive implementation that allows the open to succeed and
9125 	 * WRITE attempts to fail when appropriate.
9126 	 */
9127 	if (un->un_f_chk_wp_open) {
9128 		if ((flag & FWRITE) && (!nodelay)) {
9129 			mutex_exit(SD_MUTEX(un));
9130 			/*
9131 			 * Defer the check for write permission on writable
9132 			 * DVD drive till sdstrategy and will not fail open even
9133 			 * if FWRITE is set as the device can be writable
9134 			 * depending upon the media and the media can change
9135 			 * after the call to open().
9136 			 */
9137 			if (un->un_f_dvdram_writable_device == FALSE) {
9138 				if (ISCD(un) || sr_check_wp(dev)) {
9139 				rval = EROFS;
9140 				mutex_enter(SD_MUTEX(un));
9141 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9142 				    "write to cd or write protected media\n");
9143 				goto open_fail;
9144 				}
9145 			}
9146 			mutex_enter(SD_MUTEX(un));
9147 		}
9148 	}
9149 
9150 	/*
9151 	 * If opening in NDELAY/NONBLOCK mode, just return.
9152 	 * Check if disk is ready and has a valid geometry later.
9153 	 */
9154 	if (!nodelay) {
9155 		mutex_exit(SD_MUTEX(un));
9156 		rval = sd_ready_and_valid(un);
9157 		mutex_enter(SD_MUTEX(un));
9158 		/*
9159 		 * Fail if device is not ready or if the number of disk
9160 		 * blocks is zero or negative for non CD devices.
9161 		 */
9162 
9163 		nblks = 0;
9164 
9165 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9166 			/* if cmlb_partinfo fails, nblks remains 0 */
9167 			mutex_exit(SD_MUTEX(un));
9168 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9169 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9170 			mutex_enter(SD_MUTEX(un));
9171 		}
9172 
9173 		if ((rval != SD_READY_VALID) ||
9174 		    (!ISCD(un) && nblks <= 0)) {
9175 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9176 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9177 			    "device not ready or invalid disk block value\n");
9178 			goto open_fail;
9179 		}
9180 #if defined(__i386) || defined(__amd64)
9181 	} else {
9182 		uchar_t *cp;
9183 		/*
9184 		 * x86 requires special nodelay handling, so that p0 is
9185 		 * always defined and accessible.
9186 		 * Invalidate geometry only if device is not already open.
9187 		 */
9188 		cp = &un->un_ocmap.chkd[0];
9189 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9190 			if (*cp != (uchar_t)0) {
9191 				break;
9192 			}
9193 			cp++;
9194 		}
9195 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9196 			mutex_exit(SD_MUTEX(un));
9197 			cmlb_invalidate(un->un_cmlbhandle,
9198 			    (void *)SD_PATH_DIRECT);
9199 			mutex_enter(SD_MUTEX(un));
9200 		}
9201 
9202 #endif
9203 	}
9204 
9205 	if (otyp == OTYP_LYR) {
9206 		un->un_ocmap.lyropen[part]++;
9207 	} else {
9208 		un->un_ocmap.regopen[otyp] |= partmask;
9209 	}
9210 
9211 	/* Set up open and exclusive open flags */
9212 	if (flag & FEXCL) {
9213 		un->un_exclopen |= (partmask);
9214 	}
9215 
9216 	/*
9217 	 * If the lun is EFI labeled and lun capacity is greater than the
9218 	 * capacity contained in the label, log a sys-event to notify the
9219 	 * interested module.
9220 	 * To avoid an infinite loop of logging sys-event, we only log the
9221 	 * event when the lun is not opened in NDELAY mode. The event handler
9222 	 * should open the lun in NDELAY mode.
9223 	 */
9224 	if (!(flag & FNDELAY)) {
9225 		mutex_exit(SD_MUTEX(un));
9226 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9227 		    (void*)SD_PATH_DIRECT) == 0) {
9228 			mutex_enter(SD_MUTEX(un));
9229 			if (un->un_f_blockcount_is_valid &&
9230 			    un->un_blockcount > label_cap) {
9231 				mutex_exit(SD_MUTEX(un));
9232 				sd_log_lun_expansion_event(un,
9233 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9234 				mutex_enter(SD_MUTEX(un));
9235 			}
9236 		} else {
9237 			mutex_enter(SD_MUTEX(un));
9238 		}
9239 	}
9240 
9241 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9242 	    "open of part %d type %d\n", part, otyp);
9243 
9244 	mutex_exit(SD_MUTEX(un));
9245 	if (!nodelay) {
9246 		sd_pm_exit(un);
9247 	}
9248 
9249 	sema_v(&un->un_semoclose);
9250 
9251 	mutex_enter(&sd_detach_mutex);
9252 	un->un_opens_in_progress--;
9253 	mutex_exit(&sd_detach_mutex);
9254 
9255 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9256 	return (DDI_SUCCESS);
9257 
9258 excl_open_fail:
9259 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9260 	rval = EBUSY;
9261 
9262 open_fail:
9263 	mutex_exit(SD_MUTEX(un));
9264 
9265 	/*
9266 	 * On a failed open we must exit the pm management.
9267 	 */
9268 	if (!nodelay) {
9269 		sd_pm_exit(un);
9270 	}
9271 open_failed_with_pm:
9272 	sema_v(&un->un_semoclose);
9273 
9274 	mutex_enter(&sd_detach_mutex);
9275 	un->un_opens_in_progress--;
9276 	if (otyp == OTYP_LYR) {
9277 		un->un_layer_count--;
9278 	}
9279 	mutex_exit(&sd_detach_mutex);
9280 
9281 	return (rval);
9282 }
9283 
9284 
9285 /*
9286  *    Function: sdclose
9287  *
9288  * Description: Driver's close(9e) entry point function.
9289  *
9290  *   Arguments: dev    - device number
9291  *		flag   - file status flag, informational only
9292  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9293  *		cred_p - user credential pointer
9294  *
9295  * Return Code: ENXIO
9296  *
9297  *     Context: Kernel thread context
9298  */
9299 /* ARGSUSED */
9300 static int
9301 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9302 {
9303 	struct sd_lun	*un;
9304 	uchar_t		*cp;
9305 	int		part;
9306 	int		nodelay;
9307 	int		rval = 0;
9308 
9309 	/* Validate the open type */
9310 	if (otyp >= OTYPCNT) {
9311 		return (ENXIO);
9312 	}
9313 
9314 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9315 		return (ENXIO);
9316 	}
9317 
9318 	part = SDPART(dev);
9319 	nodelay = flag & (FNDELAY | FNONBLOCK);
9320 
9321 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9322 	    "sdclose: close of part %d type %d\n", part, otyp);
9323 
9324 	/*
9325 	 * We use a semaphore here in order to serialize
9326 	 * open and close requests on the device.
9327 	 */
9328 	sema_p(&un->un_semoclose);
9329 
9330 	mutex_enter(SD_MUTEX(un));
9331 
9332 	/* Don't proceed if power is being changed. */
9333 	while (un->un_state == SD_STATE_PM_CHANGING) {
9334 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9335 	}
9336 
9337 	if (un->un_exclopen & (1 << part)) {
9338 		un->un_exclopen &= ~(1 << part);
9339 	}
9340 
9341 	/* Update the open partition map */
9342 	if (otyp == OTYP_LYR) {
9343 		un->un_ocmap.lyropen[part] -= 1;
9344 	} else {
9345 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9346 	}
9347 
9348 	cp = &un->un_ocmap.chkd[0];
9349 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9350 		if (*cp != NULL) {
9351 			break;
9352 		}
9353 		cp++;
9354 	}
9355 
9356 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9357 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9358 
9359 		/*
9360 		 * We avoid persistance upon the last close, and set
9361 		 * the throttle back to the maximum.
9362 		 */
9363 		un->un_throttle = un->un_saved_throttle;
9364 
9365 		if (un->un_state == SD_STATE_OFFLINE) {
9366 			if (un->un_f_is_fibre == FALSE) {
9367 				scsi_log(SD_DEVINFO(un), sd_label,
9368 				    CE_WARN, "offline\n");
9369 			}
9370 			mutex_exit(SD_MUTEX(un));
9371 			cmlb_invalidate(un->un_cmlbhandle,
9372 			    (void *)SD_PATH_DIRECT);
9373 			mutex_enter(SD_MUTEX(un));
9374 
9375 		} else {
9376 			/*
9377 			 * Flush any outstanding writes in NVRAM cache.
9378 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9379 			 * cmd, it may not work for non-Pluto devices.
9380 			 * SYNCHRONIZE CACHE is not required for removables,
9381 			 * except DVD-RAM drives.
9382 			 *
9383 			 * Also note: because SYNCHRONIZE CACHE is currently
9384 			 * the only command issued here that requires the
9385 			 * drive be powered up, only do the power up before
9386 			 * sending the Sync Cache command. If additional
9387 			 * commands are added which require a powered up
9388 			 * drive, the following sequence may have to change.
9389 			 *
9390 			 * And finally, note that parallel SCSI on SPARC
9391 			 * only issues a Sync Cache to DVD-RAM, a newly
9392 			 * supported device.
9393 			 */
9394 #if defined(__i386) || defined(__amd64)
9395 			if (un->un_f_sync_cache_supported ||
9396 			    un->un_f_dvdram_writable_device == TRUE) {
9397 #else
9398 			if (un->un_f_dvdram_writable_device == TRUE) {
9399 #endif
9400 				mutex_exit(SD_MUTEX(un));
9401 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9402 					rval =
9403 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9404 					    NULL);
9405 					/* ignore error if not supported */
9406 					if (rval == ENOTSUP) {
9407 						rval = 0;
9408 					} else if (rval != 0) {
9409 						rval = EIO;
9410 					}
9411 					sd_pm_exit(un);
9412 				} else {
9413 					rval = EIO;
9414 				}
9415 				mutex_enter(SD_MUTEX(un));
9416 			}
9417 
9418 			/*
9419 			 * For devices which supports DOOR_LOCK, send an ALLOW
9420 			 * MEDIA REMOVAL command, but don't get upset if it
9421 			 * fails. We need to raise the power of the drive before
9422 			 * we can call sd_send_scsi_DOORLOCK()
9423 			 */
9424 			if (un->un_f_doorlock_supported) {
9425 				mutex_exit(SD_MUTEX(un));
9426 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9427 					rval = sd_send_scsi_DOORLOCK(un,
9428 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9429 
9430 					sd_pm_exit(un);
9431 					if (ISCD(un) && (rval != 0) &&
9432 					    (nodelay != 0)) {
9433 						rval = ENXIO;
9434 					}
9435 				} else {
9436 					rval = EIO;
9437 				}
9438 				mutex_enter(SD_MUTEX(un));
9439 			}
9440 
9441 			/*
9442 			 * If a device has removable media, invalidate all
9443 			 * parameters related to media, such as geometry,
9444 			 * blocksize, and blockcount.
9445 			 */
9446 			if (un->un_f_has_removable_media) {
9447 				sr_ejected(un);
9448 			}
9449 
9450 			/*
9451 			 * Destroy the cache (if it exists) which was
9452 			 * allocated for the write maps since this is
9453 			 * the last close for this media.
9454 			 */
9455 			if (un->un_wm_cache) {
9456 				/*
9457 				 * Check if there are pending commands.
9458 				 * and if there are give a warning and
9459 				 * do not destroy the cache.
9460 				 */
9461 				if (un->un_ncmds_in_driver > 0) {
9462 					scsi_log(SD_DEVINFO(un),
9463 					    sd_label, CE_WARN,
9464 					    "Unable to clean up memory "
9465 					    "because of pending I/O\n");
9466 				} else {
9467 					kmem_cache_destroy(
9468 					    un->un_wm_cache);
9469 					un->un_wm_cache = NULL;
9470 				}
9471 			}
9472 		}
9473 	}
9474 
9475 	mutex_exit(SD_MUTEX(un));
9476 	sema_v(&un->un_semoclose);
9477 
9478 	if (otyp == OTYP_LYR) {
9479 		mutex_enter(&sd_detach_mutex);
9480 		/*
9481 		 * The detach routine may run when the layer count
9482 		 * drops to zero.
9483 		 */
9484 		un->un_layer_count--;
9485 		mutex_exit(&sd_detach_mutex);
9486 	}
9487 
9488 	return (rval);
9489 }
9490 
9491 
9492 /*
9493  *    Function: sd_ready_and_valid
9494  *
9495  * Description: Test if device is ready and has a valid geometry.
9496  *
9497  *   Arguments: dev - device number
9498  *		un  - driver soft state (unit) structure
9499  *
9500  * Return Code: SD_READY_VALID		ready and valid label
9501  *		SD_NOT_READY_VALID	not ready, no label
9502  *		SD_RESERVED_BY_OTHERS	reservation conflict
9503  *
9504  *     Context: Never called at interrupt context.
9505  */
9506 
9507 static int
9508 sd_ready_and_valid(struct sd_lun *un)
9509 {
9510 	struct sd_errstats	*stp;
9511 	uint64_t		capacity;
9512 	uint_t			lbasize;
9513 	int			rval = SD_READY_VALID;
9514 	char			name_str[48];
9515 	int			is_valid;
9516 
9517 	ASSERT(un != NULL);
9518 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9519 
9520 	mutex_enter(SD_MUTEX(un));
9521 	/*
9522 	 * If a device has removable media, we must check if media is
9523 	 * ready when checking if this device is ready and valid.
9524 	 */
9525 	if (un->un_f_has_removable_media) {
9526 		mutex_exit(SD_MUTEX(un));
9527 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9528 			rval = SD_NOT_READY_VALID;
9529 			mutex_enter(SD_MUTEX(un));
9530 			goto done;
9531 		}
9532 
9533 		is_valid = SD_IS_VALID_LABEL(un);
9534 		mutex_enter(SD_MUTEX(un));
9535 		if (!is_valid ||
9536 		    (un->un_f_blockcount_is_valid == FALSE) ||
9537 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9538 
9539 			/* capacity has to be read every open. */
9540 			mutex_exit(SD_MUTEX(un));
9541 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9542 			    &lbasize, SD_PATH_DIRECT) != 0) {
9543 				cmlb_invalidate(un->un_cmlbhandle,
9544 				    (void *)SD_PATH_DIRECT);
9545 				mutex_enter(SD_MUTEX(un));
9546 				rval = SD_NOT_READY_VALID;
9547 				goto done;
9548 			} else {
9549 				mutex_enter(SD_MUTEX(un));
9550 				sd_update_block_info(un, lbasize, capacity);
9551 			}
9552 		}
9553 
9554 		/*
9555 		 * Check if the media in the device is writable or not.
9556 		 */
9557 		if (!is_valid && ISCD(un)) {
9558 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9559 		}
9560 
9561 	} else {
9562 		/*
9563 		 * Do a test unit ready to clear any unit attention from non-cd
9564 		 * devices.
9565 		 */
9566 		mutex_exit(SD_MUTEX(un));
9567 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9568 		mutex_enter(SD_MUTEX(un));
9569 	}
9570 
9571 
9572 	/*
9573 	 * If this is a non 512 block device, allocate space for
9574 	 * the wmap cache. This is being done here since every time
9575 	 * a media is changed this routine will be called and the
9576 	 * block size is a function of media rather than device.
9577 	 */
9578 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9579 		if (!(un->un_wm_cache)) {
9580 			(void) snprintf(name_str, sizeof (name_str),
9581 			    "%s%d_cache",
9582 			    ddi_driver_name(SD_DEVINFO(un)),
9583 			    ddi_get_instance(SD_DEVINFO(un)));
9584 			un->un_wm_cache = kmem_cache_create(
9585 			    name_str, sizeof (struct sd_w_map),
9586 			    8, sd_wm_cache_constructor,
9587 			    sd_wm_cache_destructor, NULL,
9588 			    (void *)un, NULL, 0);
9589 			if (!(un->un_wm_cache)) {
9590 					rval = ENOMEM;
9591 					goto done;
9592 			}
9593 		}
9594 	}
9595 
9596 	if (un->un_state == SD_STATE_NORMAL) {
9597 		/*
9598 		 * If the target is not yet ready here (defined by a TUR
9599 		 * failure), invalidate the geometry and print an 'offline'
9600 		 * message. This is a legacy message, as the state of the
9601 		 * target is not actually changed to SD_STATE_OFFLINE.
9602 		 *
9603 		 * If the TUR fails for EACCES (Reservation Conflict),
9604 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9605 		 * reservation conflict. If the TUR fails for other
9606 		 * reasons, SD_NOT_READY_VALID will be returned.
9607 		 */
9608 		int err;
9609 
9610 		mutex_exit(SD_MUTEX(un));
9611 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9612 		mutex_enter(SD_MUTEX(un));
9613 
9614 		if (err != 0) {
9615 			mutex_exit(SD_MUTEX(un));
9616 			cmlb_invalidate(un->un_cmlbhandle,
9617 			    (void *)SD_PATH_DIRECT);
9618 			mutex_enter(SD_MUTEX(un));
9619 			if (err == EACCES) {
9620 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9621 				    "reservation conflict\n");
9622 				rval = SD_RESERVED_BY_OTHERS;
9623 			} else {
9624 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9625 				    "drive offline\n");
9626 				rval = SD_NOT_READY_VALID;
9627 			}
9628 			goto done;
9629 		}
9630 	}
9631 
9632 	if (un->un_f_format_in_progress == FALSE) {
9633 		mutex_exit(SD_MUTEX(un));
9634 		if (cmlb_validate(un->un_cmlbhandle, 0,
9635 		    (void *)SD_PATH_DIRECT) != 0) {
9636 			rval = SD_NOT_READY_VALID;
9637 			mutex_enter(SD_MUTEX(un));
9638 			goto done;
9639 		}
9640 		if (un->un_f_pkstats_enabled) {
9641 			sd_set_pstats(un);
9642 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9643 			    "sd_ready_and_valid: un:0x%p pstats created and "
9644 			    "set\n", un);
9645 		}
9646 		mutex_enter(SD_MUTEX(un));
9647 	}
9648 
9649 	/*
9650 	 * If this device supports DOOR_LOCK command, try and send
9651 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9652 	 * if it fails. For a CD, however, it is an error
9653 	 */
9654 	if (un->un_f_doorlock_supported) {
9655 		mutex_exit(SD_MUTEX(un));
9656 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9657 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9658 			rval = SD_NOT_READY_VALID;
9659 			mutex_enter(SD_MUTEX(un));
9660 			goto done;
9661 		}
9662 		mutex_enter(SD_MUTEX(un));
9663 	}
9664 
9665 	/* The state has changed, inform the media watch routines */
9666 	un->un_mediastate = DKIO_INSERTED;
9667 	cv_broadcast(&un->un_state_cv);
9668 	rval = SD_READY_VALID;
9669 
9670 done:
9671 
9672 	/*
9673 	 * Initialize the capacity kstat value, if no media previously
9674 	 * (capacity kstat is 0) and a media has been inserted
9675 	 * (un_blockcount > 0).
9676 	 */
9677 	if (un->un_errstats != NULL) {
9678 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9679 		if ((stp->sd_capacity.value.ui64 == 0) &&
9680 		    (un->un_f_blockcount_is_valid == TRUE)) {
9681 			stp->sd_capacity.value.ui64 =
9682 			    (uint64_t)((uint64_t)un->un_blockcount *
9683 			    un->un_sys_blocksize);
9684 		}
9685 	}
9686 
9687 	mutex_exit(SD_MUTEX(un));
9688 	return (rval);
9689 }
9690 
9691 
9692 /*
9693  *    Function: sdmin
9694  *
9695  * Description: Routine to limit the size of a data transfer. Used in
9696  *		conjunction with physio(9F).
9697  *
9698  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9699  *
9700  *     Context: Kernel thread context.
9701  */
9702 
9703 static void
9704 sdmin(struct buf *bp)
9705 {
9706 	struct sd_lun	*un;
9707 	int		instance;
9708 
9709 	instance = SDUNIT(bp->b_edev);
9710 
9711 	un = ddi_get_soft_state(sd_state, instance);
9712 	ASSERT(un != NULL);
9713 
9714 	if (bp->b_bcount > un->un_max_xfer_size) {
9715 		bp->b_bcount = un->un_max_xfer_size;
9716 	}
9717 }
9718 
9719 
9720 /*
9721  *    Function: sdread
9722  *
9723  * Description: Driver's read(9e) entry point function.
9724  *
9725  *   Arguments: dev   - device number
9726  *		uio   - structure pointer describing where data is to be stored
9727  *			in user's space
9728  *		cred_p  - user credential pointer
9729  *
9730  * Return Code: ENXIO
9731  *		EIO
9732  *		EINVAL
9733  *		value returned by physio
9734  *
9735  *     Context: Kernel thread context.
9736  */
9737 /* ARGSUSED */
9738 static int
9739 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9740 {
9741 	struct sd_lun	*un = NULL;
9742 	int		secmask;
9743 	int		err;
9744 
9745 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9746 		return (ENXIO);
9747 	}
9748 
9749 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9750 
9751 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9752 		mutex_enter(SD_MUTEX(un));
9753 		/*
9754 		 * Because the call to sd_ready_and_valid will issue I/O we
9755 		 * must wait here if either the device is suspended or
9756 		 * if it's power level is changing.
9757 		 */
9758 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9759 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9760 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9761 		}
9762 		un->un_ncmds_in_driver++;
9763 		mutex_exit(SD_MUTEX(un));
9764 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9765 			mutex_enter(SD_MUTEX(un));
9766 			un->un_ncmds_in_driver--;
9767 			ASSERT(un->un_ncmds_in_driver >= 0);
9768 			mutex_exit(SD_MUTEX(un));
9769 			return (EIO);
9770 		}
9771 		mutex_enter(SD_MUTEX(un));
9772 		un->un_ncmds_in_driver--;
9773 		ASSERT(un->un_ncmds_in_driver >= 0);
9774 		mutex_exit(SD_MUTEX(un));
9775 	}
9776 
9777 	/*
9778 	 * Read requests are restricted to multiples of the system block size.
9779 	 */
9780 	secmask = un->un_sys_blocksize - 1;
9781 
9782 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9783 		SD_ERROR(SD_LOG_READ_WRITE, un,
9784 		    "sdread: file offset not modulo %d\n",
9785 		    un->un_sys_blocksize);
9786 		err = EINVAL;
9787 	} else if (uio->uio_iov->iov_len & (secmask)) {
9788 		SD_ERROR(SD_LOG_READ_WRITE, un,
9789 		    "sdread: transfer length not modulo %d\n",
9790 		    un->un_sys_blocksize);
9791 		err = EINVAL;
9792 	} else {
9793 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9794 	}
9795 	return (err);
9796 }
9797 
9798 
9799 /*
9800  *    Function: sdwrite
9801  *
9802  * Description: Driver's write(9e) entry point function.
9803  *
9804  *   Arguments: dev   - device number
9805  *		uio   - structure pointer describing where data is stored in
9806  *			user's space
9807  *		cred_p  - user credential pointer
9808  *
9809  * Return Code: ENXIO
9810  *		EIO
9811  *		EINVAL
9812  *		value returned by physio
9813  *
9814  *     Context: Kernel thread context.
9815  */
9816 /* ARGSUSED */
9817 static int
9818 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9819 {
9820 	struct sd_lun	*un = NULL;
9821 	int		secmask;
9822 	int		err;
9823 
9824 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9825 		return (ENXIO);
9826 	}
9827 
9828 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9829 
9830 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9831 		mutex_enter(SD_MUTEX(un));
9832 		/*
9833 		 * Because the call to sd_ready_and_valid will issue I/O we
9834 		 * must wait here if either the device is suspended or
9835 		 * if it's power level is changing.
9836 		 */
9837 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9838 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9839 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9840 		}
9841 		un->un_ncmds_in_driver++;
9842 		mutex_exit(SD_MUTEX(un));
9843 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9844 			mutex_enter(SD_MUTEX(un));
9845 			un->un_ncmds_in_driver--;
9846 			ASSERT(un->un_ncmds_in_driver >= 0);
9847 			mutex_exit(SD_MUTEX(un));
9848 			return (EIO);
9849 		}
9850 		mutex_enter(SD_MUTEX(un));
9851 		un->un_ncmds_in_driver--;
9852 		ASSERT(un->un_ncmds_in_driver >= 0);
9853 		mutex_exit(SD_MUTEX(un));
9854 	}
9855 
9856 	/*
9857 	 * Write requests are restricted to multiples of the system block size.
9858 	 */
9859 	secmask = un->un_sys_blocksize - 1;
9860 
9861 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9862 		SD_ERROR(SD_LOG_READ_WRITE, un,
9863 		    "sdwrite: file offset not modulo %d\n",
9864 		    un->un_sys_blocksize);
9865 		err = EINVAL;
9866 	} else if (uio->uio_iov->iov_len & (secmask)) {
9867 		SD_ERROR(SD_LOG_READ_WRITE, un,
9868 		    "sdwrite: transfer length not modulo %d\n",
9869 		    un->un_sys_blocksize);
9870 		err = EINVAL;
9871 	} else {
9872 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9873 	}
9874 	return (err);
9875 }
9876 
9877 
9878 /*
9879  *    Function: sdaread
9880  *
9881  * Description: Driver's aread(9e) entry point function.
9882  *
9883  *   Arguments: dev   - device number
9884  *		aio   - structure pointer describing where data is to be stored
9885  *		cred_p  - user credential pointer
9886  *
9887  * Return Code: ENXIO
9888  *		EIO
9889  *		EINVAL
9890  *		value returned by aphysio
9891  *
9892  *     Context: Kernel thread context.
9893  */
9894 /* ARGSUSED */
9895 static int
9896 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9897 {
9898 	struct sd_lun	*un = NULL;
9899 	struct uio	*uio = aio->aio_uio;
9900 	int		secmask;
9901 	int		err;
9902 
9903 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9904 		return (ENXIO);
9905 	}
9906 
9907 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9908 
9909 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9910 		mutex_enter(SD_MUTEX(un));
9911 		/*
9912 		 * Because the call to sd_ready_and_valid will issue I/O we
9913 		 * must wait here if either the device is suspended or
9914 		 * if it's power level is changing.
9915 		 */
9916 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9917 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9918 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9919 		}
9920 		un->un_ncmds_in_driver++;
9921 		mutex_exit(SD_MUTEX(un));
9922 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9923 			mutex_enter(SD_MUTEX(un));
9924 			un->un_ncmds_in_driver--;
9925 			ASSERT(un->un_ncmds_in_driver >= 0);
9926 			mutex_exit(SD_MUTEX(un));
9927 			return (EIO);
9928 		}
9929 		mutex_enter(SD_MUTEX(un));
9930 		un->un_ncmds_in_driver--;
9931 		ASSERT(un->un_ncmds_in_driver >= 0);
9932 		mutex_exit(SD_MUTEX(un));
9933 	}
9934 
9935 	/*
9936 	 * Read requests are restricted to multiples of the system block size.
9937 	 */
9938 	secmask = un->un_sys_blocksize - 1;
9939 
9940 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9941 		SD_ERROR(SD_LOG_READ_WRITE, un,
9942 		    "sdaread: file offset not modulo %d\n",
9943 		    un->un_sys_blocksize);
9944 		err = EINVAL;
9945 	} else if (uio->uio_iov->iov_len & (secmask)) {
9946 		SD_ERROR(SD_LOG_READ_WRITE, un,
9947 		    "sdaread: transfer length not modulo %d\n",
9948 		    un->un_sys_blocksize);
9949 		err = EINVAL;
9950 	} else {
9951 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9952 	}
9953 	return (err);
9954 }
9955 
9956 
9957 /*
9958  *    Function: sdawrite
9959  *
9960  * Description: Driver's awrite(9e) entry point function.
9961  *
9962  *   Arguments: dev   - device number
9963  *		aio   - structure pointer describing where data is stored
9964  *		cred_p  - user credential pointer
9965  *
9966  * Return Code: ENXIO
9967  *		EIO
9968  *		EINVAL
9969  *		value returned by aphysio
9970  *
9971  *     Context: Kernel thread context.
9972  */
9973 /* ARGSUSED */
9974 static int
9975 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9976 {
9977 	struct sd_lun	*un = NULL;
9978 	struct uio	*uio = aio->aio_uio;
9979 	int		secmask;
9980 	int		err;
9981 
9982 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9983 		return (ENXIO);
9984 	}
9985 
9986 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9987 
9988 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9989 		mutex_enter(SD_MUTEX(un));
9990 		/*
9991 		 * Because the call to sd_ready_and_valid will issue I/O we
9992 		 * must wait here if either the device is suspended or
9993 		 * if it's power level is changing.
9994 		 */
9995 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9996 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9997 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9998 		}
9999 		un->un_ncmds_in_driver++;
10000 		mutex_exit(SD_MUTEX(un));
10001 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10002 			mutex_enter(SD_MUTEX(un));
10003 			un->un_ncmds_in_driver--;
10004 			ASSERT(un->un_ncmds_in_driver >= 0);
10005 			mutex_exit(SD_MUTEX(un));
10006 			return (EIO);
10007 		}
10008 		mutex_enter(SD_MUTEX(un));
10009 		un->un_ncmds_in_driver--;
10010 		ASSERT(un->un_ncmds_in_driver >= 0);
10011 		mutex_exit(SD_MUTEX(un));
10012 	}
10013 
10014 	/*
10015 	 * Write requests are restricted to multiples of the system block size.
10016 	 */
10017 	secmask = un->un_sys_blocksize - 1;
10018 
10019 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10020 		SD_ERROR(SD_LOG_READ_WRITE, un,
10021 		    "sdawrite: file offset not modulo %d\n",
10022 		    un->un_sys_blocksize);
10023 		err = EINVAL;
10024 	} else if (uio->uio_iov->iov_len & (secmask)) {
10025 		SD_ERROR(SD_LOG_READ_WRITE, un,
10026 		    "sdawrite: transfer length not modulo %d\n",
10027 		    un->un_sys_blocksize);
10028 		err = EINVAL;
10029 	} else {
10030 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10031 	}
10032 	return (err);
10033 }
10034 
10035 
10036 
10037 
10038 
10039 /*
10040  * Driver IO processing follows the following sequence:
10041  *
10042  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10043  *         |                |                     ^
10044  *         v                v                     |
10045  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10046  *         |                |                     |                   |
10047  *         v                |                     |                   |
10048  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10049  *         |                |                     ^                   ^
10050  *         v                v                     |                   |
10051  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10052  *         |                |                     |                   |
10053  *     +---+                |                     +------------+      +-------+
10054  *     |                    |                                  |              |
10055  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10056  *     |                    v                                  |              |
10057  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10058  *     |                    |                                  ^              |
10059  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10060  *     |                    v                                  |              |
10061  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10062  *     |                    |                                  ^              |
10063  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10064  *     |                    v                                  |              |
10065  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10066  *     |                    |                                  ^              |
10067  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10068  *     |                    v                                  |              |
10069  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10070  *     |                    |                                  ^              |
10071  *     |                    |                                  |              |
10072  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10073  *                          |                           ^
10074  *                          v                           |
10075  *                   sd_core_iostart()                  |
10076  *                          |                           |
10077  *                          |                           +------>(*destroypkt)()
10078  *                          +-> sd_start_cmds() <-+     |           |
10079  *                          |                     |     |           v
10080  *                          |                     |     |  scsi_destroy_pkt(9F)
10081  *                          |                     |     |
10082  *                          +->(*initpkt)()       +- sdintr()
10083  *                          |  |                        |  |
10084  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10085  *                          |  +-> scsi_setup_cdb(9F)   |
10086  *                          |                           |
10087  *                          +--> scsi_transport(9F)     |
10088  *                                     |                |
10089  *                                     +----> SCSA ---->+
10090  *
10091  *
10092  * This code is based upon the following presumptions:
10093  *
10094  *   - iostart and iodone functions operate on buf(9S) structures. These
10095  *     functions perform the necessary operations on the buf(9S) and pass
10096  *     them along to the next function in the chain by using the macros
10097  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10098  *     (for iodone side functions).
10099  *
10100  *   - The iostart side functions may sleep. The iodone side functions
10101  *     are called under interrupt context and may NOT sleep. Therefore
10102  *     iodone side functions also may not call iostart side functions.
10103  *     (NOTE: iostart side functions should NOT sleep for memory, as
10104  *     this could result in deadlock.)
10105  *
10106  *   - An iostart side function may call its corresponding iodone side
10107  *     function directly (if necessary).
10108  *
10109  *   - In the event of an error, an iostart side function can return a buf(9S)
10110  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10111  *     b_error in the usual way of course).
10112  *
10113  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10114  *     requests to the iostart side functions.  The iostart side functions in
10115  *     this case would be called under the context of a taskq thread, so it's
10116  *     OK for them to block/sleep/spin in this case.
10117  *
10118  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10119  *     pass them along to the next function in the chain.  The corresponding
10120  *     iodone side functions must coalesce the "shadow" bufs and return
10121  *     the "original" buf to the next higher layer.
10122  *
10123  *   - The b_private field of the buf(9S) struct holds a pointer to
10124  *     an sd_xbuf struct, which contains information needed to
10125  *     construct the scsi_pkt for the command.
10126  *
10127  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10128  *     layer must acquire & release the SD_MUTEX(un) as needed.
10129  */
10130 
10131 
10132 /*
10133  * Create taskq for all targets in the system. This is created at
10134  * _init(9E) and destroyed at _fini(9E).
10135  *
10136  * Note: here we set the minalloc to a reasonably high number to ensure that
10137  * we will have an adequate supply of task entries available at interrupt time.
10138  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10139  * sd_create_taskq().  Since we do not want to sleep for allocations at
10140  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10141  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10142  * requests any one instant in time.
10143  */
10144 #define	SD_TASKQ_NUMTHREADS	8
10145 #define	SD_TASKQ_MINALLOC	256
10146 #define	SD_TASKQ_MAXALLOC	256
10147 
10148 static taskq_t	*sd_tq = NULL;
10149 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10150 
10151 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10152 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10153 
10154 /*
10155  * The following task queue is being created for the write part of
10156  * read-modify-write of non-512 block size devices.
10157  * Limit the number of threads to 1 for now. This number has been chosen
10158  * considering the fact that it applies only to dvd ram drives/MO drives
10159  * currently. Performance for which is not main criteria at this stage.
10160  * Note: It needs to be explored if we can use a single taskq in future
10161  */
10162 #define	SD_WMR_TASKQ_NUMTHREADS	1
10163 static taskq_t	*sd_wmr_tq = NULL;
10164 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10165 
10166 /*
10167  *    Function: sd_taskq_create
10168  *
10169  * Description: Create taskq thread(s) and preallocate task entries
10170  *
10171  * Return Code: Returns a pointer to the allocated taskq_t.
10172  *
10173  *     Context: Can sleep. Requires blockable context.
10174  *
10175  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10176  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10177  *		- taskq_create() will block for memory, also it will panic
10178  *		  if it cannot create the requested number of threads.
10179  *		- Currently taskq_create() creates threads that cannot be
10180  *		  swapped.
10181  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10182  *		  supply of taskq entries at interrupt time (ie, so that we
10183  *		  do not have to sleep for memory)
10184  */
10185 
10186 static void
10187 sd_taskq_create(void)
10188 {
10189 	char	taskq_name[TASKQ_NAMELEN];
10190 
10191 	ASSERT(sd_tq == NULL);
10192 	ASSERT(sd_wmr_tq == NULL);
10193 
10194 	(void) snprintf(taskq_name, sizeof (taskq_name),
10195 	    "%s_drv_taskq", sd_label);
10196 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10197 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10198 	    TASKQ_PREPOPULATE));
10199 
10200 	(void) snprintf(taskq_name, sizeof (taskq_name),
10201 	    "%s_rmw_taskq", sd_label);
10202 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10203 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10204 	    TASKQ_PREPOPULATE));
10205 }
10206 
10207 
10208 /*
10209  *    Function: sd_taskq_delete
10210  *
10211  * Description: Complementary cleanup routine for sd_taskq_create().
10212  *
10213  *     Context: Kernel thread context.
10214  */
10215 
10216 static void
10217 sd_taskq_delete(void)
10218 {
10219 	ASSERT(sd_tq != NULL);
10220 	ASSERT(sd_wmr_tq != NULL);
10221 	taskq_destroy(sd_tq);
10222 	taskq_destroy(sd_wmr_tq);
10223 	sd_tq = NULL;
10224 	sd_wmr_tq = NULL;
10225 }
10226 
10227 
10228 /*
10229  *    Function: sdstrategy
10230  *
10231  * Description: Driver's strategy (9E) entry point function.
10232  *
10233  *   Arguments: bp - pointer to buf(9S)
10234  *
10235  * Return Code: Always returns zero
10236  *
10237  *     Context: Kernel thread context.
10238  */
10239 
10240 static int
10241 sdstrategy(struct buf *bp)
10242 {
10243 	struct sd_lun *un;
10244 
10245 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10246 	if (un == NULL) {
10247 		bioerror(bp, EIO);
10248 		bp->b_resid = bp->b_bcount;
10249 		biodone(bp);
10250 		return (0);
10251 	}
10252 	/* As was done in the past, fail new cmds. if state is dumping. */
10253 	if (un->un_state == SD_STATE_DUMPING) {
10254 		bioerror(bp, ENXIO);
10255 		bp->b_resid = bp->b_bcount;
10256 		biodone(bp);
10257 		return (0);
10258 	}
10259 
10260 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10261 
10262 	/*
10263 	 * Commands may sneak in while we released the mutex in
10264 	 * DDI_SUSPEND, we should block new commands. However, old
10265 	 * commands that are still in the driver at this point should
10266 	 * still be allowed to drain.
10267 	 */
10268 	mutex_enter(SD_MUTEX(un));
10269 	/*
10270 	 * Must wait here if either the device is suspended or
10271 	 * if it's power level is changing.
10272 	 */
10273 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10274 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10275 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10276 	}
10277 
10278 	un->un_ncmds_in_driver++;
10279 
10280 	/*
10281 	 * atapi: Since we are running the CD for now in PIO mode we need to
10282 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10283 	 * the HBA's init_pkt routine.
10284 	 */
10285 	if (un->un_f_cfg_is_atapi == TRUE) {
10286 		mutex_exit(SD_MUTEX(un));
10287 		bp_mapin(bp);
10288 		mutex_enter(SD_MUTEX(un));
10289 	}
10290 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10291 	    un->un_ncmds_in_driver);
10292 
10293 	mutex_exit(SD_MUTEX(un));
10294 
10295 	/*
10296 	 * This will (eventually) allocate the sd_xbuf area and
10297 	 * call sd_xbuf_strategy().  We just want to return the
10298 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10299 	 * imized tail call which saves us a stack frame.
10300 	 */
10301 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10302 }
10303 
10304 
10305 /*
10306  *    Function: sd_xbuf_strategy
10307  *
10308  * Description: Function for initiating IO operations via the
10309  *		ddi_xbuf_qstrategy() mechanism.
10310  *
10311  *     Context: Kernel thread context.
10312  */
10313 
10314 static void
10315 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10316 {
10317 	struct sd_lun *un = arg;
10318 
10319 	ASSERT(bp != NULL);
10320 	ASSERT(xp != NULL);
10321 	ASSERT(un != NULL);
10322 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10323 
10324 	/*
10325 	 * Initialize the fields in the xbuf and save a pointer to the
10326 	 * xbuf in bp->b_private.
10327 	 */
10328 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10329 
10330 	/* Send the buf down the iostart chain */
10331 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10332 }
10333 
10334 
10335 /*
10336  *    Function: sd_xbuf_init
10337  *
10338  * Description: Prepare the given sd_xbuf struct for use.
10339  *
10340  *   Arguments: un - ptr to softstate
10341  *		bp - ptr to associated buf(9S)
10342  *		xp - ptr to associated sd_xbuf
10343  *		chain_type - IO chain type to use:
10344  *			SD_CHAIN_NULL
10345  *			SD_CHAIN_BUFIO
10346  *			SD_CHAIN_USCSI
10347  *			SD_CHAIN_DIRECT
10348  *			SD_CHAIN_DIRECT_PRIORITY
10349  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10350  *			initialization; may be NULL if none.
10351  *
10352  *     Context: Kernel thread context
10353  */
10354 
10355 static void
10356 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10357 	uchar_t chain_type, void *pktinfop)
10358 {
10359 	int index;
10360 
10361 	ASSERT(un != NULL);
10362 	ASSERT(bp != NULL);
10363 	ASSERT(xp != NULL);
10364 
10365 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10366 	    bp, chain_type);
10367 
10368 	xp->xb_un	= un;
10369 	xp->xb_pktp	= NULL;
10370 	xp->xb_pktinfo	= pktinfop;
10371 	xp->xb_private	= bp->b_private;
10372 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10373 
10374 	/*
10375 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10376 	 * upon the specified chain type to use.
10377 	 */
10378 	switch (chain_type) {
10379 	case SD_CHAIN_NULL:
10380 		/*
10381 		 * Fall thru to just use the values for the buf type, even
10382 		 * tho for the NULL chain these values will never be used.
10383 		 */
10384 		/* FALLTHRU */
10385 	case SD_CHAIN_BUFIO:
10386 		index = un->un_buf_chain_type;
10387 		break;
10388 	case SD_CHAIN_USCSI:
10389 		index = un->un_uscsi_chain_type;
10390 		break;
10391 	case SD_CHAIN_DIRECT:
10392 		index = un->un_direct_chain_type;
10393 		break;
10394 	case SD_CHAIN_DIRECT_PRIORITY:
10395 		index = un->un_priority_chain_type;
10396 		break;
10397 	default:
10398 		/* We're really broken if we ever get here... */
10399 		panic("sd_xbuf_init: illegal chain type!");
10400 		/*NOTREACHED*/
10401 	}
10402 
10403 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10404 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10405 
10406 	/*
10407 	 * It might be a bit easier to simply bzero the entire xbuf above,
10408 	 * but it turns out that since we init a fair number of members anyway,
10409 	 * we save a fair number cycles by doing explicit assignment of zero.
10410 	 */
10411 	xp->xb_pkt_flags	= 0;
10412 	xp->xb_dma_resid	= 0;
10413 	xp->xb_retry_count	= 0;
10414 	xp->xb_victim_retry_count = 0;
10415 	xp->xb_ua_retry_count	= 0;
10416 	xp->xb_nr_retry_count	= 0;
10417 	xp->xb_sense_bp		= NULL;
10418 	xp->xb_sense_status	= 0;
10419 	xp->xb_sense_state	= 0;
10420 	xp->xb_sense_resid	= 0;
10421 
10422 	bp->b_private	= xp;
10423 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10424 	bp->b_resid	= 0;
10425 	bp->av_forw	= NULL;
10426 	bp->av_back	= NULL;
10427 	bioerror(bp, 0);
10428 
10429 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10430 }
10431 
10432 
10433 /*
10434  *    Function: sd_uscsi_strategy
10435  *
10436  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10437  *
10438  *   Arguments: bp - buf struct ptr
10439  *
10440  * Return Code: Always returns 0
10441  *
10442  *     Context: Kernel thread context
10443  */
10444 
10445 static int
10446 sd_uscsi_strategy(struct buf *bp)
10447 {
10448 	struct sd_lun		*un;
10449 	struct sd_uscsi_info	*uip;
10450 	struct sd_xbuf		*xp;
10451 	uchar_t			chain_type;
10452 
10453 	ASSERT(bp != NULL);
10454 
10455 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10456 	if (un == NULL) {
10457 		bioerror(bp, EIO);
10458 		bp->b_resid = bp->b_bcount;
10459 		biodone(bp);
10460 		return (0);
10461 	}
10462 
10463 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10464 
10465 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10466 
10467 	mutex_enter(SD_MUTEX(un));
10468 	/*
10469 	 * atapi: Since we are running the CD for now in PIO mode we need to
10470 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10471 	 * the HBA's init_pkt routine.
10472 	 */
10473 	if (un->un_f_cfg_is_atapi == TRUE) {
10474 		mutex_exit(SD_MUTEX(un));
10475 		bp_mapin(bp);
10476 		mutex_enter(SD_MUTEX(un));
10477 	}
10478 	un->un_ncmds_in_driver++;
10479 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10480 	    un->un_ncmds_in_driver);
10481 	mutex_exit(SD_MUTEX(un));
10482 
10483 	/*
10484 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10485 	 */
10486 	ASSERT(bp->b_private != NULL);
10487 	uip = (struct sd_uscsi_info *)bp->b_private;
10488 
10489 	switch (uip->ui_flags) {
10490 	case SD_PATH_DIRECT:
10491 		chain_type = SD_CHAIN_DIRECT;
10492 		break;
10493 	case SD_PATH_DIRECT_PRIORITY:
10494 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10495 		break;
10496 	default:
10497 		chain_type = SD_CHAIN_USCSI;
10498 		break;
10499 	}
10500 
10501 	/*
10502 	 * We may allocate extra buf for external USCSI commands. If the
10503 	 * application asks for bigger than 20-byte sense data via USCSI,
10504 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10505 	 */
10506 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10507 	    SENSE_LENGTH) {
10508 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10509 		    MAX_SENSE_LENGTH, KM_SLEEP);
10510 	} else {
10511 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10512 	}
10513 
10514 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10515 
10516 	/* Use the index obtained within xbuf_init */
10517 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10518 
10519 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10520 
10521 	return (0);
10522 }
10523 
10524 /*
10525  *    Function: sd_send_scsi_cmd
10526  *
10527  * Description: Runs a USCSI command for user (when called thru sdioctl),
10528  *		or for the driver
10529  *
10530  *   Arguments: dev - the dev_t for the device
10531  *		incmd - ptr to a valid uscsi_cmd struct
10532  *		flag - bit flag, indicating open settings, 32/64 bit type
10533  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10534  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10535  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10536  *			to use the USCSI "direct" chain and bypass the normal
10537  *			command waitq.
10538  *
10539  * Return Code: 0 -  successful completion of the given command
10540  *		EIO - scsi_uscsi_handle_command() failed
10541  *		ENXIO  - soft state not found for specified dev
10542  *		EINVAL
10543  *		EFAULT - copyin/copyout error
10544  *		return code of scsi_uscsi_handle_command():
10545  *			EIO
10546  *			ENXIO
10547  *			EACCES
10548  *
10549  *     Context: Waits for command to complete. Can sleep.
10550  */
10551 
10552 static int
10553 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10554 	enum uio_seg dataspace, int path_flag)
10555 {
10556 	struct sd_uscsi_info	*uip;
10557 	struct uscsi_cmd	*uscmd;
10558 	struct sd_lun	*un;
10559 	int	format = 0;
10560 	int	rval;
10561 
10562 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10563 	if (un == NULL) {
10564 		return (ENXIO);
10565 	}
10566 
10567 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10568 
10569 #ifdef SDDEBUG
10570 	switch (dataspace) {
10571 	case UIO_USERSPACE:
10572 		SD_TRACE(SD_LOG_IO, un,
10573 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10574 		break;
10575 	case UIO_SYSSPACE:
10576 		SD_TRACE(SD_LOG_IO, un,
10577 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10578 		break;
10579 	default:
10580 		SD_TRACE(SD_LOG_IO, un,
10581 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10582 		break;
10583 	}
10584 #endif
10585 
10586 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10587 	    SD_ADDRESS(un), &uscmd);
10588 	if (rval != 0) {
10589 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10590 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10591 		return (rval);
10592 	}
10593 
10594 	if ((uscmd->uscsi_cdb != NULL) &&
10595 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10596 		mutex_enter(SD_MUTEX(un));
10597 		un->un_f_format_in_progress = TRUE;
10598 		mutex_exit(SD_MUTEX(un));
10599 		format = 1;
10600 	}
10601 
10602 	/*
10603 	 * Allocate an sd_uscsi_info struct and fill it with the info
10604 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10605 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10606 	 * since we allocate the buf here in this function, we do not
10607 	 * need to preserve the prior contents of b_private.
10608 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10609 	 */
10610 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10611 	uip->ui_flags = path_flag;
10612 	uip->ui_cmdp = uscmd;
10613 
10614 	/*
10615 	 * Commands sent with priority are intended for error recovery
10616 	 * situations, and do not have retries performed.
10617 	 */
10618 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10619 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10620 	}
10621 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10622 
10623 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10624 	    sd_uscsi_strategy, NULL, uip);
10625 
10626 #ifdef SDDEBUG
10627 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10628 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10629 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10630 	if (uscmd->uscsi_bufaddr != NULL) {
10631 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10632 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10633 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10634 		if (dataspace == UIO_SYSSPACE) {
10635 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10636 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10637 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10638 		}
10639 	}
10640 #endif
10641 
10642 	if (format == 1) {
10643 		mutex_enter(SD_MUTEX(un));
10644 		un->un_f_format_in_progress = FALSE;
10645 		mutex_exit(SD_MUTEX(un));
10646 	}
10647 
10648 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10649 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10650 
10651 	return (rval);
10652 }
10653 
10654 
10655 /*
10656  *    Function: sd_buf_iodone
10657  *
10658  * Description: Frees the sd_xbuf & returns the buf to its originator.
10659  *
10660  *     Context: May be called from interrupt context.
10661  */
10662 /* ARGSUSED */
10663 static void
10664 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10665 {
10666 	struct sd_xbuf *xp;
10667 
10668 	ASSERT(un != NULL);
10669 	ASSERT(bp != NULL);
10670 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10671 
10672 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10673 
10674 	xp = SD_GET_XBUF(bp);
10675 	ASSERT(xp != NULL);
10676 
10677 	mutex_enter(SD_MUTEX(un));
10678 
10679 	/*
10680 	 * Grab time when the cmd completed.
10681 	 * This is used for determining if the system has been
10682 	 * idle long enough to make it idle to the PM framework.
10683 	 * This is for lowering the overhead, and therefore improving
10684 	 * performance per I/O operation.
10685 	 */
10686 	un->un_pm_idle_time = ddi_get_time();
10687 
10688 	un->un_ncmds_in_driver--;
10689 	ASSERT(un->un_ncmds_in_driver >= 0);
10690 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10691 	    un->un_ncmds_in_driver);
10692 
10693 	mutex_exit(SD_MUTEX(un));
10694 
10695 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10696 	biodone(bp);				/* bp is gone after this */
10697 
10698 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10699 }
10700 
10701 
10702 /*
10703  *    Function: sd_uscsi_iodone
10704  *
10705  * Description: Frees the sd_xbuf & returns the buf to its originator.
10706  *
10707  *     Context: May be called from interrupt context.
10708  */
10709 /* ARGSUSED */
10710 static void
10711 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10712 {
10713 	struct sd_xbuf *xp;
10714 
10715 	ASSERT(un != NULL);
10716 	ASSERT(bp != NULL);
10717 
10718 	xp = SD_GET_XBUF(bp);
10719 	ASSERT(xp != NULL);
10720 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10721 
10722 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10723 
10724 	bp->b_private = xp->xb_private;
10725 
10726 	mutex_enter(SD_MUTEX(un));
10727 
10728 	/*
10729 	 * Grab time when the cmd completed.
10730 	 * This is used for determining if the system has been
10731 	 * idle long enough to make it idle to the PM framework.
10732 	 * This is for lowering the overhead, and therefore improving
10733 	 * performance per I/O operation.
10734 	 */
10735 	un->un_pm_idle_time = ddi_get_time();
10736 
10737 	un->un_ncmds_in_driver--;
10738 	ASSERT(un->un_ncmds_in_driver >= 0);
10739 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10740 	    un->un_ncmds_in_driver);
10741 
10742 	mutex_exit(SD_MUTEX(un));
10743 
10744 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10745 	    SENSE_LENGTH) {
10746 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10747 		    MAX_SENSE_LENGTH);
10748 	} else {
10749 		kmem_free(xp, sizeof (struct sd_xbuf));
10750 	}
10751 
10752 	biodone(bp);
10753 
10754 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10755 }
10756 
10757 
10758 /*
10759  *    Function: sd_mapblockaddr_iostart
10760  *
10761  * Description: Verify request lies within the partition limits for
10762  *		the indicated minor device.  Issue "overrun" buf if
10763  *		request would exceed partition range.  Converts
10764  *		partition-relative block address to absolute.
10765  *
10766  *     Context: Can sleep
10767  *
10768  *      Issues: This follows what the old code did, in terms of accessing
10769  *		some of the partition info in the unit struct without holding
10770  *		the mutext.  This is a general issue, if the partition info
10771  *		can be altered while IO is in progress... as soon as we send
10772  *		a buf, its partitioning can be invalid before it gets to the
10773  *		device.  Probably the right fix is to move partitioning out
10774  *		of the driver entirely.
10775  */
10776 
10777 static void
10778 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10779 {
10780 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10781 	daddr_t	blocknum;	/* Block number specified by the buf */
10782 	size_t	requested_nblocks;
10783 	size_t	available_nblocks;
10784 	int	partition;
10785 	diskaddr_t	partition_offset;
10786 	struct sd_xbuf *xp;
10787 
10788 
10789 	ASSERT(un != NULL);
10790 	ASSERT(bp != NULL);
10791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10792 
10793 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10794 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10795 
10796 	xp = SD_GET_XBUF(bp);
10797 	ASSERT(xp != NULL);
10798 
10799 	/*
10800 	 * If the geometry is not indicated as valid, attempt to access
10801 	 * the unit & verify the geometry/label. This can be the case for
10802 	 * removable-media devices, of if the device was opened in
10803 	 * NDELAY/NONBLOCK mode.
10804 	 */
10805 	if (!SD_IS_VALID_LABEL(un) &&
10806 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10807 		/*
10808 		 * For removable devices it is possible to start an I/O
10809 		 * without a media by opening the device in nodelay mode.
10810 		 * Also for writable CDs there can be many scenarios where
10811 		 * there is no geometry yet but volume manager is trying to
10812 		 * issue a read() just because it can see TOC on the CD. So
10813 		 * do not print a message for removables.
10814 		 */
10815 		if (!un->un_f_has_removable_media) {
10816 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10817 			    "i/o to invalid geometry\n");
10818 		}
10819 		bioerror(bp, EIO);
10820 		bp->b_resid = bp->b_bcount;
10821 		SD_BEGIN_IODONE(index, un, bp);
10822 		return;
10823 	}
10824 
10825 	partition = SDPART(bp->b_edev);
10826 
10827 	nblocks = 0;
10828 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10829 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10830 
10831 	/*
10832 	 * blocknum is the starting block number of the request. At this
10833 	 * point it is still relative to the start of the minor device.
10834 	 */
10835 	blocknum = xp->xb_blkno;
10836 
10837 	/*
10838 	 * Legacy: If the starting block number is one past the last block
10839 	 * in the partition, do not set B_ERROR in the buf.
10840 	 */
10841 	if (blocknum == nblocks)  {
10842 		goto error_exit;
10843 	}
10844 
10845 	/*
10846 	 * Confirm that the first block of the request lies within the
10847 	 * partition limits. Also the requested number of bytes must be
10848 	 * a multiple of the system block size.
10849 	 */
10850 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10851 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10852 		bp->b_flags |= B_ERROR;
10853 		goto error_exit;
10854 	}
10855 
10856 	/*
10857 	 * If the requsted # blocks exceeds the available # blocks, that
10858 	 * is an overrun of the partition.
10859 	 */
10860 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10861 	available_nblocks = (size_t)(nblocks - blocknum);
10862 	ASSERT(nblocks >= blocknum);
10863 
10864 	if (requested_nblocks > available_nblocks) {
10865 		/*
10866 		 * Allocate an "overrun" buf to allow the request to proceed
10867 		 * for the amount of space available in the partition. The
10868 		 * amount not transferred will be added into the b_resid
10869 		 * when the operation is complete. The overrun buf
10870 		 * replaces the original buf here, and the original buf
10871 		 * is saved inside the overrun buf, for later use.
10872 		 */
10873 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10874 		    (offset_t)(requested_nblocks - available_nblocks));
10875 		size_t count = bp->b_bcount - resid;
10876 		/*
10877 		 * Note: count is an unsigned entity thus it'll NEVER
10878 		 * be less than 0 so ASSERT the original values are
10879 		 * correct.
10880 		 */
10881 		ASSERT(bp->b_bcount >= resid);
10882 
10883 		bp = sd_bioclone_alloc(bp, count, blocknum,
10884 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10885 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10886 		ASSERT(xp != NULL);
10887 	}
10888 
10889 	/* At this point there should be no residual for this buf. */
10890 	ASSERT(bp->b_resid == 0);
10891 
10892 	/* Convert the block number to an absolute address. */
10893 	xp->xb_blkno += partition_offset;
10894 
10895 	SD_NEXT_IOSTART(index, un, bp);
10896 
10897 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10898 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10899 
10900 	return;
10901 
10902 error_exit:
10903 	bp->b_resid = bp->b_bcount;
10904 	SD_BEGIN_IODONE(index, un, bp);
10905 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10906 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10907 }
10908 
10909 
10910 /*
10911  *    Function: sd_mapblockaddr_iodone
10912  *
10913  * Description: Completion-side processing for partition management.
10914  *
10915  *     Context: May be called under interrupt context
10916  */
10917 
10918 static void
10919 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10920 {
10921 	/* int	partition; */	/* Not used, see below. */
10922 	ASSERT(un != NULL);
10923 	ASSERT(bp != NULL);
10924 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10925 
10926 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10927 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10928 
10929 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10930 		/*
10931 		 * We have an "overrun" buf to deal with...
10932 		 */
10933 		struct sd_xbuf	*xp;
10934 		struct buf	*obp;	/* ptr to the original buf */
10935 
10936 		xp = SD_GET_XBUF(bp);
10937 		ASSERT(xp != NULL);
10938 
10939 		/* Retrieve the pointer to the original buf */
10940 		obp = (struct buf *)xp->xb_private;
10941 		ASSERT(obp != NULL);
10942 
10943 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10944 		bioerror(obp, bp->b_error);
10945 
10946 		sd_bioclone_free(bp);
10947 
10948 		/*
10949 		 * Get back the original buf.
10950 		 * Note that since the restoration of xb_blkno below
10951 		 * was removed, the sd_xbuf is not needed.
10952 		 */
10953 		bp = obp;
10954 		/*
10955 		 * xp = SD_GET_XBUF(bp);
10956 		 * ASSERT(xp != NULL);
10957 		 */
10958 	}
10959 
10960 	/*
10961 	 * Convert sd->xb_blkno back to a minor-device relative value.
10962 	 * Note: this has been commented out, as it is not needed in the
10963 	 * current implementation of the driver (ie, since this function
10964 	 * is at the top of the layering chains, so the info will be
10965 	 * discarded) and it is in the "hot" IO path.
10966 	 *
10967 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10968 	 * xp->xb_blkno -= un->un_offset[partition];
10969 	 */
10970 
10971 	SD_NEXT_IODONE(index, un, bp);
10972 
10973 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10974 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10975 }
10976 
10977 
10978 /*
10979  *    Function: sd_mapblocksize_iostart
10980  *
10981  * Description: Convert between system block size (un->un_sys_blocksize)
10982  *		and target block size (un->un_tgt_blocksize).
10983  *
10984  *     Context: Can sleep to allocate resources.
10985  *
10986  * Assumptions: A higher layer has already performed any partition validation,
10987  *		and converted the xp->xb_blkno to an absolute value relative
10988  *		to the start of the device.
10989  *
10990  *		It is also assumed that the higher layer has implemented
10991  *		an "overrun" mechanism for the case where the request would
10992  *		read/write beyond the end of a partition.  In this case we
10993  *		assume (and ASSERT) that bp->b_resid == 0.
10994  *
10995  *		Note: The implementation for this routine assumes the target
10996  *		block size remains constant between allocation and transport.
10997  */
10998 
10999 static void
11000 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
11001 {
11002 	struct sd_mapblocksize_info	*bsp;
11003 	struct sd_xbuf			*xp;
11004 	offset_t first_byte;
11005 	daddr_t	start_block, end_block;
11006 	daddr_t	request_bytes;
11007 	ushort_t is_aligned = FALSE;
11008 
11009 	ASSERT(un != NULL);
11010 	ASSERT(bp != NULL);
11011 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11012 	ASSERT(bp->b_resid == 0);
11013 
11014 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11015 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11016 
11017 	/*
11018 	 * For a non-writable CD, a write request is an error
11019 	 */
11020 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11021 	    (un->un_f_mmc_writable_media == FALSE)) {
11022 		bioerror(bp, EIO);
11023 		bp->b_resid = bp->b_bcount;
11024 		SD_BEGIN_IODONE(index, un, bp);
11025 		return;
11026 	}
11027 
11028 	/*
11029 	 * We do not need a shadow buf if the device is using
11030 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11031 	 * In this case there is no layer-private data block allocated.
11032 	 */
11033 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11034 	    (bp->b_bcount == 0)) {
11035 		goto done;
11036 	}
11037 
11038 #if defined(__i386) || defined(__amd64)
11039 	/* We do not support non-block-aligned transfers for ROD devices */
11040 	ASSERT(!ISROD(un));
11041 #endif
11042 
11043 	xp = SD_GET_XBUF(bp);
11044 	ASSERT(xp != NULL);
11045 
11046 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11047 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11048 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11049 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11050 	    "request start block:0x%x\n", xp->xb_blkno);
11051 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11052 	    "request len:0x%x\n", bp->b_bcount);
11053 
11054 	/*
11055 	 * Allocate the layer-private data area for the mapblocksize layer.
11056 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11057 	 * struct to store the pointer to their layer-private data block, but
11058 	 * each layer also has the responsibility of restoring the prior
11059 	 * contents of xb_private before returning the buf/xbuf to the
11060 	 * higher layer that sent it.
11061 	 *
11062 	 * Here we save the prior contents of xp->xb_private into the
11063 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11064 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11065 	 * the layer-private area and returning the buf/xbuf to the layer
11066 	 * that sent it.
11067 	 *
11068 	 * Note that here we use kmem_zalloc for the allocation as there are
11069 	 * parts of the mapblocksize code that expect certain fields to be
11070 	 * zero unless explicitly set to a required value.
11071 	 */
11072 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11073 	bsp->mbs_oprivate = xp->xb_private;
11074 	xp->xb_private = bsp;
11075 
11076 	/*
11077 	 * This treats the data on the disk (target) as an array of bytes.
11078 	 * first_byte is the byte offset, from the beginning of the device,
11079 	 * to the location of the request. This is converted from a
11080 	 * un->un_sys_blocksize block address to a byte offset, and then back
11081 	 * to a block address based upon a un->un_tgt_blocksize block size.
11082 	 *
11083 	 * xp->xb_blkno should be absolute upon entry into this function,
11084 	 * but, but it is based upon partitions that use the "system"
11085 	 * block size. It must be adjusted to reflect the block size of
11086 	 * the target.
11087 	 *
11088 	 * Note that end_block is actually the block that follows the last
11089 	 * block of the request, but that's what is needed for the computation.
11090 	 */
11091 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11092 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11093 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11094 	    un->un_tgt_blocksize;
11095 
11096 	/* request_bytes is rounded up to a multiple of the target block size */
11097 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11098 
11099 	/*
11100 	 * See if the starting address of the request and the request
11101 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11102 	 * then we do not need to allocate a shadow buf to handle the request.
11103 	 */
11104 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11105 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11106 		is_aligned = TRUE;
11107 	}
11108 
11109 	if ((bp->b_flags & B_READ) == 0) {
11110 		/*
11111 		 * Lock the range for a write operation. An aligned request is
11112 		 * considered a simple write; otherwise the request must be a
11113 		 * read-modify-write.
11114 		 */
11115 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11116 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11117 	}
11118 
11119 	/*
11120 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11121 	 * where the READ command is generated for a read-modify-write. (The
11122 	 * write phase is deferred until after the read completes.)
11123 	 */
11124 	if (is_aligned == FALSE) {
11125 
11126 		struct sd_mapblocksize_info	*shadow_bsp;
11127 		struct sd_xbuf	*shadow_xp;
11128 		struct buf	*shadow_bp;
11129 
11130 		/*
11131 		 * Allocate the shadow buf and it associated xbuf. Note that
11132 		 * after this call the xb_blkno value in both the original
11133 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11134 		 * same: absolute relative to the start of the device, and
11135 		 * adjusted for the target block size. The b_blkno in the
11136 		 * shadow buf will also be set to this value. We should never
11137 		 * change b_blkno in the original bp however.
11138 		 *
11139 		 * Note also that the shadow buf will always need to be a
11140 		 * READ command, regardless of whether the incoming command
11141 		 * is a READ or a WRITE.
11142 		 */
11143 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11144 		    xp->xb_blkno,
11145 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11146 
11147 		shadow_xp = SD_GET_XBUF(shadow_bp);
11148 
11149 		/*
11150 		 * Allocate the layer-private data for the shadow buf.
11151 		 * (No need to preserve xb_private in the shadow xbuf.)
11152 		 */
11153 		shadow_xp->xb_private = shadow_bsp =
11154 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11155 
11156 		/*
11157 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11158 		 * to figure out where the start of the user data is (based upon
11159 		 * the system block size) in the data returned by the READ
11160 		 * command (which will be based upon the target blocksize). Note
11161 		 * that this is only really used if the request is unaligned.
11162 		 */
11163 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11164 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11165 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11166 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11167 
11168 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11169 
11170 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11171 
11172 		/* Transfer the wmap (if any) to the shadow buf */
11173 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11174 		bsp->mbs_wmp = NULL;
11175 
11176 		/*
11177 		 * The shadow buf goes on from here in place of the
11178 		 * original buf.
11179 		 */
11180 		shadow_bsp->mbs_orig_bp = bp;
11181 		bp = shadow_bp;
11182 	}
11183 
11184 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11185 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11186 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11187 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11188 	    request_bytes);
11189 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11190 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11191 
11192 done:
11193 	SD_NEXT_IOSTART(index, un, bp);
11194 
11195 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11196 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11197 }
11198 
11199 
11200 /*
11201  *    Function: sd_mapblocksize_iodone
11202  *
11203  * Description: Completion side processing for block-size mapping.
11204  *
11205  *     Context: May be called under interrupt context
11206  */
11207 
11208 static void
11209 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11210 {
11211 	struct sd_mapblocksize_info	*bsp;
11212 	struct sd_xbuf	*xp;
11213 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11214 	struct buf	*orig_bp;	/* ptr to the original buf */
11215 	offset_t	shadow_end;
11216 	offset_t	request_end;
11217 	offset_t	shadow_start;
11218 	ssize_t		copy_offset;
11219 	size_t		copy_length;
11220 	size_t		shortfall;
11221 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11222 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11223 
11224 	ASSERT(un != NULL);
11225 	ASSERT(bp != NULL);
11226 
11227 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11228 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11229 
11230 	/*
11231 	 * There is no shadow buf or layer-private data if the target is
11232 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11233 	 */
11234 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11235 	    (bp->b_bcount == 0)) {
11236 		goto exit;
11237 	}
11238 
11239 	xp = SD_GET_XBUF(bp);
11240 	ASSERT(xp != NULL);
11241 
11242 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11243 	bsp = xp->xb_private;
11244 
11245 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11246 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11247 
11248 	if (is_write) {
11249 		/*
11250 		 * For a WRITE request we must free up the block range that
11251 		 * we have locked up.  This holds regardless of whether this is
11252 		 * an aligned write request or a read-modify-write request.
11253 		 */
11254 		sd_range_unlock(un, bsp->mbs_wmp);
11255 		bsp->mbs_wmp = NULL;
11256 	}
11257 
11258 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11259 		/*
11260 		 * An aligned read or write command will have no shadow buf;
11261 		 * there is not much else to do with it.
11262 		 */
11263 		goto done;
11264 	}
11265 
11266 	orig_bp = bsp->mbs_orig_bp;
11267 	ASSERT(orig_bp != NULL);
11268 	orig_xp = SD_GET_XBUF(orig_bp);
11269 	ASSERT(orig_xp != NULL);
11270 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11271 
11272 	if (!is_write && has_wmap) {
11273 		/*
11274 		 * A READ with a wmap means this is the READ phase of a
11275 		 * read-modify-write. If an error occurred on the READ then
11276 		 * we do not proceed with the WRITE phase or copy any data.
11277 		 * Just release the write maps and return with an error.
11278 		 */
11279 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11280 			orig_bp->b_resid = orig_bp->b_bcount;
11281 			bioerror(orig_bp, bp->b_error);
11282 			sd_range_unlock(un, bsp->mbs_wmp);
11283 			goto freebuf_done;
11284 		}
11285 	}
11286 
11287 	/*
11288 	 * Here is where we set up to copy the data from the shadow buf
11289 	 * into the space associated with the original buf.
11290 	 *
11291 	 * To deal with the conversion between block sizes, these
11292 	 * computations treat the data as an array of bytes, with the
11293 	 * first byte (byte 0) corresponding to the first byte in the
11294 	 * first block on the disk.
11295 	 */
11296 
11297 	/*
11298 	 * shadow_start and shadow_len indicate the location and size of
11299 	 * the data returned with the shadow IO request.
11300 	 */
11301 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11302 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11303 
11304 	/*
11305 	 * copy_offset gives the offset (in bytes) from the start of the first
11306 	 * block of the READ request to the beginning of the data.  We retrieve
11307 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11308 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11309 	 * data to be copied (in bytes).
11310 	 */
11311 	copy_offset  = bsp->mbs_copy_offset;
11312 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11313 	copy_length  = orig_bp->b_bcount;
11314 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11315 
11316 	/*
11317 	 * Set up the resid and error fields of orig_bp as appropriate.
11318 	 */
11319 	if (shadow_end >= request_end) {
11320 		/* We got all the requested data; set resid to zero */
11321 		orig_bp->b_resid = 0;
11322 	} else {
11323 		/*
11324 		 * We failed to get enough data to fully satisfy the original
11325 		 * request. Just copy back whatever data we got and set
11326 		 * up the residual and error code as required.
11327 		 *
11328 		 * 'shortfall' is the amount by which the data received with the
11329 		 * shadow buf has "fallen short" of the requested amount.
11330 		 */
11331 		shortfall = (size_t)(request_end - shadow_end);
11332 
11333 		if (shortfall > orig_bp->b_bcount) {
11334 			/*
11335 			 * We did not get enough data to even partially
11336 			 * fulfill the original request.  The residual is
11337 			 * equal to the amount requested.
11338 			 */
11339 			orig_bp->b_resid = orig_bp->b_bcount;
11340 		} else {
11341 			/*
11342 			 * We did not get all the data that we requested
11343 			 * from the device, but we will try to return what
11344 			 * portion we did get.
11345 			 */
11346 			orig_bp->b_resid = shortfall;
11347 		}
11348 		ASSERT(copy_length >= orig_bp->b_resid);
11349 		copy_length  -= orig_bp->b_resid;
11350 	}
11351 
11352 	/* Propagate the error code from the shadow buf to the original buf */
11353 	bioerror(orig_bp, bp->b_error);
11354 
11355 	if (is_write) {
11356 		goto freebuf_done;	/* No data copying for a WRITE */
11357 	}
11358 
11359 	if (has_wmap) {
11360 		/*
11361 		 * This is a READ command from the READ phase of a
11362 		 * read-modify-write request. We have to copy the data given
11363 		 * by the user OVER the data returned by the READ command,
11364 		 * then convert the command from a READ to a WRITE and send
11365 		 * it back to the target.
11366 		 */
11367 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11368 		    copy_length);
11369 
11370 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11371 
11372 		/*
11373 		 * Dispatch the WRITE command to the taskq thread, which
11374 		 * will in turn send the command to the target. When the
11375 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11376 		 * will get called again as part of the iodone chain
11377 		 * processing for it. Note that we will still be dealing
11378 		 * with the shadow buf at that point.
11379 		 */
11380 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11381 		    KM_NOSLEEP) != 0) {
11382 			/*
11383 			 * Dispatch was successful so we are done. Return
11384 			 * without going any higher up the iodone chain. Do
11385 			 * not free up any layer-private data until after the
11386 			 * WRITE completes.
11387 			 */
11388 			return;
11389 		}
11390 
11391 		/*
11392 		 * Dispatch of the WRITE command failed; set up the error
11393 		 * condition and send this IO back up the iodone chain.
11394 		 */
11395 		bioerror(orig_bp, EIO);
11396 		orig_bp->b_resid = orig_bp->b_bcount;
11397 
11398 	} else {
11399 		/*
11400 		 * This is a regular READ request (ie, not a RMW). Copy the
11401 		 * data from the shadow buf into the original buf. The
11402 		 * copy_offset compensates for any "misalignment" between the
11403 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11404 		 * original buf (with its un->un_sys_blocksize blocks).
11405 		 */
11406 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11407 		    copy_length);
11408 	}
11409 
11410 freebuf_done:
11411 
11412 	/*
11413 	 * At this point we still have both the shadow buf AND the original
11414 	 * buf to deal with, as well as the layer-private data area in each.
11415 	 * Local variables are as follows:
11416 	 *
11417 	 * bp -- points to shadow buf
11418 	 * xp -- points to xbuf of shadow buf
11419 	 * bsp -- points to layer-private data area of shadow buf
11420 	 * orig_bp -- points to original buf
11421 	 *
11422 	 * First free the shadow buf and its associated xbuf, then free the
11423 	 * layer-private data area from the shadow buf. There is no need to
11424 	 * restore xb_private in the shadow xbuf.
11425 	 */
11426 	sd_shadow_buf_free(bp);
11427 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11428 
11429 	/*
11430 	 * Now update the local variables to point to the original buf, xbuf,
11431 	 * and layer-private area.
11432 	 */
11433 	bp = orig_bp;
11434 	xp = SD_GET_XBUF(bp);
11435 	ASSERT(xp != NULL);
11436 	ASSERT(xp == orig_xp);
11437 	bsp = xp->xb_private;
11438 	ASSERT(bsp != NULL);
11439 
11440 done:
11441 	/*
11442 	 * Restore xb_private to whatever it was set to by the next higher
11443 	 * layer in the chain, then free the layer-private data area.
11444 	 */
11445 	xp->xb_private = bsp->mbs_oprivate;
11446 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11447 
11448 exit:
11449 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11450 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11451 
11452 	SD_NEXT_IODONE(index, un, bp);
11453 }
11454 
11455 
11456 /*
11457  *    Function: sd_checksum_iostart
11458  *
11459  * Description: A stub function for a layer that's currently not used.
