xref: /titanic_41/usr/src/uts/common/io/scsi/targets/sd.c (revision 1cb6af97c6f66f456d4f726ef056e1ebc0f73305)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 #include <sys/scsi/scsi.h>
34 #include <sys/dkbad.h>
35 #include <sys/dklabel.h>
36 #include <sys/dkio.h>
37 #include <sys/fdio.h>
38 #include <sys/cdio.h>
39 #include <sys/mhd.h>
40 #include <sys/vtoc.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kstat.h>
45 #include <sys/vtrace.h>
46 #include <sys/note.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/efi_partition.h>
50 #include <sys/var.h>
51 #include <sys/aio_req.h>
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 
65 
66 /*
67  * Loadable module info.
68  */
69 #if (defined(__fibre))
70 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
71 char _depends_on[]	= "misc/scsi drv/fcp";
72 #else
73 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi";
75 #endif
76 
77 /*
78  * Define the interconnect type, to allow the driver to distinguish
79  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
80  *
81  * This is really for backward compatability. In the future, the driver
82  * should actually check the "interconnect-type" property as reported by
83  * the HBA; however at present this property is not defined by all HBAs,
84  * so we will use this #define (1) to permit the driver to run in
85  * backward-compatability mode; and (2) to print a notification message
86  * if an FC HBA does not support the "interconnect-type" property.  The
87  * behavior of the driver will be to assume parallel SCSI behaviors unless
88  * the "interconnect-type" property is defined by the HBA **AND** has a
89  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
90  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
91  * Channel behaviors (as per the old ssd).  (Note that the
92  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
93  * will result in the driver assuming parallel SCSI behaviors.)
94  *
95  * (see common/sys/scsi/impl/services.h)
96  *
97  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
98  * since some FC HBAs may already support that, and there is some code in
99  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
100  * default would confuse that code, and besides things should work fine
101  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
102  * "interconnect_type" property.
103  */
104 #if (defined(__fibre))
105 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
106 #else
107 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
108 #endif
109 
110 /*
111  * The name of the driver, established from the module name in _init.
112  */
113 static	char *sd_label			= NULL;
114 
115 /*
116  * Driver name is unfortunately prefixed on some driver.conf properties.
117  */
118 #if (defined(__fibre))
119 #define	sd_max_xfer_size		ssd_max_xfer_size
120 #define	sd_config_list			ssd_config_list
121 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
122 static	char *sd_config_list		= "ssd-config-list";
123 #else
124 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
125 static	char *sd_config_list		= "sd-config-list";
126 #endif
127 
128 /*
129  * Driver global variables
130  */
131 
132 #if (defined(__fibre))
133 /*
134  * These #defines are to avoid namespace collisions that occur because this
135  * code is currently used to compile two seperate driver modules: sd and ssd.
136  * All global variables need to be treated this way (even if declared static)
137  * in order to allow the debugger to resolve the names properly.
138  * It is anticipated that in the near future the ssd module will be obsoleted,
139  * at which time this namespace issue should go away.
140  */
141 #define	sd_state			ssd_state
142 #define	sd_io_time			ssd_io_time
143 #define	sd_failfast_enable		ssd_failfast_enable
144 #define	sd_ua_retry_count		ssd_ua_retry_count
145 #define	sd_report_pfa			ssd_report_pfa
146 #define	sd_max_throttle			ssd_max_throttle
147 #define	sd_min_throttle			ssd_min_throttle
148 #define	sd_rot_delay			ssd_rot_delay
149 
150 #define	sd_retry_on_reservation_conflict	\
151 					ssd_retry_on_reservation_conflict
152 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
153 #define	sd_resv_conflict_name		ssd_resv_conflict_name
154 
155 #define	sd_component_mask		ssd_component_mask
156 #define	sd_level_mask			ssd_level_mask
157 #define	sd_debug_un			ssd_debug_un
158 #define	sd_error_level			ssd_error_level
159 
160 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
161 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
162 
163 #define	sd_tr				ssd_tr
164 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
165 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
166 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
167 #define	sd_check_media_time		ssd_check_media_time
168 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
169 #define	sd_label_mutex			ssd_label_mutex
170 #define	sd_detach_mutex			ssd_detach_mutex
171 #define	sd_log_buf			ssd_log_buf
172 #define	sd_log_mutex			ssd_log_mutex
173 
174 #define	sd_disk_table			ssd_disk_table
175 #define	sd_disk_table_size		ssd_disk_table_size
176 #define	sd_sense_mutex			ssd_sense_mutex
177 #define	sd_cdbtab			ssd_cdbtab
178 
179 #define	sd_cb_ops			ssd_cb_ops
180 #define	sd_ops				ssd_ops
181 #define	sd_additional_codes		ssd_additional_codes
182 
183 #define	sd_minor_data			ssd_minor_data
184 #define	sd_minor_data_efi		ssd_minor_data_efi
185 
186 #define	sd_tq				ssd_tq
187 #define	sd_wmr_tq			ssd_wmr_tq
188 #define	sd_taskq_name			ssd_taskq_name
189 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
190 #define	sd_taskq_minalloc		ssd_taskq_minalloc
191 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
192 
193 #define	sd_dump_format_string		ssd_dump_format_string
194 
195 #define	sd_iostart_chain		ssd_iostart_chain
196 #define	sd_iodone_chain			ssd_iodone_chain
197 
198 #define	sd_pm_idletime			ssd_pm_idletime
199 
200 #define	sd_force_pm_supported		ssd_force_pm_supported
201 
202 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
203 
204 #endif
205 
206 
207 #ifdef	SDDEBUG
208 int	sd_force_pm_supported		= 0;
209 #endif	/* SDDEBUG */
210 
211 void *sd_state				= NULL;
212 int sd_io_time				= SD_IO_TIME;
213 int sd_failfast_enable			= 1;
214 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
215 int sd_report_pfa			= 1;
216 int sd_max_throttle			= SD_MAX_THROTTLE;
217 int sd_min_throttle			= SD_MIN_THROTTLE;
218 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
219 int sd_qfull_throttle_enable		= TRUE;
220 
221 int sd_retry_on_reservation_conflict	= 1;
222 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
223 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
224 
225 static int sd_dtype_optical_bind	= -1;
226 
227 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
228 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
229 
230 /*
231  * Global data for debug logging. To enable debug printing, sd_component_mask
232  * and sd_level_mask should be set to the desired bit patterns as outlined in
233  * sddef.h.
234  */
235 uint_t	sd_component_mask		= 0x0;
236 uint_t	sd_level_mask			= 0x0;
237 struct	sd_lun *sd_debug_un		= NULL;
238 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
239 
240 /* Note: these may go away in the future... */
241 static uint32_t	sd_xbuf_active_limit	= 512;
242 static uint32_t sd_xbuf_reserve_limit	= 16;
243 
244 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
245 
246 /*
247  * Timer value used to reset the throttle after it has been reduced
248  * (typically in response to TRAN_BUSY or STATUS_QFULL)
249  */
250 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
251 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
252 
253 /*
254  * Interval value associated with the media change scsi watch.
255  */
256 static int sd_check_media_time		= 3000000;
257 
258 /*
259  * Wait value used for in progress operations during a DDI_SUSPEND
260  */
261 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
262 
263 /*
264  * sd_label_mutex protects a static buffer used in the disk label
265  * component of the driver
266  */
267 static kmutex_t sd_label_mutex;
268 
269 /*
270  * sd_detach_mutex protects un_layer_count, un_detach_count, and
271  * un_opens_in_progress in the sd_lun structure.
272  */
273 static kmutex_t sd_detach_mutex;
274 
275 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
276 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
277 
278 /*
279  * Global buffer and mutex for debug logging
280  */
281 static char	sd_log_buf[1024];
282 static kmutex_t	sd_log_mutex;
283 
284 
285 /*
286  * "Smart" Probe Caching structs, globals, #defines, etc.
287  * For parallel scsi and non-self-identify device only.
288  */
289 
290 /*
291  * The following resources and routines are implemented to support
292  * "smart" probing, which caches the scsi_probe() results in an array,
293  * in order to help avoid long probe times.
294  */
295 struct sd_scsi_probe_cache {
296 	struct	sd_scsi_probe_cache	*next;
297 	dev_info_t	*pdip;
298 	int		cache[NTARGETS_WIDE];
299 };
300 
301 static kmutex_t	sd_scsi_probe_cache_mutex;
302 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
303 
304 /*
305  * Really we only need protection on the head of the linked list, but
306  * better safe than sorry.
307  */
308 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
309     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
312     sd_scsi_probe_cache_head))
313 
314 
315 /*
316  * Vendor specific data name property declarations
317  */
318 
319 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
320 
321 static sd_tunables seagate_properties = {
322 	SEAGATE_THROTTLE_VALUE,
323 	0,
324 	0,
325 	0,
326 	0,
327 	0,
328 	0,
329 	0,
330 	0
331 };
332 
333 
334 static sd_tunables fujitsu_properties = {
335 	FUJITSU_THROTTLE_VALUE,
336 	0,
337 	0,
338 	0,
339 	0,
340 	0,
341 	0,
342 	0,
343 	0
344 };
345 
346 static sd_tunables ibm_properties = {
347 	IBM_THROTTLE_VALUE,
348 	0,
349 	0,
350 	0,
351 	0,
352 	0,
353 	0,
354 	0,
355 	0
356 };
357 
358 static sd_tunables purple_properties = {
359 	PURPLE_THROTTLE_VALUE,
360 	0,
361 	0,
362 	PURPLE_BUSY_RETRIES,
363 	PURPLE_RESET_RETRY_COUNT,
364 	PURPLE_RESERVE_RELEASE_TIME,
365 	0,
366 	0,
367 	0
368 };
369 
370 static sd_tunables sve_properties = {
371 	SVE_THROTTLE_VALUE,
372 	0,
373 	0,
374 	SVE_BUSY_RETRIES,
375 	SVE_RESET_RETRY_COUNT,
376 	SVE_RESERVE_RELEASE_TIME,
377 	SVE_MIN_THROTTLE_VALUE,
378 	SVE_DISKSORT_DISABLED_FLAG,
379 	0
380 };
381 
382 static sd_tunables maserati_properties = {
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0,
390 	MASERATI_DISKSORT_DISABLED_FLAG,
391 	MASERATI_LUN_RESET_ENABLED_FLAG
392 };
393 
394 static sd_tunables pirus_properties = {
395 	PIRUS_THROTTLE_VALUE,
396 	0,
397 	PIRUS_NRR_COUNT,
398 	PIRUS_BUSY_RETRIES,
399 	PIRUS_RESET_RETRY_COUNT,
400 	0,
401 	PIRUS_MIN_THROTTLE_VALUE,
402 	PIRUS_DISKSORT_DISABLED_FLAG,
403 	PIRUS_LUN_RESET_ENABLED_FLAG
404 };
405 
406 #endif
407 
408 #if (defined(__sparc) && !defined(__fibre)) || \
409 	(defined(__i386) || defined(__amd64))
410 
411 
412 static sd_tunables elite_properties = {
413 	ELITE_THROTTLE_VALUE,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0
422 };
423 
424 static sd_tunables st31200n_properties = {
425 	ST31200N_THROTTLE_VALUE,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	0
434 };
435 
436 #endif /* Fibre or not */
437 
438 static sd_tunables lsi_properties_scsi = {
439 	LSI_THROTTLE_VALUE,
440 	0,
441 	LSI_NOTREADY_RETRIES,
442 	0,
443 	0,
444 	0,
445 	0,
446 	0,
447 	0
448 };
449 
450 static sd_tunables symbios_properties = {
451 	SYMBIOS_THROTTLE_VALUE,
452 	0,
453 	SYMBIOS_NOTREADY_RETRIES,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0,
459 	0
460 };
461 
462 static sd_tunables lsi_properties = {
463 	0,
464 	0,
465 	LSI_NOTREADY_RETRIES,
466 	0,
467 	0,
468 	0,
469 	0,
470 	0,
471 	0
472 };
473 
474 static sd_tunables lsi_oem_properties = {
475 	0,
476 	0,
477 	LSI_OEM_NOTREADY_RETRIES,
478 	0,
479 	0,
480 	0,
481 	0,
482 	0,
483 	0
484 };
485 
486 
487 
488 #if (defined(SD_PROP_TST))
489 
490 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
491 #define	SD_TST_THROTTLE_VAL	16
492 #define	SD_TST_NOTREADY_VAL	12
493 #define	SD_TST_BUSY_VAL		60
494 #define	SD_TST_RST_RETRY_VAL	36
495 #define	SD_TST_RSV_REL_TIME	60
496 
497 static sd_tunables tst_properties = {
498 	SD_TST_THROTTLE_VAL,
499 	SD_TST_CTYPE_VAL,
500 	SD_TST_NOTREADY_VAL,
501 	SD_TST_BUSY_VAL,
502 	SD_TST_RST_RETRY_VAL,
503 	SD_TST_RSV_REL_TIME,
504 	0,
505 	0,
506 	0
507 };
508 #endif
509 
510 /* This is similiar to the ANSI toupper implementation */
511 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
512 
513 /*
514  * Static Driver Configuration Table
515  *
516  * This is the table of disks which need throttle adjustment (or, perhaps
517  * something else as defined by the flags at a future time.)  device_id
518  * is a string consisting of concatenated vid (vendor), pid (product/model)
519  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
520  * the parts of the string are as defined by the sizes in the scsi_inquiry
521  * structure.  Device type is searched as far as the device_id string is
522  * defined.  Flags defines which values are to be set in the driver from the
523  * properties list.
524  *
525  * Entries below which begin and end with a "*" are a special case.
526  * These do not have a specific vendor, and the string which follows
527  * can appear anywhere in the 16 byte PID portion of the inquiry data.
528  *
529  * Entries below which begin and end with a " " (blank) are a special
530  * case. The comparison function will treat multiple consecutive blanks
531  * as equivalent to a single blank. For example, this causes a
532  * sd_disk_table entry of " NEC CDROM " to match a device's id string
533  * of  "NEC       CDROM".
534  *
535  * Note: The MD21 controller type has been obsoleted.
536  *	 ST318202F is a Legacy device
537  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
538  *	 made with an FC connection. The entries here are a legacy.
539  */
540 static sd_disk_config_t sd_disk_table[] = {
541 #if defined(__fibre) || defined(__i386) || defined(__amd64)
542 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
543 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
544 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
545 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
546 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
550 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
551 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
552 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
553 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
554 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
555 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
556 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
557 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
558 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
559 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
560 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
561 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
562 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
563 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
564 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
565 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
566 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
567 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
568 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
569 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
570 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
571 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
572 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
573 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
576 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
577 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
578 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
579 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
580 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
581 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
582 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
583 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
584 			SD_CONF_BSET_BSY_RETRY_COUNT|
585 			SD_CONF_BSET_RST_RETRIES|
586 			SD_CONF_BSET_RSV_REL_TIME,
587 		&purple_properties },
588 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
589 		SD_CONF_BSET_BSY_RETRY_COUNT|
590 		SD_CONF_BSET_RST_RETRIES|
591 		SD_CONF_BSET_RSV_REL_TIME|
592 		SD_CONF_BSET_MIN_THROTTLE|
593 		SD_CONF_BSET_DISKSORT_DISABLED,
594 		&sve_properties },
595 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
596 			SD_CONF_BSET_BSY_RETRY_COUNT|
597 			SD_CONF_BSET_RST_RETRIES|
598 			SD_CONF_BSET_RSV_REL_TIME,
599 		&purple_properties },
600 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
601 		SD_CONF_BSET_LUN_RESET_ENABLED,
602 		&maserati_properties },
603 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
604 		SD_CONF_BSET_NRR_COUNT|
605 		SD_CONF_BSET_BSY_RETRY_COUNT|
606 		SD_CONF_BSET_RST_RETRIES|
607 		SD_CONF_BSET_MIN_THROTTLE|
608 		SD_CONF_BSET_DISKSORT_DISABLED|
609 		SD_CONF_BSET_LUN_RESET_ENABLED,
610 		&pirus_properties },
611 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
612 		SD_CONF_BSET_NRR_COUNT|
613 		SD_CONF_BSET_BSY_RETRY_COUNT|
614 		SD_CONF_BSET_RST_RETRIES|
615 		SD_CONF_BSET_MIN_THROTTLE|
616 		SD_CONF_BSET_DISKSORT_DISABLED|
617 		SD_CONF_BSET_LUN_RESET_ENABLED,
618 		&pirus_properties },
619 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
620 		SD_CONF_BSET_NRR_COUNT|
621 		SD_CONF_BSET_BSY_RETRY_COUNT|
622 		SD_CONF_BSET_RST_RETRIES|
623 		SD_CONF_BSET_MIN_THROTTLE|
624 		SD_CONF_BSET_DISKSORT_DISABLED|
625 		SD_CONF_BSET_LUN_RESET_ENABLED,
626 		&pirus_properties },
627 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
632 #endif /* fibre or NON-sparc platforms */
633 #if ((defined(__sparc) && !defined(__fibre)) ||\
634 	(defined(__i386) || defined(__amd64)))
635 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
636 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
637 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
638 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
639 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
640 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
641 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
642 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
643 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
644 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
645 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
646 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
647 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
648 	    &symbios_properties },
649 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
650 	    &lsi_properties_scsi },
651 #if defined(__i386) || defined(__amd64)
652 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
653 				    | SD_CONF_BSET_READSUB_BCD
654 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
655 				    | SD_CONF_BSET_NO_READ_HEADER
656 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
657 
658 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
659 				    | SD_CONF_BSET_READSUB_BCD
660 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
661 				    | SD_CONF_BSET_NO_READ_HEADER
662 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
663 #endif /* __i386 || __amd64 */
664 #endif /* sparc NON-fibre or NON-sparc platforms */
665 
666 #if (defined(SD_PROP_TST))
667 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
668 				| SD_CONF_BSET_CTYPE
669 				| SD_CONF_BSET_NRR_COUNT
670 				| SD_CONF_BSET_FAB_DEVID
671 				| SD_CONF_BSET_NOCACHE
672 				| SD_CONF_BSET_BSY_RETRY_COUNT
673 				| SD_CONF_BSET_PLAYMSF_BCD
674 				| SD_CONF_BSET_READSUB_BCD
675 				| SD_CONF_BSET_READ_TOC_TRK_BCD
676 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
677 				| SD_CONF_BSET_NO_READ_HEADER
678 				| SD_CONF_BSET_READ_CD_XD4
679 				| SD_CONF_BSET_RST_RETRIES
680 				| SD_CONF_BSET_RSV_REL_TIME
681 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
682 #endif
683 };
684 
685 static const int sd_disk_table_size =
686 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
687 
688 
689 /*
690  * Return codes of sd_uselabel().
691  */
692 #define	SD_LABEL_IS_VALID		0
693 #define	SD_LABEL_IS_INVALID		1
694 
695 #define	SD_INTERCONNECT_PARALLEL	0
696 #define	SD_INTERCONNECT_FABRIC		1
697 #define	SD_INTERCONNECT_FIBRE		2
698 #define	SD_INTERCONNECT_SSA		3
699 #define	SD_IS_PARALLEL_SCSI(un)		\
700 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
701 
702 /*
703  * Definitions used by device id registration routines
704  */
705 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
706 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
707 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
708 #define	WD_NODE			7	/* the whole disk minor */
709 
710 static kmutex_t sd_sense_mutex = {0};
711 
712 /*
713  * Macros for updates of the driver state
714  */
715 #define	New_state(un, s)        \
716 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
717 #define	Restore_state(un)	\
718 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
719 
720 static struct sd_cdbinfo sd_cdbtab[] = {
721 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
722 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
723 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
724 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
725 };
726 
727 /*
728  * Specifies the number of seconds that must have elapsed since the last
729  * cmd. has completed for a device to be declared idle to the PM framework.
730  */
731 static int sd_pm_idletime = 1;
732 
733 /*
734  * Internal function prototypes
735  */
736 
737 #if (defined(__fibre))
738 /*
739  * These #defines are to avoid namespace collisions that occur because this
740  * code is currently used to compile two seperate driver modules: sd and ssd.
741  * All function names need to be treated this way (even if declared static)
742  * in order to allow the debugger to resolve the names properly.
743  * It is anticipated that in the near future the ssd module will be obsoleted,
744  * at which time this ugliness should go away.
745  */
746 #define	sd_log_trace			ssd_log_trace
747 #define	sd_log_info			ssd_log_info
748 #define	sd_log_err			ssd_log_err
749 #define	sdprobe				ssdprobe
750 #define	sdinfo				ssdinfo
751 #define	sd_prop_op			ssd_prop_op
752 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
753 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
754 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
755 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
756 #define	sd_spin_up_unit			ssd_spin_up_unit
757 #define	sd_enable_descr_sense		ssd_enable_descr_sense
758 #define	sd_set_mmc_caps			ssd_set_mmc_caps
759 #define	sd_read_unit_properties		ssd_read_unit_properties
760 #define	sd_process_sdconf_file		ssd_process_sdconf_file
761 #define	sd_process_sdconf_table		ssd_process_sdconf_table
762 #define	sd_sdconf_id_match		ssd_sdconf_id_match
763 #define	sd_blank_cmp			ssd_blank_cmp
764 #define	sd_chk_vers1_data		ssd_chk_vers1_data
765 #define	sd_set_vers1_properties		ssd_set_vers1_properties
766 #define	sd_validate_geometry		ssd_validate_geometry
767 
768 #if defined(_SUNOS_VTOC_16)
769 #define	sd_convert_geometry		ssd_convert_geometry
770 #endif
771 
772 #define	sd_resync_geom_caches		ssd_resync_geom_caches
773 #define	sd_read_fdisk			ssd_read_fdisk
774 #define	sd_get_physical_geometry	ssd_get_physical_geometry
775 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
776 #define	sd_update_block_info		ssd_update_block_info
777 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
778 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
779 #define	sd_validate_efi			ssd_validate_efi
780 #define	sd_use_efi			ssd_use_efi
781 #define	sd_uselabel			ssd_uselabel
782 #define	sd_build_default_label		ssd_build_default_label
783 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
784 #define	sd_inq_fill			ssd_inq_fill
785 #define	sd_register_devid		ssd_register_devid
786 #define	sd_get_devid_block		ssd_get_devid_block
787 #define	sd_get_devid			ssd_get_devid
788 #define	sd_create_devid			ssd_create_devid
789 #define	sd_write_deviceid		ssd_write_deviceid
790 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
791 #define	sd_setup_pm			ssd_setup_pm
792 #define	sd_create_pm_components		ssd_create_pm_components
793 #define	sd_ddi_suspend			ssd_ddi_suspend
794 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
795 #define	sd_ddi_resume			ssd_ddi_resume
796 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
797 #define	sdpower				ssdpower
798 #define	sdattach			ssdattach
799 #define	sddetach			ssddetach
800 #define	sd_unit_attach			ssd_unit_attach
801 #define	sd_unit_detach			ssd_unit_detach
802 #define	sd_create_minor_nodes		ssd_create_minor_nodes
803 #define	sd_create_errstats		ssd_create_errstats
804 #define	sd_set_errstats			ssd_set_errstats
805 #define	sd_set_pstats			ssd_set_pstats
806 #define	sddump				ssddump
807 #define	sd_scsi_poll			ssd_scsi_poll
808 #define	sd_send_polled_RQS		ssd_send_polled_RQS
809 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
810 #define	sd_init_event_callbacks		ssd_init_event_callbacks
811 #define	sd_event_callback		ssd_event_callback
812 #define	sd_disable_caching		ssd_disable_caching
813 #define	sd_make_device			ssd_make_device
814 #define	sdopen				ssdopen
815 #define	sdclose				ssdclose
816 #define	sd_ready_and_valid		ssd_ready_and_valid
817 #define	sdmin				ssdmin
818 #define	sdread				ssdread
819 #define	sdwrite				ssdwrite
820 #define	sdaread				ssdaread
821 #define	sdawrite			ssdawrite
822 #define	sdstrategy			ssdstrategy
823 #define	sdioctl				ssdioctl
824 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
825 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
826 #define	sd_checksum_iostart		ssd_checksum_iostart
827 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
828 #define	sd_pm_iostart			ssd_pm_iostart
829 #define	sd_core_iostart			ssd_core_iostart
830 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
831 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
832 #define	sd_checksum_iodone		ssd_checksum_iodone
833 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
834 #define	sd_pm_iodone			ssd_pm_iodone
835 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
836 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
837 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
838 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
839 #define	sd_buf_iodone			ssd_buf_iodone
840 #define	sd_uscsi_strategy		ssd_uscsi_strategy
841 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
842 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
843 #define	sd_uscsi_iodone			ssd_uscsi_iodone
844 #define	sd_xbuf_strategy		ssd_xbuf_strategy
845 #define	sd_xbuf_init			ssd_xbuf_init
846 #define	sd_pm_entry			ssd_pm_entry
847 #define	sd_pm_exit			ssd_pm_exit
848 
849 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
850 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
851 
852 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
853 #define	sdintr				ssdintr
854 #define	sd_start_cmds			ssd_start_cmds
855 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
856 #define	sd_bioclone_alloc		ssd_bioclone_alloc
857 #define	sd_bioclone_free		ssd_bioclone_free
858 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
859 #define	sd_shadow_buf_free		ssd_shadow_buf_free
860 #define	sd_print_transport_rejected_message	\
861 					ssd_print_transport_rejected_message
862 #define	sd_retry_command		ssd_retry_command
863 #define	sd_set_retry_bp			ssd_set_retry_bp
864 #define	sd_send_request_sense_command	ssd_send_request_sense_command
865 #define	sd_start_retry_command		ssd_start_retry_command
866 #define	sd_start_direct_priority_command	\
867 					ssd_start_direct_priority_command
868 #define	sd_return_failed_command	ssd_return_failed_command
869 #define	sd_return_failed_command_no_restart	\
870 					ssd_return_failed_command_no_restart
871 #define	sd_return_command		ssd_return_command
872 #define	sd_sync_with_callback		ssd_sync_with_callback
873 #define	sdrunout			ssdrunout
874 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
875 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
876 #define	sd_reduce_throttle		ssd_reduce_throttle
877 #define	sd_restore_throttle		ssd_restore_throttle
878 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
879 #define	sd_init_cdb_limits		ssd_init_cdb_limits
880 #define	sd_pkt_status_good		ssd_pkt_status_good
881 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
882 #define	sd_pkt_status_busy		ssd_pkt_status_busy
883 #define	sd_pkt_status_reservation_conflict	\
884 					ssd_pkt_status_reservation_conflict
885 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
886 #define	sd_handle_request_sense		ssd_handle_request_sense
887 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
888 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
889 #define	sd_validate_sense_data		ssd_validate_sense_data
890 #define	sd_decode_sense			ssd_decode_sense
891 #define	sd_print_sense_msg		ssd_print_sense_msg
892 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
893 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
894 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
895 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
896 #define	sd_sense_key_medium_or_hardware_error	\
897 					ssd_sense_key_medium_or_hardware_error
898 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
899 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
900 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
901 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
902 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
903 #define	sd_sense_key_default		ssd_sense_key_default
904 #define	sd_print_retry_msg		ssd_print_retry_msg
905 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
906 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
907 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
908 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
909 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
910 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
911 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
912 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
913 #define	sd_pkt_reason_default		ssd_pkt_reason_default
914 #define	sd_reset_target			ssd_reset_target
915 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
916 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
917 #define	sd_taskq_create			ssd_taskq_create
918 #define	sd_taskq_delete			ssd_taskq_delete
919 #define	sd_media_change_task		ssd_media_change_task
920 #define	sd_handle_mchange		ssd_handle_mchange
921 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
922 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
923 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
924 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
925 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
926 					sd_send_scsi_feature_GET_CONFIGURATION
927 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
928 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
929 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
930 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
931 					ssd_send_scsi_PERSISTENT_RESERVE_IN
932 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
933 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
934 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
935 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
936 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
937 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
938 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
939 #define	sd_alloc_rqs			ssd_alloc_rqs
940 #define	sd_free_rqs			ssd_free_rqs
941 #define	sd_dump_memory			ssd_dump_memory
942 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
943 #define	sd_get_media_info		ssd_get_media_info
944 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
945 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
946 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
947 #define	sd_dkio_get_partition		ssd_dkio_get_partition
948 #define	sd_dkio_set_partition		ssd_dkio_set_partition
949 #define	sd_dkio_partition		ssd_dkio_partition
950 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
951 #define	sd_dkio_get_efi			ssd_dkio_get_efi
952 #define	sd_build_user_vtoc		ssd_build_user_vtoc
953 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
954 #define	sd_dkio_set_efi			ssd_dkio_set_efi
955 #define	sd_build_label_vtoc		ssd_build_label_vtoc
956 #define	sd_write_label			ssd_write_label
957 #define	sd_clear_vtoc			ssd_clear_vtoc
958 #define	sd_clear_efi			ssd_clear_efi
959 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
960 #define	sd_setup_next_xfer		ssd_setup_next_xfer
961 #define	sd_dkio_get_temp		ssd_dkio_get_temp
962 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
963 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
964 #define	sd_setup_default_geometry	ssd_setup_default_geometry
965 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
966 #define	sd_check_mhd			ssd_check_mhd
967 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
968 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
969 #define	sd_sname			ssd_sname
970 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
971 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
972 #define	sd_take_ownership		ssd_take_ownership
973 #define	sd_reserve_release		ssd_reserve_release
974 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
975 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
976 #define	sd_persistent_reservation_in_read_keys	\
977 					ssd_persistent_reservation_in_read_keys
978 #define	sd_persistent_reservation_in_read_resv	\
979 					ssd_persistent_reservation_in_read_resv
980 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
981 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
982 #define	sd_mhdioc_release		ssd_mhdioc_release
983 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
984 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
985 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
986 #define	sr_change_blkmode		ssr_change_blkmode
987 #define	sr_change_speed			ssr_change_speed
988 #define	sr_atapi_change_speed		ssr_atapi_change_speed
989 #define	sr_pause_resume			ssr_pause_resume
990 #define	sr_play_msf			ssr_play_msf
991 #define	sr_play_trkind			ssr_play_trkind
992 #define	sr_read_all_subcodes		ssr_read_all_subcodes
993 #define	sr_read_subchannel		ssr_read_subchannel
994 #define	sr_read_tocentry		ssr_read_tocentry
995 #define	sr_read_tochdr			ssr_read_tochdr
996 #define	sr_read_cdda			ssr_read_cdda
997 #define	sr_read_cdxa			ssr_read_cdxa
998 #define	sr_read_mode1			ssr_read_mode1
999 #define	sr_read_mode2			ssr_read_mode2
1000 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1001 #define	sr_sector_mode			ssr_sector_mode
1002 #define	sr_eject			ssr_eject
1003 #define	sr_ejected			ssr_ejected
1004 #define	sr_check_wp			ssr_check_wp
1005 #define	sd_check_media			ssd_check_media
1006 #define	sd_media_watch_cb		ssd_media_watch_cb
1007 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1008 #define	sr_volume_ctrl			ssr_volume_ctrl
1009 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1010 #define	sd_log_page_supported		ssd_log_page_supported
1011 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1012 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1013 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1014 #define	sd_range_lock			ssd_range_lock
1015 #define	sd_get_range			ssd_get_range
1016 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1017 #define	sd_range_unlock			ssd_range_unlock
1018 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1019 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1020 
1021 #define	sd_iostart_chain		ssd_iostart_chain
1022 #define	sd_iodone_chain			ssd_iodone_chain
1023 #define	sd_initpkt_map			ssd_initpkt_map
1024 #define	sd_destroypkt_map		ssd_destroypkt_map
1025 #define	sd_chain_type_map		ssd_chain_type_map
1026 #define	sd_chain_index_map		ssd_chain_index_map
1027 
1028 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1029 #define	sd_failfast_flushq		ssd_failfast_flushq
1030 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1031 
1032 #define	sd_is_lsi			ssd_is_lsi
1033 
1034 #endif	/* #if (defined(__fibre)) */
1035 
1036 
1037 int _init(void);
1038 int _fini(void);
1039 int _info(struct modinfo *modinfop);
1040 
1041 /*PRINTFLIKE3*/
1042 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1043 /*PRINTFLIKE3*/
1044 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1045 /*PRINTFLIKE3*/
1046 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1047 
1048 static int sdprobe(dev_info_t *devi);
1049 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1050     void **result);
1051 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1052     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1053 
1054 /*
1055  * Smart probe for parallel scsi
1056  */
1057 static void sd_scsi_probe_cache_init(void);
1058 static void sd_scsi_probe_cache_fini(void);
1059 static void sd_scsi_clear_probe_cache(void);
1060 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1061 
1062 static int	sd_spin_up_unit(struct sd_lun *un);
1063 #ifdef _LP64
1064 static void	sd_enable_descr_sense(struct sd_lun *un);
1065 #endif /* _LP64 */
1066 static void	sd_set_mmc_caps(struct sd_lun *un);
1067 
1068 static void sd_read_unit_properties(struct sd_lun *un);
1069 static int  sd_process_sdconf_file(struct sd_lun *un);
1070 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1071     int *data_list, sd_tunables *values);
1072 static void sd_process_sdconf_table(struct sd_lun *un);
1073 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1074 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1075 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1076 	int list_len, char *dataname_ptr);
1077 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1078     sd_tunables *prop_list);
1079 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1080 
1081 #if defined(_SUNOS_VTOC_16)
1082 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1083 #endif
1084 
1085 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1086 	int path_flag);
1087 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1088 	int path_flag);
1089 static void sd_get_physical_geometry(struct sd_lun *un,
1090 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1091 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1092 	int lbasize);
1093 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1094 static void sd_swap_efi_gpt(efi_gpt_t *);
1095 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1096 static int sd_validate_efi(efi_gpt_t *);
1097 static int sd_use_efi(struct sd_lun *, int);
1098 static void sd_build_default_label(struct sd_lun *un);
1099 
1100 #if defined(_FIRMWARE_NEEDS_FDISK)
1101 static int  sd_has_max_chs_vals(struct ipart *fdp);
1102 #endif
1103 static void sd_inq_fill(char *p, int l, char *s);
1104 
1105 
1106 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1107     int reservation_flag);
1108 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1109 static int  sd_get_devid(struct sd_lun *un);
1110 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1111 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1112 static int  sd_write_deviceid(struct sd_lun *un);
1113 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1114 static int  sd_check_vpd_page_support(struct sd_lun *un);
1115 
1116 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1117 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1118 
1119 static int  sd_ddi_suspend(dev_info_t *devi);
1120 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1121 static int  sd_ddi_resume(dev_info_t *devi);
1122 static int  sd_ddi_pm_resume(struct sd_lun *un);
1123 static int  sdpower(dev_info_t *devi, int component, int level);
1124 
1125 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1126 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1127 static int  sd_unit_attach(dev_info_t *devi);
1128 static int  sd_unit_detach(dev_info_t *devi);
1129 
1130 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1131 static void sd_create_errstats(struct sd_lun *un, int instance);
1132 static void sd_set_errstats(struct sd_lun *un);
1133 static void sd_set_pstats(struct sd_lun *un);
1134 
1135 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1136 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1137 static int  sd_send_polled_RQS(struct sd_lun *un);
1138 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1139 
1140 #if (defined(__fibre))
1141 /*
1142  * Event callbacks (photon)
1143  */
1144 static void sd_init_event_callbacks(struct sd_lun *un);
1145 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1146 #endif
1147 
1148 
1149 static int   sd_disable_caching(struct sd_lun *un);
1150 static dev_t sd_make_device(dev_info_t *devi);
1151 
1152 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1153 	uint64_t capacity);
1154 
1155 /*
1156  * Driver entry point functions.
1157  */
1158 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1159 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1160 static int  sd_ready_and_valid(struct sd_lun *un);
1161 
1162 static void sdmin(struct buf *bp);
1163 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1164 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1165 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1166 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1167 
1168 static int sdstrategy(struct buf *bp);
1169 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1170 
1171 /*
1172  * Function prototypes for layering functions in the iostart chain.
1173  */
1174 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1175 	struct buf *bp);
1176 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1177 	struct buf *bp);
1178 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1179 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1180 	struct buf *bp);
1181 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1182 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1183 
1184 /*
1185  * Function prototypes for layering functions in the iodone chain.
1186  */
1187 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1188 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1189 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1190 	struct buf *bp);
1191 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1192 	struct buf *bp);
1193 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1194 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1195 	struct buf *bp);
1196 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1197 
1198 /*
1199  * Prototypes for functions to support buf(9S) based IO.
1200  */
1201 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1202 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1203 static void sd_destroypkt_for_buf(struct buf *);
1204 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1205 	struct buf *bp, int flags,
1206 	int (*callback)(caddr_t), caddr_t callback_arg,
1207 	diskaddr_t lba, uint32_t blockcount);
1208 #if defined(__i386) || defined(__amd64)
1209 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1210 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1211 #endif /* defined(__i386) || defined(__amd64) */
1212 
1213 /*
1214  * Prototypes for functions to support USCSI IO.
1215  */
1216 static int sd_uscsi_strategy(struct buf *bp);
1217 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1218 static void sd_destroypkt_for_uscsi(struct buf *);
1219 
1220 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1221 	uchar_t chain_type, void *pktinfop);
1222 
1223 static int  sd_pm_entry(struct sd_lun *un);
1224 static void sd_pm_exit(struct sd_lun *un);
1225 
1226 static void sd_pm_idletimeout_handler(void *arg);
1227 
1228 /*
1229  * sd_core internal functions (used at the sd_core_io layer).
1230  */
1231 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1232 static void sdintr(struct scsi_pkt *pktp);
1233 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1234 
1235 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1236 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1237 	int path_flag);
1238 
1239 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1240 	daddr_t blkno, int (*func)(struct buf *));
1241 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1242 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1243 static void sd_bioclone_free(struct buf *bp);
1244 static void sd_shadow_buf_free(struct buf *bp);
1245 
1246 static void sd_print_transport_rejected_message(struct sd_lun *un,
1247 	struct sd_xbuf *xp, int code);
1248 
1249 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1250 	int retry_check_flag,
1251 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1252 		int c),
1253 	void *user_arg, int failure_code,  clock_t retry_delay,
1254 	void (*statp)(kstat_io_t *));
1255 
1256 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1257 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1258 
1259 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1260 	struct scsi_pkt *pktp);
1261 static void sd_start_retry_command(void *arg);
1262 static void sd_start_direct_priority_command(void *arg);
1263 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1264 	int errcode);
1265 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1266 	struct buf *bp, int errcode);
1267 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1268 static void sd_sync_with_callback(struct sd_lun *un);
1269 static int sdrunout(caddr_t arg);
1270 
1271 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1272 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1273 
1274 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1275 static void sd_restore_throttle(void *arg);
1276 
1277 static void sd_init_cdb_limits(struct sd_lun *un);
1278 
1279 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1280 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1281 
1282 /*
1283  * Error handling functions
1284  */
1285 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1286 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1287 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1288 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1289 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1290 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1291 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1292 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1293 
1294 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1295 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1296 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1297 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1298 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1299 	struct sd_xbuf *xp);
1300 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1301 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1302 
1303 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1304 	void *arg, int code);
1305 static diskaddr_t sd_extract_sense_info_descr(
1306 	struct scsi_descr_sense_hdr *sdsp);
1307 
1308 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1309 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1310 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1311 	uint8_t asc,
1312 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1313 static void sd_sense_key_not_ready(struct sd_lun *un,
1314 	uint8_t asc, uint8_t ascq,
1315 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1316 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1317 	int sense_key, uint8_t asc,
1318 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1319 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 static void sd_sense_key_unit_attention(struct sd_lun *un,
1322 	uint8_t asc,
1323 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1324 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1325 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1326 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1327 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1328 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_sense_key_default(struct sd_lun *un,
1331 	int sense_key,
1332 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 
1334 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1335 	void *arg, int flag);
1336 
1337 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1338 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1339 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1340 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1341 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1342 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1344 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1346 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1348 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1349 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1350 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 
1354 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1355 
1356 static void sd_start_stop_unit_callback(void *arg);
1357 static void sd_start_stop_unit_task(void *arg);
1358 
1359 static void sd_taskq_create(void);
1360 static void sd_taskq_delete(void);
1361 static void sd_media_change_task(void *arg);
1362 
1363 static int sd_handle_mchange(struct sd_lun *un);
1364 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1365 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1366 	uint32_t *lbap, int path_flag);
1367 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1368 	uint32_t *lbap, int path_flag);
1369 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1370 	int path_flag);
1371 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1372 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1373 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1374 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1375 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1376 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1377 	uchar_t usr_cmd, uchar_t *usr_bufp);
1378 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un);
1379 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1380 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1381 	uchar_t *bufaddr, uint_t buflen);
1382 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1383 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1384 	uchar_t *bufaddr, uint_t buflen, char feature);
1385 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1386 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1387 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1388 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1389 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1390 	size_t buflen, daddr_t start_block, int path_flag);
1391 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1392 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1393 	path_flag)
1394 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1395 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1396 	path_flag)
1397 
1398 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1399 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1400 	uint16_t param_ptr, int path_flag);
1401 
1402 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1403 static void sd_free_rqs(struct sd_lun *un);
1404 
1405 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1406 	uchar_t *data, int len, int fmt);
1407 
1408 /*
1409  * Disk Ioctl Function Prototypes
1410  */
1411 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1412 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1413 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1414 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1415 	int geom_validated);
1416 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1417 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1418 	int geom_validated);
1419 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1420 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1421 	int geom_validated);
1422 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1423 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1424 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1425 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1426 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1427 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1428 static int sd_write_label(dev_t dev);
1429 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1430 static void sd_clear_vtoc(struct sd_lun *un);
1431 static void sd_clear_efi(struct sd_lun *un);
1432 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1433 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1434 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1435 static void sd_setup_default_geometry(struct sd_lun *un);
1436 #if defined(__i386) || defined(__amd64)
1437 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1438 #endif
1439 
1440 /*
1441  * Multi-host Ioctl Prototypes
1442  */
1443 static int sd_check_mhd(dev_t dev, int interval);
1444 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1445 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1446 static char *sd_sname(uchar_t status);
1447 static void sd_mhd_resvd_recover(void *arg);
1448 static void sd_resv_reclaim_thread();
1449 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1450 static int sd_reserve_release(dev_t dev, int cmd);
1451 static void sd_rmv_resv_reclaim_req(dev_t dev);
1452 static void sd_mhd_reset_notify_cb(caddr_t arg);
1453 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1454 	mhioc_inkeys_t *usrp, int flag);
1455 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1456 	mhioc_inresvs_t *usrp, int flag);
1457 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1458 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1459 static int sd_mhdioc_release(dev_t dev);
1460 static int sd_mhdioc_register_devid(dev_t dev);
1461 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1462 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1463 
1464 /*
1465  * SCSI removable prototypes
1466  */
1467 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1468 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1469 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1470 static int sr_pause_resume(dev_t dev, int mode);
1471 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1472 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1473 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1474 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1475 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1476 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1477 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1478 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1479 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1480 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1482 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1483 static int sr_eject(dev_t dev);
1484 static void sr_ejected(register struct sd_lun *un);
1485 static int sr_check_wp(dev_t dev);
1486 static int sd_check_media(dev_t dev, enum dkio_state state);
1487 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1488 static void sd_delayed_cv_broadcast(void *arg);
1489 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1490 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1491 
1492 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1493 
1494 /*
1495  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1496  */
1497 static void sd_check_for_writable_cd(struct sd_lun *un);
1498 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1499 static void sd_wm_cache_destructor(void *wm, void *un);
1500 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1501 	daddr_t endb, ushort_t typ);
1502 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1503 	daddr_t endb);
1504 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1505 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1506 static void sd_read_modify_write_task(void * arg);
1507 static int
1508 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1509 	struct buf **bpp);
1510 
1511 
1512 /*
1513  * Function prototypes for failfast support.