11460  *		For now just a placeholder.
11461  *
11462  *     Context: Kernel thread context
11463  */
11464 
11465 static void
11466 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11467 {
11468 	ASSERT(un != NULL);
11469 	ASSERT(bp != NULL);
11470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11471 	SD_NEXT_IOSTART(index, un, bp);
11472 }
11473 
11474 
11475 /*
11476  *    Function: sd_checksum_iodone
11477  *
11478  * Description: A stub function for a layer that's currently not used.
11479  *		For now just a placeholder.
11480  *
11481  *     Context: May be called under interrupt context
11482  */
11483 
11484 static void
11485 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11486 {
11487 	ASSERT(un != NULL);
11488 	ASSERT(bp != NULL);
11489 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11490 	SD_NEXT_IODONE(index, un, bp);
11491 }
11492 
11493 
11494 /*
11495  *    Function: sd_checksum_uscsi_iostart
11496  *
11497  * Description: A stub function for a layer that's currently not used.
11498  *		For now just a placeholder.
11499  *
11500  *     Context: Kernel thread context
11501  */
11502 
11503 static void
11504 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11505 {
11506 	ASSERT(un != NULL);
11507 	ASSERT(bp != NULL);
11508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11509 	SD_NEXT_IOSTART(index, un, bp);
11510 }
11511 
11512 
11513 /*
11514  *    Function: sd_checksum_uscsi_iodone
11515  *
11516  * Description: A stub function for a layer that's currently not used.
11517  *		For now just a placeholder.
11518  *
11519  *     Context: May be called under interrupt context
11520  */
11521 
11522 static void
11523 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11524 {
11525 	ASSERT(un != NULL);
11526 	ASSERT(bp != NULL);
11527 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11528 	SD_NEXT_IODONE(index, un, bp);
11529 }
11530 
11531 
11532 /*
11533  *    Function: sd_pm_iostart
11534  *
11535  * Description: iostart-side routine for Power mangement.
11536  *
11537  *     Context: Kernel thread context
11538  */
11539 
11540 static void
11541 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11542 {
11543 	ASSERT(un != NULL);
11544 	ASSERT(bp != NULL);
11545 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11546 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11547 
11548 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11549 
11550 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11551 		/*
11552 		 * Set up to return the failed buf back up the 'iodone'
11553 		 * side of the calling chain.
11554 		 */
11555 		bioerror(bp, EIO);
11556 		bp->b_resid = bp->b_bcount;
11557 
11558 		SD_BEGIN_IODONE(index, un, bp);
11559 
11560 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11561 		return;
11562 	}
11563 
11564 	SD_NEXT_IOSTART(index, un, bp);
11565 
11566 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11567 }
11568 
11569 
11570 /*
11571  *    Function: sd_pm_iodone
11572  *
11573  * Description: iodone-side routine for power mangement.
11574  *
11575  *     Context: may be called from interrupt context
11576  */
11577 
11578 static void
11579 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11580 {
11581 	ASSERT(un != NULL);
11582 	ASSERT(bp != NULL);
11583 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11584 
11585 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11586 
11587 	/*
11588 	 * After attach the following flag is only read, so don't
11589 	 * take the penalty of acquiring a mutex for it.
11590 	 */
11591 	if (un->un_f_pm_is_enabled == TRUE) {
11592 		sd_pm_exit(un);
11593 	}
11594 
11595 	SD_NEXT_IODONE(index, un, bp);
11596 
11597 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11598 }
11599 
11600 
11601 /*
11602  *    Function: sd_core_iostart
11603  *
11604  * Description: Primary driver function for enqueuing buf(9S) structs from
11605  *		the system and initiating IO to the target device
11606  *
11607  *     Context: Kernel thread context. Can sleep.
11608  *
11609  * Assumptions:  - The given xp->xb_blkno is absolute
11610  *		   (ie, relative to the start of the device).
11611  *		 - The IO is to be done using the native blocksize of
11612  *		   the device, as specified in un->un_tgt_blocksize.
11613  */
11614 /* ARGSUSED */
11615 static void
11616 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11617 {
11618 	struct sd_xbuf *xp;
11619 
11620 	ASSERT(un != NULL);
11621 	ASSERT(bp != NULL);
11622 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11623 	ASSERT(bp->b_resid == 0);
11624 
11625 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11626 
11627 	xp = SD_GET_XBUF(bp);
11628 	ASSERT(xp != NULL);
11629 
11630 	mutex_enter(SD_MUTEX(un));
11631 
11632 	/*
11633 	 * If we are currently in the failfast state, fail any new IO
11634 	 * that has B_FAILFAST set, then return.
11635 	 */
11636 	if ((bp->b_flags & B_FAILFAST) &&
11637 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11638 		mutex_exit(SD_MUTEX(un));
11639 		bioerror(bp, EIO);
11640 		bp->b_resid = bp->b_bcount;
11641 		SD_BEGIN_IODONE(index, un, bp);
11642 		return;
11643 	}
11644 
11645 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11646 		/*
11647 		 * Priority command -- transport it immediately.
11648 		 *
11649 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11650 		 * because all direct priority commands should be associated
11651 		 * with error recovery actions which we don't want to retry.
11652 		 */
11653 		sd_start_cmds(un, bp);
11654 	} else {
11655 		/*
11656 		 * Normal command -- add it to the wait queue, then start
11657 		 * transporting commands from the wait queue.
11658 		 */
11659 		sd_add_buf_to_waitq(un, bp);
11660 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11661 		sd_start_cmds(un, NULL);
11662 	}
11663 
11664 	mutex_exit(SD_MUTEX(un));
11665 
11666 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11667 }
11668 
11669 
11670 /*
11671  *    Function: sd_init_cdb_limits
11672  *
11673  * Description: This is to handle scsi_pkt initialization differences
11674  *		between the driver platforms.
11675  *
11676  *		Legacy behaviors:
11677  *
11678  *		If the block number or the sector count exceeds the
11679  *		capabilities of a Group 0 command, shift over to a
11680  *		Group 1 command. We don't blindly use Group 1
11681  *		commands because a) some drives (CDC Wren IVs) get a
11682  *		bit confused, and b) there is probably a fair amount
11683  *		of speed difference for a target to receive and decode
11684  *		a 10 byte command instead of a 6 byte command.
11685  *
11686  *		The xfer time difference of 6 vs 10 byte CDBs is
11687  *		still significant so this code is still worthwhile.
11688  *		10 byte CDBs are very inefficient with the fas HBA driver
11689  *		and older disks. Each CDB byte took 1 usec with some
11690  *		popular disks.
11691  *
11692  *     Context: Must be called at attach time
11693  */
11694 
11695 static void
11696 sd_init_cdb_limits(struct sd_lun *un)
11697 {
11698 	int hba_cdb_limit;
11699 
11700 	/*
11701 	 * Use CDB_GROUP1 commands for most devices except for
11702 	 * parallel SCSI fixed drives in which case we get better
11703 	 * performance using CDB_GROUP0 commands (where applicable).
11704 	 */
11705 	un->un_mincdb = SD_CDB_GROUP1;
11706 #if !defined(__fibre)
11707 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11708 	    !un->un_f_has_removable_media) {
11709 		un->un_mincdb = SD_CDB_GROUP0;
11710 	}
11711 #endif
11712 
11713 	/*
11714 	 * Try to read the max-cdb-length supported by HBA.
11715 	 */
11716 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11717 	if (0 >= un->un_max_hba_cdb) {
11718 		un->un_max_hba_cdb = CDB_GROUP4;
11719 		hba_cdb_limit = SD_CDB_GROUP4;
11720 	} else if (0 < un->un_max_hba_cdb &&
11721 	    un->un_max_hba_cdb < CDB_GROUP1) {
11722 		hba_cdb_limit = SD_CDB_GROUP0;
11723 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11724 	    un->un_max_hba_cdb < CDB_GROUP5) {
11725 		hba_cdb_limit = SD_CDB_GROUP1;
11726 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11727 	    un->un_max_hba_cdb < CDB_GROUP4) {
11728 		hba_cdb_limit = SD_CDB_GROUP5;
11729 	} else {
11730 		hba_cdb_limit = SD_CDB_GROUP4;
11731 	}
11732 
11733 	/*
11734 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11735 	 * commands for fixed disks unless we are building for a 32 bit
11736 	 * kernel.
11737 	 */
11738 #ifdef _LP64
11739 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11740 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11741 #else
11742 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11743 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11744 #endif
11745 
11746 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11747 	    ? sizeof (struct scsi_arq_status) : 1);
11748 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11749 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11750 }
11751 
11752 
11753 /*
11754  *    Function: sd_initpkt_for_buf
11755  *
11756  * Description: Allocate and initialize for transport a scsi_pkt struct,
11757  *		based upon the info specified in the given buf struct.
11758  *
11759  *		Assumes the xb_blkno in the request is absolute (ie,
11760  *		relative to the start of the device (NOT partition!).
11761  *		Also assumes that the request is using the native block
11762  *		size of the device (as returned by the READ CAPACITY
11763  *		command).
11764  *
11765  * Return Code: SD_PKT_ALLOC_SUCCESS
11766  *		SD_PKT_ALLOC_FAILURE
11767  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11768  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11769  *
11770  *     Context: Kernel thread and may be called from software interrupt context
11771  *		as part of a sdrunout callback. This function may not block or
11772  *		call routines that block
11773  */
11774 
11775 static int
11776 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11777 {
11778 	struct sd_xbuf	*xp;
11779 	struct scsi_pkt *pktp = NULL;
11780 	struct sd_lun	*un;
11781 	size_t		blockcount;
11782 	daddr_t		startblock;
11783 	int		rval;
11784 	int		cmd_flags;
11785 
11786 	ASSERT(bp != NULL);
11787 	ASSERT(pktpp != NULL);
11788 	xp = SD_GET_XBUF(bp);
11789 	ASSERT(xp != NULL);
11790 	un = SD_GET_UN(bp);
11791 	ASSERT(un != NULL);
11792 	ASSERT(mutex_owned(SD_MUTEX(un)));
11793 	ASSERT(bp->b_resid == 0);
11794 
11795 	SD_TRACE(SD_LOG_IO_CORE, un,
11796 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11797 
11798 	mutex_exit(SD_MUTEX(un));
11799 
11800 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11801 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11802 		/*
11803 		 * Already have a scsi_pkt -- just need DMA resources.
11804 		 * We must recompute the CDB in case the mapping returns
11805 		 * a nonzero pkt_resid.
11806 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11807 		 * that is being retried, the unmap/remap of the DMA resouces
11808 		 * will result in the entire transfer starting over again
11809 		 * from the very first block.
11810 		 */
11811 		ASSERT(xp->xb_pktp != NULL);
11812 		pktp = xp->xb_pktp;
11813 	} else {
11814 		pktp = NULL;
11815 	}
11816 #endif /* __i386 || __amd64 */
11817 
11818 	startblock = xp->xb_blkno;	/* Absolute block num. */
11819 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11820 
11821 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11822 
11823 	/*
11824 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11825 	 * call scsi_init_pkt, and build the CDB.
11826 	 */
11827 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11828 	    cmd_flags, sdrunout, (caddr_t)un,
11829 	    startblock, blockcount);
11830 
11831 	if (rval == 0) {
11832 		/*
11833 		 * Success.
11834 		 *
11835 		 * If partial DMA is being used and required for this transfer.
11836 		 * set it up here.
11837 		 */
11838 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11839 		    (pktp->pkt_resid != 0)) {
11840 
11841 			/*
11842 			 * Save the CDB length and pkt_resid for the
11843 			 * next xfer
11844 			 */
11845 			xp->xb_dma_resid = pktp->pkt_resid;
11846 
11847 			/* rezero resid */
11848 			pktp->pkt_resid = 0;
11849 
11850 		} else {
11851 			xp->xb_dma_resid = 0;
11852 		}
11853 
11854 		pktp->pkt_flags = un->un_tagflags;
11855 		pktp->pkt_time  = un->un_cmd_timeout;
11856 		pktp->pkt_comp  = sdintr;
11857 
11858 		pktp->pkt_private = bp;
11859 		*pktpp = pktp;
11860 
11861 		SD_TRACE(SD_LOG_IO_CORE, un,
11862 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11863 
11864 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11865 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11866 #endif
11867 
11868 		mutex_enter(SD_MUTEX(un));
11869 		return (SD_PKT_ALLOC_SUCCESS);
11870 
11871 	}
11872 
11873 	/*
11874 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11875 	 * from sd_setup_rw_pkt.
11876 	 */
11877 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11878 
11879 	if (rval == SD_PKT_ALLOC_FAILURE) {
11880 		*pktpp = NULL;
11881 		/*
11882 		 * Set the driver state to RWAIT to indicate the driver
11883 		 * is waiting on resource allocations. The driver will not
11884 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11885 		 */
11886 		mutex_enter(SD_MUTEX(un));
11887 		New_state(un, SD_STATE_RWAIT);
11888 
11889 		SD_ERROR(SD_LOG_IO_CORE, un,
11890 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11891 
11892 		if ((bp->b_flags & B_ERROR) != 0) {
11893 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11894 		}
11895 		return (SD_PKT_ALLOC_FAILURE);
11896 	} else {
11897 		/*
11898 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11899 		 *
11900 		 * This should never happen.  Maybe someone messed with the
11901 		 * kernel's minphys?
11902 		 */
11903 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11904 		    "Request rejected: too large for CDB: "
11905 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11906 		SD_ERROR(SD_LOG_IO_CORE, un,
11907 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11908 		mutex_enter(SD_MUTEX(un));
11909 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11910 
11911 	}
11912 }
11913 
11914 
11915 /*
11916  *    Function: sd_destroypkt_for_buf
11917  *
11918  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11919  *
11920  *     Context: Kernel thread or interrupt context
11921  */
11922 
11923 static void
11924 sd_destroypkt_for_buf(struct buf *bp)
11925 {
11926 	ASSERT(bp != NULL);
11927 	ASSERT(SD_GET_UN(bp) != NULL);
11928 
11929 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11930 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11931 
11932 	ASSERT(SD_GET_PKTP(bp) != NULL);
11933 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11934 
11935 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11936 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11937 }
11938 
11939 /*
11940  *    Function: sd_setup_rw_pkt
11941  *
11942  * Description: Determines appropriate CDB group for the requested LBA
11943  *		and transfer length, calls scsi_init_pkt, and builds
11944  *		the CDB.  Do not use for partial DMA transfers except
11945  *		for the initial transfer since the CDB size must
11946  *		remain constant.
11947  *
11948  *     Context: Kernel thread and may be called from software interrupt
11949  *		context as part of a sdrunout callback. This function may not
11950  *		block or call routines that block
11951  */
11952 
11953 
11954 int
11955 sd_setup_rw_pkt(struct sd_lun *un,
11956     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11957     int (*callback)(caddr_t), caddr_t callback_arg,
11958     diskaddr_t lba, uint32_t blockcount)
11959 {
11960 	struct scsi_pkt *return_pktp;
11961 	union scsi_cdb *cdbp;
11962 	struct sd_cdbinfo *cp = NULL;
11963 	int i;
11964 
11965 	/*
11966 	 * See which size CDB to use, based upon the request.
11967 	 */
11968 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11969 
11970 		/*
11971 		 * Check lba and block count against sd_cdbtab limits.
11972 		 * In the partial DMA case, we have to use the same size
11973 		 * CDB for all the transfers.  Check lba + blockcount
11974 		 * against the max LBA so we know that segment of the
11975 		 * transfer can use the CDB we select.
11976 		 */
11977 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11978 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11979 
11980 			/*
11981 			 * The command will fit into the CDB type
11982 			 * specified by sd_cdbtab[i].
11983 			 */
11984 			cp = sd_cdbtab + i;
11985 
11986 			/*
11987 			 * Call scsi_init_pkt so we can fill in the
11988 			 * CDB.
11989 			 */
11990 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11991 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11992 			    flags, callback, callback_arg);
11993 
11994 			if (return_pktp != NULL) {
11995 
11996 				/*
11997 				 * Return new value of pkt
11998 				 */
11999 				*pktpp = return_pktp;
12000 
12001 				/*
12002 				 * To be safe, zero the CDB insuring there is
12003 				 * no leftover data from a previous command.
12004 				 */
12005 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12006 
12007 				/*
12008 				 * Handle partial DMA mapping
12009 				 */
12010 				if (return_pktp->pkt_resid != 0) {
12011 
12012 					/*
12013 					 * Not going to xfer as many blocks as
12014 					 * originally expected
12015 					 */
12016 					blockcount -=
12017 					    SD_BYTES2TGTBLOCKS(un,
12018 					    return_pktp->pkt_resid);
12019 				}
12020 
12021 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12022 
12023 				/*
12024 				 * Set command byte based on the CDB
12025 				 * type we matched.
12026 				 */
12027 				cdbp->scc_cmd = cp->sc_grpmask |
12028 				    ((bp->b_flags & B_READ) ?
12029 				    SCMD_READ : SCMD_WRITE);
12030 
12031 				SD_FILL_SCSI1_LUN(un, return_pktp);
12032 
12033 				/*
12034 				 * Fill in LBA and length
12035 				 */
12036 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12037 				    (cp->sc_grpcode == CDB_GROUP4) ||
12038 				    (cp->sc_grpcode == CDB_GROUP0) ||
12039 				    (cp->sc_grpcode == CDB_GROUP5));
12040 
12041 				if (cp->sc_grpcode == CDB_GROUP1) {
12042 					FORMG1ADDR(cdbp, lba);
12043 					FORMG1COUNT(cdbp, blockcount);
12044 					return (0);
12045 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12046 					FORMG4LONGADDR(cdbp, lba);
12047 					FORMG4COUNT(cdbp, blockcount);
12048 					return (0);
12049 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12050 					FORMG0ADDR(cdbp, lba);
12051 					FORMG0COUNT(cdbp, blockcount);
12052 					return (0);
12053 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12054 					FORMG5ADDR(cdbp, lba);
12055 					FORMG5COUNT(cdbp, blockcount);
12056 					return (0);
12057 				}
12058 
12059 				/*
12060 				 * It should be impossible to not match one
12061 				 * of the CDB types above, so we should never
12062 				 * reach this point.  Set the CDB command byte
12063 				 * to test-unit-ready to avoid writing
12064 				 * to somewhere we don't intend.
12065 				 */
12066 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12067 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12068 			} else {
12069 				/*
12070 				 * Couldn't get scsi_pkt
12071 				 */
12072 				return (SD_PKT_ALLOC_FAILURE);
12073 			}
12074 		}
12075 	}
12076 
12077 	/*
12078 	 * None of the available CDB types were suitable.  This really
12079 	 * should never happen:  on a 64 bit system we support
12080 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12081 	 * and on a 32 bit system we will refuse to bind to a device
12082 	 * larger than 2TB so addresses will never be larger than 32 bits.
12083 	 */
12084 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12085 }
12086 
12087 /*
12088  *    Function: sd_setup_next_rw_pkt
12089  *
12090  * Description: Setup packet for partial DMA transfers, except for the
12091  * 		initial transfer.  sd_setup_rw_pkt should be used for
12092  *		the initial transfer.
12093  *
12094  *     Context: Kernel thread and may be called from interrupt context.
12095  */
12096 
12097 int
12098 sd_setup_next_rw_pkt(struct sd_lun *un,
12099     struct scsi_pkt *pktp, struct buf *bp,
12100     diskaddr_t lba, uint32_t blockcount)
12101 {
12102 	uchar_t com;
12103 	union scsi_cdb *cdbp;
12104 	uchar_t cdb_group_id;
12105 
12106 	ASSERT(pktp != NULL);
12107 	ASSERT(pktp->pkt_cdbp != NULL);
12108 
12109 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12110 	com = cdbp->scc_cmd;
12111 	cdb_group_id = CDB_GROUPID(com);
12112 
12113 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12114 	    (cdb_group_id == CDB_GROUPID_1) ||
12115 	    (cdb_group_id == CDB_GROUPID_4) ||
12116 	    (cdb_group_id == CDB_GROUPID_5));
12117 
12118 	/*
12119 	 * Move pkt to the next portion of the xfer.
12120 	 * func is NULL_FUNC so we do not have to release
12121 	 * the disk mutex here.
12122 	 */
12123 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12124 	    NULL_FUNC, NULL) == pktp) {
12125 		/* Success.  Handle partial DMA */
12126 		if (pktp->pkt_resid != 0) {
12127 			blockcount -=
12128 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12129 		}
12130 
12131 		cdbp->scc_cmd = com;
12132 		SD_FILL_SCSI1_LUN(un, pktp);
12133 		if (cdb_group_id == CDB_GROUPID_1) {
12134 			FORMG1ADDR(cdbp, lba);
12135 			FORMG1COUNT(cdbp, blockcount);
12136 			return (0);
12137 		} else if (cdb_group_id == CDB_GROUPID_4) {
12138 			FORMG4LONGADDR(cdbp, lba);
12139 			FORMG4COUNT(cdbp, blockcount);
12140 			return (0);
12141 		} else if (cdb_group_id == CDB_GROUPID_0) {
12142 			FORMG0ADDR(cdbp, lba);
12143 			FORMG0COUNT(cdbp, blockcount);
12144 			return (0);
12145 		} else if (cdb_group_id == CDB_GROUPID_5) {
12146 			FORMG5ADDR(cdbp, lba);
12147 			FORMG5COUNT(cdbp, blockcount);
12148 			return (0);
12149 		}
12150 
12151 		/* Unreachable */
12152 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12153 	}
12154 
12155 	/*
12156 	 * Error setting up next portion of cmd transfer.
12157 	 * Something is definitely very wrong and this
12158 	 * should not happen.
12159 	 */
12160 	return (SD_PKT_ALLOC_FAILURE);
12161 }
12162 
12163 /*
12164  *    Function: sd_initpkt_for_uscsi
12165  *
12166  * Description: Allocate and initialize for transport a scsi_pkt struct,
12167  *		based upon the info specified in the given uscsi_cmd struct.
12168  *
12169  * Return Code: SD_PKT_ALLOC_SUCCESS
12170  *		SD_PKT_ALLOC_FAILURE
12171  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12172  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12173  *
12174  *     Context: Kernel thread and may be called from software interrupt context
12175  *		as part of a sdrunout callback. This function may not block or
12176  *		call routines that block
12177  */
12178 
12179 static int
12180 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12181 {
12182 	struct uscsi_cmd *uscmd;
12183 	struct sd_xbuf	*xp;
12184 	struct scsi_pkt	*pktp;
12185 	struct sd_lun	*un;
12186 	uint32_t	flags = 0;
12187 
12188 	ASSERT(bp != NULL);
12189 	ASSERT(pktpp != NULL);
12190 	xp = SD_GET_XBUF(bp);
12191 	ASSERT(xp != NULL);
12192 	un = SD_GET_UN(bp);
12193 	ASSERT(un != NULL);
12194 	ASSERT(mutex_owned(SD_MUTEX(un)));
12195 
12196 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12197 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12198 	ASSERT(uscmd != NULL);
12199 
12200 	SD_TRACE(SD_LOG_IO_CORE, un,
12201 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12202 
12203 	/*
12204 	 * Allocate the scsi_pkt for the command.
12205 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12206 	 *	 during scsi_init_pkt time and will continue to use the
12207 	 *	 same path as long as the same scsi_pkt is used without
12208 	 *	 intervening scsi_dma_free(). Since uscsi command does
12209 	 *	 not call scsi_dmafree() before retry failed command, it
12210 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12211 	 *	 set such that scsi_vhci can use other available path for
12212 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12213 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12214 	 */
12215 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12216 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12217 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12218 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12219 		    - sizeof (struct scsi_extended_sense)), 0,
12220 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12221 		    sdrunout, (caddr_t)un);
12222 	} else {
12223 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12224 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12225 		    sizeof (struct scsi_arq_status), 0,
12226 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12227 		    sdrunout, (caddr_t)un);
12228 	}
12229 
12230 	if (pktp == NULL) {
12231 		*pktpp = NULL;
12232 		/*
12233 		 * Set the driver state to RWAIT to indicate the driver
12234 		 * is waiting on resource allocations. The driver will not
12235 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12236 		 */
12237 		New_state(un, SD_STATE_RWAIT);
12238 
12239 		SD_ERROR(SD_LOG_IO_CORE, un,
12240 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12241 
12242 		if ((bp->b_flags & B_ERROR) != 0) {
12243 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12244 		}
12245 		return (SD_PKT_ALLOC_FAILURE);
12246 	}
12247 
12248 	/*
12249 	 * We do not do DMA breakup for USCSI commands, so return failure
12250 	 * here if all the needed DMA resources were not allocated.
12251 	 */
12252 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12253 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12254 		scsi_destroy_pkt(pktp);
12255 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12256 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12257 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12258 	}
12259 
12260 	/* Init the cdb from the given uscsi struct */
12261 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12262 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12263 
12264 	SD_FILL_SCSI1_LUN(un, pktp);
12265 
12266 	/*
12267 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12268 	 * for listing of the supported flags.
12269 	 */
12270 
12271 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12272 		flags |= FLAG_SILENT;
12273 	}
12274 
12275 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12276 		flags |= FLAG_DIAGNOSE;
12277 	}
12278 
12279 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12280 		flags |= FLAG_ISOLATE;
12281 	}
12282 
12283 	if (un->un_f_is_fibre == FALSE) {
12284 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12285 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12286 		}
12287 	}
12288 
12289 	/*
12290 	 * Set the pkt flags here so we save time later.
12291 	 * Note: These flags are NOT in the uscsi man page!!!
12292 	 */
12293 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12294 		flags |= FLAG_HEAD;
12295 	}
12296 
12297 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12298 		flags |= FLAG_NOINTR;
12299 	}
12300 
12301 	/*
12302 	 * For tagged queueing, things get a bit complicated.
12303 	 * Check first for head of queue and last for ordered queue.
12304 	 * If neither head nor order, use the default driver tag flags.
12305 	 */
12306 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12307 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12308 			flags |= FLAG_HTAG;
12309 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12310 			flags |= FLAG_OTAG;
12311 		} else {
12312 			flags |= un->un_tagflags & FLAG_TAGMASK;
12313 		}
12314 	}
12315 
12316 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12317 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12318 	}
12319 
12320 	pktp->pkt_flags = flags;
12321 
12322 	/* Transfer uscsi information to scsi_pkt */
12323 	(void) scsi_uscsi_pktinit(uscmd, pktp);
12324 
12325 	/* Copy the caller's CDB into the pkt... */
12326 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12327 
12328 	if (uscmd->uscsi_timeout == 0) {
12329 		pktp->pkt_time = un->un_uscsi_timeout;
12330 	} else {
12331 		pktp->pkt_time = uscmd->uscsi_timeout;
12332 	}
12333 
12334 	/* need it later to identify USCSI request in sdintr */
12335 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12336 
12337 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12338 
12339 	pktp->pkt_private = bp;
12340 	pktp->pkt_comp = sdintr;
12341 	*pktpp = pktp;
12342 
12343 	SD_TRACE(SD_LOG_IO_CORE, un,
12344 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12345 
12346 	return (SD_PKT_ALLOC_SUCCESS);
12347 }
12348 
12349 
12350 /*
12351  *    Function: sd_destroypkt_for_uscsi
12352  *
12353  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12354  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12355  *		struct.
12356  *
12357  *     Context: May be called under interrupt context
12358  */
12359 
12360 static void
12361 sd_destroypkt_for_uscsi(struct buf *bp)
12362 {
12363 	struct uscsi_cmd *uscmd;
12364 	struct sd_xbuf	*xp;
12365 	struct scsi_pkt	*pktp;
12366 	struct sd_lun	*un;
12367 
12368 	ASSERT(bp != NULL);
12369 	xp = SD_GET_XBUF(bp);
12370 	ASSERT(xp != NULL);
12371 	un = SD_GET_UN(bp);
12372 	ASSERT(un != NULL);
12373 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12374 	pktp = SD_GET_PKTP(bp);
12375 	ASSERT(pktp != NULL);
12376 
12377 	SD_TRACE(SD_LOG_IO_CORE, un,
12378 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12379 
12380 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12381 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12382 	ASSERT(uscmd != NULL);
12383 
12384 	/* Save the status and the residual into the uscsi_cmd struct */
12385 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12386 	uscmd->uscsi_resid  = bp->b_resid;
12387 
12388 	/* Transfer scsi_pkt information to uscsi */
12389 	(void) scsi_uscsi_pktfini(pktp, uscmd);
12390 
12391 	/*
12392 	 * If enabled, copy any saved sense data into the area specified
12393 	 * by the uscsi command.
12394 	 */
12395 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12396 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12397 		/*
12398 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12399 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12400 		 */
12401 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12402 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12403 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12404 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12405 			    MAX_SENSE_LENGTH);
12406 		} else {
12407 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12408 			    SENSE_LENGTH);
12409 		}
12410 	}
12411 
12412 	/* We are done with the scsi_pkt; free it now */
12413 	ASSERT(SD_GET_PKTP(bp) != NULL);
12414 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12415 
12416 	SD_TRACE(SD_LOG_IO_CORE, un,
12417 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12418 }
12419 
12420 
12421 /*
12422  *    Function: sd_bioclone_alloc
12423  *
12424  * Description: Allocate a buf(9S) and init it as per the given buf
12425  *		and the various arguments.  The associated sd_xbuf
12426  *		struct is (nearly) duplicated.  The struct buf *bp
12427  *		argument is saved in new_xp->xb_private.
12428  *
12429  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12430  *		datalen - size of data area for the shadow bp
12431  *		blkno - starting LBA
12432  *		func - function pointer for b_iodone in the shadow buf. (May
12433  *			be NULL if none.)
12434  *
12435  * Return Code: Pointer to allocates buf(9S) struct
12436  *
12437  *     Context: Can sleep.
12438  */
12439 
12440 static struct buf *
12441 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12442 	daddr_t blkno, int (*func)(struct buf *))
12443 {
12444 	struct	sd_lun	*un;
12445 	struct	sd_xbuf	*xp;
12446 	struct	sd_xbuf	*new_xp;
12447 	struct	buf	*new_bp;
12448 
12449 	ASSERT(bp != NULL);
12450 	xp = SD_GET_XBUF(bp);
12451 	ASSERT(xp != NULL);
12452 	un = SD_GET_UN(bp);
12453 	ASSERT(un != NULL);
12454 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12455 
12456 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12457 	    NULL, KM_SLEEP);
12458 
12459 	new_bp->b_lblkno	= blkno;
12460 
12461 	/*
12462 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12463 	 * original xbuf into it.
12464 	 */
12465 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12466 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12467 
12468 	/*
12469 	 * The given bp is automatically saved in the xb_private member
12470 	 * of the new xbuf.  Callers are allowed to depend on this.
12471 	 */
12472 	new_xp->xb_private = bp;
12473 
12474 	new_bp->b_private  = new_xp;
12475 
12476 	return (new_bp);
12477 }
12478 
12479 /*
12480  *    Function: sd_shadow_buf_alloc
12481  *
12482  * Description: Allocate a buf(9S) and init it as per the given buf
12483  *		and the various arguments.  The associated sd_xbuf
12484  *		struct is (nearly) duplicated.  The struct buf *bp
12485  *		argument is saved in new_xp->xb_private.
12486  *
12487  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12488  *		datalen - size of data area for the shadow bp
12489  *		bflags - B_READ or B_WRITE (pseudo flag)
12490  *		blkno - starting LBA
12491  *		func - function pointer for b_iodone in the shadow buf. (May
12492  *			be NULL if none.)
12493  *
12494  * Return Code: Pointer to allocates buf(9S) struct
12495  *
12496  *     Context: Can sleep.
12497  */
12498 
12499 static struct buf *
12500 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12501 	daddr_t blkno, int (*func)(struct buf *))
12502 {
12503 	struct	sd_lun	*un;
12504 	struct	sd_xbuf	*xp;
12505 	struct	sd_xbuf	*new_xp;
12506 	struct	buf	*new_bp;
12507 
12508 	ASSERT(bp != NULL);
12509 	xp = SD_GET_XBUF(bp);
12510 	ASSERT(xp != NULL);
12511 	un = SD_GET_UN(bp);
12512 	ASSERT(un != NULL);
12513 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12514 
12515 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12516 		bp_mapin(bp);
12517 	}
12518 
12519 	bflags &= (B_READ | B_WRITE);
12520 #if defined(__i386) || defined(__amd64)
12521 	new_bp = getrbuf(KM_SLEEP);
12522 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12523 	new_bp->b_bcount = datalen;
12524 	new_bp->b_flags = bflags |
12525 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12526 #else
12527 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12528 	    datalen, bflags, SLEEP_FUNC, NULL);
12529 #endif
12530 	new_bp->av_forw	= NULL;
12531 	new_bp->av_back	= NULL;
12532 	new_bp->b_dev	= bp->b_dev;
12533 	new_bp->b_blkno	= blkno;
12534 	new_bp->b_iodone = func;
12535 	new_bp->b_edev	= bp->b_edev;
12536 	new_bp->b_resid	= 0;
12537 
12538 	/* We need to preserve the B_FAILFAST flag */
12539 	if (bp->b_flags & B_FAILFAST) {
12540 		new_bp->b_flags |= B_FAILFAST;
12541 	}
12542 
12543 	/*
12544 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12545 	 * original xbuf into it.
12546 	 */
12547 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12548 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12549 
12550 	/* Need later to copy data between the shadow buf & original buf! */
12551 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12552 
12553 	/*
12554 	 * The given bp is automatically saved in the xb_private member
12555 	 * of the new xbuf.  Callers are allowed to depend on this.
12556 	 */
12557 	new_xp->xb_private = bp;
12558 
12559 	new_bp->b_private  = new_xp;
12560 
12561 	return (new_bp);
12562 }
12563 
12564 /*
12565  *    Function: sd_bioclone_free
12566  *
12567  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12568  *		in the larger than partition operation.
12569  *
12570  *     Context: May be called under interrupt context
12571  */
12572 
12573 static void
12574 sd_bioclone_free(struct buf *bp)
12575 {
12576 	struct sd_xbuf	*xp;
12577 
12578 	ASSERT(bp != NULL);
12579 	xp = SD_GET_XBUF(bp);
12580 	ASSERT(xp != NULL);
12581 
12582 	/*
12583 	 * Call bp_mapout() before freeing the buf,  in case a lower
12584 	 * layer or HBA  had done a bp_mapin().  we must do this here
12585 	 * as we are the "originator" of the shadow buf.
12586 	 */
12587 	bp_mapout(bp);
12588 
12589 	/*
12590 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12591 	 * never gets confused by a stale value in this field. (Just a little
12592 	 * extra defensiveness here.)
12593 	 */
12594 	bp->b_iodone = NULL;
12595 
12596 	freerbuf(bp);
12597 
12598 	kmem_free(xp, sizeof (struct sd_xbuf));
12599 }
12600 
12601 /*
12602  *    Function: sd_shadow_buf_free
12603  *
12604  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12605  *
12606  *     Context: May be called under interrupt context
12607  */
12608 
12609 static void
12610 sd_shadow_buf_free(struct buf *bp)
12611 {
12612 	struct sd_xbuf	*xp;
12613 
12614 	ASSERT(bp != NULL);
12615 	xp = SD_GET_XBUF(bp);
12616 	ASSERT(xp != NULL);
12617 
12618 #if defined(__sparc)
12619 	/*
12620 	 * Call bp_mapout() before freeing the buf,  in case a lower
12621 	 * layer or HBA  had done a bp_mapin().  we must do this here
12622 	 * as we are the "originator" of the shadow buf.
12623 	 */
12624 	bp_mapout(bp);
12625 #endif
12626 
12627 	/*
12628 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12629 	 * never gets confused by a stale value in this field. (Just a little
12630 	 * extra defensiveness here.)
12631 	 */
12632 	bp->b_iodone = NULL;
12633 
12634 #if defined(__i386) || defined(__amd64)
12635 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12636 	freerbuf(bp);
12637 #else
12638 	scsi_free_consistent_buf(bp);
12639 #endif
12640 
12641 	kmem_free(xp, sizeof (struct sd_xbuf));
12642 }
12643 
12644 
12645 /*
12646  *    Function: sd_print_transport_rejected_message
12647  *
12648  * Description: This implements the ludicrously complex rules for printing
12649  *		a "transport rejected" message.  This is to address the
12650  *		specific problem of having a flood of this error message
12651  *		produced when a failover occurs.
12652  *
12653  *     Context: Any.
12654  */
12655 
12656 static void
12657 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12658 	int code)
12659 {
12660 	ASSERT(un != NULL);
12661 	ASSERT(mutex_owned(SD_MUTEX(un)));
12662 	ASSERT(xp != NULL);
12663 
12664 	/*
12665 	 * Print the "transport rejected" message under the following
12666 	 * conditions:
12667 	 *
12668 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12669 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12670 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12671 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12672 	 *   scsi_transport(9F) (which indicates that the target might have
12673 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12674 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12675 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12676 	 *   from scsi_transport().
12677 	 *
12678 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12679 	 * the preceeding cases in order for the message to be printed.
12680 	 */
12681 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12682 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12683 		    (code != TRAN_FATAL_ERROR) ||
12684 		    (un->un_tran_fatal_count == 1)) {
12685 			switch (code) {
12686 			case TRAN_BADPKT:
12687 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12688 				    "transport rejected bad packet\n");
12689 				break;
12690 			case TRAN_FATAL_ERROR:
12691 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12692 				    "transport rejected fatal error\n");
12693 				break;
12694 			default:
12695 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12696 				    "transport rejected (%d)\n", code);
12697 				break;
12698 			}
12699 		}
12700 	}
12701 }
12702 
12703 
12704 /*
12705  *    Function: sd_add_buf_to_waitq
12706  *
12707  * Description: Add the given buf(9S) struct to the wait queue for the
12708  *		instance.  If sorting is enabled, then the buf is added
12709  *		to the queue via an elevator sort algorithm (a la
12710  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12711  *		If sorting is not enabled, then the buf is just added
12712  *		to the end of the wait queue.
12713  *
12714  * Return Code: void
12715  *
12716  *     Context: Does not sleep/block, therefore technically can be called
12717  *		from any context.  However if sorting is enabled then the
12718  *		execution time is indeterminate, and may take long if
12719  *		the wait queue grows large.
12720  */
12721 
12722 static void
12723 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12724 {
12725 	struct buf *ap;
12726 
12727 	ASSERT(bp != NULL);
12728 	ASSERT(un != NULL);
12729 	ASSERT(mutex_owned(SD_MUTEX(un)));
12730 
12731 	/* If the queue is empty, add the buf as the only entry & return. */
12732 	if (un->un_waitq_headp == NULL) {
12733 		ASSERT(un->un_waitq_tailp == NULL);
12734 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12735 		bp->av_forw = NULL;
12736 		return;
12737 	}
12738 
12739 	ASSERT(un->un_waitq_tailp != NULL);
12740 
12741 	/*
12742 	 * If sorting is disabled, just add the buf to the tail end of
12743 	 * the wait queue and return.
12744 	 */
12745 	if (un->un_f_disksort_disabled) {
12746 		un->un_waitq_tailp->av_forw = bp;
12747 		un->un_waitq_tailp = bp;
12748 		bp->av_forw = NULL;
12749 		return;
12750 	}
12751 
12752 	/*
12753 	 * Sort thru the list of requests currently on the wait queue
12754 	 * and add the new buf request at the appropriate position.
12755 	 *
12756 	 * The un->un_waitq_headp is an activity chain pointer on which
12757 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12758 	 * first queue holds those requests which are positioned after
12759 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12760 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12761 	 * Thus we implement a one way scan, retracting after reaching
12762 	 * the end of the drive to the first request on the second
12763 	 * queue, at which time it becomes the first queue.
12764 	 * A one-way scan is natural because of the way UNIX read-ahead
12765 	 * blocks are allocated.
12766 	 *
12767 	 * If we lie after the first request, then we must locate the
12768 	 * second request list and add ourselves to it.
12769 	 */
12770 	ap = un->un_waitq_headp;
12771 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12772 		while (ap->av_forw != NULL) {
12773 			/*
12774 			 * Look for an "inversion" in the (normally
12775 			 * ascending) block numbers. This indicates
12776 			 * the start of the second request list.
12777 			 */
12778 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12779 				/*
12780 				 * Search the second request list for the
12781 				 * first request at a larger block number.
12782 				 * We go before that; however if there is
12783 				 * no such request, we go at the end.
12784 				 */
12785 				do {
12786 					if (SD_GET_BLKNO(bp) <
12787 					    SD_GET_BLKNO(ap->av_forw)) {
12788 						goto insert;
12789 					}
12790 					ap = ap->av_forw;
12791 				} while (ap->av_forw != NULL);
12792 				goto insert;		/* after last */
12793 			}
12794 			ap = ap->av_forw;
12795 		}
12796 
12797 		/*
12798 		 * No inversions... we will go after the last, and
12799 		 * be the first request in the second request list.
12800 		 */
12801 		goto insert;
12802 	}
12803 
12804 	/*
12805 	 * Request is at/after the current request...
12806 	 * sort in the first request list.
12807 	 */
12808 	while (ap->av_forw != NULL) {
12809 		/*
12810 		 * We want to go after the current request (1) if
12811 		 * there is an inversion after it (i.e. it is the end
12812 		 * of the first request list), or (2) if the next
12813 		 * request is a larger block no. than our request.
12814 		 */
12815 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12816 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12817 			goto insert;
12818 		}
12819 		ap = ap->av_forw;
12820 	}
12821 
12822 	/*
12823 	 * Neither a second list nor a larger request, therefore
12824 	 * we go at the end of the first list (which is the same
12825 	 * as the end of the whole schebang).
12826 	 */
12827 insert:
12828 	bp->av_forw = ap->av_forw;
12829 	ap->av_forw = bp;
12830 
12831 	/*
12832 	 * If we inserted onto the tail end of the waitq, make sure the
12833 	 * tail pointer is updated.
12834 	 */
12835 	if (ap == un->un_waitq_tailp) {
12836 		un->un_waitq_tailp = bp;
12837 	}
12838 }
12839 
12840 
12841 /*
12842  *    Function: sd_start_cmds
12843  *
12844  * Description: Remove and transport cmds from the driver queues.
12845  *
12846  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12847  *
12848  *		immed_bp - ptr to a buf to be transported immediately. Only
12849  *		the immed_bp is transported; bufs on the waitq are not
12850  *		processed and the un_retry_bp is not checked.  If immed_bp is
12851  *		NULL, then normal queue processing is performed.
12852  *
12853  *     Context: May be called from kernel thread context, interrupt context,
12854  *		or runout callback context. This function may not block or
12855  *		call routines that block.
12856  */
12857 
12858 static void
12859 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12860 {
12861 	struct	sd_xbuf	*xp;
12862 	struct	buf	*bp;
12863 	void	(*statp)(kstat_io_t *);
12864 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12865 	void	(*saved_statp)(kstat_io_t *);
12866 #endif
12867 	int	rval;
12868 
12869 	ASSERT(un != NULL);
12870 	ASSERT(mutex_owned(SD_MUTEX(un)));
12871 	ASSERT(un->un_ncmds_in_transport >= 0);
12872 	ASSERT(un->un_throttle >= 0);
12873 
12874 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12875 
12876 	do {
12877 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12878 		saved_statp = NULL;
12879 #endif
12880 
12881 		/*
12882 		 * If we are syncing or dumping, fail the command to
12883 		 * avoid recursively calling back into scsi_transport().
12884 		 * The dump I/O itself uses a separate code path so this
12885 		 * only prevents non-dump I/O from being sent while dumping.
12886 		 * File system sync takes place before dumping begins.
12887 		 * During panic, filesystem I/O is allowed provided
12888 		 * un_in_callback is <= 1.  This is to prevent recursion
12889 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12890 		 * sd_start_cmds and so on.  See panic.c for more information
12891 		 * about the states the system can be in during panic.
12892 		 */
12893 		if ((un->un_state == SD_STATE_DUMPING) ||
12894 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12895 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12896 			    "sd_start_cmds: panicking\n");
12897 			goto exit;
12898 		}
12899 
12900 		if ((bp = immed_bp) != NULL) {
12901 			/*
12902 			 * We have a bp that must be transported immediately.
12903 			 * It's OK to transport the immed_bp here without doing
12904 			 * the throttle limit check because the immed_bp is
12905 			 * always used in a retry/recovery case. This means
12906 			 * that we know we are not at the throttle limit by
12907 			 * virtue of the fact that to get here we must have
12908 			 * already gotten a command back via sdintr(). This also
12909 			 * relies on (1) the command on un_retry_bp preventing
12910 			 * further commands from the waitq from being issued;
12911 			 * and (2) the code in sd_retry_command checking the
12912 			 * throttle limit before issuing a delayed or immediate
12913 			 * retry. This holds even if the throttle limit is
12914 			 * currently ratcheted down from its maximum value.
12915 			 */
12916 			statp = kstat_runq_enter;
12917 			if (bp == un->un_retry_bp) {
12918 				ASSERT((un->un_retry_statp == NULL) ||
12919 				    (un->un_retry_statp == kstat_waitq_enter) ||
12920 				    (un->un_retry_statp ==
12921 				    kstat_runq_back_to_waitq));
12922 				/*
12923 				 * If the waitq kstat was incremented when
12924 				 * sd_set_retry_bp() queued this bp for a retry,
12925 				 * then we must set up statp so that the waitq
12926 				 * count will get decremented correctly below.
12927 				 * Also we must clear un->un_retry_statp to
12928 				 * ensure that we do not act on a stale value
12929 				 * in this field.
12930 				 */
12931 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12932 				    (un->un_retry_statp ==
12933 				    kstat_runq_back_to_waitq)) {
12934 					statp = kstat_waitq_to_runq;
12935 				}
12936 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12937 				saved_statp = un->un_retry_statp;
12938 #endif
12939 				un->un_retry_statp = NULL;
12940 
12941 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12942 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12943 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12944 				    un, un->un_retry_bp, un->un_throttle,
12945 				    un->un_ncmds_in_transport);
12946 			} else {
12947 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12948 				    "processing priority bp:0x%p\n", bp);
12949 			}
12950 
12951 		} else if ((bp = un->un_waitq_headp) != NULL) {
12952 			/*
12953 			 * A command on the waitq is ready to go, but do not
12954 			 * send it if:
12955 			 *
12956 			 * (1) the throttle limit has been reached, or
12957 			 * (2) a retry is pending, or
12958 			 * (3) a START_STOP_UNIT callback pending, or
12959 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12960 			 *	command is pending.
12961 			 *
12962 			 * For all of these conditions, IO processing will
12963 			 * restart after the condition is cleared.
12964 			 */
12965 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12966 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12967 				    "sd_start_cmds: exiting, "
12968 				    "throttle limit reached!\n");
12969 				goto exit;
12970 			}
12971 			if (un->un_retry_bp != NULL) {
12972 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12973 				    "sd_start_cmds: exiting, retry pending!\n");
12974 				goto exit;
12975 			}
12976 			if (un->un_startstop_timeid != NULL) {
12977 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12978 				    "sd_start_cmds: exiting, "
12979 				    "START_STOP pending!\n");
12980 				goto exit;
12981 			}
12982 			if (un->un_direct_priority_timeid != NULL) {
12983 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12984 				    "sd_start_cmds: exiting, "
12985 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12986 				goto exit;
12987 			}
12988 
12989 			/* Dequeue the command */
12990 			un->un_waitq_headp = bp->av_forw;
12991 			if (un->un_waitq_headp == NULL) {
12992 				un->un_waitq_tailp = NULL;
12993 			}
12994 			bp->av_forw = NULL;
12995 			statp = kstat_waitq_to_runq;
12996 			SD_TRACE(SD_LOG_IO_CORE, un,
12997 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12998 
12999 		} else {
13000 			/* No work to do so bail out now */
13001 			SD_TRACE(SD_LOG_IO_CORE, un,
13002 			    "sd_start_cmds: no more work, exiting!\n");
13003 			goto exit;
13004 		}
13005 
13006 		/*
13007 		 * Reset the state to normal. This is the mechanism by which
13008 		 * the state transitions from either SD_STATE_RWAIT or
13009 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13010 		 * If state is SD_STATE_PM_CHANGING then this command is
13011 		 * part of the device power control and the state must
13012 		 * not be put back to normal. Doing so would would
13013 		 * allow new commands to proceed when they shouldn't,
13014 		 * the device may be going off.
13015 		 */
13016 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13017 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13018 			New_state(un, SD_STATE_NORMAL);
13019 		}
13020 
13021 		xp = SD_GET_XBUF(bp);
13022 		ASSERT(xp != NULL);
13023 
13024 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13025 		/*
13026 		 * Allocate the scsi_pkt if we need one, or attach DMA
13027 		 * resources if we have a scsi_pkt that needs them. The
13028 		 * latter should only occur for commands that are being
13029 		 * retried.
13030 		 */
13031 		if ((xp->xb_pktp == NULL) ||
13032 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13033 #else
13034 		if (xp->xb_pktp == NULL) {
13035 #endif
13036 			/*
13037 			 * There is no scsi_pkt allocated for this buf. Call
13038 			 * the initpkt function to allocate & init one.
13039 			 *
13040 			 * The scsi_init_pkt runout callback functionality is
13041 			 * implemented as follows:
13042 			 *
13043 			 * 1) The initpkt function always calls
13044 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13045 			 *    callback routine.
13046 			 * 2) A successful packet allocation is initialized and
13047 			 *    the I/O is transported.
13048 			 * 3) The I/O associated with an allocation resource
13049 			 *    failure is left on its queue to be retried via
13050 			 *    runout or the next I/O.
13051 			 * 4) The I/O associated with a DMA error is removed
13052 			 *    from the queue and failed with EIO. Processing of
13053 			 *    the transport queues is also halted to be
13054 			 *    restarted via runout or the next I/O.
13055 			 * 5) The I/O associated with a CDB size or packet
13056 			 *    size error is removed from the queue and failed
13057 			 *    with EIO. Processing of the transport queues is
13058 			 *    continued.
13059 			 *
13060 			 * Note: there is no interface for canceling a runout
13061 			 * callback. To prevent the driver from detaching or
13062 			 * suspending while a runout is pending the driver
13063 			 * state is set to SD_STATE_RWAIT
13064 			 *
13065 			 * Note: using the scsi_init_pkt callback facility can
13066 			 * result in an I/O request persisting at the head of
13067 			 * the list which cannot be satisfied even after
13068 			 * multiple retries. In the future the driver may
13069 			 * implement some kind of maximum runout count before
13070 			 * failing an I/O.
13071 			 *
13072 			 * Note: the use of funcp below may seem superfluous,
13073 			 * but it helps warlock figure out the correct
13074 			 * initpkt function calls (see [s]sd.wlcmd).
13075 			 */
13076 			struct scsi_pkt	*pktp;
13077 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13078 
13079 			ASSERT(bp != un->un_rqs_bp);
13080 
13081 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13082 			switch ((*funcp)(bp, &pktp)) {
13083 			case  SD_PKT_ALLOC_SUCCESS:
13084 				xp->xb_pktp = pktp;
13085 				SD_TRACE(SD_LOG_IO_CORE, un,
13086 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13087 				    pktp);
13088 				goto got_pkt;
13089 
13090 			case SD_PKT_ALLOC_FAILURE:
13091 				/*
13092 				 * Temporary (hopefully) resource depletion.
13093 				 * Since retries and RQS commands always have a
13094 				 * scsi_pkt allocated, these cases should never
13095 				 * get here. So the only cases this needs to
13096 				 * handle is a bp from the waitq (which we put
13097 				 * back onto the waitq for sdrunout), or a bp
13098 				 * sent as an immed_bp (which we just fail).
13099 				 */
13100 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13101 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13102 
13103 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13104 
13105 				if (bp == immed_bp) {
13106 					/*
13107 					 * If SD_XB_DMA_FREED is clear, then
13108 					 * this is a failure to allocate a
13109 					 * scsi_pkt, and we must fail the
13110 					 * command.
13111 					 */
13112 					if ((xp->xb_pkt_flags &
13113 					    SD_XB_DMA_FREED) == 0) {
13114 						break;
13115 					}
13116 
13117 					/*
13118 					 * If this immediate command is NOT our
13119 					 * un_retry_bp, then we must fail it.
13120 					 */
13121 					if (bp != un->un_retry_bp) {
13122 						break;
13123 					}
13124 
13125 					/*
13126 					 * We get here if this cmd is our
13127 					 * un_retry_bp that was DMAFREED, but
13128 					 * scsi_init_pkt() failed to reallocate
13129 					 * DMA resources when we attempted to
13130 					 * retry it. This can happen when an
13131 					 * mpxio failover is in progress, but
13132 					 * we don't want to just fail the
13133 					 * command in this case.
13134 					 *
13135 					 * Use timeout(9F) to restart it after
13136 					 * a 100ms delay.  We don't want to
13137 					 * let sdrunout() restart it, because
13138 					 * sdrunout() is just supposed to start
13139 					 * commands that are sitting on the
13140 					 * wait queue.  The un_retry_bp stays
13141 					 * set until the command completes, but
13142 					 * sdrunout can be called many times
13143 					 * before that happens.  Since sdrunout
13144 					 * cannot tell if the un_retry_bp is
13145 					 * already in the transport, it could
13146 					 * end up calling scsi_transport() for
13147 					 * the un_retry_bp multiple times.
13148 					 *
13149 					 * Also: don't schedule the callback
13150 					 * if some other callback is already
13151 					 * pending.
13152 					 */
13153 					if (un->un_retry_statp == NULL) {
13154 						/*
13155 						 * restore the kstat pointer to
13156 						 * keep kstat counts coherent
13157 						 * when we do retry the command.
13158 						 */
13159 						un->un_retry_statp =
13160 						    saved_statp;
13161 					}
13162 
13163 					if ((un->un_startstop_timeid == NULL) &&
13164 					    (un->un_retry_timeid == NULL) &&
13165 					    (un->un_direct_priority_timeid ==
13166 					    NULL)) {
13167 
13168 						un->un_retry_timeid =
13169 						    timeout(
13170 						    sd_start_retry_command,
13171 						    un, SD_RESTART_TIMEOUT);
13172 					}
13173 					goto exit;
13174 				}
13175 
13176 #else
13177 				if (bp == immed_bp) {
13178 					break;	/* Just fail the command */
13179 				}
13180 #endif
13181 
13182 				/* Add the buf back to the head of the waitq */
13183 				bp->av_forw = un->un_waitq_headp;
13184 				un->un_waitq_headp = bp;
13185 				if (un->un_waitq_tailp == NULL) {
13186 					un->un_waitq_tailp = bp;
13187 				}
13188 				goto exit;
13189 
13190 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13191 				/*
13192 				 * HBA DMA resource failure. Fail the command
13193 				 * and continue processing of the queues.
13194 				 */
13195 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13196 				    "sd_start_cmds: "
13197 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13198 				break;
13199 
13200 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13201 				/*
13202 				 * Note:x86: Partial DMA mapping not supported
13203 				 * for USCSI commands, and all the needed DMA
13204 				 * resources were not allocated.
13205 				 */
13206 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13207 				    "sd_start_cmds: "
13208 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13209 				break;
13210 
13211 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13212 				/*
13213 				 * Note:x86: Request cannot fit into CDB based
13214 				 * on lba and len.
13215 				 */
13216 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13217 				    "sd_start_cmds: "
13218 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13219 				break;
13220 
13221 			default:
13222 				/* Should NEVER get here! */
13223 				panic("scsi_initpkt error");
13224 				/*NOTREACHED*/
13225 			}
13226 
13227 			/*
13228 			 * Fatal error in allocating a scsi_pkt for this buf.
13229 			 * Update kstats & return the buf with an error code.
13230 			 * We must use sd_return_failed_command_no_restart() to
13231 			 * avoid a recursive call back into sd_start_cmds().
13232 			 * However this also means that we must keep processing
13233 			 * the waitq here in order to avoid stalling.
13234 			 */
13235 			if (statp == kstat_waitq_to_runq) {
13236 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13237 			}
13238 			sd_return_failed_command_no_restart(un, bp, EIO);
13239 			if (bp == immed_bp) {
13240 				/* immed_bp is gone by now, so clear this */
13241 				immed_bp = NULL;
13242 			}
13243 			continue;
13244 		}
13245 got_pkt:
13246 		if (bp == immed_bp) {
13247 			/* goto the head of the class.... */
13248 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13249 		}
13250 
13251 		un->un_ncmds_in_transport++;
13252 		SD_UPDATE_KSTATS(un, statp, bp);
13253 
13254 		/*
13255 		 * Call scsi_transport() to send the command to the target.
13256 		 * According to SCSA architecture, we must drop the mutex here
13257 		 * before calling scsi_transport() in order to avoid deadlock.
13258 		 * Note that the scsi_pkt's completion routine can be executed
13259 		 * (from interrupt context) even before the call to
13260 		 * scsi_transport() returns.
13261 		 */
13262 		SD_TRACE(SD_LOG_IO_CORE, un,
13263 		    "sd_start_cmds: calling scsi_transport()\n");
13264 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13265 
13266 		mutex_exit(SD_MUTEX(un));
13267 		rval = scsi_transport(xp->xb_pktp);
13268 		mutex_enter(SD_MUTEX(un));
13269 
13270 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13271 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13272 
13273 		switch (rval) {
13274 		case TRAN_ACCEPT:
13275 			/* Clear this with every pkt accepted by the HBA */
13276 			un->un_tran_fatal_count = 0;
13277 			break;	/* Success; try the next cmd (if any) */
13278 
13279 		case TRAN_BUSY:
13280 			un->un_ncmds_in_transport--;
13281 			ASSERT(un->un_ncmds_in_transport >= 0);
13282 
13283 			/*
13284 			 * Don't retry request sense, the sense data
13285 			 * is lost when another request is sent.
13286 			 * Free up the rqs buf and retry
13287 			 * the original failed cmd.  Update kstat.
13288 			 */
13289 			if (bp == un->un_rqs_bp) {
13290 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13291 				bp = sd_mark_rqs_idle(un, xp);
13292 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13293 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13294 				    kstat_waitq_enter);
13295 				goto exit;
13296 			}
13297 
13298 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13299 			/*
13300 			 * Free the DMA resources for the  scsi_pkt. This will
13301 			 * allow mpxio to select another path the next time
13302 			 * we call scsi_transport() with this scsi_pkt.
13303 			 * See sdintr() for the rationalization behind this.
13304 			 */
13305 			if ((un->un_f_is_fibre == TRUE) &&
13306 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13307 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13308 				scsi_dmafree(xp->xb_pktp);
13309 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13310 			}
13311 #endif
13312 
13313 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13314 				/*
13315 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13316 				 * are for error recovery situations. These do
13317 				 * not use the normal command waitq, so if they
13318 				 * get a TRAN_BUSY we cannot put them back onto
13319 				 * the waitq for later retry. One possible
13320 				 * problem is that there could already be some
13321 				 * other command on un_retry_bp that is waiting
13322 				 * for this one to complete, so we would be
13323 				 * deadlocked if we put this command back onto
13324 				 * the waitq for later retry (since un_retry_bp
13325 				 * must complete before the driver gets back to
13326 				 * commands on the waitq).
13327 				 *
13328 				 * To avoid deadlock we must schedule a callback
13329 				 * that will restart this command after a set
13330 				 * interval.  This should keep retrying for as
13331 				 * long as the underlying transport keeps
13332 				 * returning TRAN_BUSY (just like for other
13333 				 * commands).  Use the same timeout interval as
13334 				 * for the ordinary TRAN_BUSY retry.
13335 				 */
13336 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13337 				    "sd_start_cmds: scsi_transport() returned "
13338 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13339 
13340 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13341 				un->un_direct_priority_timeid =
13342 				    timeout(sd_start_direct_priority_command,
13343 				    bp, SD_BSY_TIMEOUT / 500);
13344 
13345 				goto exit;
13346 			}
13347 
13348 			/*
13349 			 * For TRAN_BUSY, we want to reduce the throttle value,
13350 			 * unless we are retrying a command.
13351 			 */
13352 			if (bp != un->un_retry_bp) {
13353 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13354 			}
13355 
13356 			/*
13357 			 * Set up the bp to be tried again 10 ms later.
13358 			 * Note:x86: Is there a timeout value in the sd_lun
13359 			 * for this condition?
13360 			 */
13361 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13362 			    kstat_runq_back_to_waitq);
13363 			goto exit;
13364 
13365 		case TRAN_FATAL_ERROR:
13366 			un->un_tran_fatal_count++;
13367 			/* FALLTHRU */
13368 
13369 		case TRAN_BADPKT:
13370 		default:
13371 			un->un_ncmds_in_transport--;
13372 			ASSERT(un->un_ncmds_in_transport >= 0);
13373 
13374 			/*
13375 			 * If this is our REQUEST SENSE command with a
13376 			 * transport error, we must get back the pointers
13377 			 * to the original buf, and mark the REQUEST
13378 			 * SENSE command as "available".
13379 			 */
13380 			if (bp == un->un_rqs_bp) {
13381 				bp = sd_mark_rqs_idle(un, xp);
13382 				xp = SD_GET_XBUF(bp);
13383 			} else {
13384 				/*
13385 				 * Legacy behavior: do not update transport
13386 				 * error count for request sense commands.
13387 				 */
13388 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13389 			}
13390 
13391 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13392 			sd_print_transport_rejected_message(un, xp, rval);
13393 
13394 			/*
13395 			 * We must use sd_return_failed_command_no_restart() to
13396 			 * avoid a recursive call back into sd_start_cmds().
13397 			 * However this also means that we must keep processing
13398 			 * the waitq here in order to avoid stalling.
13399 			 */
13400 			sd_return_failed_command_no_restart(un, bp, EIO);
13401 
13402 			/*
13403 			 * Notify any threads waiting in sd_ddi_suspend() that
13404 			 * a command completion has occurred.
13405 			 */
13406 			if (un->un_state == SD_STATE_SUSPENDED) {
13407 				cv_broadcast(&un->un_disk_busy_cv);
13408 			}
13409 
13410 			if (bp == immed_bp) {
13411 				/* immed_bp is gone by now, so clear this */
13412 				immed_bp = NULL;
13413 			}
13414 			break;
13415 		}
13416 
13417 	} while (immed_bp == NULL);
13418 
13419 exit:
13420 	ASSERT(mutex_owned(SD_MUTEX(un)));
13421 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13422 }
13423 
13424 
13425 /*
13426  *    Function: sd_return_command
13427  *
13428  * Description: Returns a command to its originator (with or without an
13429  *		error).  Also starts commands waiting to be transported
13430  *		to the target.
13431  *
13432  *     Context: May be called from interrupt, kernel, or timeout context
13433  */
13434 
13435 static void
13436 sd_return_command(struct sd_lun *un, struct buf *bp)
13437 {
13438 	struct sd_xbuf *xp;
13439 	struct scsi_pkt *pktp;
13440 
13441 	ASSERT(bp != NULL);
13442 	ASSERT(un != NULL);
13443 	ASSERT(mutex_owned(SD_MUTEX(un)));
13444 	ASSERT(bp != un->un_rqs_bp);
13445 	xp = SD_GET_XBUF(bp);
13446 	ASSERT(xp != NULL);
13447 
13448 	pktp = SD_GET_PKTP(bp);
13449 
13450 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13451 
13452 	/*
13453 	 * Note: check for the "sdrestart failed" case.
13454 	 */
13455 	if ((un->un_partial_dma_supported == 1) &&
13456 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13457 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13458 	    (xp->xb_pktp->pkt_resid == 0)) {
13459 
13460 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13461 			/*
13462 			 * Successfully set up next portion of cmd
13463 			 * transfer, try sending it
13464 			 */
13465 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13466 			    NULL, NULL, 0, (clock_t)0, NULL);
13467 			sd_start_cmds(un, NULL);
13468 			return;	/* Note:x86: need a return here? */
13469 		}
13470 	}
13471 
13472 	/*
13473 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13474 	 * can happen if upon being re-tried the failfast bp either
13475 	 * succeeded or encountered another error (possibly even a different
13476 	 * error than the one that precipitated the failfast state, but in
13477 	 * that case it would have had to exhaust retries as well). Regardless,
13478 	 * this should not occur whenever the instance is in the active
13479 	 * failfast state.
13480 	 */
13481 	if (bp == un->un_failfast_bp) {
13482 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13483 		un->un_failfast_bp = NULL;
13484 	}
13485 
13486 	/*
13487 	 * Clear the failfast state upon successful completion of ANY cmd.
13488 	 */
13489 	if (bp->b_error == 0) {
13490 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13491 	}
13492 
13493 	/*
13494 	 * This is used if the command was retried one or more times. Show that
13495 	 * we are done with it, and allow processing of the waitq to resume.
13496 	 */
13497 	if (bp == un->un_retry_bp) {
13498 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13499 		    "sd_return_command: un:0x%p: "
13500 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13501 		un->un_retry_bp = NULL;
13502 		un->un_retry_statp = NULL;
13503 	}
13504 
13505 	SD_UPDATE_RDWR_STATS(un, bp);
13506 	SD_UPDATE_PARTITION_STATS(un, bp);
13507 
13508 	switch (un->un_state) {
13509 	case SD_STATE_SUSPENDED:
13510 		/*
13511 		 * Notify any threads waiting in sd_ddi_suspend() that
13512 		 * a command completion has occurred.
13513 		 */
13514 		cv_broadcast(&un->un_disk_busy_cv);
13515 		break;
13516 	default:
13517 		sd_start_cmds(un, NULL);
13518 		break;
13519 	}
13520 
13521 	/* Return this command up the iodone chain to its originator. */
13522 	mutex_exit(SD_MUTEX(un));
13523 
13524 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13525 	xp->xb_pktp = NULL;
13526 
13527 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13528 
13529 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13530 	mutex_enter(SD_MUTEX(un));
13531 
13532 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13533 }
13534 
13535 
13536 /*
13537  *    Function: sd_return_failed_command
13538  *
13539  * Description: Command completion when an error occurred.
13540  *
13541  *     Context: May be called from interrupt context
13542  */
13543 
13544 static void
13545 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13546 {
13547 	ASSERT(bp != NULL);
13548 	ASSERT(un != NULL);
13549 	ASSERT(mutex_owned(SD_MUTEX(un)));
13550 
13551 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13552 	    "sd_return_failed_command: entry\n");
13553 
13554 	/*
13555 	 * b_resid could already be nonzero due to a partial data
13556 	 * transfer, so do not change it here.
13557 	 */
13558 	SD_BIOERROR(bp, errcode);
13559 
13560 	sd_return_command(un, bp);
13561 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13562 	    "sd_return_failed_command: exit\n");
13563 }
13564 
13565 
13566 /*
13567  *    Function: sd_return_failed_command_no_restart
13568  *
13569  * Description: Same as sd_return_failed_command, but ensures that no
13570  *		call back into sd_start_cmds will be issued.
13571  *
13572  *     Context: May be called from interrupt context
13573  */
13574 
13575 static void
13576 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13577 	int errcode)
13578 {
13579 	struct sd_xbuf *xp;
13580 
13581 	ASSERT(bp != NULL);
13582 	ASSERT(un != NULL);
13583 	ASSERT(mutex_owned(SD_MUTEX(un)));
13584 	xp = SD_GET_XBUF(bp);
13585 	ASSERT(xp != NULL);
13586 	ASSERT(errcode != 0);
13587 
13588 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13589 	    "sd_return_failed_command_no_restart: entry\n");
13590 
13591 	/*
13592 	 * b_resid could already be nonzero due to a partial data
13593 	 * transfer, so do not change it here.
13594 	 */
13595 	SD_BIOERROR(bp, errcode);
13596 
13597 	/*
13598 	 * If this is the failfast bp, clear it. This can happen if the
13599 	 * failfast bp encounterd a fatal error when we attempted to
13600 	 * re-try it (such as a scsi_transport(9F) failure).  However
13601 	 * we should NOT be in an active failfast state if the failfast
13602 	 * bp is not NULL.
13603 	 */
13604 	if (bp == un->un_failfast_bp) {
13605 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13606 		un->un_failfast_bp = NULL;
13607 	}
13608 
13609 	if (bp == un->un_retry_bp) {
13610 		/*
13611 		 * This command was retried one or more times. Show that we are
13612 		 * done with it, and allow processing of the waitq to resume.
13613 		 */
13614 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13615 		    "sd_return_failed_command_no_restart: "
13616 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13617 		un->un_retry_bp = NULL;
13618 		un->un_retry_statp = NULL;
13619 	}
13620 
13621 	SD_UPDATE_RDWR_STATS(un, bp);
13622 	SD_UPDATE_PARTITION_STATS(un, bp);
13623 
13624 	mutex_exit(SD_MUTEX(un));
13625 
13626 	if (xp->xb_pktp != NULL) {
13627 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13628 		xp->xb_pktp = NULL;
13629 	}
13630 
13631 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13632 
13633 	mutex_enter(SD_MUTEX(un));
13634 
13635 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13636 	    "sd_return_failed_command_no_restart: exit\n");
13637 }
13638 
13639 
13640 /*
13641  *    Function: sd_retry_command
13642  *
13643  * Description: queue up a command for retry, or (optionally) fail it
13644  *		if retry counts are exhausted.
13645  *
13646  *   Arguments: un - Pointer to the sd_lun struct for the target.
13647  *
13648  *		bp - Pointer to the buf for the command to be retried.
13649  *
13650  *		retry_check_flag - Flag to see which (if any) of the retry
13651  *		   counts should be decremented/checked. If the indicated
13652  *		   retry count is exhausted, then the command will not be
13653  *		   retried; it will be failed instead. This should use a
13654  *		   value equal to one of the following:
13655  *
13656  *			SD_RETRIES_NOCHECK
13657  *			SD_RESD_RETRIES_STANDARD
13658  *			SD_RETRIES_VICTIM
13659  *
13660  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13661  *		   if the check should be made to see of FLAG_ISOLATE is set
13662  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13663  *		   not retried, it is simply failed.
13664  *
13665  *		user_funcp - Ptr to function to call before dispatching the
13666  *		   command. May be NULL if no action needs to be performed.
13667  *		   (Primarily intended for printing messages.)
13668  *
13669  *		user_arg - Optional argument to be passed along to
13670  *		   the user_funcp call.
13671  *
13672  *		failure_code - errno return code to set in the bp if the
13673  *		   command is going to be failed.
13674  *
13675  *		retry_delay - Retry delay interval in (clock_t) units. May
13676  *		   be zero which indicates that the retry should be retried
13677  *		   immediately (ie, without an intervening delay).
13678  *
13679  *		statp - Ptr to kstat function to be updated if the command
13680  *		   is queued for a delayed retry. May be NULL if no kstat
13681  *		   update is desired.
13682  *
13683  *     Context: May be called from interrupt context.
13684  */
13685 
13686 static void
13687 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13688 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13689 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13690 	void (*statp)(kstat_io_t *))
13691 {
13692 	struct sd_xbuf	*xp;
13693 	struct scsi_pkt	*pktp;
13694 
13695 	ASSERT(un != NULL);
13696 	ASSERT(mutex_owned(SD_MUTEX(un)));
13697 	ASSERT(bp != NULL);
13698 	xp = SD_GET_XBUF(bp);
13699 	ASSERT(xp != NULL);
13700 	pktp = SD_GET_PKTP(bp);
13701 	ASSERT(pktp != NULL);
13702 
13703 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13704 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13705 
13706 	/*
13707 	 * If we are syncing or dumping, fail the command to avoid
13708 	 * recursively calling back into scsi_transport().
13709 	 */
13710 	if (ddi_in_panic()) {
13711 		goto fail_command_no_log;
13712 	}
13713 
13714 	/*
13715 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13716 	 * log an error and fail the command.
13717 	 */
13718 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13719 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13720 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13721 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13722 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13723 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13724 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13725 		goto fail_command;
13726 	}
13727 
13728 	/*
13729 	 * If we are suspended, then put the command onto head of the
13730 	 * wait queue since we don't want to start more commands, and
13731 	 * clear the un_retry_bp. Next time when we are resumed, will
13732 	 * handle the command in the wait queue.
13733 	 */
13734 	switch (un->un_state) {
13735 	case SD_STATE_SUSPENDED:
13736 	case SD_STATE_DUMPING:
13737 		bp->av_forw = un->un_waitq_headp;
13738 		un->un_waitq_headp = bp;
13739 		if (un->un_waitq_tailp == NULL) {
13740 			un->un_waitq_tailp = bp;
13741 		}
13742 		if (bp == un->un_retry_bp) {
13743 			un->un_retry_bp = NULL;
13744 			un->un_retry_statp = NULL;
13745 		}
13746 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13747 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13748 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13749 		return;
13750 	default:
13751 		break;
13752 	}
13753 
13754 	/*
13755 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13756 	 * is set; if it is then we do not want to retry the command.
13757 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13758 	 */
13759 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13760 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13761 			goto fail_command;
13762 		}
13763 	}
13764 
13765 
13766 	/*
13767 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13768 	 * command timeout or a selection timeout has occurred. This means
13769 	 * that we were unable to establish an kind of communication with
13770 	 * the target, and subsequent retries and/or commands are likely
13771 	 * to encounter similar results and take a long time to complete.
13772 	 *
13773 	 * If this is a failfast error condition, we need to update the
13774 	 * failfast state, even if this bp does not have B_FAILFAST set.
13775 	 */
13776 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13777 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13778 			ASSERT(un->un_failfast_bp == NULL);
13779 			/*
13780 			 * If we are already in the active failfast state, and
13781 			 * another failfast error condition has been detected,
13782 			 * then fail this command if it has B_FAILFAST set.
13783 			 * If B_FAILFAST is clear, then maintain the legacy
13784 			 * behavior of retrying heroically, even tho this will
13785 			 * take a lot more time to fail the command.
13786 			 */
13787 			if (bp->b_flags & B_FAILFAST) {
13788 				goto fail_command;
13789 			}
13790 		} else {
13791 			/*
13792 			 * We're not in the active failfast state, but we
13793 			 * have a failfast error condition, so we must begin
13794 			 * transition to the next state. We do this regardless
13795 			 * of whether or not this bp has B_FAILFAST set.
13796 			 */
13797 			if (un->un_failfast_bp == NULL) {
13798 				/*
13799 				 * This is the first bp to meet a failfast
13800 				 * condition so save it on un_failfast_bp &
13801 				 * do normal retry processing. Do not enter
13802 				 * active failfast state yet. This marks
13803 				 * entry into the "failfast pending" state.
13804 				 */
13805 				un->un_failfast_bp = bp;
13806 
13807 			} else if (un->un_failfast_bp == bp) {
13808 				/*
13809 				 * This is the second time *this* bp has
13810 				 * encountered a failfast error condition,
13811 				 * so enter active failfast state & flush
13812 				 * queues as appropriate.
13813 				 */
13814 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13815 				un->un_failfast_bp = NULL;
13816 				sd_failfast_flushq(un);
13817 
13818 				/*
13819 				 * Fail this bp now if B_FAILFAST set;
13820 				 * otherwise continue with retries. (It would
13821 				 * be pretty ironic if this bp succeeded on a
13822 				 * subsequent retry after we just flushed all
13823 				 * the queues).
13824 				 */
13825 				if (bp->b_flags & B_FAILFAST) {
13826 					goto fail_command;
13827 				}
13828 
13829 #if !defined(lint) && !defined(__lint)
13830 			} else {
13831 				/*
13832 				 * If neither of the preceeding conditionals
13833 				 * was true, it means that there is some
13834 				 * *other* bp that has met an inital failfast
13835 				 * condition and is currently either being
13836 				 * retried or is waiting to be retried. In
13837 				 * that case we should perform normal retry
13838 				 * processing on *this* bp, since there is a
13839 				 * chance that the current failfast condition
13840 				 * is transient and recoverable. If that does
13841 				 * not turn out to be the case, then retries
13842 				 * will be cleared when the wait queue is
13843 				 * flushed anyway.
13844 				 */
13845 #endif
13846 			}
13847 		}
13848 	} else {
13849 		/*
13850 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13851 		 * likely were able to at least establish some level of
13852 		 * communication with the target and subsequent commands
13853 		 * and/or retries are likely to get through to the target,
13854 		 * In this case we want to be aggressive about clearing
13855 		 * the failfast state. Note that this does not affect
13856 		 * the "failfast pending" condition.
13857 		 */
13858 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13859 	}
13860 
13861 
13862 	/*
13863 	 * Check the specified retry count to see if we can still do
13864 	 * any retries with this pkt before we should fail it.
13865 	 */
13866 	switch (retry_check_flag & SD_RETRIES_MASK) {
13867 	case SD_RETRIES_VICTIM:
13868 		/*
13869 		 * Check the victim retry count. If exhausted, then fall
13870 		 * thru & check against the standard retry count.
13871 		 */
13872 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13873 			/* Increment count & proceed with the retry */
13874 			xp->xb_victim_retry_count++;
13875 			break;
13876 		}
13877 		/* Victim retries exhausted, fall back to std. retries... */
13878 		/* FALLTHRU */
13879 
13880 	case SD_RETRIES_STANDARD:
13881 		if (xp->xb_retry_count >= un->un_retry_count) {
13882 			/* Retries exhausted, fail the command */
13883 			SD_TRACE(SD_LOG_IO_CORE, un,
13884 			    "sd_retry_command: retries exhausted!\n");
13885 			/*
13886 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13887 			 * commands with nonzero pkt_resid.
13888 			 */
13889 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13890 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13891 			    (pktp->pkt_resid != 0)) {
13892 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13893 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13894 					SD_UPDATE_B_RESID(bp, pktp);
13895 				}
13896 			}
13897 			goto fail_command;
13898 		}
13899 		xp->xb_retry_count++;
13900 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13901 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13902 		break;
13903 
13904 	case SD_RETRIES_UA:
13905 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13906 			/* Retries exhausted, fail the command */
13907 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13908 			    "Unit Attention retries exhausted. "
13909 			    "Check the target.\n");
13910 			goto fail_command;
13911 		}
13912 		xp->xb_ua_retry_count++;
13913 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13914 		    "sd_retry_command: retry count:%d\n",
13915 		    xp->xb_ua_retry_count);
13916 		break;
13917 
13918 	case SD_RETRIES_BUSY:
13919 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13920 			/* Retries exhausted, fail the command */
13921 			SD_TRACE(SD_LOG_IO_CORE, un,
13922 			    "sd_retry_command: retries exhausted!\n");
13923 			goto fail_command;
13924 		}
13925 		xp->xb_retry_count++;
13926 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13927 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13928 		break;
13929 
13930 	case SD_RETRIES_NOCHECK:
13931 	default:
13932 		/* No retry count to check. Just proceed with the retry */
13933 		break;
13934 	}
13935 
13936 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13937 
13938 	/*
13939 	 * If we were given a zero timeout, we must attempt to retry the
13940 	 * command immediately (ie, without a delay).
13941 	 */
13942 	if (retry_delay == 0) {
13943 		/*
13944 		 * Check some limiting conditions to see if we can actually
13945 		 * do the immediate retry.  If we cannot, then we must
13946 		 * fall back to queueing up a delayed retry.
13947 		 */
13948 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13949 			/*
13950 			 * We are at the throttle limit for the target,
13951 			 * fall back to delayed retry.
13952 			 */
13953 			retry_delay = SD_BSY_TIMEOUT;
13954 			statp = kstat_waitq_enter;
13955 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13956 			    "sd_retry_command: immed. retry hit "
13957 			    "throttle!\n");
13958 		} else {
13959 			/*
13960 			 * We're clear to proceed with the immediate retry.
13961 			 * First call the user-provided function (if any)
13962 			 */
13963 			if (user_funcp != NULL) {
13964 				(*user_funcp)(un, bp, user_arg,
13965 				    SD_IMMEDIATE_RETRY_ISSUED);
13966 #ifdef __lock_lint
13967 				sd_print_incomplete_msg(un, bp, user_arg,
13968 				    SD_IMMEDIATE_RETRY_ISSUED);
13969 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13970 				    SD_IMMEDIATE_RETRY_ISSUED);
13971 				sd_print_sense_failed_msg(un, bp, user_arg,
13972 				    SD_IMMEDIATE_RETRY_ISSUED);
13973 #endif
13974 			}
13975 
13976 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13977 			    "sd_retry_command: issuing immediate retry\n");
13978 
13979 			/*
13980 			 * Call sd_start_cmds() to transport the command to
13981 			 * the target.
13982 			 */
13983 			sd_start_cmds(un, bp);
13984 
13985 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13986 			    "sd_retry_command exit\n");
13987 			return;
13988 		}
13989 	}
13990 
13991 	/*
13992 	 * Set up to retry the command after a delay.
13993 	 * First call the user-provided function (if any)
13994 	 */
13995 	if (user_funcp != NULL) {
13996 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13997 	}
13998 
13999 	sd_set_retry_bp(un, bp, retry_delay, statp);
14000 
14001 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14002 	return;
14003 
14004 fail_command:
14005 
14006 	if (user_funcp != NULL) {
14007 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14008 	}
14009 
14010 fail_command_no_log:
14011 
14012 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14013 	    "sd_retry_command: returning failed command\n");
14014 
14015 	sd_return_failed_command(un, bp, failure_code);
14016 
14017 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14018 }
14019 
14020 
14021 /*
14022  *    Function: sd_set_retry_bp
14023  *
14024  * Description: Set up the given bp for retry.
14025  *
14026  *   Arguments: un - ptr to associated softstate
14027  *		bp - ptr to buf(9S) for the command
14028  *		retry_delay - time interval before issuing retry (may be 0)
14029  *		statp - optional pointer to kstat function
14030  *
14031  *     Context: May be called under interrupt context
14032  */
14033 
14034 static void
14035 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14036 	void (*statp)(kstat_io_t *))
14037 {
14038 	ASSERT(un != NULL);
14039 	ASSERT(mutex_owned(SD_MUTEX(un)));
14040 	ASSERT(bp != NULL);
14041 
14042 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14043 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14044 
14045 	/*
14046 	 * Indicate that the command is being retried. This will not allow any
14047 	 * other commands on the wait queue to be transported to the target
14048 	 * until this command has been completed (success or failure). The
14049 	 * "retry command" is not transported to the target until the given
14050 	 * time delay expires, unless the user specified a 0 retry_delay.
14051 	 *
14052 	 * Note: the timeout(9F) callback routine is what actually calls
14053 	 * sd_start_cmds() to transport the command, with the exception of a
14054 	 * zero retry_delay. The only current implementor of a zero retry delay
14055 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14056 	 */
14057 	if (un->un_retry_bp == NULL) {
14058 		ASSERT(un->un_retry_statp == NULL);
14059 		un->un_retry_bp = bp;
14060 
14061 		/*
14062 		 * If the user has not specified a delay the command should
14063 		 * be queued and no timeout should be scheduled.
14064 		 */
14065 		if (retry_delay == 0) {
14066 			/*
14067 			 * Save the kstat pointer that will be used in the
14068 			 * call to SD_UPDATE_KSTATS() below, so that
14069 			 * sd_start_cmds() can correctly decrement the waitq
14070 			 * count when it is time to transport this command.
14071 			 */
14072 			un->un_retry_statp = statp;
14073 			goto done;
14074 		}
14075 	}
14076 
14077 	if (un->un_retry_bp == bp) {
14078 		/*
14079 		 * Save the kstat pointer that will be used in the call to
14080 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14081 		 * correctly decrement the waitq count when it is time to
14082 		 * transport this command.
14083 		 */
14084 		un->un_retry_statp = statp;
14085 
14086 		/*
14087 		 * Schedule a timeout if:
14088 		 *   1) The user has specified a delay.
14089 		 *   2) There is not a START_STOP_UNIT callback pending.
14090 		 *
14091 		 * If no delay has been specified, then it is up to the caller
14092 		 * to ensure that IO processing continues without stalling.
14093 		 * Effectively, this means that the caller will issue the
14094 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14095 		 * callback does this after the START STOP UNIT command has
14096 		 * completed. In either of these cases we should not schedule
14097 		 * a timeout callback here.  Also don't schedule the timeout if
14098 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14099 		 */
14100 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14101 		    (un->un_direct_priority_timeid == NULL)) {
14102 			un->un_retry_timeid =
14103 			    timeout(sd_start_retry_command, un, retry_delay);
14104 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14105 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14106 			    " bp:0x%p un_retry_timeid:0x%p\n",
14107 			    un, bp, un->un_retry_timeid);
14108 		}
14109 	} else {
14110 		/*
14111 		 * We only get in here if there is already another command
14112 		 * waiting to be retried.  In this case, we just put the
14113 		 * given command onto the wait queue, so it can be transported
14114 		 * after the current retry command has completed.
14115 		 *
14116 		 * Also we have to make sure that if the command at the head
14117 		 * of the wait queue is the un_failfast_bp, that we do not
14118 		 * put ahead of it any other commands that are to be retried.
14119 		 */
14120 		if ((un->un_failfast_bp != NULL) &&
14121 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14122 			/*
14123 			 * Enqueue this command AFTER the first command on
14124 			 * the wait queue (which is also un_failfast_bp).
14125 			 */
14126 			bp->av_forw = un->un_waitq_headp->av_forw;
14127 			un->un_waitq_headp->av_forw = bp;
14128 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14129 				un->un_waitq_tailp = bp;
14130 			}
14131 		} else {
14132 			/* Enqueue this command at the head of the waitq. */
14133 			bp->av_forw = un->un_waitq_headp;
14134 			un->un_waitq_headp = bp;
14135 			if (un->un_waitq_tailp == NULL) {
14136 				un->un_waitq_tailp = bp;
14137 			}
14138 		}
14139 
14140 		if (statp == NULL) {
14141 			statp = kstat_waitq_enter;
14142 		}
14143 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14144 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14145 	}
14146 
14147 done:
14148 	if (statp != NULL) {
14149 		SD_UPDATE_KSTATS(un, statp, bp);
14150 	}
14151 
14152 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14153 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14154 }
14155 
14156 
14157 /*
14158  *    Function: sd_start_retry_command
14159  *
14160  * Description: Start the command that has been waiting on the target's
14161  *		retry queue.  Called from timeout(9F) context after the
14162  *		retry delay interval has expired.
14163  *
14164  *   Arguments: arg - pointer to associated softstate for the device.
14165  *
14166  *     Context: timeout(9F) thread context.  May not sleep.
14167  */
14168 
14169 static void
14170 sd_start_retry_command(void *arg)
14171 {
14172 	struct sd_lun *un = arg;
14173 
14174 	ASSERT(un != NULL);
14175 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14176 
14177 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14178 	    "sd_start_retry_command: entry\n");
14179 
14180 	mutex_enter(SD_MUTEX(un));
14181 
14182 	un->un_retry_timeid = NULL;
14183 
14184 	if (un->un_retry_bp != NULL) {
14185 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14186 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14187 		    un, un->un_retry_bp);
14188 		sd_start_cmds(un, un->un_retry_bp);
14189 	}
14190 
14191 	mutex_exit(SD_MUTEX(un));
14192 
14193 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14194 	    "sd_start_retry_command: exit\n");
14195 }
14196 
14197 
14198 /*
14199  *    Function: sd_start_direct_priority_command
14200  *
14201  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14202  *		received TRAN_BUSY when we called scsi_transport() to send it
14203  *		to the underlying HBA. This function is called from timeout(9F)
14204  *		context after the delay interval has expired.
14205  *
14206  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14207  *
14208  *     Context: timeout(9F) thread context.  May not sleep.
14209  */
14210 
14211 static void
14212 sd_start_direct_priority_command(void *arg)
14213 {
14214 	struct buf	*priority_bp = arg;
14215 	struct sd_lun	*un;
14216 
14217 	ASSERT(priority_bp != NULL);
14218 	un = SD_GET_UN(priority_bp);
14219 	ASSERT(un != NULL);
14220 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14221 
14222 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14223 	    "sd_start_direct_priority_command: entry\n");
14224 
14225 	mutex_enter(SD_MUTEX(un));
14226 	un->un_direct_priority_timeid = NULL;
14227 	sd_start_cmds(un, priority_bp);
14228 	mutex_exit(SD_MUTEX(un));
14229 
14230 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14231 	    "sd_start_direct_priority_command: exit\n");
14232 }
14233 
14234 
14235 /*
14236  *    Function: sd_send_request_sense_command
14237  *
14238  * Description: Sends a REQUEST SENSE command to the target
14239  *
14240  *     Context: May be called from interrupt context.
14241  */
14242 
14243 static void
14244 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14245 	struct scsi_pkt *pktp)
14246 {
14247 	ASSERT(bp != NULL);
14248 	ASSERT(un != NULL);
14249 	ASSERT(mutex_owned(SD_MUTEX(un)));
14250 
14251 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14252 	    "entry: buf:0x%p\n", bp);
14253 
14254 	/*
14255 	 * If we are syncing or dumping, then fail the command to avoid a
14256 	 * recursive callback into scsi_transport(). Also fail the command
14257 	 * if we are suspended (legacy behavior).
14258 	 */
14259 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14260 	    (un->un_state == SD_STATE_DUMPING)) {
14261 		sd_return_failed_command(un, bp, EIO);
14262 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14263 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14264 		return;
14265 	}
14266 
14267 	/*
14268 	 * Retry the failed command and don't issue the request sense if:
14269 	 *    1) the sense buf is busy
14270 	 *    2) we have 1 or more outstanding commands on the target
14271 	 *    (the sense data will be cleared or invalidated any way)
14272 	 *
14273 	 * Note: There could be an issue with not checking a retry limit here,
14274 	 * the problem is determining which retry limit to check.
14275 	 */
14276 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14277 		/* Don't retry if the command is flagged as non-retryable */
14278 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14279 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14280 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14281 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14282 			    "sd_send_request_sense_command: "
14283 			    "at full throttle, retrying exit\n");
14284 		} else {
14285 			sd_return_failed_command(un, bp, EIO);
14286 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14287 			    "sd_send_request_sense_command: "
14288 			    "at full throttle, non-retryable exit\n");
14289 		}
14290 		return;
14291 	}
14292 
14293 	sd_mark_rqs_busy(un, bp);
14294 	sd_start_cmds(un, un->un_rqs_bp);
14295 
14296 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14297 	    "sd_send_request_sense_command: exit\n");
14298 }
14299 
14300 
14301 /*
14302  *    Function: sd_mark_rqs_busy
14303  *
14304  * Description: Indicate that the request sense bp for this instance is
14305  *		in use.
14306  *
14307  *     Context: May be called under interrupt context
14308  */
14309 
14310 static void
14311 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14312 {
14313 	struct sd_xbuf	*sense_xp;
14314 
14315 	ASSERT(un != NULL);
14316 	ASSERT(bp != NULL);
14317 	ASSERT(mutex_owned(SD_MUTEX(un)));
14318 	ASSERT(un->un_sense_isbusy == 0);
14319 
14320 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14321 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14322 
14323 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14324 	ASSERT(sense_xp != NULL);
14325 
14326 	SD_INFO(SD_LOG_IO, un,
14327 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14328 
14329 	ASSERT(sense_xp->xb_pktp != NULL);
14330 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14331 	    == (FLAG_SENSING | FLAG_HEAD));
14332 
14333 	un->un_sense_isbusy = 1;
14334 	un->un_rqs_bp->b_resid = 0;
14335 	sense_xp->xb_pktp->pkt_resid  = 0;
14336 	sense_xp->xb_pktp->pkt_reason = 0;
14337 
14338 	/* So we can get back the bp at interrupt time! */
14339 	sense_xp->xb_sense_bp = bp;
14340 
14341 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14342 
14343 	/*
14344 	 * Mark this buf as awaiting sense data. (This is already set in
14345 	 * the pkt_flags for the RQS packet.)
14346 	 */
14347 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14348 
14349 	sense_xp->xb_retry_count	= 0;
14350 	sense_xp->xb_victim_retry_count = 0;
14351 	sense_xp->xb_ua_retry_count	= 0;
14352 	sense_xp->xb_nr_retry_count 	= 0;
14353 	sense_xp->xb_dma_resid  = 0;
14354 
14355 	/* Clean up the fields for auto-request sense */
14356 	sense_xp->xb_sense_status = 0;
14357 	sense_xp->xb_sense_state  = 0;
14358 	sense_xp->xb_sense_resid  = 0;
14359 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14360 
14361 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14362 }
14363 
14364 
14365 /*
14366  *    Function: sd_mark_rqs_idle
14367  *
14368  * Description: SD_MUTEX must be held continuously through this routine
14369  *		to prevent reuse of the rqs struct before the caller can
14370  *		complete it's processing.
14371  *
14372  * Return Code: Pointer to the RQS buf
14373  *
14374  *     Context: May be called under interrupt context
14375  */
14376 
14377 static struct buf *
14378 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14379 {
14380 	struct buf *bp;
14381 	ASSERT(un != NULL);
14382 	ASSERT(sense_xp != NULL);
14383 	ASSERT(mutex_owned(SD_MUTEX(un)));
14384 	ASSERT(un->un_sense_isbusy != 0);
14385 
14386 	un->un_sense_isbusy = 0;
14387 	bp = sense_xp->xb_sense_bp;
14388 	sense_xp->xb_sense_bp = NULL;
14389 
14390 	/* This pkt is no longer interested in getting sense data */
14391 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14392 
14393 	return (bp);
14394 }
14395 
14396 
14397 
14398 /*
14399  *    Function: sd_alloc_rqs
14400  *
14401  * Description: Set up the unit to receive auto request sense data
14402  *
14403  * Return Code: DDI_SUCCESS or DDI_FAILURE
14404  *
14405  *     Context: Called under attach(9E) context
14406  */
14407 
14408 static int
14409 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14410 {
14411 	struct sd_xbuf *xp;
14412 
14413 	ASSERT(un != NULL);
14414 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14415 	ASSERT(un->un_rqs_bp == NULL);
14416 	ASSERT(un->un_rqs_pktp == NULL);
14417 
14418 	/*
14419 	 * First allocate the required buf and scsi_pkt structs, then set up
14420 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14421 	 */
14422 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14423 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14424 	if (un->un_rqs_bp == NULL) {
14425 		return (DDI_FAILURE);
14426 	}
14427 
14428 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14429 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14430 
14431 	if (un->un_rqs_pktp == NULL) {
14432 		sd_free_rqs(un);
14433 		return (DDI_FAILURE);
14434 	}
14435 
14436 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14437 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14438 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14439 
14440 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14441 
14442 	/* Set up the other needed members in the ARQ scsi_pkt. */
14443 	un->un_rqs_pktp->pkt_comp   = sdintr;
14444 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14445 	un->un_rqs_pktp->pkt_flags |=
14446 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14447 
14448 	/*
14449 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14450 	 * provide any intpkt, destroypkt routines as we take care of
14451 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14452 	 */
14453 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14454 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14455 	xp->xb_pktp = un->un_rqs_pktp;
14456 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14457 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14458 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14459 
14460 	/*
14461 	 * Save the pointer to the request sense private bp so it can
14462 	 * be retrieved in sdintr.
14463 	 */
14464 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14465 	ASSERT(un->un_rqs_bp->b_private == xp);
14466 
14467 	/*
14468 	 * See if the HBA supports auto-request sense for the specified
14469 	 * target/lun. If it does, then try to enable it (if not already
14470 	 * enabled).
14471 	 *
14472 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14473 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14474 	 * return success.  However, in both of these cases ARQ is always
14475 	 * enabled and scsi_ifgetcap will always return true. The best approach
14476 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14477 	 *
14478 	 * The 3rd case is the HBA (adp) always return enabled on
14479 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14480 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14481 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14482 	 */
14483 
14484 	if (un->un_f_is_fibre == TRUE) {
14485 		un->un_f_arq_enabled = TRUE;
14486 	} else {
14487 #if defined(__i386) || defined(__amd64)
14488 		/*
14489 		 * Circumvent the Adaptec bug, remove this code when
14490 		 * the bug is fixed
14491 		 */
14492 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14493 #endif
14494 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14495 		case 0:
14496 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14497 			    "sd_alloc_rqs: HBA supports ARQ\n");
14498 			/*
14499 			 * ARQ is supported by this HBA but currently is not
14500 			 * enabled. Attempt to enable it and if successful then
14501 			 * mark this instance as ARQ enabled.
14502 			 */
14503 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14504 			    == 1) {
14505 				/* Successfully enabled ARQ in the HBA */
14506 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14507 				    "sd_alloc_rqs: ARQ enabled\n");
14508 				un->un_f_arq_enabled = TRUE;
14509 			} else {
14510 				/* Could not enable ARQ in the HBA */
14511 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14512 				    "sd_alloc_rqs: failed ARQ enable\n");
14513 				un->un_f_arq_enabled = FALSE;
14514 			}
14515 			break;
14516 		case 1:
14517 			/*
14518 			 * ARQ is supported by this HBA and is already enabled.
14519 			 * Just mark ARQ as enabled for this instance.
14520 			 */
14521 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14522 			    "sd_alloc_rqs: ARQ already enabled\n");
14523 			un->un_f_arq_enabled = TRUE;
14524 			break;
14525 		default:
14526 			/*
14527 			 * ARQ is not supported by this HBA; disable it for this
14528 			 * instance.
14529 			 */
14530 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14531 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14532 			un->un_f_arq_enabled = FALSE;
14533 			break;
14534 		}
14535 	}
14536 
14537 	return (DDI_SUCCESS);
14538 }
14539 
14540 
14541 /*
14542  *    Function: sd_free_rqs
14543  *
14544  * Description: Cleanup for the pre-instance RQS command.
14545  *
14546  *     Context: Kernel thread context
14547  */
14548 
14549 static void
14550 sd_free_rqs(struct sd_lun *un)
14551 {
14552 	ASSERT(un != NULL);
14553 
14554 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14555 
14556 	/*
14557 	 * If consistent memory is bound to a scsi_pkt, the pkt
14558 	 * has to be destroyed *before* freeing the consistent memory.
14559 	 * Don't change the sequence of this operations.
14560 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14561 	 * after it was freed in scsi_free_consistent_buf().
14562 	 */
14563 	if (un->un_rqs_pktp != NULL) {
14564 		scsi_destroy_pkt(un->un_rqs_pktp);
14565 		un->un_rqs_pktp = NULL;
14566 	}
14567 
14568 	if (un->un_rqs_bp != NULL) {
14569 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14570 		if (xp != NULL) {
14571 			kmem_free(xp, sizeof (struct sd_xbuf));
14572 		}
14573 		scsi_free_consistent_buf(un->un_rqs_bp);
14574 		un->un_rqs_bp = NULL;
14575 	}
14576 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14577 }
14578 
14579 
14580 
14581 /*
14582  *    Function: sd_reduce_throttle
14583  *
14584  * Description: Reduces the maximum # of outstanding commands on a
14585  *		target to the current number of outstanding commands.
14586  *		Queues a tiemout(9F) callback to restore the limit
14587  *		after a specified interval has elapsed.
14588  *		Typically used when we get a TRAN_BUSY return code
14589  *		back from scsi_transport().
14590  *
14591  *   Arguments: un - ptr to the sd_lun softstate struct
14592  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14593  *
14594  *     Context: May be called from interrupt context
14595  */
14596 
14597 static void
14598 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14599 {
14600 	ASSERT(un != NULL);
14601 	ASSERT(mutex_owned(SD_MUTEX(un)));
14602 	ASSERT(un->un_ncmds_in_transport >= 0);
14603 
14604 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14605 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14606 	    un, un->un_throttle, un->un_ncmds_in_transport);
14607 
14608 	if (un->un_throttle > 1) {
14609 		if (un->un_f_use_adaptive_throttle == TRUE) {
14610 			switch (throttle_type) {
14611 			case SD_THROTTLE_TRAN_BUSY:
14612 				if (un->un_busy_throttle == 0) {
14613 					un->un_busy_throttle = un->un_throttle;
14614 				}
14615 				break;
14616 			case SD_THROTTLE_QFULL:
14617 				un->un_busy_throttle = 0;
14618 				break;
14619 			default:
14620 				ASSERT(FALSE);
14621 			}
14622 
14623 			if (un->un_ncmds_in_transport > 0) {
14624 				un->un_throttle = un->un_ncmds_in_transport;
14625 			}
14626 
14627 		} else {
14628 			if (un->un_ncmds_in_transport == 0) {
14629 				un->un_throttle = 1;
14630 			} else {
14631 				un->un_throttle = un->un_ncmds_in_transport;
14632 			}
14633 		}
14634 	}
14635 
14636 	/* Reschedule the timeout if none is currently active */
14637 	if (un->un_reset_throttle_timeid == NULL) {
14638 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14639 		    un, SD_THROTTLE_RESET_INTERVAL);
14640 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14641 		    "sd_reduce_throttle: timeout scheduled!\n");
14642 	}
14643 
14644 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14645 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14646 }
14647 
14648 
14649 
14650 /*
14651  *    Function: sd_restore_throttle
14652  *
14653  * Description: Callback function for timeout(9F).  Resets the current
14654  *		value of un->un_throttle to its default.
14655  *
14656  *   Arguments: arg - pointer to associated softstate for the device.
14657  *
14658  *     Context: May be called from interrupt context
14659  */
14660 
14661 static void
14662 sd_restore_throttle(void *arg)
14663 {
14664 	struct sd_lun	*un = arg;
14665 
14666 	ASSERT(un != NULL);
14667 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14668 
14669 	mutex_enter(SD_MUTEX(un));
14670 
14671 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14672 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14673 
14674 	un->un_reset_throttle_timeid = NULL;
14675 
14676 	if (un->un_f_use_adaptive_throttle == TRUE) {
14677 		/*
14678 		 * If un_busy_throttle is nonzero, then it contains the
14679 		 * value that un_throttle was when we got a TRAN_BUSY back
14680 		 * from scsi_transport(). We want to revert back to this
14681 		 * value.
14682 		 *
14683 		 * In the QFULL case, the throttle limit will incrementally
14684 		 * increase until it reaches max throttle.
14685 		 */
14686 		if (un->un_busy_throttle > 0) {
14687 			un->un_throttle = un->un_busy_throttle;
14688 			un->un_busy_throttle = 0;
14689 		} else {
14690 			/*
14691 			 * increase throttle by 10% open gate slowly, schedule
14692 			 * another restore if saved throttle has not been
14693 			 * reached
14694 			 */
14695 			short throttle;
14696 			if (sd_qfull_throttle_enable) {
14697 				throttle = un->un_throttle +
14698 				    max((un->un_throttle / 10), 1);
14699 				un->un_throttle =
14700 				    (throttle < un->un_saved_throttle) ?
14701 				    throttle : un->un_saved_throttle;
14702 				if (un->un_throttle < un->un_saved_throttle) {
14703 					un->un_reset_throttle_timeid =
14704 					    timeout(sd_restore_throttle,
14705 					    un,
14706 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14707 				}
14708 			}
14709 		}
14710 
14711 		/*
14712 		 * If un_throttle has fallen below the low-water mark, we
14713 		 * restore the maximum value here (and allow it to ratchet
14714 		 * down again if necessary).
14715 		 */
14716 		if (un->un_throttle < un->un_min_throttle) {
14717 			un->un_throttle = un->un_saved_throttle;
14718 		}
14719 	} else {
14720 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14721 		    "restoring limit from 0x%x to 0x%x\n",
14722 		    un->un_throttle, un->un_saved_throttle);
14723 		un->un_throttle = un->un_saved_throttle;
14724 	}
14725 
14726 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14727 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14728 
14729 	sd_start_cmds(un, NULL);
14730 
14731 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14732 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14733 	    un, un->un_throttle);
14734 
14735 	mutex_exit(SD_MUTEX(un));
14736 
14737 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14738 }
14739 
14740 /*
14741  *    Function: sdrunout
14742  *
14743  * Description: Callback routine for scsi_init_pkt when a resource allocation
14744  *		fails.
14745  *
14746  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14747  *		soft state instance.
14748  *
14749  * Return Code: The scsi_init_pkt routine allows for the callback function to
14750  *		return a 0 indicating the callback should be rescheduled or a 1
14751  *		indicating not to reschedule. This routine always returns 1
14752  *		because the driver always provides a callback function to
14753  *		scsi_init_pkt. This results in a callback always being scheduled
14754  *		(via the scsi_init_pkt callback implementation) if a resource
14755  *		failure occurs.
14756  *
14757  *     Context: This callback function may not block or call routines that block
14758  *
14759  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14760  *		request persisting at the head of the list which cannot be
14761  *		satisfied even after multiple retries. In the future the driver
14762  *		may implement some time of maximum runout count before failing
14763  *		an I/O.
14764  */
14765 
14766 static int
14767 sdrunout(caddr_t arg)
14768 {
14769 	struct sd_lun	*un = (struct sd_lun *)arg;
14770 
14771 	ASSERT(un != NULL);
14772 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14773 
14774 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14775 
14776 	mutex_enter(SD_MUTEX(un));
14777 	sd_start_cmds(un, NULL);
14778 	mutex_exit(SD_MUTEX(un));
14779 	/*
14780 	 * This callback routine always returns 1 (i.e. do not reschedule)
14781 	 * because we always specify sdrunout as the callback handler for
14782 	 * scsi_init_pkt inside the call to sd_start_cmds.
14783 	 */
14784 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14785 	return (1);
14786 }
14787 
14788 
14789 /*
14790  *    Function: sdintr
14791  *
14792  * Description: Completion callback routine for scsi_pkt(9S) structs
14793  *		sent to the HBA driver via scsi_transport(9F).
14794  *
14795  *     Context: Interrupt context
14796  */
14797 
14798 static void
14799 sdintr(struct scsi_pkt *pktp)
14800 {
14801 	struct buf	*bp;
14802 	struct sd_xbuf	*xp;
14803 	struct sd_lun	*un;
14804 	size_t		actual_len;
14805 
14806 	ASSERT(pktp != NULL);
14807 	bp = (struct buf *)pktp->pkt_private;
14808 	ASSERT(bp != NULL);
14809 	xp = SD_GET_XBUF(bp);
14810 	ASSERT(xp != NULL);
14811 	ASSERT(xp->xb_pktp != NULL);
14812 	un = SD_GET_UN(bp);
14813 	ASSERT(un != NULL);
14814 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14815 
14816 #ifdef SD_FAULT_INJECTION
14817 
14818 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14819 	/* SD FaultInjection */
14820 	sd_faultinjection(pktp);
14821 
14822 #endif /* SD_FAULT_INJECTION */
14823 
14824 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14825 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14826 
14827 	mutex_enter(SD_MUTEX(un));
14828 
14829 	/* Reduce the count of the #commands currently in transport */
14830 	un->un_ncmds_in_transport--;
14831 	ASSERT(un->un_ncmds_in_transport >= 0);
14832 
14833 	/* Increment counter to indicate that the callback routine is active */
14834 	un->un_in_callback++;
14835 
14836 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14837 
14838 #ifdef	SDDEBUG
14839 	if (bp == un->un_retry_bp) {
14840 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14841 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14842 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14843 	}
14844 #endif
14845 
14846 	/*
14847 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14848 	 * state if needed.
14849 	 */
14850 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14851 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14852 		    "Command failed to complete...Device is gone\n");
14853 		if (un->un_mediastate != DKIO_DEV_GONE) {
14854 			un->un_mediastate = DKIO_DEV_GONE;
14855 			cv_broadcast(&un->un_state_cv);
14856 		}
14857 		sd_return_failed_command(un, bp, EIO);
14858 		goto exit;
14859 	}
14860 
14861 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14862 		SD_TRACE(SD_LOG_COMMON, un,
14863 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14864 	}
14865 
14866 	/*
14867 	 * First see if the pkt has auto-request sense data with it....
14868 	 * Look at the packet state first so we don't take a performance
14869 	 * hit looking at the arq enabled flag unless absolutely necessary.
14870 	 */
14871 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14872 	    (un->un_f_arq_enabled == TRUE)) {
14873 		/*
14874 		 * The HBA did an auto request sense for this command so check
14875 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14876 		 * driver command that should not be retried.
14877 		 */
14878 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14879 			/*
14880 			 * Save the relevant sense info into the xp for the
14881 			 * original cmd.
14882 			 */
14883 			struct scsi_arq_status *asp;
14884 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14885 			xp->xb_sense_status =
14886 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14887 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14888 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14889 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14890 				actual_len = MAX_SENSE_LENGTH -
14891 				    xp->xb_sense_resid;
14892 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14893 				    MAX_SENSE_LENGTH);
14894 			} else {
14895 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14896 					actual_len = MAX_SENSE_LENGTH -
14897 					    xp->xb_sense_resid;
14898 				} else {
14899 					actual_len = SENSE_LENGTH -
14900 					    xp->xb_sense_resid;
14901 				}
14902 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14903 					if ((((struct uscsi_cmd *)
14904 					    (xp->xb_pktinfo))->uscsi_rqlen) >
14905 					    actual_len) {
14906 						xp->xb_sense_resid =
14907 						    (((struct uscsi_cmd *)
14908 						    (xp->xb_pktinfo))->
14909 						    uscsi_rqlen) - actual_len;
14910 					} else {
14911 						xp->xb_sense_resid = 0;
14912 					}
14913 				}
14914 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14915 				    SENSE_LENGTH);
14916 			}
14917 
14918 			/* fail the command */
14919 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14920 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14921 			sd_return_failed_command(un, bp, EIO);
14922 			goto exit;
14923 		}
14924 
14925 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14926 		/*
14927 		 * We want to either retry or fail this command, so free
14928 		 * the DMA resources here.  If we retry the command then
14929 		 * the DMA resources will be reallocated in sd_start_cmds().
14930 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14931 		 * causes the *entire* transfer to start over again from the
14932 		 * beginning of the request, even for PARTIAL chunks that
14933 		 * have already transferred successfully.
14934 		 */
14935 		if ((un->un_f_is_fibre == TRUE) &&
14936 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14937 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14938 			scsi_dmafree(pktp);
14939 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14940 		}
14941 #endif
14942 
14943 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14944 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14945 
14946 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14947 		goto exit;
14948 	}
14949 
14950 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14951 	if (pktp->pkt_flags & FLAG_SENSING)  {
14952 		/* This pktp is from the unit's REQUEST_SENSE command */
14953 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14954 		    "sdintr: sd_handle_request_sense\n");
14955 		sd_handle_request_sense(un, bp, xp, pktp);
14956 		goto exit;
14957 	}
14958 
14959 	/*
14960 	 * Check to see if the command successfully completed as requested;
14961 	 * this is the most common case (and also the hot performance path).
14962 	 *
14963 	 * Requirements for successful completion are:
14964 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14965 	 * In addition:
14966 	 * - A residual of zero indicates successful completion no matter what
14967 	 *   the command is.
14968 	 * - If the residual is not zero and the command is not a read or
14969 	 *   write, then it's still defined as successful completion. In other
14970 	 *   words, if the command is a read or write the residual must be
14971 	 *   zero for successful completion.
14972 	 * - If the residual is not zero and the command is a read or
14973 	 *   write, and it's a USCSICMD, then it's still defined as
14974 	 *   successful completion.
14975 	 */
14976 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14977 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14978 
14979 		/*
14980 		 * Since this command is returned with a good status, we
14981 		 * can reset the count for Sonoma failover.
14982 		 */
14983 		un->un_sonoma_failure_count = 0;
14984 
14985 		/*
14986 		 * Return all USCSI commands on good status
14987 		 */
14988 		if (pktp->pkt_resid == 0) {
14989 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14990 			    "sdintr: returning command for resid == 0\n");
14991 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14992 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14993 			SD_UPDATE_B_RESID(bp, pktp);
14994 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14995 			    "sdintr: returning command for resid != 0\n");
14996 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14997 			SD_UPDATE_B_RESID(bp, pktp);
14998 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14999 			    "sdintr: returning uscsi command\n");
15000 		} else {
15001 			goto not_successful;
15002 		}
15003 		sd_return_command(un, bp);
15004 
15005 		/*
15006 		 * Decrement counter to indicate that the callback routine
15007 		 * is done.
15008 		 */
15009 		un->un_in_callback--;
15010 		ASSERT(un->un_in_callback >= 0);
15011 		mutex_exit(SD_MUTEX(un));
15012 
15013 		return;
15014 	}
15015 
15016 not_successful:
15017 
15018 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15019 	/*
15020 	 * The following is based upon knowledge of the underlying transport
15021 	 * and its use of DMA resources.  This code should be removed when
15022 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15023 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15024 	 * and sd_start_cmds().
15025 	 *
15026 	 * Free any DMA resources associated with this command if there
15027 	 * is a chance it could be retried or enqueued for later retry.
15028 	 * If we keep the DMA binding then mpxio cannot reissue the
15029 	 * command on another path whenever a path failure occurs.
15030 	 *
15031 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15032 	 * causes the *entire* transfer to start over again from the
15033 	 * beginning of the request, even for PARTIAL chunks that
15034 	 * have already transferred successfully.
15035 	 *
15036 	 * This is only done for non-uscsi commands (and also skipped for the
15037 	 * driver's internal RQS command). Also just do this for Fibre Channel
15038 	 * devices as these are the only ones that support mpxio.
15039 	 */
15040 	if ((un->un_f_is_fibre == TRUE) &&
15041 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15042 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15043 		scsi_dmafree(pktp);
15044 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15045 	}
15046 #endif
15047 
15048 	/*
15049 	 * The command did not successfully complete as requested so check
15050 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15051 	 * driver command that should not be retried so just return. If
15052 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15053 	 */
15054 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15055 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15056 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15057 		/*
15058 		 * Issue a request sense if a check condition caused the error
15059 		 * (we handle the auto request sense case above), otherwise
15060 		 * just fail the command.
15061 		 */
15062 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15063 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15064 			sd_send_request_sense_command(un, bp, pktp);
15065 		} else {
15066 			sd_return_failed_command(un, bp, EIO);
15067 		}
15068 		goto exit;
15069 	}
15070 
15071 	/*
15072 	 * The command did not successfully complete as requested so process
15073 	 * the error, retry, and/or attempt recovery.
15074 	 */
15075 	switch (pktp->pkt_reason) {
15076 	case CMD_CMPLT:
15077 		switch (SD_GET_PKT_STATUS(pktp)) {
15078 		case STATUS_GOOD:
15079 			/*
15080 			 * The command completed successfully with a non-zero
15081 			 * residual
15082 			 */
15083 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15084 			    "sdintr: STATUS_GOOD \n");
15085 			sd_pkt_status_good(un, bp, xp, pktp);
15086 			break;
15087 
15088 		case STATUS_CHECK:
15089 		case STATUS_TERMINATED:
15090 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15091 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15092 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15093 			break;
15094 
15095 		case STATUS_BUSY:
15096 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15097 			    "sdintr: STATUS_BUSY\n");
15098 			sd_pkt_status_busy(un, bp, xp, pktp);
15099 			break;
15100 
15101 		case STATUS_RESERVATION_CONFLICT:
15102 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15103 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15104 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15105 			break;
15106 
15107 		case STATUS_QFULL:
15108 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15109 			    "sdintr: STATUS_QFULL\n");
15110 			sd_pkt_status_qfull(un, bp, xp, pktp);
15111 			break;
15112 
15113 		case STATUS_MET:
15114 		case STATUS_INTERMEDIATE:
15115 		case STATUS_SCSI2:
15116 		case STATUS_INTERMEDIATE_MET:
15117 		case STATUS_ACA_ACTIVE:
15118 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15119 			    "Unexpected SCSI status received: 0x%x\n",
15120 			    SD_GET_PKT_STATUS(pktp));
15121 			sd_return_failed_command(un, bp, EIO);
15122 			break;
15123 
15124 		default:
15125 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15126 			    "Invalid SCSI status received: 0x%x\n",
15127 			    SD_GET_PKT_STATUS(pktp));
15128 			sd_return_failed_command(un, bp, EIO);
15129 			break;
15130 
15131 		}
15132 		break;
15133 
15134 	case CMD_INCOMPLETE:
15135 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15136 		    "sdintr:  CMD_INCOMPLETE\n");
15137 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15138 		break;
15139 	case CMD_TRAN_ERR:
15140 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15141 		    "sdintr: CMD_TRAN_ERR\n");
15142 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15143 		break;
15144 	case CMD_RESET:
15145 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15146 		    "sdintr: CMD_RESET \n");
15147 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15148 		break;
15149 	case CMD_ABORTED:
15150 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15151 		    "sdintr: CMD_ABORTED \n");
15152 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15153 		break;
15154 	case CMD_TIMEOUT:
15155 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15156 		    "sdintr: CMD_TIMEOUT\n");
15157 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15158 		break;
15159 	case CMD_UNX_BUS_FREE:
15160 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15161 		    "sdintr: CMD_UNX_BUS_FREE \n");
15162 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15163 		break;
15164 	case CMD_TAG_REJECT:
15165 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15166 		    "sdintr: CMD_TAG_REJECT\n");
15167 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15168 		break;
15169 	default:
15170 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15171 		    "sdintr: default\n");
15172 		sd_pkt_reason_default(un, bp, xp, pktp);
15173 		break;
15174 	}
15175 
15176 exit:
15177 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15178 
15179 	/* Decrement counter to indicate that the callback routine is done. */
15180 	un->un_in_callback--;
15181 	ASSERT(un->un_in_callback >= 0);
15182 
15183 	/*
15184 	 * At this point, the pkt has been dispatched, ie, it is either
15185 	 * being re-tried or has been returned to its caller and should
15186 	 * not be referenced.
15187 	 */
15188 
15189 	mutex_exit(SD_MUTEX(un));
15190 }
15191 
15192 
15193 /*
15194  *    Function: sd_print_incomplete_msg
15195  *
15196  * Description: Prints the error message for a CMD_INCOMPLETE error.
15197  *
15198  *   Arguments: un - ptr to associated softstate for the device.
15199  *		bp - ptr to the buf(9S) for the command.
15200  *		arg - message string ptr
15201  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15202  *			or SD_NO_RETRY_ISSUED.
15203  *
15204  *     Context: May be called under interrupt context
15205  */
15206 
15207 static void
15208 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15209 {
15210 	struct scsi_pkt	*pktp;
15211 	char	*msgp;
15212 	char	*cmdp = arg;
15213 
15214 	ASSERT(un != NULL);
15215 	ASSERT(mutex_owned(SD_MUTEX(un)));
15216 	ASSERT(bp != NULL);
15217 	ASSERT(arg != NULL);
15218 	pktp = SD_GET_PKTP(bp);
15219 	ASSERT(pktp != NULL);
15220 
15221 	switch (code) {
15222 	case SD_DELAYED_RETRY_ISSUED:
15223 	case SD_IMMEDIATE_RETRY_ISSUED:
15224 		msgp = "retrying";
15225 		break;
15226 	case SD_NO_RETRY_ISSUED:
15227 	default:
15228 		msgp = "giving up";
15229 		break;
15230 	}
15231 
15232 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15233 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15234 		    "incomplete %s- %s\n", cmdp, msgp);
15235 	}
15236 }
15237 
15238 
15239 
15240 /*
15241  *    Function: sd_pkt_status_good
15242  *
15243  * Description: Processing for a STATUS_GOOD code in pkt_status.
15244  *
15245  *     Context: May be called under interrupt context
15246  */
15247 
15248 static void
15249 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15250 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15251 {
15252 	char	*cmdp;
15253 
15254 	ASSERT(un != NULL);
15255 	ASSERT(mutex_owned(SD_MUTEX(un)));
15256 	ASSERT(bp != NULL);
15257 	ASSERT(xp != NULL);
15258 	ASSERT(pktp != NULL);
15259 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15260 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15261 	ASSERT(pktp->pkt_resid != 0);
15262 
15263 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15264 
15265 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15266 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15267 	case SCMD_READ:
15268 		cmdp = "read";
15269 		break;
15270 	case SCMD_WRITE:
15271 		cmdp = "write";
15272 		break;
15273 	default:
15274 		SD_UPDATE_B_RESID(bp, pktp);
15275 		sd_return_command(un, bp);
15276 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15277 		return;
15278 	}
15279 
15280 	/*
15281 	 * See if we can retry the read/write, preferrably immediately.
15282 	 * If retries are exhaused, then sd_retry_command() will update
15283 	 * the b_resid count.
15284 	 */
15285 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15286 	    cmdp, EIO, (clock_t)0, NULL);
15287 
15288 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15289 }
15290 
15291 
15292 
15293 
15294 
15295 /*
15296  *    Function: sd_handle_request_sense
15297  *
15298  * Description: Processing for non-auto Request Sense command.
15299  *
15300  *   Arguments: un - ptr to associated softstate
15301  *		sense_bp - ptr to buf(9S) for the RQS command
15302  *		sense_xp - ptr to the sd_xbuf for the RQS command
15303  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15304  *
15305  *     Context: May be called under interrupt context
15306  */
15307 
15308 static void
15309 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15310 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15311 {
15312 	struct buf	*cmd_bp;	/* buf for the original command */
15313 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15314 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15315 	size_t		actual_len;	/* actual sense data length */
15316 
15317 	ASSERT(un != NULL);
15318 	ASSERT(mutex_owned(SD_MUTEX(un)));
15319 	ASSERT(sense_bp != NULL);
15320 	ASSERT(sense_xp != NULL);
15321 	ASSERT(sense_pktp != NULL);
15322 
15323 	/*
15324 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15325 	 * RQS command and not the original command.
15326 	 */
15327 	ASSERT(sense_pktp == un->un_rqs_pktp);
15328 	ASSERT(sense_bp   == un->un_rqs_bp);
15329 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15330 	    (FLAG_SENSING | FLAG_HEAD));
15331 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15332 	    FLAG_SENSING) == FLAG_SENSING);
15333 
15334 	/* These are the bp, xp, and pktp for the original command */
15335 	cmd_bp = sense_xp->xb_sense_bp;
15336 	cmd_xp = SD_GET_XBUF(cmd_bp);
15337 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15338 
15339 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15340 		/*
15341 		 * The REQUEST SENSE command failed.  Release the REQUEST
15342 		 * SENSE command for re-use, get back the bp for the original
15343 		 * command, and attempt to re-try the original command if
15344 		 * FLAG_DIAGNOSE is not set in the original packet.
15345 		 */
15346 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15347 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15348 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15349 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15350 			    NULL, NULL, EIO, (clock_t)0, NULL);
15351 			return;
15352 		}
15353 	}
15354 
15355 	/*
15356 	 * Save the relevant sense info into the xp for the original cmd.
15357 	 *
15358 	 * Note: if the request sense failed the state info will be zero
15359 	 * as set in sd_mark_rqs_busy()
15360 	 */
15361 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15362 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15363 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15364 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15365 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15366 	    SENSE_LENGTH)) {
15367 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15368 		    MAX_SENSE_LENGTH);
15369 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15370 	} else {
15371 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15372 		    SENSE_LENGTH);
15373 		if (actual_len < SENSE_LENGTH) {
15374 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15375 		} else {
15376 			cmd_xp->xb_sense_resid = 0;
15377 		}
15378 	}
15379 
15380 	/*
15381 	 *  Free up the RQS command....
15382 	 *  NOTE:
15383 	 *	Must do this BEFORE calling sd_validate_sense_data!
15384 	 *	sd_validate_sense_data may return the original command in
15385 	 *	which case the pkt will be freed and the flags can no
15386 	 *	longer be touched.
15387 	 *	SD_MUTEX is held through this process until the command
15388 	 *	is dispatched based upon the sense data, so there are
15389 	 *	no race conditions.
15390 	 */
15391 	(void) sd_mark_rqs_idle(un, sense_xp);
15392 
15393 	/*
15394 	 * For a retryable command see if we have valid sense data, if so then
15395 	 * turn it over to sd_decode_sense() to figure out the right course of
15396 	 * action. Just fail a non-retryable command.
15397 	 */
15398 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15399 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15400 		    SD_SENSE_DATA_IS_VALID) {
15401 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15402 		}
15403 	} else {
15404 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15405 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15406 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15407 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15408 		sd_return_failed_command(un, cmd_bp, EIO);
15409 	}
15410 }
15411 
15412 
15413 
15414 
15415 /*
15416  *    Function: sd_handle_auto_request_sense
15417  *
15418  * Description: Processing for auto-request sense information.
15419  *
15420  *   Arguments: un - ptr to associated softstate
15421  *		bp - ptr to buf(9S) for the command
15422  *		xp - ptr to the sd_xbuf for the command
15423  *		pktp - ptr to the scsi_pkt(9S) for the command
15424  *
15425  *     Context: May be called under interrupt context
15426  */
15427 
15428 static void
15429 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15430 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15431 {
15432 	struct scsi_arq_status *asp;
15433 	size_t actual_len;
15434 
15435 	ASSERT(un != NULL);
15436 	ASSERT(mutex_owned(SD_MUTEX(un)));
15437 	ASSERT(bp != NULL);
15438 	ASSERT(xp != NULL);
15439 	ASSERT(pktp != NULL);
15440 	ASSERT(pktp != un->un_rqs_pktp);
15441 	ASSERT(bp   != un->un_rqs_bp);
15442 
15443 	/*
15444 	 * For auto-request sense, we get a scsi_arq_status back from
15445 	 * the HBA, with the sense data in the sts_sensedata member.
15446 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15447 	 */
15448 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15449 
15450 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15451 		/*
15452 		 * The auto REQUEST SENSE failed; see if we can re-try
15453 		 * the original command.
15454 		 */
15455 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15456 		    "auto request sense failed (reason=%s)\n",
15457 		    scsi_rname(asp->sts_rqpkt_reason));
15458 
15459 		sd_reset_target(un, pktp);
15460 
15461 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15462 		    NULL, NULL, EIO, (clock_t)0, NULL);
15463 		return;
15464 	}
15465 
15466 	/* Save the relevant sense info into the xp for the original cmd. */
15467 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15468 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15469 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15470 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15471 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15472 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15473 		    MAX_SENSE_LENGTH);
15474 	} else {
15475 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15476 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15477 		} else {
15478 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15479 		}
15480 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15481 			if ((((struct uscsi_cmd *)
15482 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
15483 				xp->xb_sense_resid = (((struct uscsi_cmd *)
15484 				    (xp->xb_pktinfo))->uscsi_rqlen) -
15485 				    actual_len;
15486 			} else {
15487 				xp->xb_sense_resid = 0;
15488 			}
15489 		}
15490 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15491 	}
15492 
15493 	/*
15494 	 * See if we have valid sense data, if so then turn it over to
15495 	 * sd_decode_sense() to figure out the right course of action.
15496 	 */
15497 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15498 	    SD_SENSE_DATA_IS_VALID) {
15499 		sd_decode_sense(un, bp, xp, pktp);
15500 	}
15501 }
15502 
15503 
15504 /*
15505  *    Function: sd_print_sense_failed_msg
15506  *
15507  * Description: Print log message when RQS has failed.
15508  *
15509  *   Arguments: un - ptr to associated softstate
15510  *		bp - ptr to buf(9S) for the command
15511  *		arg - generic message string ptr
15512  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15513  *			or SD_NO_RETRY_ISSUED
15514  *
15515  *     Context: May be called from interrupt context
15516  */
15517 
15518 static void
15519 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15520 	int code)
15521 {
15522 	char	*msgp = arg;
15523 
15524 	ASSERT(un != NULL);
15525 	ASSERT(mutex_owned(SD_MUTEX(un)));
15526 	ASSERT(bp != NULL);
15527 
15528 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15529 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15530 	}
15531 }
15532 
15533 
15534 /*
15535  *    Function: sd_validate_sense_data
15536  *
15537  * Description: Check the given sense data for validity.
15538  *		If the sense data is not valid, the command will
15539  *		be either failed or retried!
15540  *
15541  * Return Code: SD_SENSE_DATA_IS_INVALID
15542  *		SD_SENSE_DATA_IS_VALID
15543  *
15544  *     Context: May be called from interrupt context
15545  */
15546 
15547 static int
15548 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15549 	size_t actual_len)
15550 {
15551 	struct scsi_extended_sense *esp;
15552 	struct	scsi_pkt *pktp;
15553 	char	*msgp = NULL;
15554 
15555 	ASSERT(un != NULL);
15556 	ASSERT(mutex_owned(SD_MUTEX(un)));
15557 	ASSERT(bp != NULL);
15558 	ASSERT(bp != un->un_rqs_bp);
15559 	ASSERT(xp != NULL);
15560 
15561 	pktp = SD_GET_PKTP(bp);
15562 	ASSERT(pktp != NULL);
15563 
15564 	/*
15565 	 * Check the status of the RQS command (auto or manual).
15566 	 */
15567 	switch (xp->xb_sense_status & STATUS_MASK) {
15568 	case STATUS_GOOD:
15569 		break;
15570 
15571 	case STATUS_RESERVATION_CONFLICT:
15572 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15573 		return (SD_SENSE_DATA_IS_INVALID);
15574 
15575 	case STATUS_BUSY:
15576 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15577 		    "Busy Status on REQUEST SENSE\n");
15578 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15579 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15580 		return (SD_SENSE_DATA_IS_INVALID);
15581 
15582 	case STATUS_QFULL:
15583 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15584 		    "QFULL Status on REQUEST SENSE\n");
15585 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15586 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15587 		return (SD_SENSE_DATA_IS_INVALID);
15588 
15589 	case STATUS_CHECK:
15590 	case STATUS_TERMINATED:
15591 		msgp = "Check Condition on REQUEST SENSE\n";
15592 		goto sense_failed;
15593 
15594 	default:
15595 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15596 		goto sense_failed;
15597 	}
15598 
15599 	/*
15600 	 * See if we got the minimum required amount of sense data.
15601 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15602 	 * or less.
15603 	 */
15604 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15605 	    (actual_len == 0)) {
15606 		msgp = "Request Sense couldn't get sense data\n";
15607 		goto sense_failed;
15608 	}
15609 
15610 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15611 		msgp = "Not enough sense information\n";
15612 		goto sense_failed;
15613 	}
15614 
15615 	/*
15616 	 * We require the extended sense data
15617 	 */
15618 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15619 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15620 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15621 			static char tmp[8];
15622 			static char buf[148];
15623 			char *p = (char *)(xp->xb_sense_data);
15624 			int i;
15625 
15626 			mutex_enter(&sd_sense_mutex);
15627 			(void) strcpy(buf, "undecodable sense information:");
15628 			for (i = 0; i < actual_len; i++) {
15629 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15630 				(void) strcpy(&buf[strlen(buf)], tmp);
15631 			}
15632 			i = strlen(buf);
15633 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15634 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15635 			mutex_exit(&sd_sense_mutex);
15636 		}
15637 		/* Note: Legacy behavior, fail the command with no retry */
15638 		sd_return_failed_command(un, bp, EIO);
15639 		return (SD_SENSE_DATA_IS_INVALID);
15640 	}
15641 
15642 	/*
15643 	 * Check that es_code is valid (es_class concatenated with es_code
15644 	 * make up the "response code" field.  es_class will always be 7, so
15645 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15646 	 * format.
15647 	 */
15648 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15649 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15650 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15651 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15652 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15653 		goto sense_failed;
15654 	}
15655 
15656 	return (SD_SENSE_DATA_IS_VALID);
15657 
15658 sense_failed:
15659 	/*
15660 	 * If the request sense failed (for whatever reason), attempt
15661 	 * to retry the original command.
15662 	 */
15663 #if defined(__i386) || defined(__amd64)
15664 	/*
15665 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15666 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15667 	 * for both SCSI/FC.
15668 	 * The SD_RETRY_DELAY value need to be adjusted here
15669 	 * when SD_RETRY_DELAY change in sddef.h
15670 	 */
15671 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15672 	    sd_print_sense_failed_msg, msgp, EIO,
15673 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15674 #else
15675 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15676 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15677 #endif
15678 
15679 	return (SD_SENSE_DATA_IS_INVALID);
15680 }
15681 
15682 
15683 
15684 /*
15685  *    Function: sd_decode_sense
15686  *
15687  * Description: Take recovery action(s) when SCSI Sense Data is received.
15688  *
15689  *     Context: Interrupt context.
15690  */
15691 
15692 static void
15693 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15694 	struct scsi_pkt *pktp)
15695 {
15696 	uint8_t sense_key;
15697 
15698 	ASSERT(un != NULL);
15699 	ASSERT(mutex_owned(SD_MUTEX(un)));
15700 	ASSERT(bp != NULL);
15701 	ASSERT(bp != un->un_rqs_bp);
15702 	ASSERT(xp != NULL);
15703 	ASSERT(pktp != NULL);
15704 
15705 	sense_key = scsi_sense_key(xp->xb_sense_data);
15706 
15707 	switch (sense_key) {
15708 	case KEY_NO_SENSE:
15709 		sd_sense_key_no_sense(un, bp, xp, pktp);
15710 		break;
15711 	case KEY_RECOVERABLE_ERROR:
15712 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15713 		    bp, xp, pktp);
15714 		break;
15715 	case KEY_NOT_READY:
15716 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15717 		    bp, xp, pktp);
15718 		break;
15719 	case KEY_MEDIUM_ERROR:
15720 	case KEY_HARDWARE_ERROR:
15721 		sd_sense_key_medium_or_hardware_error(un,
15722 		    xp->xb_sense_data, bp, xp, pktp);
15723 		break;
15724 	case KEY_ILLEGAL_REQUEST:
15725 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15726 		break;
15727 	case KEY_UNIT_ATTENTION:
15728 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15729 		    bp, xp, pktp);
15730 		break;
15731 	case KEY_WRITE_PROTECT:
15732 	case KEY_VOLUME_OVERFLOW:
15733 	case KEY_MISCOMPARE:
15734 		sd_sense_key_fail_command(un, bp, xp, pktp);
15735 		break;
15736 	case KEY_BLANK_CHECK:
15737 		sd_sense_key_blank_check(un, bp, xp, pktp);
15738 		break;
15739 	case KEY_ABORTED_COMMAND:
15740 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15741 		break;
15742 	case KEY_VENDOR_UNIQUE:
15743 	case KEY_COPY_ABORTED:
15744 	case KEY_EQUAL:
15745 	case KEY_RESERVED:
15746 	default:
15747 		sd_sense_key_default(un, xp->xb_sense_data,
15748 		    bp, xp, pktp);
15749 		break;
15750 	}
15751 }
15752 
15753 
15754 /*
15755  *    Function: sd_dump_memory
15756  *
15757  * Description: Debug logging routine to print the contents of a user provided
15758  *		buffer. The output of the buffer is broken up into 256 byte
15759  *		segments due to a size constraint of the scsi_log.
15760  *		implementation.
15761  *
15762  *   Arguments: un - ptr to softstate
15763  *		comp - component mask
15764  *		title - "title" string to preceed data when printed
15765  *		data - ptr to data block to be printed
15766  *		len - size of data block to be printed
15767  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15768  *
15769  *     Context: May be called from interrupt context
15770  */
15771 
15772 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15773 
15774 static char *sd_dump_format_string[] = {
15775 		" 0x%02x",
15776 		" %c"
15777 };
15778 
15779 static void
15780 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15781     int len, int fmt)
15782 {
15783 	int	i, j;
15784 	int	avail_count;
15785 	int	start_offset;
15786 	int	end_offset;
15787 	size_t	entry_len;
15788 	char	*bufp;
15789 	char	*local_buf;
15790 	char	*format_string;
15791 
15792 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15793 
15794 	/*
15795 	 * In the debug version of the driver, this function is called from a
15796 	 * number of places which are NOPs in the release driver.
15797 	 * The debug driver therefore has additional methods of filtering
15798 	 * debug output.
15799 	 */
15800 #ifdef SDDEBUG
15801 	/*
15802 	 * In the debug version of the driver we can reduce the amount of debug
15803 	 * messages by setting sd_error_level to something other than
15804 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15805 	 * sd_component_mask.
15806 	 */
15807 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15808 	    (sd_error_level != SCSI_ERR_ALL)) {
15809 		return;
15810 	}
15811 	if (((sd_component_mask & comp) == 0) ||
15812 	    (sd_error_level != SCSI_ERR_ALL)) {
15813 		return;
15814 	}
15815 #else
15816 	if (sd_error_level != SCSI_ERR_ALL) {
15817 		return;
15818 	}
15819 #endif
15820 
15821 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15822 	bufp = local_buf;
15823 	/*
15824 	 * Available length is the length of local_buf[], minus the
15825 	 * length of the title string, minus one for the ":", minus
15826 	 * one for the newline, minus one for the NULL terminator.
15827 	 * This gives the #bytes available for holding the printed
15828 	 * values from the given data buffer.
15829 	 */
15830 	if (fmt == SD_LOG_HEX) {
15831 		format_string = sd_dump_format_string[0];
15832 	} else /* SD_LOG_CHAR */ {
15833 		format_string = sd_dump_format_string[1];
15834 	}
15835 	/*
15836 	 * Available count is the number of elements from the given
15837 	 * data buffer that we can fit into the available length.
15838 	 * This is based upon the size of the format string used.
15839 	 * Make one entry and find it's size.
15840 	 */
15841 	(void) sprintf(bufp, format_string, data[0]);
15842 	entry_len = strlen(bufp);
15843 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15844 
15845 	j = 0;
15846 	while (j < len) {
15847 		bufp = local_buf;
15848 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15849 		start_offset = j;
15850 
15851 		end_offset = start_offset + avail_count;
15852 
15853 		(void) sprintf(bufp, "%s:", title);
15854 		bufp += strlen(bufp);
15855 		for (i = start_offset; ((i < end_offset) && (j < len));
15856 		    i++, j++) {
15857 			(void) sprintf(bufp, format_string, data[i]);
15858 			bufp += entry_len;
15859 		}
15860 		(void) sprintf(bufp, "\n");
15861 
15862 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15863 	}
15864 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15865 }
15866 
15867 /*
15868  *    Function: sd_print_sense_msg
15869  *
15870  * Description: Log a message based upon the given sense data.
15871  *
15872  *   Arguments: un - ptr to associated softstate
15873  *		bp - ptr to buf(9S) for the command
15874  *		arg - ptr to associate sd_sense_info struct
15875  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15876  *			or SD_NO_RETRY_ISSUED
15877  *
15878  *     Context: May be called from interrupt context
15879  */
15880 
15881 static void
15882 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15883 {
15884 	struct sd_xbuf	*xp;
15885 	struct scsi_pkt	*pktp;
15886 	uint8_t *sensep;
15887 	daddr_t request_blkno;
15888 	diskaddr_t err_blkno;
15889 	int severity;
15890 	int pfa_flag;
15891 	extern struct scsi_key_strings scsi_cmds[];
15892 
15893 	ASSERT(un != NULL);
15894 	ASSERT(mutex_owned(SD_MUTEX(un)));
15895 	ASSERT(bp != NULL);
15896 	xp = SD_GET_XBUF(bp);
15897 	ASSERT(xp != NULL);
15898 	pktp = SD_GET_PKTP(bp);
15899 	ASSERT(pktp != NULL);
15900 	ASSERT(arg != NULL);
15901 
15902 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15903 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15904 
15905 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15906 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15907 		severity = SCSI_ERR_RETRYABLE;
15908 	}
15909 
15910 	/* Use absolute block number for the request block number */
15911 	request_blkno = xp->xb_blkno;
15912 
15913 	/*
15914 	 * Now try to get the error block number from the sense data
15915 	 */
15916 	sensep = xp->xb_sense_data;
15917 
15918 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15919 	    (uint64_t *)&err_blkno)) {
15920 		/*
15921 		 * We retrieved the error block number from the information
15922 		 * portion of the sense data.
15923 		 *
15924 		 * For USCSI commands we are better off using the error
15925 		 * block no. as the requested block no. (This is the best
15926 		 * we can estimate.)
15927 		 */
15928 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15929 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15930 			request_blkno = err_blkno;
15931 		}
15932 	} else {
15933 		/*
15934 		 * Without the es_valid bit set (for fixed format) or an
15935 		 * information descriptor (for descriptor format) we cannot
15936 		 * be certain of the error blkno, so just use the
15937 		 * request_blkno.
15938 		 */
15939 		err_blkno = (diskaddr_t)request_blkno;
15940 	}
15941 
15942 	/*
15943 	 * The following will log the buffer contents for the release driver
15944 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15945 	 * level is set to verbose.
15946 	 */
15947 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15948 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15949 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15950 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15951 
15952 	if (pfa_flag == FALSE) {
15953 		/* This is normally only set for USCSI */
15954 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15955 			return;
15956 		}
15957 
15958 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15959 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15960 		    (severity < sd_error_level))) {
15961 			return;
15962 		}
15963 	}
15964 
15965 	/*
15966 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15967 	 */
15968 	if ((SD_IS_LSI(un)) &&
15969 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15970 	    (scsi_sense_asc(sensep) == 0x94) &&
15971 	    (scsi_sense_ascq(sensep) == 0x01)) {
15972 		un->un_sonoma_failure_count++;
15973 		if (un->un_sonoma_failure_count > 1) {
15974 			return;
15975 		}
15976 	}
15977 
15978 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15979 	    request_blkno, err_blkno, scsi_cmds,
15980 	    (struct scsi_extended_sense *)sensep,
15981 	    un->un_additional_codes, NULL);
15982 }
15983 
15984 /*
15985  *    Function: sd_sense_key_no_sense
15986  *
15987  * Description: Recovery action when sense data was not received.
15988  *
15989  *     Context: May be called from interrupt context
15990  */
15991 
15992 static void
15993 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15994 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15995 {
15996 	struct sd_sense_info	si;
15997 
15998 	ASSERT(un != NULL);
15999 	ASSERT(mutex_owned(SD_MUTEX(un)));
16000 	ASSERT(bp != NULL);
16001 	ASSERT(xp != NULL);
16002 	ASSERT(pktp != NULL);
16003 
16004 	si.ssi_severity = SCSI_ERR_FATAL;
16005 	si.ssi_pfa_flag = FALSE;
16006 
16007 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16008 
16009 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16010 	    &si, EIO, (clock_t)0, NULL);
16011 }
16012 
16013 
16014 /*
16015  *    Function: sd_sense_key_recoverable_error
16016  *
16017  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16018  *
16019  *     Context: May be called from interrupt context
16020  */
16021 
16022 static void
16023 sd_sense_key_recoverable_error(struct sd_lun *un,
16024 	uint8_t *sense_datap,
16025 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16026 {
16027 	struct sd_sense_info	si;
16028 	uint8_t asc = scsi_sense_asc(sense_datap);
16029 
16030 	ASSERT(un != NULL);
16031 	ASSERT(mutex_owned(SD_MUTEX(un)));
16032 	ASSERT(bp != NULL);
16033 	ASSERT(xp != NULL);
16034 	ASSERT(pktp != NULL);
16035 
16036 	/*
16037 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16038 	 */
16039 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16040 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16041 		si.ssi_severity = SCSI_ERR_INFO;
16042 		si.ssi_pfa_flag = TRUE;
16043 	} else {
16044 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16045 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16046 		si.ssi_severity = SCSI_ERR_RECOVERED;
16047 		si.ssi_pfa_flag = FALSE;
16048 	}
16049 
16050 	if (pktp->pkt_resid == 0) {
16051 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16052 		sd_return_command(un, bp);
16053 		return;
16054 	}
16055 
16056 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16057 	    &si, EIO, (clock_t)0, NULL);
16058 }
16059 
16060 
16061 
16062 
16063 /*
16064  *    Function: sd_sense_key_not_ready
16065  *
16066  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16067  *
16068  *     Context: May be called from interrupt context
16069  */
16070 
16071 static void
16072 sd_sense_key_not_ready(struct sd_lun *un,
16073 	uint8_t *sense_datap,
16074 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16075 {
16076 	struct sd_sense_info	si;
16077 	uint8_t asc = scsi_sense_asc(sense_datap);
16078 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16079 
16080 	ASSERT(un != NULL);
16081 	ASSERT(mutex_owned(SD_MUTEX(un)));
16082 	ASSERT(bp != NULL);
16083 	ASSERT(xp != NULL);
16084 	ASSERT(pktp != NULL);
16085 
16086 	si.ssi_severity = SCSI_ERR_FATAL;
16087 	si.ssi_pfa_flag = FALSE;
16088 
16089 	/*
16090 	 * Update error stats after first NOT READY error. Disks may have
16091 	 * been powered down and may need to be restarted.  For CDROMs,
16092 	 * report NOT READY errors only if media is present.
16093 	 */
16094 	if ((ISCD(un) && (asc == 0x3A)) ||
16095 	    (xp->xb_nr_retry_count > 0)) {
16096 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16097 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16098 	}
16099 
16100 	/*
16101 	 * Just fail if the "not ready" retry limit has been reached.
16102 	 */
16103 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16104 		/* Special check for error message printing for removables. */
16105 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16106 		    (ascq >= 0x04)) {
16107 			si.ssi_severity = SCSI_ERR_ALL;
16108 		}
16109 		goto fail_command;
16110 	}
16111 
16112 	/*
16113 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16114 	 * what to do.
16115 	 */
16116 	switch (asc) {
16117 	case 0x04:	/* LOGICAL UNIT NOT READY */
16118 		/*
16119 		 * disk drives that don't spin up result in a very long delay
16120 		 * in format without warning messages. We will log a message
16121 		 * if the error level is set to verbose.
16122 		 */
16123 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16124 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16125 			    "logical unit not ready, resetting disk\n");
16126 		}
16127 
16128 		/*
16129 		 * There are different requirements for CDROMs and disks for
16130 		 * the number of retries.  If a CD-ROM is giving this, it is
16131 		 * probably reading TOC and is in the process of getting
16132 		 * ready, so we should keep on trying for a long time to make
16133 		 * sure that all types of media are taken in account (for
16134 		 * some media the drive takes a long time to read TOC).  For
16135 		 * disks we do not want to retry this too many times as this
16136 		 * can cause a long hang in format when the drive refuses to
16137 		 * spin up (a very common failure).
16138 		 */
16139 		switch (ascq) {
16140 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16141 			/*
16142 			 * Disk drives frequently refuse to spin up which
16143 			 * results in a very long hang in format without
16144 			 * warning messages.
16145 			 *
16146 			 * Note: This code preserves the legacy behavior of
16147 			 * comparing xb_nr_retry_count against zero for fibre
16148 			 * channel targets instead of comparing against the
16149 			 * un_reset_retry_count value.  The reason for this
16150 			 * discrepancy has been so utterly lost beneath the
16151 			 * Sands of Time that even Indiana Jones could not
16152 			 * find it.
16153 			 */
16154 			if (un->un_f_is_fibre == TRUE) {
16155 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16156 				    (xp->xb_nr_retry_count > 0)) &&
16157 				    (un->un_startstop_timeid == NULL)) {
16158 					scsi_log(SD_DEVINFO(un), sd_label,
16159 					    CE_WARN, "logical unit not ready, "
16160 					    "resetting disk\n");
16161 					sd_reset_target(un, pktp);
16162 				}
16163 			} else {
16164 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16165 				    (xp->xb_nr_retry_count >
16166 				    un->un_reset_retry_count)) &&
16167 				    (un->un_startstop_timeid == NULL)) {
16168 					scsi_log(SD_DEVINFO(un), sd_label,
16169 					    CE_WARN, "logical unit not ready, "
16170 					    "resetting disk\n");
16171 					sd_reset_target(un, pktp);
16172 				}
16173 			}
16174 			break;
16175 
16176 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16177 			/*
16178 			 * If the target is in the process of becoming
16179 			 * ready, just proceed with the retry. This can
16180 			 * happen with CD-ROMs that take a long time to
16181 			 * read TOC after a power cycle or reset.
16182 			 */
16183 			goto do_retry;
16184 
16185 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16186 			break;
16187 
16188 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16189 			/*
16190 			 * Retries cannot help here so just fail right away.
16191 			 */
16192 			goto fail_command;
16193 
16194 		case 0x88:
16195 			/*
16196 			 * Vendor-unique code for T3/T4: it indicates a
16197 			 * path problem in a mutipathed config, but as far as
16198 			 * the target driver is concerned it equates to a fatal
16199 			 * error, so we should just fail the command right away
16200 			 * (without printing anything to the console). If this
16201 			 * is not a T3/T4, fall thru to the default recovery
16202 			 * action.