1514  */
1515 static void sd_failfast_flushq(struct sd_lun *un);
1516 static int sd_failfast_flushq_callback(struct buf *bp);
1517 
1518 /*
1519  * Function prototypes to check for lsi devices
1520  */
1521 static void sd_is_lsi(struct sd_lun *un);
1522 
1523 /*
1524  * Function prototypes for x86 support
1525  */
1526 #if defined(__i386) || defined(__amd64)
1527 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1528 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1529 #endif
1530 
1531 /*
1532  * Constants for failfast support:
1533  *
1534  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1535  * failfast processing being performed.
1536  *
1537  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1538  * failfast processing on all bufs with B_FAILFAST set.
1539  */
1540 
1541 #define	SD_FAILFAST_INACTIVE		0
1542 #define	SD_FAILFAST_ACTIVE		1
1543 
1544 /*
1545  * Bitmask to control behavior of buf(9S) flushes when a transition to
1546  * the failfast state occurs. Optional bits include:
1547  *
1548  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1549  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1550  * be flushed.
1551  *
1552  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1553  * driver, in addition to the regular wait queue. This includes the xbuf
1554  * queues. When clear, only the driver's wait queue will be flushed.
1555  */
1556 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1557 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1558 
1559 /*
1560  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1561  * to flush all queues within the driver.
1562  */
1563 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1564 
1565 
1566 /*
1567  * SD Testing Fault Injection
1568  */
1569 #ifdef SD_FAULT_INJECTION
1570 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1571 static void sd_faultinjection(struct scsi_pkt *pktp);
1572 static void sd_injection_log(char *buf, struct sd_lun *un);
1573 #endif
1574 
1575 /*
1576  * Device driver ops vector
1577  */
1578 static struct cb_ops sd_cb_ops = {
1579 	sdopen,			/* open */
1580 	sdclose,		/* close */
1581 	sdstrategy,		/* strategy */
1582 	nodev,			/* print */
1583 	sddump,			/* dump */
1584 	sdread,			/* read */
1585 	sdwrite,		/* write */
1586 	sdioctl,		/* ioctl */
1587 	nodev,			/* devmap */
1588 	nodev,			/* mmap */
1589 	nodev,			/* segmap */
1590 	nochpoll,		/* poll */
1591 	sd_prop_op,		/* cb_prop_op */
1592 	0,			/* streamtab  */
1593 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1594 	CB_REV,			/* cb_rev */
1595 	sdaread, 		/* async I/O read entry point */
1596 	sdawrite		/* async I/O write entry point */
1597 };
1598 
1599 static struct dev_ops sd_ops = {
1600 	DEVO_REV,		/* devo_rev, */
1601 	0,			/* refcnt  */
1602 	sdinfo,			/* info */
1603 	nulldev,		/* identify */
1604 	sdprobe,		/* probe */
1605 	sdattach,		/* attach */
1606 	sddetach,		/* detach */
1607 	nodev,			/* reset */
1608 	&sd_cb_ops,		/* driver operations */
1609 	NULL,			/* bus operations */
1610 	sdpower			/* power */
1611 };
1612 
1613 
1614 /*
1615  * This is the loadable module wrapper.
1616  */
1617 #include <sys/modctl.h>
1618 
1619 static struct modldrv modldrv = {
1620 	&mod_driverops,		/* Type of module. This one is a driver */
1621 	SD_MODULE_NAME,		/* Module name. */
1622 	&sd_ops			/* driver ops */
1623 };
1624 
1625 
1626 static struct modlinkage modlinkage = {
1627 	MODREV_1,
1628 	&modldrv,
1629 	NULL
1630 };
1631 
1632 
1633 static struct scsi_asq_key_strings sd_additional_codes[] = {
1634 	0x81, 0, "Logical Unit is Reserved",
1635 	0x85, 0, "Audio Address Not Valid",
1636 	0xb6, 0, "Media Load Mechanism Failed",
1637 	0xB9, 0, "Audio Play Operation Aborted",
1638 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1639 	0x53, 2, "Medium removal prevented",
1640 	0x6f, 0, "Authentication failed during key exchange",
1641 	0x6f, 1, "Key not present",
1642 	0x6f, 2, "Key not established",
1643 	0x6f, 3, "Read without proper authentication",
1644 	0x6f, 4, "Mismatched region to this logical unit",
1645 	0x6f, 5, "Region reset count error",
1646 	0xffff, 0x0, NULL
1647 };
1648 
1649 
1650 /*
1651  * Struct for passing printing information for sense data messages
1652  */
1653 struct sd_sense_info {
1654 	int	ssi_severity;
1655 	int	ssi_pfa_flag;
1656 };
1657 
1658 /*
1659  * Table of function pointers for iostart-side routines. Seperate "chains"
1660  * of layered function calls are formed by placing the function pointers
1661  * sequentially in the desired order. Functions are called according to an
1662  * incrementing table index ordering. The last function in each chain must
1663  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1664  * in the sd_iodone_chain[] array.
1665  *
1666  * Note: It may seem more natural to organize both the iostart and iodone
1667  * functions together, into an array of structures (or some similar
1668  * organization) with a common index, rather than two seperate arrays which
1669  * must be maintained in synchronization. The purpose of this division is
1670  * to achiece improved performance: individual arrays allows for more
1671  * effective cache line utilization on certain platforms.
1672  */
1673 
1674 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1675 
1676 
1677 static sd_chain_t sd_iostart_chain[] = {
1678 
1679 	/* Chain for buf IO for disk drive targets (PM enabled) */
1680 	sd_mapblockaddr_iostart,	/* Index: 0 */
1681 	sd_pm_iostart,			/* Index: 1 */
1682 	sd_core_iostart,		/* Index: 2 */
1683 
1684 	/* Chain for buf IO for disk drive targets (PM disabled) */
1685 	sd_mapblockaddr_iostart,	/* Index: 3 */
1686 	sd_core_iostart,		/* Index: 4 */
1687 
1688 	/* Chain for buf IO for removable-media targets (PM enabled) */
1689 	sd_mapblockaddr_iostart,	/* Index: 5 */
1690 	sd_mapblocksize_iostart,	/* Index: 6 */
1691 	sd_pm_iostart,			/* Index: 7 */
1692 	sd_core_iostart,		/* Index: 8 */
1693 
1694 	/* Chain for buf IO for removable-media targets (PM disabled) */
1695 	sd_mapblockaddr_iostart,	/* Index: 9 */
1696 	sd_mapblocksize_iostart,	/* Index: 10 */
1697 	sd_core_iostart,		/* Index: 11 */
1698 
1699 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1700 	sd_mapblockaddr_iostart,	/* Index: 12 */
1701 	sd_checksum_iostart,		/* Index: 13 */
1702 	sd_pm_iostart,			/* Index: 14 */
1703 	sd_core_iostart,		/* Index: 15 */
1704 
1705 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1706 	sd_mapblockaddr_iostart,	/* Index: 16 */
1707 	sd_checksum_iostart,		/* Index: 17 */
1708 	sd_core_iostart,		/* Index: 18 */
1709 
1710 	/* Chain for USCSI commands (all targets) */
1711 	sd_pm_iostart,			/* Index: 19 */
1712 	sd_core_iostart,		/* Index: 20 */
1713 
1714 	/* Chain for checksumming USCSI commands (all targets) */
1715 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1716 	sd_pm_iostart,			/* Index: 22 */
1717 	sd_core_iostart,		/* Index: 23 */
1718 
1719 	/* Chain for "direct" USCSI commands (all targets) */
1720 	sd_core_iostart,		/* Index: 24 */
1721 
1722 	/* Chain for "direct priority" USCSI commands (all targets) */
1723 	sd_core_iostart,		/* Index: 25 */
1724 };
1725 
1726 /*
1727  * Macros to locate the first function of each iostart chain in the
1728  * sd_iostart_chain[] array. These are located by the index in the array.
1729  */
1730 #define	SD_CHAIN_DISK_IOSTART			0
1731 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1732 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1733 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1734 #define	SD_CHAIN_CHKSUM_IOSTART			12
1735 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1736 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1737 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1738 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1739 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1740 
1741 
1742 /*
1743  * Table of function pointers for the iodone-side routines for the driver-
1744  * internal layering mechanism.  The calling sequence for iodone routines
1745  * uses a decrementing table index, so the last routine called in a chain
1746  * must be at the lowest array index location for that chain.  The last
1747  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1748  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1749  * of the functions in an iodone side chain must correspond to the ordering
1750  * of the iostart routines for that chain.  Note that there is no iodone
1751  * side routine that corresponds to sd_core_iostart(), so there is no
1752  * entry in the table for this.
1753  */
1754 
1755 static sd_chain_t sd_iodone_chain[] = {
1756 
1757 	/* Chain for buf IO for disk drive targets (PM enabled) */
1758 	sd_buf_iodone,			/* Index: 0 */
1759 	sd_mapblockaddr_iodone,		/* Index: 1 */
1760 	sd_pm_iodone,			/* Index: 2 */
1761 
1762 	/* Chain for buf IO for disk drive targets (PM disabled) */
1763 	sd_buf_iodone,			/* Index: 3 */
1764 	sd_mapblockaddr_iodone,		/* Index: 4 */
1765 
1766 	/* Chain for buf IO for removable-media targets (PM enabled) */
1767 	sd_buf_iodone,			/* Index: 5 */
1768 	sd_mapblockaddr_iodone,		/* Index: 6 */
1769 	sd_mapblocksize_iodone,		/* Index: 7 */
1770 	sd_pm_iodone,			/* Index: 8 */
1771 
1772 	/* Chain for buf IO for removable-media targets (PM disabled) */
1773 	sd_buf_iodone,			/* Index: 9 */
1774 	sd_mapblockaddr_iodone,		/* Index: 10 */
1775 	sd_mapblocksize_iodone,		/* Index: 11 */
1776 
1777 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1778 	sd_buf_iodone,			/* Index: 12 */
1779 	sd_mapblockaddr_iodone,		/* Index: 13 */
1780 	sd_checksum_iodone,		/* Index: 14 */
1781 	sd_pm_iodone,			/* Index: 15 */
1782 
1783 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1784 	sd_buf_iodone,			/* Index: 16 */
1785 	sd_mapblockaddr_iodone,		/* Index: 17 */
1786 	sd_checksum_iodone,		/* Index: 18 */
1787 
1788 	/* Chain for USCSI commands (non-checksum targets) */
1789 	sd_uscsi_iodone,		/* Index: 19 */
1790 	sd_pm_iodone,			/* Index: 20 */
1791 
1792 	/* Chain for USCSI commands (checksum targets) */
1793 	sd_uscsi_iodone,		/* Index: 21 */
1794 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1795 	sd_pm_iodone,			/* Index: 22 */
1796 
1797 	/* Chain for "direct" USCSI commands (all targets) */
1798 	sd_uscsi_iodone,		/* Index: 24 */
1799 
1800 	/* Chain for "direct priority" USCSI commands (all targets) */
1801 	sd_uscsi_iodone,		/* Index: 25 */
1802 };
1803 
1804 
1805 /*
1806  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1807  * each iodone-side chain. These are located by the array index, but as the
1808  * iodone side functions are called in a decrementing-index order, the
1809  * highest index number in each chain must be specified (as these correspond
1810  * to the first function in the iodone chain that will be called by the core
1811  * at IO completion time).
1812  */
1813 
1814 #define	SD_CHAIN_DISK_IODONE			2
1815 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1816 #define	SD_CHAIN_RMMEDIA_IODONE			8
1817 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1818 #define	SD_CHAIN_CHKSUM_IODONE			15
1819 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1820 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1821 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1822 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1823 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1824 
1825 
1826 
1827 
1828 /*
1829  * Array to map a layering chain index to the appropriate initpkt routine.
1830  * The redundant entries are present so that the index used for accessing
1831  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1832  * with this table as well.
1833  */
1834 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1835 
1836 static sd_initpkt_t	sd_initpkt_map[] = {
1837 
1838 	/* Chain for buf IO for disk drive targets (PM enabled) */
1839 	sd_initpkt_for_buf,		/* Index: 0 */
1840 	sd_initpkt_for_buf,		/* Index: 1 */
1841 	sd_initpkt_for_buf,		/* Index: 2 */
1842 
1843 	/* Chain for buf IO for disk drive targets (PM disabled) */
1844 	sd_initpkt_for_buf,		/* Index: 3 */
1845 	sd_initpkt_for_buf,		/* Index: 4 */
1846 
1847 	/* Chain for buf IO for removable-media targets (PM enabled) */
1848 	sd_initpkt_for_buf,		/* Index: 5 */
1849 	sd_initpkt_for_buf,		/* Index: 6 */
1850 	sd_initpkt_for_buf,		/* Index: 7 */
1851 	sd_initpkt_for_buf,		/* Index: 8 */
1852 
1853 	/* Chain for buf IO for removable-media targets (PM disabled) */
1854 	sd_initpkt_for_buf,		/* Index: 9 */
1855 	sd_initpkt_for_buf,		/* Index: 10 */
1856 	sd_initpkt_for_buf,		/* Index: 11 */
1857 
1858 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1859 	sd_initpkt_for_buf,		/* Index: 12 */
1860 	sd_initpkt_for_buf,		/* Index: 13 */
1861 	sd_initpkt_for_buf,		/* Index: 14 */
1862 	sd_initpkt_for_buf,		/* Index: 15 */
1863 
1864 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1865 	sd_initpkt_for_buf,		/* Index: 16 */
1866 	sd_initpkt_for_buf,		/* Index: 17 */
1867 	sd_initpkt_for_buf,		/* Index: 18 */
1868 
1869 	/* Chain for USCSI commands (non-checksum targets) */
1870 	sd_initpkt_for_uscsi,		/* Index: 19 */
1871 	sd_initpkt_for_uscsi,		/* Index: 20 */
1872 
1873 	/* Chain for USCSI commands (checksum targets) */
1874 	sd_initpkt_for_uscsi,		/* Index: 21 */
1875 	sd_initpkt_for_uscsi,		/* Index: 22 */
1876 	sd_initpkt_for_uscsi,		/* Index: 22 */
1877 
1878 	/* Chain for "direct" USCSI commands (all targets) */
1879 	sd_initpkt_for_uscsi,		/* Index: 24 */
1880 
1881 	/* Chain for "direct priority" USCSI commands (all targets) */
1882 	sd_initpkt_for_uscsi,		/* Index: 25 */
1883 
1884 };
1885 
1886 
1887 /*
1888  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1889  * The redundant entries are present so that the index used for accessing
1890  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1891  * with this table as well.
1892  */
1893 typedef void (*sd_destroypkt_t)(struct buf *);
1894 
1895 static sd_destroypkt_t	sd_destroypkt_map[] = {
1896 
1897 	/* Chain for buf IO for disk drive targets (PM enabled) */
1898 	sd_destroypkt_for_buf,		/* Index: 0 */
1899 	sd_destroypkt_for_buf,		/* Index: 1 */
1900 	sd_destroypkt_for_buf,		/* Index: 2 */
1901 
1902 	/* Chain for buf IO for disk drive targets (PM disabled) */
1903 	sd_destroypkt_for_buf,		/* Index: 3 */
1904 	sd_destroypkt_for_buf,		/* Index: 4 */
1905 
1906 	/* Chain for buf IO for removable-media targets (PM enabled) */
1907 	sd_destroypkt_for_buf,		/* Index: 5 */
1908 	sd_destroypkt_for_buf,		/* Index: 6 */
1909 	sd_destroypkt_for_buf,		/* Index: 7 */
1910 	sd_destroypkt_for_buf,		/* Index: 8 */
1911 
1912 	/* Chain for buf IO for removable-media targets (PM disabled) */
1913 	sd_destroypkt_for_buf,		/* Index: 9 */
1914 	sd_destroypkt_for_buf,		/* Index: 10 */
1915 	sd_destroypkt_for_buf,		/* Index: 11 */
1916 
1917 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1918 	sd_destroypkt_for_buf,		/* Index: 12 */
1919 	sd_destroypkt_for_buf,		/* Index: 13 */
1920 	sd_destroypkt_for_buf,		/* Index: 14 */
1921 	sd_destroypkt_for_buf,		/* Index: 15 */
1922 
1923 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1924 	sd_destroypkt_for_buf,		/* Index: 16 */
1925 	sd_destroypkt_for_buf,		/* Index: 17 */
1926 	sd_destroypkt_for_buf,		/* Index: 18 */
1927 
1928 	/* Chain for USCSI commands (non-checksum targets) */
1929 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1930 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1931 
1932 	/* Chain for USCSI commands (checksum targets) */
1933 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1934 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1935 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1936 
1937 	/* Chain for "direct" USCSI commands (all targets) */
1938 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1939 
1940 	/* Chain for "direct priority" USCSI commands (all targets) */
1941 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1942 
1943 };
1944 
1945 
1946 
1947 /*
1948  * Array to map a layering chain index to the appropriate chain "type".
1949  * The chain type indicates a specific property/usage of the chain.
1950  * The redundant entries are present so that the index used for accessing
1951  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1952  * with this table as well.
1953  */
1954 
1955 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1956 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1957 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1958 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1959 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1960 						/* (for error recovery) */
1961 
1962 static int sd_chain_type_map[] = {
1963 
1964 	/* Chain for buf IO for disk drive targets (PM enabled) */
1965 	SD_CHAIN_BUFIO,			/* Index: 0 */
1966 	SD_CHAIN_BUFIO,			/* Index: 1 */
1967 	SD_CHAIN_BUFIO,			/* Index: 2 */
1968 
1969 	/* Chain for buf IO for disk drive targets (PM disabled) */
1970 	SD_CHAIN_BUFIO,			/* Index: 3 */
1971 	SD_CHAIN_BUFIO,			/* Index: 4 */
1972 
1973 	/* Chain for buf IO for removable-media targets (PM enabled) */
1974 	SD_CHAIN_BUFIO,			/* Index: 5 */
1975 	SD_CHAIN_BUFIO,			/* Index: 6 */
1976 	SD_CHAIN_BUFIO,			/* Index: 7 */
1977 	SD_CHAIN_BUFIO,			/* Index: 8 */
1978 
1979 	/* Chain for buf IO for removable-media targets (PM disabled) */
1980 	SD_CHAIN_BUFIO,			/* Index: 9 */
1981 	SD_CHAIN_BUFIO,			/* Index: 10 */
1982 	SD_CHAIN_BUFIO,			/* Index: 11 */
1983 
1984 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1985 	SD_CHAIN_BUFIO,			/* Index: 12 */
1986 	SD_CHAIN_BUFIO,			/* Index: 13 */
1987 	SD_CHAIN_BUFIO,			/* Index: 14 */
1988 	SD_CHAIN_BUFIO,			/* Index: 15 */
1989 
1990 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1991 	SD_CHAIN_BUFIO,			/* Index: 16 */
1992 	SD_CHAIN_BUFIO,			/* Index: 17 */
1993 	SD_CHAIN_BUFIO,			/* Index: 18 */
1994 
1995 	/* Chain for USCSI commands (non-checksum targets) */
1996 	SD_CHAIN_USCSI,			/* Index: 19 */
1997 	SD_CHAIN_USCSI,			/* Index: 20 */
1998 
1999 	/* Chain for USCSI commands (checksum targets) */
2000 	SD_CHAIN_USCSI,			/* Index: 21 */
2001 	SD_CHAIN_USCSI,			/* Index: 22 */
2002 	SD_CHAIN_USCSI,			/* Index: 22 */
2003 
2004 	/* Chain for "direct" USCSI commands (all targets) */
2005 	SD_CHAIN_DIRECT,		/* Index: 24 */
2006 
2007 	/* Chain for "direct priority" USCSI commands (all targets) */
2008 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2009 };
2010 
2011 
2012 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2013 #define	SD_IS_BUFIO(xp)			\
2014 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2015 
2016 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2017 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2018 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2019 
2020 
2021 
2022 /*
2023  * Struct, array, and macros to map a specific chain to the appropriate
2024  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2025  *
2026  * The sd_chain_index_map[] array is used at attach time to set the various
2027  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2028  * chain to be used with the instance. This allows different instances to use
2029  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2030  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2031  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2032  * dynamically & without the use of locking; and (2) a layer may update the
2033  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2034  * to allow for deferred processing of an IO within the same chain from a
2035  * different execution context.
2036  */
2037 
2038 struct sd_chain_index {
2039 	int	sci_iostart_index;
2040 	int	sci_iodone_index;
2041 };
2042 
2043 static struct sd_chain_index	sd_chain_index_map[] = {
2044 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2045 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2046 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2047 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2048 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2049 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2050 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2051 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2052 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2053 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2054 };
2055 
2056 
2057 /*
2058  * The following are indexes into the sd_chain_index_map[] array.
2059  */
2060 
2061 /* un->un_buf_chain_type must be set to one of these */
2062 #define	SD_CHAIN_INFO_DISK		0
2063 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2064 #define	SD_CHAIN_INFO_RMMEDIA		2
2065 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2066 #define	SD_CHAIN_INFO_CHKSUM		4
2067 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2068 
2069 /* un->un_uscsi_chain_type must be set to one of these */
2070 #define	SD_CHAIN_INFO_USCSI_CMD		6
2071 /* USCSI with PM disabled is the same as DIRECT */
2072 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2073 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2074 
2075 /* un->un_direct_chain_type must be set to one of these */
2076 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2077 
2078 /* un->un_priority_chain_type must be set to one of these */
2079 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2080 
2081 /* size for devid inquiries */
2082 #define	MAX_INQUIRY_SIZE		0xF0
2083 
2084 /*
2085  * Macros used by functions to pass a given buf(9S) struct along to the
2086  * next function in the layering chain for further processing.
2087  *
2088  * In the following macros, passing more than three arguments to the called
2089  * routines causes the optimizer for the SPARC compiler to stop doing tail
2090  * call elimination which results in significant performance degradation.
2091  */
2092 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2093 	((*(sd_iostart_chain[index]))(index, un, bp))
2094 
2095 #define	SD_BEGIN_IODONE(index, un, bp)	\
2096 	((*(sd_iodone_chain[index]))(index, un, bp))
2097 
2098 #define	SD_NEXT_IOSTART(index, un, bp)				\
2099 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2100 
2101 #define	SD_NEXT_IODONE(index, un, bp)				\
2102 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2103 
2104 
2105 /*
2106  *    Function: _init
2107  *
2108  * Description: This is the driver _init(9E) entry point.
2109  *
2110  * Return Code: Returns the value from mod_install(9F) or
2111  *		ddi_soft_state_init(9F) as appropriate.
2112  *
2113  *     Context: Called when driver module loaded.
2114  */
2115 
2116 int
2117 _init(void)
2118 {
2119 	int	err;
2120 
2121 	/* establish driver name from module name */
2122 	sd_label = mod_modname(&modlinkage);
2123 
2124 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2125 		SD_MAXUNIT);
2126 
2127 	if (err != 0) {
2128 		return (err);
2129 	}
2130 
2131 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2132 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2133 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2134 
2135 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2136 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2137 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2138 
2139 	/*
2140 	 * it's ok to init here even for fibre device
2141 	 */
2142 	sd_scsi_probe_cache_init();
2143 
2144 	/*
2145 	 * Creating taskq before mod_install ensures that all callers (threads)
2146 	 * that enter the module after a successfull mod_install encounter
2147 	 * a valid taskq.
2148 	 */
2149 	sd_taskq_create();
2150 
2151 	err = mod_install(&modlinkage);
2152 	if (err != 0) {
2153 		/* delete taskq if install fails */
2154 		sd_taskq_delete();
2155 
2156 		mutex_destroy(&sd_detach_mutex);
2157 		mutex_destroy(&sd_log_mutex);
2158 		mutex_destroy(&sd_label_mutex);
2159 
2160 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2161 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2162 		cv_destroy(&sd_tr.srq_inprocess_cv);
2163 
2164 		sd_scsi_probe_cache_fini();
2165 
2166 		ddi_soft_state_fini(&sd_state);
2167 		return (err);
2168 	}
2169 
2170 	return (err);
2171 }
2172 
2173 
2174 /*
2175  *    Function: _fini
2176  *
2177  * Description: This is the driver _fini(9E) entry point.
2178  *
2179  * Return Code: Returns the value from mod_remove(9F)
2180  *
2181  *     Context: Called when driver module is unloaded.
2182  */
2183 
2184 int
2185 _fini(void)
2186 {
2187 	int err;
2188 
2189 	if ((err = mod_remove(&modlinkage)) != 0) {
2190 		return (err);
2191 	}
2192 
2193 	sd_taskq_delete();
2194 
2195 	mutex_destroy(&sd_detach_mutex);
2196 	mutex_destroy(&sd_log_mutex);
2197 	mutex_destroy(&sd_label_mutex);
2198 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2199 
2200 	sd_scsi_probe_cache_fini();
2201 
2202 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2203 	cv_destroy(&sd_tr.srq_inprocess_cv);
2204 
2205 	ddi_soft_state_fini(&sd_state);
2206 
2207 	return (err);
2208 }
2209 
2210 
2211 /*
2212  *    Function: _info
2213  *
2214  * Description: This is the driver _info(9E) entry point.
2215  *
2216  *   Arguments: modinfop - pointer to the driver modinfo structure
2217  *
2218  * Return Code: Returns the value from mod_info(9F).
2219  *
2220  *     Context: Kernel thread context
2221  */
2222 
2223 int
2224 _info(struct modinfo *modinfop)
2225 {
2226 	return (mod_info(&modlinkage, modinfop));
2227 }
2228 
2229 
2230 /*
2231  * The following routines implement the driver message logging facility.
2232  * They provide component- and level- based debug output filtering.
2233  * Output may also be restricted to messages for a single instance by
2234  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2235  * to NULL, then messages for all instances are printed.
2236  *
2237  * These routines have been cloned from each other due to the language
2238  * constraints of macros and variable argument list processing.
2239  */
2240 
2241 
2242 /*
2243  *    Function: sd_log_err
2244  *
2245  * Description: This routine is called by the SD_ERROR macro for debug
2246  *		logging of error conditions.
2247  *
2248  *   Arguments: comp - driver component being logged
2249  *		dev  - pointer to driver info structure
2250  *		fmt  - error string and format to be logged
2251  */
2252 
2253 static void
2254 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2255 {
2256 	va_list		ap;
2257 	dev_info_t	*dev;
2258 
2259 	ASSERT(un != NULL);
2260 	dev = SD_DEVINFO(un);
2261 	ASSERT(dev != NULL);
2262 
2263 	/*
2264 	 * Filter messages based on the global component and level masks.
2265 	 * Also print if un matches the value of sd_debug_un, or if
2266 	 * sd_debug_un is set to NULL.
2267 	 */
2268 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2269 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2270 		mutex_enter(&sd_log_mutex);
2271 		va_start(ap, fmt);
2272 		(void) vsprintf(sd_log_buf, fmt, ap);
2273 		va_end(ap);
2274 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2275 		mutex_exit(&sd_log_mutex);
2276 	}
2277 #ifdef SD_FAULT_INJECTION
2278 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2279 	if (un->sd_injection_mask & comp) {
2280 		mutex_enter(&sd_log_mutex);
2281 		va_start(ap, fmt);
2282 		(void) vsprintf(sd_log_buf, fmt, ap);
2283 		va_end(ap);
2284 		sd_injection_log(sd_log_buf, un);
2285 		mutex_exit(&sd_log_mutex);
2286 	}
2287 #endif
2288 }
2289 
2290 
2291 /*
2292  *    Function: sd_log_info
2293  *
2294  * Description: This routine is called by the SD_INFO macro for debug
2295  *		logging of general purpose informational conditions.
2296  *
2297  *   Arguments: comp - driver component being logged
2298  *		dev  - pointer to driver info structure
2299  *		fmt  - info string and format to be logged
2300  */
2301 
2302 static void
2303 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2304 {
2305 	va_list		ap;
2306 	dev_info_t	*dev;
2307 
2308 	ASSERT(un != NULL);
2309 	dev = SD_DEVINFO(un);
2310 	ASSERT(dev != NULL);
2311 
2312 	/*
2313 	 * Filter messages based on the global component and level masks.
2314 	 * Also print if un matches the value of sd_debug_un, or if
2315 	 * sd_debug_un is set to NULL.
2316 	 */
2317 	if ((sd_component_mask & component) &&
2318 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2319 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2320 		mutex_enter(&sd_log_mutex);
2321 		va_start(ap, fmt);
2322 		(void) vsprintf(sd_log_buf, fmt, ap);
2323 		va_end(ap);
2324 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2325 		mutex_exit(&sd_log_mutex);
2326 	}
2327 #ifdef SD_FAULT_INJECTION
2328 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2329 	if (un->sd_injection_mask & component) {
2330 		mutex_enter(&sd_log_mutex);
2331 		va_start(ap, fmt);
2332 		(void) vsprintf(sd_log_buf, fmt, ap);
2333 		va_end(ap);
2334 		sd_injection_log(sd_log_buf, un);
2335 		mutex_exit(&sd_log_mutex);
2336 	}
2337 #endif
2338 }
2339 
2340 
2341 /*
2342  *    Function: sd_log_trace
2343  *
2344  * Description: This routine is called by the SD_TRACE macro for debug
2345  *		logging of trace conditions (i.e. function entry/exit).
2346  *
2347  *   Arguments: comp - driver component being logged
2348  *		dev  - pointer to driver info structure
2349  *		fmt  - trace string and format to be logged
2350  */
2351 
2352 static void
2353 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2354 {
2355 	va_list		ap;
2356 	dev_info_t	*dev;
2357 
2358 	ASSERT(un != NULL);
2359 	dev = SD_DEVINFO(un);
2360 	ASSERT(dev != NULL);
2361 
2362 	/*
2363 	 * Filter messages based on the global component and level masks.
2364 	 * Also print if un matches the value of sd_debug_un, or if
2365 	 * sd_debug_un is set to NULL.
2366 	 */
2367 	if ((sd_component_mask & component) &&
2368 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2369 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2370 		mutex_enter(&sd_log_mutex);
2371 		va_start(ap, fmt);
2372 		(void) vsprintf(sd_log_buf, fmt, ap);
2373 		va_end(ap);
2374 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2375 		mutex_exit(&sd_log_mutex);
2376 	}
2377 #ifdef SD_FAULT_INJECTION
2378 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2379 	if (un->sd_injection_mask & component) {
2380 		mutex_enter(&sd_log_mutex);
2381 		va_start(ap, fmt);
2382 		(void) vsprintf(sd_log_buf, fmt, ap);
2383 		va_end(ap);
2384 		sd_injection_log(sd_log_buf, un);
2385 		mutex_exit(&sd_log_mutex);
2386 	}
2387 #endif
2388 }
2389 
2390 
2391 /*
2392  *    Function: sdprobe
2393  *
2394  * Description: This is the driver probe(9e) entry point function.
2395  *
2396  *   Arguments: devi - opaque device info handle
2397  *
2398  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2399  *              DDI_PROBE_FAILURE: If the probe failed.
2400  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2401  *				   but may be present in the future.
2402  */
2403 
2404 static int
2405 sdprobe(dev_info_t *devi)
2406 {
2407 	struct scsi_device	*devp;
2408 	int			rval;
2409 	int			instance;
2410 
2411 	/*
2412 	 * if it wasn't for pln, sdprobe could actually be nulldev
2413 	 * in the "__fibre" case.
2414 	 */
2415 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2416 		return (DDI_PROBE_DONTCARE);
2417 	}
2418 
2419 	devp = ddi_get_driver_private(devi);
2420 
2421 	if (devp == NULL) {
2422 		/* Ooops... nexus driver is mis-configured... */
2423 		return (DDI_PROBE_FAILURE);
2424 	}
2425 
2426 	instance = ddi_get_instance(devi);
2427 
2428 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2429 		return (DDI_PROBE_PARTIAL);
2430 	}
2431 
2432 	/*
2433 	 * Call the SCSA utility probe routine to see if we actually
2434 	 * have a target at this SCSI nexus.
2435 	 */
2436 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2437 	case SCSIPROBE_EXISTS:
2438 		switch (devp->sd_inq->inq_dtype) {
2439 		case DTYPE_DIRECT:
2440 			rval = DDI_PROBE_SUCCESS;
2441 			break;
2442 		case DTYPE_RODIRECT:
2443 			/* CDs etc. Can be removable media */
2444 			rval = DDI_PROBE_SUCCESS;
2445 			break;
2446 		case DTYPE_OPTICAL:
2447 			/*
2448 			 * Rewritable optical driver HP115AA
2449 			 * Can also be removable media
2450 			 */
2451 
2452 			/*
2453 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2454 			 * pre solaris 9 sparc sd behavior is required
2455 			 *
2456 			 * If first time through and sd_dtype_optical_bind
2457 			 * has not been set in /etc/system check properties
2458 			 */
2459 
2460 			if (sd_dtype_optical_bind  < 0) {
2461 			    sd_dtype_optical_bind = ddi_prop_get_int
2462 				(DDI_DEV_T_ANY,	devi,	0,
2463 				"optical-device-bind",	1);
2464 			}
2465 
2466 			if (sd_dtype_optical_bind == 0) {
2467 				rval = DDI_PROBE_FAILURE;
2468 			} else {
2469 				rval = DDI_PROBE_SUCCESS;
2470 			}
2471 			break;
2472 
2473 		case DTYPE_NOTPRESENT:
2474 		default:
2475 			rval = DDI_PROBE_FAILURE;
2476 			break;
2477 		}
2478 		break;
2479 	default:
2480 		rval = DDI_PROBE_PARTIAL;
2481 		break;
2482 	}
2483 
2484 	/*
2485 	 * This routine checks for resource allocation prior to freeing,
2486 	 * so it will take care of the "smart probing" case where a
2487 	 * scsi_probe() may or may not have been issued and will *not*
2488 	 * free previously-freed resources.
2489 	 */
2490 	scsi_unprobe(devp);
2491 	return (rval);
2492 }
2493 
2494 
2495 /*
2496  *    Function: sdinfo
2497  *
2498  * Description: This is the driver getinfo(9e) entry point function.
2499  * 		Given the device number, return the devinfo pointer from
2500  *		the scsi_device structure or the instance number
2501  *		associated with the dev_t.
2502  *
2503  *   Arguments: dip     - pointer to device info structure
2504  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2505  *			  DDI_INFO_DEVT2INSTANCE)
2506  *		arg     - driver dev_t
2507  *		resultp - user buffer for request response
2508  *
2509  * Return Code: DDI_SUCCESS
2510  *              DDI_FAILURE
2511  */
2512 /* ARGSUSED */
2513 static int
2514 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2515 {
2516 	struct sd_lun	*un;
2517 	dev_t		dev;
2518 	int		instance;
2519 	int		error;
2520 
2521 	switch (infocmd) {
2522 	case DDI_INFO_DEVT2DEVINFO:
2523 		dev = (dev_t)arg;
2524 		instance = SDUNIT(dev);
2525 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2526 			return (DDI_FAILURE);
2527 		}
2528 		*result = (void *) SD_DEVINFO(un);
2529 		error = DDI_SUCCESS;
2530 		break;
2531 	case DDI_INFO_DEVT2INSTANCE:
2532 		dev = (dev_t)arg;
2533 		instance = SDUNIT(dev);
2534 		*result = (void *)(uintptr_t)instance;
2535 		error = DDI_SUCCESS;
2536 		break;
2537 	default:
2538 		error = DDI_FAILURE;
2539 	}
2540 	return (error);
2541 }
2542 
2543 /*
2544  *    Function: sd_prop_op
2545  *
2546  * Description: This is the driver prop_op(9e) entry point function.
2547  *		Return the number of blocks for the partition in question
2548  *		or forward the request to the property facilities.
2549  *
2550  *   Arguments: dev       - device number
2551  *		dip       - pointer to device info structure
2552  *		prop_op   - property operator
2553  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2554  *		name      - pointer to property name
2555  *		valuep    - pointer or address of the user buffer
2556  *		lengthp   - property length
2557  *
2558  * Return Code: DDI_PROP_SUCCESS
2559  *              DDI_PROP_NOT_FOUND
2560  *              DDI_PROP_UNDEFINED
2561  *              DDI_PROP_NO_MEMORY
2562  *              DDI_PROP_BUF_TOO_SMALL
2563  */
2564 
2565 static int
2566 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2567 	char *name, caddr_t valuep, int *lengthp)
2568 {
2569 	int		instance = ddi_get_instance(dip);
2570 	struct sd_lun	*un;
2571 	uint64_t	nblocks64;
2572 
2573 	/*
2574 	 * Our dynamic properties are all device specific and size oriented.
2575 	 * Requests issued under conditions where size is valid are passed
2576 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2577 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2578 	 */
2579 	un = ddi_get_soft_state(sd_state, instance);
2580 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2581 	    (un->un_f_geometry_is_valid == FALSE)) {
2582 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2583 		    name, valuep, lengthp));
2584 	} else {
2585 		/* get nblocks value */
2586 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2587 		mutex_enter(SD_MUTEX(un));
2588 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2589 		mutex_exit(SD_MUTEX(un));
2590 
2591 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2592 		    name, valuep, lengthp, nblocks64));
2593 	}
2594 }
2595 
2596 /*
2597  * The following functions are for smart probing:
2598  * sd_scsi_probe_cache_init()
2599  * sd_scsi_probe_cache_fini()
2600  * sd_scsi_clear_probe_cache()
2601  * sd_scsi_probe_with_cache()
2602  */
2603 
2604 /*
2605  *    Function: sd_scsi_probe_cache_init
2606  *
2607  * Description: Initializes the probe response cache mutex and head pointer.
2608  *
2609  *     Context: Kernel thread context
2610  */
2611 
2612 static void
2613 sd_scsi_probe_cache_init(void)
2614 {
2615 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2616 	sd_scsi_probe_cache_head = NULL;
2617 }
2618 
2619 
2620 /*
2621  *    Function: sd_scsi_probe_cache_fini
2622  *
2623  * Description: Frees all resources associated with the probe response cache.