16203 			 * T3/T4 is FC only, don't need to check is_fibre
16204 			 */
16205 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16206 				sd_return_failed_command(un, bp, EIO);
16207 				return;
16208 			}
16209 			/* FALLTHRU */
16210 
16211 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16212 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16213 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16214 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16215 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16216 		default:    /* Possible future codes in SCSI spec? */
16217 			/*
16218 			 * For removable-media devices, do not retry if
16219 			 * ASCQ > 2 as these result mostly from USCSI commands
16220 			 * on MMC devices issued to check status of an
16221 			 * operation initiated in immediate mode.  Also for
16222 			 * ASCQ >= 4 do not print console messages as these
16223 			 * mainly represent a user-initiated operation
16224 			 * instead of a system failure.
16225 			 */
16226 			if (un->un_f_has_removable_media) {
16227 				si.ssi_severity = SCSI_ERR_ALL;
16228 				goto fail_command;
16229 			}
16230 			break;
16231 		}
16232 
16233 		/*
16234 		 * As part of our recovery attempt for the NOT READY
16235 		 * condition, we issue a START STOP UNIT command. However
16236 		 * we want to wait for a short delay before attempting this
16237 		 * as there may still be more commands coming back from the
16238 		 * target with the check condition. To do this we use
16239 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16240 		 * the delay interval expires. (sd_start_stop_unit_callback()
16241 		 * dispatches sd_start_stop_unit_task(), which will issue
16242 		 * the actual START STOP UNIT command. The delay interval
16243 		 * is one-half of the delay that we will use to retry the
16244 		 * command that generated the NOT READY condition.
16245 		 *
16246 		 * Note that we could just dispatch sd_start_stop_unit_task()
16247 		 * from here and allow it to sleep for the delay interval,
16248 		 * but then we would be tying up the taskq thread
16249 		 * uncesessarily for the duration of the delay.
16250 		 *
16251 		 * Do not issue the START STOP UNIT if the current command
16252 		 * is already a START STOP UNIT.
16253 		 */
16254 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16255 			break;
16256 		}
16257 
16258 		/*
16259 		 * Do not schedule the timeout if one is already pending.
16260 		 */
16261 		if (un->un_startstop_timeid != NULL) {
16262 			SD_INFO(SD_LOG_ERROR, un,
16263 			    "sd_sense_key_not_ready: restart already issued to"
16264 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16265 			    ddi_get_instance(SD_DEVINFO(un)));
16266 			break;
16267 		}
16268 
16269 		/*
16270 		 * Schedule the START STOP UNIT command, then queue the command
16271 		 * for a retry.
16272 		 *
16273 		 * Note: A timeout is not scheduled for this retry because we
16274 		 * want the retry to be serial with the START_STOP_UNIT. The
16275 		 * retry will be started when the START_STOP_UNIT is completed
16276 		 * in sd_start_stop_unit_task.
16277 		 */
16278 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16279 		    un, SD_BSY_TIMEOUT / 2);
16280 		xp->xb_nr_retry_count++;
16281 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16282 		return;
16283 
16284 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16285 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16286 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16287 			    "unit does not respond to selection\n");
16288 		}
16289 		break;
16290 
16291 	case 0x3A:	/* MEDIUM NOT PRESENT */
16292 		if (sd_error_level >= SCSI_ERR_FATAL) {
16293 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16294 			    "Caddy not inserted in drive\n");
16295 		}
16296 
16297 		sr_ejected(un);
16298 		un->un_mediastate = DKIO_EJECTED;
16299 		/* The state has changed, inform the media watch routines */
16300 		cv_broadcast(&un->un_state_cv);
16301 		/* Just fail if no media is present in the drive. */
16302 		goto fail_command;
16303 
16304 	default:
16305 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16306 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16307 			    "Unit not Ready. Additional sense code 0x%x\n",
16308 			    asc);
16309 		}
16310 		break;
16311 	}
16312 
16313 do_retry:
16314 
16315 	/*
16316 	 * Retry the command, as some targets may report NOT READY for
16317 	 * several seconds after being reset.
16318 	 */
16319 	xp->xb_nr_retry_count++;
16320 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16321 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16322 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16323 
16324 	return;
16325 
16326 fail_command:
16327 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16328 	sd_return_failed_command(un, bp, EIO);
16329 }
16330 
16331 
16332 
16333 /*
16334  *    Function: sd_sense_key_medium_or_hardware_error
16335  *
16336  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16337  *		sense key.
16338  *
16339  *     Context: May be called from interrupt context
16340  */
16341 
16342 static void
16343 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16344 	uint8_t *sense_datap,
16345 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16346 {
16347 	struct sd_sense_info	si;
16348 	uint8_t sense_key = scsi_sense_key(sense_datap);
16349 	uint8_t asc = scsi_sense_asc(sense_datap);
16350 
16351 	ASSERT(un != NULL);
16352 	ASSERT(mutex_owned(SD_MUTEX(un)));
16353 	ASSERT(bp != NULL);
16354 	ASSERT(xp != NULL);
16355 	ASSERT(pktp != NULL);
16356 
16357 	si.ssi_severity = SCSI_ERR_FATAL;
16358 	si.ssi_pfa_flag = FALSE;
16359 
16360 	if (sense_key == KEY_MEDIUM_ERROR) {
16361 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16362 	}
16363 
16364 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16365 
16366 	if ((un->un_reset_retry_count != 0) &&
16367 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16368 		mutex_exit(SD_MUTEX(un));
16369 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16370 		if (un->un_f_allow_bus_device_reset == TRUE) {
16371 
16372 			boolean_t try_resetting_target = B_TRUE;
16373 
16374 			/*
16375 			 * We need to be able to handle specific ASC when we are
16376 			 * handling a KEY_HARDWARE_ERROR. In particular
16377 			 * taking the default action of resetting the target may
16378 			 * not be the appropriate way to attempt recovery.
16379 			 * Resetting a target because of a single LUN failure
16380 			 * victimizes all LUNs on that target.
16381 			 *
16382 			 * This is true for the LSI arrays, if an LSI
16383 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16384 			 * should trust it.
16385 			 */
16386 
16387 			if (sense_key == KEY_HARDWARE_ERROR) {
16388 				switch (asc) {
16389 				case 0x84:
16390 					if (SD_IS_LSI(un)) {
16391 						try_resetting_target = B_FALSE;
16392 					}
16393 					break;
16394 				default:
16395 					break;
16396 				}
16397 			}
16398 
16399 			if (try_resetting_target == B_TRUE) {
16400 				int reset_retval = 0;
16401 				if (un->un_f_lun_reset_enabled == TRUE) {
16402 					SD_TRACE(SD_LOG_IO_CORE, un,
16403 					    "sd_sense_key_medium_or_hardware_"
16404 					    "error: issuing RESET_LUN\n");
16405 					reset_retval =
16406 					    scsi_reset(SD_ADDRESS(un),
16407 					    RESET_LUN);
16408 				}
16409 				if (reset_retval == 0) {
16410 					SD_TRACE(SD_LOG_IO_CORE, un,
16411 					    "sd_sense_key_medium_or_hardware_"
16412 					    "error: issuing RESET_TARGET\n");
16413 					(void) scsi_reset(SD_ADDRESS(un),
16414 					    RESET_TARGET);
16415 				}
16416 			}
16417 		}
16418 		mutex_enter(SD_MUTEX(un));
16419 	}
16420 
16421 	/*
16422 	 * This really ought to be a fatal error, but we will retry anyway
16423 	 * as some drives report this as a spurious error.
16424 	 */
16425 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16426 	    &si, EIO, (clock_t)0, NULL);
16427 }
16428 
16429 
16430 
16431 /*
16432  *    Function: sd_sense_key_illegal_request
16433  *
16434  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16435  *
16436  *     Context: May be called from interrupt context
16437  */
16438 
16439 static void
16440 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16441 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16442 {
16443 	struct sd_sense_info	si;
16444 
16445 	ASSERT(un != NULL);
16446 	ASSERT(mutex_owned(SD_MUTEX(un)));
16447 	ASSERT(bp != NULL);
16448 	ASSERT(xp != NULL);
16449 	ASSERT(pktp != NULL);
16450 
16451 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16452 
16453 	si.ssi_severity = SCSI_ERR_INFO;
16454 	si.ssi_pfa_flag = FALSE;
16455 
16456 	/* Pointless to retry if the target thinks it's an illegal request */
16457 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16458 	sd_return_failed_command(un, bp, EIO);
16459 }
16460 
16461 
16462 
16463 
16464 /*
16465  *    Function: sd_sense_key_unit_attention
16466  *
16467  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16468  *
16469  *     Context: May be called from interrupt context
16470  */
16471 
16472 static void
16473 sd_sense_key_unit_attention(struct sd_lun *un,
16474 	uint8_t *sense_datap,
16475 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16476 {
16477 	/*
16478 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16479 	 * like Sonoma can return UNIT ATTENTION close to a minute
16480 	 * under certain conditions.
16481 	 */
16482 	int	retry_check_flag = SD_RETRIES_UA;
16483 	boolean_t	kstat_updated = B_FALSE;
16484 	struct	sd_sense_info		si;
16485 	uint8_t asc = scsi_sense_asc(sense_datap);
16486 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
16487 
16488 	ASSERT(un != NULL);
16489 	ASSERT(mutex_owned(SD_MUTEX(un)));
16490 	ASSERT(bp != NULL);
16491 	ASSERT(xp != NULL);
16492 	ASSERT(pktp != NULL);
16493 
16494 	si.ssi_severity = SCSI_ERR_INFO;
16495 	si.ssi_pfa_flag = FALSE;
16496 
16497 
16498 	switch (asc) {
16499 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16500 		if (sd_report_pfa != 0) {
16501 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16502 			si.ssi_pfa_flag = TRUE;
16503 			retry_check_flag = SD_RETRIES_STANDARD;
16504 			goto do_retry;
16505 		}
16506 
16507 		break;
16508 
16509 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16510 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16511 			un->un_resvd_status |=
16512 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16513 		}
16514 #ifdef _LP64
16515 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16516 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16517 			    un, KM_NOSLEEP) == 0) {
16518 				/*
16519 				 * If we can't dispatch the task we'll just
16520 				 * live without descriptor sense.  We can
16521 				 * try again on the next "unit attention"
16522 				 */
16523 				SD_ERROR(SD_LOG_ERROR, un,
16524 				    "sd_sense_key_unit_attention: "
16525 				    "Could not dispatch "
16526 				    "sd_reenable_dsense_task\n");
16527 			}
16528 		}
16529 #endif /* _LP64 */
16530 		/* FALLTHRU */
16531 
16532 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16533 		if (!un->un_f_has_removable_media) {
16534 			break;
16535 		}
16536 
16537 		/*
16538 		 * When we get a unit attention from a removable-media device,
16539 		 * it may be in a state that will take a long time to recover
16540 		 * (e.g., from a reset).  Since we are executing in interrupt
16541 		 * context here, we cannot wait around for the device to come
16542 		 * back. So hand this command off to sd_media_change_task()
16543 		 * for deferred processing under taskq thread context. (Note
16544 		 * that the command still may be failed if a problem is
16545 		 * encountered at a later time.)
16546 		 */
16547 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16548 		    KM_NOSLEEP) == 0) {
16549 			/*
16550 			 * Cannot dispatch the request so fail the command.
16551 			 */
16552 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16553 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16554 			si.ssi_severity = SCSI_ERR_FATAL;
16555 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16556 			sd_return_failed_command(un, bp, EIO);
16557 		}
16558 
16559 		/*
16560 		 * If failed to dispatch sd_media_change_task(), we already
16561 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16562 		 * we should update kstat later if it encounters an error. So,
16563 		 * we update kstat_updated flag here.
16564 		 */
16565 		kstat_updated = B_TRUE;
16566 
16567 		/*
16568 		 * Either the command has been successfully dispatched to a
16569 		 * task Q for retrying, or the dispatch failed. In either case
16570 		 * do NOT retry again by calling sd_retry_command. This sets up
16571 		 * two retries of the same command and when one completes and
16572 		 * frees the resources the other will access freed memory,
16573 		 * a bad thing.
16574 		 */
16575 		return;
16576 
16577 	default:
16578 		break;
16579 	}
16580 
16581 	/*
16582 	 * ASC  ASCQ
16583 	 *  2A   09	Capacity data has changed
16584 	 *  2A   01	Mode parameters changed
16585 	 *  3F   0E	Reported luns data has changed
16586 	 * Arrays that support logical unit expansion should report
16587 	 * capacity changes(2Ah/09). Mode parameters changed and
16588 	 * reported luns data has changed are the approximation.
16589 	 */
16590 	if (((asc == 0x2a) && (ascq == 0x09)) ||
16591 	    ((asc == 0x2a) && (ascq == 0x01)) ||
16592 	    ((asc == 0x3f) && (ascq == 0x0e))) {
16593 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
16594 		    KM_NOSLEEP) == 0) {
16595 			SD_ERROR(SD_LOG_ERROR, un,
16596 			    "sd_sense_key_unit_attention: "
16597 			    "Could not dispatch sd_target_change_task\n");
16598 		}
16599 	}
16600 
16601 	/*
16602 	 * Update kstat if we haven't done that.
16603 	 */
16604 	if (!kstat_updated) {
16605 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16606 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16607 	}
16608 
16609 do_retry:
16610 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16611 	    EIO, SD_UA_RETRY_DELAY, NULL);
16612 }
16613 
16614 
16615 
16616 /*
16617  *    Function: sd_sense_key_fail_command
16618  *
16619  * Description: Use to fail a command when we don't like the sense key that
16620  *		was returned.
16621  *
16622  *     Context: May be called from interrupt context
16623  */
16624 
16625 static void
16626 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16627 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16628 {
16629 	struct sd_sense_info	si;
16630 
16631 	ASSERT(un != NULL);
16632 	ASSERT(mutex_owned(SD_MUTEX(un)));
16633 	ASSERT(bp != NULL);
16634 	ASSERT(xp != NULL);
16635 	ASSERT(pktp != NULL);
16636 
16637 	si.ssi_severity = SCSI_ERR_FATAL;
16638 	si.ssi_pfa_flag = FALSE;
16639 
16640 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16641 	sd_return_failed_command(un, bp, EIO);
16642 }
16643 
16644 
16645 
16646 /*
16647  *    Function: sd_sense_key_blank_check
16648  *
16649  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16650  *		Has no monetary connotation.
16651  *
16652  *     Context: May be called from interrupt context
16653  */
16654 
16655 static void
16656 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16657 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16658 {
16659 	struct sd_sense_info	si;
16660 
16661 	ASSERT(un != NULL);
16662 	ASSERT(mutex_owned(SD_MUTEX(un)));
16663 	ASSERT(bp != NULL);
16664 	ASSERT(xp != NULL);
16665 	ASSERT(pktp != NULL);
16666 
16667 	/*
16668 	 * Blank check is not fatal for removable devices, therefore
16669 	 * it does not require a console message.
16670 	 */
16671 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16672 	    SCSI_ERR_FATAL;
16673 	si.ssi_pfa_flag = FALSE;
16674 
16675 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16676 	sd_return_failed_command(un, bp, EIO);
16677 }
16678 
16679 
16680 
16681 
16682 /*
16683  *    Function: sd_sense_key_aborted_command
16684  *
16685  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16686  *
16687  *     Context: May be called from interrupt context
16688  */
16689 
16690 static void
16691 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16692 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16693 {
16694 	struct sd_sense_info	si;
16695 
16696 	ASSERT(un != NULL);
16697 	ASSERT(mutex_owned(SD_MUTEX(un)));
16698 	ASSERT(bp != NULL);
16699 	ASSERT(xp != NULL);
16700 	ASSERT(pktp != NULL);
16701 
16702 	si.ssi_severity = SCSI_ERR_FATAL;
16703 	si.ssi_pfa_flag = FALSE;
16704 
16705 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16706 
16707 	/*
16708 	 * This really ought to be a fatal error, but we will retry anyway
16709 	 * as some drives report this as a spurious error.
16710 	 */
16711 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16712 	    &si, EIO, drv_usectohz(100000), NULL);
16713 }
16714 
16715 
16716 
16717 /*
16718  *    Function: sd_sense_key_default
16719  *
16720  * Description: Default recovery action for several SCSI sense keys (basically
16721  *		attempts a retry).
16722  *
16723  *     Context: May be called from interrupt context
16724  */
16725 
16726 static void
16727 sd_sense_key_default(struct sd_lun *un,
16728 	uint8_t *sense_datap,
16729 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16730 {
16731 	struct sd_sense_info	si;
16732 	uint8_t sense_key = scsi_sense_key(sense_datap);
16733 
16734 	ASSERT(un != NULL);
16735 	ASSERT(mutex_owned(SD_MUTEX(un)));
16736 	ASSERT(bp != NULL);
16737 	ASSERT(xp != NULL);
16738 	ASSERT(pktp != NULL);
16739 
16740 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16741 
16742 	/*
16743 	 * Undecoded sense key.	Attempt retries and hope that will fix
16744 	 * the problem.  Otherwise, we're dead.
16745 	 */
16746 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16747 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16748 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16749 	}
16750 
16751 	si.ssi_severity = SCSI_ERR_FATAL;
16752 	si.ssi_pfa_flag = FALSE;
16753 
16754 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16755 	    &si, EIO, (clock_t)0, NULL);
16756 }
16757 
16758 
16759 
16760 /*
16761  *    Function: sd_print_retry_msg
16762  *
16763  * Description: Print a message indicating the retry action being taken.
16764  *
16765  *   Arguments: un - ptr to associated softstate
16766  *		bp - ptr to buf(9S) for the command
16767  *		arg - not used.
16768  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16769  *			or SD_NO_RETRY_ISSUED
16770  *
16771  *     Context: May be called from interrupt context
16772  */
16773 /* ARGSUSED */
16774 static void
16775 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16776 {
16777 	struct sd_xbuf	*xp;
16778 	struct scsi_pkt *pktp;
16779 	char *reasonp;
16780 	char *msgp;
16781 
16782 	ASSERT(un != NULL);
16783 	ASSERT(mutex_owned(SD_MUTEX(un)));
16784 	ASSERT(bp != NULL);
16785 	pktp = SD_GET_PKTP(bp);
16786 	ASSERT(pktp != NULL);
16787 	xp = SD_GET_XBUF(bp);
16788 	ASSERT(xp != NULL);
16789 
16790 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16791 	mutex_enter(&un->un_pm_mutex);
16792 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16793 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16794 	    (pktp->pkt_flags & FLAG_SILENT)) {
16795 		mutex_exit(&un->un_pm_mutex);
16796 		goto update_pkt_reason;
16797 	}
16798 	mutex_exit(&un->un_pm_mutex);
16799 
16800 	/*
16801 	 * Suppress messages if they are all the same pkt_reason; with
16802 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16803 	 * If we are in panic, then suppress the retry messages.
16804 	 */
16805 	switch (flag) {
16806 	case SD_NO_RETRY_ISSUED:
16807 		msgp = "giving up";
16808 		break;
16809 	case SD_IMMEDIATE_RETRY_ISSUED:
16810 	case SD_DELAYED_RETRY_ISSUED:
16811 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16812 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16813 		    (sd_error_level != SCSI_ERR_ALL))) {
16814 			return;
16815 		}
16816 		msgp = "retrying command";
16817 		break;
16818 	default:
16819 		goto update_pkt_reason;
16820 	}
16821 
16822 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16823 	    scsi_rname(pktp->pkt_reason));
16824 
16825 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16826 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16827 
16828 update_pkt_reason:
16829 	/*
16830 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16831 	 * This is to prevent multiple console messages for the same failure
16832 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16833 	 * when the command is retried successfully because there still may be
16834 	 * more commands coming back with the same value of pktp->pkt_reason.
16835 	 */
16836 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16837 		un->un_last_pkt_reason = pktp->pkt_reason;
16838 	}
16839 }
16840 
16841 
16842 /*
16843  *    Function: sd_print_cmd_incomplete_msg
16844  *
16845  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16846  *
16847  *   Arguments: un - ptr to associated softstate
16848  *		bp - ptr to buf(9S) for the command
16849  *		arg - passed to sd_print_retry_msg()
16850  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16851  *			or SD_NO_RETRY_ISSUED
16852  *
16853  *     Context: May be called from interrupt context
16854  */
16855 
16856 static void
16857 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16858 	int code)
16859 {
16860 	dev_info_t	*dip;
16861 
16862 	ASSERT(un != NULL);
16863 	ASSERT(mutex_owned(SD_MUTEX(un)));
16864 	ASSERT(bp != NULL);
16865 
16866 	switch (code) {
16867 	case SD_NO_RETRY_ISSUED:
16868 		/* Command was failed. Someone turned off this target? */
16869 		if (un->un_state != SD_STATE_OFFLINE) {
16870 			/*
16871 			 * Suppress message if we are detaching and
16872 			 * device has been disconnected
16873 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16874 			 * private interface and not part of the DDI
16875 			 */
16876 			dip = un->un_sd->sd_dev;
16877 			if (!(DEVI_IS_DETACHING(dip) &&
16878 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16879 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16880 				"disk not responding to selection\n");
16881 			}
16882 			New_state(un, SD_STATE_OFFLINE);
16883 		}
16884 		break;
16885 
16886 	case SD_DELAYED_RETRY_ISSUED:
16887 	case SD_IMMEDIATE_RETRY_ISSUED:
16888 	default:
16889 		/* Command was successfully queued for retry */
16890 		sd_print_retry_msg(un, bp, arg, code);
16891 		break;
16892 	}
16893 }
16894 
16895 
16896 /*
16897  *    Function: sd_pkt_reason_cmd_incomplete
16898  *
16899  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16900  *
16901  *     Context: May be called from interrupt context
16902  */
16903 
16904 static void
16905 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16906 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16907 {
16908 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16909 
16910 	ASSERT(un != NULL);
16911 	ASSERT(mutex_owned(SD_MUTEX(un)));
16912 	ASSERT(bp != NULL);
16913 	ASSERT(xp != NULL);
16914 	ASSERT(pktp != NULL);
16915 
16916 	/* Do not do a reset if selection did not complete */
16917 	/* Note: Should this not just check the bit? */
16918 	if (pktp->pkt_state != STATE_GOT_BUS) {
16919 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16920 		sd_reset_target(un, pktp);
16921 	}
16922 
16923 	/*
16924 	 * If the target was not successfully selected, then set
16925 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16926 	 * with the target, and further retries and/or commands are
16927 	 * likely to take a long time.
16928 	 */
16929 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16930 		flag |= SD_RETRIES_FAILFAST;
16931 	}
16932 
16933 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16934 
16935 	sd_retry_command(un, bp, flag,
16936 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16937 }
16938 
16939 
16940 
16941 /*
16942  *    Function: sd_pkt_reason_cmd_tran_err
16943  *
16944  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16945  *
16946  *     Context: May be called from interrupt context
16947  */
16948 
16949 static void
16950 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16951 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16952 {
16953 	ASSERT(un != NULL);
16954 	ASSERT(mutex_owned(SD_MUTEX(un)));
16955 	ASSERT(bp != NULL);
16956 	ASSERT(xp != NULL);
16957 	ASSERT(pktp != NULL);
16958 
16959 	/*
16960 	 * Do not reset if we got a parity error, or if
16961 	 * selection did not complete.
16962 	 */
16963 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16964 	/* Note: Should this not just check the bit for pkt_state? */
16965 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16966 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16967 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16968 		sd_reset_target(un, pktp);
16969 	}
16970 
16971 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16972 
16973 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16974 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16975 }
16976 
16977 
16978 
16979 /*
16980  *    Function: sd_pkt_reason_cmd_reset
16981  *
16982  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16983  *
16984  *     Context: May be called from interrupt context
16985  */
16986 
16987 static void
16988 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16989 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16990 {
16991 	ASSERT(un != NULL);
16992 	ASSERT(mutex_owned(SD_MUTEX(un)));
16993 	ASSERT(bp != NULL);
16994 	ASSERT(xp != NULL);
16995 	ASSERT(pktp != NULL);
16996 
16997 	/* The target may still be running the command, so try to reset. */
16998 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16999 	sd_reset_target(un, pktp);
17000 
17001 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17002 
17003 	/*
17004 	 * If pkt_reason is CMD_RESET chances are that this pkt got
17005 	 * reset because another target on this bus caused it. The target
17006 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17007 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17008 	 */
17009 
17010 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17011 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17012 }
17013 
17014 
17015 
17016 
17017 /*
17018  *    Function: sd_pkt_reason_cmd_aborted
17019  *
17020  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17021  *
17022  *     Context: May be called from interrupt context
17023  */
17024 
17025 static void
17026 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17027 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17028 {
17029 	ASSERT(un != NULL);
17030 	ASSERT(mutex_owned(SD_MUTEX(un)));
17031 	ASSERT(bp != NULL);
17032 	ASSERT(xp != NULL);
17033 	ASSERT(pktp != NULL);
17034 
17035 	/* The target may still be running the command, so try to reset. */
17036 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17037 	sd_reset_target(un, pktp);
17038 
17039 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17040 
17041 	/*
17042 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17043 	 * aborted because another target on this bus caused it. The target
17044 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17045 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17046 	 */
17047 
17048 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17049 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17050 }
17051 
17052 
17053 
17054 /*
17055  *    Function: sd_pkt_reason_cmd_timeout
17056  *
17057  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17058  *
17059  *     Context: May be called from interrupt context
17060  */
17061 
17062 static void
17063 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17064 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17065 {
17066 	ASSERT(un != NULL);
17067 	ASSERT(mutex_owned(SD_MUTEX(un)));
17068 	ASSERT(bp != NULL);
17069 	ASSERT(xp != NULL);
17070 	ASSERT(pktp != NULL);
17071 
17072 
17073 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17074 	sd_reset_target(un, pktp);
17075 
17076 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17077 
17078 	/*
17079 	 * A command timeout indicates that we could not establish
17080 	 * communication with the target, so set SD_RETRIES_FAILFAST
17081 	 * as further retries/commands are likely to take a long time.
17082 	 */
17083 	sd_retry_command(un, bp,
17084 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17085 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17086 }
17087 
17088 
17089 
17090 /*
17091  *    Function: sd_pkt_reason_cmd_unx_bus_free
17092  *
17093  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17094  *
17095  *     Context: May be called from interrupt context
17096  */
17097 
17098 static void
17099 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17100 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17101 {
17102 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17103 
17104 	ASSERT(un != NULL);
17105 	ASSERT(mutex_owned(SD_MUTEX(un)));
17106 	ASSERT(bp != NULL);
17107 	ASSERT(xp != NULL);
17108 	ASSERT(pktp != NULL);
17109 
17110 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17111 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17112 
17113 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17114 	    sd_print_retry_msg : NULL;
17115 
17116 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17117 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17118 }
17119 
17120 
17121 /*
17122  *    Function: sd_pkt_reason_cmd_tag_reject
17123  *
17124  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17125  *
17126  *     Context: May be called from interrupt context
17127  */
17128 
17129 static void
17130 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17131 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17132 {
17133 	ASSERT(un != NULL);
17134 	ASSERT(mutex_owned(SD_MUTEX(un)));
17135 	ASSERT(bp != NULL);
17136 	ASSERT(xp != NULL);
17137 	ASSERT(pktp != NULL);
17138 
17139 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17140 	pktp->pkt_flags = 0;
17141 	un->un_tagflags = 0;
17142 	if (un->un_f_opt_queueing == TRUE) {
17143 		un->un_throttle = min(un->un_throttle, 3);
17144 	} else {
17145 		un->un_throttle = 1;
17146 	}
17147 	mutex_exit(SD_MUTEX(un));
17148 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17149 	mutex_enter(SD_MUTEX(un));
17150 
17151 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17152 
17153 	/* Legacy behavior not to check retry counts here. */
17154 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17155 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17156 }
17157 
17158 
17159 /*
17160  *    Function: sd_pkt_reason_default
17161  *
17162  * Description: Default recovery actions for SCSA pkt_reason values that
17163  *		do not have more explicit recovery actions.
17164  *
17165  *     Context: May be called from interrupt context
17166  */
17167 
17168 static void
17169 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17170 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17171 {
17172 	ASSERT(un != NULL);
17173 	ASSERT(mutex_owned(SD_MUTEX(un)));
17174 	ASSERT(bp != NULL);
17175 	ASSERT(xp != NULL);
17176 	ASSERT(pktp != NULL);
17177 
17178 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17179 	sd_reset_target(un, pktp);
17180 
17181 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17182 
17183 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17184 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17185 }
17186 
17187 
17188 
17189 /*
17190  *    Function: sd_pkt_status_check_condition
17191  *
17192  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17193  *
17194  *     Context: May be called from interrupt context
17195  */
17196 
17197 static void
17198 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17199 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17200 {
17201 	ASSERT(un != NULL);
17202 	ASSERT(mutex_owned(SD_MUTEX(un)));
17203 	ASSERT(bp != NULL);
17204 	ASSERT(xp != NULL);
17205 	ASSERT(pktp != NULL);
17206 
17207 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17208 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17209 
17210 	/*
17211 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17212 	 * command will be retried after the request sense). Otherwise, retry
17213 	 * the command. Note: we are issuing the request sense even though the
17214 	 * retry limit may have been reached for the failed command.
17215 	 */
17216 	if (un->un_f_arq_enabled == FALSE) {
17217 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17218 		    "no ARQ, sending request sense command\n");
17219 		sd_send_request_sense_command(un, bp, pktp);
17220 	} else {
17221 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17222 		    "ARQ,retrying request sense command\n");
17223 #if defined(__i386) || defined(__amd64)
17224 		/*
17225 		 * The SD_RETRY_DELAY value need to be adjusted here
17226 		 * when SD_RETRY_DELAY change in sddef.h
17227 		 */
17228 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17229 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17230 		    NULL);
17231 #else
17232 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17233 		    EIO, SD_RETRY_DELAY, NULL);
17234 #endif
17235 	}
17236 
17237 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17238 }
17239 
17240 
17241 /*
17242  *    Function: sd_pkt_status_busy
17243  *
17244  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17245  *
17246  *     Context: May be called from interrupt context
17247  */
17248 
17249 static void
17250 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17251 	struct scsi_pkt *pktp)
17252 {
17253 	ASSERT(un != NULL);
17254 	ASSERT(mutex_owned(SD_MUTEX(un)));
17255 	ASSERT(bp != NULL);
17256 	ASSERT(xp != NULL);
17257 	ASSERT(pktp != NULL);
17258 
17259 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17260 	    "sd_pkt_status_busy: entry\n");
17261 
17262 	/* If retries are exhausted, just fail the command. */
17263 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17264 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17265 		    "device busy too long\n");
17266 		sd_return_failed_command(un, bp, EIO);
17267 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17268 		    "sd_pkt_status_busy: exit\n");
17269 		return;
17270 	}
17271 	xp->xb_retry_count++;
17272 
17273 	/*
17274 	 * Try to reset the target. However, we do not want to perform
17275 	 * more than one reset if the device continues to fail. The reset
17276 	 * will be performed when the retry count reaches the reset
17277 	 * threshold.  This threshold should be set such that at least
17278 	 * one retry is issued before the reset is performed.
17279 	 */
17280 	if (xp->xb_retry_count ==
17281 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17282 		int rval = 0;
17283 		mutex_exit(SD_MUTEX(un));
17284 		if (un->un_f_allow_bus_device_reset == TRUE) {
17285 			/*
17286 			 * First try to reset the LUN; if we cannot then
17287 			 * try to reset the target.
17288 			 */
17289 			if (un->un_f_lun_reset_enabled == TRUE) {
17290 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17291 				    "sd_pkt_status_busy: RESET_LUN\n");
17292 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17293 			}
17294 			if (rval == 0) {
17295 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17296 				    "sd_pkt_status_busy: RESET_TARGET\n");
17297 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17298 			}
17299 		}
17300 		if (rval == 0) {
17301 			/*
17302 			 * If the RESET_LUN and/or RESET_TARGET failed,
17303 			 * try RESET_ALL
17304 			 */
17305 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17306 			    "sd_pkt_status_busy: RESET_ALL\n");
17307 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17308 		}
17309 		mutex_enter(SD_MUTEX(un));
17310 		if (rval == 0) {
17311 			/*
17312 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17313 			 * At this point we give up & fail the command.
17314 			 */
17315 			sd_return_failed_command(un, bp, EIO);
17316 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17317 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17318 			return;
17319 		}
17320 	}
17321 
17322 	/*
17323 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17324 	 * we have already checked the retry counts above.
17325 	 */
17326 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17327 	    EIO, SD_BSY_TIMEOUT, NULL);
17328 
17329 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17330 	    "sd_pkt_status_busy: exit\n");
17331 }
17332 
17333 
17334 /*
17335  *    Function: sd_pkt_status_reservation_conflict
17336  *
17337  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17338  *		command status.
17339  *
17340  *     Context: May be called from interrupt context
17341  */
17342 
17343 static void
17344 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17345 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17346 {
17347 	ASSERT(un != NULL);
17348 	ASSERT(mutex_owned(SD_MUTEX(un)));
17349 	ASSERT(bp != NULL);
17350 	ASSERT(xp != NULL);
17351 	ASSERT(pktp != NULL);
17352 
17353 	/*
17354 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17355 	 * conflict could be due to various reasons like incorrect keys, not
17356 	 * registered or not reserved etc. So, we return EACCES to the caller.
17357 	 */
17358 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17359 		int cmd = SD_GET_PKT_OPCODE(pktp);
17360 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17361 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17362 			sd_return_failed_command(un, bp, EACCES);
17363 			return;
17364 		}
17365 	}
17366 
17367 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17368 
17369 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17370 		if (sd_failfast_enable != 0) {
17371 			/* By definition, we must panic here.... */
17372 			sd_panic_for_res_conflict(un);
17373 			/*NOTREACHED*/
17374 		}
17375 		SD_ERROR(SD_LOG_IO, un,
17376 		    "sd_handle_resv_conflict: Disk Reserved\n");
17377 		sd_return_failed_command(un, bp, EACCES);
17378 		return;
17379 	}
17380 
17381 	/*
17382 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17383 	 * property is set (default is 1). Retries will not succeed
17384 	 * on a disk reserved by another initiator. HA systems
17385 	 * may reset this via sd.conf to avoid these retries.
17386 	 *
17387 	 * Note: The legacy return code for this failure is EIO, however EACCES
17388 	 * seems more appropriate for a reservation conflict.
17389 	 */
17390 	if (sd_retry_on_reservation_conflict == 0) {
17391 		SD_ERROR(SD_LOG_IO, un,
17392 		    "sd_handle_resv_conflict: Device Reserved\n");
17393 		sd_return_failed_command(un, bp, EIO);
17394 		return;
17395 	}
17396 
17397 	/*
17398 	 * Retry the command if we can.
17399 	 *
17400 	 * Note: The legacy return code for this failure is EIO, however EACCES
17401 	 * seems more appropriate for a reservation conflict.
17402 	 */
17403 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17404 	    (clock_t)2, NULL);
17405 }
17406 
17407 
17408 
17409 /*
17410  *    Function: sd_pkt_status_qfull
17411  *
17412  * Description: Handle a QUEUE FULL condition from the target.  This can
17413  *		occur if the HBA does not handle the queue full condition.
17414  *		(Basically this means third-party HBAs as Sun HBAs will
17415  *		handle the queue full condition.)  Note that if there are
17416  *		some commands already in the transport, then the queue full
17417  *		has occurred because the queue for this nexus is actually
17418  *		full. If there are no commands in the transport, then the
17419  *		queue full is resulting from some other initiator or lun
17420  *		consuming all the resources at the target.
17421  *
17422  *     Context: May be called from interrupt context
17423  */
17424 
17425 static void
17426 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17427 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17428 {
17429 	ASSERT(un != NULL);
17430 	ASSERT(mutex_owned(SD_MUTEX(un)));
17431 	ASSERT(bp != NULL);
17432 	ASSERT(xp != NULL);
17433 	ASSERT(pktp != NULL);
17434 
17435 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17436 	    "sd_pkt_status_qfull: entry\n");
17437 
17438 	/*
17439 	 * Just lower the QFULL throttle and retry the command.  Note that
17440 	 * we do not limit the number of retries here.
17441 	 */
17442 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17443 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17444 	    SD_RESTART_TIMEOUT, NULL);
17445 
17446 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17447 	    "sd_pkt_status_qfull: exit\n");
17448 }
17449 
17450 
17451 /*
17452  *    Function: sd_reset_target
17453  *
17454  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17455  *		RESET_TARGET, or RESET_ALL.
17456  *
17457  *     Context: May be called under interrupt context.
17458  */
17459 
17460 static void
17461 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17462 {
17463 	int rval = 0;
17464 
17465 	ASSERT(un != NULL);
17466 	ASSERT(mutex_owned(SD_MUTEX(un)));
17467 	ASSERT(pktp != NULL);
17468 
17469 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17470 
17471 	/*
17472 	 * No need to reset if the transport layer has already done so.
17473 	 */
17474 	if ((pktp->pkt_statistics &
17475 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17476 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17477 		    "sd_reset_target: no reset\n");
17478 		return;
17479 	}
17480 
17481 	mutex_exit(SD_MUTEX(un));
17482 
17483 	if (un->un_f_allow_bus_device_reset == TRUE) {
17484 		if (un->un_f_lun_reset_enabled == TRUE) {
17485 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17486 			    "sd_reset_target: RESET_LUN\n");
17487 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17488 		}
17489 		if (rval == 0) {
17490 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17491 			    "sd_reset_target: RESET_TARGET\n");
17492 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17493 		}
17494 	}
17495 
17496 	if (rval == 0) {
17497 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17498 		    "sd_reset_target: RESET_ALL\n");
17499 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17500 	}
17501 
17502 	mutex_enter(SD_MUTEX(un));
17503 
17504 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17505 }
17506 
17507 /*
17508  *    Function: sd_target_change_task
17509  *
17510  * Description: Handle dynamic target change
17511  *
17512  *     Context: Executes in a taskq() thread context
17513  */
17514 static void
17515 sd_target_change_task(void *arg)
17516 {
17517 	struct sd_lun		*un = arg;
17518 	uint64_t		capacity;
17519 	diskaddr_t		label_cap;
17520 	uint_t			lbasize;
17521 
17522 	ASSERT(un != NULL);
17523 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17524 
17525 	if ((un->un_f_blockcount_is_valid == FALSE) ||
17526 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
17527 		return;
17528 	}
17529 
17530 	if (sd_send_scsi_READ_CAPACITY(un, &capacity,
17531 	    &lbasize, SD_PATH_DIRECT) != 0) {
17532 		SD_ERROR(SD_LOG_ERROR, un,
17533 		    "sd_target_change_task: fail to read capacity\n");
17534 		return;
17535 	}
17536 
17537 	mutex_enter(SD_MUTEX(un));
17538 	if (capacity <= un->un_blockcount) {
17539 		mutex_exit(SD_MUTEX(un));
17540 		return;
17541 	}
17542 
17543 	sd_update_block_info(un, lbasize, capacity);
17544 	mutex_exit(SD_MUTEX(un));
17545 
17546 	/*
17547 	 * If lun is EFI labeled and lun capacity is greater than the
17548 	 * capacity contained in the label, log a sys event.
17549 	 */
17550 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
17551 	    (void*)SD_PATH_DIRECT) == 0) {
17552 		mutex_enter(SD_MUTEX(un));
17553 		if (un->un_f_blockcount_is_valid &&
17554 		    un->un_blockcount > label_cap) {
17555 			mutex_exit(SD_MUTEX(un));
17556 			sd_log_lun_expansion_event(un, KM_SLEEP);
17557 		} else {
17558 			mutex_exit(SD_MUTEX(un));
17559 		}
17560 	}
17561 }
17562 
17563 /*
17564  *    Function: sd_log_lun_expansion_event
17565  *
17566  * Description: Log lun expansion sys event
17567  *
17568  *     Context: Never called from interrupt context
17569  */
17570 static void
17571 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
17572 {
17573 	int err;
17574 	char			*path;
17575 	nvlist_t		*dle_attr_list;
17576 
17577 	/* Allocate and build sysevent attribute list */
17578 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
17579 	if (err != 0) {
17580 		SD_ERROR(SD_LOG_ERROR, un,
17581 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17582 		return;
17583 	}
17584 
17585 	path = kmem_alloc(MAXPATHLEN, km_flag);
17586 	if (path == NULL) {
17587 		nvlist_free(dle_attr_list);
17588 		SD_ERROR(SD_LOG_ERROR, un,
17589 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17590 		return;
17591 	}
17592 	/*
17593 	 * Add path attribute to identify the lun.
17594 	 * We are using minor node 'a' as the sysevent attribute.
17595 	 */
17596 	(void) snprintf(path, MAXPATHLEN, "/devices");
17597 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
17598 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
17599 	    ":a");
17600 
17601 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
17602 	if (err != 0) {
17603 		nvlist_free(dle_attr_list);
17604 		kmem_free(path, MAXPATHLEN);
17605 		SD_ERROR(SD_LOG_ERROR, un,
17606 		    "sd_log_lun_expansion_event: fail to add attribute\n");
17607 		return;
17608 	}
17609 
17610 	/* Log dynamic lun expansion sysevent */
17611 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
17612 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
17613 	if (err != DDI_SUCCESS) {
17614 		SD_ERROR(SD_LOG_ERROR, un,
17615 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
17616 	}
17617 
17618 	nvlist_free(dle_attr_list);
17619 	kmem_free(path, MAXPATHLEN);
17620 }
17621 
17622 /*
17623  *    Function: sd_media_change_task
17624  *
17625  * Description: Recovery action for CDROM to become available.
17626  *
17627  *     Context: Executes in a taskq() thread context
17628  */
17629 
17630 static void
17631 sd_media_change_task(void *arg)
17632 {
17633 	struct	scsi_pkt	*pktp = arg;
17634 	struct	sd_lun		*un;
17635 	struct	buf		*bp;
17636 	struct	sd_xbuf		*xp;
17637 	int	err		= 0;
17638 	int	retry_count	= 0;
17639 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17640 	struct	sd_sense_info	si;
17641 
17642 	ASSERT(pktp != NULL);
17643 	bp = (struct buf *)pktp->pkt_private;
17644 	ASSERT(bp != NULL);
17645 	xp = SD_GET_XBUF(bp);
17646 	ASSERT(xp != NULL);
17647 	un = SD_GET_UN(bp);
17648 	ASSERT(un != NULL);
17649 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17650 	ASSERT(un->un_f_monitor_media_state);
17651 
17652 	si.ssi_severity = SCSI_ERR_INFO;
17653 	si.ssi_pfa_flag = FALSE;
17654 
17655 	/*
17656 	 * When a reset is issued on a CDROM, it takes a long time to
17657 	 * recover. First few attempts to read capacity and other things
17658 	 * related to handling unit attention fail (with a ASC 0x4 and
17659 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17660 	 * to limit the retries in other cases of genuine failures like
17661 	 * no media in drive.
17662 	 */
17663 	while (retry_count++ < retry_limit) {
17664 		if ((err = sd_handle_mchange(un)) == 0) {
17665 			break;
17666 		}
17667 		if (err == EAGAIN) {
17668 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17669 		}
17670 		/* Sleep for 0.5 sec. & try again */
17671 		delay(drv_usectohz(500000));
17672 	}
17673 
17674 	/*
17675 	 * Dispatch (retry or fail) the original command here,
17676 	 * along with appropriate console messages....
17677 	 *
17678 	 * Must grab the mutex before calling sd_retry_command,
17679 	 * sd_print_sense_msg and sd_return_failed_command.
17680 	 */
17681 	mutex_enter(SD_MUTEX(un));
17682 	if (err != SD_CMD_SUCCESS) {
17683 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17684 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17685 		si.ssi_severity = SCSI_ERR_FATAL;
17686 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17687 		sd_return_failed_command(un, bp, EIO);
17688 	} else {
17689 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17690 		    &si, EIO, (clock_t)0, NULL);
17691 	}
17692 	mutex_exit(SD_MUTEX(un));
17693 }
17694 
17695 
17696 
17697 /*
17698  *    Function: sd_handle_mchange
17699  *
17700  * Description: Perform geometry validation & other recovery when CDROM
17701  *		has been removed from drive.
17702  *
17703  * Return Code: 0 for success
17704  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17705  *		sd_send_scsi_READ_CAPACITY()
17706  *
17707  *     Context: Executes in a taskq() thread context
17708  */
17709 
17710 static int
17711 sd_handle_mchange(struct sd_lun *un)
17712 {
17713 	uint64_t	capacity;
17714 	uint32_t	lbasize;
17715 	int		rval;
17716 
17717 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17718 	ASSERT(un->un_f_monitor_media_state);
17719 
17720 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17721 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17722 		return (rval);
17723 	}
17724 
17725 	mutex_enter(SD_MUTEX(un));
17726 	sd_update_block_info(un, lbasize, capacity);
17727 
17728 	if (un->un_errstats != NULL) {
17729 		struct	sd_errstats *stp =
17730 		    (struct sd_errstats *)un->un_errstats->ks_data;
17731 		stp->sd_capacity.value.ui64 = (uint64_t)
17732 		    ((uint64_t)un->un_blockcount *
17733 		    (uint64_t)un->un_tgt_blocksize);
17734 	}
17735 
17736 
17737 	/*
17738 	 * Check if the media in the device is writable or not
17739 	 */
17740 	if (ISCD(un))
17741 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17742 
17743 	/*
17744 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17745 	 * valid geometry.
17746 	 */
17747 	mutex_exit(SD_MUTEX(un));
17748 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17749 
17750 
17751 	if (cmlb_validate(un->un_cmlbhandle, 0,
17752 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17753 		return (EIO);
17754 	} else {
17755 		if (un->un_f_pkstats_enabled) {
17756 			sd_set_pstats(un);
17757 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17758 			    "sd_handle_mchange: un:0x%p pstats created and "
17759 			    "set\n", un);
17760 		}
17761 	}
17762 
17763 
17764 	/*
17765 	 * Try to lock the door
17766 	 */
17767 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17768 	    SD_PATH_DIRECT_PRIORITY));
17769 }
17770 
17771 
17772 /*
17773  *    Function: sd_send_scsi_DOORLOCK
17774  *
17775  * Description: Issue the scsi DOOR LOCK command
17776  *
17777  *   Arguments: un    - pointer to driver soft state (unit) structure for
17778  *			this target.
17779  *		flag  - SD_REMOVAL_ALLOW
17780  *			SD_REMOVAL_PREVENT
17781  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17782  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17783  *			to use the USCSI "direct" chain and bypass the normal
17784  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17785  *			command is issued as part of an error recovery action.
17786  *
17787  * Return Code: 0   - Success
17788  *		errno return code from sd_send_scsi_cmd()
17789  *
17790  *     Context: Can sleep.
17791  */
17792 
17793 static int
17794 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17795 {
17796 	union scsi_cdb		cdb;
17797 	struct uscsi_cmd	ucmd_buf;
17798 	struct scsi_extended_sense	sense_buf;
17799 	int			status;
17800 
17801 	ASSERT(un != NULL);
17802 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17803 
17804 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17805 
17806 	/* already determined doorlock is not supported, fake success */
17807 	if (un->un_f_doorlock_supported == FALSE) {
17808 		return (0);
17809 	}
17810 
17811 	/*
17812 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17813 	 * ignore the command so we can complete the eject
17814 	 * operation.
17815 	 */
17816 	if (flag == SD_REMOVAL_PREVENT) {
17817 		mutex_enter(SD_MUTEX(un));
17818 		if (un->un_f_ejecting == TRUE) {
17819 			mutex_exit(SD_MUTEX(un));
17820 			return (EAGAIN);
17821 		}
17822 		mutex_exit(SD_MUTEX(un));
17823 	}
17824 
17825 	bzero(&cdb, sizeof (cdb));
17826 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17827 
17828 	cdb.scc_cmd = SCMD_DOORLOCK;
17829 	cdb.cdb_opaque[4] = (uchar_t)flag;
17830 
17831 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17832 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17833 	ucmd_buf.uscsi_bufaddr	= NULL;
17834 	ucmd_buf.uscsi_buflen	= 0;
17835 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17836 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17837 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17838 	ucmd_buf.uscsi_timeout	= 15;
17839 
17840 	SD_TRACE(SD_LOG_IO, un,
17841 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17842 
17843 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17844 	    UIO_SYSSPACE, path_flag);
17845 
17846 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17847 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17848 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17849 		/* fake success and skip subsequent doorlock commands */
17850 		un->un_f_doorlock_supported = FALSE;
17851 		return (0);
17852 	}
17853 
17854 	return (status);
17855 }
17856 
17857 /*
17858  *    Function: sd_send_scsi_READ_CAPACITY
17859  *
17860  * Description: This routine uses the scsi READ CAPACITY command to determine
17861  *		the device capacity in number of blocks and the device native
17862  *		block size. If this function returns a failure, then the
17863  *		values in *capp and *lbap are undefined.  If the capacity
17864  *		returned is 0xffffffff then the lun is too large for a
17865  *		normal READ CAPACITY command and the results of a
17866  *		READ CAPACITY 16 will be used instead.
17867  *
17868  *   Arguments: un   - ptr to soft state struct for the target
17869  *		capp - ptr to unsigned 64-bit variable to receive the
17870  *			capacity value from the command.
17871  *		lbap - ptr to unsigned 32-bit varaible to receive the
17872  *			block size value from the command
17873  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17874  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17875  *			to use the USCSI "direct" chain and bypass the normal
17876  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17877  *			command is issued as part of an error recovery action.
17878  *
17879  * Return Code: 0   - Success
17880  *		EIO - IO error
17881  *		EACCES - Reservation conflict detected
17882  *		EAGAIN - Device is becoming ready
17883  *		errno return code from sd_send_scsi_cmd()
17884  *
17885  *     Context: Can sleep.  Blocks until command completes.
17886  */
17887 
17888 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17889 
17890 static int
17891 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17892 	int path_flag)
17893 {
17894 	struct	scsi_extended_sense	sense_buf;
17895 	struct	uscsi_cmd	ucmd_buf;
17896 	union	scsi_cdb	cdb;
17897 	uint32_t		*capacity_buf;
17898 	uint64_t		capacity;
17899 	uint32_t		lbasize;
17900 	int			status;
17901 
17902 	ASSERT(un != NULL);
17903 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17904 	ASSERT(capp != NULL);
17905 	ASSERT(lbap != NULL);
17906 
17907 	SD_TRACE(SD_LOG_IO, un,
17908 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17909 
17910 	/*
17911 	 * First send a READ_CAPACITY command to the target.
17912 	 * (This command is mandatory under SCSI-2.)
17913 	 *
17914 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17915 	 * Medium Indicator bit is cleared.  The address field must be
17916 	 * zero if the PMI bit is zero.
17917 	 */
17918 	bzero(&cdb, sizeof (cdb));
17919 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17920 
17921 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17922 
17923 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17924 
17925 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17926 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17927 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17928 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17929 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17930 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17931 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17932 	ucmd_buf.uscsi_timeout	= 60;
17933 
17934 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17935 	    UIO_SYSSPACE, path_flag);
17936 
17937 	switch (status) {
17938 	case 0:
17939 		/* Return failure if we did not get valid capacity data. */
17940 		if (ucmd_buf.uscsi_resid != 0) {
17941 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17942 			return (EIO);
17943 		}
17944 
17945 		/*
17946 		 * Read capacity and block size from the READ CAPACITY 10 data.
17947 		 * This data may be adjusted later due to device specific
17948 		 * issues.
17949 		 *
17950 		 * According to the SCSI spec, the READ CAPACITY 10
17951 		 * command returns the following:
17952 		 *
17953 		 *  bytes 0-3: Maximum logical block address available.
17954 		 *		(MSB in byte:0 & LSB in byte:3)
17955 		 *
17956 		 *  bytes 4-7: Block length in bytes
17957 		 *		(MSB in byte:4 & LSB in byte:7)
17958 		 *
17959 		 */
17960 		capacity = BE_32(capacity_buf[0]);
17961 		lbasize = BE_32(capacity_buf[1]);
17962 
17963 		/*
17964 		 * Done with capacity_buf
17965 		 */
17966 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17967 
17968 		/*
17969 		 * if the reported capacity is set to all 0xf's, then
17970 		 * this disk is too large and requires SBC-2 commands.
17971 		 * Reissue the request using READ CAPACITY 16.
17972 		 */
17973 		if (capacity == 0xffffffff) {
17974 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17975 			    &lbasize, path_flag);
17976 			if (status != 0) {
17977 				return (status);
17978 			}
17979 		}
17980 		break;	/* Success! */
17981 	case EIO:
17982 		switch (ucmd_buf.uscsi_status) {
17983 		case STATUS_RESERVATION_CONFLICT:
17984 			status = EACCES;
17985 			break;
17986 		case STATUS_CHECK:
17987 			/*
17988 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17989 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17990 			 */
17991 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17992 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17993 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17994 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17995 				return (EAGAIN);
17996 			}
17997 			break;
17998 		default:
17999 			break;
18000 		}
18001 		/* FALLTHRU */
18002 	default:
18003 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18004 		return (status);
18005 	}
18006 
18007 	/*
18008 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18009 	 * (2352 and 0 are common) so for these devices always force the value
18010 	 * to 2048 as required by the ATAPI specs.
18011 	 */
18012 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18013 		lbasize = 2048;
18014 	}
18015 
18016 	/*
18017 	 * Get the maximum LBA value from the READ CAPACITY data.
18018 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18019 	 * was cleared when issuing the command. This means that the LBA
18020 	 * returned from the device is the LBA of the last logical block
18021 	 * on the logical unit.  The actual logical block count will be
18022 	 * this value plus one.
18023 	 *
18024 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18025 	 * so scale the capacity value to reflect this.
18026 	 */
18027 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18028 
18029 	/*
18030 	 * Copy the values from the READ CAPACITY command into the space
18031 	 * provided by the caller.
18032 	 */
18033 	*capp = capacity;
18034 	*lbap = lbasize;
18035 
18036 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18037 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18038 
18039 	/*
18040 	 * Both the lbasize and capacity from the device must be nonzero,
18041 	 * otherwise we assume that the values are not valid and return
18042 	 * failure to the caller. (4203735)
18043 	 */
18044 	if ((capacity == 0) || (lbasize == 0)) {
18045 		return (EIO);
18046 	}
18047 
18048 	return (0);
18049 }
18050 
18051 /*
18052  *    Function: sd_send_scsi_READ_CAPACITY_16
18053  *
18054  * Description: This routine uses the scsi READ CAPACITY 16 command to
18055  *		determine the device capacity in number of blocks and the
18056  *		device native block size.  If this function returns a failure,
18057  *		then the values in *capp and *lbap are undefined.
18058  *		This routine should always be called by
18059  *		sd_send_scsi_READ_CAPACITY which will appy any device
18060  *		specific adjustments to capacity and lbasize.
18061  *
18062  *   Arguments: un   - ptr to soft state struct for the target
18063  *		capp - ptr to unsigned 64-bit variable to receive the
18064  *			capacity value from the command.
18065  *		lbap - ptr to unsigned 32-bit varaible to receive the
18066  *			block size value from the command
18067  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18068  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18069  *			to use the USCSI "direct" chain and bypass the normal
18070  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18071  *			this command is issued as part of an error recovery
18072  *			action.
18073  *
18074  * Return Code: 0   - Success
18075  *		EIO - IO error
18076  *		EACCES - Reservation conflict detected
18077  *		EAGAIN - Device is becoming ready
18078  *		errno return code from sd_send_scsi_cmd()
18079  *
18080  *     Context: Can sleep.  Blocks until command completes.
18081  */
18082 
18083 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18084 
18085 static int
18086 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18087 	uint32_t *lbap, int path_flag)
18088 {
18089 	struct	scsi_extended_sense	sense_buf;
18090 	struct	uscsi_cmd	ucmd_buf;
18091 	union	scsi_cdb	cdb;
18092 	uint64_t		*capacity16_buf;
18093 	uint64_t		capacity;
18094 	uint32_t		lbasize;
18095 	int			status;
18096 
18097 	ASSERT(un != NULL);
18098 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18099 	ASSERT(capp != NULL);
18100 	ASSERT(lbap != NULL);
18101 
18102 	SD_TRACE(SD_LOG_IO, un,
18103 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18104 
18105 	/*
18106 	 * First send a READ_CAPACITY_16 command to the target.
18107 	 *
18108 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
18109 	 * Medium Indicator bit is cleared.  The address field must be
18110 	 * zero if the PMI bit is zero.
18111 	 */
18112 	bzero(&cdb, sizeof (cdb));
18113 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18114 
18115 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
18116 
18117 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18118 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
18119 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
18120 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
18121 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18122 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18123 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18124 	ucmd_buf.uscsi_timeout	= 60;
18125 
18126 	/*
18127 	 * Read Capacity (16) is a Service Action In command.  One
18128 	 * command byte (0x9E) is overloaded for multiple operations,
18129 	 * with the second CDB byte specifying the desired operation
18130 	 */
18131 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
18132 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
18133 
18134 	/*
18135 	 * Fill in allocation length field
18136 	 */
18137 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
18138 
18139 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18140 	    UIO_SYSSPACE, path_flag);
18141 
18142 	switch (status) {
18143 	case 0:
18144 		/* Return failure if we did not get valid capacity data. */
18145 		if (ucmd_buf.uscsi_resid > 20) {
18146 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18147 			return (EIO);
18148 		}
18149 
18150 		/*
18151 		 * Read capacity and block size from the READ CAPACITY 10 data.
18152 		 * This data may be adjusted later due to device specific
18153 		 * issues.
18154 		 *
18155 		 * According to the SCSI spec, the READ CAPACITY 10
18156 		 * command returns the following:
18157 		 *
18158 		 *  bytes 0-7: Maximum logical block address available.
18159 		 *		(MSB in byte:0 & LSB in byte:7)
18160 		 *
18161 		 *  bytes 8-11: Block length in bytes
18162 		 *		(MSB in byte:8 & LSB in byte:11)
18163 		 *
18164 		 */
18165 		capacity = BE_64(capacity16_buf[0]);
18166 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18167 
18168 		/*
18169 		 * Done with capacity16_buf
18170 		 */
18171 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18172 
18173 		/*
18174 		 * if the reported capacity is set to all 0xf's, then
18175 		 * this disk is too large.  This could only happen with
18176 		 * a device that supports LBAs larger than 64 bits which
18177 		 * are not defined by any current T10 standards.
18178 		 */
18179 		if (capacity == 0xffffffffffffffff) {
18180 			return (EIO);
18181 		}
18182 		break;	/* Success! */
18183 	case EIO:
18184 		switch (ucmd_buf.uscsi_status) {
18185 		case STATUS_RESERVATION_CONFLICT:
18186 			status = EACCES;
18187 			break;
18188 		case STATUS_CHECK:
18189 			/*
18190 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18191 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18192 			 */
18193 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18194 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18195 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18196 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18197 				return (EAGAIN);
18198 			}
18199 			break;
18200 		default:
18201 			break;
18202 		}
18203 		/* FALLTHRU */
18204 	default:
18205 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18206 		return (status);
18207 	}
18208 
18209 	*capp = capacity;
18210 	*lbap = lbasize;
18211 
18212 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18213 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18214 
18215 	return (0);
18216 }
18217 
18218 
18219 /*
18220  *    Function: sd_send_scsi_START_STOP_UNIT
18221  *
18222  * Description: Issue a scsi START STOP UNIT command to the target.
18223  *
18224  *   Arguments: un    - pointer to driver soft state (unit) structure for
18225  *			this target.
18226  *		flag  - SD_TARGET_START
18227  *			SD_TARGET_STOP
18228  *			SD_TARGET_EJECT
18229  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18230  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18231  *			to use the USCSI "direct" chain and bypass the normal
18232  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18233  *			command is issued as part of an error recovery action.
18234  *
18235  * Return Code: 0   - Success
18236  *		EIO - IO error
18237  *		EACCES - Reservation conflict detected
18238  *		ENXIO  - Not Ready, medium not present
18239  *		errno return code from sd_send_scsi_cmd()
18240  *
18241  *     Context: Can sleep.
18242  */
18243 
18244 static int
18245 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18246 {
18247 	struct	scsi_extended_sense	sense_buf;
18248 	union scsi_cdb		cdb;
18249 	struct uscsi_cmd	ucmd_buf;
18250 	int			status;
18251 
18252 	ASSERT(un != NULL);
18253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18254 
18255 	SD_TRACE(SD_LOG_IO, un,
18256 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18257 
18258 	if (un->un_f_check_start_stop &&
18259 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18260 	    (un->un_f_start_stop_supported != TRUE)) {
18261 		return (0);
18262 	}
18263 
18264 	/*
18265 	 * If we are performing an eject operation and
18266 	 * we receive any command other than SD_TARGET_EJECT
18267 	 * we should immediately return.
18268 	 */
18269 	if (flag != SD_TARGET_EJECT) {
18270 		mutex_enter(SD_MUTEX(un));
18271 		if (un->un_f_ejecting == TRUE) {
18272 			mutex_exit(SD_MUTEX(un));
18273 			return (EAGAIN);
18274 		}
18275 		mutex_exit(SD_MUTEX(un));
18276 	}
18277 
18278 	bzero(&cdb, sizeof (cdb));
18279 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18280 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18281 
18282 	cdb.scc_cmd = SCMD_START_STOP;
18283 	cdb.cdb_opaque[4] = (uchar_t)flag;
18284 
18285 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18286 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18287 	ucmd_buf.uscsi_bufaddr	= NULL;
18288 	ucmd_buf.uscsi_buflen	= 0;
18289 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18290 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18291 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18292 	ucmd_buf.uscsi_timeout	= 200;
18293 
18294 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18295 	    UIO_SYSSPACE, path_flag);
18296 
18297 	switch (status) {
18298 	case 0:
18299 		break;	/* Success! */
18300 	case EIO:
18301 		switch (ucmd_buf.uscsi_status) {
18302 		case STATUS_RESERVATION_CONFLICT:
18303 			status = EACCES;
18304 			break;
18305 		case STATUS_CHECK:
18306 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18307 				switch (scsi_sense_key(
18308 				    (uint8_t *)&sense_buf)) {
18309 				case KEY_ILLEGAL_REQUEST:
18310 					status = ENOTSUP;
18311 					break;
18312 				case KEY_NOT_READY:
18313 					if (scsi_sense_asc(
18314 					    (uint8_t *)&sense_buf)
18315 					    == 0x3A) {
18316 						status = ENXIO;
18317 					}
18318 					break;
18319 				default:
18320 					break;
18321 				}
18322 			}
18323 			break;
18324 		default:
18325 			break;
18326 		}
18327 		break;
18328 	default:
18329 		break;
18330 	}
18331 
18332 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18333 
18334 	return (status);
18335 }
18336 
18337 
18338 /*
18339  *    Function: sd_start_stop_unit_callback
18340  *
18341  * Description: timeout(9F) callback to begin recovery process for a
18342  *		device that has spun down.
18343  *
18344  *   Arguments: arg - pointer to associated softstate struct.
18345  *
18346  *     Context: Executes in a timeout(9F) thread context
18347  */
18348 
18349 static void
18350 sd_start_stop_unit_callback(void *arg)
18351 {
18352 	struct sd_lun	*un = arg;
18353 	ASSERT(un != NULL);
18354 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18355 
18356 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18357 
18358 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18359 }
18360 
18361 
18362 /*
18363  *    Function: sd_start_stop_unit_task
18364  *
18365  * Description: Recovery procedure when a drive is spun down.
18366  *
18367  *   Arguments: arg - pointer to associated softstate struct.
18368  *
18369  *     Context: Executes in a taskq() thread context
18370  */
18371 
18372 static void
18373 sd_start_stop_unit_task(void *arg)
18374 {
18375 	struct sd_lun	*un = arg;
18376 
18377 	ASSERT(un != NULL);
18378 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18379 
18380 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18381 
18382 	/*
18383 	 * Some unformatted drives report not ready error, no need to
18384 	 * restart if format has been initiated.
18385 	 */
18386 	mutex_enter(SD_MUTEX(un));
18387 	if (un->un_f_format_in_progress == TRUE) {
18388 		mutex_exit(SD_MUTEX(un));
18389 		return;
18390 	}
18391 	mutex_exit(SD_MUTEX(un));
18392 
18393 	/*
18394 	 * When a START STOP command is issued from here, it is part of a
18395 	 * failure recovery operation and must be issued before any other
18396 	 * commands, including any pending retries. Thus it must be sent
18397 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18398 	 * succeeds or not, we will start I/O after the attempt.
18399 	 */
18400 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18401 	    SD_PATH_DIRECT_PRIORITY);
18402 
18403 	/*
18404 	 * The above call blocks until the START_STOP_UNIT command completes.
18405 	 * Now that it has completed, we must re-try the original IO that
18406 	 * received the NOT READY condition in the first place. There are
18407 	 * three possible conditions here:
18408 	 *
18409 	 *  (1) The original IO is on un_retry_bp.
18410 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18411 	 *	is NULL.
18412 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18413 	 *	points to some other, unrelated bp.
18414 	 *
18415 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18416 	 * as the argument. If un_retry_bp is NULL, this will initiate
18417 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18418 	 * then this will process the bp on un_retry_bp. That may or may not
18419 	 * be the original IO, but that does not matter: the important thing
18420 	 * is to keep the IO processing going at this point.
18421 	 *
18422 	 * Note: This is a very specific error recovery sequence associated
18423 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18424 	 * serialize the I/O with completion of the spin-up.
18425 	 */
18426 	mutex_enter(SD_MUTEX(un));
18427 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18428 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18429 	    un, un->un_retry_bp);
18430 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18431 	sd_start_cmds(un, un->un_retry_bp);
18432 	mutex_exit(SD_MUTEX(un));
18433 
18434 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18435 }
18436 
18437 
18438 /*
18439  *    Function: sd_send_scsi_INQUIRY
18440  *
18441  * Description: Issue the scsi INQUIRY command.
18442  *
18443  *   Arguments: un
18444  *		bufaddr
18445  *		buflen
18446  *		evpd
18447  *		page_code
18448  *		page_length
18449  *
18450  * Return Code: 0   - Success
18451  *		errno return code from sd_send_scsi_cmd()
18452  *
18453  *     Context: Can sleep. Does not return until command is completed.
18454  */
18455 
18456 static int
18457 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18458 	uchar_t evpd, uchar_t page_code, size_t *residp)
18459 {
18460 	union scsi_cdb		cdb;
18461 	struct uscsi_cmd	ucmd_buf;
18462 	int			status;
18463 
18464 	ASSERT(un != NULL);
18465 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18466 	ASSERT(bufaddr != NULL);
18467 
18468 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18469 
18470 	bzero(&cdb, sizeof (cdb));
18471 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18472 	bzero(bufaddr, buflen);
18473 
18474 	cdb.scc_cmd = SCMD_INQUIRY;
18475 	cdb.cdb_opaque[1] = evpd;
18476 	cdb.cdb_opaque[2] = page_code;
18477 	FORMG0COUNT(&cdb, buflen);
18478 
18479 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18480 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18481 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18482 	ucmd_buf.uscsi_buflen	= buflen;
18483 	ucmd_buf.uscsi_rqbuf	= NULL;
18484 	ucmd_buf.uscsi_rqlen	= 0;
18485 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18486 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18487 
18488 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18489 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18490 
18491 	if ((status == 0) && (residp != NULL)) {
18492 		*residp = ucmd_buf.uscsi_resid;
18493 	}
18494 
18495 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18496 
18497 	return (status);
18498 }
18499 
18500 
18501 /*
18502  *    Function: sd_send_scsi_TEST_UNIT_READY
18503  *
18504  * Description: Issue the scsi TEST UNIT READY command.
18505  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18506  *		prevent retrying failed commands. Use this when the intent
18507  *		is either to check for device readiness, to clear a Unit
18508  *		Attention, or to clear any outstanding sense data.
18509  *		However under specific conditions the expected behavior
18510  *		is for retries to bring a device ready, so use the flag
18511  *		with caution.
18512  *
18513  *   Arguments: un
18514  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18515  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18516  *			0: dont check for media present, do retries on cmd.
18517  *
18518  * Return Code: 0   - Success
18519  *		EIO - IO error
18520  *		EACCES - Reservation conflict detected
18521  *		ENXIO  - Not Ready, medium not present
18522  *		errno return code from sd_send_scsi_cmd()
18523  *
18524  *     Context: Can sleep. Does not return until command is completed.
18525  */
18526 
18527 static int
18528 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18529 {
18530 	struct	scsi_extended_sense	sense_buf;
18531 	union scsi_cdb		cdb;
18532 	struct uscsi_cmd	ucmd_buf;
18533 	int			status;
18534 
18535 	ASSERT(un != NULL);
18536 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18537 
18538 	SD_TRACE(SD_LOG_IO, un,
18539 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18540 
18541 	/*
18542 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18543 	 * timeouts when they receive a TUR and the queue is not empty. Check
18544 	 * the configuration flag set during attach (indicating the drive has
18545 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18546 	 * TUR. If there are
18547 	 * pending commands return success, this is a bit arbitrary but is ok
18548 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18549 	 * configurations.
18550 	 */
18551 	if (un->un_f_cfg_tur_check == TRUE) {
18552 		mutex_enter(SD_MUTEX(un));
18553 		if (un->un_ncmds_in_transport != 0) {
18554 			mutex_exit(SD_MUTEX(un));
18555 			return (0);
18556 		}
18557 		mutex_exit(SD_MUTEX(un));
18558 	}
18559 
18560 	bzero(&cdb, sizeof (cdb));
18561 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18562 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18563 
18564 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18565 
18566 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18567 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18568 	ucmd_buf.uscsi_bufaddr	= NULL;
18569 	ucmd_buf.uscsi_buflen	= 0;
18570 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18571 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18572 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18573 
18574 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18575 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18576 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18577 	}
18578 	ucmd_buf.uscsi_timeout	= 60;
18579 
18580 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18581 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18582 	    SD_PATH_STANDARD));
18583 
18584 	switch (status) {
18585 	case 0:
18586 		break;	/* Success! */
18587 	case EIO:
18588 		switch (ucmd_buf.uscsi_status) {
18589 		case STATUS_RESERVATION_CONFLICT:
18590 			status = EACCES;
18591 			break;
18592 		case STATUS_CHECK:
18593 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18594 				break;
18595 			}
18596 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18597 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18598 			    KEY_NOT_READY) &&
18599 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18600 				status = ENXIO;
18601 			}
18602 			break;
18603 		default:
18604 			break;
18605 		}
18606 		break;
18607 	default:
18608 		break;
18609 	}
18610 
18611 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18612 
18613 	return (status);
18614 }
18615 
18616 
18617 /*
18618  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18619  *
18620  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18621  *
18622  *   Arguments: un
18623  *
18624  * Return Code: 0   - Success
18625  *		EACCES
18626  *		ENOTSUP
18627  *		errno return code from sd_send_scsi_cmd()
18628  *
18629  *     Context: Can sleep. Does not return until command is completed.
18630  */
18631 
18632 static int
18633 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18634 	uint16_t data_len, uchar_t *data_bufp)
18635 {
18636 	struct scsi_extended_sense	sense_buf;
18637 	union scsi_cdb		cdb;
18638 	struct uscsi_cmd	ucmd_buf;
18639 	int			status;
18640 	int			no_caller_buf = FALSE;
18641 
18642 	ASSERT(un != NULL);
18643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18644 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18645 
18646 	SD_TRACE(SD_LOG_IO, un,
18647 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18648 
18649 	bzero(&cdb, sizeof (cdb));
18650 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18651 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18652 	if (data_bufp == NULL) {
18653 		/* Allocate a default buf if the caller did not give one */
18654 		ASSERT(data_len == 0);
18655 		data_len  = MHIOC_RESV_KEY_SIZE;
18656 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18657 		no_caller_buf = TRUE;
18658 	}
18659 
18660 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18661 	cdb.cdb_opaque[1] = usr_cmd;
18662 	FORMG1COUNT(&cdb, data_len);
18663 
18664 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18665 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18666 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18667 	ucmd_buf.uscsi_buflen	= data_len;
18668 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18669 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18670 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18671 	ucmd_buf.uscsi_timeout	= 60;
18672 
18673 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18674 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18675 
18676 	switch (status) {
18677 	case 0:
18678 		break;	/* Success! */
18679 	case EIO:
18680 		switch (ucmd_buf.uscsi_status) {
18681 		case STATUS_RESERVATION_CONFLICT:
18682 			status = EACCES;
18683 			break;
18684 		case STATUS_CHECK:
18685 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18686 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18687 			    KEY_ILLEGAL_REQUEST)) {
18688 				status = ENOTSUP;
18689 			}
18690 			break;
18691 		default:
18692 			break;
18693 		}
18694 		break;
18695 	default:
18696 		break;
18697 	}
18698 
18699 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18700 
18701 	if (no_caller_buf == TRUE) {
18702 		kmem_free(data_bufp, data_len);
18703 	}
18704 
18705 	return (status);
18706 }
18707 
18708 
18709 /*
18710  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18711  *
18712  * Description: This routine is the driver entry point for handling CD-ROM
18713  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18714  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18715  *		device.
18716  *
18717  *   Arguments: un  -   Pointer to soft state struct for the target.
18718  *		usr_cmd SCSI-3 reservation facility command (one of
18719  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18720  *			SD_SCSI3_PREEMPTANDABORT)
18721  *		usr_bufp - user provided pointer register, reserve descriptor or
18722  *			preempt and abort structure (mhioc_register_t,
18723  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18724  *
18725  * Return Code: 0   - Success
18726  *		EACCES
18727  *		ENOTSUP
18728  *		errno return code from sd_send_scsi_cmd()
18729  *
18730  *     Context: Can sleep. Does not return until command is completed.
18731  */
18732 
18733 static int
18734 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18735 	uchar_t	*usr_bufp)
18736 {
18737 	struct scsi_extended_sense	sense_buf;
18738 	union scsi_cdb		cdb;
18739 	struct uscsi_cmd	ucmd_buf;
18740 	int			status;
18741 	uchar_t			data_len = sizeof (sd_prout_t);
18742 	sd_prout_t		*prp;
18743 
18744 	ASSERT(un != NULL);
18745 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18746 	ASSERT(data_len == 24);	/* required by scsi spec */
18747 
18748 	SD_TRACE(SD_LOG_IO, un,
18749 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18750 
18751 	if (usr_bufp == NULL) {
18752 		return (EINVAL);
18753 	}
18754 
18755 	bzero(&cdb, sizeof (cdb));
18756 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18757 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18758 	prp = kmem_zalloc(data_len, KM_SLEEP);
18759 
18760 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18761 	cdb.cdb_opaque[1] = usr_cmd;
18762 	FORMG1COUNT(&cdb, data_len);
18763 
18764 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18765 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18766 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18767 	ucmd_buf.uscsi_buflen	= data_len;
18768 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18769 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18770 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18771 	ucmd_buf.uscsi_timeout	= 60;
18772 
18773 	switch (usr_cmd) {
18774 	case SD_SCSI3_REGISTER: {
18775 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18776 
18777 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18778 		bcopy(ptr->newkey.key, prp->service_key,
18779 		    MHIOC_RESV_KEY_SIZE);
18780 		prp->aptpl = ptr->aptpl;
18781 		break;
18782 	}
18783 	case SD_SCSI3_RESERVE:
18784 	case SD_SCSI3_RELEASE: {
18785 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18786 
18787 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18788 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18789 		cdb.cdb_opaque[2] = ptr->type;
18790 		break;
18791 	}
18792 	case SD_SCSI3_PREEMPTANDABORT: {
18793 		mhioc_preemptandabort_t *ptr =
18794 		    (mhioc_preemptandabort_t *)usr_bufp;
18795 
18796 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18797 		bcopy(ptr->victim_key.key, prp->service_key,
18798 		    MHIOC_RESV_KEY_SIZE);
18799 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18800 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18801 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18802 		break;
18803 	}
18804 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18805 	{
18806 		mhioc_registerandignorekey_t *ptr;
18807 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18808 		bcopy(ptr->newkey.key,
18809 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18810 		prp->aptpl = ptr->aptpl;
18811 		break;
18812 	}
18813 	default:
18814 		ASSERT(FALSE);
18815 		break;
18816 	}
18817 
18818 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18819 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18820 
18821 	switch (status) {
18822 	case 0:
18823 		break;	/* Success! */
18824 	case EIO:
18825 		switch (ucmd_buf.uscsi_status) {
18826 		case STATUS_RESERVATION_CONFLICT:
18827 			status = EACCES;
18828 			break;
18829 		case STATUS_CHECK:
18830 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18831 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18832 			    KEY_ILLEGAL_REQUEST)) {
18833 				status = ENOTSUP;
18834 			}
18835 			break;
18836 		default:
18837 			break;
18838 		}
18839 		break;
18840 	default:
18841 		break;
18842 	}
18843 
18844 	kmem_free(prp, data_len);
18845 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18846 	return (status);
18847 }
18848 
18849 
18850 /*
18851  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18852  *
18853  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18854  *
18855  *   Arguments: un - pointer to the target's soft state struct
18856  *              dkc - pointer to the callback structure
18857  *
18858  * Return Code: 0 - success
18859  *		errno-type error code
18860  *
18861  *     Context: kernel thread context only.
18862  *
18863  *  _______________________________________________________________
18864  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18865  * |FLUSH_VOLATILE|              | operation                       |
18866  * |______________|______________|_________________________________|
18867  * | 0            | NULL         | Synchronous flush on both       |
18868  * |              |              | volatile and non-volatile cache |
18869  * |______________|______________|_________________________________|
18870  * | 1            | NULL         | Synchronous flush on volatile   |
18871  * |              |              | cache; disk drivers may suppress|
18872  * |              |              | flush if disk table indicates   |
18873  * |              |              | non-volatile cache              |
18874  * |______________|______________|_________________________________|
18875  * | 0            | !NULL        | Asynchronous flush on both      |
18876  * |              |              | volatile and non-volatile cache;|
18877  * |______________|______________|_________________________________|
18878  * | 1            | !NULL        | Asynchronous flush on volatile  |
18879  * |              |              | cache; disk drivers may suppress|
18880  * |              |              | flush if disk table indicates   |
18881  * |              |              | non-volatile cache              |
18882  * |______________|______________|_________________________________|
18883  *
18884  */
18885 
18886 static int
18887 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18888 {
18889 	struct sd_uscsi_info	*uip;
18890 	struct uscsi_cmd	*uscmd;
18891 	union scsi_cdb		*cdb;
18892 	struct buf		*bp;
18893 	int			rval = 0;
18894 	int			is_async;
18895 
18896 	SD_TRACE(SD_LOG_IO, un,
18897 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18898 
18899 	ASSERT(un != NULL);
18900 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18901 
18902 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18903 		is_async = FALSE;
18904 	} else {
18905 		is_async = TRUE;
18906 	}
18907 
18908 	mutex_enter(SD_MUTEX(un));
18909 	/* check whether cache flush should be suppressed */
18910 	if (un->un_f_suppress_cache_flush == TRUE) {
18911 		mutex_exit(SD_MUTEX(un));
18912 		/*
18913 		 * suppress the cache flush if the device is told to do
18914 		 * so by sd.conf or disk table
18915 		 */
18916 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18917 		    skip the cache flush since suppress_cache_flush is %d!\n",
18918 		    un->un_f_suppress_cache_flush);
18919 
18920 		if (is_async == TRUE) {
18921 			/* invoke callback for asynchronous flush */
18922 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18923 		}
18924 		return (rval);
18925 	}
18926 	mutex_exit(SD_MUTEX(un));
18927 
18928 	/*
18929 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18930 	 * set properly
18931 	 */
18932 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18933 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18934 
18935 	mutex_enter(SD_MUTEX(un));
18936 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18937 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18938 		/*
18939 		 * if the device supports SYNC_NV bit, turn on
18940 		 * the SYNC_NV bit to only flush volatile cache
18941 		 */
18942 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18943 	}
18944 	mutex_exit(SD_MUTEX(un));
18945 
18946 	/*
18947 	 * First get some memory for the uscsi_cmd struct and cdb
18948 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18949 	 */
18950 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18951 	uscmd->uscsi_cdblen = CDB_GROUP1;
18952 	uscmd->uscsi_cdb = (caddr_t)cdb;
18953 	uscmd->uscsi_bufaddr = NULL;
18954 	uscmd->uscsi_buflen = 0;
18955 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18956 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18957 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18958 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18959 	uscmd->uscsi_timeout = sd_io_time;
18960 
18961 	/*
18962 	 * Allocate an sd_uscsi_info struct and fill it with the info
18963 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18964 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18965 	 * since we allocate the buf here in this function, we do not
18966 	 * need to preserve the prior contents of b_private.
18967 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18968 	 */
18969 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18970 	uip->ui_flags = SD_PATH_DIRECT;
18971 	uip->ui_cmdp  = uscmd;
18972 
18973 	bp = getrbuf(KM_SLEEP);
18974 	bp->b_private = uip;
18975 
18976 	/*
18977 	 * Setup buffer to carry uscsi request.
18978 	 */
18979 	bp->b_flags  = B_BUSY;
18980 	bp->b_bcount = 0;
18981 	bp->b_blkno  = 0;
18982 
18983 	if (is_async == TRUE) {
18984 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18985 		uip->ui_dkc = *dkc;
18986 	}
18987 
18988 	bp->b_edev = SD_GET_DEV(un);
18989 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18990 
18991 	(void) sd_uscsi_strategy(bp);
18992 
18993 	/*
18994 	 * If synchronous request, wait for completion
18995 	 * If async just return and let b_iodone callback
18996 	 * cleanup.
18997 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18998 	 * but it was also incremented in sd_uscsi_strategy(), so
18999 	 * we should be ok.
19000 	 */
19001 	if (is_async == FALSE) {
19002 		(void) biowait(bp);
19003 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
19004 	}
19005 
19006 	return (rval);
19007 }
19008 
19009 
19010 static int
19011 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
19012 {
19013 	struct sd_uscsi_info *uip;
19014 	struct uscsi_cmd *uscmd;
19015 	uint8_t *sense_buf;
19016 	struct sd_lun *un;
19017 	int status;
19018 	union scsi_cdb *cdb;
19019 
19020 	uip = (struct sd_uscsi_info *)(bp->b_private);
19021 	ASSERT(uip != NULL);
19022 
19023 	uscmd = uip->ui_cmdp;
19024 	ASSERT(uscmd != NULL);
19025 
19026 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
19027 	ASSERT(sense_buf != NULL);
19028 
19029 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
19030 	ASSERT(un != NULL);
19031 
19032 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
19033 
19034 	status = geterror(bp);
19035 	switch (status) {
19036 	case 0:
19037 		break;	/* Success! */
19038 	case EIO:
19039 		switch (uscmd->uscsi_status) {
19040 		case STATUS_RESERVATION_CONFLICT:
19041 			/* Ignore reservation conflict */
19042 			status = 0;
19043 			goto done;
19044 
19045 		case STATUS_CHECK:
19046 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
19047 			    (scsi_sense_key(sense_buf) ==
19048 			    KEY_ILLEGAL_REQUEST)) {
19049 				/* Ignore Illegal Request error */
19050 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
19051 					mutex_enter(SD_MUTEX(un));
19052 					un->un_f_sync_nv_supported = FALSE;
19053 					mutex_exit(SD_MUTEX(un));
19054 					status = 0;
19055 					SD_TRACE(SD_LOG_IO, un,
19056 					    "un_f_sync_nv_supported \
19057 					    is set to false.\n");
19058 					goto done;
19059 				}
19060 
19061 				mutex_enter(SD_MUTEX(un));
19062 				un->un_f_sync_cache_supported = FALSE;
19063 				mutex_exit(SD_MUTEX(un));
19064 				SD_TRACE(SD_LOG_IO, un,
19065 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
19066 				    un_f_sync_cache_supported set to false \
19067 				    with asc = %x, ascq = %x\n",
19068 				    scsi_sense_asc(sense_buf),
19069 				    scsi_sense_ascq(sense_buf));
19070 				status = ENOTSUP;
19071 				goto done;
19072 			}
19073 			break;
19074 		default:
19075 			break;
19076 		}
19077 		/* FALLTHRU */
19078 	default:
19079 		/*
19080 		 * Don't log an error message if this device
19081 		 * has removable media.
19082 		 */
19083 		if (!un->un_f_has_removable_media) {
19084 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19085 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19086 		}
19087 		break;
19088 	}
19089 
19090 done:
19091 	if (uip->ui_dkc.dkc_callback != NULL) {
19092 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
19093 	}
19094 
19095 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
19096 	freerbuf(bp);
19097 	kmem_free(uip, sizeof (struct sd_uscsi_info));
19098 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
19099 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
19100 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
19101 
19102 	return (status);
19103 }
19104 
19105 
19106 /*
19107  *    Function: sd_send_scsi_GET_CONFIGURATION
19108  *
19109  * Description: Issues the get configuration command to the device.
19110  *		Called from sd_check_for_writable_cd & sd_get_media_info
19111  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19112  *   Arguments: un
19113  *		ucmdbuf
19114  *		rqbuf
19115  *		rqbuflen
19116  *		bufaddr
19117  *		buflen
19118  *		path_flag
19119  *
19120  * Return Code: 0   - Success
19121  *		errno return code from sd_send_scsi_cmd()
19122  *
19123  *     Context: Can sleep. Does not return until command is completed.
19124  *
19125  */
19126 
19127 static int
19128 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19129 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
19130 	int path_flag)
19131 {
19132 	char	cdb[CDB_GROUP1];
19133 	int	status;
19134 
19135 	ASSERT(un != NULL);
19136 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19137 	ASSERT(bufaddr != NULL);
19138 	ASSERT(ucmdbuf != NULL);
19139 	ASSERT(rqbuf != NULL);
19140 
19141 	SD_TRACE(SD_LOG_IO, un,
19142 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19143 
19144 	bzero(cdb, sizeof (cdb));
19145 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19146 	bzero(rqbuf, rqbuflen);
19147 	bzero(bufaddr, buflen);
19148 
19149 	/*
19150 	 * Set up cdb field for the get configuration command.
19151 	 */
19152 	cdb[0] = SCMD_GET_CONFIGURATION;
19153 	cdb[1] = 0x02;  /* Requested Type */
19154 	cdb[8] = SD_PROFILE_HEADER_LEN;
19155 	ucmdbuf->uscsi_cdb = cdb;
19156 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19157 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19158 	ucmdbuf->uscsi_buflen = buflen;
19159 	ucmdbuf->uscsi_timeout = sd_io_time;
19160 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19161 	ucmdbuf->uscsi_rqlen = rqbuflen;
19162 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19163 
19164 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19165 	    UIO_SYSSPACE, path_flag);
19166 
19167 	switch (status) {
19168 	case 0:
19169 		break;  /* Success! */
19170 	case EIO:
19171 		switch (ucmdbuf->uscsi_status) {
19172 		case STATUS_RESERVATION_CONFLICT:
19173 			status = EACCES;
19174 			break;
19175 		default:
19176 			break;
19177 		}
19178 		break;
19179 	default:
19180 		break;
19181 	}
19182 
19183 	if (status == 0) {
19184 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19185 		    "sd_send_scsi_GET_CONFIGURATION: data",
19186 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19187 	}
19188 
19189 	SD_TRACE(SD_LOG_IO, un,
19190 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19191 
19192 	return (status);
19193 }
19194 
19195 /*
19196  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19197  *
19198  * Description: Issues the get configuration command to the device to
19199  *              retrieve a specific feature. Called from
19200  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19201  *   Arguments: un
19202  *              ucmdbuf
19203  *              rqbuf
19204  *              rqbuflen
19205  *              bufaddr
19206  *              buflen
19207  *		feature
19208  *
19209  * Return Code: 0   - Success
19210  *              errno return code from sd_send_scsi_cmd()
19211  *
19212  *     Context: Can sleep. Does not return until command is completed.
19213  *
19214  */
19215 static int
19216 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19217 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19218 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19219 {
19220 	char    cdb[CDB_GROUP1];
19221 	int	status;
19222 
19223 	ASSERT(un != NULL);
19224 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19225 	ASSERT(bufaddr != NULL);
19226 	ASSERT(ucmdbuf != NULL);
19227 	ASSERT(rqbuf != NULL);
19228 
19229 	SD_TRACE(SD_LOG_IO, un,
19230 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19231 
19232 	bzero(cdb, sizeof (cdb));
19233 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19234 	bzero(rqbuf, rqbuflen);
19235 	bzero(bufaddr, buflen);
19236 
19237 	/*
19238 	 * Set up cdb field for the get configuration command.
19239 	 */
19240 	cdb[0] = SCMD_GET_CONFIGURATION;
19241 	cdb[1] = 0x02;  /* Requested Type */
19242 	cdb[3] = feature;
19243 	cdb[8] = buflen;
19244 	ucmdbuf->uscsi_cdb = cdb;
19245 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19246 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19247 	ucmdbuf->uscsi_buflen = buflen;
19248 	ucmdbuf->uscsi_timeout = sd_io_time;
19249 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19250 	ucmdbuf->uscsi_rqlen = rqbuflen;
19251 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19252 
19253 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19254 	    UIO_SYSSPACE, path_flag);
19255 
19256 	switch (status) {
19257 	case 0:
19258 		break;  /* Success! */
19259 	case EIO:
19260 		switch (ucmdbuf->uscsi_status) {
19261 		case STATUS_RESERVATION_CONFLICT:
19262 			status = EACCES;
19263 			break;
19264 		default:
19265 			break;
19266 		}
19267 		break;
19268 	default:
19269 		break;
19270 	}
19271 
19272 	if (status == 0) {
19273 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19274 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19275 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19276 	}
19277 
19278 	SD_TRACE(SD_LOG_IO, un,
19279 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19280 
19281 	return (status);
19282 }
19283 
19284 
19285 /*
19286  *    Function: sd_send_scsi_MODE_SENSE
19287  *
19288  * Description: Utility function for issuing a scsi MODE SENSE command.
19289  *		Note: This routine uses a consistent implementation for Group0,
19290  *		Group1, and Group2 commands across all platforms. ATAPI devices
19291  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19292  *
19293  *   Arguments: un - pointer to the softstate struct for the target.
19294  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19295  *			  CDB_GROUP[1|2] (10 byte).
19296  *		bufaddr - buffer for page data retrieved from the target.
19297  *		buflen - size of page to be retrieved.
19298  *		page_code - page code of data to be retrieved from the target.
19299  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19300  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19301  *			to use the USCSI "direct" chain and bypass the normal
19302  *			command waitq.
19303  *
19304  * Return Code: 0   - Success
19305  *		errno return code from sd_send_scsi_cmd()
19306  *
19307  *     Context: Can sleep. Does not return until command is completed.
19308  */
19309 
19310 static int
19311 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19312 	size_t buflen,  uchar_t page_code, int path_flag)
19313 {
19314 	struct	scsi_extended_sense	sense_buf;
19315 	union scsi_cdb		cdb;
19316 	struct uscsi_cmd	ucmd_buf;
19317 	int			status;
19318 	int			headlen;
19319 
19320 	ASSERT(un != NULL);
19321 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19322 	ASSERT(bufaddr != NULL);
19323 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19324 	    (cdbsize == CDB_GROUP2));
19325 
19326 	SD_TRACE(SD_LOG_IO, un,
19327 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19328 
19329 	bzero(&cdb, sizeof (cdb));
19330 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19331 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19332 	bzero(bufaddr, buflen);
19333 
19334 	if (cdbsize == CDB_GROUP0) {
19335 		cdb.scc_cmd = SCMD_MODE_SENSE;
19336 		cdb.cdb_opaque[2] = page_code;
19337 		FORMG0COUNT(&cdb, buflen);
19338 		headlen = MODE_HEADER_LENGTH;
19339 	} else {
19340 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19341 		cdb.cdb_opaque[2] = page_code;
19342 		FORMG1COUNT(&cdb, buflen);
19343 		headlen = MODE_HEADER_LENGTH_GRP2;
19344 	}
19345 
19346 	ASSERT(headlen <= buflen);
19347 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19348 
19349 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19350 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19351 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19352 	ucmd_buf.uscsi_buflen	= buflen;
19353 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19354 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19355 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19356 	ucmd_buf.uscsi_timeout	= 60;
19357 
19358 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19359 	    UIO_SYSSPACE, path_flag);
19360 
19361 	switch (status) {
19362 	case 0:
19363 		/*
19364 		 * sr_check_wp() uses 0x3f page code and check the header of
19365 		 * mode page to determine if target device is write-protected.
19366 		 * But some USB devices return 0 bytes for 0x3f page code. For
19367 		 * this case, make sure that mode page header is returned at
19368 		 * least.
19369 		 */
19370 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19371 			status = EIO;
19372 		break;	/* Success! */
19373 	case EIO:
19374 		switch (ucmd_buf.uscsi_status) {
19375 		case STATUS_RESERVATION_CONFLICT:
19376 			status = EACCES;
19377 			break;
19378 		default:
19379 			break;
19380 		}
19381 		break;
19382 	default:
19383 		break;
19384 	}
19385 
19386 	if (status == 0) {
19387 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19388 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19389 	}
19390 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19391 
19392 	return (status);
19393 }
19394 
19395 
19396 /*
19397  *    Function: sd_send_scsi_MODE_SELECT
19398  *
19399  * Description: Utility function for issuing a scsi MODE SELECT command.
19400  *		Note: This routine uses a consistent implementation for Group0,
19401  *		Group1, and Group2 commands across all platforms. ATAPI devices
19402  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19403  *
19404  *   Arguments: un - pointer to the softstate struct for the target.
19405  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19406  *			  CDB_GROUP[1|2] (10 byte).
19407  *		bufaddr - buffer for page data retrieved from the target.
19408  *		buflen - size of page to be retrieved.
19409  *		save_page - boolean to determin if SP bit should be set.
19410  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19411  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19412  *			to use the USCSI "direct" chain and bypass the normal
19413  *			command waitq.
19414  *
19415  * Return Code: 0   - Success
19416  *		errno return code from sd_send_scsi_cmd()
19417  *
19418  *     Context: Can sleep. Does not return until command is completed.
19419  */
19420 
19421 static int
19422 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19423 	size_t buflen,  uchar_t save_page, int path_flag)
19424 {
19425 	struct	scsi_extended_sense	sense_buf;
19426 	union scsi_cdb		cdb;
19427 	struct uscsi_cmd	ucmd_buf;
19428 	int			status;
19429 
19430 	ASSERT(un != NULL);
19431 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19432 	ASSERT(bufaddr != NULL);
19433 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19434 	    (cdbsize == CDB_GROUP2));
19435 
19436 	SD_TRACE(SD_LOG_IO, un,
19437 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19438 
19439 	bzero(&cdb, sizeof (cdb));
19440 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19441 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19442 
19443 	/* Set the PF bit for many third party drives */
19444 	cdb.cdb_opaque[1] = 0x10;
19445 
19446 	/* Set the savepage(SP) bit if given */
19447 	if (save_page == SD_SAVE_PAGE) {
19448 		cdb.cdb_opaque[1] |= 0x01;
19449 	}
19450 
19451 	if (cdbsize == CDB_GROUP0) {
19452 		cdb.scc_cmd = SCMD_MODE_SELECT;
19453 		FORMG0COUNT(&cdb, buflen);
19454 	} else {
19455 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19456 		FORMG1COUNT(&cdb, buflen);
19457 	}
19458 
19459 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19460 
19461 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19462 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19463 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19464 	ucmd_buf.uscsi_buflen	= buflen;
19465 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19466 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19467 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19468 	ucmd_buf.uscsi_timeout	= 60;
19469 
19470 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19471 	    UIO_SYSSPACE, path_flag);
19472 
19473 	switch (status) {
19474 	case 0:
19475 		break;	/* Success! */
19476 	case EIO:
19477 		switch (ucmd_buf.uscsi_status) {
19478 		case STATUS_RESERVATION_CONFLICT:
19479 			status = EACCES;
19480 			break;
19481 		default:
19482 			break;
19483 		}
19484 		break;
19485 	default:
19486 		break;
19487 	}
19488 
19489 	if (status == 0) {
19490 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19491 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19492 	}
19493 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19494 
19495 	return (status);
19496 }
19497 
19498 
19499 /*
19500  *    Function: sd_send_scsi_RDWR
19501  *
19502  * Description: Issue a scsi READ or WRITE command with the given parameters.
19503  *
19504  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19505  *		cmd:	 SCMD_READ or SCMD_WRITE
19506  *		bufaddr: Address of caller's buffer to receive the RDWR data
19507  *		buflen:  Length of caller's buffer receive the RDWR data.
19508  *		start_block: Block number for the start of the RDWR operation.
19509  *			 (Assumes target-native block size.)
19510  *		residp:  Pointer to variable to receive the redisual of the
19511  *			 RDWR operation (may be NULL of no residual requested).
19512  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19513  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19514  *			to use the USCSI "direct" chain and bypass the normal
19515  *			command waitq.
19516  *
19517  * Return Code: 0   - Success
19518  *		errno return code from sd_send_scsi_cmd()
19519  *
19520  *     Context: Can sleep. Does not return until command is completed.
19521  */
19522 
19523 static int
19524 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19525 	size_t buflen, daddr_t start_block, int path_flag)
19526 {
19527 	struct	scsi_extended_sense	sense_buf;
19528 	union scsi_cdb		cdb;
19529 	struct uscsi_cmd	ucmd_buf;
19530 	uint32_t		block_count;
19531 	int			status;
19532 	int			cdbsize;
19533 	uchar_t			flag;
19534 
19535 	ASSERT(un != NULL);
19536 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19537 	ASSERT(bufaddr != NULL);
19538 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19539 
19540 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19541 
19542 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19543 		return (EINVAL);
19544 	}
19545 
19546 	mutex_enter(SD_MUTEX(un));
19547 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19548 	mutex_exit(SD_MUTEX(un));
19549 
19550 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19551 
19552 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19553 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19554 	    bufaddr, buflen, start_block, block_count);
19555 
19556 	bzero(&cdb, sizeof (cdb));
19557 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19558 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19559 
19560 	/* Compute CDB size to use */
19561 	if (start_block > 0xffffffff)
19562 		cdbsize = CDB_GROUP4;
19563 	else if ((start_block & 0xFFE00000) ||
19564 	    (un->un_f_cfg_is_atapi == TRUE))
19565 		cdbsize = CDB_GROUP1;
19566 	else
19567 		cdbsize = CDB_GROUP0;
19568 
19569 	switch (cdbsize) {
19570 	case CDB_GROUP0:	/* 6-byte CDBs */
19571 		cdb.scc_cmd = cmd;
19572 		FORMG0ADDR(&cdb, start_block);
19573 		FORMG0COUNT(&cdb, block_count);
19574 		break;
19575 	case CDB_GROUP1:	/* 10-byte CDBs */
19576 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19577 		FORMG1ADDR(&cdb, start_block);
19578 		FORMG1COUNT(&cdb, block_count);
19579 		break;
19580 	case CDB_GROUP4:	/* 16-byte CDBs */
19581 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19582 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19583 		FORMG4COUNT(&cdb, block_count);
19584 		break;
19585 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19586 	default:
19587 		/* All others reserved */
19588 		return (EINVAL);
19589 	}
19590 
19591 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19592 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19593 
19594 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19595 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19596 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19597 	ucmd_buf.uscsi_buflen	= buflen;
19598 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19599 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19600 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19601 	ucmd_buf.uscsi_timeout	= 60;
19602 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19603 	    UIO_SYSSPACE, path_flag);
19604 	switch (status) {
19605 	case 0:
19606 		break;	/* Success! */
19607 	case EIO:
19608 		switch (ucmd_buf.uscsi_status) {
19609 		case STATUS_RESERVATION_CONFLICT:
19610 			status = EACCES;
19611 			break;
19612 		default:
19613 			break;
19614 		}
19615 		break;
19616 	default:
19617 		break;
19618 	}
19619 
19620 	if (status == 0) {
19621 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19622 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19623 	}
19624 
19625 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19626 
19627 	return (status);
19628 }
19629 
19630 
19631 /*
19632  *    Function: sd_send_scsi_LOG_SENSE
19633  *
19634  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19635  *
19636  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19637  *
19638  * Return Code: 0   - Success
19639  *		errno return code from sd_send_scsi_cmd()
19640  *
19641  *     Context: Can sleep. Does not return until command is completed.
19642  */
19643 
19644 static int
19645 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19646 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19647 	int path_flag)
19648 
19649 {
19650 	struct	scsi_extended_sense	sense_buf;
19651 	union scsi_cdb		cdb;
19652 	struct uscsi_cmd	ucmd_buf;
19653 	int			status;
19654 
19655 	ASSERT(un != NULL);
19656 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19657 
19658 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19659 
19660 	bzero(&cdb, sizeof (cdb));
19661 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19662 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19663 
19664 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19665 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19666 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19667 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19668 	FORMG1COUNT(&cdb, buflen);
19669 
19670 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19671 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19672 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19673 	ucmd_buf.uscsi_buflen	= buflen;
19674 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19675 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19676 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19677 	ucmd_buf.uscsi_timeout	= 60;
19678 
19679 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19680 	    UIO_SYSSPACE, path_flag);
19681 
19682 	switch (status) {
19683 	case 0:
19684 		break;
19685 	case EIO:
19686 		switch (ucmd_buf.uscsi_status) {
19687 		case STATUS_RESERVATION_CONFLICT:
19688 			status = EACCES;
19689 			break;
19690 		case STATUS_CHECK:
19691 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19692 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19693 				KEY_ILLEGAL_REQUEST) &&
19694 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19695 				/*
19696 				 * ASC 0x24: INVALID FIELD IN CDB
19697 				 */
19698 				switch (page_code) {
19699 				case START_STOP_CYCLE_PAGE:
19700 					/*
19701 					 * The start stop cycle counter is
19702 					 * implemented as page 0x31 in earlier
19703 					 * generation disks. In new generation
19704 					 * disks the start stop cycle counter is
19705 					 * implemented as page 0xE. To properly
19706 					 * handle this case if an attempt for
19707 					 * log page 0xE is made and fails we
19708 					 * will try again using page 0x31.
19709 					 *
19710 					 * Network storage BU committed to
19711 					 * maintain the page 0x31 for this
19712 					 * purpose and will not have any other
19713 					 * page implemented with page code 0x31
19714 					 * until all disks transition to the
19715 					 * standard page.
19716 					 */
19717 					mutex_enter(SD_MUTEX(un));
19718 					un->un_start_stop_cycle_page =
19719 					    START_STOP_CYCLE_VU_PAGE;
19720 					cdb.cdb_opaque[2] =
19721 					    (char)(page_control << 6) |
19722 					    un->un_start_stop_cycle_page;
19723 					mutex_exit(SD_MUTEX(un));
19724 					status = sd_send_scsi_cmd(
19725 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19726 					    UIO_SYSSPACE, path_flag);
19727 
19728 					break;
19729 				case TEMPERATURE_PAGE:
19730 					status = ENOTTY;
19731 					break;
19732 				default:
19733 					break;
19734 				}
19735 			}
19736 			break;
19737 		default:
19738 			break;
19739 		}
19740 		break;
19741 	default:
19742 		break;
19743 	}
19744 
19745 	if (status == 0) {
19746 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19747 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19748 	}
19749 
19750 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19751 
19752 	return (status);
19753 }
19754 
19755 
19756 /*
19757  *    Function: sdioctl
19758  *
19759  * Description: Driver's ioctl(9e) entry point function.
19760  *
19761  *   Arguments: dev     - device number
19762  *		cmd     - ioctl operation to be performed
19763  *		arg     - user argument, contains data to be set or reference
19764  *			  parameter for get
19765  *		flag    - bit flag, indicating open settings, 32/64 bit type
19766  *		cred_p  - user credential pointer
19767  *		rval_p  - calling process return value (OPT)
19768  *
19769  * Return Code: EINVAL
19770  *		ENOTTY
19771  *		ENXIO
19772  *		EIO
19773  *		EFAULT
19774  *		ENOTSUP
19775  *		EPERM
19776  *
19777  *     Context: Called from the device switch at normal priority.
19778  */
19779 
19780 static int
19781 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19782 {
19783 	struct sd_lun	*un = NULL;
19784 	int		err = 0;
19785 	int		i = 0;
19786 	cred_t		*cr;
19787 	int		tmprval = EINVAL;
19788 	int 		is_valid;
19789 
19790 	/*
19791 	 * All device accesses go thru sdstrategy where we check on suspend
19792 	 * status
19793 	 */
19794 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19795 		return (ENXIO);
19796 	}
19797 
19798 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19799 
19800 
19801 	is_valid = SD_IS_VALID_LABEL(un);
19802 
19803 	/*
19804 	 * Moved this wait from sd_uscsi_strategy to here for
19805 	 * reasons of deadlock prevention. Internal driver commands,
19806 	 * specifically those to change a devices power level, result
19807 	 * in a call to sd_uscsi_strategy.
19808 	 */
19809 	mutex_enter(SD_MUTEX(un));
19810 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19811 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19812 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19813 	}
19814 	/*
19815 	 * Twiddling the counter here protects commands from now
19816 	 * through to the top of sd_uscsi_strategy. Without the
19817 	 * counter inc. a power down, for example, could get in
19818 	 * after the above check for state is made and before
19819 	 * execution gets to the top of sd_uscsi_strategy.
19820 	 * That would cause problems.
19821 	 */
19822 	un->un_ncmds_in_driver++;
19823 
19824 	if (!is_valid &&
19825 	    (flag & (FNDELAY | FNONBLOCK))) {
19826 		switch (cmd) {
19827 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19828 		case DKIOCGVTOC:
19829 		case DKIOCGAPART:
19830 		case DKIOCPARTINFO:
19831 		case DKIOCSGEOM:
19832 		case DKIOCSAPART:
19833 		case DKIOCGETEFI:
19834 		case DKIOCPARTITION:
19835 		case DKIOCSVTOC:
19836 		case DKIOCSETEFI:
19837 		case DKIOCGMBOOT:
19838 		case DKIOCSMBOOT:
19839 		case DKIOCG_PHYGEOM:
19840 		case DKIOCG_VIRTGEOM:
19841 			/* let cmlb handle it */
19842 			goto skip_ready_valid;
19843 
19844 		case CDROMPAUSE:
19845 		case CDROMRESUME:
19846 		case CDROMPLAYMSF:
19847 		case CDROMPLAYTRKIND:
19848 		case CDROMREADTOCHDR:
19849 		case CDROMREADTOCENTRY:
19850 		case CDROMSTOP:
19851 		case CDROMSTART:
19852 		case CDROMVOLCTRL:
19853 		case CDROMSUBCHNL:
19854 		case CDROMREADMODE2:
19855 		case CDROMREADMODE1:
19856 		case CDROMREADOFFSET:
19857 		case CDROMSBLKMODE:
19858 		case CDROMGBLKMODE:
19859 		case CDROMGDRVSPEED:
19860 		case CDROMSDRVSPEED:
19861 		case CDROMCDDA:
19862 		case CDROMCDXA:
19863 		case CDROMSUBCODE:
19864 			if (!ISCD(un)) {
19865 				un->un_ncmds_in_driver--;
19866 				ASSERT(un->un_ncmds_in_driver >= 0);
19867 				mutex_exit(SD_MUTEX(un));
19868 				return (ENOTTY);
19869 			}
19870 			break;
19871 		case FDEJECT:
19872 		case DKIOCEJECT:
19873 		case CDROMEJECT:
19874 			if (!un->un_f_eject_media_supported) {
19875 				un->un_ncmds_in_driver--;
19876 				ASSERT(un->un_ncmds_in_driver >= 0);
19877 				mutex_exit(SD_MUTEX(un));
19878 				return (ENOTTY);
19879 			}
19880 			break;
19881 		case DKIOCFLUSHWRITECACHE:
19882 			mutex_exit(SD_MUTEX(un));
19883 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19884 			if (err != 0) {
19885 				mutex_enter(SD_MUTEX(un));
19886 				un->un_ncmds_in_driver--;
19887 				ASSERT(un->un_ncmds_in_driver >= 0);
19888 				mutex_exit(SD_MUTEX(un));
19889 				return (EIO);
19890 			}
19891 			mutex_enter(SD_MUTEX(un));
19892 			/* FALLTHROUGH */
19893 		case DKIOCREMOVABLE:
19894 		case DKIOCHOTPLUGGABLE:
19895 		case DKIOCINFO:
19896 		case DKIOCGMEDIAINFO:
19897 		case MHIOCENFAILFAST:
19898 		case MHIOCSTATUS:
19899 		case MHIOCTKOWN:
19900 		case MHIOCRELEASE:
19901 		case MHIOCGRP_INKEYS:
19902 		case MHIOCGRP_INRESV:
19903 		case MHIOCGRP_REGISTER:
19904 		case MHIOCGRP_RESERVE:
19905 		case MHIOCGRP_PREEMPTANDABORT:
19906 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19907 		case CDROMCLOSETRAY:
19908 		case USCSICMD:
19909 			goto skip_ready_valid;
19910 		default:
19911 			break;
19912 		}
19913 
19914 		mutex_exit(SD_MUTEX(un));
19915 		err = sd_ready_and_valid(un);
19916 		mutex_enter(SD_MUTEX(un));
19917 
19918 		if (err != SD_READY_VALID) {
19919 			switch (cmd) {
19920 			case DKIOCSTATE:
19921 			case CDROMGDRVSPEED:
19922 			case CDROMSDRVSPEED:
19923 			case FDEJECT:	/* for eject command */
19924 			case DKIOCEJECT:
19925 			case CDROMEJECT:
19926 			case DKIOCREMOVABLE:
19927 			case DKIOCHOTPLUGGABLE:
19928 				break;
19929 			default:
19930 				if (un->un_f_has_removable_media) {
19931 					err = ENXIO;
19932 				} else {
19933 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19934 					if (err == SD_RESERVED_BY_OTHERS) {
19935 						err = EACCES;
19936 					} else {
19937 						err = EIO;
19938 					}
19939 				}
19940 				un->un_ncmds_in_driver--;
19941 				ASSERT(un->un_ncmds_in_driver >= 0);
19942 				mutex_exit(SD_MUTEX(un));
19943 				return (err);
19944 			}
19945 		}
19946 	}
19947 
19948 skip_ready_valid:
19949 	mutex_exit(SD_MUTEX(un));
19950 
19951 	switch (cmd) {
19952 	case DKIOCINFO:
19953 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19954 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19955 		break;
19956 
19957 	case DKIOCGMEDIAINFO:
19958 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19959 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19960 		break;
19961 
19962 	case DKIOCGGEOM:
19963 	case DKIOCGVTOC:
19964 	case DKIOCGAPART:
19965 	case DKIOCPARTINFO:
19966 	case DKIOCSGEOM:
19967 	case DKIOCSAPART:
19968 	case DKIOCGETEFI:
19969 	case DKIOCPARTITION:
19970 	case DKIOCSVTOC:
19971 	case DKIOCSETEFI:
19972 	case DKIOCGMBOOT:
19973 	case DKIOCSMBOOT:
19974 	case DKIOCG_PHYGEOM:
19975 	case DKIOCG_VIRTGEOM:
19976 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19977 
19978 		/* TUR should spin up */
19979 
19980 		if (un->un_f_has_removable_media)
19981 			err = sd_send_scsi_TEST_UNIT_READY(un,
19982 			    SD_CHECK_FOR_MEDIA);
19983 		else
19984 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19985 
19986 		if (err != 0)
19987 			break;
19988 
19989 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19990 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19991 
19992 		if ((err == 0) &&
19993 		    ((cmd == DKIOCSETEFI) ||
19994 		    (un->un_f_pkstats_enabled) &&
19995 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19996 
19997 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19998 			    (void *)SD_PATH_DIRECT);
19999 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
20000 				sd_set_pstats(un);
20001 				SD_TRACE(SD_LOG_IO_PARTITION, un,
20002 				    "sd_ioctl: un:0x%p pstats created and "
20003 				    "set\n", un);
20004 			}
20005 		}
20006 
20007 		if ((cmd == DKIOCSVTOC) ||
20008 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
20009 
20010 			mutex_enter(SD_MUTEX(un));
20011 			if (un->un_f_devid_supported &&
20012 			    (un->un_f_opt_fab_devid == TRUE)) {
20013 				if (un->un_devid == NULL) {
20014 					sd_register_devid(un, SD_DEVINFO(un),
20015 					    SD_TARGET_IS_UNRESERVED);
20016 				} else {
20017 					/*
20018 					 * The device id for this disk
20019 					 * has been fabricated. The
20020 					 * device id must be preserved
20021 					 * by writing it back out to
20022 					 * disk.
20023 					 */
20024 					if (sd_write_deviceid(un) != 0) {
20025 						ddi_devid_free(un->un_devid);
20026 						un->un_devid = NULL;
20027 					}
20028 				}
20029 			}
20030 			mutex_exit(SD_MUTEX(un));
20031 		}
20032 
20033 		break;
20034 
20035 	case DKIOCLOCK:
20036 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20037 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20038 		    SD_PATH_STANDARD);
20039 		break;
20040 
20041 	case DKIOCUNLOCK:
20042 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20043 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20044 		    SD_PATH_STANDARD);
20045 		break;
20046 
20047 	case DKIOCSTATE: {
20048 		enum dkio_state		state;
20049 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20050 
20051 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20052 			err = EFAULT;
20053 		} else {
20054 			err = sd_check_media(dev, state);
20055 			if (err == 0) {
20056 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20057 				    sizeof (int), flag) != 0)
20058 					err = EFAULT;
20059 			}
20060 		}
20061 		break;
20062 	}
20063 
20064 	case DKIOCREMOVABLE:
20065 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20066 		i = un->un_f_has_removable_media ? 1 : 0;
20067 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20068 			err = EFAULT;
20069 		} else {
20070 			err = 0;
20071 		}
20072 		break;
20073 
20074 	case DKIOCHOTPLUGGABLE:
20075 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
20076 		i = un->un_f_is_hotpluggable ? 1 : 0;
20077 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20078 			err = EFAULT;
20079 		} else {
20080 			err = 0;
20081 		}
20082 		break;
20083 
20084 	case DKIOCGTEMPERATURE:
20085 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20086 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20087 		break;
20088 
20089 	case MHIOCENFAILFAST:
20090 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20091 		if ((err = drv_priv(cred_p)) == 0) {
20092 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20093 		}
20094 		break;
20095 
20096 	case MHIOCTKOWN:
20097 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20098 		if ((err = drv_priv(cred_p)) == 0) {
20099 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20100 		}
20101 		break;
20102 
20103 	case MHIOCRELEASE:
20104 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20105 		if ((err = drv_priv(cred_p)) == 0) {
20106 			err = sd_mhdioc_release(dev);
20107 		}
20108 		break;
20109 
20110 	case MHIOCSTATUS:
20111 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20112 		if ((err = drv_priv(cred_p)) == 0) {
20113 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20114 			case 0:
20115 				err = 0;
20116 				break;
20117 			case EACCES:
20118 				*rval_p = 1;
20119 				err = 0;
20120 				break;
20121 			default:
20122 				err = EIO;
20123 				break;
20124 			}
20125 		}
20126 		break;
20127 
20128 	case MHIOCQRESERVE:
20129 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20130 		if ((err = drv_priv(cred_p)) == 0) {
20131 			err = sd_reserve_release(dev, SD_RESERVE);
20132 		}
20133 		break;
20134 
20135 	case MHIOCREREGISTERDEVID:
20136 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20137 		if (drv_priv(cred_p) == EPERM) {
20138 			err = EPERM;
20139 		} else if (!un->un_f_devid_supported) {
20140 			err = ENOTTY;
20141 		} else {
20142 			err = sd_mhdioc_register_devid(dev);
20143 		}
20144 		break;
20145 
20146 	case MHIOCGRP_INKEYS:
20147 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20148 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20149 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20150 				err = ENOTSUP;
20151 			} else {
20152 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20153 				    flag);
20154 			}
20155 		}
20156 		break;
20157 
20158 	case MHIOCGRP_INRESV:
20159 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20160 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20161 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20162 				err = ENOTSUP;
20163 			} else {
20164 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20165 			}
20166 		}
20167 		break;
20168 
20169 	case MHIOCGRP_REGISTER:
20170 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20171 		if ((err = drv_priv(cred_p)) != EPERM) {
20172 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20173 				err = ENOTSUP;
20174 			} else if (arg != NULL) {
20175 				mhioc_register_t reg;
20176 				if (ddi_copyin((void *)arg, &reg,
20177 				    sizeof (mhioc_register_t), flag) != 0) {
20178 					err = EFAULT;
20179 				} else {
20180 					err =
20181 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20182 					    un, SD_SCSI3_REGISTER,
20183 					    (uchar_t *)&reg);
20184 				}
20185 			}
20186 		}
20187 		break;
20188 
20189 	case MHIOCGRP_RESERVE:
20190 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20191 		if ((err = drv_priv(cred_p)) != EPERM) {
20192 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20193 				err = ENOTSUP;
20194 			} else if (arg != NULL) {
20195 				mhioc_resv_desc_t resv_desc;
20196 				if (ddi_copyin((void *)arg, &resv_desc,
20197 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20198 					err = EFAULT;
20199 				} else {
20200 					err =
20201 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20202 					    un, SD_SCSI3_RESERVE,
20203 					    (uchar_t *)&resv_desc);
20204 				}
20205 			}
20206 		}
20207 		break;
20208 
20209 	case MHIOCGRP_PREEMPTANDABORT:
20210 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20211 		if ((err = drv_priv(cred_p)) != EPERM) {
20212 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20213 				err = ENOTSUP;
20214 			} else if (arg != NULL) {
20215 				mhioc_preemptandabort_t preempt_abort;
20216 				if (ddi_copyin((void *)arg, &preempt_abort,
20217 				    sizeof (mhioc_preemptandabort_t),
20218 				    flag) != 0) {
20219 					err = EFAULT;
20220 				} else {
20221 					err =
20222 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20223 					    un, SD_SCSI3_PREEMPTANDABORT,
20224 					    (uchar_t *)&preempt_abort);
20225 				}
20226 			}
20227 		}
20228 		break;
20229 
20230 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20231 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20232 		if ((err = drv_priv(cred_p)) != EPERM) {
20233 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20234 				err = ENOTSUP;
20235 			} else if (arg != NULL) {
20236 				mhioc_registerandignorekey_t r_and_i;
20237 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20238 				    sizeof (mhioc_registerandignorekey_t),
20239 				    flag) != 0) {
20240 					err = EFAULT;
20241 				} else {
20242 					err =
20243 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20244 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20245 					    (uchar_t *)&r_and_i);
20246 				}
20247 			}
20248 		}
20249 		break;
20250 
20251 	case USCSICMD:
20252 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20253 		cr = ddi_get_cred();
20254 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20255 			err = EPERM;
20256 		} else {
20257 			enum uio_seg	uioseg;
20258 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20259 			    UIO_USERSPACE;
20260 			if (un->un_f_format_in_progress == TRUE) {
20261 				err = EAGAIN;
20262 				break;
20263 			}
20264 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20265 			    flag, uioseg, SD_PATH_STANDARD);
20266 		}
20267 		break;
20268 
20269 	case CDROMPAUSE:
20270 	case CDROMRESUME:
20271 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20272 		if (!ISCD(un)) {
20273 			err = ENOTTY;
20274 		} else {
20275 			err = sr_pause_resume(dev, cmd);
20276 		}
20277 		break;
20278 
20279 	case CDROMPLAYMSF:
20280 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20281 		if (!ISCD(un)) {
20282 			err = ENOTTY;
20283 		} else {
20284 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20285 		}
20286 		break;
20287 
20288 	case CDROMPLAYTRKIND:
20289 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20290 #if defined(__i386) || defined(__amd64)
20291 		/*
20292 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20293 		 */
20294 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20295 #else
20296 		if (!ISCD(un)) {
20297 #endif
20298 			err = ENOTTY;
20299 		} else {
20300 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20301 		}
20302 		break;
20303 
20304 	case CDROMREADTOCHDR:
20305 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20306 		if (!ISCD(un)) {
20307 			err = ENOTTY;
20308 		} else {
20309 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20310 		}
20311 		break;
20312 
20313 	case CDROMREADTOCENTRY:
20314 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20315 		if (!ISCD(un)) {
20316 			err = ENOTTY;
20317 		} else {
20318 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20319 		}
20320 		break;
20321 
20322 	case CDROMSTOP:
20323 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20324 		if (!ISCD(un)) {
20325 			err = ENOTTY;
20326 		} else {
20327 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20328 			    SD_PATH_STANDARD);
20329 		}
20330 		break;
20331 
20332 	case CDROMSTART:
20333 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20334 		if (!ISCD(un)) {
20335 			err = ENOTTY;
20336 		} else {
20337 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20338 			    SD_PATH_STANDARD);
20339 		}
20340 		break;
20341 
20342 	case CDROMCLOSETRAY:
20343 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20344 		if (!ISCD(un)) {
20345 			err = ENOTTY;
20346 		} else {
20347 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20348 			    SD_PATH_STANDARD);
20349 		}
20350 		break;
20351 
20352 	case FDEJECT:	/* for eject command */
20353 	case DKIOCEJECT:
20354 	case CDROMEJECT:
20355 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20356 		if (!un->un_f_eject_media_supported) {
20357 			err = ENOTTY;
20358 		} else {
20359 			err = sr_eject(dev);
20360 		}
20361 		break;
20362 
20363 	case CDROMVOLCTRL:
20364 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20365 		if (!ISCD(un)) {
20366 			err = ENOTTY;
20367 		} else {
20368 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20369 		}
20370 		break;
20371 
20372 	case CDROMSUBCHNL:
20373 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20374 		if (!ISCD(un)) {
20375 			err = ENOTTY;
20376 		} else {
20377 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20378 		}
20379 		break;
20380 
20381 	case CDROMREADMODE2:
20382 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20383 		if (!ISCD(un)) {
20384 			err = ENOTTY;
20385 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20386 			/*
20387 			 * If the drive supports READ CD, use that instead of
20388 			 * switching the LBA size via a MODE SELECT
20389 			 * Block Descriptor
20390 			 */
20391 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20392 		} else {
20393 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20394 		}
20395 		break;
20396 
20397 	case CDROMREADMODE1:
20398 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20399 		if (!ISCD(un)) {
20400 			err = ENOTTY;
20401 		} else {
20402 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20403 		}
20404 		break;
20405 
20406 	case CDROMREADOFFSET:
20407 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20408 		if (!ISCD(un)) {
20409 			err = ENOTTY;
20410 		} else {
20411 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20412 			    flag);
20413 		}
20414 		break;
20415 
20416 	case CDROMSBLKMODE:
20417 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20418 		/*
20419 		 * There is no means of changing block size in case of atapi
20420 		 * drives, thus return ENOTTY if drive type is atapi
20421 		 */
20422 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20423 			err = ENOTTY;
20424 		} else if (un->un_f_mmc_cap == TRUE) {
20425 
20426 			/*
20427 			 * MMC Devices do not support changing the
20428 			 * logical block size
20429 			 *
20430 			 * Note: EINVAL is being returned instead of ENOTTY to
20431 			 * maintain consistancy with the original mmc
20432 			 * driver update.
20433 			 */
20434 			err = EINVAL;
20435 		} else {
20436 			mutex_enter(SD_MUTEX(un));
20437 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20438 			    (un->un_ncmds_in_transport > 0)) {
20439 				mutex_exit(SD_MUTEX(un));
20440 				err = EINVAL;
20441 			} else {
20442 				mutex_exit(SD_MUTEX(un));
20443 				err = sr_change_blkmode(dev, cmd, arg, flag);
20444 			}
20445 		}
20446 		break;
20447 
20448 	case CDROMGBLKMODE:
20449 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20450 		if (!ISCD(un)) {
20451 			err = ENOTTY;
20452 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20453 		    (un->un_f_blockcount_is_valid != FALSE)) {
20454 			/*
20455 			 * Drive is an ATAPI drive so return target block
20456 			 * size for ATAPI drives since we cannot change the
20457 			 * blocksize on ATAPI drives. Used primarily to detect
20458 			 * if an ATAPI cdrom is present.
20459 			 */
20460 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20461 			    sizeof (int), flag) != 0) {
20462 				err = EFAULT;
20463 			} else {
20464 				err = 0;
20465 			}
20466 
20467 		} else {
20468 			/*
20469 			 * Drive supports changing block sizes via a Mode
20470 			 * Select.
20471 			 */
20472 			err = sr_change_blkmode(dev, cmd, arg, flag);
20473 		}
20474 		break;
20475 
20476 	case CDROMGDRVSPEED:
20477 	case CDROMSDRVSPEED:
20478 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20479 		if (!ISCD(un)) {
20480 			err = ENOTTY;
20481 		} else if (un->un_f_mmc_cap == TRUE) {
20482 			/*
20483 			 * Note: In the future the driver implementation
20484 			 * for getting and
20485 			 * setting cd speed should entail:
20486 			 * 1) If non-mmc try the Toshiba mode page
20487 			 *    (sr_change_speed)
20488 			 * 2) If mmc but no support for Real Time Streaming try
20489 			 *    the SET CD SPEED (0xBB) command
20490 			 *   (sr_atapi_change_speed)
20491 			 * 3) If mmc and support for Real Time Streaming
20492 			 *    try the GET PERFORMANCE and SET STREAMING
20493 			 *    commands (not yet implemented, 4380808)
20494 			 */
20495 			/*
20496 			 * As per recent MMC spec, CD-ROM speed is variable
20497 			 * and changes with LBA. Since there is no such
20498 			 * things as drive speed now, fail this ioctl.
20499 			 *
20500 			 * Note: EINVAL is returned for consistancy of original
20501 			 * implementation which included support for getting
20502 			 * the drive speed of mmc devices but not setting
20503 			 * the drive speed. Thus EINVAL would be returned
20504 			 * if a set request was made for an mmc device.
20505 			 * We no longer support get or set speed for
20506 			 * mmc but need to remain consistent with regard
20507 			 * to the error code returned.
20508 			 */
20509 			err = EINVAL;
20510 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20511 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20512 		} else {
20513 			err = sr_change_speed(dev, cmd, arg, flag);
20514 		}
20515 		break;
20516 
20517 	case CDROMCDDA:
20518 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20519 		if (!ISCD(un)) {
20520 			err = ENOTTY;
20521 		} else {
20522 			err = sr_read_cdda(dev, (void *)arg, flag);
20523 		}
20524 		break;
20525 
20526 	case CDROMCDXA:
20527 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20528 		if (!ISCD(un)) {
20529 			err = ENOTTY;
20530 		} else {
20531 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20532 		}
20533 		break;
20534 
20535 	case CDROMSUBCODE:
20536 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20537 		if (!ISCD(un)) {
20538 			err = ENOTTY;
20539 		} else {
20540 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20541 		}
20542 		break;
20543 
20544 
20545 #ifdef SDDEBUG
20546 /* RESET/ABORTS testing ioctls */
20547 	case DKIOCRESET: {
20548 		int	reset_level;
20549 
20550 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20551 			err = EFAULT;
20552 		} else {
20553 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20554 			    "reset_level = 0x%lx\n", reset_level);
20555 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20556 				err = 0;
20557 			} else {
20558 				err = EIO;
20559 			}
20560 		}
20561 		break;
20562 	}
20563 
20564 	case DKIOCABORT:
20565 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20566 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20567 			err = 0;
20568 		} else {
20569 			err = EIO;
20570 		}
20571 		break;
20572 #endif
20573 
20574 #ifdef SD_FAULT_INJECTION
20575 /* SDIOC FaultInjection testing ioctls */
20576 	case SDIOCSTART:
20577 	case SDIOCSTOP:
20578 	case SDIOCINSERTPKT:
20579 	case SDIOCINSERTXB:
20580 	case SDIOCINSERTUN:
20581 	case SDIOCINSERTARQ:
20582 	case SDIOCPUSH:
20583 	case SDIOCRETRIEVE:
20584 	case SDIOCRUN:
20585 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20586 		    "SDIOC detected cmd:0x%X:\n", cmd);
20587 		/* call error generator */
20588 		sd_faultinjection_ioctl(cmd, arg, un);
20589 		err = 0;
20590 		break;
20591 
20592 #endif /* SD_FAULT_INJECTION */
20593 
20594 	case DKIOCFLUSHWRITECACHE:
20595 		{
20596 			struct dk_callback *dkc = (struct dk_callback *)arg;
20597 
20598 			mutex_enter(SD_MUTEX(un));
20599 			if (!un->un_f_sync_cache_supported ||
20600 			    !un->un_f_write_cache_enabled) {
20601 				err = un->un_f_sync_cache_supported ?
20602 				    0 : ENOTSUP;
20603 				mutex_exit(SD_MUTEX(un));
20604 				if ((flag & FKIOCTL) && dkc != NULL &&
20605 				    dkc->dkc_callback != NULL) {
20606 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20607 					    err);
20608 					/*
20609 					 * Did callback and reported error.
20610 					 * Since we did a callback, ioctl
20611 					 * should return 0.
20612 					 */
20613 					err = 0;
20614 				}
20615 				break;
20616 			}
20617 			mutex_exit(SD_MUTEX(un));
20618 
20619 			if ((flag & FKIOCTL) && dkc != NULL &&
20620 			    dkc->dkc_callback != NULL) {
20621 				/* async SYNC CACHE request */
20622 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20623 			} else {
20624 				/* synchronous SYNC CACHE request */
20625 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20626 			}
20627 		}
20628 		break;
20629 
20630 	case DKIOCGETWCE: {
20631 
20632 		int wce;
20633 
20634 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20635 			break;
20636 		}
20637 
20638 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20639 			err = EFAULT;
20640 		}
20641 		break;
20642 	}
20643 
20644 	case DKIOCSETWCE: {
20645 
20646 		int wce, sync_supported;
20647 
20648 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20649 			err = EFAULT;
20650 			break;
20651 		}
20652 
20653 		/*
20654 		 * Synchronize multiple threads trying to enable
20655 		 * or disable the cache via the un_f_wcc_cv
20656 		 * condition variable.
20657 		 */
20658 		mutex_enter(SD_MUTEX(un));
20659 
20660 		/*
20661 		 * Don't allow the cache to be enabled if the
20662 		 * config file has it disabled.
20663 		 */
20664 		if (un->un_f_opt_disable_cache && wce) {
20665 			mutex_exit(SD_MUTEX(un));
20666 			err = EINVAL;
20667 			break;
20668 		}
20669 
20670 		/*
20671 		 * Wait for write cache change in progress
20672 		 * bit to be clear before proceeding.
20673 		 */
20674 		while (un->un_f_wcc_inprog)
20675 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20676 
20677 		un->un_f_wcc_inprog = 1;
20678 
20679 		if (un->un_f_write_cache_enabled && wce == 0) {
20680 			/*
20681 			 * Disable the write cache.  Don't clear
20682 			 * un_f_write_cache_enabled until after
20683 			 * the mode select and flush are complete.
20684 			 */
20685 			sync_supported = un->un_f_sync_cache_supported;
20686 
20687 			/*
20688 			 * If cache flush is suppressed, we assume that the
20689 			 * controller firmware will take care of managing the
20690 			 * write cache for us: no need to explicitly
20691 			 * disable it.
20692 			 */
20693 			if (!un->un_f_suppress_cache_flush) {
20694 				mutex_exit(SD_MUTEX(un));
20695 				if ((err = sd_cache_control(un,
20696 				    SD_CACHE_NOCHANGE,
20697 				    SD_CACHE_DISABLE)) == 0 &&
20698 				    sync_supported) {
20699 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20700 					    NULL);
20701 				}
20702 			} else {
20703 				mutex_exit(SD_MUTEX(un));
20704 			}
20705 
20706 			mutex_enter(SD_MUTEX(un));
20707 			if (err == 0) {
20708 				un->un_f_write_cache_enabled = 0;
20709 			}
20710 
20711 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20712 			/*
20713 			 * Set un_f_write_cache_enabled first, so there is
20714 			 * no window where the cache is enabled, but the
20715 			 * bit says it isn't.
20716 			 */
20717 			un->un_f_write_cache_enabled = 1;
20718 
20719 			/*
20720 			 * If cache flush is suppressed, we assume that the
20721 			 * controller firmware will take care of managing the
20722 			 * write cache for us: no need to explicitly
20723 			 * enable it.
20724 			 */
20725 			if (!un->un_f_suppress_cache_flush) {
20726 				mutex_exit(SD_MUTEX(un));
20727 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20728 				    SD_CACHE_ENABLE);
20729 			} else {
20730 				mutex_exit(SD_MUTEX(un));
20731 			}
20732 
20733 			mutex_enter(SD_MUTEX(un));
20734 
20735 			if (err) {
20736 				un->un_f_write_cache_enabled = 0;
20737 			}
20738 		}
20739 
20740 		un->un_f_wcc_inprog = 0;
20741 		cv_broadcast(&un->un_wcc_cv);
20742 		mutex_exit(SD_MUTEX(un));
20743 		break;
20744 	}
20745 
20746 	default:
20747 		err = ENOTTY;
20748 		break;
20749 	}
20750 	mutex_enter(SD_MUTEX(un));
20751 	un->un_ncmds_in_driver--;
20752 	ASSERT(un->un_ncmds_in_driver >= 0);
20753 	mutex_exit(SD_MUTEX(un));
20754 
20755 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20756 	return (err);
20757 }
20758 
20759 
20760 /*
20761  *    Function: sd_dkio_ctrl_info
20762  *
20763  * Description: This routine is the driver entry point for handling controller
20764  *		information ioctl requests (DKIOCINFO).
20765  *
20766  *   Arguments: dev  - the device number
20767  *		arg  - pointer to user provided dk_cinfo structure
20768  *		       specifying the controller type and attributes.
20769  *		flag - this argument is a pass through to ddi_copyxxx()
20770  *		       directly from the mode argument of ioctl().
20771  *
20772  * Return Code: 0
20773  *		EFAULT
20774  *		ENXIO
20775  */
20776 
20777 static int
20778 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20779 {
20780 	struct sd_lun	*un = NULL;
20781 	struct dk_cinfo	*info;
20782 	dev_info_t	*pdip;
20783 	int		lun, tgt;
20784 
20785 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20786 		return (ENXIO);
20787 	}
20788 
20789 	info = (struct dk_cinfo *)
20790 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20791 
20792 	switch (un->un_ctype) {
20793 	case CTYPE_CDROM:
20794 		info->dki_ctype = DKC_CDROM;
20795 		break;
20796 	default:
20797 		info->dki_ctype = DKC_SCSI_CCS;
20798 		break;
20799 	}
20800 	pdip = ddi_get_parent(SD_DEVINFO(un));
20801 	info->dki_cnum = ddi_get_instance(pdip);
20802 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20803 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20804 	} else {
20805 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20806 		    DK_DEVLEN - 1);
20807 	}
20808 
20809 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20810 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20811 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20812 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20813 
20814 	/* Unit Information */
20815 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20816 	info->dki_slave = ((tgt << 3) | lun);
20817 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20818 	    DK_DEVLEN - 1);
20819 	info->dki_flags = DKI_FMTVOL;
20820 	info->dki_partition = SDPART(dev);
20821 
20822 	/* Max Transfer size of this device in blocks */
20823 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20824 	info->dki_addr = 0;
20825 	info->dki_space = 0;
20826 	info->dki_prio = 0;
20827 	info->dki_vec = 0;
20828 
20829 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20830 		kmem_free(info, sizeof (struct dk_cinfo));
20831 		return (EFAULT);
20832 	} else {
20833 		kmem_free(info, sizeof (struct dk_cinfo));
20834 		return (0);
20835 	}
20836 }
20837 
20838 
20839 /*
20840  *    Function: sd_get_media_info
20841  *
20842  * Description: This routine is the driver entry point for handling ioctl
20843  *		requests for the media type or command set profile used by the
20844  *		drive to operate on the media (DKIOCGMEDIAINFO).
20845  *
20846  *   Arguments: dev	- the device number
20847  *		arg	- pointer to user provided dk_minfo structure
20848  *			  specifying the media type, logical block size and
20849  *			  drive capacity.
20850  *		flag	- this argument is a pass through to ddi_copyxxx()
20851  *			  directly from the mode argument of ioctl().
20852  *
20853  * Return Code: 0
20854  *		EACCESS
20855  *		EFAULT
20856  *		ENXIO
20857  *		EIO
20858  */
20859 
20860 static int
20861 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20862 {
20863 	struct sd_lun		*un = NULL;
20864 	struct uscsi_cmd	com;
20865 	struct scsi_inquiry	*sinq;
20866 	struct dk_minfo		media_info;
20867 	u_longlong_t		media_capacity;
20868 	uint64_t		capacity;
20869 	uint_t			lbasize;
20870 	uchar_t			*out_data;
20871 	uchar_t			*rqbuf;
20872 	int			rval = 0;
20873 	int			rtn;
20874 
20875 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20876 	    (un->un_state == SD_STATE_OFFLINE)) {
20877 		return (ENXIO);
20878 	}
20879 
20880 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20881 
20882 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20883 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20884 
20885 	/* Issue a TUR to determine if the drive is ready with media present */
20886 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20887 	if (rval == ENXIO) {
20888 		goto done;
20889 	}
20890 
20891 	/* Now get configuration data */
20892 	if (ISCD(un)) {
20893 		media_info.dki_media_type = DK_CDROM;
20894 
20895 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20896 		if (un->un_f_mmc_cap == TRUE) {
20897 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20898 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20899 			    SD_PATH_STANDARD);
20900 
20901 			if (rtn) {
20902 				/*
20903 				 * Failed for other than an illegal request
20904 				 * or command not supported
20905 				 */
20906 				if ((com.uscsi_status == STATUS_CHECK) &&
20907 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20908 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20909 					    (rqbuf[12] != 0x20)) {
20910 						rval = EIO;
20911 						goto done;
20912 					}
20913 				}
20914 			} else {
20915 				/*
20916 				 * The GET CONFIGURATION command succeeded
20917 				 * so set the media type according to the
20918 				 * returned data
20919 				 */
20920 				media_info.dki_media_type = out_data[6];
20921 				media_info.dki_media_type <<= 8;
20922 				media_info.dki_media_type |= out_data[7];
20923 			}
20924 		}
20925 	} else {
20926 		/*
20927 		 * The profile list is not available, so we attempt to identify
20928 		 * the media type based on the inquiry data
20929 		 */
20930 		sinq = un->un_sd->sd_inq;
20931 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20932 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20933 			/* This is a direct access device  or optical disk */
20934 			media_info.dki_media_type = DK_FIXED_DISK;
20935 
20936 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20937 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20938 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20939 					media_info.dki_media_type = DK_ZIP;
20940 				} else if (
20941 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20942 					media_info.dki_media_type = DK_JAZ;
20943 				}
20944 			}
20945 		} else {
20946 			/*
20947 			 * Not a CD, direct access or optical disk so return
20948 			 * unknown media
20949 			 */
20950 			media_info.dki_media_type = DK_UNKNOWN;
20951 		}
20952 	}
20953 
20954 	/* Now read the capacity so we can provide the lbasize and capacity */
20955 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20956 	    SD_PATH_DIRECT)) {
20957 	case 0:
20958 		break;
20959 	case EACCES:
20960 		rval = EACCES;
20961 		goto done;
20962 	default:
20963 		rval = EIO;
20964 		goto done;
20965 	}
20966 
20967 	/*
20968 	 * If lun is expanded dynamically, update the un structure.
20969 	 */
20970 	mutex_enter(SD_MUTEX(un));
20971 	if ((un->un_f_blockcount_is_valid == TRUE) &&
20972 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
20973 	    (capacity > un->un_blockcount)) {
20974 		sd_update_block_info(un, lbasize, capacity);
20975 	}
20976 	mutex_exit(SD_MUTEX(un));
20977 
20978 	media_info.dki_lbsize = lbasize;
20979 	media_capacity = capacity;
20980 
20981 	/*
20982 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20983 	 * un->un_sys_blocksize chunks. So we need to convert it into
20984 	 * cap.lbasize chunks.
20985 	 */
20986 	media_capacity *= un->un_sys_blocksize;
20987 	media_capacity /= lbasize;
20988 	media_info.dki_capacity = media_capacity;
20989 
20990 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20991 		rval = EFAULT;
20992 		/* Put goto. Anybody might add some code below in future */
20993 		goto done;
20994 	}
20995 done:
20996 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20997 	kmem_free(rqbuf, SENSE_LENGTH);
20998 	return (rval);
20999 }
21000 
21001 
21002 /*
21003  *    Function: sd_check_media
21004  *
21005  * Description: This utility routine implements the functionality for the
21006  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
21007  *		driver state changes from that specified by the user
21008  *		(inserted or ejected). For example, if the user specifies
21009  *		DKIO_EJECTED and the current media state is inserted this
21010  *		routine will immediately return DKIO_INSERTED. However, if the
21011  *		current media state is not inserted the user thread will be
21012  *		blocked until the drive state changes. If DKIO_NONE is specified
21013  *		the user thread will block until a drive state change occurs.
21014  *
21015  *   Arguments: dev  - the device number
21016  *		state  - user pointer to a dkio_state, updated with the current
21017  *			drive state at return.
21018  *
21019  * Return Code: ENXIO
21020  *		EIO
21021  *		EAGAIN
21022  *		EINTR
21023  */
21024 
21025 static int
21026 sd_check_media(dev_t dev, enum dkio_state state)
21027 {
21028 	struct sd_lun		*un = NULL;
21029 	enum dkio_state		prev_state;
21030 	opaque_t		token = NULL;
21031 	int			rval = 0;
21032 
21033 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21034 		return (ENXIO);
21035 	}
21036 
21037 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
21038 
21039 	mutex_enter(SD_MUTEX(un));
21040 
21041 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
21042 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
21043 
21044 	prev_state = un->un_mediastate;
21045 
21046 	/* is there anything to do? */
21047 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
21048 		/*
21049 		 * submit the request to the scsi_watch service;
21050 		 * scsi_media_watch_cb() does the real work
21051 		 */
21052 		mutex_exit(SD_MUTEX(un));
21053 
21054 		/*
21055 		 * This change handles the case where a scsi watch request is
21056 		 * added to a device that is powered down. To accomplish this
21057 		 * we power up the device before adding the scsi watch request,
21058 		 * since the scsi watch sends a TUR directly to the device
21059 		 * which the device cannot handle if it is powered down.
21060 		 */
21061 		if (sd_pm_entry(un) != DDI_SUCCESS) {
21062 			mutex_enter(SD_MUTEX(un));
21063 			goto done;
21064 		}
21065 
21066 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
21067 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
21068 		    (caddr_t)dev);
21069 
21070 		sd_pm_exit(un);
21071 
21072 		mutex_enter(SD_MUTEX(un));
21073 		if (token == NULL) {
21074 			rval = EAGAIN;
21075 			goto done;
21076 		}
21077 
21078 		/*
21079 		 * This is a special case IOCTL that doesn't return
21080 		 * until the media state changes. Routine sdpower
21081 		 * knows about and handles this so don't count it
21082 		 * as an active cmd in the driver, which would
21083 		 * keep the device busy to the pm framework.
21084 		 * If the count isn't decremented the device can't
21085 		 * be powered down.
21086 		 */
21087 		un->un_ncmds_in_driver--;
21088 		ASSERT(un->un_ncmds_in_driver >= 0);
21089 
21090 		/*
21091 		 * if a prior request had been made, this will be the same
21092 		 * token, as scsi_watch was designed that way.
21093 		 */
21094 		un->un_swr_token = token;
21095 		un->un_specified_mediastate = state;
21096 
21097 		/*
21098 		 * now wait for media change
21099 		 * we will not be signalled unless mediastate == state but it is
21100 		 * still better to test for this condition, since there is a
21101 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
21102 		 */
21103 		SD_TRACE(SD_LOG_COMMON, un,
21104 		    "sd_check_media: waiting for media state change\n");
21105 		while (un->un_mediastate == state) {
21106 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
21107 				SD_TRACE(SD_LOG_COMMON, un,
21108 				    "sd_check_media: waiting for media state "
21109 				    "was interrupted\n");
21110 				un->un_ncmds_in_driver++;
21111 				rval = EINTR;
21112 				goto done;
21113 			}
21114 			SD_TRACE(SD_LOG_COMMON, un,
21115 			    "sd_check_media: received signal, state=%x\n",
21116 			    un->un_mediastate);
21117 		}
21118 		/*
21119 		 * Inc the counter to indicate the device once again
21120 		 * has an active outstanding cmd.
21121 		 */
21122 		un->un_ncmds_in_driver++;
21123 	}
21124 
21125 	/* invalidate geometry */
21126 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
21127 		sr_ejected(un);
21128 	}
21129 
21130 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
21131 		uint64_t	capacity;
21132 		uint_t		lbasize;
21133 
21134 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
21135 		mutex_exit(SD_MUTEX(un));
21136 		/*
21137 		 * Since the following routines use SD_PATH_DIRECT, we must
21138 		 * call PM directly before the upcoming disk accesses. This
21139 		 * may cause the disk to be power/spin up.
21140 		 */
21141 
21142 		if (sd_pm_entry(un) == DDI_SUCCESS) {
21143 			rval = sd_send_scsi_READ_CAPACITY(un,
21144 			    &capacity,
21145 			    &lbasize, SD_PATH_DIRECT);
21146 			if (rval != 0) {
21147 				sd_pm_exit(un);
21148 				mutex_enter(SD_MUTEX(un));
21149 				goto done;
21150 			}
21151 		} else {
21152 			rval = EIO;
21153 			mutex_enter(SD_MUTEX(un));
21154 			goto done;
21155 		}
21156 		mutex_enter(SD_MUTEX(un));
21157 
21158 		sd_update_block_info(un, lbasize, capacity);
21159 
21160 		/*
21161 		 *  Check if the media in the device is writable or not
21162 		 */
21163 		if (ISCD(un))
21164 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
21165 
21166 		mutex_exit(SD_MUTEX(un));
21167 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21168 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21169 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21170 			sd_set_pstats(un);
21171 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21172 			    "sd_check_media: un:0x%p pstats created and "
21173 			    "set\n", un);
21174 		}
21175 
21176 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21177 		    SD_PATH_DIRECT);
21178 		sd_pm_exit(un);
21179 
21180 		mutex_enter(SD_MUTEX(un));
21181 	}
21182 done:
21183 	un->un_f_watcht_stopped = FALSE;
21184 		/*
21185 		 * Use of this local token and the mutex ensures that we avoid
21186 		 * some race conditions associated with terminating the
21187 		 * scsi watch.
21188 		 */
21189 	if (token) {
21190 		un->un_swr_token = (opaque_t)NULL;
21191 		mutex_exit(SD_MUTEX(un));
21192 		(void) scsi_watch_request_terminate(token,
21193 		    SCSI_WATCH_TERMINATE_WAIT);
21194 		mutex_enter(SD_MUTEX(un));
21195 	}
21196 
21197 	/*
21198 	 * Update the capacity kstat value, if no media previously
21199 	 * (capacity kstat is 0) and a media has been inserted
21200 	 * (un_f_blockcount_is_valid == TRUE)
21201 	 */
21202 	if (un->un_errstats) {
21203 		struct sd_errstats	*stp = NULL;
21204 
21205 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21206 		if ((stp->sd_capacity.value.ui64 == 0) &&
21207 		    (un->un_f_blockcount_is_valid == TRUE)) {
21208 			stp->sd_capacity.value.ui64 =
21209 			    (uint64_t)((uint64_t)un->un_blockcount *
21210 			    un->un_sys_blocksize);
21211 		}
21212 	}
21213 	mutex_exit(SD_MUTEX(un));
21214 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21215 	return (rval);
21216 }
21217 
21218 
21219 /*
21220  *    Function: sd_delayed_cv_broadcast
21221  *
21222  * Description: Delayed cv_broadcast to allow for target to recover from media
21223  *		insertion.