2624  *
2625  *     Context: Kernel thread context
2626  */
2627 
2628 static void
2629 sd_scsi_probe_cache_fini(void)
2630 {
2631 	struct sd_scsi_probe_cache *cp;
2632 	struct sd_scsi_probe_cache *ncp;
2633 
2634 	/* Clean up our smart probing linked list */
2635 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2636 		ncp = cp->next;
2637 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2638 	}
2639 	sd_scsi_probe_cache_head = NULL;
2640 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2641 }
2642 
2643 
2644 /*
2645  *    Function: sd_scsi_clear_probe_cache
2646  *
2647  * Description: This routine clears the probe response cache. This is
2648  *		done when open() returns ENXIO so that when deferred
2649  *		attach is attempted (possibly after a device has been
2650  *		turned on) we will retry the probe. Since we don't know
2651  *		which target we failed to open, we just clear the
2652  *		entire cache.
2653  *
2654  *     Context: Kernel thread context
2655  */
2656 
2657 static void
2658 sd_scsi_clear_probe_cache(void)
2659 {
2660 	struct sd_scsi_probe_cache	*cp;
2661 	int				i;
2662 
2663 	mutex_enter(&sd_scsi_probe_cache_mutex);
2664 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2665 		/*
2666 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2667 		 * force probing to be performed the next time
2668 		 * sd_scsi_probe_with_cache is called.
2669 		 */
2670 		for (i = 0; i < NTARGETS_WIDE; i++) {
2671 			cp->cache[i] = SCSIPROBE_EXISTS;
2672 		}
2673 	}
2674 	mutex_exit(&sd_scsi_probe_cache_mutex);
2675 }
2676 
2677 
2678 /*
2679  *    Function: sd_scsi_probe_with_cache
2680  *
2681  * Description: This routine implements support for a scsi device probe
2682  *		with cache. The driver maintains a cache of the target
2683  *		responses to scsi probes. If we get no response from a
2684  *		target during a probe inquiry, we remember that, and we
2685  *		avoid additional calls to scsi_probe on non-zero LUNs
2686  *		on the same target until the cache is cleared. By doing
2687  *		so we avoid the 1/4 sec selection timeout for nonzero
2688  *		LUNs. lun0 of a target is always probed.
2689  *
2690  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2691  *              waitfunc - indicates what the allocator routines should
2692  *			   do when resources are not available. This value
2693  *			   is passed on to scsi_probe() when that routine
2694  *			   is called.
2695  *
2696  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2697  *		otherwise the value returned by scsi_probe(9F).
2698  *
2699  *     Context: Kernel thread context
2700  */
2701 
2702 static int
2703 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2704 {
2705 	struct sd_scsi_probe_cache	*cp;
2706 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2707 	int		lun, tgt;
2708 
2709 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2710 	    SCSI_ADDR_PROP_LUN, 0);
2711 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2712 	    SCSI_ADDR_PROP_TARGET, -1);
2713 
2714 	/* Make sure caching enabled and target in range */
2715 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2716 		/* do it the old way (no cache) */
2717 		return (scsi_probe(devp, waitfn));
2718 	}
2719 
2720 	mutex_enter(&sd_scsi_probe_cache_mutex);
2721 
2722 	/* Find the cache for this scsi bus instance */
2723 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2724 		if (cp->pdip == pdip) {
2725 			break;
2726 		}
2727 	}
2728 
2729 	/* If we can't find a cache for this pdip, create one */
2730 	if (cp == NULL) {
2731 		int i;
2732 
2733 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2734 		    KM_SLEEP);
2735 		cp->pdip = pdip;
2736 		cp->next = sd_scsi_probe_cache_head;
2737 		sd_scsi_probe_cache_head = cp;
2738 		for (i = 0; i < NTARGETS_WIDE; i++) {
2739 			cp->cache[i] = SCSIPROBE_EXISTS;
2740 		}
2741 	}
2742 
2743 	mutex_exit(&sd_scsi_probe_cache_mutex);
2744 
2745 	/* Recompute the cache for this target if LUN zero */
2746 	if (lun == 0) {
2747 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2748 	}
2749 
2750 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2751 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2752 		return (SCSIPROBE_NORESP);
2753 	}
2754 
2755 	/* Do the actual probe; save & return the result */
2756 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2757 }
2758 
2759 
2760 /*
2761  *    Function: sd_spin_up_unit
2762  *
2763  * Description: Issues the following commands to spin-up the device:
2764  *		START STOP UNIT, and INQUIRY.
2765  *
2766  *   Arguments: un - driver soft state (unit) structure
2767  *
2768  * Return Code: 0 - success
2769  *		EIO - failure
2770  *		EACCES - reservation conflict
2771  *
2772  *     Context: Kernel thread context
2773  */
2774 
2775 static int
2776 sd_spin_up_unit(struct sd_lun *un)
2777 {
2778 	size_t	resid		= 0;
2779 	int	has_conflict	= FALSE;
2780 	uchar_t *bufaddr;
2781 
2782 	ASSERT(un != NULL);
2783 
2784 	/*
2785 	 * Send a throwaway START UNIT command.
2786 	 *
2787 	 * If we fail on this, we don't care presently what precisely
2788 	 * is wrong.  EMC's arrays will also fail this with a check
2789 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2790 	 * we don't want to fail the attach because it may become
2791 	 * "active" later.
2792 	 */
2793 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2794 	    == EACCES)
2795 		has_conflict = TRUE;
2796 
2797 	/*
2798 	 * Send another INQUIRY command to the target. This is necessary for
2799 	 * non-removable media direct access devices because their INQUIRY data
2800 	 * may not be fully qualified until they are spun up (perhaps via the
2801 	 * START command above).  Note: This seems to be needed for some
2802 	 * legacy devices only.) The INQUIRY command should succeed even if a
2803 	 * Reservation Conflict is present.
2804 	 */
2805 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2806 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2807 		kmem_free(bufaddr, SUN_INQSIZE);
2808 		return (EIO);
2809 	}
2810 
2811 	/*
2812 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2813 	 * Note that this routine does not return a failure here even if the
2814 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2815 	 */
2816 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2817 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2818 	}
2819 
2820 	kmem_free(bufaddr, SUN_INQSIZE);
2821 
2822 	/* If we hit a reservation conflict above, tell the caller. */
2823 	if (has_conflict == TRUE) {
2824 		return (EACCES);
2825 	}
2826 
2827 	return (0);
2828 }
2829 
2830 #ifdef _LP64
2831 /*
2832  *    Function: sd_enable_descr_sense
2833  *
2834  * Description: This routine attempts to select descriptor sense format
2835  *		using the Control mode page.  Devices that support 64 bit
2836  *		LBAs (for >2TB luns) should also implement descriptor
2837  *		sense data so we will call this function whenever we see
2838  *		a lun larger than 2TB.  If for some reason the device
2839  *		supports 64 bit LBAs but doesn't support descriptor sense
2840  *		presumably the mode select will fail.  Everything will
2841  *		continue to work normally except that we will not get
2842  *		complete sense data for commands that fail with an LBA
2843  *		larger than 32 bits.
2844  *
2845  *   Arguments: un - driver soft state (unit) structure
2846  *
2847  *     Context: Kernel thread context only
2848  */
2849 
2850 static void
2851 sd_enable_descr_sense(struct sd_lun *un)
2852 {
2853 	uchar_t			*header;
2854 	struct mode_control_scsi3 *ctrl_bufp;
2855 	size_t			buflen;
2856 	size_t			bd_len;
2857 
2858 	/*
2859 	 * Read MODE SENSE page 0xA, Control Mode Page
2860 	 */
2861 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2862 	    sizeof (struct mode_control_scsi3);
2863 	header = kmem_zalloc(buflen, KM_SLEEP);
2864 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2865 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2866 		SD_ERROR(SD_LOG_COMMON, un,
2867 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2868 		goto eds_exit;
2869 	}
2870 
2871 	/*
2872 	 * Determine size of Block Descriptors in order to locate
2873 	 * the mode page data. ATAPI devices return 0, SCSI devices
2874 	 * should return MODE_BLK_DESC_LENGTH.
2875 	 */
2876 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2877 
2878 	ctrl_bufp = (struct mode_control_scsi3 *)
2879 	    (header + MODE_HEADER_LENGTH + bd_len);
2880 
2881 	/*
2882 	 * Clear PS bit for MODE SELECT
2883 	 */
2884 	ctrl_bufp->mode_page.ps = 0;
2885 
2886 	/*
2887 	 * Set D_SENSE to enable descriptor sense format.
2888 	 */
2889 	ctrl_bufp->d_sense = 1;
2890 
2891 	/*
2892 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2893 	 */
2894 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2895 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2896 		SD_INFO(SD_LOG_COMMON, un,
2897 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2898 		goto eds_exit;
2899 	}
2900 
2901 eds_exit:
2902 	kmem_free(header, buflen);
2903 }
2904 #endif /* _LP64 */
2905 
2906 
2907 /*
2908  *    Function: sd_set_mmc_caps
2909  *
2910  * Description: This routine determines if the device is MMC compliant and if
2911  *		the device supports CDDA via a mode sense of the CDVD
2912  *		capabilities mode page. Also checks if the device is a
2913  *		dvdram writable device.
2914  *
2915  *   Arguments: un - driver soft state (unit) structure
2916  *
2917  *     Context: Kernel thread context only
2918  */
2919 
2920 static void
2921 sd_set_mmc_caps(struct sd_lun *un)
2922 {
2923 	struct mode_header_grp2		*sense_mhp;
2924 	uchar_t				*sense_page;
2925 	caddr_t				buf;
2926 	int				bd_len;
2927 	int				status;
2928 	struct uscsi_cmd		com;
2929 	int				rtn;
2930 	uchar_t				*out_data_rw, *out_data_hd;
2931 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2932 
2933 	ASSERT(un != NULL);
2934 
2935 	/*
2936 	 * The flags which will be set in this function are - mmc compliant,
2937 	 * dvdram writable device, cdda support. Initialize them to FALSE
2938 	 * and if a capability is detected - it will be set to TRUE.
2939 	 */
2940 	un->un_f_mmc_cap = FALSE;
2941 	un->un_f_dvdram_writable_device = FALSE;
2942 	un->un_f_cfg_cdda = FALSE;
2943 
2944 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2945 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2946 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2947 
2948 	if (status != 0) {
2949 		/* command failed; just return */
2950 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2951 		return;
2952 	}
2953 	/*
2954 	 * If the mode sense request for the CDROM CAPABILITIES
2955 	 * page (0x2A) succeeds the device is assumed to be MMC.
2956 	 */
2957 	un->un_f_mmc_cap = TRUE;
2958 
2959 	/* Get to the page data */
2960 	sense_mhp = (struct mode_header_grp2 *)buf;
2961 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
2962 	    sense_mhp->bdesc_length_lo;
2963 	if (bd_len > MODE_BLK_DESC_LENGTH) {
2964 		/*
2965 		 * We did not get back the expected block descriptor
2966 		 * length so we cannot determine if the device supports
2967 		 * CDDA. However, we still indicate the device is MMC
2968 		 * according to the successful response to the page
2969 		 * 0x2A mode sense request.
2970 		 */
2971 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
2972 		    "sd_set_mmc_caps: Mode Sense returned "
2973 		    "invalid block descriptor length\n");
2974 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2975 		return;
2976 	}
2977 
2978 	/* See if read CDDA is supported */
2979 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
2980 	    bd_len);
2981 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
2982 
2983 	/* See if writing DVD RAM is supported. */
2984 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
2985 	if (un->un_f_dvdram_writable_device == TRUE) {
2986 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2987 		return;
2988 	}
2989 
2990 	/*
2991 	 * If the device presents DVD or CD capabilities in the mode
2992 	 * page, we can return here since a RRD will not have
2993 	 * these capabilities.
2994 	 */
2995 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
2996 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2997 		return;
2998 	}
2999 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3000 
3001 	/*
3002 	 * If un->un_f_dvdram_writable_device is still FALSE,
3003 	 * check for a Removable Rigid Disk (RRD).  A RRD
3004 	 * device is identified by the features RANDOM_WRITABLE and
3005 	 * HARDWARE_DEFECT_MANAGEMENT.
3006 	 */
3007 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3008 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3009 
3010 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3011 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3012 	    RANDOM_WRITABLE);
3013 	if (rtn != 0) {
3014 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3015 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3016 		return;
3017 	}
3018 
3019 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3020 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3021 
3022 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3023 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3024 	    HARDWARE_DEFECT_MANAGEMENT);
3025 	if (rtn == 0) {
3026 		/*
3027 		 * We have good information, check for random writable
3028 		 * and hardware defect features.
3029 		 */
3030 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3031 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3032 			un->un_f_dvdram_writable_device = TRUE;
3033 		}
3034 	}
3035 
3036 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3037 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3038 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3039 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3040 }
3041 
3042 /*
3043  *    Function: sd_check_for_writable_cd
3044  *
3045  * Description: This routine determines if the media in the device is
3046  *		writable or not. It uses the get configuration command (0x46)
3047  *		to determine if the media is writable
3048  *
3049  *   Arguments: un - driver soft state (unit) structure
3050  *
3051  *     Context: Never called at interrupt context.
3052  */
3053 
3054 static void
3055 sd_check_for_writable_cd(struct sd_lun *un)
3056 {
3057 	struct uscsi_cmd		com;
3058 	uchar_t				*out_data;
3059 	uchar_t				*rqbuf;
3060 	int				rtn;
3061 	uchar_t				*out_data_rw, *out_data_hd;
3062 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3063 	struct mode_header_grp2		*sense_mhp;
3064 	uchar_t				*sense_page;
3065 	caddr_t				buf;
3066 	int				bd_len;
3067 	int				status;
3068 
3069 	ASSERT(un != NULL);
3070 	ASSERT(mutex_owned(SD_MUTEX(un)));
3071 
3072 	/*
3073 	 * Initialize the writable media to false, if configuration info.
3074 	 * tells us otherwise then only we will set it.
3075 	 */
3076 	un->un_f_mmc_writable_media = FALSE;
3077 	mutex_exit(SD_MUTEX(un));
3078 
3079 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3080 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3081 
3082 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3083 	    out_data, SD_PROFILE_HEADER_LEN);
3084 
3085 	mutex_enter(SD_MUTEX(un));
3086 	if (rtn == 0) {
3087 		/*
3088 		 * We have good information, check for writable DVD.
3089 		 */
3090 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3091 			un->un_f_mmc_writable_media = TRUE;
3092 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3093 			kmem_free(rqbuf, SENSE_LENGTH);
3094 			return;
3095 		}
3096 	}
3097 
3098 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3099 	kmem_free(rqbuf, SENSE_LENGTH);
3100 
3101 	/*
3102 	 * Determine if this is a RRD type device.
3103 	 */
3104 	mutex_exit(SD_MUTEX(un));
3105 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3106 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3107 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3108 	mutex_enter(SD_MUTEX(un));
3109 	if (status != 0) {
3110 		/* command failed; just return */
3111 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3112 		return;
3113 	}
3114 
3115 	/* Get to the page data */
3116 	sense_mhp = (struct mode_header_grp2 *)buf;
3117 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3118 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3119 		/*
3120 		 * We did not get back the expected block descriptor length so
3121 		 * we cannot check the mode page.
3122 		 */
3123 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3124 		    "sd_check_for_writable_cd: Mode Sense returned "
3125 		    "invalid block descriptor length\n");
3126 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3127 		return;
3128 	}
3129 
3130 	/*
3131 	 * If the device presents DVD or CD capabilities in the mode
3132 	 * page, we can return here since a RRD device will not have
3133 	 * these capabilities.
3134 	 */
3135 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3136 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3137 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3138 		return;
3139 	}
3140 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3141 
3142 	/*
3143 	 * If un->un_f_mmc_writable_media is still FALSE,
3144 	 * check for RRD type media.  A RRD device is identified
3145 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3146 	 */
3147 	mutex_exit(SD_MUTEX(un));
3148 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3149 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3150 
3151 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3152 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3153 	    RANDOM_WRITABLE);
3154 	if (rtn != 0) {
3155 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3156 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3157 		mutex_enter(SD_MUTEX(un));
3158 		return;
3159 	}
3160 
3161 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3162 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3163 
3164 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3165 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3166 	    HARDWARE_DEFECT_MANAGEMENT);
3167 	mutex_enter(SD_MUTEX(un));
3168 	if (rtn == 0) {
3169 		/*
3170 		 * We have good information, check for random writable
3171 		 * and hardware defect features as current.
3172 		 */
3173 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3174 		    (out_data_rw[10] & 0x1) &&
3175 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3176 		    (out_data_hd[10] & 0x1)) {
3177 			un->un_f_mmc_writable_media = TRUE;
3178 		}
3179 	}
3180 
3181 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3182 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3183 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3184 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3185 }
3186 
3187 /*
3188  *    Function: sd_read_unit_properties
3189  *
3190  * Description: The following implements a property lookup mechanism.
3191  *		Properties for particular disks (keyed on vendor, model
3192  *		and rev numbers) are sought in the sd.conf file via
3193  *		sd_process_sdconf_file(), and if not found there, are
3194  *		looked for in a list hardcoded in this driver via
3195  *		sd_process_sdconf_table() Once located the properties
3196  *		are used to update the driver unit structure.
3197  *
3198  *   Arguments: un - driver soft state (unit) structure
3199  */
3200 
3201 static void
3202 sd_read_unit_properties(struct sd_lun *un)
3203 {
3204 	/*
3205 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3206 	 * the "sd-config-list" property (from the sd.conf file) or if
3207 	 * there was not a match for the inquiry vid/pid. If this event
3208 	 * occurs the static driver configuration table is searched for
3209 	 * a match.
3210 	 */
3211 	ASSERT(un != NULL);
3212 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3213 		sd_process_sdconf_table(un);
3214 	}
3215 
3216 	/* check for LSI device */
3217 	sd_is_lsi(un);
3218 
3219 	/*
3220 	 * Set this in sd.conf to 0 in order to disable kstats.  The default
3221 	 * is 1, so they are enabled by default.
3222 	 */
3223 	un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
3224 	    SD_DEVINFO(un), DDI_PROP_DONTPASS, "enable-partition-kstats", 1));
3225 }
3226 
3227 
3228 /*
3229  *    Function: sd_process_sdconf_file
3230  *
3231  * Description: Use ddi_getlongprop to obtain the properties from the
3232  *		driver's config file (ie, sd.conf) and update the driver
3233  *		soft state structure accordingly.
3234  *
3235  *   Arguments: un - driver soft state (unit) structure
3236  *
3237  * Return Code: SD_SUCCESS - The properties were successfully set according
3238  *			     to the driver configuration file.
3239  *		SD_FAILURE - The driver config list was not obtained or
3240  *			     there was no vid/pid match. This indicates that
3241  *			     the static config table should be used.
3242  *
3243  * The config file has a property, "sd-config-list", which consists of
3244  * one or more duplets as follows:
3245  *
3246  *  sd-config-list=
3247  *	<duplet>,
3248  *	[<duplet>,]
3249  *	[<duplet>];
3250  *
3251  * The structure of each duplet is as follows:
3252  *
3253  *  <duplet>:= <vid+pid>,<data-property-name_list>
3254  *
3255  * The first entry of the duplet is the device ID string (the concatenated
3256  * vid & pid; not to be confused with a device_id).  This is defined in
3257  * the same way as in the sd_disk_table.
3258  *
3259  * The second part of the duplet is a string that identifies a
3260  * data-property-name-list. The data-property-name-list is defined as
3261  * follows:
3262  *
3263  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3264  *
3265  * The syntax of <data-property-name> depends on the <version> field.
3266  *
3267  * If version = SD_CONF_VERSION_1 we have the following syntax:
3268  *
3269  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3270  *
3271  * where the prop0 value will be used to set prop0 if bit0 set in the
3272  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3273  *
3274  */
3275 
3276 static int
3277 sd_process_sdconf_file(struct sd_lun *un)
3278 {
3279 	char	*config_list = NULL;
3280 	int	config_list_len;
3281 	int	len;
3282 	int	dupletlen = 0;
3283 	char	*vidptr;
3284 	int	vidlen;
3285 	char	*dnlist_ptr;
3286 	char	*dataname_ptr;
3287 	int	dnlist_len;
3288 	int	dataname_len;
3289 	int	*data_list;
3290 	int	data_list_len;
3291 	int	rval = SD_FAILURE;
3292 	int	i;
3293 
3294 	ASSERT(un != NULL);
3295 
3296 	/* Obtain the configuration list associated with the .conf file */
3297 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3298 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3299 	    != DDI_PROP_SUCCESS) {
3300 		return (SD_FAILURE);
3301 	}
3302 
3303 	/*
3304 	 * Compare vids in each duplet to the inquiry vid - if a match is
3305 	 * made, get the data value and update the soft state structure
3306 	 * accordingly.
3307 	 *
3308 	 * Note: This algorithm is complex and difficult to maintain. It should
3309 	 * be replaced with a more robust implementation.
3310 	 */
3311 	for (len = config_list_len, vidptr = config_list; len > 0;
3312 	    vidptr += dupletlen, len -= dupletlen) {
3313 		/*
3314 		 * Note: The assumption here is that each vid entry is on
3315 		 * a unique line from its associated duplet.
3316 		 */
3317 		vidlen = dupletlen = (int)strlen(vidptr);
3318 		if ((vidlen == 0) ||
3319 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3320 			dupletlen++;
3321 			continue;
3322 		}
3323 
3324 		/*
3325 		 * dnlist contains 1 or more blank separated
3326 		 * data-property-name entries
3327 		 */
3328 		dnlist_ptr = vidptr + vidlen + 1;
3329 		dnlist_len = (int)strlen(dnlist_ptr);
3330 		dupletlen += dnlist_len + 2;
3331 
3332 		/*
3333 		 * Set a pointer for the first data-property-name
3334 		 * entry in the list
3335 		 */
3336 		dataname_ptr = dnlist_ptr;
3337 		dataname_len = 0;
3338 
3339 		/*
3340 		 * Loop through all data-property-name entries in the
3341 		 * data-property-name-list setting the properties for each.
3342 		 */
3343 		while (dataname_len < dnlist_len) {
3344 			int version;
3345 
3346 			/*
3347 			 * Determine the length of the current
3348 			 * data-property-name entry by indexing until a
3349 			 * blank or NULL is encountered. When the space is
3350 			 * encountered reset it to a NULL for compliance
3351 			 * with ddi_getlongprop().
3352 			 */
3353 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3354 			    (dataname_ptr[i] != '\0')); i++) {
3355 				;
3356 			}
3357 
3358 			dataname_len += i;
3359 			/* If not null terminated, Make it so */
3360 			if (dataname_ptr[i] == ' ') {
3361 				dataname_ptr[i] = '\0';
3362 			}
3363 			dataname_len++;
3364 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3365 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3366 			    vidptr, dataname_ptr);
3367 
3368 			/* Get the data list */
3369 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3370 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3371 			    != DDI_PROP_SUCCESS) {
3372 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3373 				    "sd_process_sdconf_file: data property (%s)"
3374 				    " has no value\n", dataname_ptr);
3375 				dataname_ptr = dnlist_ptr + dataname_len;
3376 				continue;
3377 			}
3378 
3379 			version = data_list[0];
3380 
3381 			if (version == SD_CONF_VERSION_1) {
3382 				sd_tunables values;
3383 
3384 				/* Set the properties */
3385 				if (sd_chk_vers1_data(un, data_list[1],
3386 				    &data_list[2], data_list_len, dataname_ptr)
3387 				    == SD_SUCCESS) {
3388 					sd_get_tunables_from_conf(un,
3389 					    data_list[1], &data_list[2],
3390 					    &values);
3391 					sd_set_vers1_properties(un,
3392 					    data_list[1], &values);
3393 					rval = SD_SUCCESS;
3394 				} else {
3395 					rval = SD_FAILURE;
3396 				}
3397 			} else {
3398 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3399 				    "data property %s version 0x%x is invalid.",
3400 				    dataname_ptr, version);
3401 				rval = SD_FAILURE;
3402 			}
3403 			kmem_free(data_list, data_list_len);
3404 			dataname_ptr = dnlist_ptr + dataname_len;
3405 		}
3406 	}
3407 
3408 	/* free up the memory allocated by ddi_getlongprop */
3409 	if (config_list) {
3410 		kmem_free(config_list, config_list_len);
3411 	}
3412 
3413 	return (rval);
3414 }
3415 
3416 /*
3417  *    Function: sd_get_tunables_from_conf()
3418  *
3419  *
3420  *    This function reads the data list from the sd.conf file and pulls
3421  *    the values that can have numeric values as arguments and places
3422  *    the values in the apropriate sd_tunables member.
3423  *    Since the order of the data list members varies across platforms
3424  *    This function reads them from the data list in a platform specific
3425  *    order and places them into the correct sd_tunable member that is
3426  *    a consistant across all platforms.
3427  */
3428 static void
3429 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3430     sd_tunables *values)
3431 {
3432 	int i;
3433 	int mask;
3434 
3435 	bzero(values, sizeof (sd_tunables));
3436 
3437 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3438 
3439 		mask = 1 << i;
3440 		if (mask > flags) {
3441 			break;
3442 		}
3443 
3444 		switch (mask & flags) {
3445 		case 0:	/* This mask bit not set in flags */
3446 			continue;
3447 		case SD_CONF_BSET_THROTTLE:
3448 			values->sdt_throttle = data_list[i];
3449 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3450 			    "sd_get_tunables_from_conf: throttle = %d\n",
3451 			    values->sdt_throttle);
3452 			break;
3453 		case SD_CONF_BSET_CTYPE:
3454 			values->sdt_ctype = data_list[i];
3455 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3456 			    "sd_get_tunables_from_conf: ctype = %d\n",
3457 			    values->sdt_ctype);
3458 			break;
3459 		case SD_CONF_BSET_NRR_COUNT:
3460 			values->sdt_not_rdy_retries = data_list[i];
3461 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3462 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3463 			    values->sdt_not_rdy_retries);
3464 			break;
3465 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3466 			values->sdt_busy_retries = data_list[i];
3467 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3468 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3469 			    values->sdt_busy_retries);
3470 			break;
3471 		case SD_CONF_BSET_RST_RETRIES:
3472 			values->sdt_reset_retries = data_list[i];
3473 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3474 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3475 			    values->sdt_reset_retries);
3476 			break;
3477 		case SD_CONF_BSET_RSV_REL_TIME:
3478 			values->sdt_reserv_rel_time = data_list[i];
3479 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3480 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3481 			    values->sdt_reserv_rel_time);
3482 			break;
3483 		case SD_CONF_BSET_MIN_THROTTLE:
3484 			values->sdt_min_throttle = data_list[i];
3485 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3486 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3487 			    values->sdt_min_throttle);
3488 			break;
3489 		case SD_CONF_BSET_DISKSORT_DISABLED:
3490 			values->sdt_disk_sort_dis = data_list[i];
3491 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3492 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3493 			    values->sdt_disk_sort_dis);
3494 			break;
3495 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3496 			values->sdt_lun_reset_enable = data_list[i];
3497 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3498 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3499 			    "\n", values->sdt_lun_reset_enable);
3500 			break;
3501 		}
3502 	}
3503 }
3504 
3505 /*
3506  *    Function: sd_process_sdconf_table
3507  *
3508  * Description: Search the static configuration table for a match on the
3509  *		inquiry vid/pid and update the driver soft state structure
3510  *		according to the table property values for the device.
3511  *
3512  *		The form of a configuration table entry is:
3513  *		  <vid+pid>,<flags>,<property-data>
3514  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3515  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3516  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3517  *
3518  *   Arguments: un - driver soft state (unit) structure
3519  */
3520 
3521 static void
3522 sd_process_sdconf_table(struct sd_lun *un)
3523 {
3524 	char	*id = NULL;
3525 	int	table_index;
3526 	int	idlen;
3527 
3528 	ASSERT(un != NULL);
3529 	for (table_index = 0; table_index < sd_disk_table_size;
3530 	    table_index++) {
3531 		id = sd_disk_table[table_index].device_id;
3532 		idlen = strlen(id);
3533 		if (idlen == 0) {
3534 			continue;
3535 		}
3536 
3537 		/*
3538 		 * The static configuration table currently does not
3539 		 * implement version 10 properties. Additionally,
3540 		 * multiple data-property-name entries are not
3541 		 * implemented in the static configuration table.
3542 		 */
3543 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3544 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3545 			    "sd_process_sdconf_table: disk %s\n", id);
3546 			sd_set_vers1_properties(un,
3547 			    sd_disk_table[table_index].flags,
3548 			    sd_disk_table[table_index].properties);
3549 			break;
3550 		}
3551 	}
3552 }
3553 
3554 
3555 /*
3556  *    Function: sd_sdconf_id_match
3557  *
3558  * Description: This local function implements a case sensitive vid/pid
3559  *		comparison as well as the boundary cases of wild card and
3560  *		multiple blanks.
3561  *
3562  *		Note: An implicit assumption made here is that the scsi
3563  *		inquiry structure will always keep the vid, pid and
3564  *		revision strings in consecutive sequence, so they can be
3565  *		read as a single string. If this assumption is not the
3566  *		case, a separate string, to be used for the check, needs
3567  *		to be built with these strings concatenated.
3568  *
3569  *   Arguments: un - driver soft state (unit) structure
3570  *		id - table or config file vid/pid
3571  *		idlen  - length of the vid/pid (bytes)
3572  *
3573  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3574  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3575  */
3576 
3577 static int
3578 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3579 {
3580 	struct scsi_inquiry	*sd_inq;
3581 	int 			rval = SD_SUCCESS;
3582 
3583 	ASSERT(un != NULL);
3584 	sd_inq = un->un_sd->sd_inq;
3585 	ASSERT(id != NULL);
3586 
3587 	/*
3588 	 * We use the inq_vid as a pointer to a buffer containing the
3589 	 * vid and pid and use the entire vid/pid length of the table
3590 	 * entry for the comparison. This works because the inq_pid
3591 	 * data member follows inq_vid in the scsi_inquiry structure.
3592 	 */
3593 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3594 		/*
3595 		 * The user id string is compared to the inquiry vid/pid
3596 		 * using a case insensitive comparison and ignoring
3597 		 * multiple spaces.
3598 		 */
3599 		rval = sd_blank_cmp(un, id, idlen);
3600 		if (rval != SD_SUCCESS) {
3601 			/*
3602 			 * User id strings that start and end with a "*"
3603 			 * are a special case. These do not have a
3604 			 * specific vendor, and the product string can
3605 			 * appear anywhere in the 16 byte PID portion of
3606 			 * the inquiry data. This is a simple strstr()
3607 			 * type search for the user id in the inquiry data.
3608 			 */
3609 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3610 				char	*pidptr = &id[1];
3611 				int	i;
3612 				int	j;
3613 				int	pidstrlen = idlen - 2;
3614 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3615 				    pidstrlen;
3616 
3617 				if (j < 0) {
3618 					return (SD_FAILURE);
3619 				}
3620 				for (i = 0; i < j; i++) {
3621 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3622 					    pidptr, pidstrlen) == 0) {
3623 						rval = SD_SUCCESS;
3624 						break;
3625 					}
3626 				}
3627 			}
3628 		}
3629 	}
3630 	return (rval);
3631 }
3632 
3633 
3634 /*
3635  *    Function: sd_blank_cmp
3636  *
3637  * Description: If the id string starts and ends with a space, treat
3638  *		multiple consecutive spaces as equivalent to a single
3639  *		space. For example, this causes a sd_disk_table entry
3640  *		of " NEC CDROM " to match a device's id string of
3641  *		"NEC       CDROM".
3642  *
3643  *		Note: The success exit condition for this routine is if
3644  *		the pointer to the table entry is '\0' and the cnt of
3645  *		the inquiry length is zero. This will happen if the inquiry
3646  *		string returned by the device is padded with spaces to be
3647  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3648  *		SCSI spec states that the inquiry string is to be padded with
3649  *		spaces.
3650  *
3651  *   Arguments: un - driver soft state (unit) structure
3652  *		id - table or config file vid/pid
3653  *		idlen  - length of the vid/pid (bytes)
3654  *
3655  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3656  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3657  */
3658 
3659 static int
3660 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3661 {
3662 	char		*p1;
3663 	char		*p2;
3664 	int		cnt;
3665 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3666 	    sizeof (SD_INQUIRY(un)->inq_pid);
3667 
3668 	ASSERT(un != NULL);
3669 	p2 = un->un_sd->sd_inq->inq_vid;
3670 	ASSERT(id != NULL);
3671 	p1 = id;
3672 
3673 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3674 		/*
3675 		 * Note: string p1 is terminated by a NUL but string p2
3676 		 * isn't.  The end of p2 is determined by cnt.
3677 		 */
3678 		for (;;) {
3679 			/* skip over any extra blanks in both strings */
3680 			while ((*p1 != '\0') && (*p1 == ' ')) {
3681 				p1++;
3682 			}
3683 			while ((cnt != 0) && (*p2 == ' ')) {
3684 				p2++;
3685 				cnt--;
3686 			}
3687 
3688 			/* compare the two strings */
3689 			if ((cnt == 0) ||
3690 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3691 				break;
3692 			}
3693 			while ((cnt > 0) &&
3694 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3695 				p1++;
3696 				p2++;
3697 				cnt--;
3698 			}
3699 		}
3700 	}
3701 
3702 	/* return SD_SUCCESS if both strings match */
3703 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3704 }
3705 
3706 
3707 /*
3708  *    Function: sd_chk_vers1_data
3709  *
3710  * Description: Verify the version 1 device properties provided by the
3711  *		user via the configuration file
3712  *
3713  *   Arguments: un	     - driver soft state (unit) structure
3714  *		flags	     - integer mask indicating properties to be set
3715  *		prop_list    - integer list of property values
3716  *		list_len     - length of user provided data
3717  *
3718  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3719  *		SD_FAILURE - Indicates the user provided data is invalid
3720  */
3721 
3722 static int
3723 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3724     int list_len, char *dataname_ptr)
3725 {
3726 	int i;
3727 	int mask = 1;
3728 	int index = 0;
3729 
3730 	ASSERT(un != NULL);
3731 
3732 	/* Check for a NULL property name and list */
3733 	if (dataname_ptr == NULL) {
3734 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3735 		    "sd_chk_vers1_data: NULL data property name.");
3736 		return (SD_FAILURE);
3737 	}
3738 	if (prop_list == NULL) {
3739 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3740 		    "sd_chk_vers1_data: %s NULL data property list.",
3741 		    dataname_ptr);
3742 		return (SD_FAILURE);
3743 	}
3744 
3745 	/* Display a warning if undefined bits are set in the flags */
3746 	if (flags & ~SD_CONF_BIT_MASK) {
3747 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3748 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3749 		    "Properties not set.",
3750 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3751 		return (SD_FAILURE);
3752 	}
3753 
3754 	/*
3755 	 * Verify the length of the list by identifying the highest bit set
3756 	 * in the flags and validating that the property list has a length
3757 	 * up to the index of this bit.
3758 	 */
3759 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3760 		if (flags & mask) {
3761 			index++;
3762 		}
3763 		mask = 1 << i;
3764 	}
3765 	if ((list_len / sizeof (int)) < (index + 2)) {
3766 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3767 		    "sd_chk_vers1_data: "
3768 		    "Data property list %s size is incorrect. "
3769 		    "Properties not set.", dataname_ptr);
3770 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3771 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3772 		return (SD_FAILURE);
3773 	}
3774 	return (SD_SUCCESS);
3775 }
3776 
3777 
3778 /*
3779  *    Function: sd_set_vers1_properties
3780  *
3781  * Description: Set version 1 device properties based on a property list
3782  *		retrieved from the driver configuration file or static
3783  *		configuration table. Version 1 properties have the format:
3784  *
3785  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3786  *
3787  *		where the prop0 value will be used to set prop0 if bit0
3788  *		is set in the flags
3789  *
3790  *   Arguments: un	     - driver soft state (unit) structure
3791  *		flags	     - integer mask indicating properties to be set
3792  *		prop_list    - integer list of property values
3793  */
3794 
3795 static void
3796 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3797 {
3798 	ASSERT(un != NULL);
3799 
3800 	/*
3801 	 * Set the flag to indicate cache is to be disabled. An attempt
3802 	 * to disable the cache via sd_disable_caching() will be made
3803 	 * later during attach once the basic initialization is complete.
3804 	 */
3805 	if (flags & SD_CONF_BSET_NOCACHE) {
3806 		un->un_f_opt_disable_cache = TRUE;
3807 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3808 		    "sd_set_vers1_properties: caching disabled flag set\n");
3809 	}
3810 
3811 	/* CD-specific configuration parameters */
3812 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3813 		un->un_f_cfg_playmsf_bcd = TRUE;
3814 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3815 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3816 	}
3817 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3818 		un->un_f_cfg_readsub_bcd = TRUE;
3819 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3820 		    "sd_set_vers1_properties: readsub_bcd set\n");
3821 	}
3822 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3823 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3824 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3825 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3826 	}
3827 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3828 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3829 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3830 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3831 	}
3832 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3833 		un->un_f_cfg_no_read_header = TRUE;
3834 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3835 			    "sd_set_vers1_properties: no_read_header set\n");
3836 	}
3837 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3838 		un->un_f_cfg_read_cd_xd4 = TRUE;
3839 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3840 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3841 	}
3842 
3843 	/* Support for devices which do not have valid/unique serial numbers */
3844 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3845 		un->un_f_opt_fab_devid = TRUE;
3846 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3847 		    "sd_set_vers1_properties: fab_devid bit set\n");
3848 	}
3849 
3850 	/* Support for user throttle configuration */
3851 	if (flags & SD_CONF_BSET_THROTTLE) {
3852 		ASSERT(prop_list != NULL);
3853 		un->un_saved_throttle = un->un_throttle =
3854 		    prop_list->sdt_throttle;
3855 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3856 		    "sd_set_vers1_properties: throttle set to %d\n",
3857 		    prop_list->sdt_throttle);
3858 	}
3859 
3860 	/* Set the per disk retry count according to the conf file or table. */
3861 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3862 		ASSERT(prop_list != NULL);
3863 		if (prop_list->sdt_not_rdy_retries) {
3864 			un->un_notready_retry_count =
3865 				prop_list->sdt_not_rdy_retries;
3866 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3867 			    "sd_set_vers1_properties: not ready retry count"
3868 			    " set to %d\n", un->un_notready_retry_count);
3869 		}
3870 	}
3871 
3872 	/* The controller type is reported for generic disk driver ioctls */
3873 	if (flags & SD_CONF_BSET_CTYPE) {
3874 		ASSERT(prop_list != NULL);
3875 		switch (prop_list->sdt_ctype) {
3876 		case CTYPE_CDROM:
3877 			un->un_ctype = prop_list->sdt_ctype;
3878 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3879 			    "sd_set_vers1_properties: ctype set to "
3880 			    "CTYPE_CDROM\n");
3881 			break;
3882 		case CTYPE_CCS:
3883 			un->un_ctype = prop_list->sdt_ctype;
3884 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3885 				"sd_set_vers1_properties: ctype set to "
3886 				"CTYPE_CCS\n");
3887 			break;
3888 		case CTYPE_ROD:		/* RW optical */
3889 			un->un_ctype = prop_list->sdt_ctype;
3890 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3891 			    "sd_set_vers1_properties: ctype set to "
3892 			    "CTYPE_ROD\n");
3893 			break;
3894 		default:
3895 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3896 			    "sd_set_vers1_properties: Could not set "
3897 			    "invalid ctype value (%d)",
3898 			    prop_list->sdt_ctype);
3899 		}
3900 	}
3901 
3902 	/* Purple failover timeout */
3903 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3904 		ASSERT(prop_list != NULL);
3905 		un->un_busy_retry_count =
3906 			prop_list->sdt_busy_retries;
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3908 		    "sd_set_vers1_properties: "
3909 		    "busy retry count set to %d\n",
3910 		    un->un_busy_retry_count);
3911 	}
3912 
3913 	/* Purple reset retry count */
3914 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3915 		ASSERT(prop_list != NULL);
3916 		un->un_reset_retry_count =
3917 			prop_list->sdt_reset_retries;
3918 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3919 		    "sd_set_vers1_properties: "
3920 		    "reset retry count set to %d\n",
3921 		    un->un_reset_retry_count);
3922 	}
3923 
3924 	/* Purple reservation release timeout */
3925 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3926 		ASSERT(prop_list != NULL);
3927 		un->un_reserve_release_time =
3928 			prop_list->sdt_reserv_rel_time;
3929 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3930 		    "sd_set_vers1_properties: "
3931 		    "reservation release timeout set to %d\n",
3932 		    un->un_reserve_release_time);
3933 	}
3934 
3935 	/*
3936 	 * Driver flag telling the driver to verify that no commands are pending
3937 	 * for a device before issuing a Test Unit Ready. This is a workaround
3938 	 * for a firmware bug in some Seagate eliteI drives.
3939 	 */
3940 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3941 		un->un_f_cfg_tur_check = TRUE;
3942 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3943 		    "sd_set_vers1_properties: tur queue check set\n");
3944 	}
3945 
3946 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3947 		un->un_min_throttle = prop_list->sdt_min_throttle;
3948 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3949 		    "sd_set_vers1_properties: min throttle set to %d\n",
3950 		    un->un_min_throttle);
3951 	}
3952 
3953 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3954 		un->un_f_disksort_disabled =
3955 		    (prop_list->sdt_disk_sort_dis != 0) ?
3956 		    TRUE : FALSE;
3957 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3958 		    "sd_set_vers1_properties: disksort disabled "
3959 		    "flag set to %d\n",
3960 		    prop_list->sdt_disk_sort_dis);
3961 	}
3962 
3963 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
3964 		un->un_f_lun_reset_enabled =
3965 		    (prop_list->sdt_lun_reset_enable != 0) ?
3966 		    TRUE : FALSE;
3967 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3968 		    "sd_set_vers1_properties: lun reset enabled "
3969 		    "flag set to %d\n",
3970 		    prop_list->sdt_lun_reset_enable);
3971 	}
3972 
3973 	/*
3974 	 * Validate the throttle values.
3975 	 * If any of the numbers are invalid, set everything to defaults.
3976 	 */
3977 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3978 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3979 	    (un->un_min_throttle > un->un_throttle)) {
3980 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3981 		un->un_min_throttle = sd_min_throttle;
3982 	}
3983 }
3984 
3985 /*
3986  *   Function: sd_is_lsi()
3987  *
3988  *   Description: Check for lsi devices, step throught the static device
3989  *	table to match vid/pid.
3990  *
3991  *   Args: un - ptr to sd_lun
3992  *
3993  *   Notes:  When creating new LSI property, need to add the new LSI property
3994  *		to this function.
3995  */
3996 static void
3997 sd_is_lsi(struct sd_lun *un)
3998 {
3999 	char	*id = NULL;
4000 	int	table_index;
4001 	int	idlen;
4002 	void	*prop;
4003 
4004 	ASSERT(un != NULL);
4005 	for (table_index = 0; table_index < sd_disk_table_size;
4006 	    table_index++) {
4007 		id = sd_disk_table[table_index].device_id;
4008 		idlen = strlen(id);
4009 		if (idlen == 0) {
4010 			continue;
4011 		}
4012 
4013 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4014 			prop = sd_disk_table[table_index].properties;
4015 			if (prop == &lsi_properties ||
4016 			    prop == &lsi_oem_properties ||
4017 			    prop == &lsi_properties_scsi ||
4018 			    prop == &symbios_properties) {
4019 				un->un_f_cfg_is_lsi = TRUE;
4020 			}
4021 			break;
4022 		}
4023 	}
4024 }
4025 
4026 
4027 /*
4028  * The following routines support reading and interpretation of disk labels,
4029  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4030  * fdisk tables.
4031  */
4032 
4033 /*
4034  *    Function: sd_validate_geometry
4035  *
4036  * Description: Read the label from the disk (if present). Update the unit's
4037  *		geometry and vtoc information from the data in the label.
4038  *		Verify that the label is valid.
4039  *
4040  *   Arguments: un - driver soft state (unit) structure
4041  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4042  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4043  *			to use the USCSI "direct" chain and bypass the normal
4044  *			command waitq.
4045  *
4046  * Return Code: 0 - Successful completion
4047  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4048  *			  un->un_blockcount; or label on disk is corrupted
4049  *			  or unreadable.
4050  *		EACCES  - Reservation conflict at the device.
4051  *		ENOMEM  - Resource allocation error
4052  *		ENOTSUP - geometry not applicable
4053  *
4054  *     Context: Kernel thread only (can sleep).
4055  */
4056 
4057 static int
4058 sd_validate_geometry(struct sd_lun *un, int path_flag)
4059 {
4060 	static	char		labelstring[128];
4061 	static	char		buf[256];
4062 	char	*label		= NULL;
4063 	int	label_error	= 0;
4064 	int	gvalid		= un->un_f_geometry_is_valid;
4065 	int	lbasize;
4066 	uint_t	capacity;
4067 	int	count;
4068 
4069 	ASSERT(un != NULL);
4070 	ASSERT(mutex_owned(SD_MUTEX(un)));
4071 
4072 	/*
4073 	 * If the required values are not valid, then try getting them
4074 	 * once via read capacity. If that fails, then fail this call.
4075 	 * This is necessary with the new mpxio failover behavior in
4076 	 * the T300 where we can get an attach for the inactive path
4077 	 * before the active path. The inactive path fails commands with
4078 	 * sense data of 02,04,88 which happens to the read capacity
4079 	 * before mpxio has had sufficient knowledge to know if it should
4080 	 * force a fail over or not. (Which it won't do at attach anyhow).
4081 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4082 	 * un_blockcount won't be valid.
4083 	 */
4084 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4085 	    (un->un_f_blockcount_is_valid != TRUE)) {
4086 		uint64_t	cap;
4087 		uint32_t	lbasz;
4088 		int		rval;
4089 
4090 		mutex_exit(SD_MUTEX(un));
4091 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4092 		    &lbasz, SD_PATH_DIRECT);
4093 		mutex_enter(SD_MUTEX(un));
4094 		if (rval == 0) {
4095 			/*
4096 			 * The following relies on
4097 			 * sd_send_scsi_READ_CAPACITY never
4098 			 * returning 0 for capacity and/or lbasize.
4099 			 */
4100 			sd_update_block_info(un, lbasz, cap);
4101 		}
4102 
4103 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4104 		    (un->un_f_blockcount_is_valid != TRUE)) {
4105 			return (EINVAL);
4106 		}
4107 	}
4108 
4109 	/*
4110 	 * Copy the lbasize and capacity so that if they're reset while we're
4111 	 * not holding the SD_MUTEX, we will continue to use valid values
4112 	 * after the SD_MUTEX is reacquired. (4119659)
4113 	 */
4114 	lbasize  = un->un_tgt_blocksize;
4115 	capacity = un->un_blockcount;
4116 
4117 #if defined(_SUNOS_VTOC_16)
4118 	/*
4119 	 * Set up the "whole disk" fdisk partition; this should always
4120 	 * exist, regardless of whether the disk contains an fdisk table
4121 	 * or vtoc.
4122 	 */
4123 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4124 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4125 #endif
4126 
4127 	/*
4128 	 * Refresh the logical and physical geometry caches.
4129 	 * (data from MODE SENSE format/rigid disk geometry pages,
4130 	 * and scsi_ifgetcap("geometry").
4131 	 */
4132 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4133 
4134 	label_error = sd_use_efi(un, path_flag);
4135 	if (label_error == 0) {
4136 		/* found a valid EFI label */
4137 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4138 			"sd_validate_geometry: found EFI label\n");
4139 		un->un_solaris_offset = 0;
4140 		un->un_solaris_size = capacity;
4141 		return (ENOTSUP);
4142 	}
4143 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4144 		if (label_error == ESRCH) {
4145 			/*
4146 			 * they've configured a LUN over 1TB, but used
4147 			 * format.dat to restrict format's view of the
4148 			 * capacity to be under 1TB
4149 			 */
4150 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4151 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4152 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4153 "size to be < 1TB or relabel the disk with an EFI label");
4154 		} else {
4155 			/* unlabeled disk over 1TB */
4156 			return (ENOTSUP);
4157 		}
4158 	}
4159 	label_error = 0;
4160 
4161 	/*
4162 	 * at this point it is either labeled with a VTOC or it is
4163 	 * under 1TB
4164 	 */
4165 
4166 	/*
4167 	 * Only DIRECT ACCESS devices will have Sun labels.
4168 	 * CD's supposedly have a Sun label, too
4169 	 */
4170 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
4171 		struct	dk_label *dkl;
4172 		offset_t dkl1;
4173 		offset_t label_addr, real_addr;
4174 		int	rval;
4175 		size_t	buffer_size;
4176 
4177 		/*
4178 		 * Note: This will set up un->un_solaris_size and
4179 		 * un->un_solaris_offset.
4180 		 */
4181 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4182 		case SD_CMD_RESERVATION_CONFLICT:
4183 			ASSERT(mutex_owned(SD_MUTEX(un)));
4184 			return (EACCES);
4185 		case SD_CMD_FAILURE:
4186 			ASSERT(mutex_owned(SD_MUTEX(un)));
4187 			return (ENOMEM);
4188 		}
4189 
4190 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4191 			/*
4192 			 * Found fdisk table but no Solaris partition entry,
4193 			 * so don't call sd_uselabel() and don't create
4194 			 * a default label.
4195 			 */
4196 			label_error = 0;
4197 			un->un_f_geometry_is_valid = TRUE;
4198 			goto no_solaris_partition;
4199 		}
4200 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4201 
4202 		/*
4203 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4204 		 * blkno and save the index to beginning of dk_label
4205 		 */
4206 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4207 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4208 		    sizeof (struct dk_label));
4209 
4210 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4211 		    "label_addr: 0x%x allocation size: 0x%x\n",
4212 		    label_addr, buffer_size);
4213 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4214 		if (dkl == NULL) {
4215 			return (ENOMEM);
4216 		}
4217 
4218 		mutex_exit(SD_MUTEX(un));
4219 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4220 		    path_flag);
4221 		mutex_enter(SD_MUTEX(un));
4222 
4223 		switch (rval) {
4224 		case 0:
4225 			/*
4226 			 * sd_uselabel will establish that the geometry
4227 			 * is valid.
4228 			 * For sys_blocksize != tgt_blocksize, need
4229 			 * to index into the beginning of dk_label
4230 			 */
4231 			dkl1 = (daddr_t)dkl
4232 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4233 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4234 			    path_flag) != SD_LABEL_IS_VALID) {
4235 				label_error = EINVAL;
4236 			}
4237 			break;
4238 		case EACCES:
4239 			label_error = EACCES;
4240 			break;
4241 		default:
4242 			label_error = EINVAL;
4243 			break;
4244 		}
4245 
4246 		kmem_free(dkl, buffer_size);
4247 
4248 #if defined(_SUNOS_VTOC_8)
4249 		label = (char *)un->un_asciilabel;
4250 #elif defined(_SUNOS_VTOC_16)
4251 		label = (char *)un->un_vtoc.v_asciilabel;
4252 #else
4253 #error "No VTOC format defined."
4254 #endif
4255 	}
4256 
4257 	/*
4258 	 * If a valid label was not found, AND if no reservation conflict
4259 	 * was detected, then go ahead and create a default label (4069506).
4260 	 *
4261 	 * Note: currently, for VTOC_8 devices, the default label is created
4262 	 * for removables only.  For VTOC_16 devices, the default label will
4263 	 * be created for both removables and non-removables alike.
4264 	 * (see sd_build_default_label)
4265 	 */
4266 #if defined(_SUNOS_VTOC_8)
4267 	if (ISREMOVABLE(un) && (label_error != EACCES)) {
4268 #elif defined(_SUNOS_VTOC_16)
4269 	if (label_error != EACCES) {
4270 #endif
4271 		if (un->un_f_geometry_is_valid == FALSE) {
4272 			sd_build_default_label(un);
4273 		}
4274 		label_error = 0;
4275 	}
4276 
4277 no_solaris_partition:
4278 	if ((!ISREMOVABLE(un) ||
4279 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
4280 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
4281 		/*
4282 		 * Print out a message indicating who and what we are.
4283 		 * We do this only when we happen to really validate the
4284 		 * geometry. We may call sd_validate_geometry() at other
4285 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4286 		 * don't want to print the label.
4287 		 * If the geometry is valid, print the label string,
4288 		 * else print vendor and product info, if available
4289 		 */
4290 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4291 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4292 		} else {
4293 			mutex_enter(&sd_label_mutex);
4294 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4295 			    labelstring);
4296 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4297 			    &labelstring[64]);
4298 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4299 			    labelstring, &labelstring[64]);
4300 			if (un->un_f_blockcount_is_valid == TRUE) {
4301 				(void) sprintf(&buf[strlen(buf)],
4302 				    ", %llu %u byte blocks\n",
4303 				    (longlong_t)un->un_blockcount,
4304 				    un->un_tgt_blocksize);
4305 			} else {
4306 				(void) sprintf(&buf[strlen(buf)],
4307 				    ", (unknown capacity)\n");
4308 			}
4309 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4310 			mutex_exit(&sd_label_mutex);
4311 		}
4312 	}
4313 
4314 #if defined(_SUNOS_VTOC_16)
4315 	/*
4316 	 * If we have valid geometry, set up the remaining fdisk partitions.
4317 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4318 	 * we set it to an entirely bogus value.
4319 	 */
4320 	for (count = 0; count < FD_NUMPART; count++) {
4321 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4322 		un->un_map[FDISK_P1 + count].dkl_nblk =
4323 		    un->un_fmap[count].fmap_nblk;
4324 
4325 		un->un_offset[FDISK_P1 + count] =
4326 		    un->un_fmap[count].fmap_start;
4327 	}
4328 #endif
4329 
4330 	for (count = 0; count < NDKMAP; count++) {
4331 #if defined(_SUNOS_VTOC_8)
4332 		struct dk_map *lp  = &un->un_map[count];
4333 		un->un_offset[count] =
4334 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4335 #elif defined(_SUNOS_VTOC_16)
4336 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4337 
4338 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4339 #else
4340 #error "No VTOC format defined."
4341 #endif
4342 	}
4343 
4344 	return (label_error);
4345 }
4346 
4347 
4348 #if defined(_SUNOS_VTOC_16)
4349 /*
4350  * Macro: MAX_BLKS
4351  *
4352  *	This macro is used for table entries where we need to have the largest
4353  *	possible sector value for that head & SPT (sectors per track)
4354  *	combination.  Other entries for some smaller disk sizes are set by
4355  *	convention to match those used by X86 BIOS usage.
4356  */
4357 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4358 
4359 /*
4360  *    Function: sd_convert_geometry
4361  *
4362  * Description: Convert physical geometry into a dk_geom structure. In
4363  *		other words, make sure we don't wrap 16-bit values.
4364  *		e.g. converting from geom_cache to dk_geom
4365  *
4366  *     Context: Kernel thread only
4367  */
4368 static void
4369 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4370 {
4371 	int i;
4372 	static const struct chs_values {
4373 		uint_t max_cap;		/* Max Capacity for this HS. */
4374 		uint_t nhead;		/* Heads to use. */
4375 		uint_t nsect;		/* SPT to use. */
4376 	} CHS_values[] = {
4377 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4378 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4379 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4380 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4381 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4382 	};
4383 
4384 	/* Unlabeled SCSI floppy device */
4385 	if (capacity <= 0x1000) {
4386 		un_g->dkg_nhead = 2;
4387 		un_g->dkg_ncyl = 80;
4388 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4389 		return;
4390 	}
4391 
4392 	/*
4393 	 * For all devices we calculate cylinders using the
4394 	 * heads and sectors we assign based on capacity of the
4395 	 * device.  The table is designed to be compatible with the
4396 	 * way other operating systems lay out fdisk tables for X86
4397 	 * and to insure that the cylinders never exceed 65535 to
4398 	 * prevent problems with X86 ioctls that report geometry.
4399 	 * We use SPT that are multiples of 63, since other OSes that
4400 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4401 	 * we make do by using multiples of 63 SPT.
4402 	 *
4403 	 * Note than capacities greater than or equal to 1TB will simply
4404 	 * get the largest geometry from the table. This should be okay
4405 	 * since disks this large shouldn't be using CHS values anyway.
4406 	 */
4407 	for (i = 0; CHS_values[i].max_cap < capacity &&
4408 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4409 		;
4410 
4411 	un_g->dkg_nhead = CHS_values[i].nhead;
4412 	un_g->dkg_nsect = CHS_values[i].nsect;
4413 }
4414 #endif
4415 
4416 
4417 /*
4418  *    Function: sd_resync_geom_caches
4419  *
4420  * Description: (Re)initialize both geometry caches: the virtual geometry
4421  *		information is extracted from the HBA (the "geometry"
4422  *		capability), and the physical geometry cache data is
4423  *		generated by issuing MODE SENSE commands.
4424  *
4425  *   Arguments: un - driver soft state (unit) structure
4426  *		capacity - disk capacity in #blocks
4427  *		lbasize - disk block size in bytes
4428  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4429  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4430  *			to use the USCSI "direct" chain and bypass the normal
4431  *			command waitq.
4432  *
4433  *     Context: Kernel thread only (can sleep).
4434  */
4435 
4436 static void
4437 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4438 	int path_flag)
4439 {
4440 	struct 	geom_cache 	pgeom;
4441 	struct 	geom_cache	*pgeom_p = &pgeom;
4442 	int 	spc;
4443 	unsigned short nhead;
4444 	unsigned short nsect;
4445 
4446 	ASSERT(un != NULL);
4447 	ASSERT(mutex_owned(SD_MUTEX(un)));
4448 
4449 	/*
4450 	 * Ask the controller for its logical geometry.
4451 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4452 	 * then the lgeom cache will be invalid.
4453 	 */
4454 	sd_get_virtual_geometry(un, capacity, lbasize);
4455 
4456 	/*
4457 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4458 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4459 	 */
4460 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4461 		/*
4462 		 * Note: Perhaps this needs to be more adaptive? The rationale
4463 		 * is that, if there's no HBA geometry from the HBA driver, any
4464 		 * guess is good, since this is the physical geometry. If MODE
4465 		 * SENSE fails this gives a max cylinder size for non-LBA access
4466 		 */
4467 		nhead = 255;
4468 		nsect = 63;
4469 	} else {
4470 		nhead = un->un_lgeom.g_nhead;
4471 		nsect = un->un_lgeom.g_nsect;
4472 	}
4473 
4474 	if (ISCD(un)) {
4475 		pgeom_p->g_nhead = 1;
4476 		pgeom_p->g_nsect = nsect * nhead;
4477 	} else {
4478 		pgeom_p->g_nhead = nhead;
4479 		pgeom_p->g_nsect = nsect;
4480 	}
4481 
4482 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4483 	pgeom_p->g_capacity = capacity;
4484 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4485 	pgeom_p->g_acyl = 0;
4486 
4487 	/*
4488 	 * Retrieve fresh geometry data from the hardware, stash it
4489 	 * here temporarily before we rebuild the incore label.
4490 	 *
4491 	 * We want to use the MODE SENSE commands to derive the
4492 	 * physical geometry of the device, but if either command
4493 	 * fails, the logical geometry is used as the fallback for
4494 	 * disk label geometry.
4495 	 */
4496 	mutex_exit(SD_MUTEX(un));
4497 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4498 	mutex_enter(SD_MUTEX(un));
4499 
4500 	/*
4501 	 * Now update the real copy while holding the mutex. This
4502 	 * way the global copy is never in an inconsistent state.
4503 	 */
4504 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4505 
4506 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4507 	    "(cached from lgeom)\n");
4508 	SD_INFO(SD_LOG_COMMON, un,
4509 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4510 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4511 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4512 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4513 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4514 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4515 	    un->un_pgeom.g_rpm);
4516 }
4517 
4518 
4519 /*
4520  *    Function: sd_read_fdisk
4521  *
4522  * Description: utility routine to read the fdisk table.
4523  *
4524  *   Arguments: un - driver soft state (unit) structure
4525  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4526  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4527  *			to use the USCSI "direct" chain and bypass the normal
4528  *			command waitq.
4529  *
4530  * Return Code: SD_CMD_SUCCESS
4531  *		SD_CMD_FAILURE
4532  *
4533  *     Context: Kernel thread only (can sleep).
4534  */
4535 /* ARGSUSED */
4536 static int
4537 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4538 {
4539 #if defined(_NO_FDISK_PRESENT)
4540 
4541 	un->un_solaris_offset = 0;
4542 	un->un_solaris_size = capacity;
4543 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4544 	return (SD_CMD_SUCCESS);
4545 
4546 #elif defined(_FIRMWARE_NEEDS_FDISK)
4547 
4548 	struct ipart	*fdp;
4549 	struct mboot	*mbp;
4550 	struct ipart	fdisk[FD_NUMPART];
4551 	int		i;
4552 	char		sigbuf[2];
4553 	caddr_t		bufp;
4554 	int		uidx;
4555 	int		rval;
4556 	int		lba = 0;
4557 	uint_t		solaris_offset;	/* offset to solaris part. */
4558 	daddr_t		solaris_size;	/* size of solaris partition */
4559 	uint32_t	blocksize;
4560 
4561 	ASSERT(un != NULL);
4562 	ASSERT(mutex_owned(SD_MUTEX(un)));
4563 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4564 
4565 	blocksize = un->un_tgt_blocksize;
4566 
4567 	/*
4568 	 * Start off assuming no fdisk table
4569 	 */
4570 	solaris_offset = 0;
4571 	solaris_size   = capacity;
4572 
4573 	mutex_exit(SD_MUTEX(un));
4574 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4575 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4576 	mutex_enter(SD_MUTEX(un));
4577 
4578 	if (rval != 0) {
4579 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4580 		    "sd_read_fdisk: fdisk read err\n");
4581 		kmem_free(bufp, blocksize);
4582 		return (SD_CMD_FAILURE);
4583 	}
4584 
4585 	mbp = (struct mboot *)bufp;
4586 
4587 	/*
4588 	 * The fdisk table does not begin on a 4-byte boundary within the
4589 	 * master boot record, so we copy it to an aligned structure to avoid
4590 	 * alignment exceptions on some processors.
4591 	 */
4592 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4593 
4594 	/*
4595 	 * Check for lba support before verifying sig; sig might not be
4596 	 * there, say on a blank disk, but the max_chs mark may still
4597 	 * be present.
4598 	 *
4599 	 * Note: LBA support and BEFs are an x86-only concept but this
4600 	 * code should work OK on SPARC as well.
4601 	 */
4602 
4603 	/*
4604 	 * First, check for lba-access-ok on root node (or prom root node)
4605 	 * if present there, don't need to search fdisk table.
4606 	 */
4607 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4608 	    "lba-access-ok", 0) != 0) {
4609 		/* All drives do LBA; don't search fdisk table */
4610 		lba = 1;
4611 	} else {
4612 		/* Okay, look for mark in fdisk table */
4613 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4614 			/* accumulate "lba" value from all partitions */
4615 			lba = (lba || sd_has_max_chs_vals(fdp));
4616 		}
4617 	}
4618 
4619 	/*
4620 	 * Next, look for 'no-bef-lba-access' prop on parent.
4621 	 * Its presence means the realmode driver doesn't support
4622 	 * LBA, so the target driver shouldn't advertise it as ok.
4623 	 * This should be a temporary condition; one day all
4624 	 * BEFs should support the LBA access functions.
4625 	 */
4626 	if ((lba != 0) && (ddi_getprop(DDI_DEV_T_ANY,
4627 	    ddi_get_parent(SD_DEVINFO(un)), DDI_PROP_DONTPASS,
4628 	    "no-bef-lba-access", 0) != 0)) {
4629 		/* BEF doesn't support LBA; don't advertise it as ok */
4630 		lba = 0;
4631 	}
4632 
4633 	if (lba != 0) {
4634 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4635 
4636 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4637 		    "lba-access-ok", 0) == 0) {
4638 			/* not found; create it */
4639 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4640 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4641 			    DDI_PROP_SUCCESS) {
4642 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4643 				    "sd_read_fdisk: Can't create lba property "
4644 				    "for instance %d\n",
4645 				    ddi_get_instance(SD_DEVINFO(un)));
4646 			}
4647 		}
4648 	}
4649 
4650 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4651 
4652 	/*
4653 	 * Endian-independent signature check
4654 	 */
4655 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4656 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4657 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4658 		    "sd_read_fdisk: no fdisk\n");
4659 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4660 		rval = SD_CMD_SUCCESS;
4661 		goto done;
4662 	}
4663 
4664 #ifdef SDDEBUG
4665 	if (sd_level_mask & SD_LOGMASK_INFO) {
4666 		fdp = fdisk;
4667 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4668 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4669 		    "numsect         sysid       bootid\n");
4670 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4672 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4673 			    i, fdp->relsect, fdp->numsect,
4674 			    fdp->systid, fdp->bootid);
4675 		}
4676 	}
4677 #endif
4678 
4679 	/*
4680 	 * Try to find the unix partition
4681 	 */
4682 	uidx = -1;
4683 	solaris_offset = 0;
4684 	solaris_size   = 0;
4685 
4686 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4687 		int	relsect;
4688 		int	numsect;
4689 
4690 		if (fdp->numsect == 0) {
4691 			un->un_fmap[i].fmap_start = 0;
4692 			un->un_fmap[i].fmap_nblk  = 0;
4693 			continue;
4694 		}
4695 
4696 		/*
4697 		 * Data in the fdisk table is little-endian.
4698 		 */
4699 		relsect = LE_32(fdp->relsect);
4700 		numsect = LE_32(fdp->numsect);
4701 
4702 		un->un_fmap[i].fmap_start = relsect;
4703 		un->un_fmap[i].fmap_nblk  = numsect;
4704 
4705 		if (fdp->systid != SUNIXOS &&
4706 		    fdp->systid != SUNIXOS2 &&
4707 		    fdp->systid != EFI_PMBR) {
4708 			continue;
4709 		}
4710 
4711 		/*
4712 		 * use the last active solaris partition id found
4713 		 * (there should only be 1 active partition id)
4714 		 *
4715 		 * if there are no active solaris partition id
4716 		 * then use the first inactive solaris partition id
4717 		 */
4718 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4719 			uidx = i;
4720 			solaris_offset = relsect;
4721 			solaris_size   = numsect;
4722 		}
4723 	}
4724 
4725 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4726 	    un->un_solaris_offset, un->un_solaris_size);
4727 
4728 	rval = SD_CMD_SUCCESS;
4729 
4730 done:
4731 
4732 	/*
4733 	 * Clear the VTOC info, only if the Solaris partition entry
4734 	 * has moved, changed size, been deleted, or if the size of
4735 	 * the partition is too small to even fit the label sector.
4736 	 */
4737 	if ((un->un_solaris_offset != solaris_offset) ||
4738 	    (un->un_solaris_size != solaris_size) ||
4739 	    solaris_size <= DK_LABEL_LOC) {
4740 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4741 			solaris_offset, solaris_size);
4742 		bzero(&un->un_g, sizeof (struct dk_geom));
4743 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4744 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4745 		un->un_f_geometry_is_valid = FALSE;
4746 	}
4747 	un->un_solaris_offset = solaris_offset;
4748 	un->un_solaris_size = solaris_size;
4749 	kmem_free(bufp, blocksize);
4750 	return (rval);
4751 
4752 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4753 #error "fdisk table presence undetermined for this platform."
4754 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4755 }
4756 
4757 
4758 /*
4759  *    Function: sd_get_physical_geometry
4760  *
4761  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4762  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4763  *		target, and use this information to initialize the physical
4764  *		geometry cache specified by pgeom_p.
4765  *
4766  *		MODE SENSE is an optional command, so failure in this case
4767  *		does not necessarily denote an error. We want to use the
4768  *		MODE SENSE commands to derive the physical geometry of the
4769  *		device, but if either command fails, the logical geometry is
4770  *		used as the fallback for disk label geometry.
4771  *
4772  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4773  *		have already been initialized for the current target and
4774  *		that the current values be passed as args so that we don't
4775  *		end up ever trying to use -1 as a valid value. This could
4776  *		happen if either value is reset while we're not holding
4777  *		the mutex.
4778  *
4779  *   Arguments: un - driver soft state (unit) structure
4780  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4781  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4782  *			to use the USCSI "direct" chain and bypass the normal
4783  *			command waitq.
4784  *
4785  *     Context: Kernel thread only (can sleep).
4786  */
4787 
4788 static void
4789 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4790 	int capacity, int lbasize, int path_flag)
4791 {
4792 	struct	mode_format	*page3p;
4793 	struct	mode_geometry	*page4p;
4794 	struct	mode_header	*headerp;
4795 	int	sector_size;
4796 	int	nsect;
4797 	int	nhead;
4798 	int	ncyl;
4799 	int	intrlv;
4800 	int	spc;
4801 	int	modesense_capacity;
4802 	int	rpm;
4803 	int	bd_len;
4804 	int	mode_header_length;
4805 	uchar_t	*p3bufp;
4806 	uchar_t	*p4bufp;
4807 	int	cdbsize;
4808 
4809 	ASSERT(un != NULL);
4810 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4811 
4812 	if (un->un_f_blockcount_is_valid != TRUE) {
4813 		return;
4814 	}
4815 
4816 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4817 		return;
4818 	}
4819 
4820 	if (lbasize == 0) {
4821 		if (ISCD(un)) {
4822 			lbasize = 2048;
4823 		} else {
4824 			lbasize = un->un_sys_blocksize;
4825 		}
4826 	}
4827 	pgeom_p->g_secsize = (unsigned short)lbasize;
4828 
4829 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4830 
4831 	/*
4832 	 * Retrieve MODE SENSE page 3 - Format Device Page
4833 	 */
4834 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4835 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4836 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4837 	    != 0) {
4838 		SD_ERROR(SD_LOG_COMMON, un,
4839 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4840 		goto page3_exit;
4841 	}
4842 
4843 	/*
4844 	 * Determine size of Block Descriptors in order to locate the mode
4845 	 * page data.  ATAPI devices return 0, SCSI devices should return
4846 	 * MODE_BLK_DESC_LENGTH.
4847 	 */
4848 	headerp = (struct mode_header *)p3bufp;
4849 	if (un->un_f_cfg_is_atapi == TRUE) {
4850 		struct mode_header_grp2 *mhp =
4851 		    (struct mode_header_grp2 *)headerp;
4852 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4853 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4854 	} else {
4855 		mode_header_length = MODE_HEADER_LENGTH;
4856 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4857 	}
4858 
4859 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4860 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4861 		    "received unexpected bd_len of %d, page3\n", bd_len);
4862 		goto page3_exit;
4863 	}
4864 
4865 	page3p = (struct mode_format *)
4866 	    ((caddr_t)headerp + mode_header_length + bd_len);
4867 
4868 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4869 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4870 		    "mode sense pg3 code mismatch %d\n",
4871 		    page3p->mode_page.code);
4872 		goto page3_exit;
4873 	}
4874 
4875 	/*
4876 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4877 	 * complete successfully; otherwise, revert to the logical geometry.
4878 	 * So, we need to save everything in temporary variables.
4879 	 */
4880 	sector_size = BE_16(page3p->data_bytes_sect);
4881 
4882 	/*
4883 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4884 	 */
4885 	if (sector_size == 0) {
4886 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4887 	} else {
4888 		sector_size &= ~(un->un_sys_blocksize - 1);
4889 	}
4890 
4891 	nsect  = BE_16(page3p->sect_track);
4892 	intrlv = BE_16(page3p->interleave);
4893 
4894 	SD_INFO(SD_LOG_COMMON, un,
4895 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4896 	SD_INFO(SD_LOG_COMMON, un,
4897 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4898 	    page3p->mode_page.code, nsect, sector_size);
4899 	SD_INFO(SD_LOG_COMMON, un,
4900 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4901 	    BE_16(page3p->track_skew),
4902 	    BE_16(page3p->cylinder_skew));
4903 
4904 
4905 	/*
4906 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4907 	 */
4908 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4909 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4910 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4911 	    != 0) {
4912 		SD_ERROR(SD_LOG_COMMON, un,
4913 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4914 		goto page4_exit;
4915 	}
4916 
4917 	/*
4918 	 * Determine size of Block Descriptors in order to locate the mode
4919 	 * page data.  ATAPI devices return 0, SCSI devices should return
4920 	 * MODE_BLK_DESC_LENGTH.
4921 	 */
4922 	headerp = (struct mode_header *)p4bufp;
4923 	if (un->un_f_cfg_is_atapi == TRUE) {
4924 		struct mode_header_grp2 *mhp =
4925 		    (struct mode_header_grp2 *)headerp;
4926 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4927 	} else {
4928 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4929 	}
4930 
4931 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4932 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4933 		    "received unexpected bd_len of %d, page4\n", bd_len);
4934 		goto page4_exit;
4935 	}
4936 
4937 	page4p = (struct mode_geometry *)
4938 	    ((caddr_t)headerp + mode_header_length + bd_len);
4939 
4940 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4941 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4942 		    "mode sense pg4 code mismatch %d\n",
4943 		    page4p->mode_page.code);
4944 		goto page4_exit;
4945 	}
4946 
4947 	/*
4948 	 * Stash the data now, after we know that both commands completed.
4949 	 */
4950 
4951 	mutex_enter(SD_MUTEX(un));
4952 
4953 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4954 	spc   = nhead * nsect;
4955 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4956 	rpm   = BE_16(page4p->rpm);
4957 
4958 	modesense_capacity = spc * ncyl;
4959 
4960 	SD_INFO(SD_LOG_COMMON, un,
4961 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4962 	SD_INFO(SD_LOG_COMMON, un,
4963 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4964 	SD_INFO(SD_LOG_COMMON, un,
4965 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4966 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4967 	    (void *)pgeom_p, capacity);
4968 
4969 	/*
4970 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4971 	 * the product of C * H * S returned by MODE SENSE >= that returned
4972 	 * by read capacity. This is an idiosyncrasy of the original x86
4973 	 * disk subsystem.
4974 	 */
4975 	if (modesense_capacity >= capacity) {
4976 		SD_INFO(SD_LOG_COMMON, un,
4977 		    "sd_get_physical_geometry: adjusting acyl; "
4978 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4979 		    (modesense_capacity - capacity + spc - 1) / spc);
4980 		if (sector_size != 0) {
4981 			/* 1243403: NEC D38x7 drives don't support sec size */
4982 			pgeom_p->g_secsize = (unsigned short)sector_size;
4983 		}
4984 		pgeom_p->g_nsect    = (unsigned short)nsect;
4985 		pgeom_p->g_nhead    = (unsigned short)nhead;
4986 		pgeom_p->g_capacity = capacity;
4987 		pgeom_p->g_acyl	    =
4988 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4989 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4990 	}
4991 
4992 	pgeom_p->g_rpm    = (unsigned short)rpm;
4993 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4994 
4995 	SD_INFO(SD_LOG_COMMON, un,
4996 	    "sd_get_physical_geometry: mode sense geometry:\n");
4997 	SD_INFO(SD_LOG_COMMON, un,
4998 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4999 	    nsect, sector_size, intrlv);
5000 	SD_INFO(SD_LOG_COMMON, un,
5001 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5002 	    nhead, ncyl, rpm, modesense_capacity);
5003 	SD_INFO(SD_LOG_COMMON, un,
5004 	    "sd_get_physical_geometry: (cached)\n");
5005 	SD_INFO(SD_LOG_COMMON, un,
5006 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5007 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5008 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5009 	SD_INFO(SD_LOG_COMMON, un,
5010 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5011 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5012 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5013 
5014 	mutex_exit(SD_MUTEX(un));
5015 
5016 page4_exit:
5017 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5018 page3_exit:
5019 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5020 }
5021 
5022 
5023 /*
5024  *    Function: sd_get_virtual_geometry
5025  *
5026  * Description: Ask the controller to tell us about the target device.
5027  *
5028  *   Arguments: un - pointer to softstate
5029  *		capacity - disk capacity in #blocks
5030  *		lbasize - disk block size in bytes
5031  *
5032  *     Context: Kernel thread only
5033  */
5034 
5035 static void
5036 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5037 {
5038 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5039 	uint_t	geombuf;
5040 	int	spc;
5041 
5042 	ASSERT(un != NULL);
5043 	ASSERT(mutex_owned(SD_MUTEX(un)));
5044 
5045 	mutex_exit(SD_MUTEX(un));
5046 
5047 	/* Set sector size, and total number of sectors */
5048 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5049 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5050 
5051 	/* Let the HBA tell us its geometry */
5052 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5053 
5054 	mutex_enter(SD_MUTEX(un));
5055 
5056 	/* A value of -1 indicates an undefined "geometry" property */
5057 	if (geombuf == (-1)) {
5058 		return;
5059 	}
5060 
5061 	/* Initialize the logical geometry cache. */
5062 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5063 	lgeom_p->g_nsect   = geombuf & 0xffff;
5064 	lgeom_p->g_secsize = un->un_sys_blocksize;
5065 
5066 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5067 
5068 	/*
5069 	 * Note: The driver originally converted the capacity value from
5070 	 * target blocks to system blocks. However, the capacity value passed
5071 	 * to this routine is already in terms of system blocks (this scaling
5072 	 * is done when the READ CAPACITY command is issued and processed).
5073 	 * This 'error' may have gone undetected because the usage of g_ncyl
5074 	 * (which is based upon g_capacity) is very limited within the driver
5075 	 */
5076 	lgeom_p->g_capacity = capacity;
5077 
5078 	/*
5079 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5080 	 * hba may return zero values if the device has been removed.
5081 	 */
5082 	if (spc == 0) {
5083 		lgeom_p->g_ncyl = 0;
5084 	} else {
5085 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5086 	}
5087 	lgeom_p->g_acyl = 0;
5088 
5089 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5090 	SD_INFO(SD_LOG_COMMON, un,
5091 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5092 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5093 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5094 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5095 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5096 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5097 }
5098 
5099 
5100 /*
5101  *    Function: sd_update_block_info
5102  *
5103  * Description: Calculate a byte count to sector count bitshift value
5104  *		from sector size.
5105  *
5106  *   Arguments: un: unit struct.
5107  *		lbasize: new target sector size
5108  *		capacity: new target capacity, ie. block count
5109  *
5110  *     Context: Kernel thread context
5111  */
5112 
5113 static void
5114 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5115 {
5116 	if (lbasize != 0) {
5117 		un->un_tgt_blocksize = lbasize;
5118 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5119 	}
5120 
5121 	if (capacity != 0) {
5122 		un->un_blockcount		= capacity;
5123 		un->un_f_blockcount_is_valid	= TRUE;
5124 	}
5125 }
5126 
5127 
5128 static void
5129 sd_swap_efi_gpt(efi_gpt_t *e)
5130 {
5131 	_NOTE(ASSUMING_PROTECTED(*e))
5132 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5133 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5134 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5135 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5136 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5137 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5138 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5139 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5140 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5141 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5142 	e->efi_gpt_NumberOfPartitionEntries =
5143 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5144 	e->efi_gpt_SizeOfPartitionEntry =
5145 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5146 	e->efi_gpt_PartitionEntryArrayCRC32 =
5147 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5148 }
5149 
5150 static void
5151 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5152 {
5153 	int i;
5154 
5155 	_NOTE(ASSUMING_PROTECTED(*p))
5156 	for (i = 0; i < nparts; i++) {
5157 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5158 		    p[i].efi_gpe_PartitionTypeGUID);
5159 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5160 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5161 		/* PartitionAttrs */
5162 	}
5163 }
5164 
5165 static int
5166 sd_validate_efi(efi_gpt_t *labp)
5167 {
5168 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5169 		return (EINVAL);
5170 	/* at least 96 bytes in this version of the spec. */
5171 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5172 	    labp->efi_gpt_HeaderSize)
5173 		return (EINVAL);
5174 	/* this should be 128 bytes */
5175 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5176 		return (EINVAL);
5177 	return (0);
5178 }
5179 
5180 static int
5181 sd_use_efi(struct sd_lun *un, int path_flag)
5182 {
5183 	int		i;
5184 	int		rval = 0;
5185 	efi_gpe_t	*partitions;
5186 	uchar_t		*buf;
5187 	uint_t		lbasize;
5188 	uint64_t	cap;
5189 	uint_t		nparts;
5190 	diskaddr_t	gpe_lba;
5191 
5192 	ASSERT(mutex_owned(SD_MUTEX(un)));
5193 	lbasize = un->un_tgt_blocksize;
5194 
5195 	mutex_exit(SD_MUTEX(un));
5196 
5197 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5198 
5199 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5200 		rval = EINVAL;
5201 		goto done_err;
5202 	}
5203 
5204 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5205 	if (rval) {
5206 		goto done_err;
5207 	}
5208 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5209 		/* not ours */
5210 		rval = ESRCH;
5211 		goto done_err;
5212 	}
5213 
5214 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5215 	if (rval) {
5216 		goto done_err;
5217 	}
5218 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5219 
5220 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5221 		/*
5222 		 * Couldn't read the primary, try the backup.  Our
5223 		 * capacity at this point could be based on CHS, so
5224 		 * check what the device reports.