21224  *
21225  *   Arguments: arg - driver soft state (unit) structure
21226  */
21227 
21228 static void
21229 sd_delayed_cv_broadcast(void *arg)
21230 {
21231 	struct sd_lun *un = arg;
21232 
21233 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21234 
21235 	mutex_enter(SD_MUTEX(un));
21236 	un->un_dcvb_timeid = NULL;
21237 	cv_broadcast(&un->un_state_cv);
21238 	mutex_exit(SD_MUTEX(un));
21239 }
21240 
21241 
21242 /*
21243  *    Function: sd_media_watch_cb
21244  *
21245  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21246  *		routine processes the TUR sense data and updates the driver
21247  *		state if a transition has occurred. The user thread
21248  *		(sd_check_media) is then signalled.
21249  *
21250  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21251  *			among multiple watches that share this callback function
21252  *		resultp - scsi watch facility result packet containing scsi
21253  *			  packet, status byte and sense data
21254  *
21255  * Return Code: 0 for success, -1 for failure
21256  */
21257 
21258 static int
21259 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21260 {
21261 	struct sd_lun			*un;
21262 	struct scsi_status		*statusp = resultp->statusp;
21263 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21264 	enum dkio_state			state = DKIO_NONE;
21265 	dev_t				dev = (dev_t)arg;
21266 	uchar_t				actual_sense_length;
21267 	uint8_t				skey, asc, ascq;
21268 
21269 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21270 		return (-1);
21271 	}
21272 	actual_sense_length = resultp->actual_sense_length;
21273 
21274 	mutex_enter(SD_MUTEX(un));
21275 	SD_TRACE(SD_LOG_COMMON, un,
21276 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21277 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21278 
21279 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21280 		un->un_mediastate = DKIO_DEV_GONE;
21281 		cv_broadcast(&un->un_state_cv);
21282 		mutex_exit(SD_MUTEX(un));
21283 
21284 		return (0);
21285 	}
21286 
21287 	/*
21288 	 * If there was a check condition then sensep points to valid sense data
21289 	 * If status was not a check condition but a reservation or busy status
21290 	 * then the new state is DKIO_NONE
21291 	 */
21292 	if (sensep != NULL) {
21293 		skey = scsi_sense_key(sensep);
21294 		asc = scsi_sense_asc(sensep);
21295 		ascq = scsi_sense_ascq(sensep);
21296 
21297 		SD_INFO(SD_LOG_COMMON, un,
21298 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21299 		    skey, asc, ascq);
21300 		/* This routine only uses up to 13 bytes of sense data. */
21301 		if (actual_sense_length >= 13) {
21302 			if (skey == KEY_UNIT_ATTENTION) {
21303 				if (asc == 0x28) {
21304 					state = DKIO_INSERTED;
21305 				}
21306 			} else if (skey == KEY_NOT_READY) {
21307 				/*
21308 				 * if 02/04/02  means that the host
21309 				 * should send start command. Explicitly
21310 				 * leave the media state as is
21311 				 * (inserted) as the media is inserted
21312 				 * and host has stopped device for PM
21313 				 * reasons. Upon next true read/write
21314 				 * to this media will bring the
21315 				 * device to the right state good for
21316 				 * media access.
21317 				 */
21318 				if (asc == 0x3a) {
21319 					state = DKIO_EJECTED;
21320 				} else {
21321 					/*
21322 					 * If the drive is busy with an
21323 					 * operation or long write, keep the
21324 					 * media in an inserted state.
21325 					 */
21326 
21327 					if ((asc == 0x04) &&
21328 					    ((ascq == 0x02) ||
21329 					    (ascq == 0x07) ||
21330 					    (ascq == 0x08))) {
21331 						state = DKIO_INSERTED;
21332 					}
21333 				}
21334 			} else if (skey == KEY_NO_SENSE) {
21335 				if ((asc == 0x00) && (ascq == 0x00)) {
21336 					/*
21337 					 * Sense Data 00/00/00 does not provide
21338 					 * any information about the state of
21339 					 * the media. Ignore it.
21340 					 */
21341 					mutex_exit(SD_MUTEX(un));
21342 					return (0);
21343 				}
21344 			}
21345 		}
21346 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21347 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21348 		state = DKIO_INSERTED;
21349 	}
21350 
21351 	SD_TRACE(SD_LOG_COMMON, un,
21352 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21353 	    state, un->un_specified_mediastate);
21354 
21355 	/*
21356 	 * now signal the waiting thread if this is *not* the specified state;
21357 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21358 	 * to recover
21359 	 */
21360 	if (state != un->un_specified_mediastate) {
21361 		un->un_mediastate = state;
21362 		if (state == DKIO_INSERTED) {
21363 			/*
21364 			 * delay the signal to give the drive a chance
21365 			 * to do what it apparently needs to do
21366 			 */
21367 			SD_TRACE(SD_LOG_COMMON, un,
21368 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21369 			if (un->un_dcvb_timeid == NULL) {
21370 				un->un_dcvb_timeid =
21371 				    timeout(sd_delayed_cv_broadcast, un,
21372 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21373 			}
21374 		} else {
21375 			SD_TRACE(SD_LOG_COMMON, un,
21376 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21377 			cv_broadcast(&un->un_state_cv);
21378 		}
21379 	}
21380 	mutex_exit(SD_MUTEX(un));
21381 	return (0);
21382 }
21383 
21384 
21385 /*
21386  *    Function: sd_dkio_get_temp
21387  *
21388  * Description: This routine is the driver entry point for handling ioctl
21389  *		requests to get the disk temperature.
21390  *
21391  *   Arguments: dev  - the device number
21392  *		arg  - pointer to user provided dk_temperature structure.
21393  *		flag - this argument is a pass through to ddi_copyxxx()
21394  *		       directly from the mode argument of ioctl().
21395  *
21396  * Return Code: 0
21397  *		EFAULT
21398  *		ENXIO
21399  *		EAGAIN
21400  */
21401 
21402 static int
21403 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21404 {
21405 	struct sd_lun		*un = NULL;
21406 	struct dk_temperature	*dktemp = NULL;
21407 	uchar_t			*temperature_page;
21408 	int			rval = 0;
21409 	int			path_flag = SD_PATH_STANDARD;
21410 
21411 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21412 		return (ENXIO);
21413 	}
21414 
21415 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21416 
21417 	/* copyin the disk temp argument to get the user flags */
21418 	if (ddi_copyin((void *)arg, dktemp,
21419 	    sizeof (struct dk_temperature), flag) != 0) {
21420 		rval = EFAULT;
21421 		goto done;
21422 	}
21423 
21424 	/* Initialize the temperature to invalid. */
21425 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21426 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21427 
21428 	/*
21429 	 * Note: Investigate removing the "bypass pm" semantic.
21430 	 * Can we just bypass PM always?
21431 	 */
21432 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21433 		path_flag = SD_PATH_DIRECT;
21434 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21435 		mutex_enter(&un->un_pm_mutex);
21436 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21437 			/*
21438 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21439 			 * in low power mode, we can not wake it up, Need to
21440 			 * return EAGAIN.
21441 			 */
21442 			mutex_exit(&un->un_pm_mutex);
21443 			rval = EAGAIN;
21444 			goto done;
21445 		} else {
21446 			/*
21447 			 * Indicate to PM the device is busy. This is required
21448 			 * to avoid a race - i.e. the ioctl is issuing a
21449 			 * command and the pm framework brings down the device
21450 			 * to low power mode (possible power cut-off on some
21451 			 * platforms).
21452 			 */
21453 			mutex_exit(&un->un_pm_mutex);
21454 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21455 				rval = EAGAIN;
21456 				goto done;
21457 			}
21458 		}
21459 	}
21460 
21461 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21462 
21463 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21464 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21465 		goto done2;
21466 	}
21467 
21468 	/*
21469 	 * For the current temperature verify that the parameter length is 0x02
21470 	 * and the parameter code is 0x00
21471 	 */
21472 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21473 	    (temperature_page[5] == 0x00)) {
21474 		if (temperature_page[9] == 0xFF) {
21475 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21476 		} else {
21477 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21478 		}
21479 	}
21480 
21481 	/*
21482 	 * For the reference temperature verify that the parameter
21483 	 * length is 0x02 and the parameter code is 0x01
21484 	 */
21485 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21486 	    (temperature_page[11] == 0x01)) {
21487 		if (temperature_page[15] == 0xFF) {
21488 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21489 		} else {
21490 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21491 		}
21492 	}
21493 
21494 	/* Do the copyout regardless of the temperature commands status. */
21495 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21496 	    flag) != 0) {
21497 		rval = EFAULT;
21498 	}
21499 
21500 done2:
21501 	if (path_flag == SD_PATH_DIRECT) {
21502 		sd_pm_exit(un);
21503 	}
21504 
21505 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21506 done:
21507 	if (dktemp != NULL) {
21508 		kmem_free(dktemp, sizeof (struct dk_temperature));
21509 	}
21510 
21511 	return (rval);
21512 }
21513 
21514 
21515 /*
21516  *    Function: sd_log_page_supported
21517  *
21518  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21519  *		supported log pages.
21520  *
21521  *   Arguments: un -
21522  *		log_page -
21523  *
21524  * Return Code: -1 - on error (log sense is optional and may not be supported).
21525  *		0  - log page not found.
21526  *  		1  - log page found.
21527  */
21528 
21529 static int
21530 sd_log_page_supported(struct sd_lun *un, int log_page)
21531 {
21532 	uchar_t *log_page_data;
21533 	int	i;
21534 	int	match = 0;
21535 	int	log_size;
21536 
21537 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21538 
21539 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21540 	    SD_PATH_DIRECT) != 0) {
21541 		SD_ERROR(SD_LOG_COMMON, un,
21542 		    "sd_log_page_supported: failed log page retrieval\n");
21543 		kmem_free(log_page_data, 0xFF);
21544 		return (-1);
21545 	}
21546 	log_size = log_page_data[3];
21547 
21548 	/*
21549 	 * The list of supported log pages start from the fourth byte. Check
21550 	 * until we run out of log pages or a match is found.
21551 	 */
21552 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21553 		if (log_page_data[i] == log_page) {
21554 			match++;
21555 		}
21556 	}
21557 	kmem_free(log_page_data, 0xFF);
21558 	return (match);
21559 }
21560 
21561 
21562 /*
21563  *    Function: sd_mhdioc_failfast
21564  *
21565  * Description: This routine is the driver entry point for handling ioctl
21566  *		requests to enable/disable the multihost failfast option.
21567  *		(MHIOCENFAILFAST)
21568  *
21569  *   Arguments: dev	- the device number
21570  *		arg	- user specified probing interval.
21571  *		flag	- this argument is a pass through to ddi_copyxxx()
21572  *			  directly from the mode argument of ioctl().
21573  *
21574  * Return Code: 0
21575  *		EFAULT
21576  *		ENXIO
21577  */
21578 
21579 static int
21580 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21581 {
21582 	struct sd_lun	*un = NULL;
21583 	int		mh_time;
21584 	int		rval = 0;
21585 
21586 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21587 		return (ENXIO);
21588 	}
21589 
21590 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21591 		return (EFAULT);
21592 
21593 	if (mh_time) {
21594 		mutex_enter(SD_MUTEX(un));
21595 		un->un_resvd_status |= SD_FAILFAST;
21596 		mutex_exit(SD_MUTEX(un));
21597 		/*
21598 		 * If mh_time is INT_MAX, then this ioctl is being used for
21599 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21600 		 */
21601 		if (mh_time != INT_MAX) {
21602 			rval = sd_check_mhd(dev, mh_time);
21603 		}
21604 	} else {
21605 		(void) sd_check_mhd(dev, 0);
21606 		mutex_enter(SD_MUTEX(un));
21607 		un->un_resvd_status &= ~SD_FAILFAST;
21608 		mutex_exit(SD_MUTEX(un));
21609 	}
21610 	return (rval);
21611 }
21612 
21613 
21614 /*
21615  *    Function: sd_mhdioc_takeown
21616  *
21617  * Description: This routine is the driver entry point for handling ioctl
21618  *		requests to forcefully acquire exclusive access rights to the
21619  *		multihost disk (MHIOCTKOWN).
21620  *
21621  *   Arguments: dev	- the device number
21622  *		arg	- user provided structure specifying the delay
21623  *			  parameters in milliseconds
21624  *		flag	- this argument is a pass through to ddi_copyxxx()
21625  *			  directly from the mode argument of ioctl().
21626  *
21627  * Return Code: 0
21628  *		EFAULT
21629  *		ENXIO
21630  */
21631 
21632 static int
21633 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21634 {
21635 	struct sd_lun		*un = NULL;
21636 	struct mhioctkown	*tkown = NULL;
21637 	int			rval = 0;
21638 
21639 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21640 		return (ENXIO);
21641 	}
21642 
21643 	if (arg != NULL) {
21644 		tkown = (struct mhioctkown *)
21645 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21646 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21647 		if (rval != 0) {
21648 			rval = EFAULT;
21649 			goto error;
21650 		}
21651 	}
21652 
21653 	rval = sd_take_ownership(dev, tkown);
21654 	mutex_enter(SD_MUTEX(un));
21655 	if (rval == 0) {
21656 		un->un_resvd_status |= SD_RESERVE;
21657 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21658 			sd_reinstate_resv_delay =
21659 			    tkown->reinstate_resv_delay * 1000;
21660 		} else {
21661 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21662 		}
21663 		/*
21664 		 * Give the scsi_watch routine interval set by
21665 		 * the MHIOCENFAILFAST ioctl precedence here.
21666 		 */
21667 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21668 			mutex_exit(SD_MUTEX(un));
21669 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21670 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21671 			    "sd_mhdioc_takeown : %d\n",
21672 			    sd_reinstate_resv_delay);
21673 		} else {
21674 			mutex_exit(SD_MUTEX(un));
21675 		}
21676 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21677 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21678 	} else {
21679 		un->un_resvd_status &= ~SD_RESERVE;
21680 		mutex_exit(SD_MUTEX(un));
21681 	}
21682 
21683 error:
21684 	if (tkown != NULL) {
21685 		kmem_free(tkown, sizeof (struct mhioctkown));
21686 	}
21687 	return (rval);
21688 }
21689 
21690 
21691 /*
21692  *    Function: sd_mhdioc_release
21693  *
21694  * Description: This routine is the driver entry point for handling ioctl
21695  *		requests to release exclusive access rights to the multihost
21696  *		disk (MHIOCRELEASE).
21697  *
21698  *   Arguments: dev	- the device number
21699  *
21700  * Return Code: 0
21701  *		ENXIO
21702  */
21703 
21704 static int
21705 sd_mhdioc_release(dev_t dev)
21706 {
21707 	struct sd_lun		*un = NULL;
21708 	timeout_id_t		resvd_timeid_save;
21709 	int			resvd_status_save;
21710 	int			rval = 0;
21711 
21712 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21713 		return (ENXIO);
21714 	}
21715 
21716 	mutex_enter(SD_MUTEX(un));
21717 	resvd_status_save = un->un_resvd_status;
21718 	un->un_resvd_status &=
21719 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21720 	if (un->un_resvd_timeid) {
21721 		resvd_timeid_save = un->un_resvd_timeid;
21722 		un->un_resvd_timeid = NULL;
21723 		mutex_exit(SD_MUTEX(un));
21724 		(void) untimeout(resvd_timeid_save);
21725 	} else {
21726 		mutex_exit(SD_MUTEX(un));
21727 	}
21728 
21729 	/*
21730 	 * destroy any pending timeout thread that may be attempting to
21731 	 * reinstate reservation on this device.
21732 	 */
21733 	sd_rmv_resv_reclaim_req(dev);
21734 
21735 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21736 		mutex_enter(SD_MUTEX(un));
21737 		if ((un->un_mhd_token) &&
21738 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21739 			mutex_exit(SD_MUTEX(un));
21740 			(void) sd_check_mhd(dev, 0);
21741 		} else {
21742 			mutex_exit(SD_MUTEX(un));
21743 		}
21744 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21745 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21746 	} else {
21747 		/*
21748 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21749 		 */
21750 		mutex_enter(SD_MUTEX(un));
21751 		un->un_resvd_status = resvd_status_save;
21752 		mutex_exit(SD_MUTEX(un));
21753 	}
21754 	return (rval);
21755 }
21756 
21757 
21758 /*
21759  *    Function: sd_mhdioc_register_devid
21760  *
21761  * Description: This routine is the driver entry point for handling ioctl
21762  *		requests to register the device id (MHIOCREREGISTERDEVID).
21763  *
21764  *		Note: The implementation for this ioctl has been updated to
21765  *		be consistent with the original PSARC case (1999/357)
21766  *		(4375899, 4241671, 4220005)
21767  *
21768  *   Arguments: dev	- the device number
21769  *
21770  * Return Code: 0
21771  *		ENXIO
21772  */
21773 
21774 static int
21775 sd_mhdioc_register_devid(dev_t dev)
21776 {
21777 	struct sd_lun	*un = NULL;
21778 	int		rval = 0;
21779 
21780 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21781 		return (ENXIO);
21782 	}
21783 
21784 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21785 
21786 	mutex_enter(SD_MUTEX(un));
21787 
21788 	/* If a devid already exists, de-register it */
21789 	if (un->un_devid != NULL) {
21790 		ddi_devid_unregister(SD_DEVINFO(un));
21791 		/*
21792 		 * After unregister devid, needs to free devid memory
21793 		 */
21794 		ddi_devid_free(un->un_devid);
21795 		un->un_devid = NULL;
21796 	}
21797 
21798 	/* Check for reservation conflict */
21799 	mutex_exit(SD_MUTEX(un));
21800 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21801 	mutex_enter(SD_MUTEX(un));
21802 
21803 	switch (rval) {
21804 	case 0:
21805 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21806 		break;
21807 	case EACCES:
21808 		break;
21809 	default:
21810 		rval = EIO;
21811 	}
21812 
21813 	mutex_exit(SD_MUTEX(un));
21814 	return (rval);
21815 }
21816 
21817 
21818 /*
21819  *    Function: sd_mhdioc_inkeys
21820  *
21821  * Description: This routine is the driver entry point for handling ioctl
21822  *		requests to issue the SCSI-3 Persistent In Read Keys command
21823  *		to the device (MHIOCGRP_INKEYS).
21824  *
21825  *   Arguments: dev	- the device number
21826  *		arg	- user provided in_keys structure
21827  *		flag	- this argument is a pass through to ddi_copyxxx()
21828  *			  directly from the mode argument of ioctl().
21829  *
21830  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21831  *		ENXIO
21832  *		EFAULT
21833  */
21834 
21835 static int
21836 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21837 {
21838 	struct sd_lun		*un;
21839 	mhioc_inkeys_t		inkeys;
21840 	int			rval = 0;
21841 
21842 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21843 		return (ENXIO);
21844 	}
21845 
21846 #ifdef _MULTI_DATAMODEL
21847 	switch (ddi_model_convert_from(flag & FMODELS)) {
21848 	case DDI_MODEL_ILP32: {
21849 		struct mhioc_inkeys32	inkeys32;
21850 
21851 		if (ddi_copyin(arg, &inkeys32,
21852 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21853 			return (EFAULT);
21854 		}
21855 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21856 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21857 		    &inkeys, flag)) != 0) {
21858 			return (rval);
21859 		}
21860 		inkeys32.generation = inkeys.generation;
21861 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21862 		    flag) != 0) {
21863 			return (EFAULT);
21864 		}
21865 		break;
21866 	}
21867 	case DDI_MODEL_NONE:
21868 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21869 		    flag) != 0) {
21870 			return (EFAULT);
21871 		}
21872 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21873 		    &inkeys, flag)) != 0) {
21874 			return (rval);
21875 		}
21876 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21877 		    flag) != 0) {
21878 			return (EFAULT);
21879 		}
21880 		break;
21881 	}
21882 
21883 #else /* ! _MULTI_DATAMODEL */
21884 
21885 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21886 		return (EFAULT);
21887 	}
21888 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21889 	if (rval != 0) {
21890 		return (rval);
21891 	}
21892 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21893 		return (EFAULT);
21894 	}
21895 
21896 #endif /* _MULTI_DATAMODEL */
21897 
21898 	return (rval);
21899 }
21900 
21901 
21902 /*
21903  *    Function: sd_mhdioc_inresv
21904  *
21905  * Description: This routine is the driver entry point for handling ioctl
21906  *		requests to issue the SCSI-3 Persistent In Read Reservations
21907  *		command to the device (MHIOCGRP_INKEYS).
21908  *
21909  *   Arguments: dev	- the device number
21910  *		arg	- user provided in_resv structure
21911  *		flag	- this argument is a pass through to ddi_copyxxx()
21912  *			  directly from the mode argument of ioctl().
21913  *
21914  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21915  *		ENXIO
21916  *		EFAULT
21917  */
21918 
21919 static int
21920 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21921 {
21922 	struct sd_lun		*un;
21923 	mhioc_inresvs_t		inresvs;
21924 	int			rval = 0;
21925 
21926 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21927 		return (ENXIO);
21928 	}
21929 
21930 #ifdef _MULTI_DATAMODEL
21931 
21932 	switch (ddi_model_convert_from(flag & FMODELS)) {
21933 	case DDI_MODEL_ILP32: {
21934 		struct mhioc_inresvs32	inresvs32;
21935 
21936 		if (ddi_copyin(arg, &inresvs32,
21937 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21938 			return (EFAULT);
21939 		}
21940 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21941 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21942 		    &inresvs, flag)) != 0) {
21943 			return (rval);
21944 		}
21945 		inresvs32.generation = inresvs.generation;
21946 		if (ddi_copyout(&inresvs32, arg,
21947 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21948 			return (EFAULT);
21949 		}
21950 		break;
21951 	}
21952 	case DDI_MODEL_NONE:
21953 		if (ddi_copyin(arg, &inresvs,
21954 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21955 			return (EFAULT);
21956 		}
21957 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21958 		    &inresvs, flag)) != 0) {
21959 			return (rval);
21960 		}
21961 		if (ddi_copyout(&inresvs, arg,
21962 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21963 			return (EFAULT);
21964 		}
21965 		break;
21966 	}
21967 
21968 #else /* ! _MULTI_DATAMODEL */
21969 
21970 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21971 		return (EFAULT);
21972 	}
21973 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21974 	if (rval != 0) {
21975 		return (rval);
21976 	}
21977 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21978 		return (EFAULT);
21979 	}
21980 
21981 #endif /* ! _MULTI_DATAMODEL */
21982 
21983 	return (rval);
21984 }
21985 
21986 
21987 /*
21988  * The following routines support the clustering functionality described below
21989  * and implement lost reservation reclaim functionality.
21990  *
21991  * Clustering
21992  * ----------
21993  * The clustering code uses two different, independent forms of SCSI
21994  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21995  * Persistent Group Reservations. For any particular disk, it will use either
21996  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21997  *
21998  * SCSI-2
21999  * The cluster software takes ownership of a multi-hosted disk by issuing the
22000  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
22001  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
22002  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
22003  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
22004  * driver. The meaning of failfast is that if the driver (on this host) ever
22005  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
22006  * it should immediately panic the host. The motivation for this ioctl is that
22007  * if this host does encounter reservation conflict, the underlying cause is
22008  * that some other host of the cluster has decided that this host is no longer
22009  * in the cluster and has seized control of the disks for itself. Since this
22010  * host is no longer in the cluster, it ought to panic itself. The
22011  * MHIOCENFAILFAST ioctl does two things:
22012  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
22013  *      error to panic the host
22014  *      (b) it sets up a periodic timer to test whether this host still has
22015  *      "access" (in that no other host has reserved the device):  if the
22016  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
22017  *      purpose of that periodic timer is to handle scenarios where the host is
22018  *      otherwise temporarily quiescent, temporarily doing no real i/o.
22019  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
22020  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
22021  * the device itself.
22022  *
22023  * SCSI-3 PGR
22024  * A direct semantic implementation of the SCSI-3 Persistent Reservation
22025  * facility is supported through the shared multihost disk ioctls
22026  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
22027  * MHIOCGRP_PREEMPTANDABORT)
22028  *
22029  * Reservation Reclaim:
22030  * --------------------
22031  * To support the lost reservation reclaim operations this driver creates a
22032  * single thread to handle reinstating reservations on all devices that have
22033  * lost reservations sd_resv_reclaim_requests are logged for all devices that
22034  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
22035  * and the reservation reclaim thread loops through the requests to regain the
22036  * lost reservations.
22037  */
22038 
22039 /*
22040  *    Function: sd_check_mhd()
22041  *
22042  * Description: This function sets up and submits a scsi watch request or
22043  *		terminates an existing watch request. This routine is used in
22044  *		support of reservation reclaim.
22045  *
22046  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
22047  *			 among multiple watches that share the callback function
22048  *		interval - the number of microseconds specifying the watch
22049  *			   interval for issuing TEST UNIT READY commands. If
22050  *			   set to 0 the watch should be terminated. If the
22051  *			   interval is set to 0 and if the device is required
22052  *			   to hold reservation while disabling failfast, the
22053  *			   watch is restarted with an interval of
22054  *			   reinstate_resv_delay.
22055  *
22056  * Return Code: 0	   - Successful submit/terminate of scsi watch request
22057  *		ENXIO      - Indicates an invalid device was specified
22058  *		EAGAIN     - Unable to submit the scsi watch request
22059  */
22060 
22061 static int
22062 sd_check_mhd(dev_t dev, int interval)
22063 {
22064 	struct sd_lun	*un;
22065 	opaque_t	token;
22066 
22067 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22068 		return (ENXIO);
22069 	}
22070 
22071 	/* is this a watch termination request? */
22072 	if (interval == 0) {
22073 		mutex_enter(SD_MUTEX(un));
22074 		/* if there is an existing watch task then terminate it */
22075 		if (un->un_mhd_token) {
22076 			token = un->un_mhd_token;
22077 			un->un_mhd_token = NULL;
22078 			mutex_exit(SD_MUTEX(un));
22079 			(void) scsi_watch_request_terminate(token,
22080 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
22081 			mutex_enter(SD_MUTEX(un));
22082 		} else {
22083 			mutex_exit(SD_MUTEX(un));
22084 			/*
22085 			 * Note: If we return here we don't check for the
22086 			 * failfast case. This is the original legacy
22087 			 * implementation but perhaps we should be checking
22088 			 * the failfast case.
22089 			 */
22090 			return (0);
22091 		}
22092 		/*
22093 		 * If the device is required to hold reservation while
22094 		 * disabling failfast, we need to restart the scsi_watch
22095 		 * routine with an interval of reinstate_resv_delay.
22096 		 */
22097 		if (un->un_resvd_status & SD_RESERVE) {
22098 			interval = sd_reinstate_resv_delay/1000;
22099 		} else {
22100 			/* no failfast so bail */
22101 			mutex_exit(SD_MUTEX(un));
22102 			return (0);
22103 		}
22104 		mutex_exit(SD_MUTEX(un));
22105 	}
22106 
22107 	/*
22108 	 * adjust minimum time interval to 1 second,
22109 	 * and convert from msecs to usecs
22110 	 */
22111 	if (interval > 0 && interval < 1000) {
22112 		interval = 1000;
22113 	}
22114 	interval *= 1000;
22115 
22116 	/*
22117 	 * submit the request to the scsi_watch service
22118 	 */
22119 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
22120 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
22121 	if (token == NULL) {
22122 		return (EAGAIN);
22123 	}
22124 
22125 	/*
22126 	 * save token for termination later on
22127 	 */
22128 	mutex_enter(SD_MUTEX(un));
22129 	un->un_mhd_token = token;
22130 	mutex_exit(SD_MUTEX(un));
22131 	return (0);
22132 }
22133 
22134 
22135 /*
22136  *    Function: sd_mhd_watch_cb()
22137  *
22138  * Description: This function is the call back function used by the scsi watch
22139  *		facility. The scsi watch facility sends the "Test Unit Ready"
22140  *		and processes the status. If applicable (i.e. a "Unit Attention"
22141  *		status and automatic "Request Sense" not used) the scsi watch
22142  *		facility will send a "Request Sense" and retrieve the sense data
22143  *		to be passed to this callback function. In either case the
22144  *		automatic "Request Sense" or the facility submitting one, this
22145  *		callback is passed the status and sense data.
22146  *
22147  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22148  *			among multiple watches that share this callback function
22149  *		resultp - scsi watch facility result packet containing scsi
22150  *			  packet, status byte and sense data
22151  *
22152  * Return Code: 0 - continue the watch task
22153  *		non-zero - terminate the watch task
22154  */
22155 
22156 static int
22157 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22158 {
22159 	struct sd_lun			*un;
22160 	struct scsi_status		*statusp;
22161 	uint8_t				*sensep;
22162 	struct scsi_pkt			*pkt;
22163 	uchar_t				actual_sense_length;
22164 	dev_t  				dev = (dev_t)arg;
22165 
22166 	ASSERT(resultp != NULL);
22167 	statusp			= resultp->statusp;
22168 	sensep			= (uint8_t *)resultp->sensep;
22169 	pkt			= resultp->pkt;
22170 	actual_sense_length	= resultp->actual_sense_length;
22171 
22172 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22173 		return (ENXIO);
22174 	}
22175 
22176 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22177 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22178 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22179 
22180 	/* Begin processing of the status and/or sense data */
22181 	if (pkt->pkt_reason != CMD_CMPLT) {
22182 		/* Handle the incomplete packet */
22183 		sd_mhd_watch_incomplete(un, pkt);
22184 		return (0);
22185 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22186 		if (*((unsigned char *)statusp)
22187 		    == STATUS_RESERVATION_CONFLICT) {
22188 			/*
22189 			 * Handle a reservation conflict by panicking if
22190 			 * configured for failfast or by logging the conflict
22191 			 * and updating the reservation status
22192 			 */
22193 			mutex_enter(SD_MUTEX(un));
22194 			if ((un->un_resvd_status & SD_FAILFAST) &&
22195 			    (sd_failfast_enable)) {
22196 				sd_panic_for_res_conflict(un);
22197 				/*NOTREACHED*/
22198 			}
22199 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22200 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22201 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22202 			mutex_exit(SD_MUTEX(un));
22203 		}
22204 	}
22205 
22206 	if (sensep != NULL) {
22207 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22208 			mutex_enter(SD_MUTEX(un));
22209 			if ((scsi_sense_asc(sensep) ==
22210 			    SD_SCSI_RESET_SENSE_CODE) &&
22211 			    (un->un_resvd_status & SD_RESERVE)) {
22212 				/*
22213 				 * The additional sense code indicates a power
22214 				 * on or bus device reset has occurred; update
22215 				 * the reservation status.
22216 				 */
22217 				un->un_resvd_status |=
22218 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22219 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22220 				    "sd_mhd_watch_cb: Lost Reservation\n");
22221 			}
22222 		} else {
22223 			return (0);
22224 		}
22225 	} else {
22226 		mutex_enter(SD_MUTEX(un));
22227 	}
22228 
22229 	if ((un->un_resvd_status & SD_RESERVE) &&
22230 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22231 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22232 			/*
22233 			 * A reset occurred in between the last probe and this
22234 			 * one so if a timeout is pending cancel it.
22235 			 */
22236 			if (un->un_resvd_timeid) {
22237 				timeout_id_t temp_id = un->un_resvd_timeid;
22238 				un->un_resvd_timeid = NULL;
22239 				mutex_exit(SD_MUTEX(un));
22240 				(void) untimeout(temp_id);
22241 				mutex_enter(SD_MUTEX(un));
22242 			}
22243 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22244 		}
22245 		if (un->un_resvd_timeid == 0) {
22246 			/* Schedule a timeout to handle the lost reservation */
22247 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22248 			    (void *)dev,
22249 			    drv_usectohz(sd_reinstate_resv_delay));
22250 		}
22251 	}
22252 	mutex_exit(SD_MUTEX(un));
22253 	return (0);
22254 }
22255 
22256 
22257 /*
22258  *    Function: sd_mhd_watch_incomplete()
22259  *
22260  * Description: This function is used to find out why a scsi pkt sent by the
22261  *		scsi watch facility was not completed. Under some scenarios this
22262  *		routine will return. Otherwise it will send a bus reset to see
22263  *		if the drive is still online.
22264  *
22265  *   Arguments: un  - driver soft state (unit) structure
22266  *		pkt - incomplete scsi pkt
22267  */
22268 
22269 static void
22270 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22271 {
22272 	int	be_chatty;
22273 	int	perr;
22274 
22275 	ASSERT(pkt != NULL);
22276 	ASSERT(un != NULL);
22277 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22278 	perr		= (pkt->pkt_statistics & STAT_PERR);
22279 
22280 	mutex_enter(SD_MUTEX(un));
22281 	if (un->un_state == SD_STATE_DUMPING) {
22282 		mutex_exit(SD_MUTEX(un));
22283 		return;
22284 	}
22285 
22286 	switch (pkt->pkt_reason) {
22287 	case CMD_UNX_BUS_FREE:
22288 		/*
22289 		 * If we had a parity error that caused the target to drop BSY*,
22290 		 * don't be chatty about it.
22291 		 */
22292 		if (perr && be_chatty) {
22293 			be_chatty = 0;
22294 		}
22295 		break;
22296 	case CMD_TAG_REJECT:
22297 		/*
22298 		 * The SCSI-2 spec states that a tag reject will be sent by the
22299 		 * target if tagged queuing is not supported. A tag reject may
22300 		 * also be sent during certain initialization periods or to
22301 		 * control internal resources. For the latter case the target
22302 		 * may also return Queue Full.
22303 		 *
22304 		 * If this driver receives a tag reject from a target that is
22305 		 * going through an init period or controlling internal
22306 		 * resources tagged queuing will be disabled. This is a less
22307 		 * than optimal behavior but the driver is unable to determine
22308 		 * the target state and assumes tagged queueing is not supported
22309 		 */
22310 		pkt->pkt_flags = 0;
22311 		un->un_tagflags = 0;
22312 
22313 		if (un->un_f_opt_queueing == TRUE) {
22314 			un->un_throttle = min(un->un_throttle, 3);
22315 		} else {
22316 			un->un_throttle = 1;
22317 		}
22318 		mutex_exit(SD_MUTEX(un));
22319 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22320 		mutex_enter(SD_MUTEX(un));
22321 		break;
22322 	case CMD_INCOMPLETE:
22323 		/*
22324 		 * The transport stopped with an abnormal state, fallthrough and
22325 		 * reset the target and/or bus unless selection did not complete
22326 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22327 		 * go through a target/bus reset
22328 		 */
22329 		if (pkt->pkt_state == STATE_GOT_BUS) {
22330 			break;
22331 		}
22332 		/*FALLTHROUGH*/
22333 
22334 	case CMD_TIMEOUT:
22335 	default:
22336 		/*
22337 		 * The lun may still be running the command, so a lun reset
22338 		 * should be attempted. If the lun reset fails or cannot be
22339 		 * issued, than try a target reset. Lastly try a bus reset.
22340 		 */
22341 		if ((pkt->pkt_statistics &
22342 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22343 			int reset_retval = 0;
22344 			mutex_exit(SD_MUTEX(un));
22345 			if (un->un_f_allow_bus_device_reset == TRUE) {
22346 				if (un->un_f_lun_reset_enabled == TRUE) {
22347 					reset_retval =
22348 					    scsi_reset(SD_ADDRESS(un),
22349 					    RESET_LUN);
22350 				}
22351 				if (reset_retval == 0) {
22352 					reset_retval =
22353 					    scsi_reset(SD_ADDRESS(un),
22354 					    RESET_TARGET);
22355 				}
22356 			}
22357 			if (reset_retval == 0) {
22358 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22359 			}
22360 			mutex_enter(SD_MUTEX(un));
22361 		}
22362 		break;
22363 	}
22364 
22365 	/* A device/bus reset has occurred; update the reservation status. */
22366 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22367 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22368 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22369 			un->un_resvd_status |=
22370 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22371 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22372 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22373 		}
22374 	}
22375 
22376 	/*
22377 	 * The disk has been turned off; Update the device state.
22378 	 *
22379 	 * Note: Should we be offlining the disk here?
22380 	 */
22381 	if (pkt->pkt_state == STATE_GOT_BUS) {
22382 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22383 		    "Disk not responding to selection\n");
22384 		if (un->un_state != SD_STATE_OFFLINE) {
22385 			New_state(un, SD_STATE_OFFLINE);
22386 		}
22387 	} else if (be_chatty) {
22388 		/*
22389 		 * suppress messages if they are all the same pkt reason;
22390 		 * with TQ, many (up to 256) are returned with the same
22391 		 * pkt_reason
22392 		 */
22393 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22394 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22395 			    "sd_mhd_watch_incomplete: "
22396 			    "SCSI transport failed: reason '%s'\n",
22397 			    scsi_rname(pkt->pkt_reason));
22398 		}
22399 	}
22400 	un->un_last_pkt_reason = pkt->pkt_reason;
22401 	mutex_exit(SD_MUTEX(un));
22402 }
22403 
22404 
22405 /*
22406  *    Function: sd_sname()
22407  *
22408  * Description: This is a simple little routine to return a string containing
22409  *		a printable description of command status byte for use in
22410  *		logging.
22411  *
22412  *   Arguments: status - pointer to a status byte
22413  *
22414  * Return Code: char * - string containing status description.
22415  */
22416 
22417 static char *
22418 sd_sname(uchar_t status)
22419 {
22420 	switch (status & STATUS_MASK) {
22421 	case STATUS_GOOD:
22422 		return ("good status");
22423 	case STATUS_CHECK:
22424 		return ("check condition");
22425 	case STATUS_MET:
22426 		return ("condition met");
22427 	case STATUS_BUSY:
22428 		return ("busy");
22429 	case STATUS_INTERMEDIATE:
22430 		return ("intermediate");
22431 	case STATUS_INTERMEDIATE_MET:
22432 		return ("intermediate - condition met");
22433 	case STATUS_RESERVATION_CONFLICT:
22434 		return ("reservation_conflict");
22435 	case STATUS_TERMINATED:
22436 		return ("command terminated");
22437 	case STATUS_QFULL:
22438 		return ("queue full");
22439 	default:
22440 		return ("<unknown status>");
22441 	}
22442 }
22443 
22444 
22445 /*
22446  *    Function: sd_mhd_resvd_recover()
22447  *
22448  * Description: This function adds a reservation entry to the
22449  *		sd_resv_reclaim_request list and signals the reservation
22450  *		reclaim thread that there is work pending. If the reservation
22451  *		reclaim thread has not been previously created this function
22452  *		will kick it off.
22453  *
22454  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22455  *			among multiple watches that share this callback function
22456  *
22457  *     Context: This routine is called by timeout() and is run in interrupt
22458  *		context. It must not sleep or call other functions which may
22459  *		sleep.
22460  */
22461 
22462 static void
22463 sd_mhd_resvd_recover(void *arg)
22464 {
22465 	dev_t			dev = (dev_t)arg;
22466 	struct sd_lun		*un;
22467 	struct sd_thr_request	*sd_treq = NULL;
22468 	struct sd_thr_request	*sd_cur = NULL;
22469 	struct sd_thr_request	*sd_prev = NULL;
22470 	int			already_there = 0;
22471 
22472 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22473 		return;
22474 	}
22475 
22476 	mutex_enter(SD_MUTEX(un));
22477 	un->un_resvd_timeid = NULL;
22478 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22479 		/*
22480 		 * There was a reset so don't issue the reserve, allow the
22481 		 * sd_mhd_watch_cb callback function to notice this and
22482 		 * reschedule the timeout for reservation.
22483 		 */
22484 		mutex_exit(SD_MUTEX(un));
22485 		return;
22486 	}
22487 	mutex_exit(SD_MUTEX(un));
22488 
22489 	/*
22490 	 * Add this device to the sd_resv_reclaim_request list and the
22491 	 * sd_resv_reclaim_thread should take care of the rest.
22492 	 *
22493 	 * Note: We can't sleep in this context so if the memory allocation
22494 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22495 	 * reschedule the timeout for reservation.  (4378460)
22496 	 */
22497 	sd_treq = (struct sd_thr_request *)
22498 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22499 	if (sd_treq == NULL) {
22500 		return;
22501 	}
22502 
22503 	sd_treq->sd_thr_req_next = NULL;
22504 	sd_treq->dev = dev;
22505 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22506 	if (sd_tr.srq_thr_req_head == NULL) {
22507 		sd_tr.srq_thr_req_head = sd_treq;
22508 	} else {
22509 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22510 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22511 			if (sd_cur->dev == dev) {
22512 				/*
22513 				 * already in Queue so don't log
22514 				 * another request for the device
22515 				 */
22516 				already_there = 1;
22517 				break;
22518 			}
22519 			sd_prev = sd_cur;
22520 		}
22521 		if (!already_there) {
22522 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22523 			    "logging request for %lx\n", dev);
22524 			sd_prev->sd_thr_req_next = sd_treq;
22525 		} else {
22526 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22527 		}
22528 	}
22529 
22530 	/*
22531 	 * Create a kernel thread to do the reservation reclaim and free up this
22532 	 * thread. We cannot block this thread while we go away to do the
22533 	 * reservation reclaim
22534 	 */
22535 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22536 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22537 		    sd_resv_reclaim_thread, NULL,
22538 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22539 
22540 	/* Tell the reservation reclaim thread that it has work to do */
22541 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22542 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22543 }
22544 
22545 /*
22546  *    Function: sd_resv_reclaim_thread()
22547  *
22548  * Description: This function implements the reservation reclaim operations
22549  *
22550  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22551  *		      among multiple watches that share this callback function
22552  */
22553 
22554 static void
22555 sd_resv_reclaim_thread()
22556 {
22557 	struct sd_lun		*un;
22558 	struct sd_thr_request	*sd_mhreq;
22559 
22560 	/* Wait for work */
22561 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22562 	if (sd_tr.srq_thr_req_head == NULL) {
22563 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22564 		    &sd_tr.srq_resv_reclaim_mutex);
22565 	}
22566 
22567 	/* Loop while we have work */
22568 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22569 		un = ddi_get_soft_state(sd_state,
22570 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22571 		if (un == NULL) {
22572 			/*
22573 			 * softstate structure is NULL so just
22574 			 * dequeue the request and continue
22575 			 */
22576 			sd_tr.srq_thr_req_head =
22577 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22578 			kmem_free(sd_tr.srq_thr_cur_req,
22579 			    sizeof (struct sd_thr_request));
22580 			continue;
22581 		}
22582 
22583 		/* dequeue the request */
22584 		sd_mhreq = sd_tr.srq_thr_cur_req;
22585 		sd_tr.srq_thr_req_head =
22586 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22587 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22588 
22589 		/*
22590 		 * Reclaim reservation only if SD_RESERVE is still set. There
22591 		 * may have been a call to MHIOCRELEASE before we got here.
22592 		 */
22593 		mutex_enter(SD_MUTEX(un));
22594 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22595 			/*
22596 			 * Note: The SD_LOST_RESERVE flag is cleared before
22597 			 * reclaiming the reservation. If this is done after the
22598 			 * call to sd_reserve_release a reservation loss in the
22599 			 * window between pkt completion of reserve cmd and
22600 			 * mutex_enter below may not be recognized
22601 			 */
22602 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22603 			mutex_exit(SD_MUTEX(un));
22604 
22605 			if (sd_reserve_release(sd_mhreq->dev,
22606 			    SD_RESERVE) == 0) {
22607 				mutex_enter(SD_MUTEX(un));
22608 				un->un_resvd_status |= SD_RESERVE;
22609 				mutex_exit(SD_MUTEX(un));
22610 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22611 				    "sd_resv_reclaim_thread: "
22612 				    "Reservation Recovered\n");
22613 			} else {
22614 				mutex_enter(SD_MUTEX(un));
22615 				un->un_resvd_status |= SD_LOST_RESERVE;
22616 				mutex_exit(SD_MUTEX(un));
22617 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22618 				    "sd_resv_reclaim_thread: Failed "
22619 				    "Reservation Recovery\n");
22620 			}
22621 		} else {
22622 			mutex_exit(SD_MUTEX(un));
22623 		}
22624 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22625 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22626 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22627 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22628 		/*
22629 		 * wakeup the destroy thread if anyone is waiting on
22630 		 * us to complete.
22631 		 */
22632 		cv_signal(&sd_tr.srq_inprocess_cv);
22633 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22634 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22635 	}
22636 
22637 	/*
22638 	 * cleanup the sd_tr structure now that this thread will not exist
22639 	 */
22640 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22641 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22642 	sd_tr.srq_resv_reclaim_thread = NULL;
22643 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22644 	thread_exit();
22645 }
22646 
22647 
22648 /*
22649  *    Function: sd_rmv_resv_reclaim_req()
22650  *
22651  * Description: This function removes any pending reservation reclaim requests
22652  *		for the specified device.
22653  *
22654  *   Arguments: dev - the device 'dev_t'
22655  */
22656 
22657 static void
22658 sd_rmv_resv_reclaim_req(dev_t dev)
22659 {
22660 	struct sd_thr_request *sd_mhreq;
22661 	struct sd_thr_request *sd_prev;
22662 
22663 	/* Remove a reservation reclaim request from the list */
22664 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22665 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22666 		/*
22667 		 * We are attempting to reinstate reservation for
22668 		 * this device. We wait for sd_reserve_release()
22669 		 * to return before we return.
22670 		 */
22671 		cv_wait(&sd_tr.srq_inprocess_cv,
22672 		    &sd_tr.srq_resv_reclaim_mutex);
22673 	} else {
22674 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22675 		if (sd_mhreq && sd_mhreq->dev == dev) {
22676 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22677 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22678 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22679 			return;
22680 		}
22681 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22682 			if (sd_mhreq && sd_mhreq->dev == dev) {
22683 				break;
22684 			}
22685 			sd_prev = sd_mhreq;
22686 		}
22687 		if (sd_mhreq != NULL) {
22688 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22689 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22690 		}
22691 	}
22692 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22693 }
22694 
22695 
22696 /*
22697  *    Function: sd_mhd_reset_notify_cb()
22698  *
22699  * Description: This is a call back function for scsi_reset_notify. This
22700  *		function updates the softstate reserved status and logs the
22701  *		reset. The driver scsi watch facility callback function
22702  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22703  *		will reclaim the reservation.
22704  *
22705  *   Arguments: arg  - driver soft state (unit) structure
22706  */
22707 
22708 static void
22709 sd_mhd_reset_notify_cb(caddr_t arg)
22710 {
22711 	struct sd_lun *un = (struct sd_lun *)arg;
22712 
22713 	mutex_enter(SD_MUTEX(un));
22714 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22715 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22716 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22717 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22718 	}
22719 	mutex_exit(SD_MUTEX(un));
22720 }
22721 
22722 
22723 /*
22724  *    Function: sd_take_ownership()
22725  *
22726  * Description: This routine implements an algorithm to achieve a stable
22727  *		reservation on disks which don't implement priority reserve,
22728  *		and makes sure that other host lose re-reservation attempts.
22729  *		This algorithm contains of a loop that keeps issuing the RESERVE
22730  *		for some period of time (min_ownership_delay, default 6 seconds)
22731  *		During that loop, it looks to see if there has been a bus device
22732  *		reset or bus reset (both of which cause an existing reservation
22733  *		to be lost). If the reservation is lost issue RESERVE until a
22734  *		period of min_ownership_delay with no resets has gone by, or
22735  *		until max_ownership_delay has expired. This loop ensures that
22736  *		the host really did manage to reserve the device, in spite of
22737  *		resets. The looping for min_ownership_delay (default six
22738  *		seconds) is important to early generation clustering products,
22739  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22740  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22741  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22742  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22743  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22744  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22745  *		no longer "owns" the disk and will have panicked itself.  Thus,
22746  *		the host issuing the MHIOCTKOWN is assured (with timing
22747  *		dependencies) that by the time it actually starts to use the
22748  *		disk for real work, the old owner is no longer accessing it.
22749  *
22750  *		min_ownership_delay is the minimum amount of time for which the
22751  *		disk must be reserved continuously devoid of resets before the
22752  *		MHIOCTKOWN ioctl will return success.
22753  *
22754  *		max_ownership_delay indicates the amount of time by which the
22755  *		take ownership should succeed or timeout with an error.
22756  *
22757  *   Arguments: dev - the device 'dev_t'
22758  *		*p  - struct containing timing info.
22759  *
22760  * Return Code: 0 for success or error code
22761  */
22762 
22763 static int
22764 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22765 {
22766 	struct sd_lun	*un;
22767 	int		rval;
22768 	int		err;
22769 	int		reservation_count   = 0;
22770 	int		min_ownership_delay =  6000000; /* in usec */
22771 	int		max_ownership_delay = 30000000; /* in usec */
22772 	clock_t		start_time;	/* starting time of this algorithm */
22773 	clock_t		end_time;	/* time limit for giving up */
22774 	clock_t		ownership_time;	/* time limit for stable ownership */
22775 	clock_t		current_time;
22776 	clock_t		previous_current_time;
22777 
22778 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22779 		return (ENXIO);
22780 	}
22781 
22782 	/*
22783 	 * Attempt a device reservation. A priority reservation is requested.
22784 	 */
22785 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22786 	    != SD_SUCCESS) {
22787 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22788 		    "sd_take_ownership: return(1)=%d\n", rval);
22789 		return (rval);
22790 	}
22791 
22792 	/* Update the softstate reserved status to indicate the reservation */
22793 	mutex_enter(SD_MUTEX(un));
22794 	un->un_resvd_status |= SD_RESERVE;
22795 	un->un_resvd_status &=
22796 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22797 	mutex_exit(SD_MUTEX(un));
22798 
22799 	if (p != NULL) {
22800 		if (p->min_ownership_delay != 0) {
22801 			min_ownership_delay = p->min_ownership_delay * 1000;
22802 		}
22803 		if (p->max_ownership_delay != 0) {
22804 			max_ownership_delay = p->max_ownership_delay * 1000;
22805 		}
22806 	}
22807 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22808 	    "sd_take_ownership: min, max delays: %d, %d\n",
22809 	    min_ownership_delay, max_ownership_delay);
22810 
22811 	start_time = ddi_get_lbolt();
22812 	current_time	= start_time;
22813 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22814 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22815 
22816 	while (current_time - end_time < 0) {
22817 		delay(drv_usectohz(500000));
22818 
22819 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22820 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22821 				mutex_enter(SD_MUTEX(un));
22822 				rval = (un->un_resvd_status &
22823 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22824 				mutex_exit(SD_MUTEX(un));
22825 				break;
22826 			}
22827 		}
22828 		previous_current_time = current_time;
22829 		current_time = ddi_get_lbolt();
22830 		mutex_enter(SD_MUTEX(un));
22831 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22832 			ownership_time = ddi_get_lbolt() +
22833 			    drv_usectohz(min_ownership_delay);
22834 			reservation_count = 0;
22835 		} else {
22836 			reservation_count++;
22837 		}
22838 		un->un_resvd_status |= SD_RESERVE;
22839 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22840 		mutex_exit(SD_MUTEX(un));
22841 
22842 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22843 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22844 		    "reservation=%s\n", (current_time - previous_current_time),
22845 		    reservation_count ? "ok" : "reclaimed");
22846 
22847 		if (current_time - ownership_time >= 0 &&
22848 		    reservation_count >= 4) {
22849 			rval = 0; /* Achieved a stable ownership */
22850 			break;
22851 		}
22852 		if (current_time - end_time >= 0) {
22853 			rval = EACCES; /* No ownership in max possible time */
22854 			break;
22855 		}
22856 	}
22857 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22858 	    "sd_take_ownership: return(2)=%d\n", rval);
22859 	return (rval);
22860 }
22861 
22862 
22863 /*
22864  *    Function: sd_reserve_release()
22865  *
22866  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22867  *		PRIORITY RESERVE commands based on a user specified command type
22868  *
22869  *   Arguments: dev - the device 'dev_t'
22870  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22871  *		      SD_RESERVE, SD_RELEASE
22872  *
22873  * Return Code: 0 or Error Code
22874  */
22875 
22876 static int
22877 sd_reserve_release(dev_t dev, int cmd)
22878 {
22879 	struct uscsi_cmd	*com = NULL;
22880 	struct sd_lun		*un = NULL;
22881 	char			cdb[CDB_GROUP0];
22882 	int			rval;
22883 
22884 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22885 	    (cmd == SD_PRIORITY_RESERVE));
22886 
22887 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22888 		return (ENXIO);
22889 	}
22890 
22891 	/* instantiate and initialize the command and cdb */
22892 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22893 	bzero(cdb, CDB_GROUP0);
22894 	com->uscsi_flags   = USCSI_SILENT;
22895 	com->uscsi_timeout = un->un_reserve_release_time;
22896 	com->uscsi_cdblen  = CDB_GROUP0;
22897 	com->uscsi_cdb	   = cdb;
22898 	if (cmd == SD_RELEASE) {
22899 		cdb[0] = SCMD_RELEASE;
22900 	} else {
22901 		cdb[0] = SCMD_RESERVE;
22902 	}
22903 
22904 	/* Send the command. */
22905 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22906 	    SD_PATH_STANDARD);
22907 
22908 	/*
22909 	 * "break" a reservation that is held by another host, by issuing a
22910 	 * reset if priority reserve is desired, and we could not get the
22911 	 * device.
22912 	 */
22913 	if ((cmd == SD_PRIORITY_RESERVE) &&
22914 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22915 		/*
22916 		 * First try to reset the LUN. If we cannot, then try a target
22917 		 * reset, followed by a bus reset if the target reset fails.
22918 		 */
22919 		int reset_retval = 0;
22920 		if (un->un_f_lun_reset_enabled == TRUE) {
22921 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22922 		}
22923 		if (reset_retval == 0) {
22924 			/* The LUN reset either failed or was not issued */
22925 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22926 		}
22927 		if ((reset_retval == 0) &&
22928 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22929 			rval = EIO;
22930 			kmem_free(com, sizeof (*com));
22931 			return (rval);
22932 		}
22933 
22934 		bzero(com, sizeof (struct uscsi_cmd));
22935 		com->uscsi_flags   = USCSI_SILENT;
22936 		com->uscsi_cdb	   = cdb;
22937 		com->uscsi_cdblen  = CDB_GROUP0;
22938 		com->uscsi_timeout = 5;
22939 
22940 		/*
22941 		 * Reissue the last reserve command, this time without request
22942 		 * sense.  Assume that it is just a regular reserve command.
22943 		 */
22944 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22945 		    SD_PATH_STANDARD);
22946 	}
22947 
22948 	/* Return an error if still getting a reservation conflict. */
22949 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22950 		rval = EACCES;
22951 	}
22952 
22953 	kmem_free(com, sizeof (*com));
22954 	return (rval);
22955 }
22956 
22957 
22958 #define	SD_NDUMP_RETRIES	12
22959 /*
22960  *	System Crash Dump routine
22961  */
22962 
22963 static int
22964 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22965 {
22966 	int		instance;
22967 	int		partition;
22968 	int		i;
22969 	int		err;
22970 	struct sd_lun	*un;
22971 	struct scsi_pkt *wr_pktp;
22972 	struct buf	*wr_bp;
22973 	struct buf	wr_buf;
22974 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22975 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22976 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22977 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22978 	size_t		io_start_offset;
22979 	int		doing_rmw = FALSE;
22980 	int		rval;
22981 	ssize_t		dma_resid;
22982 	daddr_t		oblkno;
22983 	diskaddr_t	nblks = 0;
22984 	diskaddr_t	start_block;
22985 
22986 	instance = SDUNIT(dev);
22987 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22988 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22989 		return (ENXIO);
22990 	}
22991 
22992 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22993 
22994 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22995 
22996 	partition = SDPART(dev);
22997 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22998 
22999 	/* Validate blocks to dump at against partition size. */
23000 
23001 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
23002 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
23003 
23004 	if ((blkno + nblk) > nblks) {
23005 		SD_TRACE(SD_LOG_DUMP, un,
23006 		    "sddump: dump range larger than partition: "
23007 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
23008 		    blkno, nblk, nblks);
23009 		return (EINVAL);
23010 	}
23011 
23012 	mutex_enter(&un->un_pm_mutex);
23013 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23014 		struct scsi_pkt *start_pktp;
23015 
23016 		mutex_exit(&un->un_pm_mutex);
23017 
23018 		/*
23019 		 * use pm framework to power on HBA 1st
23020 		 */
23021 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
23022 
23023 		/*
23024 		 * Dump no long uses sdpower to power on a device, it's
23025 		 * in-line here so it can be done in polled mode.
23026 		 */
23027 
23028 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
23029 
23030 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
23031 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
23032 
23033 		if (start_pktp == NULL) {
23034 			/* We were not given a SCSI packet, fail. */
23035 			return (EIO);
23036 		}
23037 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
23038 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
23039 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
23040 		start_pktp->pkt_flags = FLAG_NOINTR;
23041 
23042 		mutex_enter(SD_MUTEX(un));
23043 		SD_FILL_SCSI1_LUN(un, start_pktp);
23044 		mutex_exit(SD_MUTEX(un));
23045 		/*
23046 		 * Scsi_poll returns 0 (success) if the command completes and
23047 		 * the status block is STATUS_GOOD.
23048 		 */
23049 		if (sd_scsi_poll(un, start_pktp) != 0) {
23050 			scsi_destroy_pkt(start_pktp);
23051 			return (EIO);
23052 		}
23053 		scsi_destroy_pkt(start_pktp);
23054 		(void) sd_ddi_pm_resume(un);
23055 	} else {
23056 		mutex_exit(&un->un_pm_mutex);
23057 	}
23058 
23059 	mutex_enter(SD_MUTEX(un));
23060 	un->un_throttle = 0;
23061 
23062 	/*
23063 	 * The first time through, reset the specific target device.
23064 	 * However, when cpr calls sddump we know that sd is in a
23065 	 * a good state so no bus reset is required.
23066 	 * Clear sense data via Request Sense cmd.
23067 	 * In sddump we don't care about allow_bus_device_reset anymore
23068 	 */
23069 
23070 	if ((un->un_state != SD_STATE_SUSPENDED) &&
23071 	    (un->un_state != SD_STATE_DUMPING)) {
23072 
23073 		New_state(un, SD_STATE_DUMPING);
23074 
23075 		if (un->un_f_is_fibre == FALSE) {
23076 			mutex_exit(SD_MUTEX(un));
23077 			/*
23078 			 * Attempt a bus reset for parallel scsi.
23079 			 *
23080 			 * Note: A bus reset is required because on some host
23081 			 * systems (i.e. E420R) a bus device reset is
23082 			 * insufficient to reset the state of the target.
23083 			 *
23084 			 * Note: Don't issue the reset for fibre-channel,
23085 			 * because this tends to hang the bus (loop) for
23086 			 * too long while everyone is logging out and in
23087 			 * and the deadman timer for dumping will fire
23088 			 * before the dump is complete.
23089 			 */
23090 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
23091 				mutex_enter(SD_MUTEX(un));
23092 				Restore_state(un);
23093 				mutex_exit(SD_MUTEX(un));
23094 				return (EIO);
23095 			}
23096 
23097 			/* Delay to give the device some recovery time. */
23098 			drv_usecwait(10000);
23099 
23100 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
23101 				SD_INFO(SD_LOG_DUMP, un,
23102 				    "sddump: sd_send_polled_RQS failed\n");
23103 			}
23104 			mutex_enter(SD_MUTEX(un));
23105 		}
23106 	}
23107 
23108 	/*
23109 	 * Convert the partition-relative block number to a
23110 	 * disk physical block number.
23111 	 */
23112 	blkno += start_block;
23113 
23114 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
23115 
23116 
23117 	/*
23118 	 * Check if the device has a non-512 block size.
23119 	 */
23120 	wr_bp = NULL;
23121 	if (NOT_DEVBSIZE(un)) {
23122 		tgt_byte_offset = blkno * un->un_sys_blocksize;
23123 		tgt_byte_count = nblk * un->un_sys_blocksize;
23124 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
23125 		    (tgt_byte_count % un->un_tgt_blocksize)) {
23126 			doing_rmw = TRUE;
23127 			/*
23128 			 * Calculate the block number and number of block
23129 			 * in terms of the media block size.
23130 			 */
23131 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23132 			tgt_nblk =
23133 			    ((tgt_byte_offset + tgt_byte_count +
23134 			    (un->un_tgt_blocksize - 1)) /
23135 			    un->un_tgt_blocksize) - tgt_blkno;
23136 
23137 			/*
23138 			 * Invoke the routine which is going to do read part
23139 			 * of read-modify-write.
23140 			 * Note that this routine returns a pointer to
23141 			 * a valid bp in wr_bp.
23142 			 */
23143 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
23144 			    &wr_bp);
23145 			if (err) {
23146 				mutex_exit(SD_MUTEX(un));
23147 				return (err);
23148 			}
23149 			/*
23150 			 * Offset is being calculated as -
23151 			 * (original block # * system block size) -
23152 			 * (new block # * target block size)
23153 			 */
23154 			io_start_offset =
23155 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
23156 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
23157 
23158 			ASSERT((io_start_offset >= 0) &&
23159 			    (io_start_offset < un->un_tgt_blocksize));
23160 			/*
23161 			 * Do the modify portion of read modify write.
23162 			 */
23163 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
23164 			    (size_t)nblk * un->un_sys_blocksize);
23165 		} else {
23166 			doing_rmw = FALSE;
23167 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23168 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23169 		}
23170 
23171 		/* Convert blkno and nblk to target blocks */
23172 		blkno = tgt_blkno;
23173 		nblk = tgt_nblk;
23174 	} else {
23175 		wr_bp = &wr_buf;
23176 		bzero(wr_bp, sizeof (struct buf));
23177 		wr_bp->b_flags		= B_BUSY;
23178 		wr_bp->b_un.b_addr	= addr;
23179 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23180 		wr_bp->b_resid		= 0;
23181 	}
23182 
23183 	mutex_exit(SD_MUTEX(un));
23184 
23185 	/*
23186 	 * Obtain a SCSI packet for the write command.
23187 	 * It should be safe to call the allocator here without
23188 	 * worrying about being locked for DVMA mapping because
23189 	 * the address we're passed is already a DVMA mapping
23190 	 *
23191 	 * We are also not going to worry about semaphore ownership
23192 	 * in the dump buffer. Dumping is single threaded at present.
23193 	 */
23194 
23195 	wr_pktp = NULL;
23196 
23197 	dma_resid = wr_bp->b_bcount;
23198 	oblkno = blkno;
23199 
23200 	while (dma_resid != 0) {
23201 
23202 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23203 		wr_bp->b_flags &= ~B_ERROR;
23204 
23205 		if (un->un_partial_dma_supported == 1) {
23206 			blkno = oblkno +
23207 			    ((wr_bp->b_bcount - dma_resid) /
23208 			    un->un_tgt_blocksize);
23209 			nblk = dma_resid / un->un_tgt_blocksize;
23210 
23211 			if (wr_pktp) {
23212 				/*
23213 				 * Partial DMA transfers after initial transfer
23214 				 */
23215 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23216 				    blkno, nblk);
23217 			} else {
23218 				/* Initial transfer */
23219 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23220 				    un->un_pkt_flags, NULL_FUNC, NULL,
23221 				    blkno, nblk);
23222 			}
23223 		} else {
23224 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23225 			    0, NULL_FUNC, NULL, blkno, nblk);
23226 		}
23227 
23228 		if (rval == 0) {
23229 			/* We were given a SCSI packet, continue. */
23230 			break;
23231 		}
23232 
23233 		if (i == 0) {
23234 			if (wr_bp->b_flags & B_ERROR) {
23235 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23236 				    "no resources for dumping; "
23237 				    "error code: 0x%x, retrying",
23238 				    geterror(wr_bp));
23239 			} else {
23240 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23241 				    "no resources for dumping; retrying");
23242 			}
23243 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23244 			if (wr_bp->b_flags & B_ERROR) {
23245 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23246 				    "no resources for dumping; error code: "
23247 				    "0x%x, retrying\n", geterror(wr_bp));
23248 			}
23249 		} else {
23250 			if (wr_bp->b_flags & B_ERROR) {
23251 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23252 				    "no resources for dumping; "
23253 				    "error code: 0x%x, retries failed, "
23254 				    "giving up.\n", geterror(wr_bp));
23255 			} else {
23256 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23257 				    "no resources for dumping; "
23258 				    "retries failed, giving up.\n");
23259 			}
23260 			mutex_enter(SD_MUTEX(un));
23261 			Restore_state(un);
23262 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23263 				mutex_exit(SD_MUTEX(un));
23264 				scsi_free_consistent_buf(wr_bp);
23265 			} else {
23266 				mutex_exit(SD_MUTEX(un));
23267 			}
23268 			return (EIO);
23269 		}
23270 		drv_usecwait(10000);
23271 	}
23272 
23273 	if (un->un_partial_dma_supported == 1) {
23274 		/*
23275 		 * save the resid from PARTIAL_DMA
23276 		 */
23277 		dma_resid = wr_pktp->pkt_resid;
23278 		if (dma_resid != 0)
23279 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23280 		wr_pktp->pkt_resid = 0;
23281 	} else {
23282 		dma_resid = 0;
23283 	}
23284 
23285 	/* SunBug 1222170 */
23286 	wr_pktp->pkt_flags = FLAG_NOINTR;
23287 
23288 	err = EIO;
23289 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23290 
23291 		/*
23292 		 * Scsi_poll returns 0 (success) if the command completes and
23293 		 * the status block is STATUS_GOOD.  We should only check
23294 		 * errors if this condition is not true.  Even then we should
23295 		 * send our own request sense packet only if we have a check
23296 		 * condition and auto request sense has not been performed by
23297 		 * the hba.
23298 		 */
23299 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23300 
23301 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23302 		    (wr_pktp->pkt_resid == 0)) {
23303 			err = SD_SUCCESS;
23304 			break;
23305 		}
23306 
23307 		/*
23308 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23309 		 */
23310 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23311 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23312 			    "Error while dumping state...Device is gone\n");
23313 			break;
23314 		}
23315 
23316 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23317 			SD_INFO(SD_LOG_DUMP, un,
23318 			    "sddump: write failed with CHECK, try # %d\n", i);
23319 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23320 				(void) sd_send_polled_RQS(un);
23321 			}
23322 
23323 			continue;
23324 		}
23325 
23326 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23327 			int reset_retval = 0;
23328 
23329 			SD_INFO(SD_LOG_DUMP, un,
23330 			    "sddump: write failed with BUSY, try # %d\n", i);
23331 
23332 			if (un->un_f_lun_reset_enabled == TRUE) {
23333 				reset_retval = scsi_reset(SD_ADDRESS(un),
23334 				    RESET_LUN);
23335 			}
23336 			if (reset_retval == 0) {
23337 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23338 			}
23339 			(void) sd_send_polled_RQS(un);
23340 
23341 		} else {
23342 			SD_INFO(SD_LOG_DUMP, un,
23343 			    "sddump: write failed with 0x%x, try # %d\n",
23344 			    SD_GET_PKT_STATUS(wr_pktp), i);
23345 			mutex_enter(SD_MUTEX(un));
23346 			sd_reset_target(un, wr_pktp);
23347 			mutex_exit(SD_MUTEX(un));
23348 		}
23349 
23350 		/*
23351 		 * If we are not getting anywhere with lun/target resets,
23352 		 * let's reset the bus.
23353 		 */
23354 		if (i == SD_NDUMP_RETRIES/2) {
23355 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23356 			(void) sd_send_polled_RQS(un);
23357 		}
23358 	}
23359 	}
23360 
23361 	scsi_destroy_pkt(wr_pktp);
23362 	mutex_enter(SD_MUTEX(un));
23363 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23364 		mutex_exit(SD_MUTEX(un));
23365 		scsi_free_consistent_buf(wr_bp);
23366 	} else {
23367 		mutex_exit(SD_MUTEX(un));
23368 	}
23369 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23370 	return (err);
23371 }
23372 
23373 /*
23374  *    Function: sd_scsi_poll()
23375  *
23376  * Description: This is a wrapper for the scsi_poll call.
23377  *
23378  *   Arguments: sd_lun - The unit structure
23379  *              scsi_pkt - The scsi packet being sent to the device.
23380  *
23381  * Return Code: 0 - Command completed successfully with good status
23382  *             -1 - Command failed.  This could indicate a check condition
23383  *                  or other status value requiring recovery action.
23384  *
23385  * NOTE: This code is only called off sddump().
23386  */
23387 
23388 static int
23389 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23390 {
23391 	int status;
23392 
23393 	ASSERT(un != NULL);
23394 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23395 	ASSERT(pktp != NULL);
23396 
23397 	status = SD_SUCCESS;
23398 
23399 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23400 		pktp->pkt_flags |= un->un_tagflags;
23401 		pktp->pkt_flags &= ~FLAG_NODISCON;
23402 	}
23403 
23404 	status = sd_ddi_scsi_poll(pktp);
23405 	/*
23406 	 * Scsi_poll returns 0 (success) if the command completes and the
23407 	 * status block is STATUS_GOOD.  We should only check errors if this
23408 	 * condition is not true.  Even then we should send our own request
23409 	 * sense packet only if we have a check condition and auto
23410 	 * request sense has not been performed by the hba.
23411 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23412 	 */
23413 	if ((status != SD_SUCCESS) &&
23414 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23415 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23416 	    (pktp->pkt_reason != CMD_DEV_GONE))
23417 		(void) sd_send_polled_RQS(un);
23418 
23419 	return (status);
23420 }
23421 
23422 /*
23423  *    Function: sd_send_polled_RQS()
23424  *
23425  * Description: This sends the request sense command to a device.
23426  *
23427  *   Arguments: sd_lun - The unit structure
23428  *
23429  * Return Code: 0 - Command completed successfully with good status
23430  *             -1 - Command failed.
23431  *
23432  */
23433 
23434 static int
23435 sd_send_polled_RQS(struct sd_lun *un)
23436 {
23437 	int	ret_val;
23438 	struct	scsi_pkt	*rqs_pktp;
23439 	struct	buf		*rqs_bp;
23440 
23441 	ASSERT(un != NULL);
23442 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23443 
23444 	ret_val = SD_SUCCESS;
23445 
23446 	rqs_pktp = un->un_rqs_pktp;
23447 	rqs_bp	 = un->un_rqs_bp;
23448 
23449 	mutex_enter(SD_MUTEX(un));
23450 
23451 	if (un->un_sense_isbusy) {
23452 		ret_val = SD_FAILURE;
23453 		mutex_exit(SD_MUTEX(un));
23454 		return (ret_val);
23455 	}
23456 
23457 	/*
23458 	 * If the request sense buffer (and packet) is not in use,
23459 	 * let's set the un_sense_isbusy and send our packet
23460 	 */
23461 	un->un_sense_isbusy 	= 1;
23462 	rqs_pktp->pkt_resid  	= 0;
23463 	rqs_pktp->pkt_reason 	= 0;
23464 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23465 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23466 
23467 	mutex_exit(SD_MUTEX(un));
23468 
23469 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23470 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23471 
23472 	/*
23473 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23474 	 * axle - it has a call into us!
23475 	 */
23476 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23477 		SD_INFO(SD_LOG_COMMON, un,
23478 		    "sd_send_polled_RQS: RQS failed\n");
23479 	}
23480 
23481 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23482 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23483 
23484 	mutex_enter(SD_MUTEX(un));
23485 	un->un_sense_isbusy = 0;
23486 	mutex_exit(SD_MUTEX(un));
23487 
23488 	return (ret_val);
23489 }
23490 
23491 /*
23492  * Defines needed for localized version of the scsi_poll routine.
23493  */
23494 #define	CSEC		10000			/* usecs */
23495 #define	SEC_TO_CSEC	(1000000/CSEC)
23496 
23497 /*
23498  *    Function: sd_ddi_scsi_poll()
23499  *
23500  * Description: Localized version of the scsi_poll routine.  The purpose is to
23501  *		send a scsi_pkt to a device as a polled command.  This version
23502  *		is to ensure more robust handling of transport errors.
23503  *		Specifically this routine cures not ready, coming ready
23504  *		transition for power up and reset of sonoma's.  This can take
23505  *		up to 45 seconds for power-on and 20 seconds for reset of a
23506  * 		sonoma lun.
23507  *
23508  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23509  *
23510  * Return Code: 0 - Command completed successfully with good status
23511  *             -1 - Command failed.
23512  *
23513  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
23514  * be fixed (removing this code), we need to determine how to handle the
23515  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
23516  *
23517  * NOTE: This code is only called off sddump().
23518  */
23519 static int
23520 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23521 {
23522 	int			rval = -1;
23523 	int			savef;
23524 	long			savet;
23525 	void			(*savec)();
23526 	int			timeout;
23527 	int			busy_count;
23528 	int			poll_delay;
23529 	int			rc;
23530 	uint8_t			*sensep;
23531 	struct scsi_arq_status	*arqstat;
23532 	extern int		do_polled_io;
23533 
23534 	ASSERT(pkt->pkt_scbp);
23535 
23536 	/*
23537 	 * save old flags..
23538 	 */
23539 	savef = pkt->pkt_flags;
23540 	savec = pkt->pkt_comp;
23541 	savet = pkt->pkt_time;
23542 
23543 	pkt->pkt_flags |= FLAG_NOINTR;
23544 
23545 	/*
23546 	 * XXX there is nothing in the SCSA spec that states that we should not
23547 	 * do a callback for polled cmds; however, removing this will break sd
23548 	 * and probably other target drivers
23549 	 */
23550 	pkt->pkt_comp = NULL;
23551 
23552 	/*
23553 	 * we don't like a polled command without timeout.
23554 	 * 60 seconds seems long enough.
23555 	 */
23556 	if (pkt->pkt_time == 0)
23557 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23558 
23559 	/*
23560 	 * Send polled cmd.
23561 	 *
23562 	 * We do some error recovery for various errors.  Tran_busy,
23563 	 * queue full, and non-dispatched commands are retried every 10 msec.
23564 	 * as they are typically transient failures.  Busy status and Not
23565 	 * Ready are retried every second as this status takes a while to
23566 	 * change.
23567 	 */
23568 	timeout = pkt->pkt_time * SEC_TO_CSEC;
23569 
23570 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23571 		/*
23572 		 * Initialize pkt status variables.