5225 		 */
5226 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5227 		    path_flag);
5228 		if (rval) {
5229 			goto done_err;
5230 		}
5231 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5232 		    cap - 1, path_flag)) != 0) {
5233 			goto done_err;
5234 		}
5235 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5236 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5237 			goto done_err;
5238 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5239 		    "primary label corrupt; using backup\n");
5240 	}
5241 
5242 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5243 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5244 
5245 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5246 	    path_flag);
5247 	if (rval) {
5248 		goto done_err;
5249 	}
5250 	partitions = (efi_gpe_t *)buf;
5251 
5252 	if (nparts > MAXPART) {
5253 		nparts = MAXPART;
5254 	}
5255 	sd_swap_efi_gpe(nparts, partitions);
5256 
5257 	mutex_enter(SD_MUTEX(un));
5258 
5259 	/* Fill in partition table. */
5260 	for (i = 0; i < nparts; i++) {
5261 		if (partitions->efi_gpe_StartingLBA != 0 ||
5262 		    partitions->efi_gpe_EndingLBA != 0) {
5263 			un->un_map[i].dkl_cylno =
5264 			    partitions->efi_gpe_StartingLBA;
5265 			un->un_map[i].dkl_nblk =
5266 			    partitions->efi_gpe_EndingLBA -
5267 			    partitions->efi_gpe_StartingLBA + 1;
5268 			un->un_offset[i] =
5269 			    partitions->efi_gpe_StartingLBA;
5270 		}
5271 		if (i == WD_NODE) {
5272 			/*
5273 			 * minor number 7 corresponds to the whole disk
5274 			 */
5275 			un->un_map[i].dkl_cylno = 0;
5276 			un->un_map[i].dkl_nblk = un->un_blockcount;
5277 			un->un_offset[i] = 0;
5278 		}
5279 		partitions++;
5280 	}
5281 	un->un_solaris_offset = 0;
5282 	un->un_solaris_size = cap;
5283 	un->un_f_geometry_is_valid = TRUE;
5284 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5285 	return (0);
5286 
5287 done_err:
5288 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5289 	mutex_enter(SD_MUTEX(un));
5290 	/*
5291 	 * if we didn't find something that could look like a VTOC
5292 	 * and the disk is over 1TB, we know there isn't a valid label.
5293 	 * Otherwise let sd_uselabel decide what to do.  We only
5294 	 * want to invalidate this if we're certain the label isn't
5295 	 * valid because sd_prop_op will now fail, which in turn
5296 	 * causes things like opens and stats on the partition to fail.
5297 	 */
5298 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5299 		un->un_f_geometry_is_valid = FALSE;
5300 	}
5301 	return (rval);
5302 }
5303 
5304 
5305 /*
5306  *    Function: sd_uselabel
5307  *
5308  * Description: Validate the disk label and update the relevant data (geometry,
5309  *		partition, vtoc, and capacity data) in the sd_lun struct.
5310  *		Marks the geometry of the unit as being valid.
5311  *
5312  *   Arguments: un: unit struct.
5313  *		dk_label: disk label
5314  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5315  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5316  *			to use the USCSI "direct" chain and bypass the normal
5317  *			command waitq.
5318  *
5319  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5320  *		partition, vtoc, and capacity data are good.
5321  *
5322  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5323  *		label; or computed capacity does not jibe with capacity
5324  *		reported from the READ CAPACITY command.
5325  *
5326  *     Context: Kernel thread only (can sleep).
5327  */
5328 
5329 static int
5330 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5331 {
5332 	short	*sp;
5333 	short	sum;
5334 	short	count;
5335 	int	label_error = SD_LABEL_IS_VALID;
5336 	int	i;
5337 	int	capacity;
5338 	int	part_end;
5339 	int	track_capacity;
5340 	int	err;
5341 #if defined(_SUNOS_VTOC_16)
5342 	struct	dkl_partition	*vpartp;
5343 #endif
5344 	ASSERT(un != NULL);
5345 	ASSERT(mutex_owned(SD_MUTEX(un)));
5346 
5347 	/* Validate the magic number of the label. */
5348 	if (labp->dkl_magic != DKL_MAGIC) {
5349 #if defined(__sparc)
5350 		if ((un->un_state == SD_STATE_NORMAL) &&
5351 		    !ISREMOVABLE(un)) {
5352 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5353 			    "Corrupt label; wrong magic number\n");
5354 		}
5355 #endif
5356 		return (SD_LABEL_IS_INVALID);
5357 	}
5358 
5359 	/* Validate the checksum of the label. */
5360 	sp  = (short *)labp;
5361 	sum = 0;
5362 	count = sizeof (struct dk_label) / sizeof (short);
5363 	while (count--)	 {
5364 		sum ^= *sp++;
5365 	}
5366 
5367 	if (sum != 0) {
5368 #if defined(_SUNOS_VTOC_16)
5369 		if (un->un_state == SD_STATE_NORMAL && !ISCD(un)) {
5370 #elif defined(_SUNOS_VTOC_8)
5371 		if (un->un_state == SD_STATE_NORMAL && !ISREMOVABLE(un)) {
5372 #endif
5373 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5374 			    "Corrupt label - label checksum failed\n");
5375 		}
5376 		return (SD_LABEL_IS_INVALID);
5377 	}
5378 
5379 
5380 	/*
5381 	 * Fill in geometry structure with data from label.
5382 	 */
5383 	bzero(&un->un_g, sizeof (struct dk_geom));
5384 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5385 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5386 	un->un_g.dkg_bcyl   = 0;
5387 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5388 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5389 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5390 
5391 #if defined(_SUNOS_VTOC_8)
5392 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5393 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5394 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5395 #endif
5396 #if defined(_SUNOS_VTOC_16)
5397 	un->un_dkg_skew = labp->dkl_skew;
5398 #endif
5399 
5400 #if defined(__i386) || defined(__amd64)
5401 	un->un_g.dkg_apc = labp->dkl_apc;
5402 #endif
5403 
5404 	/*
5405 	 * Currently we rely on the values in the label being accurate. If
5406 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5407 	 *
5408 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5409 	 * although this command is optional in SCSI-2.
5410 	 */
5411 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5412 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5413 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5414 
5415 	/*
5416 	 * The Read and Write reinstruct values may not be valid
5417 	 * for older disks.
5418 	 */
5419 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5420 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5421 
5422 	/* Fill in partition table. */
5423 #if defined(_SUNOS_VTOC_8)
5424 	for (i = 0; i < NDKMAP; i++) {
5425 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5426 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5427 	}
5428 #endif
5429 #if  defined(_SUNOS_VTOC_16)
5430 	vpartp		= labp->dkl_vtoc.v_part;
5431 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5432 
5433 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5434 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5435 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5436 	}
5437 #endif
5438 
5439 	/* Fill in VTOC Structure. */
5440 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5441 #if defined(_SUNOS_VTOC_8)
5442 	/*
5443 	 * The 8-slice vtoc does not include the ascii label; save it into
5444 	 * the device's soft state structure here.
5445 	 */
5446 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5447 #endif
5448 
5449 	/* Mark the geometry as valid. */
5450 	un->un_f_geometry_is_valid = TRUE;
5451 
5452 	/* Now look for a valid capacity. */
5453 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5454 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5455 
5456 	if (un->un_g.dkg_acyl) {
5457 #if defined(__i386) || defined(__amd64)
5458 		/* we may have > 1 alts cylinder */
5459 		capacity += (track_capacity * un->un_g.dkg_acyl);
5460 #else
5461 		capacity += track_capacity;
5462 #endif
5463 	}
5464 
5465 	/*
5466 	 * At this point, un->un_blockcount should contain valid data from
5467 	 * the READ CAPACITY command.
5468 	 */
5469 	if (un->un_f_blockcount_is_valid != TRUE) {
5470 		/*
5471 		 * We have a situation where the target didn't give us a good
5472 		 * READ CAPACITY value, yet there appears to be a valid label.
5473 		 * In this case, we'll fake the capacity.
5474 		 */
5475 		un->un_blockcount = capacity;
5476 		un->un_f_blockcount_is_valid = TRUE;
5477 		goto done;
5478 	}
5479 
5480 
5481 	if ((capacity <= un->un_blockcount) ||
5482 	    (un->un_state != SD_STATE_NORMAL)) {
5483 #if defined(_SUNOS_VTOC_8)
5484 		/*
5485 		 * We can't let this happen on drives that are subdivided
5486 		 * into logical disks (i.e., that have an fdisk table).
5487 		 * The un_blockcount field should always hold the full media
5488 		 * size in sectors, period.  This code would overwrite
5489 		 * un_blockcount with the size of the Solaris fdisk partition.
5490 		 */
5491 		SD_ERROR(SD_LOG_COMMON, un,
5492 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5493 		    capacity, un->un_blockcount);
5494 		un->un_blockcount = capacity;
5495 		un->un_f_blockcount_is_valid = TRUE;
5496 #endif	/* defined(_SUNOS_VTOC_8) */
5497 		goto done;
5498 	}
5499 
5500 	if (ISCD(un)) {
5501 		/* For CDROMs, we trust that the data in the label is OK. */
5502 #if defined(_SUNOS_VTOC_8)
5503 		for (i = 0; i < NDKMAP; i++) {
5504 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5505 			    labp->dkl_map[i].dkl_cylno +
5506 			    labp->dkl_map[i].dkl_nblk  - 1;
5507 
5508 			if ((labp->dkl_map[i].dkl_nblk) &&
5509 			    (part_end > un->un_blockcount)) {
5510 				un->un_f_geometry_is_valid = FALSE;
5511 				break;
5512 			}
5513 		}
5514 #endif
5515 #if defined(_SUNOS_VTOC_16)
5516 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5517 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5518 			part_end = vpartp->p_start + vpartp->p_size;
5519 			if ((vpartp->p_size > 0) &&
5520 			    (part_end > un->un_blockcount)) {
5521 				un->un_f_geometry_is_valid = FALSE;
5522 				break;
5523 			}
5524 		}
5525 #endif
5526 	} else {
5527 		uint64_t t_capacity;
5528 		uint32_t t_lbasize;
5529 
5530 		mutex_exit(SD_MUTEX(un));
5531 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5532 		    path_flag);
5533 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5534 		mutex_enter(SD_MUTEX(un));
5535 
5536 		if (err == 0) {
5537 			sd_update_block_info(un, t_lbasize, t_capacity);
5538 		}
5539 
5540 		if (capacity > un->un_blockcount) {
5541 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5542 			    "Corrupt label - bad geometry\n");
5543 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5544 			    "Label says %u blocks; Drive says %llu blocks\n",
5545 			    capacity, (unsigned long long)un->un_blockcount);
5546 			un->un_f_geometry_is_valid = FALSE;
5547 			label_error = SD_LABEL_IS_INVALID;
5548 		}
5549 	}
5550 
5551 done:
5552 
5553 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5554 	SD_INFO(SD_LOG_COMMON, un,
5555 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5556 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5557 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5558 	SD_INFO(SD_LOG_COMMON, un,
5559 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5560 	    un->un_tgt_blocksize, un->un_blockcount,
5561 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5562 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5563 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5564 
5565 	ASSERT(mutex_owned(SD_MUTEX(un)));
5566 
5567 	return (label_error);
5568 }
5569 
5570 
5571 /*
5572  *    Function: sd_build_default_label
5573  *
5574  * Description: Generate a default label for those devices that do not have
5575  *		one, e.g., new media, removable cartridges, etc..
5576  *
5577  *     Context: Kernel thread only
5578  */
5579 
5580 static void
5581 sd_build_default_label(struct sd_lun *un)
5582 {
5583 #if defined(_SUNOS_VTOC_16)
5584 	uint_t	phys_spc;
5585 	uint_t	disksize;
5586 	struct	dk_geom un_g;
5587 #endif
5588 
5589 	ASSERT(un != NULL);
5590 	ASSERT(mutex_owned(SD_MUTEX(un)));
5591 
5592 #if defined(_SUNOS_VTOC_8)
5593 	/*
5594 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5595 	 * only. This may be a valid check for VTOC_16 as well.
5596 	 */
5597 	if (!ISREMOVABLE(un)) {
5598 		return;
5599 	}
5600 #endif
5601 
5602 	bzero(&un->un_g, sizeof (struct dk_geom));
5603 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5604 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5605 
5606 #if defined(_SUNOS_VTOC_8)
5607 
5608 	/*
5609 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5610 	 * But it is still necessary to set up various geometry information,
5611 	 * and we are doing this here.
5612 	 */
5613 
5614 	/*
5615 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5616 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5617 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5618 	 * equal to C*H*S values.  This will cause some truncation of size due
5619 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5620 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5621 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5622 	 */
5623 	if (ISCD(un)) {
5624 		/*
5625 		 * Preserve the old behavior for non-writable
5626 		 * medias. Since dkg_nsect is a ushort, it
5627 		 * will lose bits as cdroms have more than
5628 		 * 65536 sectors. So if we recalculate
5629 		 * capacity, it will become much shorter.
5630 		 * But the dkg_* information is not
5631 		 * used for CDROMs so it is OK. But for
5632 		 * Writable CDs we need this information
5633 		 * to be valid (for newfs say). So we
5634 		 * make nsect and nhead > 1 that way
5635 		 * nsect can still stay within ushort limit
5636 		 * without losing any bits.
5637 		 */
5638 		if (un->un_f_mmc_writable_media == TRUE) {
5639 			un->un_g.dkg_nhead = 64;
5640 			un->un_g.dkg_nsect = 32;
5641 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5642 			un->un_blockcount = un->un_g.dkg_ncyl *
5643 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5644 		} else {
5645 			un->un_g.dkg_ncyl  = 1;
5646 			un->un_g.dkg_nhead = 1;
5647 			un->un_g.dkg_nsect = un->un_blockcount;
5648 		}
5649 	} else {
5650 		if (un->un_blockcount <= 0x1000) {
5651 			/* unlabeled SCSI floppy device */
5652 			un->un_g.dkg_nhead = 2;
5653 			un->un_g.dkg_ncyl = 80;
5654 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5655 		} else if (un->un_blockcount <= 0x200000) {
5656 			un->un_g.dkg_nhead = 64;
5657 			un->un_g.dkg_nsect = 32;
5658 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5659 		} else {
5660 			un->un_g.dkg_nhead = 255;
5661 			un->un_g.dkg_nsect = 63;
5662 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5663 		}
5664 		un->un_blockcount =
5665 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5666 	}
5667 
5668 	un->un_g.dkg_acyl	= 0;
5669 	un->un_g.dkg_bcyl	= 0;
5670 	un->un_g.dkg_rpm	= 200;
5671 	un->un_asciilabel[0]	= '\0';
5672 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5673 
5674 	un->un_map[0].dkl_cylno = 0;
5675 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5676 	un->un_map[2].dkl_cylno = 0;
5677 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5678 
5679 #elif defined(_SUNOS_VTOC_16)
5680 
5681 	if (un->un_solaris_size == 0) {
5682 		/*
5683 		 * Got fdisk table but no solaris entry therefore
5684 		 * don't create a default label
5685 		 */
5686 		un->un_f_geometry_is_valid = TRUE;
5687 		return;
5688 	}
5689 
5690 	/*
5691 	 * For CDs we continue to use the physical geometry to calculate
5692 	 * number of cylinders. All other devices must convert the
5693 	 * physical geometry (geom_cache) to values that will fit
5694 	 * in a dk_geom structure.
5695 	 */
5696 	if (ISCD(un)) {
5697 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5698 	} else {
5699 		/* Convert physical geometry to disk geometry */
5700 		bzero(&un_g, sizeof (struct dk_geom));
5701 		sd_convert_geometry(un->un_blockcount, &un_g);
5702 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5703 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5704 	}
5705 
5706 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5707 	un->un_g.dkg_acyl = DK_ACYL;
5708 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5709 	disksize = un->un_g.dkg_ncyl * phys_spc;
5710 
5711 	if (ISCD(un)) {
5712 		/*
5713 		 * CD's don't use the "heads * sectors * cyls"-type of
5714 		 * geometry, but instead use the entire capacity of the media.
5715 		 */
5716 		disksize = un->un_solaris_size;
5717 		un->un_g.dkg_nhead = 1;
5718 		un->un_g.dkg_nsect = 1;
5719 		un->un_g.dkg_rpm =
5720 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5721 
5722 		un->un_vtoc.v_part[0].p_start = 0;
5723 		un->un_vtoc.v_part[0].p_size  = disksize;
5724 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5725 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5726 
5727 		un->un_map[0].dkl_cylno = 0;
5728 		un->un_map[0].dkl_nblk  = disksize;
5729 		un->un_offset[0] = 0;
5730 
5731 	} else {
5732 		/*
5733 		 * Hard disks and removable media cartridges
5734 		 */
5735 		un->un_g.dkg_rpm =
5736 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5737 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5738 
5739 		/* Add boot slice */
5740 		un->un_vtoc.v_part[8].p_start = 0;
5741 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5742 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5743 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5744 
5745 		un->un_map[8].dkl_cylno = 0;
5746 		un->un_map[8].dkl_nblk  = phys_spc;
5747 		un->un_offset[8] = 0;
5748 	}
5749 
5750 	un->un_g.dkg_apc = 0;
5751 	un->un_vtoc.v_nparts = V_NUMPAR;
5752 	un->un_vtoc.v_version = V_VERSION;
5753 
5754 	/* Add backup slice */
5755 	un->un_vtoc.v_part[2].p_start = 0;
5756 	un->un_vtoc.v_part[2].p_size  = disksize;
5757 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5758 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5759 
5760 	un->un_map[2].dkl_cylno = 0;
5761 	un->un_map[2].dkl_nblk  = disksize;
5762 	un->un_offset[2] = 0;
5763 
5764 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5765 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5766 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5767 
5768 #else
5769 #error "No VTOC format defined."
5770 #endif
5771 
5772 	un->un_g.dkg_read_reinstruct  = 0;
5773 	un->un_g.dkg_write_reinstruct = 0;
5774 
5775 	un->un_g.dkg_intrlv = 1;
5776 
5777 	un->un_vtoc.v_sanity  = VTOC_SANE;
5778 
5779 	un->un_f_geometry_is_valid = TRUE;
5780 
5781 	SD_INFO(SD_LOG_COMMON, un,
5782 	    "sd_build_default_label: Default label created: "
5783 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5784 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5785 	    un->un_g.dkg_nsect, un->un_blockcount);
5786 }
5787 
5788 
5789 #if defined(_FIRMWARE_NEEDS_FDISK)
5790 /*
5791  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5792  */
5793 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5794 #define	LBA_MAX_CYL	(1022 & 0xFF)
5795 #define	LBA_MAX_HEAD	(254)
5796 
5797 
5798 /*
5799  *    Function: sd_has_max_chs_vals
5800  *
5801  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5802  *
5803  *   Arguments: fdp - ptr to CHS info
5804  *
5805  * Return Code: True or false
5806  *
5807  *     Context: Any.
5808  */
5809 
5810 static int
5811 sd_has_max_chs_vals(struct ipart *fdp)
5812 {
5813 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5814 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5815 	    (fdp->begsect == LBA_MAX_SECT)	&&
5816 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5817 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5818 	    (fdp->endsect == LBA_MAX_SECT));
5819 }
5820 #endif
5821 
5822 
5823 /*
5824  *    Function: sd_inq_fill
5825  *
5826  * Description: Print a piece of inquiry data, cleaned up for non-printable
5827  *		characters and stopping at the first space character after
5828  *		the beginning of the passed string;
5829  *
5830  *   Arguments: p - source string
5831  *		l - maximum length to copy
5832  *		s - destination string
5833  *
5834  *     Context: Any.
5835  */
5836 
5837 static void
5838 sd_inq_fill(char *p, int l, char *s)
5839 {
5840 	unsigned i = 0;
5841 	char c;
5842 
5843 	while (i++ < l) {
5844 		if ((c = *p++) < ' ' || c >= 0x7F) {
5845 			c = '*';
5846 		} else if (i != 1 && c == ' ') {
5847 			break;
5848 		}
5849 		*s++ = c;
5850 	}
5851 	*s++ = 0;
5852 }
5853 
5854 
5855 /*
5856  *    Function: sd_register_devid
5857  *
5858  * Description: This routine will obtain the device id information from the
5859  *		target, obtain the serial number, and register the device
5860  *		id with the ddi framework.
5861  *
5862  *   Arguments: devi - the system's dev_info_t for the device.
5863  *		un - driver soft state (unit) structure
5864  *		reservation_flag - indicates if a reservation conflict
5865  *		occurred during attach
5866  *
5867  *     Context: Kernel Thread
5868  */
5869 static void
5870 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5871 {
5872 	int		rval		= 0;
5873 	uchar_t		*inq80		= NULL;
5874 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5875 	size_t		inq80_resid	= 0;
5876 	uchar_t		*inq83		= NULL;
5877 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5878 	size_t		inq83_resid	= 0;
5879 
5880 	ASSERT(un != NULL);
5881 	ASSERT(mutex_owned(SD_MUTEX(un)));
5882 	ASSERT((SD_DEVINFO(un)) == devi);
5883 
5884 	/*
5885 	 * This is the case of antiquated Sun disk drives that have the
5886 	 * FAB_DEVID property set in the disk_table.  These drives
5887 	 * manage the devid's by storing them in last 2 available sectors
5888 	 * on the drive and have them fabricated by the ddi layer by calling
5889 	 * ddi_devid_init and passing the DEVID_FAB flag.
5890 	 */
5891 	if (un->un_f_opt_fab_devid == TRUE) {
5892 		/*
5893 		 * Depending on EINVAL isn't reliable, since a reserved disk
5894 		 * may result in invalid geometry, so check to make sure a
5895 		 * reservation conflict did not occur during attach.
5896 		 */
5897 		if ((sd_get_devid(un) == EINVAL) &&
5898 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5899 			/*
5900 			 * The devid is invalid AND there is no reservation
5901 			 * conflict.  Fabricate a new devid.
5902 			 */
5903 			(void) sd_create_devid(un);
5904 		}
5905 
5906 		/* Register the devid if it exists */
5907 		if (un->un_devid != NULL) {
5908 			(void) ddi_devid_register(SD_DEVINFO(un),
5909 			    un->un_devid);
5910 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5911 			    "sd_register_devid: Devid Fabricated\n");
5912 		}
5913 		return;
5914 	}
5915 
5916 	/*
5917 	 * We check the availibility of the World Wide Name (0x83) and Unit
5918 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5919 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5920 	 * 0x83 is availible, that is the best choice.  Our next choice is
5921 	 * 0x80.  If neither are availible, we munge the devid from the device
5922 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5923 	 * to fabricate a devid for non-Sun qualified disks.
5924 	 */
5925 	if (sd_check_vpd_page_support(un) == 0) {
5926 		/* collect page 80 data if available */
5927 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5928 
5929 			mutex_exit(SD_MUTEX(un));
5930 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5931 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5932 			    0x01, 0x80, &inq80_resid);
5933 
5934 			if (rval != 0) {
5935 				kmem_free(inq80, inq80_len);
5936 				inq80 = NULL;
5937 				inq80_len = 0;
5938 			}
5939 			mutex_enter(SD_MUTEX(un));
5940 		}
5941 
5942 		/* collect page 83 data if available */
5943 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5944 
5945 			mutex_exit(SD_MUTEX(un));
5946 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5947 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5948 			    0x01, 0x83, &inq83_resid);
5949 
5950 			if (rval != 0) {
5951 				kmem_free(inq83, inq83_len);
5952 				inq83 = NULL;
5953 				inq83_len = 0;
5954 			}
5955 			mutex_enter(SD_MUTEX(un));
5956 		}
5957 	}
5958 
5959 	/* encode best devid possible based on data available */
5960 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5961 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5962 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5963 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5964 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5965 
5966 		/* devid successfully encoded, register devid */
5967 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5968 
5969 	} else {
5970 		/*
5971 		 * Unable to encode a devid based on data available.
5972 		 * This is not a Sun qualified disk.  Older Sun disk
5973 		 * drives that have the SD_FAB_DEVID property
5974 		 * set in the disk_table and non Sun qualified
5975 		 * disks are treated in the same manner.  These
5976 		 * drives manage the devid's by storing them in
5977 		 * last 2 available sectors on the drive and
5978 		 * have them fabricated by the ddi layer by
5979 		 * calling ddi_devid_init and passing the
5980 		 * DEVID_FAB flag.
5981 		 * Create a fabricate devid only if there's no
5982 		 * fabricate devid existed.
5983 		 */
5984 		if (sd_get_devid(un) == EINVAL) {
5985 			(void) sd_create_devid(un);
5986 			un->un_f_opt_fab_devid = TRUE;
5987 		}
5988 
5989 		/* Register the devid if it exists */
5990 		if (un->un_devid != NULL) {
5991 			(void) ddi_devid_register(SD_DEVINFO(un),
5992 			    un->un_devid);
5993 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5994 			    "sd_register_devid: devid fabricated using "
5995 			    "ddi framework\n");
5996 		}
5997 	}
5998 
5999 	/* clean up resources */
6000 	if (inq80 != NULL) {
6001 		kmem_free(inq80, inq80_len);
6002 	}
6003 	if (inq83 != NULL) {
6004 		kmem_free(inq83, inq83_len);
6005 	}
6006 }
6007 
6008 static daddr_t
6009 sd_get_devid_block(struct sd_lun *un)
6010 {
6011 	daddr_t			spc, blk, head, cyl;
6012 
6013 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6014 		/* this geometry doesn't allow us to write a devid */
6015 		if (un->un_g.dkg_acyl < 2) {
6016 			return (-1);
6017 		}
6018 
6019 		/*
6020 		 * Subtract 2 guarantees that the next to last cylinder
6021 		 * is used
6022 		 */
6023 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6024 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6025 		head = un->un_g.dkg_nhead - 1;
6026 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6027 		    (head * un->un_g.dkg_nsect) + 1;
6028 	} else {
6029 		if (un->un_reserved != -1) {
6030 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6031 		} else {
6032 			return (-1);
6033 		}
6034 	}
6035 	return (blk);
6036 }
6037 
6038 /*
6039  *    Function: sd_get_devid
6040  *
6041  * Description: This routine will return 0 if a valid device id has been
6042  *		obtained from the target and stored in the soft state. If a
6043  *		valid device id has not been previously read and stored, a
6044  *		read attempt will be made.
6045  *
6046  *   Arguments: un - driver soft state (unit) structure
6047  *
6048  * Return Code: 0 if we successfully get the device id
6049  *
6050  *     Context: Kernel Thread
6051  */
6052 
6053 static int
6054 sd_get_devid(struct sd_lun *un)
6055 {
6056 	struct dk_devid		*dkdevid;
6057 	ddi_devid_t		tmpid;
6058 	uint_t			*ip;
6059 	size_t			sz;
6060 	daddr_t			blk;
6061 	int			status;
6062 	int			chksum;
6063 	int			i;
6064 	size_t			buffer_size;
6065 
6066 	ASSERT(un != NULL);
6067 	ASSERT(mutex_owned(SD_MUTEX(un)));
6068 
6069 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6070 	    un);
6071 
6072 	if (un->un_devid != NULL) {
6073 		return (0);
6074 	}
6075 
6076 	blk = sd_get_devid_block(un);
6077 	if (blk < 0)
6078 		return (EINVAL);
6079 
6080 	/*
6081 	 * Read and verify device id, stored in the reserved cylinders at the
6082 	 * end of the disk. Backup label is on the odd sectors of the last
6083 	 * track of the last cylinder. Device id will be on track of the next
6084 	 * to last cylinder.
6085 	 */
6086 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6087 	mutex_exit(SD_MUTEX(un));
6088 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6089 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6090 	    SD_PATH_DIRECT);
6091 	if (status != 0) {
6092 		goto error;
6093 	}
6094 
6095 	/* Validate the revision */
6096 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6097 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6098 		status = EINVAL;
6099 		goto error;
6100 	}
6101 
6102 	/* Calculate the checksum */
6103 	chksum = 0;
6104 	ip = (uint_t *)dkdevid;
6105 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6106 	    i++) {
6107 		chksum ^= ip[i];
6108 	}
6109 
6110 	/* Compare the checksums */
6111 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6112 		status = EINVAL;
6113 		goto error;
6114 	}
6115 
6116 	/* Validate the device id */
6117 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6118 		status = EINVAL;
6119 		goto error;
6120 	}
6121 
6122 	/*
6123 	 * Store the device id in the driver soft state
6124 	 */
6125 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6126 	tmpid = kmem_alloc(sz, KM_SLEEP);
6127 
6128 	mutex_enter(SD_MUTEX(un));
6129 
6130 	un->un_devid = tmpid;
6131 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6132 
6133 	kmem_free(dkdevid, buffer_size);
6134 
6135 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6136 
6137 	return (status);
6138 error:
6139 	mutex_enter(SD_MUTEX(un));
6140 	kmem_free(dkdevid, buffer_size);
6141 	return (status);
6142 }
6143 
6144 
6145 /*
6146  *    Function: sd_create_devid
6147  *
6148  * Description: This routine will fabricate the device id and write it
6149  *		to the disk.
6150  *
6151  *   Arguments: un - driver soft state (unit) structure
6152  *
6153  * Return Code: value of the fabricated device id
6154  *
6155  *     Context: Kernel Thread
6156  */
6157 
6158 static ddi_devid_t
6159 sd_create_devid(struct sd_lun *un)
6160 {
6161 	ASSERT(un != NULL);
6162 
6163 	/* Fabricate the devid */
6164 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6165 	    == DDI_FAILURE) {
6166 		return (NULL);
6167 	}
6168 
6169 	/* Write the devid to disk */
6170 	if (sd_write_deviceid(un) != 0) {
6171 		ddi_devid_free(un->un_devid);
6172 		un->un_devid = NULL;
6173 	}
6174 
6175 	return (un->un_devid);
6176 }
6177 
6178 
6179 /*
6180  *    Function: sd_write_deviceid
6181  *
6182  * Description: This routine will write the device id to the disk
6183  *		reserved sector.
6184  *
6185  *   Arguments: un - driver soft state (unit) structure
6186  *
6187  * Return Code: EINVAL
6188  *		value returned by sd_send_scsi_cmd
6189  *
6190  *     Context: Kernel Thread
6191  */
6192 
6193 static int
6194 sd_write_deviceid(struct sd_lun *un)
6195 {
6196 	struct dk_devid		*dkdevid;
6197 	daddr_t			blk;
6198 	uint_t			*ip, chksum;
6199 	int			status;
6200 	int			i;
6201 
6202 	ASSERT(mutex_owned(SD_MUTEX(un)));
6203 
6204 	blk = sd_get_devid_block(un);
6205 	if (blk < 0)
6206 		return (-1);
6207 	mutex_exit(SD_MUTEX(un));
6208 
6209 	/* Allocate the buffer */
6210 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6211 
6212 	/* Fill in the revision */
6213 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6214 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6215 
6216 	/* Copy in the device id */
6217 	mutex_enter(SD_MUTEX(un));
6218 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6219 	    ddi_devid_sizeof(un->un_devid));
6220 	mutex_exit(SD_MUTEX(un));
6221 
6222 	/* Calculate the checksum */
6223 	chksum = 0;
6224 	ip = (uint_t *)dkdevid;
6225 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6226 	    i++) {
6227 		chksum ^= ip[i];
6228 	}
6229 
6230 	/* Fill-in checksum */
6231 	DKD_FORMCHKSUM(chksum, dkdevid);
6232 
6233 	/* Write the reserved sector */
6234 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6235 	    SD_PATH_DIRECT);
6236 
6237 	kmem_free(dkdevid, un->un_sys_blocksize);
6238 
6239 	mutex_enter(SD_MUTEX(un));
6240 	return (status);
6241 }
6242 
6243 
6244 /*
6245  *    Function: sd_check_vpd_page_support
6246  *
6247  * Description: This routine sends an inquiry command with the EVPD bit set and
6248  *		a page code of 0x00 to the device. It is used to determine which
6249  *		vital product pages are availible to find the devid. We are
6250  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6251  *		device does not support that command.
6252  *
6253  *   Arguments: un  - driver soft state (unit) structure
6254  *
6255  * Return Code: 0 - success
6256  *		1 - check condition
6257  *
6258  *     Context: This routine can sleep.
6259  */
6260 
6261 static int
6262 sd_check_vpd_page_support(struct sd_lun *un)
6263 {
6264 	uchar_t	*page_list	= NULL;
6265 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6266 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6267 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6268 	int    	rval		= 0;
6269 	int	counter;
6270 
6271 	ASSERT(un != NULL);
6272 	ASSERT(mutex_owned(SD_MUTEX(un)));
6273 
6274 	mutex_exit(SD_MUTEX(un));
6275 
6276 	/*
6277 	 * We'll set the page length to the maximum to save figuring it out
6278 	 * with an additional call.
6279 	 */
6280 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6281 
6282 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6283 	    page_code, NULL);
6284 
6285 	mutex_enter(SD_MUTEX(un));
6286 
6287 	/*
6288 	 * Now we must validate that the device accepted the command, as some
6289 	 * drives do not support it.  If the drive does support it, we will
6290 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6291 	 * not, we return -1.
6292 	 */
6293 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6294 		/* Loop to find one of the 2 pages we need */
6295 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6296 
6297 		/*
6298 		 * Pages are returned in ascending order, and 0x83 is what we
6299 		 * are hoping for.
6300 		 */
6301 		while ((page_list[counter] <= 0x83) &&
6302 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6303 		    VPD_HEAD_OFFSET))) {
6304 			/*
6305 			 * Add 3 because page_list[3] is the number of
6306 			 * pages minus 3
6307 			 */
6308 
6309 			switch (page_list[counter]) {
6310 			case 0x00:
6311 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6312 				break;
6313 			case 0x80:
6314 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6315 				break;
6316 			case 0x81:
6317 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6318 				break;
6319 			case 0x82:
6320 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6321 				break;
6322 			case 0x83:
6323 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6324 				break;
6325 			}
6326 			counter++;
6327 		}
6328 
6329 	} else {
6330 		rval = -1;
6331 
6332 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6333 		    "sd_check_vpd_page_support: This drive does not implement "
6334 		    "VPD pages.\n");
6335 	}
6336 
6337 	kmem_free(page_list, page_length);
6338 
6339 	return (rval);
6340 }
6341 
6342 
6343 /*
6344  *    Function: sd_setup_pm
6345  *
6346  * Description: Initialize Power Management on the device
6347  *
6348  *     Context: Kernel Thread
6349  */
6350 
6351 static void
6352 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6353 {
6354 	uint_t	log_page_size;
6355 	uchar_t	*log_page_data;
6356 	int	rval;
6357 
6358 	/*
6359 	 * Since we are called from attach, holding a mutex for
6360 	 * un is unnecessary. Because some of the routines called
6361 	 * from here require SD_MUTEX to not be held, assert this
6362 	 * right up front.
6363 	 */
6364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6365 	/*
6366 	 * Since the sd device does not have the 'reg' property,
6367 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6368 	 * The following code is to tell cpr that this device
6369 	 * DOES need to be suspended and resumed.
6370 	 */
6371 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6372 	    "pm-hardware-state", "needs-suspend-resume");
6373 
6374 	/*
6375 	 * Check if HBA has set the "pm-capable" property.
6376 	 * If "pm-capable" exists and is non-zero then we can
6377 	 * power manage the device without checking the start/stop
6378 	 * cycle count log sense page.
6379 	 *
6380 	 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
6381 	 * then we should not power manage the device.
6382 	 *
6383 	 * If "pm-capable" doesn't exist then un->un_pm_capable_prop will
6384 	 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case, sd will
6385 	 * check the start/stop cycle count log sense page and power manage
6386 	 * the device if the cycle count limit has not been exceeded.
6387 	 */
6388 	un->un_pm_capable_prop =
6389 	    ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6390 		"pm-capable", SD_PM_CAPABLE_UNDEFINED);
6391 	if (un->un_pm_capable_prop != SD_PM_CAPABLE_UNDEFINED) {
6392 		/*
6393 		 * pm-capable property exists.
6394 		 *
6395 		 * Convert "TRUE" values for un_pm_capable_prop to
6396 		 * SD_PM_CAPABLE_TRUE (1) to make it easier to check later.
6397 		 * "TRUE" values are any values except SD_PM_CAPABLE_FALSE (0)
6398 		 *  and SD_PM_CAPABLE_UNDEFINED (-1)
6399 		 */
6400 		if (un->un_pm_capable_prop != SD_PM_CAPABLE_FALSE) {
6401 			un->un_pm_capable_prop = SD_PM_CAPABLE_TRUE;
6402 		}
6403 
6404 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6405 		    "sd_unit_attach: un:0x%p pm-capable "
6406 		    "property set to %d.\n", un, un->un_pm_capable_prop);
6407 	}
6408 
6409 	/*
6410 	 * This complies with the new power management framework
6411 	 * for certain desktop machines. Create the pm_components
6412 	 * property as a string array property.
6413 	 *
6414 	 * If this is a removable device or if the pm-capable property
6415 	 * is SD_PM_CAPABLE_TRUE (1) then we should create the
6416 	 * pm_components property without checking for the existance of
6417 	 * the start-stop cycle counter log page
6418 	 */
6419 	if (ISREMOVABLE(un) ||
6420 	    un->un_pm_capable_prop == SD_PM_CAPABLE_TRUE) {
6421 		/*
6422 		 * not all devices have a motor, try it first.
6423 		 * some devices may return ILLEGAL REQUEST, some
6424 		 * will hang
6425 		 */
6426 		un->un_f_start_stop_supported = TRUE;
6427 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6428 		    SD_PATH_DIRECT) != 0) {
6429 			un->un_f_start_stop_supported = FALSE;
6430 		}
6431 
6432 		/*
6433 		 * create pm properties anyways otherwise the parent can't
6434 		 * go to sleep
6435 		 */
6436 		(void) sd_create_pm_components(devi, un);
6437 		un->un_f_pm_is_enabled = TRUE;
6438 
6439 		/*
6440 		 * Need to create a zero length (Boolean) property
6441 		 * removable-media for the removable media devices.
6442 		 * Note that the return value of the property is not being
6443 		 * checked, since if unable to create the property
6444 		 * then do not want the attach to fail altogether. Consistent
6445 		 * with other property creation in attach.
6446 		 */
6447 		if (ISREMOVABLE(un)) {
6448 			(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
6449 			    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
6450 		}
6451 		return;
6452 	}
6453 
6454 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6455 
6456 #ifdef	SDDEBUG
6457 	if (sd_force_pm_supported) {
6458 		/* Force a successful result */
6459 		rval = 1;
6460 	}
6461 #endif
6462 
6463 	/*
6464 	 * If the start-stop cycle counter log page is not supported
6465 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6466 	 * then we should not create the pm_components property.
6467 	 */
6468 	if (rval == -1 || un->un_pm_capable_prop == SD_PM_CAPABLE_FALSE) {
6469 		/*
6470 		 * Error.
6471 		 * Reading log sense failed, most likely this is
6472 		 * an older drive that does not support log sense.
6473 		 * If this fails auto-pm is not supported.
6474 		 */
6475 		un->un_power_level = SD_SPINDLE_ON;
6476 		un->un_f_pm_is_enabled = FALSE;
6477 
6478 	} else if (rval == 0) {
6479 		/*
6480 		 * Page not found.
6481 		 * The start stop cycle counter is implemented as page
6482 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6483 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6484 		 */
6485 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6486 			/*
6487 			 * Page found, use this one.
6488 			 */
6489 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6490 			un->un_f_pm_is_enabled = TRUE;
6491 		} else {
6492 			/*
6493 			 * Error or page not found.
6494 			 * auto-pm is not supported for this device.
6495 			 */
6496 			un->un_power_level = SD_SPINDLE_ON;
6497 			un->un_f_pm_is_enabled = FALSE;
6498 		}
6499 	} else {
6500 		/*
6501 		 * Page found, use it.
6502 		 */
6503 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6504 		un->un_f_pm_is_enabled = TRUE;
6505 	}
6506 
6507 
6508 	if (un->un_f_pm_is_enabled == TRUE) {
6509 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6510 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6511 
6512 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6513 		    log_page_size, un->un_start_stop_cycle_page,
6514 		    0x01, 0, SD_PATH_DIRECT);
6515 #ifdef	SDDEBUG
6516 		if (sd_force_pm_supported) {
6517 			/* Force a successful result */
6518 			rval = 0;
6519 		}
6520 #endif
6521 
6522 		/*
6523 		 * If the Log sense for Page( Start/stop cycle counter page)
6524 		 * succeeds, then power managment is supported and we can
6525 		 * enable auto-pm.
6526 		 */
6527 		if (rval == 0)  {
6528 			(void) sd_create_pm_components(devi, un);
6529 		} else {
6530 			un->un_power_level = SD_SPINDLE_ON;
6531 			un->un_f_pm_is_enabled = FALSE;
6532 		}
6533 
6534 		kmem_free(log_page_data, log_page_size);
6535 	}
6536 }
6537 
6538 
6539 /*
6540  *    Function: sd_create_pm_components
6541  *
6542  * Description: Initialize PM property.
6543  *
6544  *     Context: Kernel thread context
6545  */
6546 
6547 static void
6548 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6549 {
6550 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6551 
6552 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6553 
6554 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6555 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6556 		/*
6557 		 * When components are initially created they are idle,
6558 		 * power up any non-removables.
6559 		 * Note: the return value of pm_raise_power can't be used
6560 		 * for determining if PM should be enabled for this device.