23573 		 */
23574 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23575 
23576 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23577 			if (rc != TRAN_BUSY) {
23578 				/* Transport failed - give up. */
23579 				break;
23580 			} else {
23581 				/* Transport busy - try again. */
23582 				poll_delay = 1 * CSEC;		/* 10 msec. */
23583 			}
23584 		} else {
23585 			/*
23586 			 * Transport accepted - check pkt status.
23587 			 */
23588 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23589 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23590 			    (rc == STATUS_CHECK) &&
23591 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
23592 				arqstat =
23593 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23594 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23595 			} else {
23596 				sensep = NULL;
23597 			}
23598 
23599 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23600 			    (rc == STATUS_GOOD)) {
23601 				/* No error - we're done */
23602 				rval = 0;
23603 				break;
23604 
23605 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23606 				/* Lost connection - give up */
23607 				break;
23608 
23609 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23610 			    (pkt->pkt_state == 0)) {
23611 				/* Pkt not dispatched - try again. */
23612 				poll_delay = 1 * CSEC;		/* 10 msec. */
23613 
23614 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23615 			    (rc == STATUS_QFULL)) {
23616 				/* Queue full - try again. */
23617 				poll_delay = 1 * CSEC;		/* 10 msec. */
23618 
23619 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23620 			    (rc == STATUS_BUSY)) {
23621 				/* Busy - try again. */
23622 				poll_delay = 100 * CSEC;	/* 1 sec. */
23623 				busy_count += (SEC_TO_CSEC - 1);
23624 
23625 			} else if ((sensep != NULL) &&
23626 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
23627 				/*
23628 				 * Unit Attention - try again.
23629 				 * Pretend it took 1 sec.
23630 				 * NOTE: 'continue' avoids poll_delay
23631 				 */
23632 				busy_count += (SEC_TO_CSEC - 1);
23633 				continue;
23634 
23635 			} else if ((sensep != NULL) &&
23636 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23637 			    (scsi_sense_asc(sensep) == 0x04) &&
23638 			    (scsi_sense_ascq(sensep) == 0x01)) {
23639 				/*
23640 				 * Not ready -> ready - try again.
23641 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
23642 				 * ...same as STATUS_BUSY
23643 				 */
23644 				poll_delay = 100 * CSEC;	/* 1 sec. */
23645 				busy_count += (SEC_TO_CSEC - 1);
23646 
23647 			} else {
23648 				/* BAD status - give up. */
23649 				break;
23650 			}
23651 		}
23652 
23653 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
23654 		    !do_polled_io) {
23655 			delay(drv_usectohz(poll_delay));
23656 		} else {
23657 			/* we busy wait during cpr_dump or interrupt threads */
23658 			drv_usecwait(poll_delay);
23659 		}
23660 	}
23661 
23662 	pkt->pkt_flags = savef;
23663 	pkt->pkt_comp = savec;
23664 	pkt->pkt_time = savet;
23665 
23666 	/* return on error */
23667 	if (rval)
23668 		return (rval);
23669 
23670 	/*
23671 	 * This is not a performance critical code path.
23672 	 *
23673 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
23674 	 * issues associated with looking at DMA memory prior to
23675 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
23676 	 */
23677 	scsi_sync_pkt(pkt);
23678 	return (0);
23679 }
23680 
23681 
23682 
23683 /*
23684  *    Function: sd_persistent_reservation_in_read_keys
23685  *
23686  * Description: This routine is the driver entry point for handling CD-ROM
23687  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23688  *		by sending the SCSI-3 PRIN commands to the device.
23689  *		Processes the read keys command response by copying the
23690  *		reservation key information into the user provided buffer.
23691  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23692  *
23693  *   Arguments: un   -  Pointer to soft state struct for the target.
23694  *		usrp -	user provided pointer to multihost Persistent In Read
23695  *			Keys structure (mhioc_inkeys_t)
23696  *		flag -	this argument is a pass through to ddi_copyxxx()
23697  *			directly from the mode argument of ioctl().
23698  *
23699  * Return Code: 0   - Success
23700  *		EACCES
23701  *		ENOTSUP
23702  *		errno return code from sd_send_scsi_cmd()
23703  *
23704  *     Context: Can sleep. Does not return until command is completed.
23705  */
23706 
23707 static int
23708 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23709     mhioc_inkeys_t *usrp, int flag)
23710 {
23711 #ifdef _MULTI_DATAMODEL
23712 	struct mhioc_key_list32	li32;
23713 #endif
23714 	sd_prin_readkeys_t	*in;
23715 	mhioc_inkeys_t		*ptr;
23716 	mhioc_key_list_t	li;
23717 	uchar_t			*data_bufp;
23718 	int 			data_len;
23719 	int			rval;
23720 	size_t			copysz;
23721 
23722 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23723 		return (EINVAL);
23724 	}
23725 	bzero(&li, sizeof (mhioc_key_list_t));
23726 
23727 	/*
23728 	 * Get the listsize from user
23729 	 */
23730 #ifdef _MULTI_DATAMODEL
23731 
23732 	switch (ddi_model_convert_from(flag & FMODELS)) {
23733 	case DDI_MODEL_ILP32:
23734 		copysz = sizeof (struct mhioc_key_list32);
23735 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23736 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23737 			    "sd_persistent_reservation_in_read_keys: "
23738 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23739 			rval = EFAULT;
23740 			goto done;
23741 		}
23742 		li.listsize = li32.listsize;
23743 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23744 		break;
23745 
23746 	case DDI_MODEL_NONE:
23747 		copysz = sizeof (mhioc_key_list_t);
23748 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23749 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23750 			    "sd_persistent_reservation_in_read_keys: "
23751 			    "failed ddi_copyin: mhioc_key_list_t\n");
23752 			rval = EFAULT;
23753 			goto done;
23754 		}
23755 		break;
23756 	}
23757 
23758 #else /* ! _MULTI_DATAMODEL */
23759 	copysz = sizeof (mhioc_key_list_t);
23760 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23761 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23762 		    "sd_persistent_reservation_in_read_keys: "
23763 		    "failed ddi_copyin: mhioc_key_list_t\n");
23764 		rval = EFAULT;
23765 		goto done;
23766 	}
23767 #endif
23768 
23769 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23770 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23771 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23772 
23773 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23774 	    data_len, data_bufp)) != 0) {
23775 		goto done;
23776 	}
23777 	in = (sd_prin_readkeys_t *)data_bufp;
23778 	ptr->generation = BE_32(in->generation);
23779 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23780 
23781 	/*
23782 	 * Return the min(listsize, listlen) keys
23783 	 */
23784 #ifdef _MULTI_DATAMODEL
23785 
23786 	switch (ddi_model_convert_from(flag & FMODELS)) {
23787 	case DDI_MODEL_ILP32:
23788 		li32.listlen = li.listlen;
23789 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23790 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23791 			    "sd_persistent_reservation_in_read_keys: "
23792 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23793 			rval = EFAULT;
23794 			goto done;
23795 		}
23796 		break;
23797 
23798 	case DDI_MODEL_NONE:
23799 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23800 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23801 			    "sd_persistent_reservation_in_read_keys: "
23802 			    "failed ddi_copyout: mhioc_key_list_t\n");
23803 			rval = EFAULT;
23804 			goto done;
23805 		}
23806 		break;
23807 	}
23808 
23809 #else /* ! _MULTI_DATAMODEL */
23810 
23811 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23812 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23813 		    "sd_persistent_reservation_in_read_keys: "
23814 		    "failed ddi_copyout: mhioc_key_list_t\n");
23815 		rval = EFAULT;
23816 		goto done;
23817 	}
23818 
23819 #endif /* _MULTI_DATAMODEL */
23820 
23821 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23822 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23823 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23824 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23825 		    "sd_persistent_reservation_in_read_keys: "
23826 		    "failed ddi_copyout: keylist\n");
23827 		rval = EFAULT;
23828 	}
23829 done:
23830 	kmem_free(data_bufp, data_len);
23831 	return (rval);
23832 }
23833 
23834 
23835 /*
23836  *    Function: sd_persistent_reservation_in_read_resv
23837  *
23838  * Description: This routine is the driver entry point for handling CD-ROM
23839  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23840  *		by sending the SCSI-3 PRIN commands to the device.
23841  *		Process the read persistent reservations command response by
23842  *		copying the reservation information into the user provided
23843  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23844  *
23845  *   Arguments: un   -  Pointer to soft state struct for the target.
23846  *		usrp -	user provided pointer to multihost Persistent In Read
23847  *			Keys structure (mhioc_inkeys_t)
23848  *		flag -	this argument is a pass through to ddi_copyxxx()
23849  *			directly from the mode argument of ioctl().
23850  *
23851  * Return Code: 0   - Success
23852  *		EACCES
23853  *		ENOTSUP
23854  *		errno return code from sd_send_scsi_cmd()
23855  *
23856  *     Context: Can sleep. Does not return until command is completed.
23857  */
23858 
23859 static int
23860 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23861     mhioc_inresvs_t *usrp, int flag)
23862 {
23863 #ifdef _MULTI_DATAMODEL
23864 	struct mhioc_resv_desc_list32 resvlist32;
23865 #endif
23866 	sd_prin_readresv_t	*in;
23867 	mhioc_inresvs_t		*ptr;
23868 	sd_readresv_desc_t	*readresv_ptr;
23869 	mhioc_resv_desc_list_t	resvlist;
23870 	mhioc_resv_desc_t 	resvdesc;
23871 	uchar_t			*data_bufp;
23872 	int 			data_len;
23873 	int			rval;
23874 	int			i;
23875 	size_t			copysz;
23876 	mhioc_resv_desc_t	*bufp;
23877 
23878 	if ((ptr = usrp) == NULL) {
23879 		return (EINVAL);
23880 	}
23881 
23882 	/*
23883 	 * Get the listsize from user
23884 	 */
23885 #ifdef _MULTI_DATAMODEL
23886 	switch (ddi_model_convert_from(flag & FMODELS)) {
23887 	case DDI_MODEL_ILP32:
23888 		copysz = sizeof (struct mhioc_resv_desc_list32);
23889 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23890 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23891 			    "sd_persistent_reservation_in_read_resv: "
23892 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23893 			rval = EFAULT;
23894 			goto done;
23895 		}
23896 		resvlist.listsize = resvlist32.listsize;
23897 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23898 		break;
23899 
23900 	case DDI_MODEL_NONE:
23901 		copysz = sizeof (mhioc_resv_desc_list_t);
23902 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23903 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23904 			    "sd_persistent_reservation_in_read_resv: "
23905 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23906 			rval = EFAULT;
23907 			goto done;
23908 		}
23909 		break;
23910 	}
23911 #else /* ! _MULTI_DATAMODEL */
23912 	copysz = sizeof (mhioc_resv_desc_list_t);
23913 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23914 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23915 		    "sd_persistent_reservation_in_read_resv: "
23916 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23917 		rval = EFAULT;
23918 		goto done;
23919 	}
23920 #endif /* ! _MULTI_DATAMODEL */
23921 
23922 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23923 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23924 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23925 
23926 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23927 	    data_len, data_bufp)) != 0) {
23928 		goto done;
23929 	}
23930 	in = (sd_prin_readresv_t *)data_bufp;
23931 	ptr->generation = BE_32(in->generation);
23932 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23933 
23934 	/*
23935 	 * Return the min(listsize, listlen( keys
23936 	 */
23937 #ifdef _MULTI_DATAMODEL
23938 
23939 	switch (ddi_model_convert_from(flag & FMODELS)) {
23940 	case DDI_MODEL_ILP32:
23941 		resvlist32.listlen = resvlist.listlen;
23942 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23943 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23944 			    "sd_persistent_reservation_in_read_resv: "
23945 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23946 			rval = EFAULT;
23947 			goto done;
23948 		}
23949 		break;
23950 
23951 	case DDI_MODEL_NONE:
23952 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23953 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23954 			    "sd_persistent_reservation_in_read_resv: "
23955 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23956 			rval = EFAULT;
23957 			goto done;
23958 		}
23959 		break;
23960 	}
23961 
23962 #else /* ! _MULTI_DATAMODEL */
23963 
23964 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23965 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23966 		    "sd_persistent_reservation_in_read_resv: "
23967 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23968 		rval = EFAULT;
23969 		goto done;
23970 	}
23971 
23972 #endif /* ! _MULTI_DATAMODEL */
23973 
23974 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23975 	bufp = resvlist.list;
23976 	copysz = sizeof (mhioc_resv_desc_t);
23977 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23978 	    i++, readresv_ptr++, bufp++) {
23979 
23980 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23981 		    MHIOC_RESV_KEY_SIZE);
23982 		resvdesc.type  = readresv_ptr->type;
23983 		resvdesc.scope = readresv_ptr->scope;
23984 		resvdesc.scope_specific_addr =
23985 		    BE_32(readresv_ptr->scope_specific_addr);
23986 
23987 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23988 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23989 			    "sd_persistent_reservation_in_read_resv: "
23990 			    "failed ddi_copyout: resvlist\n");
23991 			rval = EFAULT;
23992 			goto done;
23993 		}
23994 	}
23995 done:
23996 	kmem_free(data_bufp, data_len);
23997 	return (rval);
23998 }
23999 
24000 
24001 /*
24002  *    Function: sr_change_blkmode()
24003  *
24004  * Description: This routine is the driver entry point for handling CD-ROM
24005  *		block mode ioctl requests. Support for returning and changing
24006  *		the current block size in use by the device is implemented. The
24007  *		LBA size is changed via a MODE SELECT Block Descriptor.
24008  *
24009  *		This routine issues a mode sense with an allocation length of
24010  *		12 bytes for the mode page header and a single block descriptor.
24011  *
24012  *   Arguments: dev - the device 'dev_t'
24013  *		cmd - the request type; one of CDROMGBLKMODE (get) or
24014  *		      CDROMSBLKMODE (set)
24015  *		data - current block size or requested block size
24016  *		flag - this argument is a pass through to ddi_copyxxx() directly
24017  *		       from the mode argument of ioctl().
24018  *
24019  * Return Code: the code returned by sd_send_scsi_cmd()
24020  *		EINVAL if invalid arguments are provided
24021  *		EFAULT if ddi_copyxxx() fails
24022  *		ENXIO if fail ddi_get_soft_state
24023  *		EIO if invalid mode sense block descriptor length
24024  *
24025  */
24026 
24027 static int
24028 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
24029 {
24030 	struct sd_lun			*un = NULL;
24031 	struct mode_header		*sense_mhp, *select_mhp;
24032 	struct block_descriptor		*sense_desc, *select_desc;
24033 	int				current_bsize;
24034 	int				rval = EINVAL;
24035 	uchar_t				*sense = NULL;
24036 	uchar_t				*select = NULL;
24037 
24038 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
24039 
24040 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24041 		return (ENXIO);
24042 	}
24043 
24044 	/*
24045 	 * The block length is changed via the Mode Select block descriptor, the
24046 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
24047 	 * required as part of this routine. Therefore the mode sense allocation
24048 	 * length is specified to be the length of a mode page header and a
24049 	 * block descriptor.
24050 	 */
24051 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24052 
24053 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24054 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
24055 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24056 		    "sr_change_blkmode: Mode Sense Failed\n");
24057 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24058 		return (rval);
24059 	}
24060 
24061 	/* Check the block descriptor len to handle only 1 block descriptor */
24062 	sense_mhp = (struct mode_header *)sense;
24063 	if ((sense_mhp->bdesc_length == 0) ||
24064 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
24065 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24066 		    "sr_change_blkmode: Mode Sense returned invalid block"
24067 		    " descriptor length\n");
24068 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24069 		return (EIO);
24070 	}
24071 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
24072 	current_bsize = ((sense_desc->blksize_hi << 16) |
24073 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
24074 
24075 	/* Process command */
24076 	switch (cmd) {
24077 	case CDROMGBLKMODE:
24078 		/* Return the block size obtained during the mode sense */
24079 		if (ddi_copyout(&current_bsize, (void *)data,
24080 		    sizeof (int), flag) != 0)
24081 			rval = EFAULT;
24082 		break;
24083 	case CDROMSBLKMODE:
24084 		/* Validate the requested block size */
24085 		switch (data) {
24086 		case CDROM_BLK_512:
24087 		case CDROM_BLK_1024:
24088 		case CDROM_BLK_2048:
24089 		case CDROM_BLK_2056:
24090 		case CDROM_BLK_2336:
24091 		case CDROM_BLK_2340:
24092 		case CDROM_BLK_2352:
24093 		case CDROM_BLK_2368:
24094 		case CDROM_BLK_2448:
24095 		case CDROM_BLK_2646:
24096 		case CDROM_BLK_2647:
24097 			break;
24098 		default:
24099 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24100 			    "sr_change_blkmode: "
24101 			    "Block Size '%ld' Not Supported\n", data);
24102 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24103 			return (EINVAL);
24104 		}
24105 
24106 		/*
24107 		 * The current block size matches the requested block size so
24108 		 * there is no need to send the mode select to change the size
24109 		 */
24110 		if (current_bsize == data) {
24111 			break;
24112 		}
24113 
24114 		/* Build the select data for the requested block size */
24115 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24116 		select_mhp = (struct mode_header *)select;
24117 		select_desc =
24118 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
24119 		/*
24120 		 * The LBA size is changed via the block descriptor, so the
24121 		 * descriptor is built according to the user data
24122 		 */
24123 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
24124 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
24125 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
24126 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
24127 
24128 		/* Send the mode select for the requested block size */
24129 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24130 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24131 		    SD_PATH_STANDARD)) != 0) {
24132 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24133 			    "sr_change_blkmode: Mode Select Failed\n");
24134 			/*
24135 			 * The mode select failed for the requested block size,
24136 			 * so reset the data for the original block size and
24137 			 * send it to the target. The error is indicated by the
24138 			 * return value for the failed mode select.
24139 			 */
24140 			select_desc->blksize_hi  = sense_desc->blksize_hi;
24141 			select_desc->blksize_mid = sense_desc->blksize_mid;
24142 			select_desc->blksize_lo  = sense_desc->blksize_lo;
24143 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24144 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24145 			    SD_PATH_STANDARD);
24146 		} else {
24147 			ASSERT(!mutex_owned(SD_MUTEX(un)));
24148 			mutex_enter(SD_MUTEX(un));
24149 			sd_update_block_info(un, (uint32_t)data, 0);
24150 			mutex_exit(SD_MUTEX(un));
24151 		}
24152 		break;
24153 	default:
24154 		/* should not reach here, but check anyway */
24155 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24156 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
24157 		rval = EINVAL;
24158 		break;
24159 	}
24160 
24161 	if (select) {
24162 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
24163 	}
24164 	if (sense) {
24165 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24166 	}
24167 	return (rval);
24168 }
24169 
24170 
24171 /*
24172  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
24173  * implement driver support for getting and setting the CD speed. The command
24174  * set used will be based on the device type. If the device has not been
24175  * identified as MMC the Toshiba vendor specific mode page will be used. If
24176  * the device is MMC but does not support the Real Time Streaming feature
24177  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
24178  * be used to read the speed.
24179  */
24180 
24181 /*
24182  *    Function: sr_change_speed()
24183  *
24184  * Description: This routine is the driver entry point for handling CD-ROM
24185  *		drive speed ioctl requests for devices supporting the Toshiba
24186  *		vendor specific drive speed mode page. Support for returning
24187  *		and changing the current drive speed in use by the device is
24188  *		implemented.
24189  *
24190  *   Arguments: dev - the device 'dev_t'
24191  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24192  *		      CDROMSDRVSPEED (set)
24193  *		data - current drive speed or requested drive speed
24194  *		flag - this argument is a pass through to ddi_copyxxx() directly
24195  *		       from the mode argument of ioctl().
24196  *
24197  * Return Code: the code returned by sd_send_scsi_cmd()
24198  *		EINVAL if invalid arguments are provided
24199  *		EFAULT if ddi_copyxxx() fails
24200  *		ENXIO if fail ddi_get_soft_state
24201  *		EIO if invalid mode sense block descriptor length
24202  */
24203 
24204 static int
24205 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24206 {
24207 	struct sd_lun			*un = NULL;
24208 	struct mode_header		*sense_mhp, *select_mhp;
24209 	struct mode_speed		*sense_page, *select_page;
24210 	int				current_speed;
24211 	int				rval = EINVAL;
24212 	int				bd_len;
24213 	uchar_t				*sense = NULL;
24214 	uchar_t				*select = NULL;
24215 
24216 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24217 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24218 		return (ENXIO);
24219 	}
24220 
24221 	/*
24222 	 * Note: The drive speed is being modified here according to a Toshiba
24223 	 * vendor specific mode page (0x31).
24224 	 */
24225 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24226 
24227 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24228 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24229 	    SD_PATH_STANDARD)) != 0) {
24230 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24231 		    "sr_change_speed: Mode Sense Failed\n");
24232 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24233 		return (rval);
24234 	}
24235 	sense_mhp  = (struct mode_header *)sense;
24236 
24237 	/* Check the block descriptor len to handle only 1 block descriptor */
24238 	bd_len = sense_mhp->bdesc_length;
24239 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24240 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24241 		    "sr_change_speed: Mode Sense returned invalid block "
24242 		    "descriptor length\n");
24243 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24244 		return (EIO);
24245 	}
24246 
24247 	sense_page = (struct mode_speed *)
24248 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24249 	current_speed = sense_page->speed;
24250 
24251 	/* Process command */
24252 	switch (cmd) {
24253 	case CDROMGDRVSPEED:
24254 		/* Return the drive speed obtained during the mode sense */
24255 		if (current_speed == 0x2) {
24256 			current_speed = CDROM_TWELVE_SPEED;
24257 		}
24258 		if (ddi_copyout(&current_speed, (void *)data,
24259 		    sizeof (int), flag) != 0) {
24260 			rval = EFAULT;
24261 		}
24262 		break;
24263 	case CDROMSDRVSPEED:
24264 		/* Validate the requested drive speed */
24265 		switch ((uchar_t)data) {
24266 		case CDROM_TWELVE_SPEED:
24267 			data = 0x2;
24268 			/*FALLTHROUGH*/
24269 		case CDROM_NORMAL_SPEED:
24270 		case CDROM_DOUBLE_SPEED:
24271 		case CDROM_QUAD_SPEED:
24272 		case CDROM_MAXIMUM_SPEED:
24273 			break;
24274 		default:
24275 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24276 			    "sr_change_speed: "
24277 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24278 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24279 			return (EINVAL);
24280 		}
24281 
24282 		/*
24283 		 * The current drive speed matches the requested drive speed so
24284 		 * there is no need to send the mode select to change the speed
24285 		 */
24286 		if (current_speed == data) {
24287 			break;
24288 		}
24289 
24290 		/* Build the select data for the requested drive speed */
24291 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24292 		select_mhp = (struct mode_header *)select;
24293 		select_mhp->bdesc_length = 0;
24294 		select_page =
24295 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24296 		select_page =
24297 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24298 		select_page->mode_page.code = CDROM_MODE_SPEED;
24299 		select_page->mode_page.length = 2;
24300 		select_page->speed = (uchar_t)data;
24301 
24302 		/* Send the mode select for the requested block size */
24303 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24304 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24305 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24306 			/*
24307 			 * The mode select failed for the requested drive speed,
24308 			 * so reset the data for the original drive speed and
24309 			 * send it to the target. The error is indicated by the
24310 			 * return value for the failed mode select.
24311 			 */
24312 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24313 			    "sr_drive_speed: Mode Select Failed\n");
24314 			select_page->speed = sense_page->speed;
24315 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24316 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24317 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24318 		}
24319 		break;
24320 	default:
24321 		/* should not reach here, but check anyway */
24322 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24323 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24324 		rval = EINVAL;
24325 		break;
24326 	}
24327 
24328 	if (select) {
24329 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24330 	}
24331 	if (sense) {
24332 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24333 	}
24334 
24335 	return (rval);
24336 }
24337 
24338 
24339 /*
24340  *    Function: sr_atapi_change_speed()
24341  *
24342  * Description: This routine is the driver entry point for handling CD-ROM
24343  *		drive speed ioctl requests for MMC devices that do not support
24344  *		the Real Time Streaming feature (0x107).
24345  *
24346  *		Note: This routine will use the SET SPEED command which may not
24347  *		be supported by all devices.
24348  *
24349  *   Arguments: dev- the device 'dev_t'
24350  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24351  *		     CDROMSDRVSPEED (set)
24352  *		data- current drive speed or requested drive speed
24353  *		flag- this argument is a pass through to ddi_copyxxx() directly
24354  *		      from the mode argument of ioctl().
24355  *
24356  * Return Code: the code returned by sd_send_scsi_cmd()
24357  *		EINVAL if invalid arguments are provided
24358  *		EFAULT if ddi_copyxxx() fails
24359  *		ENXIO if fail ddi_get_soft_state
24360  *		EIO if invalid mode sense block descriptor length
24361  */
24362 
24363 static int
24364 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24365 {
24366 	struct sd_lun			*un;
24367 	struct uscsi_cmd		*com = NULL;
24368 	struct mode_header_grp2		*sense_mhp;
24369 	uchar_t				*sense_page;
24370 	uchar_t				*sense = NULL;
24371 	char				cdb[CDB_GROUP5];
24372 	int				bd_len;
24373 	int				current_speed = 0;
24374 	int				max_speed = 0;
24375 	int				rval;
24376 
24377 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24378 
24379 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24380 		return (ENXIO);
24381 	}
24382 
24383 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24384 
24385 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24386 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24387 	    SD_PATH_STANDARD)) != 0) {
24388 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24389 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24390 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24391 		return (rval);
24392 	}
24393 
24394 	/* Check the block descriptor len to handle only 1 block descriptor */
24395 	sense_mhp = (struct mode_header_grp2 *)sense;
24396 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24397 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24398 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24399 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24400 		    "block descriptor length\n");
24401 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24402 		return (EIO);
24403 	}
24404 
24405 	/* Calculate the current and maximum drive speeds */
24406 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24407 	current_speed = (sense_page[14] << 8) | sense_page[15];
24408 	max_speed = (sense_page[8] << 8) | sense_page[9];
24409 
24410 	/* Process the command */
24411 	switch (cmd) {
24412 	case CDROMGDRVSPEED:
24413 		current_speed /= SD_SPEED_1X;
24414 		if (ddi_copyout(&current_speed, (void *)data,
24415 		    sizeof (int), flag) != 0)
24416 			rval = EFAULT;
24417 		break;
24418 	case CDROMSDRVSPEED:
24419 		/* Convert the speed code to KB/sec */
24420 		switch ((uchar_t)data) {
24421 		case CDROM_NORMAL_SPEED:
24422 			current_speed = SD_SPEED_1X;
24423 			break;
24424 		case CDROM_DOUBLE_SPEED:
24425 			current_speed = 2 * SD_SPEED_1X;
24426 			break;
24427 		case CDROM_QUAD_SPEED:
24428 			current_speed = 4 * SD_SPEED_1X;
24429 			break;
24430 		case CDROM_TWELVE_SPEED:
24431 			current_speed = 12 * SD_SPEED_1X;
24432 			break;
24433 		case CDROM_MAXIMUM_SPEED:
24434 			current_speed = 0xffff;
24435 			break;
24436 		default:
24437 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24438 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24439 			    (uchar_t)data);
24440 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24441 			return (EINVAL);
24442 		}
24443 
24444 		/* Check the request against the drive's max speed. */
24445 		if (current_speed != 0xffff) {
24446 			if (current_speed > max_speed) {
24447 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24448 				return (EINVAL);
24449 			}
24450 		}
24451 
24452 		/*
24453 		 * Build and send the SET SPEED command
24454 		 *
24455 		 * Note: The SET SPEED (0xBB) command used in this routine is
24456 		 * obsolete per the SCSI MMC spec but still supported in the
24457 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24458 		 * therefore the command is still implemented in this routine.
24459 		 */
24460 		bzero(cdb, sizeof (cdb));
24461 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24462 		cdb[2] = (uchar_t)(current_speed >> 8);
24463 		cdb[3] = (uchar_t)current_speed;
24464 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24465 		com->uscsi_cdb	   = (caddr_t)cdb;
24466 		com->uscsi_cdblen  = CDB_GROUP5;
24467 		com->uscsi_bufaddr = NULL;
24468 		com->uscsi_buflen  = 0;
24469 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24470 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24471 		break;
24472 	default:
24473 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24474 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24475 		rval = EINVAL;
24476 	}
24477 
24478 	if (sense) {
24479 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24480 	}
24481 	if (com) {
24482 		kmem_free(com, sizeof (*com));
24483 	}
24484 	return (rval);
24485 }
24486 
24487 
24488 /*
24489  *    Function: sr_pause_resume()
24490  *
24491  * Description: This routine is the driver entry point for handling CD-ROM
24492  *		pause/resume ioctl requests. This only affects the audio play
24493  *		operation.
24494  *
24495  *   Arguments: dev - the device 'dev_t'
24496  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24497  *		      for setting the resume bit of the cdb.
24498  *
24499  * Return Code: the code returned by sd_send_scsi_cmd()
24500  *		EINVAL if invalid mode specified
24501  *
24502  */
24503 
24504 static int
24505 sr_pause_resume(dev_t dev, int cmd)
24506 {
24507 	struct sd_lun		*un;
24508 	struct uscsi_cmd	*com;
24509 	char			cdb[CDB_GROUP1];
24510 	int			rval;
24511 
24512 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24513 		return (ENXIO);
24514 	}
24515 
24516 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24517 	bzero(cdb, CDB_GROUP1);
24518 	cdb[0] = SCMD_PAUSE_RESUME;
24519 	switch (cmd) {
24520 	case CDROMRESUME:
24521 		cdb[8] = 1;
24522 		break;
24523 	case CDROMPAUSE:
24524 		cdb[8] = 0;
24525 		break;
24526 	default:
24527 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24528 		    " Command '%x' Not Supported\n", cmd);
24529 		rval = EINVAL;
24530 		goto done;
24531 	}
24532 
24533 	com->uscsi_cdb    = cdb;
24534 	com->uscsi_cdblen = CDB_GROUP1;
24535 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24536 
24537 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24538 	    SD_PATH_STANDARD);
24539 
24540 done:
24541 	kmem_free(com, sizeof (*com));
24542 	return (rval);
24543 }
24544 
24545 
24546 /*
24547  *    Function: sr_play_msf()
24548  *
24549  * Description: This routine is the driver entry point for handling CD-ROM
24550  *		ioctl requests to output the audio signals at the specified
24551  *		starting address and continue the audio play until the specified
24552  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24553  *		Frame (MSF) format.
24554  *
24555  *   Arguments: dev	- the device 'dev_t'
24556  *		data	- pointer to user provided audio msf structure,
24557  *		          specifying start/end addresses.
24558  *		flag	- this argument is a pass through to ddi_copyxxx()
24559  *		          directly from the mode argument of ioctl().
24560  *
24561  * Return Code: the code returned by sd_send_scsi_cmd()
24562  *		EFAULT if ddi_copyxxx() fails
24563  *		ENXIO if fail ddi_get_soft_state
24564  *		EINVAL if data pointer is NULL
24565  */
24566 
24567 static int
24568 sr_play_msf(dev_t dev, caddr_t data, int flag)
24569 {
24570 	struct sd_lun		*un;
24571 	struct uscsi_cmd	*com;
24572 	struct cdrom_msf	msf_struct;
24573 	struct cdrom_msf	*msf = &msf_struct;
24574 	char			cdb[CDB_GROUP1];
24575 	int			rval;
24576 
24577 	if (data == NULL) {
24578 		return (EINVAL);
24579 	}
24580 
24581 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24582 		return (ENXIO);
24583 	}
24584 
24585 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24586 		return (EFAULT);
24587 	}
24588 
24589 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24590 	bzero(cdb, CDB_GROUP1);
24591 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24592 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24593 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24594 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24595 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24596 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24597 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24598 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24599 	} else {
24600 		cdb[3] = msf->cdmsf_min0;
24601 		cdb[4] = msf->cdmsf_sec0;
24602 		cdb[5] = msf->cdmsf_frame0;
24603 		cdb[6] = msf->cdmsf_min1;
24604 		cdb[7] = msf->cdmsf_sec1;
24605 		cdb[8] = msf->cdmsf_frame1;
24606 	}
24607 	com->uscsi_cdb    = cdb;
24608 	com->uscsi_cdblen = CDB_GROUP1;
24609 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24610 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24611 	    SD_PATH_STANDARD);
24612 	kmem_free(com, sizeof (*com));
24613 	return (rval);
24614 }
24615 
24616 
24617 /*
24618  *    Function: sr_play_trkind()
24619  *
24620  * Description: This routine is the driver entry point for handling CD-ROM
24621  *		ioctl requests to output the audio signals at the specified
24622  *		starting address and continue the audio play until the specified
24623  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24624  *		format.
24625  *
24626  *   Arguments: dev	- the device 'dev_t'
24627  *		data	- pointer to user provided audio track/index structure,
24628  *		          specifying start/end addresses.
24629  *		flag	- this argument is a pass through to ddi_copyxxx()
24630  *		          directly from the mode argument of ioctl().
24631  *
24632  * Return Code: the code returned by sd_send_scsi_cmd()
24633  *		EFAULT if ddi_copyxxx() fails
24634  *		ENXIO if fail ddi_get_soft_state
24635  *		EINVAL if data pointer is NULL
24636  */
24637 
24638 static int
24639 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24640 {
24641 	struct cdrom_ti		ti_struct;
24642 	struct cdrom_ti		*ti = &ti_struct;
24643 	struct uscsi_cmd	*com = NULL;
24644 	char			cdb[CDB_GROUP1];
24645 	int			rval;
24646 
24647 	if (data == NULL) {
24648 		return (EINVAL);
24649 	}
24650 
24651 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24652 		return (EFAULT);
24653 	}
24654 
24655 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24656 	bzero(cdb, CDB_GROUP1);
24657 	cdb[0] = SCMD_PLAYAUDIO_TI;
24658 	cdb[4] = ti->cdti_trk0;
24659 	cdb[5] = ti->cdti_ind0;
24660 	cdb[7] = ti->cdti_trk1;
24661 	cdb[8] = ti->cdti_ind1;
24662 	com->uscsi_cdb    = cdb;
24663 	com->uscsi_cdblen = CDB_GROUP1;
24664 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24665 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24666 	    SD_PATH_STANDARD);
24667 	kmem_free(com, sizeof (*com));
24668 	return (rval);
24669 }
24670 
24671 
24672 /*
24673  *    Function: sr_read_all_subcodes()
24674  *
24675  * Description: This routine is the driver entry point for handling CD-ROM
24676  *		ioctl requests to return raw subcode data while the target is
24677  *		playing audio (CDROMSUBCODE).
24678  *
24679  *   Arguments: dev	- the device 'dev_t'
24680  *		data	- pointer to user provided cdrom subcode structure,
24681  *		          specifying the transfer length and address.
24682  *		flag	- this argument is a pass through to ddi_copyxxx()
24683  *		          directly from the mode argument of ioctl().
24684  *
24685  * Return Code: the code returned by sd_send_scsi_cmd()
24686  *		EFAULT if ddi_copyxxx() fails
24687  *		ENXIO if fail ddi_get_soft_state
24688  *		EINVAL if data pointer is NULL
24689  */
24690 
24691 static int
24692 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24693 {
24694 	struct sd_lun		*un = NULL;
24695 	struct uscsi_cmd	*com = NULL;
24696 	struct cdrom_subcode	*subcode = NULL;
24697 	int			rval;
24698 	size_t			buflen;
24699 	char			cdb[CDB_GROUP5];
24700 
24701 #ifdef _MULTI_DATAMODEL
24702 	/* To support ILP32 applications in an LP64 world */
24703 	struct cdrom_subcode32		cdrom_subcode32;
24704 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24705 #endif
24706 	if (data == NULL) {
24707 		return (EINVAL);
24708 	}
24709 
24710 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24711 		return (ENXIO);
24712 	}
24713 
24714 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24715 
24716 #ifdef _MULTI_DATAMODEL
24717 	switch (ddi_model_convert_from(flag & FMODELS)) {
24718 	case DDI_MODEL_ILP32:
24719 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24720 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24721 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24722 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24723 			return (EFAULT);
24724 		}
24725 		/* Convert the ILP32 uscsi data from the application to LP64 */
24726 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24727 		break;
24728 	case DDI_MODEL_NONE:
24729 		if (ddi_copyin(data, subcode,
24730 		    sizeof (struct cdrom_subcode), flag)) {
24731 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24732 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24733 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24734 			return (EFAULT);
24735 		}
24736 		break;
24737 	}
24738 #else /* ! _MULTI_DATAMODEL */
24739 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24740 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24741 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24742 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24743 		return (EFAULT);
24744 	}
24745 #endif /* _MULTI_DATAMODEL */
24746 
24747 	/*
24748 	 * Since MMC-2 expects max 3 bytes for length, check if the
24749 	 * length input is greater than 3 bytes
24750 	 */
24751 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24752 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24753 		    "sr_read_all_subcodes: "
24754 		    "cdrom transfer length too large: %d (limit %d)\n",
24755 		    subcode->cdsc_length, 0xFFFFFF);
24756 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24757 		return (EINVAL);
24758 	}
24759 
24760 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24761 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24762 	bzero(cdb, CDB_GROUP5);
24763 
24764 	if (un->un_f_mmc_cap == TRUE) {
24765 		cdb[0] = (char)SCMD_READ_CD;
24766 		cdb[2] = (char)0xff;
24767 		cdb[3] = (char)0xff;
24768 		cdb[4] = (char)0xff;
24769 		cdb[5] = (char)0xff;
24770 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24771 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24772 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24773 		cdb[10] = 1;
24774 	} else {
24775 		/*
24776 		 * Note: A vendor specific command (0xDF) is being used her to
24777 		 * request a read of all subcodes.
24778 		 */
24779 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24780 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24781 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24782 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24783 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24784 	}
24785 	com->uscsi_cdb	   = cdb;
24786 	com->uscsi_cdblen  = CDB_GROUP5;
24787 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24788 	com->uscsi_buflen  = buflen;
24789 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24790 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24791 	    SD_PATH_STANDARD);
24792 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24793 	kmem_free(com, sizeof (*com));
24794 	return (rval);
24795 }
24796 
24797 
24798 /*
24799  *    Function: sr_read_subchannel()
24800  *
24801  * Description: This routine is the driver entry point for handling CD-ROM
24802  *		ioctl requests to return the Q sub-channel data of the CD
24803  *		current position block. (CDROMSUBCHNL) The data includes the
24804  *		track number, index number, absolute CD-ROM address (LBA or MSF
24805  *		format per the user) , track relative CD-ROM address (LBA or MSF
24806  *		format per the user), control data and audio status.
24807  *
24808  *   Arguments: dev	- the device 'dev_t'
24809  *		data	- pointer to user provided cdrom sub-channel structure
24810  *		flag	- this argument is a pass through to ddi_copyxxx()
24811  *		          directly from the mode argument of ioctl().
24812  *
24813  * Return Code: the code returned by sd_send_scsi_cmd()
24814  *		EFAULT if ddi_copyxxx() fails
24815  *		ENXIO if fail ddi_get_soft_state
24816  *		EINVAL if data pointer is NULL
24817  */
24818 
24819 static int
24820 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24821 {
24822 	struct sd_lun		*un;
24823 	struct uscsi_cmd	*com;
24824 	struct cdrom_subchnl	subchanel;
24825 	struct cdrom_subchnl	*subchnl = &subchanel;
24826 	char			cdb[CDB_GROUP1];
24827 	caddr_t			buffer;
24828 	int			rval;
24829 
24830 	if (data == NULL) {
24831 		return (EINVAL);
24832 	}
24833 
24834 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24835 	    (un->un_state == SD_STATE_OFFLINE)) {
24836 		return (ENXIO);
24837 	}
24838 
24839 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24840 		return (EFAULT);
24841 	}
24842 
24843 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24844 	bzero(cdb, CDB_GROUP1);
24845 	cdb[0] = SCMD_READ_SUBCHANNEL;
24846 	/* Set the MSF bit based on the user requested address format */
24847 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24848 	/*
24849 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24850 	 * returned
24851 	 */
24852 	cdb[2] = 0x40;
24853 	/*
24854 	 * Set byte 3 to specify the return data format. A value of 0x01
24855 	 * indicates that the CD-ROM current position should be returned.
24856 	 */
24857 	cdb[3] = 0x01;
24858 	cdb[8] = 0x10;
24859 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24860 	com->uscsi_cdb	   = cdb;
24861 	com->uscsi_cdblen  = CDB_GROUP1;
24862 	com->uscsi_bufaddr = buffer;
24863 	com->uscsi_buflen  = 16;
24864 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24865 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24866 	    SD_PATH_STANDARD);
24867 	if (rval != 0) {
24868 		kmem_free(buffer, 16);
24869 		kmem_free(com, sizeof (*com));
24870 		return (rval);
24871 	}
24872 
24873 	/* Process the returned Q sub-channel data */
24874 	subchnl->cdsc_audiostatus = buffer[1];
24875 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24876 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24877 	subchnl->cdsc_trk	= buffer[6];
24878 	subchnl->cdsc_ind	= buffer[7];
24879 	if (subchnl->cdsc_format & CDROM_LBA) {
24880 		subchnl->cdsc_absaddr.lba =
24881 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24882 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24883 		subchnl->cdsc_reladdr.lba =
24884 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24885 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24886 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24887 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24888 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24889 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24890 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24891 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24892 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24893 	} else {
24894 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24895 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24896 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24897 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24898 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24899 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24900 	}
24901 	kmem_free(buffer, 16);
24902 	kmem_free(com, sizeof (*com));
24903 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24904 	    != 0) {
24905 		return (EFAULT);
24906 	}
24907 	return (rval);
24908 }
24909 
24910 
24911 /*
24912  *    Function: sr_read_tocentry()
24913  *
24914  * Description: This routine is the driver entry point for handling CD-ROM
24915  *		ioctl requests to read from the Table of Contents (TOC)
24916  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24917  *		fields, the starting address (LBA or MSF format per the user)
24918  *		and the data mode if the user specified track is a data track.
24919  *
24920  *		Note: The READ HEADER (0x44) command used in this routine is
24921  *		obsolete per the SCSI MMC spec but still supported in the
24922  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24923  *		therefore the command is still implemented in this routine.
24924  *
24925  *   Arguments: dev	- the device 'dev_t'
24926  *		data	- pointer to user provided toc entry structure,
24927  *			  specifying the track # and the address format
24928  *			  (LBA or MSF).
24929  *		flag	- this argument is a pass through to ddi_copyxxx()
24930  *		          directly from the mode argument of ioctl().
24931  *
24932  * Return Code: the code returned by sd_send_scsi_cmd()
24933  *		EFAULT if ddi_copyxxx() fails
24934  *		ENXIO if fail ddi_get_soft_state
24935  *		EINVAL if data pointer is NULL
24936  */
24937 
24938 static int
24939 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24940 {
24941 	struct sd_lun		*un = NULL;
24942 	struct uscsi_cmd	*com;
24943 	struct cdrom_tocentry	toc_entry;
24944 	struct cdrom_tocentry	*entry = &toc_entry;
24945 	caddr_t			buffer;
24946 	int			rval;
24947 	char			cdb[CDB_GROUP1];
24948 
24949 	if (data == NULL) {
24950 		return (EINVAL);
24951 	}
24952 
24953 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24954 	    (un->un_state == SD_STATE_OFFLINE)) {
24955 		return (ENXIO);
24956 	}
24957 
24958 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24959 		return (EFAULT);
24960 	}
24961 
24962 	/* Validate the requested track and address format */
24963 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24964 		return (EINVAL);
24965 	}
24966 
24967 	if (entry->cdte_track == 0) {
24968 		return (EINVAL);
24969 	}
24970 
24971 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24972 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24973 	bzero(cdb, CDB_GROUP1);
24974 
24975 	cdb[0] = SCMD_READ_TOC;
24976 	/* Set the MSF bit based on the user requested address format  */
24977 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24978 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24979 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24980 	} else {
24981 		cdb[6] = entry->cdte_track;
24982 	}
24983 
24984 	/*
24985 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24986 	 * (4 byte TOC response header + 8 byte track descriptor)
24987 	 */
24988 	cdb[8] = 12;
24989 	com->uscsi_cdb	   = cdb;
24990 	com->uscsi_cdblen  = CDB_GROUP1;
24991 	com->uscsi_bufaddr = buffer;
24992 	com->uscsi_buflen  = 0x0C;
24993 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24994 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24995 	    SD_PATH_STANDARD);
24996 	if (rval != 0) {
24997 		kmem_free(buffer, 12);
24998 		kmem_free(com, sizeof (*com));
24999 		return (rval);
25000 	}
25001 
25002 	/* Process the toc entry */
25003 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
25004 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
25005 	if (entry->cdte_format & CDROM_LBA) {
25006 		entry->cdte_addr.lba =
25007 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25008 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25009 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
25010 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
25011 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
25012 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
25013 		/*
25014 		 * Send a READ TOC command using the LBA address format to get
25015 		 * the LBA for the track requested so it can be used in the
25016 		 * READ HEADER request
25017 		 *
25018 		 * Note: The MSF bit of the READ HEADER command specifies the
25019 		 * output format. The block address specified in that command
25020 		 * must be in LBA format.
25021 		 */
25022 		cdb[1] = 0;
25023 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25024 		    SD_PATH_STANDARD);
25025 		if (rval != 0) {
25026 			kmem_free(buffer, 12);
25027 			kmem_free(com, sizeof (*com));
25028 			return (rval);
25029 		}
25030 	} else {
25031 		entry->cdte_addr.msf.minute	= buffer[9];
25032 		entry->cdte_addr.msf.second	= buffer[10];
25033 		entry->cdte_addr.msf.frame	= buffer[11];
25034 		/*
25035 		 * Send a READ TOC command using the LBA address format to get
25036 		 * the LBA for the track requested so it can be used in the
25037 		 * READ HEADER request
25038 		 *
25039 		 * Note: The MSF bit of the READ HEADER command specifies the
25040 		 * output format. The block address specified in that command
25041 		 * must be in LBA format.
25042 		 */
25043 		cdb[1] = 0;
25044 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25045 		    SD_PATH_STANDARD);
25046 		if (rval != 0) {
25047 			kmem_free(buffer, 12);
25048 			kmem_free(com, sizeof (*com));
25049 			return (rval);
25050 		}
25051 	}
25052 
25053 	/*
25054 	 * Build and send the READ HEADER command to determine the data mode of
25055 	 * the user specified track.
25056 	 */
25057 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
25058 	    (entry->cdte_track != CDROM_LEADOUT)) {
25059 		bzero(cdb, CDB_GROUP1);
25060 		cdb[0] = SCMD_READ_HEADER;
25061 		cdb[2] = buffer[8];
25062 		cdb[3] = buffer[9];
25063 		cdb[4] = buffer[10];
25064 		cdb[5] = buffer[11];
25065 		cdb[8] = 0x08;
25066 		com->uscsi_buflen = 0x08;
25067 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25068 		    SD_PATH_STANDARD);
25069 		if (rval == 0) {
25070 			entry->cdte_datamode = buffer[0];
25071 		} else {
25072 			/*
25073 			 * READ HEADER command failed, since this is
25074 			 * obsoleted in one spec, its better to return
25075 			 * -1 for an invlid track so that we can still
25076 			 * receive the rest of the TOC data.
25077 			 */
25078 			entry->cdte_datamode = (uchar_t)-1;
25079 		}
25080 	} else {
25081 		entry->cdte_datamode = (uchar_t)-1;
25082 	}
25083 
25084 	kmem_free(buffer, 12);
25085 	kmem_free(com, sizeof (*com));
25086 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
25087 		return (EFAULT);
25088 
25089 	return (rval);
25090 }
25091 
25092 
25093 /*
25094  *    Function: sr_read_tochdr()
25095  *
25096  * Description: This routine is the driver entry point for handling CD-ROM
25097  * 		ioctl requests to read the Table of Contents (TOC) header
25098  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
25099  *		and ending track numbers
25100  *
25101  *   Arguments: dev	- the device 'dev_t'
25102  *		data	- pointer to user provided toc header structure,
25103  *			  specifying the starting and ending track numbers.
25104  *		flag	- this argument is a pass through to ddi_copyxxx()
25105  *			  directly from the mode argument of ioctl().
25106  *
25107  * Return Code: the code returned by sd_send_scsi_cmd()
25108  *		EFAULT if ddi_copyxxx() fails
25109  *		ENXIO if fail ddi_get_soft_state
25110  *		EINVAL if data pointer is NULL
25111  */
25112 
25113 static int
25114 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
25115 {
25116 	struct sd_lun		*un;
25117 	struct uscsi_cmd	*com;
25118 	struct cdrom_tochdr	toc_header;
25119 	struct cdrom_tochdr	*hdr = &toc_header;
25120 	char			cdb[CDB_GROUP1];
25121 	int			rval;
25122 	caddr_t			buffer;
25123 
25124 	if (data == NULL) {
25125 		return (EINVAL);
25126 	}
25127 
25128 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25129 	    (un->un_state == SD_STATE_OFFLINE)) {
25130 		return (ENXIO);
25131 	}
25132 
25133 	buffer = kmem_zalloc(4, KM_SLEEP);
25134 	bzero(cdb, CDB_GROUP1);
25135 	cdb[0] = SCMD_READ_TOC;
25136 	/*
25137 	 * Specifying a track number of 0x00 in the READ TOC command indicates
25138 	 * that the TOC header should be returned
25139 	 */
25140 	cdb[6] = 0x00;
25141 	/*
25142 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
25143 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
25144 	 */
25145 	cdb[8] = 0x04;
25146 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25147 	com->uscsi_cdb	   = cdb;
25148 	com->uscsi_cdblen  = CDB_GROUP1;
25149 	com->uscsi_bufaddr = buffer;
25150 	com->uscsi_buflen  = 0x04;
25151 	com->uscsi_timeout = 300;
25152 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25153 
25154 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25155 	    SD_PATH_STANDARD);
25156 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25157 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
25158 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
25159 	} else {
25160 		hdr->cdth_trk0 = buffer[2];
25161 		hdr->cdth_trk1 = buffer[3];
25162 	}
25163 	kmem_free(buffer, 4);
25164 	kmem_free(com, sizeof (*com));
25165 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
25166 		return (EFAULT);
25167 	}
25168 	return (rval);
25169 }
25170 
25171 
25172 /*
25173  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
25174  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
25175  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
25176  * digital audio and extended architecture digital audio. These modes are
25177  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
25178  * MMC specs.
25179  *
25180  * In addition to support for the various data formats these routines also
25181  * include support for devices that implement only the direct access READ
25182  * commands (0x08, 0x28), devices that implement the READ_CD commands
25183  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
25184  * READ CDXA commands (0xD8, 0xDB)
25185  */
25186 
25187 /*
25188  *    Function: sr_read_mode1()
25189  *
25190  * Description: This routine is the driver entry point for handling CD-ROM
25191  *		ioctl read mode1 requests (CDROMREADMODE1).
25192  *
25193  *   Arguments: dev	- the device 'dev_t'
25194  *		data	- pointer to user provided cd read structure specifying
25195  *			  the lba buffer address and length.
25196  *		flag	- this argument is a pass through to ddi_copyxxx()
25197  *			  directly from the mode argument of ioctl().
25198  *
25199  * Return Code: the code returned by sd_send_scsi_cmd()
25200  *		EFAULT if ddi_copyxxx() fails
25201  *		ENXIO if fail ddi_get_soft_state
25202  *		EINVAL if data pointer is NULL
25203  */
25204 
25205 static int
25206 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25207 {
25208 	struct sd_lun		*un;
25209 	struct cdrom_read	mode1_struct;
25210 	struct cdrom_read	*mode1 = &mode1_struct;
25211 	int			rval;
25212 #ifdef _MULTI_DATAMODEL
25213 	/* To support ILP32 applications in an LP64 world */
25214 	struct cdrom_read32	cdrom_read32;
25215 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25216 #endif /* _MULTI_DATAMODEL */
25217 
25218 	if (data == NULL) {
25219 		return (EINVAL);
25220 	}
25221 
25222 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25223 	    (un->un_state == SD_STATE_OFFLINE)) {
25224 		return (ENXIO);
25225 	}
25226 
25227 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25228 	    "sd_read_mode1: entry: un:0x%p\n", un);
25229 
25230 #ifdef _MULTI_DATAMODEL
25231 	switch (ddi_model_convert_from(flag & FMODELS)) {
25232 	case DDI_MODEL_ILP32:
25233 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25234 			return (EFAULT);
25235 		}
25236 		/* Convert the ILP32 uscsi data from the application to LP64 */
25237 		cdrom_read32tocdrom_read(cdrd32, mode1);
25238 		break;
25239 	case DDI_MODEL_NONE:
25240 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25241 			return (EFAULT);
25242 		}
25243 	}
25244 #else /* ! _MULTI_DATAMODEL */
25245 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25246 		return (EFAULT);
25247 	}
25248 #endif /* _MULTI_DATAMODEL */
25249 
25250 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25251 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25252 
25253 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25254 	    "sd_read_mode1: exit: un:0x%p\n", un);
25255 
25256 	return (rval);
25257 }
25258 
25259 
25260 /*
25261  *    Function: sr_read_cd_mode2()
25262  *
25263  * Description: This routine is the driver entry point for handling CD-ROM
25264  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25265  *		support the READ CD (0xBE) command or the 1st generation
25266  *		READ CD (0xD4) command.
25267  *
25268  *   Arguments: dev	- the device 'dev_t'
25269  *		data	- pointer to user provided cd read structure specifying
25270  *			  the lba buffer address and length.
25271  *		flag	- this argument is a pass through to ddi_copyxxx()
25272  *			  directly from the mode argument of ioctl().
25273  *
25274  * Return Code: the code returned by sd_send_scsi_cmd()
25275  *		EFAULT if ddi_copyxxx() fails
25276  *		ENXIO if fail ddi_get_soft_state
25277  *		EINVAL if data pointer is NULL
25278  */
25279 
25280 static int
25281 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25282 {
25283 	struct sd_lun		*un;
25284 	struct uscsi_cmd	*com;
25285 	struct cdrom_read	mode2_struct;
25286 	struct cdrom_read	*mode2 = &mode2_struct;
25287 	uchar_t			cdb[CDB_GROUP5];
25288 	int			nblocks;
25289 	int			rval;
25290 #ifdef _MULTI_DATAMODEL
25291 	/*  To support ILP32 applications in an LP64 world */
25292 	struct cdrom_read32	cdrom_read32;
25293 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25294 #endif /* _MULTI_DATAMODEL */
25295 
25296 	if (data == NULL) {
25297 		return (EINVAL);
25298 	}
25299 
25300 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25301 	    (un->un_state == SD_STATE_OFFLINE)) {
25302 		return (ENXIO);
25303 	}
25304 
25305 #ifdef _MULTI_DATAMODEL
25306 	switch (ddi_model_convert_from(flag & FMODELS)) {
25307 	case DDI_MODEL_ILP32:
25308 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25309 			return (EFAULT);
25310 		}
25311 		/* Convert the ILP32 uscsi data from the application to LP64 */
25312 		cdrom_read32tocdrom_read(cdrd32, mode2);
25313 		break;
25314 	case DDI_MODEL_NONE:
25315 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25316 			return (EFAULT);
25317 		}
25318 		break;
25319 	}
25320 
25321 #else /* ! _MULTI_DATAMODEL */
25322 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25323 		return (EFAULT);
25324 	}
25325 #endif /* _MULTI_DATAMODEL */
25326 
25327 	bzero(cdb, sizeof (cdb));
25328 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25329 		/* Read command supported by 1st generation atapi drives */
25330 		cdb[0] = SCMD_READ_CDD4;
25331 	} else {
25332 		/* Universal CD Access Command */
25333 		cdb[0] = SCMD_READ_CD;
25334 	}
25335 
25336 	/*
25337 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25338 	 */
25339 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25340 
25341 	/* set the start address */
25342 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25343 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25344 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25345 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25346 
25347 	/* set the transfer length */
25348 	nblocks = mode2->cdread_buflen / 2336;
25349 	cdb[6] = (uchar_t)(nblocks >> 16);
25350 	cdb[7] = (uchar_t)(nblocks >> 8);
25351 	cdb[8] = (uchar_t)nblocks;
25352 
25353 	/* set the filter bits */
25354 	cdb[9] = CDROM_READ_CD_USERDATA;
25355 
25356 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25357 	com->uscsi_cdb = (caddr_t)cdb;
25358 	com->uscsi_cdblen = sizeof (cdb);
25359 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25360 	com->uscsi_buflen = mode2->cdread_buflen;
25361 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25362 
25363 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25364 	    SD_PATH_STANDARD);
25365 	kmem_free(com, sizeof (*com));
25366 	return (rval);
25367 }
25368 
25369 
25370 /*
25371  *    Function: sr_read_mode2()
25372  *
25373  * Description: This routine is the driver entry point for handling CD-ROM
25374  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25375  *		do not support the READ CD (0xBE) command.
25376  *
25377  *   Arguments: dev	- the device 'dev_t'
25378  *		data	- pointer to user provided cd read structure specifying
25379  *			  the lba buffer address and length.
25380  *		flag	- this argument is a pass through to ddi_copyxxx()
25381  *			  directly from the mode argument of ioctl().
25382  *
25383  * Return Code: the code returned by sd_send_scsi_cmd()
25384  *		EFAULT if ddi_copyxxx() fails
25385  *		ENXIO if fail ddi_get_soft_state
25386  *		EINVAL if data pointer is NULL
25387  *		EIO if fail to reset block size
25388  *		EAGAIN if commands are in progress in the driver
25389  */
25390 
25391 static int
25392 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25393 {
25394 	struct sd_lun		*un;
25395 	struct cdrom_read	mode2_struct;
25396 	struct cdrom_read	*mode2 = &mode2_struct;
25397 	int			rval;
25398 	uint32_t		restore_blksize;
25399 	struct uscsi_cmd	*com;
25400 	uchar_t			cdb[CDB_GROUP0];
25401 	int			nblocks;
25402 
25403 #ifdef _MULTI_DATAMODEL
25404 	/* To support ILP32 applications in an LP64 world */
25405 	struct cdrom_read32	cdrom_read32;
25406 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25407 #endif /* _MULTI_DATAMODEL */
25408 
25409 	if (data == NULL) {
25410 		return (EINVAL);
25411 	}
25412 
25413 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25414 	    (un->un_state == SD_STATE_OFFLINE)) {
25415 		return (ENXIO);
25416 	}
25417 
25418 	/*
25419 	 * Because this routine will update the device and driver block size
25420 	 * being used we want to make sure there are no commands in progress.
25421 	 * If commands are in progress the user will have to try again.
25422 	 *
25423 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25424 	 * in sdioctl to protect commands from sdioctl through to the top of
25425 	 * sd_uscsi_strategy. See sdioctl for details.
25426 	 */
25427 	mutex_enter(SD_MUTEX(un));
25428 	if (un->un_ncmds_in_driver != 1) {
25429 		mutex_exit(SD_MUTEX(un));
25430 		return (EAGAIN);
25431 	}
25432 	mutex_exit(SD_MUTEX(un));
25433 
25434 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25435 	    "sd_read_mode2: entry: un:0x%p\n", un);
25436 
25437 #ifdef _MULTI_DATAMODEL
25438 	switch (ddi_model_convert_from(flag & FMODELS)) {
25439 	case DDI_MODEL_ILP32:
25440 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25441 			return (EFAULT);
25442 		}
25443 		/* Convert the ILP32 uscsi data from the application to LP64 */
25444 		cdrom_read32tocdrom_read(cdrd32, mode2);
25445 		break;
25446 	case DDI_MODEL_NONE:
25447 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25448 			return (EFAULT);
25449 		}
25450 		break;
25451 	}
25452 #else /* ! _MULTI_DATAMODEL */
25453 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25454 		return (EFAULT);
25455 	}
25456 #endif /* _MULTI_DATAMODEL */
25457 
25458 	/* Store the current target block size for restoration later */
25459 	restore_blksize = un->un_tgt_blocksize;
25460 
25461 	/* Change the device and soft state target block size to 2336 */
25462 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25463 		rval = EIO;
25464 		goto done;
25465 	}
25466 
25467 
25468 	bzero(cdb, sizeof (cdb));
25469 
25470 	/* set READ operation */
25471 	cdb[0] = SCMD_READ;
25472 
25473 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25474 	mode2->cdread_lba >>= 2;
25475 
25476 	/* set the start address */
25477 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25478 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25479 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25480 
25481 	/* set the transfer length */
25482 	nblocks = mode2->cdread_buflen / 2336;
25483 	cdb[4] = (uchar_t)nblocks & 0xFF;
25484 
25485 	/* build command */
25486 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25487 	com->uscsi_cdb = (caddr_t)cdb;
25488 	com->uscsi_cdblen = sizeof (cdb);
25489 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25490 	com->uscsi_buflen = mode2->cdread_buflen;
25491 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25492 
25493 	/*
25494 	 * Issue SCSI command with user space address for read buffer.
25495 	 *
25496 	 * This sends the command through main channel in the driver.
25497 	 *
25498 	 * Since this is accessed via an IOCTL call, we go through the
25499 	 * standard path, so that if the device was powered down, then
25500 	 * it would be 'awakened' to handle the command.
25501 	 */
25502 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25503 	    SD_PATH_STANDARD);
25504 
25505 	kmem_free(com, sizeof (*com));
25506 
25507 	/* Restore the device and soft state target block size */
25508 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25509 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25510 		    "can't do switch back to mode 1\n");
25511 		/*
25512 		 * If sd_send_scsi_READ succeeded we still need to report
25513 		 * an error because we failed to reset the block size
25514 		 */
25515 		if (rval == 0) {
25516 			rval = EIO;
25517 		}
25518 	}
25519 
25520 done:
25521 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25522 	    "sd_read_mode2: exit: un:0x%p\n", un);
25523 
25524 	return (rval);
25525 }
25526 
25527 
25528 /*
25529  *    Function: sr_sector_mode()
25530  *
25531  * Description: This utility function is used by sr_read_mode2 to set the target
25532  *		block size based on the user specified size. This is a legacy
25533  *		implementation based upon a vendor specific mode page
25534  *
25535  *   Arguments: dev	- the device 'dev_t'
25536  *		data	- flag indicating if block size is being set to 2336 or
25537  *			  512.
25538  *
25539  * Return Code: the code returned by sd_send_scsi_cmd()
25540  *		EFAULT if ddi_copyxxx() fails
25541  *		ENXIO if fail ddi_get_soft_state
25542  *		EINVAL if data pointer is NULL
25543  */
25544 
25545 static int
25546 sr_sector_mode(dev_t dev, uint32_t blksize)
25547 {
25548 	struct sd_lun	*un;
25549 	uchar_t		*sense;
25550 	uchar_t		*select;
25551 	int		rval;
25552 
25553 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25554 	    (un->un_state == SD_STATE_OFFLINE)) {
25555 		return (ENXIO);
25556 	}
25557 
25558 	sense = kmem_zalloc(20, KM_SLEEP);
25559 
25560 	/* Note: This is a vendor specific mode page (0x81) */
25561 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25562 	    SD_PATH_STANDARD)) != 0) {
25563 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25564 		    "sr_sector_mode: Mode Sense failed\n");
25565 		kmem_free(sense, 20);
25566 		return (rval);
25567 	}
25568 	select = kmem_zalloc(20, KM_SLEEP);
25569 	select[3] = 0x08;
25570 	select[10] = ((blksize >> 8) & 0xff);
25571 	select[11] = (blksize & 0xff);
25572 	select[12] = 0x01;
25573 	select[13] = 0x06;
25574 	select[14] = sense[14];
25575 	select[15] = sense[15];
25576 	if (blksize == SD_MODE2_BLKSIZE) {
25577 		select[14] |= 0x01;
25578 	}
25579 
25580 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25581 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25582 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25583 		    "sr_sector_mode: Mode Select failed\n");
25584 	} else {
25585 		/*
25586 		 * Only update the softstate block size if we successfully
25587 		 * changed the device block mode.
25588 		 */
25589 		mutex_enter(SD_MUTEX(un));
25590 		sd_update_block_info(un, blksize, 0);
25591 		mutex_exit(SD_MUTEX(un));
25592 	}
25593 	kmem_free(sense, 20);
25594 	kmem_free(select, 20);
25595 	return (rval);
25596 }
25597 
25598 
25599 /*
25600  *    Function: sr_read_cdda()
25601  *
25602  * Description: This routine is the driver entry point for handling CD-ROM
25603  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25604  *		the target supports CDDA these requests are handled via a vendor
25605  *		specific command (0xD8) If the target does not support CDDA
25606  *		these requests are handled via the READ CD command (0xBE).
25607  *
25608  *   Arguments: dev	- the device 'dev_t'
25609  *		data	- pointer to user provided CD-DA structure specifying
25610  *			  the track starting address, transfer length, and
25611  *			  subcode options.
25612  *		flag	- this argument is a pass through to ddi_copyxxx()
25613  *			  directly from the mode argument of ioctl().
25614  *
25615  * Return Code: the code returned by sd_send_scsi_cmd()
25616  *		EFAULT if ddi_copyxxx() fails
25617  *		ENXIO if fail ddi_get_soft_state
25618  *		EINVAL if invalid arguments are provided
25619  *		ENOTTY
25620  */
25621 
25622 static int
25623 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25624 {
25625 	struct sd_lun			*un;
25626 	struct uscsi_cmd		*com;
25627 	struct cdrom_cdda		*cdda;
25628 	int				rval;
25629 	size_t				buflen;
25630 	char				cdb[CDB_GROUP5];
25631 
25632 #ifdef _MULTI_DATAMODEL
25633 	/* To support ILP32 applications in an LP64 world */
25634 	struct cdrom_cdda32	cdrom_cdda32;
25635 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25636 #endif /* _MULTI_DATAMODEL */
25637 
25638 	if (data == NULL) {
25639 		return (EINVAL);
25640 	}
25641 
25642 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25643 		return (ENXIO);
25644 	}
25645 
25646 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25647 
25648 #ifdef _MULTI_DATAMODEL
25649 	switch (ddi_model_convert_from(flag & FMODELS)) {
25650 	case DDI_MODEL_ILP32:
25651 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25652 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25653 			    "sr_read_cdda: ddi_copyin Failed\n");
25654 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25655 			return (EFAULT);
25656 		}
25657 		/* Convert the ILP32 uscsi data from the application to LP64 */
25658 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25659 		break;
25660 	case DDI_MODEL_NONE:
25661 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25662 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25663 			    "sr_read_cdda: ddi_copyin Failed\n");
25664 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25665 			return (EFAULT);
25666 		}
25667 		break;
25668 	}
25669 #else /* ! _MULTI_DATAMODEL */
25670 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25671 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25672 		    "sr_read_cdda: ddi_copyin Failed\n");
25673 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25674 		return (EFAULT);
25675 	}
25676 #endif /* _MULTI_DATAMODEL */
25677 
25678 	/*
25679 	 * Since MMC-2 expects max 3 bytes for length, check if the
25680 	 * length input is greater than 3 bytes
25681 	 */
25682 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25683 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25684 		    "cdrom transfer length too large: %d (limit %d)\n",
25685 		    cdda->cdda_length, 0xFFFFFF);
25686 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25687 		return (EINVAL);
25688 	}
25689 
25690 	switch (cdda->cdda_subcode) {
25691 	case CDROM_DA_NO_SUBCODE:
25692 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25693 		break;
25694 	case CDROM_DA_SUBQ:
25695 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25696 		break;
25697 	case CDROM_DA_ALL_SUBCODE:
25698 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25699 		break;
25700 	case CDROM_DA_SUBCODE_ONLY:
25701 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25702 		break;
25703 	default:
25704 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25705 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25706 		    cdda->cdda_subcode);
25707 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25708 		return (EINVAL);
25709 	}
25710 
25711 	/* Build and send the command */
25712 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25713 	bzero(cdb, CDB_GROUP5);
25714 
25715 	if (un->un_f_cfg_cdda == TRUE) {
25716 		cdb[0] = (char)SCMD_READ_CD;
25717 		cdb[1] = 0x04;
25718 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25719 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25720 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25721 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25722 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25723 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25724 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25725 		cdb[9] = 0x10;
25726 		switch (cdda->cdda_subcode) {
25727 		case CDROM_DA_NO_SUBCODE :
25728 			cdb[10] = 0x0;
25729 			break;
25730 		case CDROM_DA_SUBQ :
25731 			cdb[10] = 0x2;
25732 			break;
25733 		case CDROM_DA_ALL_SUBCODE :
25734 			cdb[10] = 0x1;
25735 			break;
25736 		case CDROM_DA_SUBCODE_ONLY :
25737 			/* FALLTHROUGH */
25738 		default :
25739 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25740 			kmem_free(com, sizeof (*com));
25741 			return (ENOTTY);
25742 		}
25743 	} else {
25744 		cdb[0] = (char)SCMD_READ_CDDA;
25745 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25746 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25747 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25748 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25749 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25750 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25751 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25752 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25753 		cdb[10] = cdda->cdda_subcode;
25754 	}
25755 
25756 	com->uscsi_cdb = cdb;
25757 	com->uscsi_cdblen = CDB_GROUP5;
25758 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25759 	com->uscsi_buflen = buflen;
25760 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25761 
25762 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25763 	    SD_PATH_STANDARD);
25764 
25765 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25766 	kmem_free(com, sizeof (*com));
25767 	return (rval);
25768 }
25769 
25770 
25771 /*
25772  *    Function: sr_read_cdxa()
25773  *
25774  * Description: This routine is the driver entry point for handling CD-ROM
25775  *		ioctl requests to return CD-XA (Extended Architecture) data.
25776  *		(CDROMCDXA).
25777  *
25778  *   Arguments: dev	- the device 'dev_t'
25779  *		data	- pointer to user provided CD-XA structure specifying
25780  *			  the data starting address, transfer length, and format
25781  *		flag	- this argument is a pass through to ddi_copyxxx()
25782  *			  directly from the mode argument of ioctl().
25783  *
25784  * Return Code: the code returned by sd_send_scsi_cmd()
25785  *		EFAULT if ddi_copyxxx() fails
25786  *		ENXIO if fail ddi_get_soft_state
25787  *		EINVAL if data pointer is NULL
25788  */
25789 
25790 static int
25791 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25792 {
25793 	struct sd_lun		*un;
25794 	struct uscsi_cmd	*com;
25795 	struct cdrom_cdxa	*cdxa;
25796 	int			rval;
25797 	size_t			buflen;
25798 	char			cdb[CDB_GROUP5];
25799 	uchar_t			read_flags;
25800 
25801 #ifdef _MULTI_DATAMODEL
25802 	/* To support ILP32 applications in an LP64 world */
25803 	struct cdrom_cdxa32		cdrom_cdxa32;
25804 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25805 #endif /* _MULTI_DATAMODEL */
25806 
25807 	if (data == NULL) {
25808 		return (EINVAL);
25809 	}
25810 
25811 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25812 		return (ENXIO);
25813 	}
25814 
25815 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25816 
25817 #ifdef _MULTI_DATAMODEL
25818 	switch (ddi_model_convert_from(flag & FMODELS)) {
25819 	case DDI_MODEL_ILP32:
25820 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25821 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25822 			return (EFAULT);
25823 		}
25824 		/*
25825 		 * Convert the ILP32 uscsi data from the
25826 		 * application to LP64 for internal use.
25827 		 */
25828 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25829 		break;
25830 	case DDI_MODEL_NONE:
25831 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25832 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25833 			return (EFAULT);
25834 		}
25835 		break;
25836 	}
25837 #else /* ! _MULTI_DATAMODEL */
25838 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25839 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25840 		return (EFAULT);
25841 	}
25842 #endif /* _MULTI_DATAMODEL */
25843 
25844 	/*
25845 	 * Since MMC-2 expects max 3 bytes for length, check if the
25846 	 * length input is greater than 3 bytes
25847 	 */
25848 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25849 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25850 		    "cdrom transfer length too large: %d (limit %d)\n",
25851 		    cdxa->cdxa_length, 0xFFFFFF);
25852 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25853 		return (EINVAL);
25854 	}
25855 
25856 	switch (cdxa->cdxa_format) {
25857 	case CDROM_XA_DATA:
25858 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25859 		read_flags = 0x10;
25860 		break;
25861 	case CDROM_XA_SECTOR_DATA:
25862 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25863 		read_flags = 0xf8;
25864 		break;
25865 	case CDROM_XA_DATA_W_ERROR:
25866 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25867 		read_flags = 0xfc;
25868 		break;
25869 	default:
25870 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25871 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25872 		    cdxa->cdxa_format);
25873 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25874 		return (EINVAL);
25875 	}
25876 
25877 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25878 	bzero(cdb, CDB_GROUP5);
25879 	if (un->un_f_mmc_cap == TRUE) {
25880 		cdb[0] = (char)SCMD_READ_CD;
25881 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25882 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25883 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25884 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25885 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25886 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25887 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25888 		cdb[9] = (char)read_flags;
25889 	} else {
25890 		/*
25891 		 * Note: A vendor specific command (0xDB) is being used her to
25892 		 * request a read of all subcodes.
25893 		 */
25894 		cdb[0] = (char)SCMD_READ_CDXA;
25895 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25896 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25897 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25898 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25899 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25900 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25901 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25902 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25903 		cdb[10] = cdxa->cdxa_format;
25904 	}
25905 	com->uscsi_cdb	   = cdb;
25906 	com->uscsi_cdblen  = CDB_GROUP5;
25907 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25908 	com->uscsi_buflen  = buflen;
25909 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25910 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25911 	    SD_PATH_STANDARD);
25912 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25913 	kmem_free(com, sizeof (*com));
25914 	return (rval);
25915 }
25916 
25917 
25918 /*
25919  *    Function: sr_eject()
25920  *
25921  * Description: This routine is the driver entry point for handling CD-ROM
25922  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25923  *
25924  *   Arguments: dev	- the device 'dev_t'
25925  *
25926  * Return Code: the code returned by sd_send_scsi_cmd()
25927  */
25928 
25929 static int
25930 sr_eject(dev_t dev)
25931 {
25932 	struct sd_lun	*un;
25933 	int		rval;
25934 
25935 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25936 	    (un->un_state == SD_STATE_OFFLINE)) {
25937 		return (ENXIO);
25938 	}
25939 
25940 	/*
25941 	 * To prevent race conditions with the eject
25942 	 * command, keep track of an eject command as
25943 	 * it progresses. If we are already handling
25944 	 * an eject command in the driver for the given
25945 	 * unit and another request to eject is received
25946 	 * immediately return EAGAIN so we don't lose
25947 	 * the command if the current eject command fails.