6561 		 * Even if you check the return values and remove this
6562 		 * property created above, the PM framework will not honor the
6563 		 * change after the first call to pm_raise_power. Hence,
6564 		 * removal of that property does not help if pm_raise_power
6565 		 * fails. In the case of removable media, the start/stop
6566 		 * will fail if the media is not present.
6567 		 */
6568 		if ((!ISREMOVABLE(un)) && (pm_raise_power(SD_DEVINFO(un), 0,
6569 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6570 			mutex_enter(SD_MUTEX(un));
6571 			un->un_power_level = SD_SPINDLE_ON;
6572 			mutex_enter(&un->un_pm_mutex);
6573 			/* Set to on and not busy. */
6574 			un->un_pm_count = 0;
6575 		} else {
6576 			mutex_enter(SD_MUTEX(un));
6577 			un->un_power_level = SD_SPINDLE_OFF;
6578 			mutex_enter(&un->un_pm_mutex);
6579 			/* Set to off. */
6580 			un->un_pm_count = -1;
6581 		}
6582 		mutex_exit(&un->un_pm_mutex);
6583 		mutex_exit(SD_MUTEX(un));
6584 	} else {
6585 		un->un_power_level = SD_SPINDLE_ON;
6586 		un->un_f_pm_is_enabled = FALSE;
6587 	}
6588 }
6589 
6590 
6591 /*
6592  *    Function: sd_ddi_suspend
6593  *
6594  * Description: Performs system power-down operations. This includes
6595  *		setting the drive state to indicate its suspended so
6596  *		that no new commands will be accepted. Also, wait for
6597  *		all commands that are in transport or queued to a timer
6598  *		for retry to complete. All timeout threads are cancelled.
6599  *
6600  * Return Code: DDI_FAILURE or DDI_SUCCESS
6601  *
6602  *     Context: Kernel thread context
6603  */
6604 
6605 static int
6606 sd_ddi_suspend(dev_info_t *devi)
6607 {
6608 	struct	sd_lun	*un;
6609 	clock_t		wait_cmds_complete;
6610 
6611 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6612 	if (un == NULL) {
6613 		return (DDI_FAILURE);
6614 	}
6615 
6616 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6617 
6618 	mutex_enter(SD_MUTEX(un));
6619 
6620 	/* Return success if the device is already suspended. */
6621 	if (un->un_state == SD_STATE_SUSPENDED) {
6622 		mutex_exit(SD_MUTEX(un));
6623 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6624 		    "device already suspended, exiting\n");
6625 		return (DDI_SUCCESS);
6626 	}
6627 
6628 	/* Return failure if the device is being used by HA */
6629 	if (un->un_resvd_status &
6630 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6631 		mutex_exit(SD_MUTEX(un));
6632 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6633 		    "device in use by HA, exiting\n");
6634 		return (DDI_FAILURE);
6635 	}
6636 
6637 	/*
6638 	 * Return failure if the device is in a resource wait
6639 	 * or power changing state.
6640 	 */
6641 	if ((un->un_state == SD_STATE_RWAIT) ||
6642 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6643 		mutex_exit(SD_MUTEX(un));
6644 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6645 		    "device in resource wait state, exiting\n");
6646 		return (DDI_FAILURE);
6647 	}
6648 
6649 
6650 	un->un_save_state = un->un_last_state;
6651 	New_state(un, SD_STATE_SUSPENDED);
6652 
6653 	/*
6654 	 * Wait for all commands that are in transport or queued to a timer
6655 	 * for retry to complete.
6656 	 *
6657 	 * While waiting, no new commands will be accepted or sent because of
6658 	 * the new state we set above.
6659 	 *
6660 	 * Wait till current operation has completed. If we are in the resource
6661 	 * wait state (with an intr outstanding) then we need to wait till the
6662 	 * intr completes and starts the next cmd. We want to wait for
6663 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6664 	 */
6665 	wait_cmds_complete = ddi_get_lbolt() +
6666 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6667 
6668 	while (un->un_ncmds_in_transport != 0) {
6669 		/*
6670 		 * Fail if commands do not finish in the specified time.
6671 		 */
6672 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6673 		    wait_cmds_complete) == -1) {
6674 			/*
6675 			 * Undo the state changes made above. Everything
6676 			 * must go back to it's original value.
6677 			 */
6678 			Restore_state(un);
6679 			un->un_last_state = un->un_save_state;
6680 			/* Wake up any threads that might be waiting. */
6681 			cv_broadcast(&un->un_suspend_cv);
6682 			mutex_exit(SD_MUTEX(un));
6683 			SD_ERROR(SD_LOG_IO_PM, un,
6684 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6685 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6686 			return (DDI_FAILURE);
6687 		}
6688 	}
6689 
6690 	/*
6691 	 * Cancel SCSI watch thread and timeouts, if any are active
6692 	 */
6693 
6694 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6695 		opaque_t temp_token = un->un_swr_token;
6696 		mutex_exit(SD_MUTEX(un));
6697 		scsi_watch_suspend(temp_token);
6698 		mutex_enter(SD_MUTEX(un));
6699 	}
6700 
6701 	if (un->un_reset_throttle_timeid != NULL) {
6702 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6703 		un->un_reset_throttle_timeid = NULL;
6704 		mutex_exit(SD_MUTEX(un));
6705 		(void) untimeout(temp_id);
6706 		mutex_enter(SD_MUTEX(un));
6707 	}
6708 
6709 	if (un->un_dcvb_timeid != NULL) {
6710 		timeout_id_t temp_id = un->un_dcvb_timeid;
6711 		un->un_dcvb_timeid = NULL;
6712 		mutex_exit(SD_MUTEX(un));
6713 		(void) untimeout(temp_id);
6714 		mutex_enter(SD_MUTEX(un));
6715 	}
6716 
6717 	mutex_enter(&un->un_pm_mutex);
6718 	if (un->un_pm_timeid != NULL) {
6719 		timeout_id_t temp_id = un->un_pm_timeid;
6720 		un->un_pm_timeid = NULL;
6721 		mutex_exit(&un->un_pm_mutex);
6722 		mutex_exit(SD_MUTEX(un));
6723 		(void) untimeout(temp_id);
6724 		mutex_enter(SD_MUTEX(un));
6725 	} else {
6726 		mutex_exit(&un->un_pm_mutex);
6727 	}
6728 
6729 	if (un->un_retry_timeid != NULL) {
6730 		timeout_id_t temp_id = un->un_retry_timeid;
6731 		un->un_retry_timeid = NULL;
6732 		mutex_exit(SD_MUTEX(un));
6733 		(void) untimeout(temp_id);
6734 		mutex_enter(SD_MUTEX(un));
6735 	}
6736 
6737 	if (un->un_direct_priority_timeid != NULL) {
6738 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6739 		un->un_direct_priority_timeid = NULL;
6740 		mutex_exit(SD_MUTEX(un));
6741 		(void) untimeout(temp_id);
6742 		mutex_enter(SD_MUTEX(un));
6743 	}
6744 
6745 	if (un->un_f_is_fibre == TRUE) {
6746 		/*
6747 		 * Remove callbacks for insert and remove events
6748 		 */
6749 		if (un->un_insert_event != NULL) {
6750 			mutex_exit(SD_MUTEX(un));
6751 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6752 			mutex_enter(SD_MUTEX(un));
6753 			un->un_insert_event = NULL;
6754 		}
6755 
6756 		if (un->un_remove_event != NULL) {
6757 			mutex_exit(SD_MUTEX(un));
6758 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6759 			mutex_enter(SD_MUTEX(un));
6760 			un->un_remove_event = NULL;
6761 		}
6762 	}
6763 
6764 	mutex_exit(SD_MUTEX(un));
6765 
6766 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6767 
6768 	return (DDI_SUCCESS);
6769 }
6770 
6771 
6772 /*
6773  *    Function: sd_ddi_pm_suspend
6774  *
6775  * Description: Set the drive state to low power.
6776  *		Someone else is required to actually change the drive
6777  *		power level.
6778  *
6779  *   Arguments: un - driver soft state (unit) structure
6780  *
6781  * Return Code: DDI_FAILURE or DDI_SUCCESS
6782  *
6783  *     Context: Kernel thread context
6784  */
6785 
6786 static int
6787 sd_ddi_pm_suspend(struct sd_lun *un)
6788 {
6789 	ASSERT(un != NULL);
6790 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6791 
6792 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6793 	mutex_enter(SD_MUTEX(un));
6794 
6795 	/*
6796 	 * Exit if power management is not enabled for this device, or if
6797 	 * the device is being used by HA.
6798 	 */
6799 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6800 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6801 		mutex_exit(SD_MUTEX(un));
6802 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6803 		return (DDI_SUCCESS);
6804 	}
6805 
6806 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6807 	    un->un_ncmds_in_driver);
6808 
6809 	/*
6810 	 * See if the device is not busy, ie.:
6811 	 *    - we have no commands in the driver for this device
6812 	 *    - not waiting for resources
6813 	 */
6814 	if ((un->un_ncmds_in_driver == 0) &&
6815 	    (un->un_state != SD_STATE_RWAIT)) {
6816 		/*
6817 		 * The device is not busy, so it is OK to go to low power state.
6818 		 * Indicate low power, but rely on someone else to actually
6819 		 * change it.
6820 		 */
6821 		mutex_enter(&un->un_pm_mutex);
6822 		un->un_pm_count = -1;
6823 		mutex_exit(&un->un_pm_mutex);
6824 		un->un_power_level = SD_SPINDLE_OFF;
6825 	}
6826 
6827 	mutex_exit(SD_MUTEX(un));
6828 
6829 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6830 
6831 	return (DDI_SUCCESS);
6832 }
6833 
6834 
6835 /*
6836  *    Function: sd_ddi_resume
6837  *
6838  * Description: Performs system power-up operations..
6839  *
6840  * Return Code: DDI_SUCCESS
6841  *		DDI_FAILURE
6842  *
6843  *     Context: Kernel thread context
6844  */
6845 
6846 static int
6847 sd_ddi_resume(dev_info_t *devi)
6848 {
6849 	struct	sd_lun	*un;
6850 
6851 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6852 	if (un == NULL) {
6853 		return (DDI_FAILURE);
6854 	}
6855 
6856 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6857 
6858 	mutex_enter(SD_MUTEX(un));
6859 	Restore_state(un);
6860 
6861 	/*
6862 	 * Restore the state which was saved to give the
6863 	 * the right state in un_last_state
6864 	 */
6865 	un->un_last_state = un->un_save_state;
6866 	/*
6867 	 * Note: throttle comes back at full.
6868 	 * Also note: this MUST be done before calling pm_raise_power
6869 	 * otherwise the system can get hung in biowait. The scenario where
6870 	 * this'll happen is under cpr suspend. Writing of the system
6871 	 * state goes through sddump, which writes 0 to un_throttle. If
6872 	 * writing the system state then fails, example if the partition is
6873 	 * too small, then cpr attempts a resume. If throttle isn't restored
6874 	 * from the saved value until after calling pm_raise_power then
6875 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6876 	 * in biowait.
6877 	 */
6878 	un->un_throttle = un->un_saved_throttle;
6879 
6880 	/*
6881 	 * The chance of failure is very rare as the only command done in power
6882 	 * entry point is START command when you transition from 0->1 or
6883 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6884 	 * which suspend was done. Ignore the return value as the resume should
6885 	 * not be failed. In the case of removable media the media need not be
6886 	 * inserted and hence there is a chance that raise power will fail with
6887 	 * media not present.
6888 	 */
6889 	if (!ISREMOVABLE(un)) {
6890 		mutex_exit(SD_MUTEX(un));
6891 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6892 		mutex_enter(SD_MUTEX(un));
6893 	}
6894 
6895 	/*
6896 	 * Don't broadcast to the suspend cv and therefore possibly
6897 	 * start I/O until after power has been restored.
6898 	 */
6899 	cv_broadcast(&un->un_suspend_cv);
6900 	cv_broadcast(&un->un_state_cv);
6901 
6902 	/* restart thread */
6903 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6904 		scsi_watch_resume(un->un_swr_token);
6905 	}
6906 
6907 #if (defined(__fibre))
6908 	if (un->un_f_is_fibre == TRUE) {
6909 		/*
6910 		 * Add callbacks for insert and remove events
6911 		 */
6912 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6913 			sd_init_event_callbacks(un);
6914 		}
6915 	}
6916 #endif
6917 
6918 	/*
6919 	 * Transport any pending commands to the target.
6920 	 *
6921 	 * If this is a low-activity device commands in queue will have to wait
6922 	 * until new commands come in, which may take awhile. Also, we
6923 	 * specifically don't check un_ncmds_in_transport because we know that
6924 	 * there really are no commands in progress after the unit was
6925 	 * suspended and we could have reached the throttle level, been
6926 	 * suspended, and have no new commands coming in for awhile. Highly
6927 	 * unlikely, but so is the low-activity disk scenario.
6928 	 */
6929 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6930 
6931 	sd_start_cmds(un, NULL);
6932 	mutex_exit(SD_MUTEX(un));
6933 
6934 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6935 
6936 	return (DDI_SUCCESS);
6937 }
6938 
6939 
6940 /*
6941  *    Function: sd_ddi_pm_resume
6942  *
6943  * Description: Set the drive state to powered on.
6944  *		Someone else is required to actually change the drive
6945  *		power level.
6946  *
6947  *   Arguments: un - driver soft state (unit) structure
6948  *
6949  * Return Code: DDI_SUCCESS
6950  *
6951  *     Context: Kernel thread context
6952  */
6953 
6954 static int
6955 sd_ddi_pm_resume(struct sd_lun *un)
6956 {
6957 	ASSERT(un != NULL);
6958 
6959 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6960 	mutex_enter(SD_MUTEX(un));
6961 	un->un_power_level = SD_SPINDLE_ON;
6962 
6963 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6964 	mutex_enter(&un->un_pm_mutex);
6965 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6966 		un->un_pm_count++;
6967 		ASSERT(un->un_pm_count == 0);
6968 		/*
6969 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6970 		 * un_suspend_cv is for a system resume, not a power management
6971 		 * device resume. (4297749)
6972 		 *	 cv_broadcast(&un->un_suspend_cv);
6973 		 */
6974 	}
6975 	mutex_exit(&un->un_pm_mutex);
6976 	mutex_exit(SD_MUTEX(un));
6977 
6978 	return (DDI_SUCCESS);
6979 }
6980 
6981 
6982 /*
6983  *    Function: sd_pm_idletimeout_handler
6984  *
6985  * Description: A timer routine that's active only while a device is busy.
6986  *		The purpose is to extend slightly the pm framework's busy
6987  *		view of the device to prevent busy/idle thrashing for
6988  *		back-to-back commands. Do this by comparing the current time
6989  *		to the time at which the last command completed and when the
6990  *		difference is greater than sd_pm_idletime, call
6991  *		pm_idle_component. In addition to indicating idle to the pm
6992  *		framework, update the chain type to again use the internal pm
6993  *		layers of the driver.
6994  *
6995  *   Arguments: arg - driver soft state (unit) structure
6996  *
6997  *     Context: Executes in a timeout(9F) thread context
6998  */
6999 
7000 static void
7001 sd_pm_idletimeout_handler(void *arg)
7002 {
7003 	struct sd_lun *un = arg;
7004 
7005 	time_t	now;
7006 
7007 	mutex_enter(&sd_detach_mutex);
7008 	if (un->un_detach_count != 0) {
7009 		/* Abort if the instance is detaching */
7010 		mutex_exit(&sd_detach_mutex);
7011 		return;
7012 	}
7013 	mutex_exit(&sd_detach_mutex);
7014 
7015 	now = ddi_get_time();
7016 	/*
7017 	 * Grab both mutexes, in the proper order, since we're accessing
7018 	 * both PM and softstate variables.
7019 	 */
7020 	mutex_enter(SD_MUTEX(un));
7021 	mutex_enter(&un->un_pm_mutex);
7022 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7023 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7024 		/*
7025 		 * Update the chain types.
7026 		 * This takes affect on the next new command received.
7027 		 */
7028 		if (ISREMOVABLE(un)) {
7029 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7030 		} else {
7031 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7032 		}
7033 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7034 
7035 		SD_TRACE(SD_LOG_IO_PM, un,
7036 		    "sd_pm_idletimeout_handler: idling device\n");
7037 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7038 		un->un_pm_idle_timeid = NULL;
7039 	} else {
7040 		un->un_pm_idle_timeid =
7041 			timeout(sd_pm_idletimeout_handler, un,
7042 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7043 	}
7044 	mutex_exit(&un->un_pm_mutex);
7045 	mutex_exit(SD_MUTEX(un));
7046 }
7047 
7048 
7049 /*
7050  *    Function: sd_pm_timeout_handler
7051  *
7052  * Description: Callback to tell framework we are idle.
7053  *
7054  *     Context: timeout(9f) thread context.
7055  */
7056 
7057 static void
7058 sd_pm_timeout_handler(void *arg)
7059 {
7060 	struct sd_lun *un = arg;
7061 
7062 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7063 	mutex_enter(&un->un_pm_mutex);
7064 	un->un_pm_timeid = NULL;
7065 	mutex_exit(&un->un_pm_mutex);
7066 }
7067 
7068 
7069 /*
7070  *    Function: sdpower
7071  *
7072  * Description: PM entry point.
7073  *
7074  * Return Code: DDI_SUCCESS
7075  *		DDI_FAILURE
7076  *
7077  *     Context: Kernel thread context
7078  */
7079 
7080 static int
7081 sdpower(dev_info_t *devi, int component, int level)
7082 {
7083 	struct sd_lun	*un;
7084 	int		instance;
7085 	int		rval = DDI_SUCCESS;
7086 	uint_t		i, log_page_size, maxcycles, ncycles;
7087 	uchar_t		*log_page_data;
7088 	int		log_sense_page;
7089 	int		medium_present;
7090 	time_t		intvlp;
7091 	dev_t		dev;
7092 	struct pm_trans_data	sd_pm_tran_data;
7093 	uchar_t		save_state;
7094 	int		sval;
7095 	uchar_t		state_before_pm;
7096 	int		got_semaphore_here;
7097 
7098 	instance = ddi_get_instance(devi);
7099 
7100 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7101 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7102 	    component != 0) {
7103 		return (DDI_FAILURE);
7104 	}
7105 
7106 	dev = sd_make_device(SD_DEVINFO(un));
7107 
7108 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7109 
7110 	/*
7111 	 * Must synchronize power down with close.
7112 	 * Attempt to decrement/acquire the open/close semaphore,
7113 	 * but do NOT wait on it. If it's not greater than zero,
7114 	 * ie. it can't be decremented without waiting, then
7115 	 * someone else, either open or close, already has it
7116 	 * and the try returns 0. Use that knowledge here to determine
7117 	 * if it's OK to change the device power level.
7118 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7119 	 * here.
7120 	 */
7121 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7122 
7123 	mutex_enter(SD_MUTEX(un));
7124 
7125 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7126 	    un->un_ncmds_in_driver);
7127 
7128 	/*
7129 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7130 	 * already being processed in the driver, or if the semaphore was
7131 	 * not gotten here it indicates an open or close is being processed.
7132 	 * At the same time somebody is requesting to go low power which
7133 	 * can't happen, therefore we need to return failure.
7134 	 */
7135 	if ((level == SD_SPINDLE_OFF) &&
7136 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7137 		mutex_exit(SD_MUTEX(un));
7138 
7139 		if (got_semaphore_here != 0) {
7140 			sema_v(&un->un_semoclose);
7141 		}
7142 		SD_TRACE(SD_LOG_IO_PM, un,
7143 		    "sdpower: exit, device has queued cmds.\n");
7144 		return (DDI_FAILURE);
7145 	}
7146 
7147 	/*
7148 	 * if it is OFFLINE that means the disk is completely dead
7149 	 * in our case we have to put the disk in on or off by sending commands
7150 	 * Of course that will fail anyway so return back here.
7151 	 *
7152 	 * Power changes to a device that's OFFLINE or SUSPENDED
7153 	 * are not allowed.
7154 	 */
7155 	if ((un->un_state == SD_STATE_OFFLINE) ||
7156 	    (un->un_state == SD_STATE_SUSPENDED)) {
7157 		mutex_exit(SD_MUTEX(un));
7158 
7159 		if (got_semaphore_here != 0) {
7160 			sema_v(&un->un_semoclose);
7161 		}
7162 		SD_TRACE(SD_LOG_IO_PM, un,
7163 		    "sdpower: exit, device is off-line.\n");
7164 		return (DDI_FAILURE);
7165 	}
7166 
7167 	/*
7168 	 * Change the device's state to indicate it's power level
7169 	 * is being changed. Do this to prevent a power off in the
7170 	 * middle of commands, which is especially bad on devices
7171 	 * that are really powered off instead of just spun down.
7172 	 */
7173 	state_before_pm = un->un_state;
7174 	un->un_state = SD_STATE_PM_CHANGING;
7175 
7176 	mutex_exit(SD_MUTEX(un));
7177 
7178 	/*
7179 	 * Bypass checking the log sense information for removables
7180 	 * and devices for which the HBA set the pm-capable property.
7181 	 * If un->un_pm_capable_prop is SD_PM_CAPABLE_UNDEFINED (-1)
7182 	 * then the HBA did not create the property.
7183 	 */
7184 	if ((level == SD_SPINDLE_OFF) && (!ISREMOVABLE(un)) &&
7185 	    un->un_pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
7186 		/*
7187 		 * Get the log sense information to understand whether the
7188 		 * the powercycle counts have gone beyond the threshhold.
7189 		 */
7190 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7191 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7192 
7193 		mutex_enter(SD_MUTEX(un));
7194 		log_sense_page = un->un_start_stop_cycle_page;
7195 		mutex_exit(SD_MUTEX(un));
7196 
7197 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7198 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7199 #ifdef	SDDEBUG
7200 		if (sd_force_pm_supported) {
7201 			/* Force a successful result */
7202 			rval = 0;
7203 		}
7204 #endif
7205 		if (rval != 0) {
7206 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7207 			    "Log Sense Failed\n");
7208 			kmem_free(log_page_data, log_page_size);
7209 			/* Cannot support power management on those drives */
7210 
7211 			if (got_semaphore_here != 0) {
7212 				sema_v(&un->un_semoclose);
7213 			}
7214 			/*
7215 			 * On exit put the state back to it's original value
7216 			 * and broadcast to anyone waiting for the power
7217 			 * change completion.
7218 			 */
7219 			mutex_enter(SD_MUTEX(un));
7220 			un->un_state = state_before_pm;
7221 			cv_broadcast(&un->un_suspend_cv);
7222 			mutex_exit(SD_MUTEX(un));
7223 			SD_TRACE(SD_LOG_IO_PM, un,
7224 			    "sdpower: exit, Log Sense Failed.\n");
7225 			return (DDI_FAILURE);
7226 		}
7227 
7228 		/*
7229 		 * From the page data - Convert the essential information to
7230 		 * pm_trans_data
7231 		 */
7232 		maxcycles =
7233 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7234 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7235 
7236 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7237 
7238 		ncycles =
7239 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7240 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7241 
7242 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7243 
7244 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7245 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7246 			    log_page_data[8+i];
7247 		}
7248 
7249 		kmem_free(log_page_data, log_page_size);
7250 
7251 		/*
7252 		 * Call pm_trans_check routine to get the Ok from
7253 		 * the global policy
7254 		 */
7255 
7256 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7257 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7258 
7259 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7260 #ifdef	SDDEBUG
7261 		if (sd_force_pm_supported) {
7262 			/* Force a successful result */
7263 			rval = 1;
7264 		}
7265 #endif
7266 		switch (rval) {
7267 		case 0:
7268 			/*
7269 			 * Not Ok to Power cycle or error in parameters passed
7270 			 * Would have given the advised time to consider power
7271 			 * cycle. Based on the new intvlp parameter we are
7272 			 * supposed to pretend we are busy so that pm framework
7273 			 * will never call our power entry point. Because of
7274 			 * that install a timeout handler and wait for the
7275 			 * recommended time to elapse so that power management
7276 			 * can be effective again.
7277 			 *
7278 			 * To effect this behavior, call pm_busy_component to
7279 			 * indicate to the framework this device is busy.
7280 			 * By not adjusting un_pm_count the rest of PM in
7281 			 * the driver will function normally, and independant
7282 			 * of this but because the framework is told the device
7283 			 * is busy it won't attempt powering down until it gets
7284 			 * a matching idle. The timeout handler sends this.
7285 			 * Note: sd_pm_entry can't be called here to do this
7286 			 * because sdpower may have been called as a result
7287 			 * of a call to pm_raise_power from within sd_pm_entry.
7288 			 *
7289 			 * If a timeout handler is already active then
7290 			 * don't install another.
7291 			 */
7292 			mutex_enter(&un->un_pm_mutex);
7293 			if (un->un_pm_timeid == NULL) {
7294 				un->un_pm_timeid =
7295 				    timeout(sd_pm_timeout_handler,
7296 				    un, intvlp * drv_usectohz(1000000));
7297 				mutex_exit(&un->un_pm_mutex);
7298 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7299 			} else {
7300 				mutex_exit(&un->un_pm_mutex);
7301 			}
7302 			if (got_semaphore_here != 0) {
7303 				sema_v(&un->un_semoclose);
7304 			}
7305 			/*
7306 			 * On exit put the state back to it's original value
7307 			 * and broadcast to anyone waiting for the power
7308 			 * change completion.
7309 			 */
7310 			mutex_enter(SD_MUTEX(un));
7311 			un->un_state = state_before_pm;
7312 			cv_broadcast(&un->un_suspend_cv);
7313 			mutex_exit(SD_MUTEX(un));
7314 
7315 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7316 			    "trans check Failed, not ok to power cycle.\n");
7317 			return (DDI_FAILURE);
7318 
7319 		case -1:
7320 			if (got_semaphore_here != 0) {
7321 				sema_v(&un->un_semoclose);
7322 			}
7323 			/*
7324 			 * On exit put the state back to it's original value
7325 			 * and broadcast to anyone waiting for the power
7326 			 * change completion.
7327 			 */
7328 			mutex_enter(SD_MUTEX(un));
7329 			un->un_state = state_before_pm;
7330 			cv_broadcast(&un->un_suspend_cv);
7331 			mutex_exit(SD_MUTEX(un));
7332 			SD_TRACE(SD_LOG_IO_PM, un,
7333 			    "sdpower: exit, trans check command Failed.\n");
7334 			return (DDI_FAILURE);
7335 		}
7336 	}
7337 
7338 	if (level == SD_SPINDLE_OFF) {
7339 		/*
7340 		 * Save the last state... if the STOP FAILS we need it
7341 		 * for restoring
7342 		 */
7343 		mutex_enter(SD_MUTEX(un));
7344 		save_state = un->un_last_state;
7345 		/*
7346 		 * There must not be any cmds. getting processed
7347 		 * in the driver when we get here. Power to the
7348 		 * device is potentially going off.
7349 		 */
7350 		ASSERT(un->un_ncmds_in_driver == 0);
7351 		mutex_exit(SD_MUTEX(un));
7352 
7353 		/*
7354 		 * For now suspend the device completely before spindle is
7355 		 * turned off
7356 		 */
7357 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7358 			if (got_semaphore_here != 0) {
7359 				sema_v(&un->un_semoclose);
7360 			}
7361 			/*
7362 			 * On exit put the state back to it's original value
7363 			 * and broadcast to anyone waiting for the power
7364 			 * change completion.
7365 			 */
7366 			mutex_enter(SD_MUTEX(un));
7367 			un->un_state = state_before_pm;
7368 			cv_broadcast(&un->un_suspend_cv);
7369 			mutex_exit(SD_MUTEX(un));
7370 			SD_TRACE(SD_LOG_IO_PM, un,
7371 			    "sdpower: exit, PM suspend Failed.\n");
7372 			return (DDI_FAILURE);
7373 		}
7374 	}
7375 
7376 	/*
7377 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7378 	 * close, or strategy. Dump no long uses this routine, it uses it's
7379 	 * own code so it can be done in polled mode.
7380 	 */
7381 
7382 	medium_present = TRUE;
7383 
7384 	/*
7385 	 * When powering up, issue a TUR in case the device is at unit
7386 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7387 	 * a deadlock on un_pm_busy_cv will occur.
7388 	 */
7389 	if (level == SD_SPINDLE_ON) {
7390 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7391 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7392 	}
7393 
7394 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7395 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7396 
7397 	sval = sd_send_scsi_START_STOP_UNIT(un,
7398 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7399 	    SD_PATH_DIRECT);
7400 	/* Command failed, check for media present. */
7401 	if ((sval == ENXIO) && ISREMOVABLE(un)) {
7402 		medium_present = FALSE;
7403 	}
7404 
7405 	/*
7406 	 * The conditions of interest here are:
7407 	 *   if a spindle off with media present fails,
7408 	 *	then restore the state and return an error.
7409 	 *   else if a spindle on fails,
7410 	 *	then return an error (there's no state to restore).
7411 	 * In all other cases we setup for the new state
7412 	 * and return success.
7413 	 */
7414 	switch (level) {
7415 	case SD_SPINDLE_OFF:
7416 		if ((medium_present == TRUE) && (sval != 0)) {
7417 			/* The stop command from above failed */
7418 			rval = DDI_FAILURE;
7419 			/*
7420 			 * The stop command failed, and we have media
7421 			 * present. Put the level back by calling the
7422 			 * sd_pm_resume() and set the state back to
7423 			 * it's previous value.
7424 			 */
7425 			(void) sd_ddi_pm_resume(un);
7426 			mutex_enter(SD_MUTEX(un));
7427 			un->un_last_state = save_state;
7428 			mutex_exit(SD_MUTEX(un));
7429 			break;
7430 		}
7431 		/*
7432 		 * The stop command from above succeeded.
7433 		 */
7434 		if (ISREMOVABLE(un)) {
7435 			/*
7436 			 * Terminate watch thread in case of removable media
7437 			 * devices going into low power state. This is as per
7438 			 * the requirements of pm framework, otherwise commands
7439 			 * will be generated for the device (through watch
7440 			 * thread), even when the device is in low power state.
7441 			 */
7442 			mutex_enter(SD_MUTEX(un));
7443 			un->un_f_watcht_stopped = FALSE;
7444 			if (un->un_swr_token != NULL) {
7445 				opaque_t temp_token = un->un_swr_token;
7446 				un->un_f_watcht_stopped = TRUE;
7447 				un->un_swr_token = NULL;
7448 				mutex_exit(SD_MUTEX(un));
7449 				(void) scsi_watch_request_terminate(temp_token,
7450 				    SCSI_WATCH_TERMINATE_WAIT);
7451 			} else {
7452 				mutex_exit(SD_MUTEX(un));
7453 			}
7454 		}
7455 		break;
7456 
7457 	default:	/* The level requested is spindle on... */
7458 		/*
7459 		 * Legacy behavior: return success on a failed spinup
7460 		 * if there is no media in the drive.
7461 		 * Do this by looking at medium_present here.
7462 		 */
7463 		if ((sval != 0) && medium_present) {
7464 			/* The start command from above failed */
7465 			rval = DDI_FAILURE;
7466 			break;
7467 		}
7468 		/*
7469 		 * The start command from above succeeded
7470 		 * Resume the devices now that we have
7471 		 * started the disks
7472 		 */
7473 		(void) sd_ddi_pm_resume(un);
7474 
7475 		/*
7476 		 * Resume the watch thread since it was suspended
7477 		 * when the device went into low power mode.
7478 		 */
7479 		if (ISREMOVABLE(un)) {
7480 			mutex_enter(SD_MUTEX(un));
7481 			if (un->un_f_watcht_stopped == TRUE) {
7482 				opaque_t temp_token;
7483 
7484 				un->un_f_watcht_stopped = FALSE;
7485 				mutex_exit(SD_MUTEX(un));
7486 				temp_token = scsi_watch_request_submit(
7487 				    SD_SCSI_DEVP(un),
7488 				    sd_check_media_time,
7489 				    SENSE_LENGTH, sd_media_watch_cb,
7490 				    (caddr_t)dev);
7491 				mutex_enter(SD_MUTEX(un));
7492 				un->un_swr_token = temp_token;
7493 			}
7494 			mutex_exit(SD_MUTEX(un));
7495 		}
7496 	}
7497 	if (got_semaphore_here != 0) {
7498 		sema_v(&un->un_semoclose);
7499 	}
7500 	/*
7501 	 * On exit put the state back to it's original value
7502 	 * and broadcast to anyone waiting for the power
7503 	 * change completion.
7504 	 */
7505 	mutex_enter(SD_MUTEX(un));
7506 	un->un_state = state_before_pm;
7507 	cv_broadcast(&un->un_suspend_cv);
7508 	mutex_exit(SD_MUTEX(un));
7509 
7510 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7511 
7512 	return (rval);
7513 }
7514 
7515 
7516 
7517 /*
7518  *    Function: sdattach
7519  *
7520  * Description: Driver's attach(9e) entry point function.
7521  *
7522  *   Arguments: devi - opaque device info handle
7523  *		cmd  - attach  type
7524  *
7525  * Return Code: DDI_SUCCESS
7526  *		DDI_FAILURE
7527  *
7528  *     Context: Kernel thread context
7529  */
7530 
7531 static int
7532 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7533 {
7534 	switch (cmd) {
7535 	case DDI_ATTACH:
7536 		return (sd_unit_attach(devi));
7537 	case DDI_RESUME:
7538 		return (sd_ddi_resume(devi));
7539 	default:
7540 		break;
7541 	}
7542 	return (DDI_FAILURE);
7543 }
7544 
7545 
7546 /*
7547  *    Function: sddetach
7548  *
7549  * Description: Driver's detach(9E) entry point function.
7550  *
7551  *   Arguments: devi - opaque device info handle
7552  *		cmd  - detach  type
7553  *
7554  * Return Code: DDI_SUCCESS
7555  *		DDI_FAILURE
7556  *
7557  *     Context: Kernel thread context
7558  */
7559 
7560 static int
7561 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7562 {
7563 	switch (cmd) {
7564 	case DDI_DETACH:
7565 		return (sd_unit_detach(devi));
7566 	case DDI_SUSPEND:
7567 		return (sd_ddi_suspend(devi));
7568 	default:
7569 		break;
7570 	}
7571 	return (DDI_FAILURE);
7572 }
7573 
7574 
7575 /*
7576  *     Function: sd_sync_with_callback
7577  *
7578  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7579  *		 state while the callback routine is active.
7580  *
7581  *    Arguments: un: softstate structure for the instance
7582  *
7583  *	Context: Kernel thread context
7584  */
7585 
7586 static void
7587 sd_sync_with_callback(struct sd_lun *un)
7588 {
7589 	ASSERT(un != NULL);
7590 
7591 	mutex_enter(SD_MUTEX(un));
7592 
7593 	ASSERT(un->un_in_callback >= 0);
7594 
7595 	while (un->un_in_callback > 0) {
7596 		mutex_exit(SD_MUTEX(un));
7597 		delay(2);
7598 		mutex_enter(SD_MUTEX(un));
7599 	}
7600 
7601 	mutex_exit(SD_MUTEX(un));
7602 }
7603 
7604 /*
7605  *    Function: sd_unit_attach
7606  *
7607  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7608  *		the soft state structure for the device and performs
7609  *		all necessary structure and device initializations.
7610  *
7611  *   Arguments: devi: the system's dev_info_t for the device.
7612  *
7613  * Return Code: DDI_SUCCESS if attach is successful.
7614  *		DDI_FAILURE if any part of the attach fails.
7615  *
7616  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7617  *		Kernel thread context only.  Can sleep.
7618  */
7619 
7620 static int
7621 sd_unit_attach(dev_info_t *devi)
7622 {
7623 	struct	scsi_device	*devp;
7624 	struct	sd_lun		*un;
7625 	char			*variantp;
7626 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7627 	int	instance;
7628 	int	rval;
7629 	uint64_t	capacity;
7630 	uint_t		lbasize;
7631 
7632 	/*
7633 	 * Retrieve the target driver's private data area. This was set
7634 	 * up by the HBA.
7635 	 */
7636 	devp = ddi_get_driver_private(devi);
7637 
7638 	/*
7639 	 * Since we have no idea what state things were left in by the last
7640 	 * user of the device, set up some 'default' settings, ie. turn 'em
7641 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7642 	 * Do this before the scsi_probe, which sends an inquiry.
7643 	 * This is a fix for bug (4430280).
7644 	 * Of special importance is wide-xfer. The drive could have been left
7645 	 * in wide transfer mode by the last driver to communicate with it,
7646 	 * this includes us. If that's the case, and if the following is not
7647 	 * setup properly or we don't re-negotiate with the drive prior to
7648 	 * transferring data to/from the drive, it causes bus parity errors,
7649 	 * data overruns, and unexpected interrupts. This first occurred when
7650 	 * the fix for bug (4378686) was made.
7651 	 */
7652 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7653 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7654 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7655 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7656 
7657 	/*
7658 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7659 	 * This call will allocate and fill in the scsi_inquiry structure
7660 	 * and point the sd_inq member of the scsi_device structure to it.
7661 	 * If the attach succeeds, then this memory will not be de-allocated
7662 	 * (via scsi_unprobe()) until the instance is detached.
7663 	 */
7664 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7665 		goto probe_failed;
7666 	}
7667 
7668 	/*
7669 	 * Check the device type as specified in the inquiry data and
7670 	 * claim it if it is of a type that we support.
7671 	 */
7672 	switch (devp->sd_inq->inq_dtype) {
7673 	case DTYPE_DIRECT:
7674 		break;
7675 	case DTYPE_RODIRECT:
7676 		break;
7677 	case DTYPE_OPTICAL:
7678 		break;
7679 	case DTYPE_NOTPRESENT:
7680 	default:
7681 		/* Unsupported device type; fail the attach. */
7682 		goto probe_failed;
7683 	}
7684 
7685 	/*
7686 	 * Allocate the soft state structure for this unit.
7687 	 *
7688 	 * We rely upon this memory being set to all zeroes by
7689 	 * ddi_soft_state_zalloc().  We assume that any member of the
7690 	 * soft state structure that is not explicitly initialized by
7691 	 * this routine will have a value of zero.
7692 	 */
7693 	instance = ddi_get_instance(devp->sd_dev);
7694 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7695 		goto probe_failed;
7696 	}
7697 
7698 	/*
7699 	 * Retrieve a pointer to the newly-allocated soft state.
7700 	 *
7701 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7702 	 * was successful, unless something has gone horribly wrong and the
7703 	 * ddi's soft state internals are corrupt (in which case it is
7704 	 * probably better to halt here than just fail the attach....)
7705 	 */
7706 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7707 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7708 		    instance);
7709 		/*NOTREACHED*/
7710 	}
7711 
7712 	/*
7713 	 * Link the back ptr of the driver soft state to the scsi_device
7714 	 * struct for this lun.
7715 	 * Save a pointer to the softstate in the driver-private area of
7716 	 * the scsi_device struct.
7717 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7718 	 * we first set un->un_sd below.
7719 	 */
7720 	un->un_sd = devp;
7721 	devp->sd_private = (opaque_t)un;
7722 
7723 	/*
7724 	 * The following must be after devp is stored in the soft state struct.
7725 	 */
7726 #ifdef SDDEBUG
7727 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7728 	    "%s_unit_attach: un:0x%p instance:%d\n",
7729 	    ddi_driver_name(devi), un, instance);
7730 #endif
7731 
7732 	/*
7733 	 * Set up the device type and node type (for the minor nodes).
7734 	 * By default we assume that the device can at least support the
7735 	 * Common Command Set. Call it a CD-ROM if it reports itself
7736 	 * as a RODIRECT device.
7737 	 */
7738 	switch (devp->sd_inq->inq_dtype) {
7739 	case DTYPE_RODIRECT:
7740 		un->un_node_type = DDI_NT_CD_CHAN;
7741 		un->un_ctype	 = CTYPE_CDROM;
7742 		break;
7743 	case DTYPE_OPTICAL:
7744 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7745 		un->un_ctype	 = CTYPE_ROD;
7746 		break;
7747 	default:
7748 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7749 		un->un_ctype	 = CTYPE_CCS;
7750 		break;
7751 	}
7752 
7753 	/*
7754 	 * Try to read the interconnect type from the HBA.
7755 	 *
7756 	 * Note: This driver is currently compiled as two binaries, a parallel
7757 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7758 	 * differences are determined at compile time. In the future a single
7759 	 * binary will be provided and the inteconnect type will be used to
7760 	 * differentiate between fibre and parallel scsi behaviors. At that time
7761 	 * it will be necessary for all fibre channel HBAs to support this
7762 	 * property.
7763 	 *
7764 	 * set un_f_is_fiber to TRUE ( default fiber )
7765 	 */
7766 	un->un_f_is_fibre = TRUE;
7767 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7768 	case INTERCONNECT_SSA:
7769 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7770 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7771 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7772 		break;
7773 	case INTERCONNECT_PARALLEL:
7774 		un->un_f_is_fibre = FALSE;
7775 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7776 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7777 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7778 		break;
7779 	case INTERCONNECT_FIBRE:
7780 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7781 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7782 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7783 		break;
7784 	case INTERCONNECT_FABRIC:
7785 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7786 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7787 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7788 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7789 		break;
7790 	default:
7791 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7792 		/*
7793 		 * The HBA does not support the "interconnect-type" property
7794 		 * (or did not provide a recognized type).
7795 		 *
7796 		 * Note: This will be obsoleted when a single fibre channel
7797 		 * and parallel scsi driver is delivered. In the meantime the
7798 		 * interconnect type will be set to the platform default.If that
7799 		 * type is not parallel SCSI, it means that we should be
7800 		 * assuming "ssd" semantics. However, here this also means that
7801 		 * the FC HBA is not supporting the "interconnect-type" property
7802 		 * like we expect it to, so log this occurrence.
7803 		 */
7804 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7805 		if (!SD_IS_PARALLEL_SCSI(un)) {
7806 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7807 			    "sd_unit_attach: un:0x%p Assuming "
7808 			    "INTERCONNECT_FIBRE\n", un);
7809 		} else {
7810 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7811 			    "sd_unit_attach: un:0x%p Assuming "
7812 			    "INTERCONNECT_PARALLEL\n", un);
7813 			un->un_f_is_fibre = FALSE;
7814 		}
7815 #else
7816 		/*
7817 		 * Note: This source will be implemented when a single fibre
7818 		 * channel and parallel scsi driver is delivered. The default
7819 		 * will be to assume that if a device does not support the
7820 		 * "interconnect-type" property it is a parallel SCSI HBA and
7821 		 * we will set the interconnect type for parallel scsi.
7822 		 */
7823 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7824 		un->un_f_is_fibre = FALSE;
7825 #endif
7826 		break;
7827 	}
7828 
7829 	if (un->un_f_is_fibre == TRUE) {
7830 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7831 			SCSI_VERSION_3) {
7832 			switch (un->un_interconnect_type) {
7833 			case SD_INTERCONNECT_FIBRE:
7834 			case SD_INTERCONNECT_SSA:
7835 				un->un_node_type = DDI_NT_BLOCK_WWN;
7836 				break;
7837 			default:
7838 				break;
7839 			}
7840 		}
7841 	}
7842 
7843 	/*
7844 	 * Initialize the Request Sense command for the target
7845 	 */
7846 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7847 		goto alloc_rqs_failed;
7848 	}
7849 
7850 	/*
7851 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7852 	 * with seperate binary for sd and ssd.
7853 	 *
7854 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7855 	 * The hardcoded values will go away when Sparc uses 1 binary
7856 	 * for sd and ssd.  This hardcoded values need to match
7857 	 * SD_RETRY_COUNT in sddef.h
7858 	 * The value used is base on interconnect type.
7859 	 * fibre = 3, parallel = 5
7860 	 */
7861 #if defined(__i386) || defined(__amd64)
7862 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7863 #else
7864 	un->un_retry_count = SD_RETRY_COUNT;
7865 #endif
7866 
7867 	/*
7868 	 * Set the per disk retry count to the default number of retries
7869 	 * for disks and CDROMs. This value can be overridden by the
7870 	 * disk property list or an entry in sd.conf.
7871 	 */
7872 	un->un_notready_retry_count =
7873 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7874 			: DISK_NOT_READY_RETRY_COUNT(un);
7875 
7876 	/*
7877 	 * Set the busy retry count to the default value of un_retry_count.
7878 	 * This can be overridden by entries in sd.conf or the device
7879 	 * config table.
7880 	 */
7881 	un->un_busy_retry_count = un->un_retry_count;
7882 
7883 	/*
7884 	 * Init the reset threshold for retries.  This number determines
7885 	 * how many retries must be performed before a reset can be issued
7886 	 * (for certain error conditions). This can be overridden by entries
7887 	 * in sd.conf or the device config table.
7888 	 */
7889 	un->un_reset_retry_count = (un->un_retry_count / 2);
7890 
7891 	/*
7892 	 * Set the victim_retry_count to the default un_retry_count
7893 	 */
7894 	un->un_victim_retry_count = (2 * un->un_retry_count);
7895 
7896 	/*
7897 	 * Set the reservation release timeout to the default value of
7898 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7899 	 * device config table.
7900 	 */
7901 	un->un_reserve_release_time = 5;
7902 
7903 	/*
7904 	 * Set up the default maximum transfer size. Note that this may
7905 	 * get updated later in the attach, when setting up default wide
7906 	 * operations for disks.
7907 	 */
7908 #if defined(__i386) || defined(__amd64)
7909 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7910 #else
7911 	un->un_max_xfer_size = (uint_t)maxphys;
7912 #endif
7913 
7914 	/*
7915 	 * Get "allow bus device reset" property (defaults to "enabled" if
7916 	 * the property was not defined). This is to disable bus resets for
7917 	 * certain kinds of error recovery. Note: In the future when a run-time
7918 	 * fibre check is available the soft state flag should default to
7919 	 * enabled.
7920 	 */
7921 	if (un->un_f_is_fibre == TRUE) {
7922 		un->un_f_allow_bus_device_reset = TRUE;
7923 	} else {
7924 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7925 			"allow-bus-device-reset", 1) != 0) {
7926 			un->un_f_allow_bus_device_reset = TRUE;
7927 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7928 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7929 				un);
7930 		} else {
7931 			un->un_f_allow_bus_device_reset = FALSE;
7932 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7933 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7934 				un);
7935 		}
7936 	}
7937 
7938 	/*
7939 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7940 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7941 	 *
7942 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7943 	 * property. The new "variant" property with a value of "atapi" has been
7944 	 * introduced so that future 'variants' of standard SCSI behavior (like
7945 	 * atapi) could be specified by the underlying HBA drivers by supplying
7946 	 * a new value for the "variant" property, instead of having to define a
7947 	 * new property.
7948 	 */
7949 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7950 		un->un_f_cfg_is_atapi = TRUE;
7951 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7952 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7953 	}
7954 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7955 	    &variantp) == DDI_PROP_SUCCESS) {
7956 		if (strcmp(variantp, "atapi") == 0) {
7957 			un->un_f_cfg_is_atapi = TRUE;
7958 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7959 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7960 		}
7961 		ddi_prop_free(variantp);
7962 	}
7963 
7964 	/*
7965 	 * Assume doorlock commands are supported. If not, the first
7966 	 * call to sd_send_scsi_DOORLOCK() will set to FALSE
7967 	 */
7968 	un->un_f_doorlock_supported = TRUE;
7969 
7970 	un->un_cmd_timeout	= SD_IO_TIME;
7971 
7972 	/* Info on current states, statuses, etc. (Updated frequently) */
7973 	un->un_state		= SD_STATE_NORMAL;
7974 	un->un_last_state	= SD_STATE_NORMAL;
7975 
7976 	/* Control & status info for command throttling */
7977 	un->un_throttle		= sd_max_throttle;
7978 	un->un_saved_throttle	= sd_max_throttle;
7979 	un->un_min_throttle	= sd_min_throttle;
7980 
7981 	if (un->un_f_is_fibre == TRUE) {
7982 		un->un_f_use_adaptive_throttle = TRUE;
7983 	} else {
7984 		un->un_f_use_adaptive_throttle = FALSE;
7985 	}
7986 
7987 	/* Removable media support. */
7988 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7989 	un->un_mediastate		= DKIO_NONE;
7990 	un->un_specified_mediastate	= DKIO_NONE;
7991 
7992 	/* CVs for suspend/resume (PM or DR) */
7993 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7994 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7995 
7996 	/* Power management support. */
7997 	un->un_power_level = SD_SPINDLE_UNINIT;
7998 
7999 	/*
8000 	 * The open/close semaphore is used to serialize threads executing
8001 	 * in the driver's open & close entry point routines for a given
8002 	 * instance.
8003 	 */
8004 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8005 
8006 	/*
8007 	 * The conf file entry and softstate variable is a forceful override,
8008 	 * meaning a non-zero value must be entered to change the default.
8009 	 */
8010 	un->un_f_disksort_disabled = FALSE;
8011 
8012 	/*
8013 	 * Retrieve the properties from the static driver table or the driver
8014 	 * configuration file (.conf) for this unit and update the soft state
8015 	 * for the device as needed for the indicated properties.
8016 	 * Note: the property configuration needs to occur here as some of the
8017 	 * following routines may have dependancies on soft state flags set
8018 	 * as part of the driver property configuration.
8019 	 */
8020 	sd_read_unit_properties(un);
8021 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8022 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8023 
8024 	/*
8025 	 * By default, we mark the capacity, lbazize, and geometry
8026 	 * as invalid. Only if we successfully read a valid capacity
8027 	 * will we update the un_blockcount and un_tgt_blocksize with the
8028 	 * valid values (the geometry will be validated later).
8029 	 */
8030 	un->un_f_blockcount_is_valid	= FALSE;
8031 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8032 	un->un_f_geometry_is_valid	= FALSE;
8033 
8034 	/*
8035 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8036 	 * otherwise.
8037 	 */
8038 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8039 	un->un_blockcount = 0;
8040 
8041 	/*
8042 	 * Set up the per-instance info needed to determine the correct
8043 	 * CDBs and other info for issuing commands to the target.
8044 	 */
8045 	sd_init_cdb_limits(un);
8046 
8047 	/*
8048 	 * Set up the IO chains to use, based upon the target type.
8049 	 */
8050 	if (ISREMOVABLE(un)) {
8051 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8052 	} else {
8053 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8054 	}
8055 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8056 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8057 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8058 
8059 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8060 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8061 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8062 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8063 
8064 
8065 	if (ISCD(un)) {
8066 		un->un_additional_codes = sd_additional_codes;
8067 	} else {
8068 		un->un_additional_codes = NULL;
8069 	}
8070 
8071 	/*
8072 	 * Create the kstats here so they can be available for attach-time
8073 	 * routines that send commands to the unit (either polled or via
8074 	 * sd_send_scsi_cmd).
8075 	 *
8076 	 * Note: This is a critical sequence that needs to be maintained:
8077 	 *	1) Instantiate the kstats here, before any routines using the
8078 	 *	   iopath (i.e. sd_send_scsi_cmd).
8079 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8080 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8081 	 *	   sd_register_devid(), and sd_disable_caching().
8082 	 */
8083 
8084 	un->un_stats = kstat_create(sd_label, instance,
8085 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8086 	if (un->un_stats != NULL) {
8087 		un->un_stats->ks_lock = SD_MUTEX(un);
8088 		kstat_install(un->un_stats);
8089 	}
8090 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8091 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8092 
8093 	sd_create_errstats(un, instance);
8094 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8095 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8096 
8097 	/*
8098 	 * The following if/else code was relocated here from below as part
8099 	 * of the fix for bug (4430280). However with the default setup added
8100 	 * on entry to this routine, it's no longer absolutely necessary for
8101 	 * this to be before the call to sd_spin_up_unit.
8102 	 */
8103 	if (SD_IS_PARALLEL_SCSI(un)) {
8104 		/*
8105 		 * If SCSI-2 tagged queueing is supported by the target
8106 		 * and by the host adapter then we will enable it.
8107 		 */
8108 		un->un_tagflags = 0;
8109 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8110 		    (devp->sd_inq->inq_cmdque) &&
8111 		    (un->un_f_arq_enabled == TRUE)) {
8112 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8113 			    1, 1) == 1) {
8114 				un->un_tagflags = FLAG_STAG;
8115 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8116 				    "sd_unit_attach: un:0x%p tag queueing "
8117 				    "enabled\n", un);
8118 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8119 			    "untagged-qing", 0) == 1) {
8120 				un->un_f_opt_queueing = TRUE;
8121 				un->un_saved_throttle = un->un_throttle =
8122 				    min(un->un_throttle, 3);
8123 			} else {
8124 				un->un_f_opt_queueing = FALSE;
8125 				un->un_saved_throttle = un->un_throttle = 1;
8126 			}
8127 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8128 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8129 			/* The Host Adapter supports internal queueing. */
8130 			un->un_f_opt_queueing = TRUE;
8131 			un->un_saved_throttle = un->un_throttle =
8132 			    min(un->un_throttle, 3);
8133 		} else {
8134 			un->un_f_opt_queueing = FALSE;
8135 			un->un_saved_throttle = un->un_throttle = 1;
8136 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8137 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8138 		}
8139 
8140 
8141 		/* Setup or tear down default wide operations for disks */
8142 
8143 		/*
8144 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8145 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8146 		 * system and be set to different values. In the future this
8147 		 * code may need to be updated when the ssd module is
8148 		 * obsoleted and removed from the system. (4299588)
8149 		 */
8150 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8151 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8152 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8153 			    1, 1) == 1) {
8154 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8155 				    "sd_unit_attach: un:0x%p Wide Transfer "
8156 				    "enabled\n", un);
8157 			}
8158 
8159 			/*
8160 			 * If tagged queuing has also been enabled, then
8161 			 * enable large xfers
8162 			 */
8163 			if (un->un_saved_throttle == sd_max_throttle) {
8164 				un->un_max_xfer_size =
8165 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8166 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8167 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8168 				    "sd_unit_attach: un:0x%p max transfer "
8169 				    "size=0x%x\n", un, un->un_max_xfer_size);
8170 			}
8171 		} else {
8172 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8173 			    0, 1) == 1) {
8174 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8175 				    "sd_unit_attach: un:0x%p "
8176 				    "Wide Transfer disabled\n", un);
8177 			}
8178 		}
8179 	} else {
8180 		un->un_tagflags = FLAG_STAG;
8181 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8182 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8183 	}
8184 
8185 	/*
8186 	 * If this target supports LUN reset, try to enable it.
8187 	 */
8188 	if (un->un_f_lun_reset_enabled) {
8189 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8190 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8191 			    "un:0x%p lun_reset capability set\n", un);
8192 		} else {
8193 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8194 			    "un:0x%p lun-reset capability not set\n", un);
8195 		}
8196 	}
8197 
8198 	/*
8199 	 * At this point in the attach, we have enough info in the
8200 	 * soft state to be able to issue commands to the target.
8201 	 *
8202 	 * All command paths used below MUST issue their commands as
8203 	 * SD_PATH_DIRECT. This is important as intermediate layers
8204 	 * are not all initialized yet (such as PM).
8205 	 */
8206 
8207 	/*
8208 	 * Send a TEST UNIT READY command to the device. This should clear
8209 	 * any outstanding UNIT ATTENTION that may be present.
8210 	 *
8211 	 * Note: Don't check for success, just track if there is a reservation,
8212 	 * this is a throw away command to clear any unit attentions.
8213 	 *
8214 	 * Note: This MUST be the first command issued to the target during
8215 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8216 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8217 	 * with attempts at spinning up a device with no media.
8218 	 */
8219 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8220 		reservation_flag = SD_TARGET_IS_RESERVED;
8221 	}
8222 
8223 	/*
8224 	 * If the device is NOT a removable media device, attempt to spin
8225 	 * it up (using the START_STOP_UNIT command) and read its capacity
8226 	 * (using the READ CAPACITY command).  Note, however, that either
8227 	 * of these could fail and in some cases we would continue with
8228 	 * the attach despite the failure (see below).
8229 	 */
8230 	if (devp->sd_inq->inq_dtype == DTYPE_DIRECT && !ISREMOVABLE(un)) {
8231 		switch (sd_spin_up_unit(un)) {
8232 		case 0:
8233 			/*
8234 			 * Spin-up was successful; now try to read the
8235 			 * capacity.  If successful then save the results
8236 			 * and mark the capacity & lbasize as valid.
8237 			 */
8238 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8239 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8240 
8241 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8242 			    &lbasize, SD_PATH_DIRECT)) {
8243 			case 0: {
8244 				if (capacity > DK_MAX_BLOCKS) {
8245 #ifdef _LP64
8246 					/*
8247 					 * Enable descriptor format sense data
8248 					 * so that we can get 64 bit sense
8249 					 * data fields.
8250 					 */
8251 					sd_enable_descr_sense(un);
8252 #else
8253 					/* 32-bit kernels can't handle this */
8254 					scsi_log(SD_DEVINFO(un),
8255 					    sd_label, CE_WARN,
8256 					    "disk has %llu blocks, which "
8257 					    "is too large for a 32-bit "
8258 					    "kernel", capacity);
8259 					goto spinup_failed;
8260 #endif
8261 				}
8262 				/*
8263 				 * The following relies on
8264 				 * sd_send_scsi_READ_CAPACITY never
8265 				 * returning 0 for capacity and/or lbasize.
8266 				 */
8267 				sd_update_block_info(un, lbasize, capacity);
8268 
8269 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8270 				    "sd_unit_attach: un:0x%p capacity = %ld "
8271 				    "blocks; lbasize= %ld.\n", un,
8272 				    un->un_blockcount, un->un_tgt_blocksize);
8273 
8274 				break;
8275 			}
8276 			case EACCES:
8277 				/*
8278 				 * Should never get here if the spin-up
8279 				 * succeeded, but code it in anyway.
8280 				 * From here, just continue with the attach...
8281 				 */
8282 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8283 				    "sd_unit_attach: un:0x%p "
8284 				    "sd_send_scsi_READ_CAPACITY "
8285 				    "returned reservation conflict\n", un);
8286 				reservation_flag = SD_TARGET_IS_RESERVED;
8287 				break;
8288 			default:
8289 				/*
8290 				 * Likewise, should never get here if the
8291 				 * spin-up succeeded. Just continue with
8292 				 * the attach...
8293 				 */
8294 				break;
8295 			}
8296 			break;
8297 		case EACCES:
8298 			/*
8299 			 * Device is reserved by another host.  In this case
8300 			 * we could not spin it up or read the capacity, but
8301 			 * we continue with the attach anyway.
8302 			 */
8303 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8304 			    "sd_unit_attach: un:0x%p spin-up reservation "
8305 			    "conflict.\n", un);
8306 			reservation_flag = SD_TARGET_IS_RESERVED;
8307 			break;
8308 		default:
8309 			/* Fail the attach if the spin-up failed. */
8310 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8311 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8312 			goto spinup_failed;
8313 		}
8314 	}
8315 
8316 	/*
8317 	 * Check to see if this is a MMC drive
8318 	 */
8319 	if (ISCD(un)) {
8320 		sd_set_mmc_caps(un);
8321 	}
8322 
8323 	/*
8324 	 * Create the minor nodes for the device.
8325 	 * Note: If we want to support fdisk on both sparc and intel, this will
8326 	 * have to separate out the notion that VTOC8 is always sparc, and
8327 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8328 	 * type will have to be determined at run-time, and the fdisk
8329 	 * partitioning will have to have been read & set up before we
8330 	 * create the minor nodes. (any other inits (such as kstats) that
8331 	 * also ought to be done before creating the minor nodes?) (Doesn't
8332 	 * setting up the minor nodes kind of imply that we're ready to
8333 	 * handle an open from userland?)
8334 	 */
8335 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8336 		goto create_minor_nodes_failed;
8337 	}
8338 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8339 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8340 
8341 	/*
8342 	 * Add a zero-length attribute to tell the world we support
8343 	 * kernel ioctls (for layered drivers)
8344 	 */
8345 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8346 	    DDI_KERNEL_IOCTL, NULL, 0);
8347 
8348 	/*
8349 	 * Add a boolean property to tell the world we support
8350 	 * the B_FAILFAST flag (for layered drivers)
8351 	 */
8352 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8353 	    "ddi-failfast-supported", NULL, 0);
8354 
8355 	/*
8356 	 * Initialize power management
8357 	 */
8358 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8359 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8360 	sd_setup_pm(un, devi);
8361 	if (un->un_f_pm_is_enabled == FALSE) {
8362 		/*
8363 		 * For performance, point to a jump table that does
8364 		 * not include pm.
8365 		 * The direct and priority chains don't change with PM.
8366 		 *
8367 		 * Note: this is currently done based on individual device
8368 		 * capabilities. When an interface for determining system
8369 		 * power enabled state becomes available, or when additional
8370 		 * layers are added to the command chain, these values will
8371 		 * have to be re-evaluated for correctness.
8372 		 */
8373 		if (ISREMOVABLE(un)) {
8374 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8375 		} else {
8376 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8377 		}
8378 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8379 	}
8380 
8381 	/*
8382 	 * This property is set to 0 by HA software to avoid retries
8383 	 * on a reserved disk. (The preferred property name is
8384 	 * "retry-on-reservation-conflict") (1189689)
8385 	 *
8386 	 * Note: The use of a global here can have unintended consequences. A
8387 	 * per instance variable is preferrable to match the capabilities of
8388 	 * different underlying hba's (4402600)
8389 	 */
8390 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8391 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8392 	    sd_retry_on_reservation_conflict);
8393 	if (sd_retry_on_reservation_conflict != 0) {
8394 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8395 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8396 		    sd_retry_on_reservation_conflict);
8397 	}
8398 
8399 	/* Set up options for QFULL handling. */
8400 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8401 	    "qfull-retries", -1)) != -1) {
8402 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8403 		    rval, 1);
8404 	}
8405 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8406 	    "qfull-retry-interval", -1)) != -1) {
8407 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8408 		    rval, 1);
8409 	}
8410 
8411 	/*
8412 	 * This just prints a message that announces the existence of the
8413 	 * device. The message is always printed in the system logfile, but
8414 	 * only appears on the console if the system is booted with the
8415 	 * -v (verbose) argument.
8416 	 */
8417 	ddi_report_dev(devi);
8418 
8419 	/*
8420 	 * The framework calls driver attach routines single-threaded
8421 	 * for a given instance.  However we still acquire SD_MUTEX here
8422 	 * because this required for calling the sd_validate_geometry()
8423 	 * and sd_register_devid() functions.
8424 	 */
8425 	mutex_enter(SD_MUTEX(un));
8426 	un->un_f_geometry_is_valid = FALSE;
8427 	un->un_mediastate = DKIO_NONE;
8428 	un->un_reserved = -1;
8429 	if (!ISREMOVABLE(un)) {
8430 		/*
8431 		 * Read and validate the device's geometry (ie, disk label)
8432 		 * A new unformatted drive will not have a valid geometry, but
8433 		 * the driver needs to successfully attach to this device so
8434 		 * the drive can be formatted via ioctls.
8435 		 */
8436 		if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8437 		    ENOTSUP)) &&
8438 		    (un->un_blockcount < DK_MAX_BLOCKS)) {
8439 			/*
8440 			 * We found a small disk with an EFI label on it;
8441 			 * we need to fix up the minor nodes accordingly.
8442 			 */
8443 			ddi_remove_minor_node(devi, "h");
8444 			ddi_remove_minor_node(devi, "h,raw");
8445 			(void) ddi_create_minor_node(devi, "wd",
8446 			    S_IFBLK,
8447 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8448 			    un->un_node_type, NULL);
8449 			(void) ddi_create_minor_node(devi, "wd,raw",
8450 			    S_IFCHR,
8451 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8452 			    un->un_node_type, NULL);
8453 		}
8454 	}
8455 
8456 	/*
8457 	 * Read and initialize the devid for the unit.
8458 	 */
8459 	ASSERT(un->un_errstats != NULL);
8460 	if (!ISREMOVABLE(un)) {
8461 		sd_register_devid(un, devi, reservation_flag);
8462 	}
8463 	mutex_exit(SD_MUTEX(un));
8464 
8465 #if (defined(__fibre))
8466 	/*
8467 	 * Register callbacks for fibre only.  You can't do this soley
8468 	 * on the basis of the devid_type because this is hba specific.
8469 	 * We need to query our hba capabilities to find out whether to
8470 	 * register or not.
8471 	 */
8472 	if (un->un_f_is_fibre) {
8473 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8474 		sd_init_event_callbacks(un);
8475 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8476 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8477 	    }
8478 	}
8479 #endif
8480 
8481 	if (un->un_f_opt_disable_cache == TRUE) {
8482 		if (sd_disable_caching(un) != 0) {
8483 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8484 			    "sd_unit_attach: un:0x%p Could not disable "
8485 			    "caching", un);
8486 			goto devid_failed;
8487 		}
8488 	}
8489 
8490 	/*
8491 	 * Set the pstat and error stat values here, so data obtained during the
8492 	 * previous attach-time routines is available.
8493 	 *
8494 	 * Note: This is a critical sequence that needs to be maintained:
8495 	 *	1) Instantiate the kstats before any routines using the iopath
8496 	 *	   (i.e. sd_send_scsi_cmd).
8497 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8498 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8499 	 *	   sd_register_devid(), and sd_disable_caching().
8500 	 */
8501 	if (!ISREMOVABLE(un) && (un->un_f_pkstats_enabled == TRUE)) {
8502 		sd_set_pstats(un);
8503 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8504 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8505 	}
8506 
8507 	sd_set_errstats(un);
8508 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8509 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8510 
8511 	/*
8512 	 * Find out what type of reservation this disk supports.
8513 	 */
8514 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8515 	case 0:
8516 		/*
8517 		 * SCSI-3 reservations are supported.
8518 		 */
8519 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8520 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8521 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8522 		break;
8523 	case ENOTSUP:
8524 		/*
8525 		 * The PERSISTENT RESERVE IN command would not be recognized by
8526 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8527 		 */
8528 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8529 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8530 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8531 		break;
8532 	default:
8533 		/*
8534 		 * default to SCSI-3 reservations
8535 		 */
8536 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8537 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8538 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8539 		break;
8540 	}
8541 
8542 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8543 	    "sd_unit_attach: un:0x%p exit success\n", un);
8544 
8545 	return (DDI_SUCCESS);
8546 
8547 	/*
8548 	 * An error occurred during the attach; clean up & return failure.
8549 	 */
8550 
8551 devid_failed:
8552 
8553 setup_pm_failed:
8554 	ddi_remove_minor_node(devi, NULL);
8555 
8556 create_minor_nodes_failed:
8557 	/*
8558 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8559 	 */
8560 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8561 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8562 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8563 
8564 	if (un->un_f_is_fibre == FALSE) {
8565 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8566 	}
8567 
8568 spinup_failed:
8569 
8570 	mutex_enter(SD_MUTEX(un));
8571 
8572 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8573 	if (un->un_direct_priority_timeid != NULL) {
8574 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8575 		un->un_direct_priority_timeid = NULL;
8576 		mutex_exit(SD_MUTEX(un));
8577 		(void) untimeout(temp_id);
8578 		mutex_enter(SD_MUTEX(un));
8579 	}
8580 
8581 	/* Cancel any pending start/stop timeouts */
8582 	if (un->un_startstop_timeid != NULL) {
8583 		timeout_id_t temp_id = un->un_startstop_timeid;
8584 		un->un_startstop_timeid = NULL;
8585 		mutex_exit(SD_MUTEX(un));
8586 		(void) untimeout(temp_id);
8587 		mutex_enter(SD_MUTEX(un));
8588 	}
8589 
8590 	/* Cancel any pending reset-throttle timeouts */
8591 	if (un->un_reset_throttle_timeid != NULL) {
8592 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8593 		un->un_reset_throttle_timeid = NULL;
8594 		mutex_exit(SD_MUTEX(un));
8595 		(void) untimeout(temp_id);
8596 		mutex_enter(SD_MUTEX(un));
8597 	}
8598 
8599 	/* Cancel any pending retry timeouts */
8600 	if (un->un_retry_timeid != NULL) {
8601 		timeout_id_t temp_id = un->un_retry_timeid;
8602 		un->un_retry_timeid = NULL;
8603 		mutex_exit(SD_MUTEX(un));
8604 		(void) untimeout(temp_id);
8605 		mutex_enter(SD_MUTEX(un));
8606 	}
8607 
8608 	/* Cancel any pending delayed cv broadcast timeouts */
8609 	if (un->un_dcvb_timeid != NULL) {
8610 		timeout_id_t temp_id = un->un_dcvb_timeid;
8611 		un->un_dcvb_timeid = NULL;
8612 		mutex_exit(SD_MUTEX(un));
8613 		(void) untimeout(temp_id);
8614 		mutex_enter(SD_MUTEX(un));
8615 	}
8616 
8617 	mutex_exit(SD_MUTEX(un));
8618 
8619 	/* There should not be any in-progress I/O so ASSERT this check */
8620 	ASSERT(un->un_ncmds_in_transport == 0);
8621 	ASSERT(un->un_ncmds_in_driver == 0);
8622 
8623 	/* Do not free the softstate if the callback routine is active */
8624 	sd_sync_with_callback(un);
8625 
8626 	/*
8627 	 * Partition stats apparently are not used with removables. These would
8628 	 * not have been created during attach, so no need to clean them up...
8629 	 */
8630 	if (un->un_stats != NULL) {
8631 		kstat_delete(un->un_stats);
8632 		un->un_stats = NULL;
8633 	}
8634 	if (un->un_errstats != NULL) {
8635 		kstat_delete(un->un_errstats);
8636 		un->un_errstats = NULL;
8637 	}
8638 
8639 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8640 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8641 
8642 	ddi_prop_remove_all(devi);
8643 	sema_destroy(&un->un_semoclose);
8644 	cv_destroy(&un->un_state_cv);
8645 
8646 getrbuf_failed:
8647 
8648 	sd_free_rqs(un);
8649 
8650 alloc_rqs_failed:
8651 
8652 	devp->sd_private = NULL;
8653 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8654 
8655 get_softstate_failed:
8656 	/*
8657 	 * Note: the man pages are unclear as to whether or not doing a
8658 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8659 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8660 	 * ddi_get_soft_state() fails.  The implication seems to be
8661 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8662 	 */
8663 	ddi_soft_state_free(sd_state, instance);
8664 
8665 probe_failed:
8666 	scsi_unprobe(devp);
8667 #ifdef SDDEBUG
8668 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8669 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8670 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8671 		    (void *)un);
8672 	}
8673 #endif
8674 	return (DDI_FAILURE);
8675 }
8676 
8677 
8678 /*
8679  *    Function: sd_unit_detach
8680  *
8681  * Description: Performs DDI_DETACH processing for sddetach().
8682  *
8683  * Return Code: DDI_SUCCESS
8684  *		DDI_FAILURE
8685  *
8686  *     Context: Kernel thread context
8687  */
8688 
8689 static int
8690 sd_unit_detach(dev_info_t *devi)
8691 {
8692 	struct scsi_device	*devp;
8693 	struct sd_lun		*un;
8694 	int			i;
8695 	dev_t			dev;
8696 #if !(defined(__i386) || defined(__amd64)) && !defined(__fibre)
8697 	int			reset_retval;
8698 #endif
8699 	int			instance = ddi_get_instance(devi);
8700 
8701 	mutex_enter(&sd_detach_mutex);
8702 
8703 	/*
8704 	 * Fail the detach for any of the following:
8705 	 *  - Unable to get the sd_lun struct for the instance
8706 	 *  - A layered driver has an outstanding open on the instance
8707 	 *  - Another thread is already detaching this instance
8708 	 *  - Another thread is currently performing an open
8709 	 */
8710 	devp = ddi_get_driver_private(devi);
8711 	if ((devp == NULL) ||
8712 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8713 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8714 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8715 		mutex_exit(&sd_detach_mutex);
8716 		return (DDI_FAILURE);
8717 	}
8718 
8719 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8720 
8721 	/*
8722 	 * Mark this instance as currently in a detach, to inhibit any
8723 	 * opens from a layered driver.
8724 	 */
8725 	un->un_detach_count++;
8726 	mutex_exit(&sd_detach_mutex);
8727 
8728 	dev = sd_make_device(SD_DEVINFO(un));
8729 
8730 	_NOTE(COMPETING_THREADS_NOW);
8731 
8732 	mutex_enter(SD_MUTEX(un));
8733 
8734 	/*
8735 	 * Fail the detach if there are any outstanding layered
8736 	 * opens on this device.
8737 	 */
8738 	for (i = 0; i < NDKMAP; i++) {
8739 		if (un->un_ocmap.lyropen[i] != 0) {
8740 			goto err_notclosed;
8741 		}
8742 	}
8743 
8744 	/*
8745 	 * Verify there are NO outstanding commands issued to this device.
8746 	 * ie, un_ncmds_in_transport == 0.
8747 	 * It's possible to have outstanding commands through the physio
8748 	 * code path, even though everything's closed.
8749 	 */
8750 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8751 	    (un->un_direct_priority_timeid != NULL) ||
8752 	    (un->un_state == SD_STATE_RWAIT)) {
8753 		mutex_exit(SD_MUTEX(un));
8754 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8755 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8756 		goto err_stillbusy;
8757 	}
8758 
8759 	/*
8760 	 * If we have the device reserved, release the reservation.
8761 	 */
8762 	if ((un->un_resvd_status & SD_RESERVE) &&
8763 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8764 		mutex_exit(SD_MUTEX(un));
8765 		/*
8766 		 * Note: sd_reserve_release sends a command to the device
8767 		 * via the sd_ioctlcmd() path, and can sleep.
8768 		 */
8769 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8770 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8771 			    "sd_dr_detach: Cannot release reservation \n");
8772 		}
8773 	} else {
8774 		mutex_exit(SD_MUTEX(un));
8775 	}
8776 
8777 	/*
8778 	 * Untimeout any reserve recover, throttle reset, restart unit
8779 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8780 	 * from getting nulled by their callback functions.
8781 	 */
8782 	mutex_enter(SD_MUTEX(un));
8783 	if (un->un_resvd_timeid != NULL) {
8784 		timeout_id_t temp_id = un->un_resvd_timeid;
8785 		un->un_resvd_timeid = NULL;
8786 		mutex_exit(SD_MUTEX(un));
8787 		(void) untimeout(temp_id);
8788 		mutex_enter(SD_MUTEX(un));
8789 	}
8790 
8791 	if (un->un_reset_throttle_timeid != NULL) {
8792 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8793 		un->un_reset_throttle_timeid = NULL;
8794 		mutex_exit(SD_MUTEX(un));
8795 		(void) untimeout(temp_id);
8796 		mutex_enter(SD_MUTEX(un));
8797 	}
8798 
8799 	if (un->un_startstop_timeid != NULL) {
8800 		timeout_id_t temp_id = un->un_startstop_timeid;
8801 		un->un_startstop_timeid = NULL;
8802 		mutex_exit(SD_MUTEX(un));
8803 		(void) untimeout(temp_id);
8804 		mutex_enter(SD_MUTEX(un));
8805 	}
8806 
8807 	if (un->un_dcvb_timeid != NULL) {
8808 		timeout_id_t temp_id = un->un_dcvb_timeid;
8809 		un->un_dcvb_timeid = NULL;
8810 		mutex_exit(SD_MUTEX(un));
8811 		(void) untimeout(temp_id);
8812 	} else {
8813 		mutex_exit(SD_MUTEX(un));
8814 	}
8815 
8816 	/* Remove any pending reservation reclaim requests for this device */
8817 	sd_rmv_resv_reclaim_req(dev);
8818 
8819 	mutex_enter(SD_MUTEX(un));
8820 
8821 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8822 	if (un->un_direct_priority_timeid != NULL) {
8823 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8824 		un->un_direct_priority_timeid = NULL;
8825 		mutex_exit(SD_MUTEX(un));
8826 		(void) untimeout(temp_id);
8827 		mutex_enter(SD_MUTEX(un));
8828 	}
8829 
8830 	/* Cancel any active multi-host disk watch thread requests */
8831 	if (un->un_mhd_token != NULL) {
8832 		mutex_exit(SD_MUTEX(un));
8833 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8834 		if (scsi_watch_request_terminate(un->un_mhd_token,
8835 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8836 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8837 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8838 			/*
8839 			 * Note: We are returning here after having removed
8840 			 * some driver timeouts above. This is consistent with
8841 			 * the legacy implementation but perhaps the watch
8842 			 * terminate call should be made with the wait flag set.
8843 			 */
8844 			goto err_stillbusy;
8845 		}
8846 		mutex_enter(SD_MUTEX(un));
8847 		un->un_mhd_token = NULL;
8848 	}
8849 
8850 	if (un->un_swr_token != NULL) {
8851 		mutex_exit(SD_MUTEX(un));
8852 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8853 		if (scsi_watch_request_terminate(un->un_swr_token,
8854 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8855 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8856 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8857 			/*
8858 			 * Note: We are returning here after having removed
8859 			 * some driver timeouts above. This is consistent with
8860 			 * the legacy implementation but perhaps the watch
8861 			 * terminate call should be made with the wait flag set.
8862 			 */
8863 			goto err_stillbusy;
8864 		}
8865 		mutex_enter(SD_MUTEX(un));
8866 		un->un_swr_token = NULL;
8867 	}
8868 
8869 	mutex_exit(SD_MUTEX(un));
8870 
8871 	/*
8872 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8873 	 * if we have not registered one.
8874 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8875 	 */
8876 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8877 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8878 
8879 
8880 
8881 #if defined(__i386) || defined(__amd64)
8882 	/*
8883 	 * Gratuitous bus resets sometimes cause an otherwise
8884 	 * okay ATA/ATAPI bus to hang. This is due the lack of
8885 	 * a clear spec of how resets should be implemented by ATA
8886 	 * disk drives.
8887 	 */
8888 #elif !defined(__fibre)		/* "#else if" does NOT work! */
8889 	/*
8890 	 * Reset target/bus.
8891 	 *
8892 	 * Note: This is a legacy workaround for Elite III dual-port drives that
8893 	 * will not come online after an aborted detach and subsequent re-attach
8894 	 * It should be removed when the Elite III FW is fixed, or the drives
8895 	 * are no longer supported.
8896 	 */
8897 	if (un->un_f_cfg_is_atapi == FALSE) {
8898 		reset_retval = 0;
8899 
8900 		/* If the device is in low power mode don't reset it */
8901 
8902 		mutex_enter(&un->un_pm_mutex);
8903 		if (!SD_DEVICE_IS_IN_LOW_POWER(un)) {
8904 			/*
8905 			 * First try a LUN reset if we can, then move on to a
8906 			 * target reset if needed; swat the bus as a last
8907 			 * resort.
8908 			 */
8909 			mutex_exit(&un->un_pm_mutex);
8910 			if (un->un_f_allow_bus_device_reset == TRUE) {
8911 				if (un->un_f_lun_reset_enabled == TRUE) {
8912 					reset_retval =
8913 					    scsi_reset(SD_ADDRESS(un),
8914 					    RESET_LUN);
8915 				}
8916 				if (reset_retval == 0) {
8917 					reset_retval =
8918 					    scsi_reset(SD_ADDRESS(un),
8919 					    RESET_TARGET);
8920 				}
8921 			}
8922 			if (reset_retval == 0) {
8923 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
8924 			}
8925 		} else {
8926 			mutex_exit(&un->un_pm_mutex);
8927 		}
8928 	}
8929 #endif
8930 
8931 	/*
8932 	 * protect the timeout pointers from getting nulled by
8933 	 * their callback functions during the cancellation process.
8934 	 * In such a scenario untimeout can be invoked with a null value.
8935 	 */
8936 	_NOTE(NO_COMPETING_THREADS_NOW);
8937 
8938 	mutex_enter(&un->un_pm_mutex);
8939 	if (un->un_pm_idle_timeid != NULL) {
8940 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8941 		un->un_pm_idle_timeid = NULL;
8942 		mutex_exit(&un->un_pm_mutex);
8943 
8944 		/*
8945 		 * Timeout is active; cancel it.
8946 		 * Note that it'll never be active on a device
8947 		 * that does not support PM therefore we don't
8948 		 * have to check before calling pm_idle_component.
8949 		 */
8950 		(void) untimeout(temp_id);
8951 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8952 		mutex_enter(&un->un_pm_mutex);
8953 	}
8954 
8955 	/*
8956 	 * Check whether there is already a timeout scheduled for power
8957 	 * management. If yes then don't lower the power here, that's.
8958 	 * the timeout handler's job.
8959 	 */
8960 	if (un->un_pm_timeid != NULL) {
8961 		timeout_id_t temp_id = un->un_pm_timeid;
8962 		un->un_pm_timeid = NULL;
8963 		mutex_exit(&un->un_pm_mutex);
8964 		/*
8965 		 * Timeout is active; cancel it.
8966 		 * Note that it'll never be active on a device
8967 		 * that does not support PM therefore we don't
8968 		 * have to check before calling pm_idle_component.
8969 		 */
8970 		(void) untimeout(temp_id);
8971 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8972 
8973 	} else {
8974 		mutex_exit(&un->un_pm_mutex);
8975 		if ((un->un_f_pm_is_enabled == TRUE) &&
8976 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8977 		    DDI_SUCCESS)) {
8978 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8979 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8980 			/*
8981 			 * Fix for bug: 4297749, item # 13
8982 			 * The above test now includes a check to see if PM is
8983 			 * supported by this device before call
8984 			 * pm_lower_power().
8985 			 * Note, the following is not dead code. The call to
8986 			 * pm_lower_power above will generate a call back into
8987 			 * our sdpower routine which might result in a timeout
8988 			 * handler getting activated. Therefore the following
8989 			 * code is valid and necessary.