25948 	 */
25949 	mutex_enter(SD_MUTEX(un));
25950 	if (un->un_f_ejecting == TRUE) {
25951 		mutex_exit(SD_MUTEX(un));
25952 		return (EAGAIN);
25953 	}
25954 	un->un_f_ejecting = TRUE;
25955 	mutex_exit(SD_MUTEX(un));
25956 
25957 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25958 	    SD_PATH_STANDARD)) != 0) {
25959 		mutex_enter(SD_MUTEX(un));
25960 		un->un_f_ejecting = FALSE;
25961 		mutex_exit(SD_MUTEX(un));
25962 		return (rval);
25963 	}
25964 
25965 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25966 	    SD_PATH_STANDARD);
25967 
25968 	if (rval == 0) {
25969 		mutex_enter(SD_MUTEX(un));
25970 		sr_ejected(un);
25971 		un->un_mediastate = DKIO_EJECTED;
25972 		un->un_f_ejecting = FALSE;
25973 		cv_broadcast(&un->un_state_cv);
25974 		mutex_exit(SD_MUTEX(un));
25975 	} else {
25976 		mutex_enter(SD_MUTEX(un));
25977 		un->un_f_ejecting = FALSE;
25978 		mutex_exit(SD_MUTEX(un));
25979 	}
25980 	return (rval);
25981 }
25982 
25983 
25984 /*
25985  *    Function: sr_ejected()
25986  *
25987  * Description: This routine updates the soft state structure to invalidate the
25988  *		geometry information after the media has been ejected or a
25989  *		media eject has been detected.
25990  *
25991  *   Arguments: un - driver soft state (unit) structure
25992  */
25993 
25994 static void
25995 sr_ejected(struct sd_lun *un)
25996 {
25997 	struct sd_errstats *stp;
25998 
25999 	ASSERT(un != NULL);
26000 	ASSERT(mutex_owned(SD_MUTEX(un)));
26001 
26002 	un->un_f_blockcount_is_valid	= FALSE;
26003 	un->un_f_tgt_blocksize_is_valid	= FALSE;
26004 	mutex_exit(SD_MUTEX(un));
26005 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
26006 	mutex_enter(SD_MUTEX(un));
26007 
26008 	if (un->un_errstats != NULL) {
26009 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
26010 		stp->sd_capacity.value.ui64 = 0;
26011 	}
26012 }
26013 
26014 
26015 /*
26016  *    Function: sr_check_wp()
26017  *
26018  * Description: This routine checks the write protection of a removable
26019  *      media disk and hotpluggable devices via the write protect bit of
26020  *      the Mode Page Header device specific field. Some devices choke
26021  *      on unsupported mode page. In order to workaround this issue,
26022  *      this routine has been implemented to use 0x3f mode page(request
26023  *      for all pages) for all device types.
26024  *
26025  *   Arguments: dev		- the device 'dev_t'
26026  *
26027  * Return Code: int indicating if the device is write protected (1) or not (0)
26028  *
26029  *     Context: Kernel thread.
26030  *
26031  */
26032 
26033 static int
26034 sr_check_wp(dev_t dev)
26035 {
26036 	struct sd_lun	*un;
26037 	uchar_t		device_specific;
26038 	uchar_t		*sense;
26039 	int		hdrlen;
26040 	int		rval = FALSE;
26041 
26042 	/*
26043 	 * Note: The return codes for this routine should be reworked to
26044 	 * properly handle the case of a NULL softstate.
26045 	 */
26046 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26047 		return (FALSE);
26048 	}
26049 
26050 	if (un->un_f_cfg_is_atapi == TRUE) {
26051 		/*
26052 		 * The mode page contents are not required; set the allocation
26053 		 * length for the mode page header only
26054 		 */
26055 		hdrlen = MODE_HEADER_LENGTH_GRP2;
26056 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26057 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
26058 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26059 			goto err_exit;
26060 		device_specific =
26061 		    ((struct mode_header_grp2 *)sense)->device_specific;
26062 	} else {
26063 		hdrlen = MODE_HEADER_LENGTH;
26064 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26065 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
26066 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26067 			goto err_exit;
26068 		device_specific =
26069 		    ((struct mode_header *)sense)->device_specific;
26070 	}
26071 
26072 	/*
26073 	 * Write protect mode sense failed; not all disks
26074 	 * understand this query. Return FALSE assuming that
26075 	 * these devices are not writable.
26076 	 */
26077 	if (device_specific & WRITE_PROTECT) {
26078 		rval = TRUE;
26079 	}
26080 
26081 err_exit:
26082 	kmem_free(sense, hdrlen);
26083 	return (rval);
26084 }
26085 
26086 /*
26087  *    Function: sr_volume_ctrl()
26088  *
26089  * Description: This routine is the driver entry point for handling CD-ROM
26090  *		audio output volume ioctl requests. (CDROMVOLCTRL)
26091  *
26092  *   Arguments: dev	- the device 'dev_t'
26093  *		data	- pointer to user audio volume control structure
26094  *		flag	- this argument is a pass through to ddi_copyxxx()
26095  *			  directly from the mode argument of ioctl().
26096  *
26097  * Return Code: the code returned by sd_send_scsi_cmd()
26098  *		EFAULT if ddi_copyxxx() fails
26099  *		ENXIO if fail ddi_get_soft_state
26100  *		EINVAL if data pointer is NULL
26101  *
26102  */
26103 
26104 static int
26105 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
26106 {
26107 	struct sd_lun		*un;
26108 	struct cdrom_volctrl    volume;
26109 	struct cdrom_volctrl    *vol = &volume;
26110 	uchar_t			*sense_page;
26111 	uchar_t			*select_page;
26112 	uchar_t			*sense;
26113 	uchar_t			*select;
26114 	int			sense_buflen;
26115 	int			select_buflen;
26116 	int			rval;
26117 
26118 	if (data == NULL) {
26119 		return (EINVAL);
26120 	}
26121 
26122 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26123 	    (un->un_state == SD_STATE_OFFLINE)) {
26124 		return (ENXIO);
26125 	}
26126 
26127 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
26128 		return (EFAULT);
26129 	}
26130 
26131 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26132 		struct mode_header_grp2		*sense_mhp;
26133 		struct mode_header_grp2		*select_mhp;
26134 		int				bd_len;
26135 
26136 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
26137 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
26138 		    MODEPAGE_AUDIO_CTRL_LEN;
26139 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26140 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26141 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26142 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26143 		    SD_PATH_STANDARD)) != 0) {
26144 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
26145 			    "sr_volume_ctrl: Mode Sense Failed\n");
26146 			kmem_free(sense, sense_buflen);
26147 			kmem_free(select, select_buflen);
26148 			return (rval);
26149 		}
26150 		sense_mhp = (struct mode_header_grp2 *)sense;
26151 		select_mhp = (struct mode_header_grp2 *)select;
26152 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
26153 		    sense_mhp->bdesc_length_lo;
26154 		if (bd_len > MODE_BLK_DESC_LENGTH) {
26155 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26156 			    "sr_volume_ctrl: Mode Sense returned invalid "
26157 			    "block descriptor length\n");
26158 			kmem_free(sense, sense_buflen);
26159 			kmem_free(select, select_buflen);
26160 			return (EIO);
26161 		}
26162 		sense_page = (uchar_t *)
26163 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26164 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
26165 		select_mhp->length_msb = 0;
26166 		select_mhp->length_lsb = 0;
26167 		select_mhp->bdesc_length_hi = 0;
26168 		select_mhp->bdesc_length_lo = 0;
26169 	} else {
26170 		struct mode_header		*sense_mhp, *select_mhp;
26171 
26172 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26173 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26174 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26175 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26176 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26177 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26178 		    SD_PATH_STANDARD)) != 0) {
26179 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26180 			    "sr_volume_ctrl: Mode Sense Failed\n");
26181 			kmem_free(sense, sense_buflen);
26182 			kmem_free(select, select_buflen);
26183 			return (rval);
26184 		}
26185 		sense_mhp  = (struct mode_header *)sense;
26186 		select_mhp = (struct mode_header *)select;
26187 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26188 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26189 			    "sr_volume_ctrl: Mode Sense returned invalid "
26190 			    "block descriptor length\n");
26191 			kmem_free(sense, sense_buflen);
26192 			kmem_free(select, select_buflen);
26193 			return (EIO);
26194 		}
26195 		sense_page = (uchar_t *)
26196 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26197 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26198 		select_mhp->length = 0;
26199 		select_mhp->bdesc_length = 0;
26200 	}
26201 	/*
26202 	 * Note: An audio control data structure could be created and overlayed
26203 	 * on the following in place of the array indexing method implemented.
26204 	 */
26205 
26206 	/* Build the select data for the user volume data */
26207 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26208 	select_page[1] = 0xE;
26209 	/* Set the immediate bit */
26210 	select_page[2] = 0x04;
26211 	/* Zero out reserved fields */
26212 	select_page[3] = 0x00;
26213 	select_page[4] = 0x00;
26214 	/* Return sense data for fields not to be modified */
26215 	select_page[5] = sense_page[5];
26216 	select_page[6] = sense_page[6];
26217 	select_page[7] = sense_page[7];
26218 	/* Set the user specified volume levels for channel 0 and 1 */
26219 	select_page[8] = 0x01;
26220 	select_page[9] = vol->channel0;
26221 	select_page[10] = 0x02;
26222 	select_page[11] = vol->channel1;
26223 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26224 	select_page[12] = sense_page[12];
26225 	select_page[13] = sense_page[13];
26226 	select_page[14] = sense_page[14];
26227 	select_page[15] = sense_page[15];
26228 
26229 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26230 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26231 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26232 	} else {
26233 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26234 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26235 	}
26236 
26237 	kmem_free(sense, sense_buflen);
26238 	kmem_free(select, select_buflen);
26239 	return (rval);
26240 }
26241 
26242 
26243 /*
26244  *    Function: sr_read_sony_session_offset()
26245  *
26246  * Description: This routine is the driver entry point for handling CD-ROM
26247  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26248  *		The address of the first track in the last session of a
26249  *		multi-session CD-ROM is returned
26250  *
26251  *		Note: This routine uses a vendor specific key value in the
26252  *		command control field without implementing any vendor check here
26253  *		or in the ioctl routine.
26254  *
26255  *   Arguments: dev	- the device 'dev_t'
26256  *		data	- pointer to an int to hold the requested address
26257  *		flag	- this argument is a pass through to ddi_copyxxx()
26258  *			  directly from the mode argument of ioctl().
26259  *
26260  * Return Code: the code returned by sd_send_scsi_cmd()
26261  *		EFAULT if ddi_copyxxx() fails
26262  *		ENXIO if fail ddi_get_soft_state
26263  *		EINVAL if data pointer is NULL
26264  */
26265 
26266 static int
26267 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26268 {
26269 	struct sd_lun		*un;
26270 	struct uscsi_cmd	*com;
26271 	caddr_t			buffer;
26272 	char			cdb[CDB_GROUP1];
26273 	int			session_offset = 0;
26274 	int			rval;
26275 
26276 	if (data == NULL) {
26277 		return (EINVAL);
26278 	}
26279 
26280 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26281 	    (un->un_state == SD_STATE_OFFLINE)) {
26282 		return (ENXIO);
26283 	}
26284 
26285 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26286 	bzero(cdb, CDB_GROUP1);
26287 	cdb[0] = SCMD_READ_TOC;
26288 	/*
26289 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26290 	 * (4 byte TOC response header + 8 byte response data)
26291 	 */
26292 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26293 	/* Byte 9 is the control byte. A vendor specific value is used */
26294 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26295 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26296 	com->uscsi_cdb = cdb;
26297 	com->uscsi_cdblen = CDB_GROUP1;
26298 	com->uscsi_bufaddr = buffer;
26299 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26300 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26301 
26302 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26303 	    SD_PATH_STANDARD);
26304 	if (rval != 0) {
26305 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26306 		kmem_free(com, sizeof (*com));
26307 		return (rval);
26308 	}
26309 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26310 		session_offset =
26311 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26312 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26313 		/*
26314 		 * Offset returned offset in current lbasize block's. Convert to
26315 		 * 2k block's to return to the user
26316 		 */
26317 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26318 			session_offset >>= 2;
26319 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26320 			session_offset >>= 1;
26321 		}
26322 	}
26323 
26324 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26325 		rval = EFAULT;
26326 	}
26327 
26328 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26329 	kmem_free(com, sizeof (*com));
26330 	return (rval);
26331 }
26332 
26333 
26334 /*
26335  *    Function: sd_wm_cache_constructor()
26336  *
26337  * Description: Cache Constructor for the wmap cache for the read/modify/write
26338  * 		devices.
26339  *
26340  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26341  *		un	- sd_lun structure for the device.
26342  *		flag	- the km flags passed to constructor
26343  *
26344  * Return Code: 0 on success.
26345  *		-1 on failure.
26346  */
26347 
26348 /*ARGSUSED*/
26349 static int
26350 sd_wm_cache_constructor(void *wm, void *un, int flags)
26351 {
26352 	bzero(wm, sizeof (struct sd_w_map));
26353 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26354 	return (0);
26355 }
26356 
26357 
26358 /*
26359  *    Function: sd_wm_cache_destructor()
26360  *
26361  * Description: Cache destructor for the wmap cache for the read/modify/write
26362  * 		devices.
26363  *
26364  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26365  *		un	- sd_lun structure for the device.
26366  */
26367 /*ARGSUSED*/
26368 static void
26369 sd_wm_cache_destructor(void *wm, void *un)
26370 {
26371 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26372 }
26373 
26374 
26375 /*
26376  *    Function: sd_range_lock()
26377  *
26378  * Description: Lock the range of blocks specified as parameter to ensure
26379  *		that read, modify write is atomic and no other i/o writes
26380  *		to the same location. The range is specified in terms
26381  *		of start and end blocks. Block numbers are the actual
26382  *		media block numbers and not system.
26383  *
26384  *   Arguments: un	- sd_lun structure for the device.
26385  *		startb - The starting block number
26386  *		endb - The end block number
26387  *		typ - type of i/o - simple/read_modify_write
26388  *
26389  * Return Code: wm  - pointer to the wmap structure.
26390  *
26391  *     Context: This routine can sleep.
26392  */
26393 
26394 static struct sd_w_map *
26395 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26396 {
26397 	struct sd_w_map *wmp = NULL;
26398 	struct sd_w_map *sl_wmp = NULL;
26399 	struct sd_w_map *tmp_wmp;
26400 	wm_state state = SD_WM_CHK_LIST;
26401 
26402 
26403 	ASSERT(un != NULL);
26404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26405 
26406 	mutex_enter(SD_MUTEX(un));
26407 
26408 	while (state != SD_WM_DONE) {
26409 
26410 		switch (state) {
26411 		case SD_WM_CHK_LIST:
26412 			/*
26413 			 * This is the starting state. Check the wmap list
26414 			 * to see if the range is currently available.
26415 			 */
26416 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26417 				/*
26418 				 * If this is a simple write and no rmw
26419 				 * i/o is pending then try to lock the
26420 				 * range as the range should be available.
26421 				 */
26422 				state = SD_WM_LOCK_RANGE;
26423 			} else {
26424 				tmp_wmp = sd_get_range(un, startb, endb);
26425 				if (tmp_wmp != NULL) {
26426 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26427 						/*
26428 						 * Should not keep onlist wmps
26429 						 * while waiting this macro
26430 						 * will also do wmp = NULL;
26431 						 */
26432 						FREE_ONLIST_WMAP(un, wmp);
26433 					}
26434 					/*
26435 					 * sl_wmp is the wmap on which wait
26436 					 * is done, since the tmp_wmp points
26437 					 * to the inuse wmap, set sl_wmp to
26438 					 * tmp_wmp and change the state to sleep
26439 					 */
26440 					sl_wmp = tmp_wmp;
26441 					state = SD_WM_WAIT_MAP;
26442 				} else {
26443 					state = SD_WM_LOCK_RANGE;
26444 				}
26445 
26446 			}
26447 			break;
26448 
26449 		case SD_WM_LOCK_RANGE:
26450 			ASSERT(un->un_wm_cache);
26451 			/*
26452 			 * The range need to be locked, try to get a wmap.
26453 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26454 			 * if possible as we will have to release the sd mutex
26455 			 * if we have to sleep.
26456 			 */
26457 			if (wmp == NULL)
26458 				wmp = kmem_cache_alloc(un->un_wm_cache,
26459 				    KM_NOSLEEP);
26460 			if (wmp == NULL) {
26461 				mutex_exit(SD_MUTEX(un));
26462 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26463 				    (sd_lun::un_wm_cache))
26464 				wmp = kmem_cache_alloc(un->un_wm_cache,
26465 				    KM_SLEEP);
26466 				mutex_enter(SD_MUTEX(un));
26467 				/*
26468 				 * we released the mutex so recheck and go to
26469 				 * check list state.
26470 				 */
26471 				state = SD_WM_CHK_LIST;
26472 			} else {
26473 				/*
26474 				 * We exit out of state machine since we
26475 				 * have the wmap. Do the housekeeping first.
26476 				 * place the wmap on the wmap list if it is not
26477 				 * on it already and then set the state to done.
26478 				 */
26479 				wmp->wm_start = startb;
26480 				wmp->wm_end = endb;
26481 				wmp->wm_flags = typ | SD_WM_BUSY;
26482 				if (typ & SD_WTYPE_RMW) {
26483 					un->un_rmw_count++;
26484 				}
26485 				/*
26486 				 * If not already on the list then link
26487 				 */
26488 				if (!ONLIST(un, wmp)) {
26489 					wmp->wm_next = un->un_wm;
26490 					wmp->wm_prev = NULL;
26491 					if (wmp->wm_next)
26492 						wmp->wm_next->wm_prev = wmp;
26493 					un->un_wm = wmp;
26494 				}
26495 				state = SD_WM_DONE;
26496 			}
26497 			break;
26498 
26499 		case SD_WM_WAIT_MAP:
26500 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26501 			/*
26502 			 * Wait is done on sl_wmp, which is set in the
26503 			 * check_list state.
26504 			 */
26505 			sl_wmp->wm_wanted_count++;
26506 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26507 			sl_wmp->wm_wanted_count--;
26508 			/*
26509 			 * We can reuse the memory from the completed sl_wmp
26510 			 * lock range for our new lock, but only if noone is
26511 			 * waiting for it.
26512 			 */
26513 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26514 			if (sl_wmp->wm_wanted_count == 0) {
26515 				if (wmp != NULL)
26516 					CHK_N_FREEWMP(un, wmp);
26517 				wmp = sl_wmp;
26518 			}
26519 			sl_wmp = NULL;
26520 			/*
26521 			 * After waking up, need to recheck for availability of
26522 			 * range.
26523 			 */
26524 			state = SD_WM_CHK_LIST;
26525 			break;
26526 
26527 		default:
26528 			panic("sd_range_lock: "
26529 			    "Unknown state %d in sd_range_lock", state);
26530 			/*NOTREACHED*/
26531 		} /* switch(state) */
26532 
26533 	} /* while(state != SD_WM_DONE) */
26534 
26535 	mutex_exit(SD_MUTEX(un));
26536 
26537 	ASSERT(wmp != NULL);
26538 
26539 	return (wmp);
26540 }
26541 
26542 
26543 /*
26544  *    Function: sd_get_range()
26545  *
26546  * Description: Find if there any overlapping I/O to this one
26547  *		Returns the write-map of 1st such I/O, NULL otherwise.
26548  *
26549  *   Arguments: un	- sd_lun structure for the device.
26550  *		startb - The starting block number
26551  *		endb - The end block number
26552  *
26553  * Return Code: wm  - pointer to the wmap structure.
26554  */
26555 
26556 static struct sd_w_map *
26557 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26558 {
26559 	struct sd_w_map *wmp;
26560 
26561 	ASSERT(un != NULL);
26562 
26563 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26564 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26565 			continue;
26566 		}
26567 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26568 			break;
26569 		}
26570 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26571 			break;
26572 		}
26573 	}
26574 
26575 	return (wmp);
26576 }
26577 
26578 
26579 /*
26580  *    Function: sd_free_inlist_wmap()
26581  *
26582  * Description: Unlink and free a write map struct.
26583  *
26584  *   Arguments: un      - sd_lun structure for the device.
26585  *		wmp	- sd_w_map which needs to be unlinked.
26586  */
26587 
26588 static void
26589 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26590 {
26591 	ASSERT(un != NULL);
26592 
26593 	if (un->un_wm == wmp) {
26594 		un->un_wm = wmp->wm_next;
26595 	} else {
26596 		wmp->wm_prev->wm_next = wmp->wm_next;
26597 	}
26598 
26599 	if (wmp->wm_next) {
26600 		wmp->wm_next->wm_prev = wmp->wm_prev;
26601 	}
26602 
26603 	wmp->wm_next = wmp->wm_prev = NULL;
26604 
26605 	kmem_cache_free(un->un_wm_cache, wmp);
26606 }
26607 
26608 
26609 /*
26610  *    Function: sd_range_unlock()
26611  *
26612  * Description: Unlock the range locked by wm.
26613  *		Free write map if nobody else is waiting on it.
26614  *
26615  *   Arguments: un      - sd_lun structure for the device.
26616  *              wmp     - sd_w_map which needs to be unlinked.
26617  */
26618 
26619 static void
26620 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26621 {
26622 	ASSERT(un != NULL);
26623 	ASSERT(wm != NULL);
26624 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26625 
26626 	mutex_enter(SD_MUTEX(un));
26627 
26628 	if (wm->wm_flags & SD_WTYPE_RMW) {
26629 		un->un_rmw_count--;
26630 	}
26631 
26632 	if (wm->wm_wanted_count) {
26633 		wm->wm_flags = 0;
26634 		/*
26635 		 * Broadcast that the wmap is available now.
26636 		 */
26637 		cv_broadcast(&wm->wm_avail);
26638 	} else {
26639 		/*
26640 		 * If no one is waiting on the map, it should be free'ed.
26641 		 */
26642 		sd_free_inlist_wmap(un, wm);
26643 	}
26644 
26645 	mutex_exit(SD_MUTEX(un));
26646 }
26647 
26648 
26649 /*
26650  *    Function: sd_read_modify_write_task
26651  *
26652  * Description: Called from a taskq thread to initiate the write phase of
26653  *		a read-modify-write request.  This is used for targets where
26654  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26655  *
26656  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26657  *
26658  *     Context: Called under taskq thread context.
26659  */
26660 
26661 static void
26662 sd_read_modify_write_task(void *arg)
26663 {
26664 	struct sd_mapblocksize_info	*bsp;
26665 	struct buf	*bp;
26666 	struct sd_xbuf	*xp;
26667 	struct sd_lun	*un;
26668 
26669 	bp = arg;	/* The bp is given in arg */
26670 	ASSERT(bp != NULL);
26671 
26672 	/* Get the pointer to the layer-private data struct */
26673 	xp = SD_GET_XBUF(bp);
26674 	ASSERT(xp != NULL);
26675 	bsp = xp->xb_private;
26676 	ASSERT(bsp != NULL);
26677 
26678 	un = SD_GET_UN(bp);
26679 	ASSERT(un != NULL);
26680 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26681 
26682 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26683 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26684 
26685 	/*
26686 	 * This is the write phase of a read-modify-write request, called
26687 	 * under the context of a taskq thread in response to the completion
26688 	 * of the read portion of the rmw request completing under interrupt
26689 	 * context. The write request must be sent from here down the iostart
26690 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26691 	 * we use the layer index saved in the layer-private data area.
26692 	 */
26693 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26694 
26695 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26696 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26697 }
26698 
26699 
26700 /*
26701  *    Function: sddump_do_read_of_rmw()
26702  *
26703  * Description: This routine will be called from sddump, If sddump is called
26704  *		with an I/O which not aligned on device blocksize boundary
26705  *		then the write has to be converted to read-modify-write.
26706  *		Do the read part here in order to keep sddump simple.
26707  *		Note - That the sd_mutex is held across the call to this
26708  *		routine.
26709  *
26710  *   Arguments: un	- sd_lun
26711  *		blkno	- block number in terms of media block size.
26712  *		nblk	- number of blocks.
26713  *		bpp	- pointer to pointer to the buf structure. On return
26714  *			from this function, *bpp points to the valid buffer
26715  *			to which the write has to be done.
26716  *
26717  * Return Code: 0 for success or errno-type return code
26718  */
26719 
26720 static int
26721 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26722 	struct buf **bpp)
26723 {
26724 	int err;
26725 	int i;
26726 	int rval;
26727 	struct buf *bp;
26728 	struct scsi_pkt *pkt = NULL;
26729 	uint32_t target_blocksize;
26730 
26731 	ASSERT(un != NULL);
26732 	ASSERT(mutex_owned(SD_MUTEX(un)));
26733 
26734 	target_blocksize = un->un_tgt_blocksize;
26735 
26736 	mutex_exit(SD_MUTEX(un));
26737 
26738 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26739 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26740 	if (bp == NULL) {
26741 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26742 		    "no resources for dumping; giving up");
26743 		err = ENOMEM;
26744 		goto done;
26745 	}
26746 
26747 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26748 	    blkno, nblk);
26749 	if (rval != 0) {
26750 		scsi_free_consistent_buf(bp);
26751 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26752 		    "no resources for dumping; giving up");
26753 		err = ENOMEM;
26754 		goto done;
26755 	}
26756 
26757 	pkt->pkt_flags |= FLAG_NOINTR;
26758 
26759 	err = EIO;
26760 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26761 
26762 		/*
26763 		 * Scsi_poll returns 0 (success) if the command completes and
26764 		 * the status block is STATUS_GOOD.  We should only check
26765 		 * errors if this condition is not true.  Even then we should
26766 		 * send our own request sense packet only if we have a check
26767 		 * condition and auto request sense has not been performed by
26768 		 * the hba.
26769 		 */
26770 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26771 
26772 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26773 			err = 0;
26774 			break;
26775 		}
26776 
26777 		/*
26778 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26779 		 * no need to read RQS data.
26780 		 */
26781 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26782 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26783 			    "Error while dumping state with rmw..."
26784 			    "Device is gone\n");
26785 			break;
26786 		}
26787 
26788 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26789 			SD_INFO(SD_LOG_DUMP, un,
26790 			    "sddump: read failed with CHECK, try # %d\n", i);
26791 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26792 				(void) sd_send_polled_RQS(un);
26793 			}
26794 
26795 			continue;
26796 		}
26797 
26798 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26799 			int reset_retval = 0;
26800 
26801 			SD_INFO(SD_LOG_DUMP, un,
26802 			    "sddump: read failed with BUSY, try # %d\n", i);
26803 
26804 			if (un->un_f_lun_reset_enabled == TRUE) {
26805 				reset_retval = scsi_reset(SD_ADDRESS(un),
26806 				    RESET_LUN);
26807 			}
26808 			if (reset_retval == 0) {
26809 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26810 			}
26811 			(void) sd_send_polled_RQS(un);
26812 
26813 		} else {
26814 			SD_INFO(SD_LOG_DUMP, un,
26815 			    "sddump: read failed with 0x%x, try # %d\n",
26816 			    SD_GET_PKT_STATUS(pkt), i);
26817 			mutex_enter(SD_MUTEX(un));
26818 			sd_reset_target(un, pkt);
26819 			mutex_exit(SD_MUTEX(un));
26820 		}
26821 
26822 		/*
26823 		 * If we are not getting anywhere with lun/target resets,
26824 		 * let's reset the bus.
26825 		 */
26826 		if (i > SD_NDUMP_RETRIES/2) {
26827 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26828 			(void) sd_send_polled_RQS(un);
26829 		}
26830 
26831 	}
26832 	scsi_destroy_pkt(pkt);
26833 
26834 	if (err != 0) {
26835 		scsi_free_consistent_buf(bp);
26836 		*bpp = NULL;
26837 	} else {
26838 		*bpp = bp;
26839 	}
26840 
26841 done:
26842 	mutex_enter(SD_MUTEX(un));
26843 	return (err);
26844 }
26845 
26846 
26847 /*
26848  *    Function: sd_failfast_flushq
26849  *
26850  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26851  *		in b_flags and move them onto the failfast queue, then kick
26852  *		off a thread to return all bp's on the failfast queue to
26853  *		their owners with an error set.
26854  *
26855  *   Arguments: un - pointer to the soft state struct for the instance.
26856  *
26857  *     Context: may execute in interrupt context.
26858  */
26859 
26860 static void
26861 sd_failfast_flushq(struct sd_lun *un)
26862 {
26863 	struct buf *bp;
26864 	struct buf *next_waitq_bp;
26865 	struct buf *prev_waitq_bp = NULL;
26866 
26867 	ASSERT(un != NULL);
26868 	ASSERT(mutex_owned(SD_MUTEX(un)));
26869 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26870 	ASSERT(un->un_failfast_bp == NULL);
26871 
26872 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26873 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26874 
26875 	/*
26876 	 * Check if we should flush all bufs when entering failfast state, or
26877 	 * just those with B_FAILFAST set.
26878 	 */
26879 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26880 		/*
26881 		 * Move *all* bp's on the wait queue to the failfast flush
26882 		 * queue, including those that do NOT have B_FAILFAST set.
26883 		 */
26884 		if (un->un_failfast_headp == NULL) {
26885 			ASSERT(un->un_failfast_tailp == NULL);
26886 			un->un_failfast_headp = un->un_waitq_headp;
26887 		} else {
26888 			ASSERT(un->un_failfast_tailp != NULL);
26889 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26890 		}
26891 
26892 		un->un_failfast_tailp = un->un_waitq_tailp;
26893 
26894 		/* update kstat for each bp moved out of the waitq */
26895 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26896 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26897 		}
26898 
26899 		/* empty the waitq */
26900 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26901 
26902 	} else {
26903 		/*
26904 		 * Go thru the wait queue, pick off all entries with
26905 		 * B_FAILFAST set, and move these onto the failfast queue.
26906 		 */
26907 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26908 			/*
26909 			 * Save the pointer to the next bp on the wait queue,
26910 			 * so we get to it on the next iteration of this loop.
26911 			 */
26912 			next_waitq_bp = bp->av_forw;
26913 
26914 			/*
26915 			 * If this bp from the wait queue does NOT have
26916 			 * B_FAILFAST set, just move on to the next element
26917 			 * in the wait queue. Note, this is the only place
26918 			 * where it is correct to set prev_waitq_bp.
26919 			 */
26920 			if ((bp->b_flags & B_FAILFAST) == 0) {
26921 				prev_waitq_bp = bp;
26922 				continue;
26923 			}
26924 
26925 			/*
26926 			 * Remove the bp from the wait queue.
26927 			 */
26928 			if (bp == un->un_waitq_headp) {
26929 				/* The bp is the first element of the waitq. */
26930 				un->un_waitq_headp = next_waitq_bp;
26931 				if (un->un_waitq_headp == NULL) {
26932 					/* The wait queue is now empty */
26933 					un->un_waitq_tailp = NULL;
26934 				}
26935 			} else {
26936 				/*
26937 				 * The bp is either somewhere in the middle
26938 				 * or at the end of the wait queue.
26939 				 */
26940 				ASSERT(un->un_waitq_headp != NULL);
26941 				ASSERT(prev_waitq_bp != NULL);
26942 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26943 				    == 0);
26944 				if (bp == un->un_waitq_tailp) {
26945 					/* bp is the last entry on the waitq. */
26946 					ASSERT(next_waitq_bp == NULL);
26947 					un->un_waitq_tailp = prev_waitq_bp;
26948 				}
26949 				prev_waitq_bp->av_forw = next_waitq_bp;
26950 			}
26951 			bp->av_forw = NULL;
26952 
26953 			/*
26954 			 * update kstat since the bp is moved out of
26955 			 * the waitq
26956 			 */
26957 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26958 
26959 			/*
26960 			 * Now put the bp onto the failfast queue.
26961 			 */
26962 			if (un->un_failfast_headp == NULL) {
26963 				/* failfast queue is currently empty */
26964 				ASSERT(un->un_failfast_tailp == NULL);
26965 				un->un_failfast_headp =
26966 				    un->un_failfast_tailp = bp;
26967 			} else {
26968 				/* Add the bp to the end of the failfast q */
26969 				ASSERT(un->un_failfast_tailp != NULL);
26970 				ASSERT(un->un_failfast_tailp->b_flags &
26971 				    B_FAILFAST);
26972 				un->un_failfast_tailp->av_forw = bp;
26973 				un->un_failfast_tailp = bp;
26974 			}
26975 		}
26976 	}
26977 
26978 	/*
26979 	 * Now return all bp's on the failfast queue to their owners.
26980 	 */
26981 	while ((bp = un->un_failfast_headp) != NULL) {
26982 
26983 		un->un_failfast_headp = bp->av_forw;
26984 		if (un->un_failfast_headp == NULL) {
26985 			un->un_failfast_tailp = NULL;
26986 		}
26987 
26988 		/*
26989 		 * We want to return the bp with a failure error code, but
26990 		 * we do not want a call to sd_start_cmds() to occur here,
26991 		 * so use sd_return_failed_command_no_restart() instead of
26992 		 * sd_return_failed_command().
26993 		 */
26994 		sd_return_failed_command_no_restart(un, bp, EIO);
26995 	}
26996 
26997 	/* Flush the xbuf queues if required. */
26998 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26999 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
27000 	}
27001 
27002 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
27003 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
27004 }
27005 
27006 
27007 /*
27008  *    Function: sd_failfast_flushq_callback
27009  *
27010  * Description: Return TRUE if the given bp meets the criteria for failfast
27011  *		flushing. Used with ddi_xbuf_flushq(9F).
27012  *
27013  *   Arguments: bp - ptr to buf struct to be examined.
27014  *
27015  *     Context: Any
27016  */
27017 
27018 static int
27019 sd_failfast_flushq_callback(struct buf *bp)
27020 {
27021 	/*
27022 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
27023 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
27024 	 */
27025 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
27026 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
27027 }
27028 
27029 
27030 
27031 /*
27032  * Function: sd_setup_next_xfer
27033  *
27034  * Description: Prepare next I/O operation using DMA_PARTIAL
27035  *
27036  */
27037 
27038 static int
27039 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
27040     struct scsi_pkt *pkt, struct sd_xbuf *xp)
27041 {
27042 	ssize_t	num_blks_not_xfered;
27043 	daddr_t	strt_blk_num;
27044 	ssize_t	bytes_not_xfered;
27045 	int	rval;
27046 
27047 	ASSERT(pkt->pkt_resid == 0);
27048 
27049 	/*
27050 	 * Calculate next block number and amount to be transferred.
27051 	 *
27052 	 * How much data NOT transfered to the HBA yet.
27053 	 */
27054 	bytes_not_xfered = xp->xb_dma_resid;
27055 
27056 	/*
27057 	 * figure how many blocks NOT transfered to the HBA yet.
27058 	 */
27059 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
27060 
27061 	/*
27062 	 * set starting block number to the end of what WAS transfered.
27063 	 */
27064 	strt_blk_num = xp->xb_blkno +
27065 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
27066 
27067 	/*
27068 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
27069 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
27070 	 * the disk mutex here.
27071 	 */
27072 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
27073 	    strt_blk_num, num_blks_not_xfered);
27074 
27075 	if (rval == 0) {
27076 
27077 		/*
27078 		 * Success.
27079 		 *
27080 		 * Adjust things if there are still more blocks to be
27081 		 * transfered.
27082 		 */
27083 		xp->xb_dma_resid = pkt->pkt_resid;
27084 		pkt->pkt_resid = 0;
27085 
27086 		return (1);
27087 	}
27088 
27089 	/*
27090 	 * There's really only one possible return value from
27091 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
27092 	 * returns NULL.
27093 	 */
27094 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
27095 
27096 	bp->b_resid = bp->b_bcount;
27097 	bp->b_flags |= B_ERROR;
27098 
27099 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27100 	    "Error setting up next portion of DMA transfer\n");
27101 
27102 	return (0);
27103 }
27104 
27105 /*
27106  *    Function: sd_panic_for_res_conflict
27107  *
27108  * Description: Call panic with a string formatted with "Reservation Conflict"
27109  *		and a human readable identifier indicating the SD instance
27110  *		that experienced the reservation conflict.
27111  *
27112  *   Arguments: un - pointer to the soft state struct for the instance.
27113  *
27114  *     Context: may execute in interrupt context.
27115  */
27116 
27117 #define	SD_RESV_CONFLICT_FMT_LEN 40
27118 void
27119 sd_panic_for_res_conflict(struct sd_lun *un)
27120 {
27121 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
27122 	char path_str[MAXPATHLEN];
27123 
27124 	(void) snprintf(panic_str, sizeof (panic_str),
27125 	    "Reservation Conflict\nDisk: %s",
27126 	    ddi_pathname(SD_DEVINFO(un), path_str));
27127 
27128 	panic(panic_str);
27129 }
27130 
27131 /*
27132  * Note: The following sd_faultinjection_ioctl( ) routines implement
27133  * driver support for handling fault injection for error analysis
27134  * causing faults in multiple layers of the driver.
27135  *
27136  */
27137 
27138 #ifdef SD_FAULT_INJECTION
27139 static uint_t   sd_fault_injection_on = 0;
27140 
27141 /*
27142  *    Function: sd_faultinjection_ioctl()
27143  *
27144  * Description: This routine is the driver entry point for handling
27145  *              faultinjection ioctls to inject errors into the
27146  *              layer model
27147  *
27148  *   Arguments: cmd	- the ioctl cmd received
27149  *		arg	- the arguments from user and returns
27150  */
27151 
27152 static void
27153 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
27154 
27155 	uint_t i;
27156 	uint_t rval;
27157 
27158 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
27159 
27160 	mutex_enter(SD_MUTEX(un));
27161 
27162 	switch (cmd) {
27163 	case SDIOCRUN:
27164 		/* Allow pushed faults to be injected */
27165 		SD_INFO(SD_LOG_SDTEST, un,
27166 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
27167 
27168 		sd_fault_injection_on = 1;
27169 
27170 		SD_INFO(SD_LOG_IOERR, un,
27171 		    "sd_faultinjection_ioctl: run finished\n");
27172 		break;
27173 
27174 	case SDIOCSTART:
27175 		/* Start Injection Session */
27176 		SD_INFO(SD_LOG_SDTEST, un,
27177 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
27178 
27179 		sd_fault_injection_on = 0;
27180 		un->sd_injection_mask = 0xFFFFFFFF;
27181 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27182 			un->sd_fi_fifo_pkt[i] = NULL;
27183 			un->sd_fi_fifo_xb[i] = NULL;
27184 			un->sd_fi_fifo_un[i] = NULL;
27185 			un->sd_fi_fifo_arq[i] = NULL;
27186 		}
27187 		un->sd_fi_fifo_start = 0;
27188 		un->sd_fi_fifo_end = 0;
27189 
27190 		mutex_enter(&(un->un_fi_mutex));
27191 		un->sd_fi_log[0] = '\0';
27192 		un->sd_fi_buf_len = 0;
27193 		mutex_exit(&(un->un_fi_mutex));
27194 
27195 		SD_INFO(SD_LOG_IOERR, un,
27196 		    "sd_faultinjection_ioctl: start finished\n");
27197 		break;
27198 
27199 	case SDIOCSTOP:
27200 		/* Stop Injection Session */
27201 		SD_INFO(SD_LOG_SDTEST, un,
27202 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27203 		sd_fault_injection_on = 0;
27204 		un->sd_injection_mask = 0x0;
27205 
27206 		/* Empty stray or unuseds structs from fifo */
27207 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27208 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27209 				kmem_free(un->sd_fi_fifo_pkt[i],
27210 				    sizeof (struct sd_fi_pkt));
27211 			}
27212 			if (un->sd_fi_fifo_xb[i] != NULL) {
27213 				kmem_free(un->sd_fi_fifo_xb[i],
27214 				    sizeof (struct sd_fi_xb));
27215 			}
27216 			if (un->sd_fi_fifo_un[i] != NULL) {
27217 				kmem_free(un->sd_fi_fifo_un[i],
27218 				    sizeof (struct sd_fi_un));
27219 			}
27220 			if (un->sd_fi_fifo_arq[i] != NULL) {
27221 				kmem_free(un->sd_fi_fifo_arq[i],
27222 				    sizeof (struct sd_fi_arq));
27223 			}
27224 			un->sd_fi_fifo_pkt[i] = NULL;
27225 			un->sd_fi_fifo_un[i] = NULL;
27226 			un->sd_fi_fifo_xb[i] = NULL;
27227 			un->sd_fi_fifo_arq[i] = NULL;
27228 		}
27229 		un->sd_fi_fifo_start = 0;
27230 		un->sd_fi_fifo_end = 0;
27231 
27232 		SD_INFO(SD_LOG_IOERR, un,
27233 		    "sd_faultinjection_ioctl: stop finished\n");
27234 		break;
27235 
27236 	case SDIOCINSERTPKT:
27237 		/* Store a packet struct to be pushed onto fifo */
27238 		SD_INFO(SD_LOG_SDTEST, un,
27239 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27240 
27241 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27242 
27243 		sd_fault_injection_on = 0;
27244 
27245 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27246 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27247 			kmem_free(un->sd_fi_fifo_pkt[i],
27248 			    sizeof (struct sd_fi_pkt));
27249 		}
27250 		if (arg != NULL) {
27251 			un->sd_fi_fifo_pkt[i] =
27252 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27253 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27254 				/* Alloc failed don't store anything */
27255 				break;
27256 			}
27257 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27258 			    sizeof (struct sd_fi_pkt), 0);
27259 			if (rval == -1) {
27260 				kmem_free(un->sd_fi_fifo_pkt[i],
27261 				    sizeof (struct sd_fi_pkt));
27262 				un->sd_fi_fifo_pkt[i] = NULL;
27263 			}
27264 		} else {
27265 			SD_INFO(SD_LOG_IOERR, un,
27266 			    "sd_faultinjection_ioctl: pkt null\n");
27267 		}
27268 		break;
27269 
27270 	case SDIOCINSERTXB:
27271 		/* Store a xb struct to be pushed onto fifo */
27272 		SD_INFO(SD_LOG_SDTEST, un,
27273 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27274 
27275 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27276 
27277 		sd_fault_injection_on = 0;
27278 
27279 		if (un->sd_fi_fifo_xb[i] != NULL) {
27280 			kmem_free(un->sd_fi_fifo_xb[i],
27281 			    sizeof (struct sd_fi_xb));
27282 			un->sd_fi_fifo_xb[i] = NULL;
27283 		}
27284 		if (arg != NULL) {
27285 			un->sd_fi_fifo_xb[i] =
27286 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27287 			if (un->sd_fi_fifo_xb[i] == NULL) {
27288 				/* Alloc failed don't store anything */
27289 				break;
27290 			}
27291 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27292 			    sizeof (struct sd_fi_xb), 0);
27293 
27294 			if (rval == -1) {
27295 				kmem_free(un->sd_fi_fifo_xb[i],
27296 				    sizeof (struct sd_fi_xb));
27297 				un->sd_fi_fifo_xb[i] = NULL;
27298 			}
27299 		} else {
27300 			SD_INFO(SD_LOG_IOERR, un,
27301 			    "sd_faultinjection_ioctl: xb null\n");
27302 		}
27303 		break;
27304 
27305 	case SDIOCINSERTUN:
27306 		/* Store a un struct to be pushed onto fifo */
27307 		SD_INFO(SD_LOG_SDTEST, un,
27308 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27309 
27310 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27311 
27312 		sd_fault_injection_on = 0;
27313 
27314 		if (un->sd_fi_fifo_un[i] != NULL) {
27315 			kmem_free(un->sd_fi_fifo_un[i],
27316 			    sizeof (struct sd_fi_un));
27317 			un->sd_fi_fifo_un[i] = NULL;
27318 		}
27319 		if (arg != NULL) {
27320 			un->sd_fi_fifo_un[i] =
27321 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27322 			if (un->sd_fi_fifo_un[i] == NULL) {
27323 				/* Alloc failed don't store anything */
27324 				break;
27325 			}
27326 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27327 			    sizeof (struct sd_fi_un), 0);
27328 			if (rval == -1) {
27329 				kmem_free(un->sd_fi_fifo_un[i],
27330 				    sizeof (struct sd_fi_un));
27331 				un->sd_fi_fifo_un[i] = NULL;
27332 			}
27333 
27334 		} else {
27335 			SD_INFO(SD_LOG_IOERR, un,
27336 			    "sd_faultinjection_ioctl: un null\n");
27337 		}
27338 
27339 		break;
27340 
27341 	case SDIOCINSERTARQ:
27342 		/* Store a arq struct to be pushed onto fifo */
27343 		SD_INFO(SD_LOG_SDTEST, un,
27344 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27345 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27346 
27347 		sd_fault_injection_on = 0;
27348 
27349 		if (un->sd_fi_fifo_arq[i] != NULL) {
27350 			kmem_free(un->sd_fi_fifo_arq[i],
27351 			    sizeof (struct sd_fi_arq));
27352 			un->sd_fi_fifo_arq[i] = NULL;
27353 		}
27354 		if (arg != NULL) {
27355 			un->sd_fi_fifo_arq[i] =
27356 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27357 			if (un->sd_fi_fifo_arq[i] == NULL) {
27358 				/* Alloc failed don't store anything */
27359 				break;
27360 			}
27361 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27362 			    sizeof (struct sd_fi_arq), 0);
27363 			if (rval == -1) {
27364 				kmem_free(un->sd_fi_fifo_arq[i],
27365 				    sizeof (struct sd_fi_arq));
27366 				un->sd_fi_fifo_arq[i] = NULL;
27367 			}
27368 
27369 		} else {
27370 			SD_INFO(SD_LOG_IOERR, un,
27371 			    "sd_faultinjection_ioctl: arq null\n");
27372 		}
27373 
27374 		break;
27375 
27376 	case SDIOCPUSH:
27377 		/* Push stored xb, pkt, un, and arq onto fifo */
27378 		sd_fault_injection_on = 0;
27379 
27380 		if (arg != NULL) {
27381 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27382 			if (rval != -1 &&
27383 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27384 				un->sd_fi_fifo_end += i;
27385 			}
27386 		} else {
27387 			SD_INFO(SD_LOG_IOERR, un,
27388 			    "sd_faultinjection_ioctl: push arg null\n");
27389 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27390 				un->sd_fi_fifo_end++;
27391 			}
27392 		}
27393 		SD_INFO(SD_LOG_IOERR, un,
27394 		    "sd_faultinjection_ioctl: push to end=%d\n",
27395 		    un->sd_fi_fifo_end);
27396 		break;
27397 
27398 	case SDIOCRETRIEVE:
27399 		/* Return buffer of log from Injection session */
27400 		SD_INFO(SD_LOG_SDTEST, un,
27401 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27402 
27403 		sd_fault_injection_on = 0;
27404 
27405 		mutex_enter(&(un->un_fi_mutex));
27406 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27407 		    un->sd_fi_buf_len+1, 0);
27408 		mutex_exit(&(un->un_fi_mutex));
27409 
27410 		if (rval == -1) {
27411 			/*
27412 			 * arg is possibly invalid setting
27413 			 * it to NULL for return
27414 			 */
27415 			arg = NULL;
27416 		}
27417 		break;
27418 	}
27419 
27420 	mutex_exit(SD_MUTEX(un));
27421 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27422 			    " exit\n");
27423 }
27424 
27425 
27426 /*
27427  *    Function: sd_injection_log()
27428  *
27429  * Description: This routine adds buff to the already existing injection log
27430  *              for retrieval via faultinjection_ioctl for use in fault
27431  *              detection and recovery
27432  *
27433  *   Arguments: buf - the string to add to the log
27434  */
27435 
27436 static void
27437 sd_injection_log(char *buf, struct sd_lun *un)
27438 {
27439 	uint_t len;
27440 
27441 	ASSERT(un != NULL);
27442 	ASSERT(buf != NULL);
27443 
27444 	mutex_enter(&(un->un_fi_mutex));
27445 
27446 	len = min(strlen(buf), 255);
27447 	/* Add logged value to Injection log to be returned later */
27448 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27449 		uint_t	offset = strlen((char *)un->sd_fi_log);
27450 		char *destp = (char *)un->sd_fi_log + offset;
27451 		int i;
27452 		for (i = 0; i < len; i++) {
27453 			*destp++ = *buf++;
27454 		}
27455 		un->sd_fi_buf_len += len;
27456 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27457 	}
27458 
27459 	mutex_exit(&(un->un_fi_mutex));
27460 }
27461 
27462 
27463 /*
27464  *    Function: sd_faultinjection()
27465  *
27466  * Description: This routine takes the pkt and changes its
27467  *		content based on error injection scenerio.
27468  *
27469  *   Arguments: pktp	- packet to be changed
27470  */
27471 
27472 static void
27473 sd_faultinjection(struct scsi_pkt *pktp)
27474 {
27475 	uint_t i;
27476 	struct sd_fi_pkt *fi_pkt;
27477 	struct sd_fi_xb *fi_xb;
27478 	struct sd_fi_un *fi_un;
27479 	struct sd_fi_arq *fi_arq;
27480 	struct buf *bp;
27481 	struct sd_xbuf *xb;
27482 	struct sd_lun *un;
27483 
27484 	ASSERT(pktp != NULL);
27485 
27486 	/* pull bp xb and un from pktp */
27487 	bp = (struct buf *)pktp->pkt_private;
27488 	xb = SD_GET_XBUF(bp);
27489 	un = SD_GET_UN(bp);
27490 
27491 	ASSERT(un != NULL);
27492 
27493 	mutex_enter(SD_MUTEX(un));
27494 
27495 	SD_TRACE(SD_LOG_SDTEST, un,
27496 	    "sd_faultinjection: entry Injection from sdintr\n");
27497 
27498 	/* if injection is off return */
27499 	if (sd_fault_injection_on == 0 ||
27500 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27501 		mutex_exit(SD_MUTEX(un));
27502 		return;
27503 	}
27504 
27505 
27506 	/* take next set off fifo */
27507 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27508 
27509 	fi_pkt = un->sd_fi_fifo_pkt[i];
27510 	fi_xb = un->sd_fi_fifo_xb[i];
27511 	fi_un = un->sd_fi_fifo_un[i];
27512 	fi_arq = un->sd_fi_fifo_arq[i];
27513 
27514 
27515 	/* set variables accordingly */
27516 	/* set pkt if it was on fifo */
27517 	if (fi_pkt != NULL) {
27518 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27519 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27520 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27521 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27522 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27523 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27524 
27525 	}
27526 
27527 	/* set xb if it was on fifo */
27528 	if (fi_xb != NULL) {
27529 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27530 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27531 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27532 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27533 		    "xb_victim_retry_count");
27534 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27535 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27536 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27537 
27538 		/* copy in block data from sense */
27539 		if (fi_xb->xb_sense_data[0] != -1) {
27540 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27541 			    SENSE_LENGTH);
27542 		}
27543 
27544 		/* copy in extended sense codes */
27545 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27546 		    "es_code");
27547 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27548 		    "es_key");
27549 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27550 		    "es_add_code");
27551 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27552 		    es_qual_code, "es_qual_code");
27553 	}
27554 
27555 	/* set un if it was on fifo */
27556 	if (fi_un != NULL) {
27557 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27558 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27559 		SD_CONDSET(un, un, un_reset_retry_count,
27560 		    "un_reset_retry_count");
27561 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27562 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27563 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27564 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27565 		    "un_f_allow_bus_device_reset");
27566 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27567 
27568 	}
27569 
27570 	/* copy in auto request sense if it was on fifo */
27571 	if (fi_arq != NULL) {
27572 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27573 	}
27574 
27575 	/* free structs */
27576 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27577 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27578 	}
27579 	if (un->sd_fi_fifo_xb[i] != NULL) {
27580 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27581 	}
27582 	if (un->sd_fi_fifo_un[i] != NULL) {
27583 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27584 	}
27585 	if (un->sd_fi_fifo_arq[i] != NULL) {
27586 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27587 	}
27588 
27589 	/*
27590 	 * kmem_free does not gurantee to set to NULL
27591 	 * since we uses these to determine if we set
27592 	 * values or not lets confirm they are always
27593 	 * NULL after free
27594 	 */
27595 	un->sd_fi_fifo_pkt[i] = NULL;
27596 	un->sd_fi_fifo_un[i] = NULL;
27597 	un->sd_fi_fifo_xb[i] = NULL;
27598 	un->sd_fi_fifo_arq[i] = NULL;
27599 
27600 	un->sd_fi_fifo_start++;
27601 
27602 	mutex_exit(SD_MUTEX(un));
27603 
27604 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27605 }
27606 
27607 #endif /* SD_FAULT_INJECTION */
27608 
27609 /*
27610  * This routine is invoked in sd_unit_attach(). Before calling it, the
27611  * properties in conf file should be processed already, and "hotpluggable"
27612  * property was processed also.
27613  *
27614  * The sd driver distinguishes 3 different type of devices: removable media,
27615  * non-removable media, and hotpluggable. Below the differences are defined:
27616  *
27617  * 1. Device ID
27618  *
27619  *     The device ID of a device is used to identify this device. Refer to
27620  *     ddi_devid_register(9F).
27621  *
27622  *     For a non-removable media disk device which can provide 0x80 or 0x83
27623  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27624  *     device ID is created to identify this device. For other non-removable
27625  *     media devices, a default device ID is created only if this device has
27626  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27627  *
27628  *     -------------------------------------------------------
27629  *     removable media   hotpluggable  | Can Have Device ID
27630  *     -------------------------------------------------------
27631  *         false             false     |     Yes
27632  *         false             true      |     Yes
27633  *         true                x       |     No
27634  *     ------------------------------------------------------
27635  *
27636  *
27637  * 2. SCSI group 4 commands
27638  *
27639  *     In SCSI specs, only some commands in group 4 command set can use
27640  *     8-byte addresses that can be used to access >2TB storage spaces.
27641  *     Other commands have no such capability. Without supporting group4,
27642  *     it is impossible to make full use of storage spaces of a disk with
27643  *     capacity larger than 2TB.
27644  *
27645  *     -----------------------------------------------
27646  *     removable media   hotpluggable   LP64  |  Group
27647  *     -----------------------------------------------
27648  *           false          false       false |   1
27649  *           false          false       true  |   4
27650  *           false          true        false |   1
27651  *           false          true        true  |   4
27652  *           true             x           x   |   5
27653  *     -----------------------------------------------
27654  *
27655  *
27656  * 3. Check for VTOC Label
27657  *
27658  *     If a direct-access disk has no EFI label, sd will check if it has a
27659  *     valid VTOC label. Now, sd also does that check for removable media
27660  *     and hotpluggable devices.
27661  *
27662  *     --------------------------------------------------------------
27663  *     Direct-Access   removable media    hotpluggable |  Check Label
27664  *     -------------------------------------------------------------
27665  *         false          false           false        |   No
27666  *         false          false           true         |   No
27667  *         false          true            false        |   Yes
27668  *         false          true            true         |   Yes
27669  *         true            x                x          |   Yes
27670  *     --------------------------------------------------------------
27671  *
27672  *
27673  * 4. Building default VTOC label
27674  *
27675  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27676  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27677  *     create default VTOC for them. Currently sd creates default VTOC label
27678  *     for all devices on x86 platform (VTOC_16), but only for removable
27679  *     media devices on SPARC (VTOC_8).
27680  *
27681  *     -----------------------------------------------------------
27682  *       removable media hotpluggable platform   |   Default Label
27683  *     -----------------------------------------------------------
27684  *             false          false    sparc     |     No
27685  *             false          true      x86      |     Yes
27686  *             false          true     sparc     |     Yes
27687  *             true             x        x       |     Yes
27688  *     ----------------------------------------------------------
27689  *
27690  *
27691  * 5. Supported blocksizes of target devices
27692  *
27693  *     Sd supports non-512-byte blocksize for removable media devices only.
27694  *     For other devices, only 512-byte blocksize is supported. This may be
27695  *     changed in near future because some RAID devices require non-512-byte
27696  *     blocksize
27697  *
27698  *     -----------------------------------------------------------
27699  *     removable media    hotpluggable    | non-512-byte blocksize
27700  *     -----------------------------------------------------------
27701  *           false          false         |   No
27702  *           false          true          |   No
27703  *           true             x           |   Yes
27704  *     -----------------------------------------------------------
27705  *
27706  *
27707  * 6. Automatic mount & unmount
27708  *
27709  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27710  *     if a device is removable media device. It return 1 for removable media
27711  *     devices, and 0 for others.
27712  *
27713  *     The automatic mounting subsystem should distinguish between the types
27714  *     of devices and apply automounting policies to each.
27715  *
27716  *
27717  * 7. fdisk partition management
27718  *
27719  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27720  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27721  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27722  *     fdisk partitions on both x86 and SPARC platform.
27723  *
27724  *     -----------------------------------------------------------
27725  *       platform   removable media  USB/1394  |  fdisk supported
27726  *     -----------------------------------------------------------
27727  *        x86         X               X        |       true
27728  *     ------------------------------------------------------------
27729  *        sparc       X               X        |       false
27730  *     ------------------------------------------------------------
27731  *
27732  *
27733  * 8. MBOOT/MBR
27734  *
27735  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27736  *     read/write mboot for removable media devices on sparc platform.
27737  *
27738  *     -----------------------------------------------------------
27739  *       platform   removable media  USB/1394  |  mboot supported
27740  *     -----------------------------------------------------------
27741  *        x86         X               X        |       true
27742  *     ------------------------------------------------------------
27743  *        sparc      false           false     |       false
27744  *        sparc      false           true      |       true
27745  *        sparc      true            false     |       true
27746  *        sparc      true            true      |       true
27747  *     ------------------------------------------------------------
27748  *
27749  *
27750  * 9.  error handling during opening device
27751  *
27752  *     If failed to open a disk device, an errno is returned. For some kinds
27753  *     of errors, different errno is returned depending on if this device is
27754  *     a removable media device. This brings USB/1394 hard disks in line with
27755  *     expected hard disk behavior. It is not expected that this breaks any
27756  *     application.
27757  *
27758  *     ------------------------------------------------------
27759  *       removable media    hotpluggable   |  errno
27760  *     ------------------------------------------------------
27761  *             false          false        |   EIO
27762  *             false          true         |   EIO
27763  *             true             x          |   ENXIO
27764  *     ------------------------------------------------------
27765  *
27766  *
27767  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27768  *
27769  *     These IOCTLs are applicable only to removable media devices.
27770  *
27771  *     -----------------------------------------------------------
27772  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27773  *     -----------------------------------------------------------
27774  *             false          false        |     No
27775  *             false          true         |     No
27776  *             true            x           |     Yes
27777  *     -----------------------------------------------------------
27778  *
27779  *
27780  * 12. Kstats for partitions
27781  *
27782  *     sd creates partition kstat for non-removable media devices. USB and
27783  *     Firewire hard disks now have partition kstats
27784  *
27785  *      ------------------------------------------------------
27786  *       removable media    hotpluggable   |   kstat
27787  *      ------------------------------------------------------
27788  *             false          false        |    Yes
27789  *             false          true         |    Yes
27790  *             true             x          |    No
27791  *       ------------------------------------------------------
27792  *
27793  *
27794  * 13. Removable media & hotpluggable properties
27795  *
27796  *     Sd driver creates a "removable-media" property for removable media
27797  *     devices. Parent nexus drivers create a "hotpluggable" property if
27798  *     it supports hotplugging.
27799  *
27800  *     ---------------------------------------------------------------------
27801  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27802  *     ---------------------------------------------------------------------
27803  *       false            false       |    No                   No
27804  *       false            true        |    No                   Yes
27805  *       true             false       |    Yes                  No
27806  *       true             true        |    Yes                  Yes
27807  *     ---------------------------------------------------------------------
27808  *
27809  *
27810  * 14. Power Management
27811  *
27812  *     sd only power manages removable media devices or devices that support
27813  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27814  *
27815  *     A parent nexus that supports hotplugging can also set "pm-capable"
27816  *     if the disk can be power managed.
27817  *
27818  *     ------------------------------------------------------------
27819  *       removable media hotpluggable pm-capable  |   power manage
27820  *     ------------------------------------------------------------
27821  *             false          false     false     |     No
27822  *             false          false     true      |     Yes
27823  *             false          true      false     |     No
27824  *             false          true      true      |     Yes
27825  *             true             x        x        |     Yes
27826  *     ------------------------------------------------------------
27827  *
27828  *      USB and firewire hard disks can now be power managed independently
27829  *      of the framebuffer
27830  *
27831  *
27832  * 15. Support for USB disks with capacity larger than 1TB
27833  *
27834  *     Currently, sd doesn't permit a fixed disk device with capacity
27835  *     larger than 1TB to be used in a 32-bit operating system environment.
27836  *     However, sd doesn't do that for removable media devices. Instead, it
27837  *     assumes that removable media devices cannot have a capacity larger
27838  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27839  *     supported, which can cause some unexpected results.
27840  *
27841  *     ---------------------------------------------------------------------
27842  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27843  *     ---------------------------------------------------------------------
27844  *             false          false  |   true         |     no
27845  *             false          true   |   true         |     no
27846  *             true           false  |   true         |     Yes
27847  *             true           true   |   true         |     Yes
27848  *     ---------------------------------------------------------------------
27849  *
27850  *
27851  * 16. Check write-protection at open time
27852  *
27853  *     When a removable media device is being opened for writing without NDELAY
27854  *     flag, sd will check if this device is writable. If attempting to open
27855  *     without NDELAY flag a write-protected device, this operation will abort.
27856  *
27857  *     ------------------------------------------------------------
27858  *       removable media    USB/1394   |   WP Check
27859  *     ------------------------------------------------------------
27860  *             false          false    |     No
27861  *             false          true     |     No
27862  *             true           false    |     Yes
27863  *             true           true     |     Yes
27864  *     ------------------------------------------------------------
27865  *
27866  *
27867  * 17. syslog when corrupted VTOC is encountered
27868  *
27869  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27870  *      for fixed SCSI disks.
27871  *     ------------------------------------------------------------
27872  *       removable media    USB/1394   |   print syslog
27873  *     ------------------------------------------------------------
27874  *             false          false    |     Yes
27875  *             false          true     |     No
27876  *             true           false    |     No
27877  *             true           true     |     No
27878  *     ------------------------------------------------------------
27879  */
27880 static void
27881 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27882 {
27883 	int	pm_capable_prop;
27884 
27885 	ASSERT(un->un_sd);
27886 	ASSERT(un->un_sd->sd_inq);
27887 
27888 	/*
27889 	 * Enable SYNC CACHE support for all devices.
27890 	 */
27891 	un->un_f_sync_cache_supported = TRUE;
27892 
27893 	if (un->un_sd->sd_inq->inq_rmb) {
27894 		/*
27895 		 * The media of this device is removable. And for this kind
27896 		 * of devices, it is possible to change medium after opening
27897 		 * devices. Thus we should support this operation.
27898 		 */
27899 		un->un_f_has_removable_media = TRUE;
27900 
27901 		/*
27902 		 * support non-512-byte blocksize of removable media devices
27903 		 */
27904 		un->un_f_non_devbsize_supported = TRUE;
27905 
27906 		/*
27907 		 * Assume that all removable media devices support DOOR_LOCK
27908 		 */
27909 		un->un_f_doorlock_supported = TRUE;
27910 
27911 		/*
27912 		 * For a removable media device, it is possible to be opened
27913 		 * with NDELAY flag when there is no media in drive, in this
27914 		 * case we don't care if device is writable. But if without
27915 		 * NDELAY flag, we need to check if media is write-protected.
27916 		 */
27917 		un->un_f_chk_wp_open = TRUE;
27918 
27919 		/*
27920 		 * need to start a SCSI watch thread to monitor media state,
27921 		 * when media is being inserted or ejected, notify syseventd.
27922 		 */
27923 		un->un_f_monitor_media_state = TRUE;
27924 
27925 		/*
27926 		 * Some devices don't support START_STOP_UNIT command.
27927 		 * Therefore, we'd better check if a device supports it
27928 		 * before sending it.
27929 		 */
27930 		un->un_f_check_start_stop = TRUE;
27931 
27932 		/*
27933 		 * support eject media ioctl:
27934 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27935 		 */
27936 		un->un_f_eject_media_supported = TRUE;
27937 
27938 		/*
27939 		 * Because many removable-media devices don't support
27940 		 * LOG_SENSE, we couldn't use this command to check if
27941 		 * a removable media device support power-management.
27942 		 * We assume that they support power-management via
27943 		 * START_STOP_UNIT command and can be spun up and down
27944 		 * without limitations.
27945 		 */
27946 		un->un_f_pm_supported = TRUE;
27947 
27948 		/*
27949 		 * Need to create a zero length (Boolean) property
27950 		 * removable-media for the removable media devices.
27951 		 * Note that the return value of the property is not being
27952 		 * checked, since if unable to create the property
27953 		 * then do not want the attach to fail altogether. Consistent
27954 		 * with other property creation in attach.
27955 		 */
27956 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27957 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27958 
27959 	} else {
27960 		/*
27961 		 * create device ID for device
27962 		 */
27963 		un->un_f_devid_supported = TRUE;
27964 
27965 		/*
27966 		 * Spin up non-removable-media devices once it is attached
27967 		 */
27968 		un->un_f_attach_spinup = TRUE;
27969 
27970 		/*
27971 		 * According to SCSI specification, Sense data has two kinds of
27972 		 * format: fixed format, and descriptor format. At present, we
27973 		 * don't support descriptor format sense data for removable
27974 		 * media.
27975 		 */
27976 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27977 			un->un_f_descr_format_supported = TRUE;
27978 		}
27979 
27980 		/*
27981 		 * kstats are created only for non-removable media devices.
27982 		 *
27983 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27984 		 * default is 1, so they are enabled by default.
27985 		 */
27986 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27987 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27988 		    "enable-partition-kstats", 1));
27989 
27990 		/*
27991 		 * Check if HBA has set the "pm-capable" property.
27992 		 * If "pm-capable" exists and is non-zero then we can
27993 		 * power manage the device without checking the start/stop
27994 		 * cycle count log sense page.
27995 		 *
27996 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27997 		 * then we should not power manage the device.
27998 		 *
27999 		 * If "pm-capable" doesn't exist then pm_capable_prop will
28000 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
28001 		 * sd will check the start/stop cycle count log sense page
28002 		 * and power manage the device if the cycle count limit has
28003 		 * not been exceeded.
28004 		 */
28005 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
28006 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
28007 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
28008 			un->un_f_log_sense_supported = TRUE;
28009 		} else {
28010 			/*
28011 			 * pm-capable property exists.
28012 			 *
28013 			 * Convert "TRUE" values for pm_capable_prop to
28014 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
28015 			 * later. "TRUE" values are any values except
28016 			 * SD_PM_CAPABLE_FALSE (0) and
28017 			 * SD_PM_CAPABLE_UNDEFINED (-1)
28018 			 */
28019 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
28020 				un->un_f_log_sense_supported = FALSE;
28021 			} else {
28022 				un->un_f_pm_supported = TRUE;
28023 			}
28024 
28025 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
28026 			    "sd_unit_attach: un:0x%p pm-capable "
28027 			    "property set to %d.\n", un, un->un_f_pm_supported);
28028 		}
28029 	}
28030 
28031 	if (un->un_f_is_hotpluggable) {
28032 
28033 		/*
28034 		 * Have to watch hotpluggable devices as well, since
28035 		 * that's the only way for userland applications to
28036 		 * detect hot removal while device is busy/mounted.
28037 		 */
28038 		un->un_f_monitor_media_state = TRUE;
28039 
28040 		un->un_f_check_start_stop = TRUE;
28041 
28042 	}
28043 }
28044 
28045 /*
28046  * sd_tg_rdwr:
28047  * Provides rdwr access for cmlb via sd_tgops. The start_block is
28048  * in sys block size, req_length in bytes.
28049  *
28050  */
28051 static int
28052 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
28053     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
28054 {
28055 	struct sd_lun *un;
28056 	int path_flag = (int)(uintptr_t)tg_cookie;
28057 	char *dkl = NULL;
28058 	diskaddr_t real_addr = start_block;
28059 	diskaddr_t first_byte, end_block;
28060 
28061 	size_t	buffer_size = reqlength;
28062 	int rval;
28063 	diskaddr_t	cap;
28064 	uint32_t	lbasize;
28065 
28066 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28067 	if (un == NULL)
28068 		return (ENXIO);
28069 
28070 	if (cmd != TG_READ && cmd != TG_WRITE)
28071 		return (EINVAL);
28072 
28073 	mutex_enter(SD_MUTEX(un));
28074 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
28075 		mutex_exit(SD_MUTEX(un));
28076 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28077 		    &lbasize, path_flag);
28078 		if (rval != 0)
28079 			return (rval);
28080 		mutex_enter(SD_MUTEX(un));
28081 		sd_update_block_info(un, lbasize, cap);
28082 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
28083 			mutex_exit(SD_MUTEX(un));
28084 			return (EIO);
28085 		}
28086 	}
28087 
28088 	if (NOT_DEVBSIZE(un)) {
28089 		/*
28090 		 * sys_blocksize != tgt_blocksize, need to re-adjust
28091 		 * blkno and save the index to beginning of dk_label
28092 		 */
28093 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
28094 		real_addr = first_byte / un->un_tgt_blocksize;
28095 
28096 		end_block = (first_byte + reqlength +
28097 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
28098 
28099 		/* round up buffer size to multiple of target block size */
28100 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
28101 
28102 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
28103 		    "label_addr: 0x%x allocation size: 0x%x\n",
28104 		    real_addr, buffer_size);
28105 
28106 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
28107 		    (reqlength % un->un_tgt_blocksize) != 0)
28108 			/* the request is not aligned */
28109 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
28110 	}
28111 
28112 	/*
28113 	 * The MMC standard allows READ CAPACITY to be
28114 	 * inaccurate by a bounded amount (in the interest of
28115 	 * response latency).  As a result, failed READs are
28116 	 * commonplace (due to the reading of metadata and not
28117 	 * data). Depending on the per-Vendor/drive Sense data,
28118 	 * the failed READ can cause many (unnecessary) retries.
28119 	 */
28120 
28121 	if (ISCD(un) && (cmd == TG_READ) &&
28122 	    (un->un_f_blockcount_is_valid == TRUE) &&
28123 	    ((start_block == (un->un_blockcount - 1))||
28124 	    (start_block == (un->un_blockcount - 2)))) {
28125 			path_flag = SD_PATH_DIRECT_PRIORITY;
28126 	}
28127 
28128 	mutex_exit(SD_MUTEX(un));
28129 	if (cmd == TG_READ) {
28130 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
28131 		    buffer_size, real_addr, path_flag);
28132 		if (dkl != NULL)
28133 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
28134 			    real_addr), bufaddr, reqlength);
28135 	} else {
28136 		if (dkl) {
28137 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
28138 			    real_addr, path_flag);
28139 			if (rval) {
28140 				kmem_free(dkl, buffer_size);
28141 				return (rval);
28142 			}
28143 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
28144 			    real_addr), reqlength);
28145 		}
28146 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
28147 		    buffer_size, real_addr, path_flag);
28148 	}
28149 
28150 	if (dkl != NULL)
28151 		kmem_free(dkl, buffer_size);
28152 
28153 	return (rval);
28154 }
28155 
28156 
28157 static int
28158 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
28159 {
28160 
28161 	struct sd_lun *un;
28162 	diskaddr_t	cap;
28163 	uint32_t	lbasize;
28164 	int		path_flag = (int)(uintptr_t)tg_cookie;
28165 	int		ret = 0;
28166 
28167 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28168 	if (un == NULL)
28169 		return (ENXIO);
28170 
28171 	switch (cmd) {
28172 	case TG_GETPHYGEOM:
28173 	case TG_GETVIRTGEOM:
28174 	case TG_GETCAPACITY:
28175 	case TG_GETBLOCKSIZE:
28176 		mutex_enter(SD_MUTEX(un));
28177 
28178 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28179 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28180 			cap = un->un_blockcount;
28181 			lbasize = un->un_tgt_blocksize;
28182 			mutex_exit(SD_MUTEX(un));
28183 		} else {
28184 			mutex_exit(SD_MUTEX(un));
28185 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28186 			    &lbasize, path_flag);
28187 			if (ret != 0)
28188 				return (ret);
28189 			mutex_enter(SD_MUTEX(un));
28190 			sd_update_block_info(un, lbasize, cap);
28191 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28192 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28193 				mutex_exit(SD_MUTEX(un));
28194 				return (EIO);
28195 			}
28196 			mutex_exit(SD_MUTEX(un));
28197 		}
28198 
28199 		if (cmd == TG_GETCAPACITY) {
28200 			*(diskaddr_t *)arg = cap;
28201 			return (0);
28202 		}
28203 
28204 		if (cmd == TG_GETBLOCKSIZE) {
28205 			*(uint32_t *)arg = lbasize;
28206 			return (0);
28207 		}
28208 
28209 		if (cmd == TG_GETPHYGEOM)
28210 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28211 			    cap, lbasize, path_flag);
28212 		else
28213 			/* TG_GETVIRTGEOM */
28214 			ret = sd_get_virtual_geometry(un,
28215 			    (cmlb_geom_t *)arg, cap, lbasize);
28216 
28217 		return (ret);
28218 
28219 	case TG_GETATTR:
28220 		mutex_enter(SD_MUTEX(un));
28221 		((tg_attribute_t *)arg)->media_is_writable =
28222 		    un->un_f_mmc_writable_media;
28223 		mutex_exit(SD_MUTEX(un));
28224 		return (0);
28225 	default:
28226 		return (ENOTTY);
28227 
28228 	}
28229 
28230 }
28231