8990 			 */
8991 			mutex_enter(&un->un_pm_mutex);
8992 			if (un->un_pm_timeid != NULL) {
8993 				timeout_id_t temp_id = un->un_pm_timeid;
8994 				un->un_pm_timeid = NULL;
8995 				mutex_exit(&un->un_pm_mutex);
8996 				(void) untimeout(temp_id);
8997 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8998 			} else {
8999 				mutex_exit(&un->un_pm_mutex);
9000 			}
9001 		}
9002 	}
9003 
9004 	/*
9005 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9006 	 * Relocated here from above to be after the call to
9007 	 * pm_lower_power, which was getting errors.
9008 	 */
9009 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9010 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9011 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9012 
9013 	if (un->un_f_is_fibre == FALSE) {
9014 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9015 	}
9016 
9017 	/*
9018 	 * Remove any event callbacks, fibre only
9019 	 */
9020 	if (un->un_f_is_fibre == TRUE) {
9021 		if ((un->un_insert_event != NULL) &&
9022 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9023 				DDI_SUCCESS)) {
9024 			/*
9025 			 * Note: We are returning here after having done
9026 			 * substantial cleanup above. This is consistent
9027 			 * with the legacy implementation but this may not
9028 			 * be the right thing to do.
9029 			 */
9030 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9031 				"sd_dr_detach: Cannot cancel insert event\n");
9032 			goto err_remove_event;
9033 		}
9034 		un->un_insert_event = NULL;
9035 
9036 		if ((un->un_remove_event != NULL) &&
9037 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9038 				DDI_SUCCESS)) {
9039 			/*
9040 			 * Note: We are returning here after having done
9041 			 * substantial cleanup above. This is consistent
9042 			 * with the legacy implementation but this may not
9043 			 * be the right thing to do.
9044 			 */
9045 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9046 				"sd_dr_detach: Cannot cancel remove event\n");
9047 			goto err_remove_event;
9048 		}
9049 		un->un_remove_event = NULL;
9050 	}
9051 
9052 	/* Do not free the softstate if the callback routine is active */
9053 	sd_sync_with_callback(un);
9054 
9055 	/*
9056 	 * Hold the detach mutex here, to make sure that no other threads ever
9057 	 * can access a (partially) freed soft state structure.
9058 	 */
9059 	mutex_enter(&sd_detach_mutex);
9060 
9061 	/*
9062 	 * Clean up the soft state struct.
9063 	 * Cleanup is done in reverse order of allocs/inits.
9064 	 * At this point there should be no competing threads anymore.
9065 	 */
9066 
9067 	/* Unregister and free device id. */
9068 	ddi_devid_unregister(devi);
9069 	if (un->un_devid) {
9070 		ddi_devid_free(un->un_devid);
9071 		un->un_devid = NULL;
9072 	}
9073 
9074 	/*
9075 	 * Destroy wmap cache if it exists.
9076 	 */
9077 	if (un->un_wm_cache != NULL) {
9078 		kmem_cache_destroy(un->un_wm_cache);
9079 		un->un_wm_cache = NULL;
9080 	}
9081 
9082 	/* Remove minor nodes */
9083 	ddi_remove_minor_node(devi, NULL);
9084 
9085 	/*
9086 	 * kstat cleanup is done in detach for all device types (4363169).
9087 	 * We do not want to fail detach if the device kstats are not deleted
9088 	 * since there is a confusion about the devo_refcnt for the device.
9089 	 * We just delete the kstats and let detach complete successfully.
9090 	 */
9091 	if (un->un_stats != NULL) {
9092 		kstat_delete(un->un_stats);
9093 		un->un_stats = NULL;
9094 	}
9095 	if (un->un_errstats != NULL) {
9096 		kstat_delete(un->un_errstats);
9097 		un->un_errstats = NULL;
9098 	}
9099 
9100 	/* Remove partition stats (not created for removables) */
9101 	if (!ISREMOVABLE(un)) {
9102 		for (i = 0; i < NSDMAP; i++) {
9103 			if (un->un_pstats[i] != NULL) {
9104 				kstat_delete(un->un_pstats[i]);
9105 				un->un_pstats[i] = NULL;
9106 			}
9107 		}
9108 	}
9109 
9110 	/* Remove xbuf registration */
9111 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9112 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9113 
9114 	/* Remove driver properties */
9115 	ddi_prop_remove_all(devi);
9116 
9117 	mutex_destroy(&un->un_pm_mutex);
9118 	cv_destroy(&un->un_pm_busy_cv);
9119 
9120 	/* Open/close semaphore */
9121 	sema_destroy(&un->un_semoclose);
9122 
9123 	/* Removable media condvar. */
9124 	cv_destroy(&un->un_state_cv);
9125 
9126 	/* Suspend/resume condvar. */
9127 	cv_destroy(&un->un_suspend_cv);
9128 	cv_destroy(&un->un_disk_busy_cv);
9129 
9130 	sd_free_rqs(un);
9131 
9132 	/* Free up soft state */
9133 	devp->sd_private = NULL;
9134 	bzero(un, sizeof (struct sd_lun));
9135 	ddi_soft_state_free(sd_state, instance);
9136 
9137 	mutex_exit(&sd_detach_mutex);
9138 
9139 	/* This frees up the INQUIRY data associated with the device. */
9140 	scsi_unprobe(devp);
9141 
9142 	return (DDI_SUCCESS);
9143 
9144 err_notclosed:
9145 	mutex_exit(SD_MUTEX(un));
9146 
9147 err_stillbusy:
9148 	_NOTE(NO_COMPETING_THREADS_NOW);
9149 
9150 err_remove_event:
9151 	mutex_enter(&sd_detach_mutex);
9152 	un->un_detach_count--;
9153 	mutex_exit(&sd_detach_mutex);
9154 
9155 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9156 	return (DDI_FAILURE);
9157 }
9158 
9159 
9160 /*
9161  * Driver minor node structure and data table
9162  */
9163 struct driver_minor_data {
9164 	char	*name;
9165 	minor_t	minor;
9166 	int	type;
9167 };
9168 
9169 static struct driver_minor_data sd_minor_data[] = {
9170 	{"a", 0, S_IFBLK},
9171 	{"b", 1, S_IFBLK},
9172 	{"c", 2, S_IFBLK},
9173 	{"d", 3, S_IFBLK},
9174 	{"e", 4, S_IFBLK},
9175 	{"f", 5, S_IFBLK},
9176 	{"g", 6, S_IFBLK},
9177 	{"h", 7, S_IFBLK},
9178 #if defined(_SUNOS_VTOC_16)
9179 	{"i", 8, S_IFBLK},
9180 	{"j", 9, S_IFBLK},
9181 	{"k", 10, S_IFBLK},
9182 	{"l", 11, S_IFBLK},
9183 	{"m", 12, S_IFBLK},
9184 	{"n", 13, S_IFBLK},
9185 	{"o", 14, S_IFBLK},
9186 	{"p", 15, S_IFBLK},
9187 #endif			/* defined(_SUNOS_VTOC_16) */
9188 #if defined(_FIRMWARE_NEEDS_FDISK)
9189 	{"q", 16, S_IFBLK},
9190 	{"r", 17, S_IFBLK},
9191 	{"s", 18, S_IFBLK},
9192 	{"t", 19, S_IFBLK},
9193 	{"u", 20, S_IFBLK},
9194 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9195 	{"a,raw", 0, S_IFCHR},
9196 	{"b,raw", 1, S_IFCHR},
9197 	{"c,raw", 2, S_IFCHR},
9198 	{"d,raw", 3, S_IFCHR},
9199 	{"e,raw", 4, S_IFCHR},
9200 	{"f,raw", 5, S_IFCHR},
9201 	{"g,raw", 6, S_IFCHR},
9202 	{"h,raw", 7, S_IFCHR},
9203 #if defined(_SUNOS_VTOC_16)
9204 	{"i,raw", 8, S_IFCHR},
9205 	{"j,raw", 9, S_IFCHR},
9206 	{"k,raw", 10, S_IFCHR},
9207 	{"l,raw", 11, S_IFCHR},
9208 	{"m,raw", 12, S_IFCHR},
9209 	{"n,raw", 13, S_IFCHR},
9210 	{"o,raw", 14, S_IFCHR},
9211 	{"p,raw", 15, S_IFCHR},
9212 #endif			/* defined(_SUNOS_VTOC_16) */
9213 #if defined(_FIRMWARE_NEEDS_FDISK)
9214 	{"q,raw", 16, S_IFCHR},
9215 	{"r,raw", 17, S_IFCHR},
9216 	{"s,raw", 18, S_IFCHR},
9217 	{"t,raw", 19, S_IFCHR},
9218 	{"u,raw", 20, S_IFCHR},
9219 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9220 	{0}
9221 };
9222 
9223 static struct driver_minor_data sd_minor_data_efi[] = {
9224 	{"a", 0, S_IFBLK},
9225 	{"b", 1, S_IFBLK},
9226 	{"c", 2, S_IFBLK},
9227 	{"d", 3, S_IFBLK},
9228 	{"e", 4, S_IFBLK},
9229 	{"f", 5, S_IFBLK},
9230 	{"g", 6, S_IFBLK},
9231 	{"wd", 7, S_IFBLK},
9232 #if defined(_FIRMWARE_NEEDS_FDISK)
9233 	{"q", 16, S_IFBLK},
9234 	{"r", 17, S_IFBLK},
9235 	{"s", 18, S_IFBLK},
9236 	{"t", 19, S_IFBLK},
9237 	{"u", 20, S_IFBLK},
9238 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9239 	{"a,raw", 0, S_IFCHR},
9240 	{"b,raw", 1, S_IFCHR},
9241 	{"c,raw", 2, S_IFCHR},
9242 	{"d,raw", 3, S_IFCHR},
9243 	{"e,raw", 4, S_IFCHR},
9244 	{"f,raw", 5, S_IFCHR},
9245 	{"g,raw", 6, S_IFCHR},
9246 	{"wd,raw", 7, S_IFCHR},
9247 #if defined(_FIRMWARE_NEEDS_FDISK)
9248 	{"q,raw", 16, S_IFCHR},
9249 	{"r,raw", 17, S_IFCHR},
9250 	{"s,raw", 18, S_IFCHR},
9251 	{"t,raw", 19, S_IFCHR},
9252 	{"u,raw", 20, S_IFCHR},
9253 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9254 	{0}
9255 };
9256 
9257 
9258 /*
9259  *    Function: sd_create_minor_nodes
9260  *
9261  * Description: Create the minor device nodes for the instance.
9262  *
9263  *   Arguments: un - driver soft state (unit) structure
9264  *		devi - pointer to device info structure
9265  *
9266  * Return Code: DDI_SUCCESS
9267  *		DDI_FAILURE
9268  *
9269  *     Context: Kernel thread context
9270  */
9271 
9272 static int
9273 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9274 {
9275 	struct driver_minor_data	*dmdp;
9276 	struct scsi_device		*devp;
9277 	int				instance;
9278 	char				name[48];
9279 
9280 	ASSERT(un != NULL);
9281 	devp = ddi_get_driver_private(devi);
9282 	instance = ddi_get_instance(devp->sd_dev);
9283 
9284 	/*
9285 	 * Create all the minor nodes for this target.
9286 	 */
9287 	if (un->un_blockcount > DK_MAX_BLOCKS)
9288 		dmdp = sd_minor_data_efi;
9289 	else
9290 		dmdp = sd_minor_data;
9291 	while (dmdp->name != NULL) {
9292 
9293 		(void) sprintf(name, "%s", dmdp->name);
9294 
9295 		if (ddi_create_minor_node(devi, name, dmdp->type,
9296 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9297 		    un->un_node_type, NULL) == DDI_FAILURE) {
9298 			/*
9299 			 * Clean up any nodes that may have been created, in
9300 			 * case this fails in the middle of the loop.
9301 			 */
9302 			ddi_remove_minor_node(devi, NULL);
9303 			return (DDI_FAILURE);
9304 		}
9305 		dmdp++;
9306 	}
9307 
9308 	return (DDI_SUCCESS);
9309 }
9310 
9311 
9312 /*
9313  *    Function: sd_create_errstats
9314  *
9315  * Description: This routine instantiates the device error stats.
9316  *
9317  *		Note: During attach the stats are instantiated first so they are
9318  *		available for attach-time routines that utilize the driver
9319  *		iopath to send commands to the device. The stats are initialized
9320  *		separately so data obtained during some attach-time routines is
9321  *		available. (4362483)
9322  *
9323  *   Arguments: un - driver soft state (unit) structure
9324  *		instance - driver instance
9325  *
9326  *     Context: Kernel thread context
9327  */
9328 
9329 static void
9330 sd_create_errstats(struct sd_lun *un, int instance)
9331 {
9332 	struct	sd_errstats	*stp;
9333 	char	kstatmodule_err[KSTAT_STRLEN];
9334 	char	kstatname[KSTAT_STRLEN];
9335 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9336 
9337 	ASSERT(un != NULL);
9338 
9339 	if (un->un_errstats != NULL) {
9340 		return;
9341 	}
9342 
9343 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9344 	    "%serr", sd_label);
9345 	(void) snprintf(kstatname, sizeof (kstatname),
9346 	    "%s%d,err", sd_label, instance);
9347 
9348 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9349 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9350 
9351 	if (un->un_errstats == NULL) {
9352 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9353 		    "sd_create_errstats: Failed kstat_create\n");
9354 		return;
9355 	}
9356 
9357 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9358 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9359 	    KSTAT_DATA_UINT32);
9360 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9361 	    KSTAT_DATA_UINT32);
9362 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9363 	    KSTAT_DATA_UINT32);
9364 	kstat_named_init(&stp->sd_vid,		"Vendor",
9365 	    KSTAT_DATA_CHAR);
9366 	kstat_named_init(&stp->sd_pid,		"Product",
9367 	    KSTAT_DATA_CHAR);
9368 	kstat_named_init(&stp->sd_revision,	"Revision",
9369 	    KSTAT_DATA_CHAR);
9370 	kstat_named_init(&stp->sd_serial,	"Serial No",
9371 	    KSTAT_DATA_CHAR);
9372 	kstat_named_init(&stp->sd_capacity,	"Size",
9373 	    KSTAT_DATA_ULONGLONG);
9374 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9375 	    KSTAT_DATA_UINT32);
9376 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9377 	    KSTAT_DATA_UINT32);
9378 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9379 	    KSTAT_DATA_UINT32);
9380 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9381 	    KSTAT_DATA_UINT32);
9382 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9383 	    KSTAT_DATA_UINT32);
9384 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9385 	    KSTAT_DATA_UINT32);
9386 
9387 	un->un_errstats->ks_private = un;
9388 	un->un_errstats->ks_update  = nulldev;
9389 
9390 	kstat_install(un->un_errstats);
9391 }
9392 
9393 
9394 /*
9395  *    Function: sd_set_errstats
9396  *
9397  * Description: This routine sets the value of the vendor id, product id,
9398  *		revision, serial number, and capacity device error stats.
9399  *
9400  *		Note: During attach the stats are instantiated first so they are
9401  *		available for attach-time routines that utilize the driver
9402  *		iopath to send commands to the device. The stats are initialized
9403  *		separately so data obtained during some attach-time routines is
9404  *		available. (4362483)
9405  *
9406  *   Arguments: un - driver soft state (unit) structure
9407  *
9408  *     Context: Kernel thread context
9409  */
9410 
9411 static void
9412 sd_set_errstats(struct sd_lun *un)
9413 {
9414 	struct	sd_errstats	*stp;
9415 
9416 	ASSERT(un != NULL);
9417 	ASSERT(un->un_errstats != NULL);
9418 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9419 	ASSERT(stp != NULL);
9420 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9421 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9422 	(void) strncpy(stp->sd_revision.value.c,
9423 	    un->un_sd->sd_inq->inq_revision, 4);
9424 
9425 	/*
9426 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9427 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9428 	 * (4376302))
9429 	 */
9430 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9431 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9432 		    sizeof (SD_INQUIRY(un)->inq_serial));
9433 	}
9434 
9435 	if (un->un_f_blockcount_is_valid != TRUE) {
9436 		/*
9437 		 * Set capacity error stat to 0 for no media. This ensures
9438 		 * a valid capacity is displayed in response to 'iostat -E'
9439 		 * when no media is present in the device.
9440 		 */
9441 		stp->sd_capacity.value.ui64 = 0;
9442 	} else {
9443 		/*
9444 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9445 		 * capacity.
9446 		 *
9447 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9448 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9449 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9450 		 */
9451 		stp->sd_capacity.value.ui64 = (uint64_t)
9452 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9453 	}
9454 }
9455 
9456 
9457 /*
9458  *    Function: sd_set_pstats
9459  *
9460  * Description: This routine instantiates and initializes the partition
9461  *              stats for each partition with more than zero blocks.
9462  *		(4363169)
9463  *
9464  *   Arguments: un - driver soft state (unit) structure
9465  *
9466  *     Context: Kernel thread context
9467  */
9468 
9469 static void
9470 sd_set_pstats(struct sd_lun *un)
9471 {
9472 	char	kstatname[KSTAT_STRLEN];
9473 	int	instance;
9474 	int	i;
9475 
9476 	ASSERT(un != NULL);
9477 
9478 	instance = ddi_get_instance(SD_DEVINFO(un));
9479 
9480 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9481 	for (i = 0; i < NSDMAP; i++) {
9482 		if ((un->un_pstats[i] == NULL) &&
9483 		    (un->un_map[i].dkl_nblk != 0)) {
9484 			(void) snprintf(kstatname, sizeof (kstatname),
9485 			    "%s%d,%s", sd_label, instance,
9486 			    sd_minor_data[i].name);
9487 			un->un_pstats[i] = kstat_create(sd_label,
9488 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9489 			    1, KSTAT_FLAG_PERSISTENT);
9490 			if (un->un_pstats[i] != NULL) {
9491 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9492 				kstat_install(un->un_pstats[i]);
9493 			}
9494 		}
9495 	}
9496 }
9497 
9498 
9499 #if (defined(__fibre))
9500 /*
9501  *    Function: sd_init_event_callbacks
9502  *
9503  * Description: This routine initializes the insertion and removal event
9504  *		callbacks. (fibre only)
9505  *
9506  *   Arguments: un - driver soft state (unit) structure
9507  *
9508  *     Context: Kernel thread context
9509  */
9510 
9511 static void
9512 sd_init_event_callbacks(struct sd_lun *un)
9513 {
9514 	ASSERT(un != NULL);
9515 
9516 	if ((un->un_insert_event == NULL) &&
9517 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9518 	    &un->un_insert_event) == DDI_SUCCESS)) {
9519 		/*
9520 		 * Add the callback for an insertion event
9521 		 */
9522 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9523 		    un->un_insert_event, sd_event_callback, (void *)un,
9524 		    &(un->un_insert_cb_id));
9525 	}
9526 
9527 	if ((un->un_remove_event == NULL) &&
9528 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9529 	    &un->un_remove_event) == DDI_SUCCESS)) {
9530 		/*
9531 		 * Add the callback for a removal event
9532 		 */
9533 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9534 		    un->un_remove_event, sd_event_callback, (void *)un,
9535 		    &(un->un_remove_cb_id));
9536 	}
9537 }
9538 
9539 
9540 /*
9541  *    Function: sd_event_callback
9542  *
9543  * Description: This routine handles insert/remove events (photon). The
9544  *		state is changed to OFFLINE which can be used to supress
9545  *		error msgs. (fibre only)
9546  *
9547  *   Arguments: un - driver soft state (unit) structure
9548  *
9549  *     Context: Callout thread context
9550  */
9551 /* ARGSUSED */
9552 static void
9553 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9554     void *bus_impldata)
9555 {
9556 	struct sd_lun *un = (struct sd_lun *)arg;
9557 
9558 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9559 	if (event == un->un_insert_event) {
9560 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9561 		mutex_enter(SD_MUTEX(un));
9562 		if (un->un_state == SD_STATE_OFFLINE) {
9563 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9564 				un->un_state = un->un_last_state;
9565 			} else {
9566 				/*
9567 				 * We have gone through SUSPEND/RESUME while
9568 				 * we were offline. Restore the last state
9569 				 */
9570 				un->un_state = un->un_save_state;
9571 			}
9572 		}
9573 		mutex_exit(SD_MUTEX(un));
9574 
9575 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9576 	} else if (event == un->un_remove_event) {
9577 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9578 		mutex_enter(SD_MUTEX(un));
9579 		/*
9580 		 * We need to handle an event callback that occurs during
9581 		 * the suspend operation, since we don't prevent it.
9582 		 */
9583 		if (un->un_state != SD_STATE_OFFLINE) {
9584 			if (un->un_state != SD_STATE_SUSPENDED) {
9585 				New_state(un, SD_STATE_OFFLINE);
9586 			} else {
9587 				un->un_last_state = SD_STATE_OFFLINE;
9588 			}
9589 		}
9590 		mutex_exit(SD_MUTEX(un));
9591 	} else {
9592 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9593 		    "!Unknown event\n");
9594 	}
9595 
9596 }
9597 #endif
9598 
9599 
9600 /*
9601  *    Function: sd_disable_caching()
9602  *
9603  * Description: This routine is the driver entry point for disabling
9604  *		read and write caching by modifying the WCE (write cache
9605  *		enable) and RCD (read cache disable) bits of mode
9606  *		page 8 (MODEPAGE_CACHING).
9607  *
9608  *   Arguments: un - driver soft state (unit) structure
9609  *
9610  * Return Code: EIO
9611  *		code returned by sd_send_scsi_MODE_SENSE and
9612  *		sd_send_scsi_MODE_SELECT
9613  *
9614  *     Context: Kernel Thread
9615  */
9616 
9617 static int
9618 sd_disable_caching(struct sd_lun *un)
9619 {
9620 	struct mode_caching	*mode_caching_page;
9621 	uchar_t			*header;
9622 	size_t			buflen;
9623 	int			hdrlen;
9624 	int			bd_len;
9625 	int			rval = 0;
9626 
9627 	ASSERT(un != NULL);
9628 
9629 	/*
9630 	 * Do a test unit ready, otherwise a mode sense may not work if this
9631 	 * is the first command sent to the device after boot.
9632 	 */
9633 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9634 
9635 	if (un->un_f_cfg_is_atapi == TRUE) {
9636 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9637 	} else {
9638 		hdrlen = MODE_HEADER_LENGTH;
9639 	}
9640 
9641 	/*
9642 	 * Allocate memory for the retrieved mode page and its headers.  Set
9643 	 * a pointer to the page itself.
9644 	 */
9645 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9646 	header = kmem_zalloc(buflen, KM_SLEEP);
9647 
9648 	/* Get the information from the device. */
9649 	if (un->un_f_cfg_is_atapi == TRUE) {
9650 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9651 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9652 	} else {
9653 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9654 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9655 	}
9656 	if (rval != 0) {
9657 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9658 		    "sd_disable_caching: Mode Sense Failed\n");
9659 		kmem_free(header, buflen);
9660 		return (rval);
9661 	}
9662 
9663 	/*
9664 	 * Determine size of Block Descriptors in order to locate
9665 	 * the mode page data. ATAPI devices return 0, SCSI devices
9666 	 * should return MODE_BLK_DESC_LENGTH.
9667 	 */
9668 	if (un->un_f_cfg_is_atapi == TRUE) {
9669 		struct mode_header_grp2	*mhp;
9670 		mhp	= (struct mode_header_grp2 *)header;
9671 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9672 	} else {
9673 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9674 	}
9675 
9676 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9677 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9678 		    "sd_disable_caching: Mode Sense returned invalid "
9679 		    "block descriptor length\n");
9680 		kmem_free(header, buflen);
9681 		return (EIO);
9682 	}
9683 
9684 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9685 
9686 	/* Check the relevant bits on successful mode sense. */
9687 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9688 		/*
9689 		 * Read or write caching is enabled.  Disable both of them.
9690 		 */
9691 		mode_caching_page->wce = 0;
9692 		mode_caching_page->rcd = 1;
9693 
9694 		/* Clear reserved bits before mode select. */
9695 		mode_caching_page->mode_page.ps = 0;
9696 
9697 		/*
9698 		 * Clear out mode header for mode select.
9699 		 * The rest of the retrieved page will be reused.
9700 		 */
9701 		bzero(header, hdrlen);
9702 
9703 		/* Change the cache page to disable all caching. */
9704 		if (un->un_f_cfg_is_atapi == TRUE) {
9705 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9706 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9707 		} else {
9708 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9709 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9710 		}
9711 	}
9712 
9713 	kmem_free(header, buflen);
9714 	return (rval);
9715 }
9716 
9717 
9718 /*
9719  *    Function: sd_make_device
9720  *
9721  * Description: Utility routine to return the Solaris device number from
9722  *		the data in the device's dev_info structure.
9723  *
9724  * Return Code: The Solaris device number
9725  *
9726  *     Context: Any
9727  */
9728 
9729 static dev_t
9730 sd_make_device(dev_info_t *devi)
9731 {
9732 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9733 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9734 }
9735 
9736 
9737 /*
9738  *    Function: sd_pm_entry
9739  *
9740  * Description: Called at the start of a new command to manage power
9741  *		and busy status of a device. This includes determining whether
9742  *		the current power state of the device is sufficient for
9743  *		performing the command or whether it must be changed.
9744  *		The PM framework is notified appropriately.
9745  *		Only with a return status of DDI_SUCCESS will the
9746  *		component be busy to the framework.
9747  *
9748  *		All callers of sd_pm_entry must check the return status
9749  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9750  *		of DDI_FAILURE indicates the device failed to power up.
9751  *		In this case un_pm_count has been adjusted so the result
9752  *		on exit is still powered down, ie. count is less than 0.
9753  *		Calling sd_pm_exit with this count value hits an ASSERT.
9754  *
9755  * Return Code: DDI_SUCCESS or DDI_FAILURE
9756  *
9757  *     Context: Kernel thread context.
9758  */
9759 
9760 static int
9761 sd_pm_entry(struct sd_lun *un)
9762 {
9763 	int return_status = DDI_SUCCESS;
9764 
9765 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9766 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9767 
9768 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9769 
9770 	if (un->un_f_pm_is_enabled == FALSE) {
9771 		SD_TRACE(SD_LOG_IO_PM, un,
9772 		    "sd_pm_entry: exiting, PM not enabled\n");
9773 		return (return_status);
9774 	}
9775 
9776 	/*
9777 	 * Just increment a counter if PM is enabled. On the transition from
9778 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9779 	 * the count with each IO and mark the device as idle when the count
9780 	 * hits 0.
9781 	 *
9782 	 * If the count is less than 0 the device is powered down. If a powered
9783 	 * down device is successfully powered up then the count must be
9784 	 * incremented to reflect the power up. Note that it'll get incremented
9785 	 * a second time to become busy.
9786 	 *
9787 	 * Because the following has the potential to change the device state
9788 	 * and must release the un_pm_mutex to do so, only one thread can be
9789 	 * allowed through at a time.
9790 	 */
9791 
9792 	mutex_enter(&un->un_pm_mutex);
9793 	while (un->un_pm_busy == TRUE) {
9794 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9795 	}
9796 	un->un_pm_busy = TRUE;
9797 
9798 	if (un->un_pm_count < 1) {
9799 
9800 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9801 
9802 		/*
9803 		 * Indicate we are now busy so the framework won't attempt to
9804 		 * power down the device. This call will only fail if either
9805 		 * we passed a bad component number or the device has no
9806 		 * components. Neither of these should ever happen.
9807 		 */
9808 		mutex_exit(&un->un_pm_mutex);
9809 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9810 		ASSERT(return_status == DDI_SUCCESS);
9811 
9812 		mutex_enter(&un->un_pm_mutex);
9813 
9814 		if (un->un_pm_count < 0) {
9815 			mutex_exit(&un->un_pm_mutex);
9816 
9817 			SD_TRACE(SD_LOG_IO_PM, un,
9818 			    "sd_pm_entry: power up component\n");
9819 
9820 			/*
9821 			 * pm_raise_power will cause sdpower to be called
9822 			 * which brings the device power level to the
9823 			 * desired state, ON in this case. If successful,
9824 			 * un_pm_count and un_power_level will be updated
9825 			 * appropriately.
9826 			 */
9827 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9828 			    SD_SPINDLE_ON);
9829 
9830 			mutex_enter(&un->un_pm_mutex);
9831 
9832 			if (return_status != DDI_SUCCESS) {
9833 				/*
9834 				 * Power up failed.
9835 				 * Idle the device and adjust the count
9836 				 * so the result on exit is that we're
9837 				 * still powered down, ie. count is less than 0.
9838 				 */
9839 				SD_TRACE(SD_LOG_IO_PM, un,
9840 				    "sd_pm_entry: power up failed,"
9841 				    " idle the component\n");
9842 
9843 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9844 				un->un_pm_count--;
9845 			} else {
9846 				/*
9847 				 * Device is powered up, verify the
9848 				 * count is non-negative.
9849 				 * This is debug only.
9850 				 */
9851 				ASSERT(un->un_pm_count == 0);
9852 			}
9853 		}
9854 
9855 		if (return_status == DDI_SUCCESS) {
9856 			/*
9857 			 * For performance, now that the device has been tagged
9858 			 * as busy, and it's known to be powered up, update the
9859 			 * chain types to use jump tables that do not include
9860 			 * pm. This significantly lowers the overhead and
9861 			 * therefore improves performance.
9862 			 */
9863 
9864 			mutex_exit(&un->un_pm_mutex);
9865 			mutex_enter(SD_MUTEX(un));
9866 			SD_TRACE(SD_LOG_IO_PM, un,
9867 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9868 			    un->un_uscsi_chain_type);
9869 
9870 			if (ISREMOVABLE(un)) {
9871 				un->un_buf_chain_type =
9872 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9873 			} else {
9874 				un->un_buf_chain_type =
9875 				    SD_CHAIN_INFO_DISK_NO_PM;
9876 			}
9877 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9878 
9879 			SD_TRACE(SD_LOG_IO_PM, un,
9880 			    "             changed  uscsi_chain_type to   %d\n",
9881 			    un->un_uscsi_chain_type);
9882 			mutex_exit(SD_MUTEX(un));
9883 			mutex_enter(&un->un_pm_mutex);
9884 
9885 			if (un->un_pm_idle_timeid == NULL) {
9886 				/* 300 ms. */
9887 				un->un_pm_idle_timeid =
9888 				    timeout(sd_pm_idletimeout_handler, un,
9889 				    (drv_usectohz((clock_t)300000)));
9890 				/*
9891 				 * Include an extra call to busy which keeps the
9892 				 * device busy with-respect-to the PM layer
9893 				 * until the timer fires, at which time it'll
9894 				 * get the extra idle call.
9895 				 */
9896 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9897 			}
9898 		}
9899 	}
9900 	un->un_pm_busy = FALSE;
9901 	/* Next... */
9902 	cv_signal(&un->un_pm_busy_cv);
9903 
9904 	un->un_pm_count++;
9905 
9906 	SD_TRACE(SD_LOG_IO_PM, un,
9907 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9908 
9909 	mutex_exit(&un->un_pm_mutex);
9910 
9911 	return (return_status);
9912 }
9913 
9914 
9915 /*
9916  *    Function: sd_pm_exit
9917  *
9918  * Description: Called at the completion of a command to manage busy
9919  *		status for the device. If the device becomes idle the
9920  *		PM framework is notified.
9921  *
9922  *     Context: Kernel thread context
9923  */
9924 
9925 static void
9926 sd_pm_exit(struct sd_lun *un)
9927 {
9928 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9929 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9930 
9931 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9932 
9933 	/*
9934 	 * After attach the following flag is only read, so don't
9935 	 * take the penalty of acquiring a mutex for it.
9936 	 */
9937 	if (un->un_f_pm_is_enabled == TRUE) {
9938 
9939 		mutex_enter(&un->un_pm_mutex);
9940 		un->un_pm_count--;
9941 
9942 		SD_TRACE(SD_LOG_IO_PM, un,
9943 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9944 
9945 		ASSERT(un->un_pm_count >= 0);
9946 		if (un->un_pm_count == 0) {
9947 			mutex_exit(&un->un_pm_mutex);
9948 
9949 			SD_TRACE(SD_LOG_IO_PM, un,
9950 			    "sd_pm_exit: idle component\n");
9951 
9952 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9953 
9954 		} else {
9955 			mutex_exit(&un->un_pm_mutex);
9956 		}
9957 	}
9958 
9959 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9960 }
9961 
9962 
9963 /*
9964  *    Function: sdopen
9965  *
9966  * Description: Driver's open(9e) entry point function.
9967  *
9968  *   Arguments: dev_i   - pointer to device number
9969  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9970  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9971  *		cred_p  - user credential pointer
9972  *
9973  * Return Code: EINVAL
9974  *		ENXIO
9975  *		EIO
9976  *		EROFS
9977  *		EBUSY
9978  *
9979  *     Context: Kernel thread context
9980  */
9981 /* ARGSUSED */
9982 static int
9983 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9984 {
9985 	struct sd_lun	*un;
9986 	int		nodelay;
9987 	int		part;
9988 	uint64_t	partmask;
9989 	int		instance;
9990 	dev_t		dev;
9991 	int		rval = EIO;
9992 
9993 	/* Validate the open type */
9994 	if (otyp >= OTYPCNT) {
9995 		return (EINVAL);
9996 	}
9997 
9998 	dev = *dev_p;
9999 	instance = SDUNIT(dev);
10000 	mutex_enter(&sd_detach_mutex);
10001 
10002 	/*
10003 	 * Fail the open if there is no softstate for the instance, or
10004 	 * if another thread somewhere is trying to detach the instance.
10005 	 */
10006 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10007 	    (un->un_detach_count != 0)) {
10008 		mutex_exit(&sd_detach_mutex);
10009 		/*
10010 		 * The probe cache only needs to be cleared when open (9e) fails
10011 		 * with ENXIO (4238046).
10012 		 */
10013 		/*
10014 		 * un-conditionally clearing probe cache is ok with
10015 		 * separate sd/ssd binaries
10016 		 * x86 platform can be an issue with both parallel
10017 		 * and fibre in 1 binary
10018 		 */
10019 		sd_scsi_clear_probe_cache();
10020 		return (ENXIO);
10021 	}
10022 
10023 	/*
10024 	 * The un_layer_count is to prevent another thread in specfs from
10025 	 * trying to detach the instance, which can happen when we are
10026 	 * called from a higher-layer driver instead of thru specfs.
10027 	 * This will not be needed when DDI provides a layered driver
10028 	 * interface that allows specfs to know that an instance is in
10029 	 * use by a layered driver & should not be detached.
10030 	 *
10031 	 * Note: the semantics for layered driver opens are exactly one
10032 	 * close for every open.
10033 	 */
10034 	if (otyp == OTYP_LYR) {
10035 		un->un_layer_count++;
10036 	}
10037 
10038 	/*
10039 	 * Keep a count of the current # of opens in progress. This is because
10040 	 * some layered drivers try to call us as a regular open. This can
10041 	 * cause problems that we cannot prevent, however by keeping this count
10042 	 * we can at least keep our open and detach routines from racing against
10043 	 * each other under such conditions.
10044 	 */
10045 	un->un_opens_in_progress++;
10046 	mutex_exit(&sd_detach_mutex);
10047 
10048 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10049 	part	 = SDPART(dev);
10050 	partmask = 1 << part;
10051 
10052 	/*
10053 	 * We use a semaphore here in order to serialize
10054 	 * open and close requests on the device.
10055 	 */
10056 	sema_p(&un->un_semoclose);
10057 
10058 	mutex_enter(SD_MUTEX(un));
10059 
10060 	/*
10061 	 * All device accesses go thru sdstrategy() where we check
10062 	 * on suspend status but there could be a scsi_poll command,
10063 	 * which bypasses sdstrategy(), so we need to check pm
10064 	 * status.
10065 	 */
10066 
10067 	if (!nodelay) {
10068 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10069 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10070 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10071 		}
10072 
10073 		mutex_exit(SD_MUTEX(un));
10074 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10075 			rval = EIO;
10076 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10077 			    "sdopen: sd_pm_entry failed\n");
10078 			goto open_failed_with_pm;
10079 		}
10080 		mutex_enter(SD_MUTEX(un));
10081 	}
10082 
10083 	/* check for previous exclusive open */
10084 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10085 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10086 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10087 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10088 
10089 	if (un->un_exclopen & (partmask)) {
10090 		goto excl_open_fail;
10091 	}
10092 
10093 	if (flag & FEXCL) {
10094 		int i;
10095 		if (un->un_ocmap.lyropen[part]) {
10096 			goto excl_open_fail;
10097 		}
10098 		for (i = 0; i < (OTYPCNT - 1); i++) {
10099 			if (un->un_ocmap.regopen[i] & (partmask)) {
10100 				goto excl_open_fail;
10101 			}
10102 		}
10103 	}
10104 
10105 	/*
10106 	 * Check the write permission if this is a removable media device,
10107 	 * NDELAY has not been set, and writable permission is requested.
10108 	 *
10109 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10110 	 * attempt will fail with EIO as part of the I/O processing. This is a
10111 	 * more permissive implementation that allows the open to succeed and
10112 	 * WRITE attempts to fail when appropriate.
10113 	 */
10114 	if (ISREMOVABLE(un)) {
10115 		if ((flag & FWRITE) && (!nodelay)) {
10116 			mutex_exit(SD_MUTEX(un));
10117 			/*
10118 			 * Defer the check for write permission on writable
10119 			 * DVD drive till sdstrategy and will not fail open even
10120 			 * if FWRITE is set as the device can be writable
10121 			 * depending upon the media and the media can change
10122 			 * after the call to open().
10123 			 */
10124 			if (un->un_f_dvdram_writable_device == FALSE) {
10125 				if (ISCD(un) || sr_check_wp(dev)) {
10126 				rval = EROFS;
10127 				mutex_enter(SD_MUTEX(un));
10128 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10129 				    "write to cd or write protected media\n");
10130 				goto open_fail;
10131 				}
10132 			}
10133 			mutex_enter(SD_MUTEX(un));
10134 		}
10135 	}
10136 
10137 	/*
10138 	 * If opening in NDELAY/NONBLOCK mode, just return.
10139 	 * Check if disk is ready and has a valid geometry later.
10140 	 */
10141 	if (!nodelay) {
10142 		mutex_exit(SD_MUTEX(un));
10143 		rval = sd_ready_and_valid(un);
10144 		mutex_enter(SD_MUTEX(un));
10145 		/*
10146 		 * Fail if device is not ready or if the number of disk
10147 		 * blocks is zero or negative for non CD devices.
10148 		 */
10149 		if ((rval != SD_READY_VALID) ||
10150 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10151 			if (ISREMOVABLE(un)) {
10152 				rval = ENXIO;
10153 			} else {
10154 				rval = EIO;
10155 			}
10156 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10157 			    "device not ready or invalid disk block value\n");
10158 			goto open_fail;
10159 		}
10160 #if defined(__i386) || defined(__amd64)
10161 	} else {
10162 		uchar_t *cp;
10163 		/*
10164 		 * x86 requires special nodelay handling, so that p0 is
10165 		 * always defined and accessible.
10166 		 * Invalidate geometry only if device is not already open.
10167 		 */
10168 		cp = &un->un_ocmap.chkd[0];
10169 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10170 			if (*cp != (uchar_t)0) {
10171 			    break;
10172 			}
10173 			cp++;
10174 		}
10175 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10176 			un->un_f_geometry_is_valid = FALSE;
10177 		}
10178 
10179 #endif
10180 	}
10181 
10182 	if (otyp == OTYP_LYR) {
10183 		un->un_ocmap.lyropen[part]++;
10184 	} else {
10185 		un->un_ocmap.regopen[otyp] |= partmask;
10186 	}
10187 
10188 	/* Set up open and exclusive open flags */
10189 	if (flag & FEXCL) {
10190 		un->un_exclopen |= (partmask);
10191 	}
10192 
10193 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10194 	    "open of part %d type %d\n", part, otyp);
10195 
10196 	mutex_exit(SD_MUTEX(un));
10197 	if (!nodelay) {
10198 		sd_pm_exit(un);
10199 	}
10200 
10201 	sema_v(&un->un_semoclose);
10202 
10203 	mutex_enter(&sd_detach_mutex);
10204 	un->un_opens_in_progress--;
10205 	mutex_exit(&sd_detach_mutex);
10206 
10207 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10208 	return (DDI_SUCCESS);
10209 
10210 excl_open_fail:
10211 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10212 	rval = EBUSY;
10213 
10214 open_fail:
10215 	mutex_exit(SD_MUTEX(un));
10216 
10217 	/*
10218 	 * On a failed open we must exit the pm management.
10219 	 */
10220 	if (!nodelay) {
10221 		sd_pm_exit(un);
10222 	}
10223 open_failed_with_pm:
10224 	sema_v(&un->un_semoclose);
10225 
10226 	mutex_enter(&sd_detach_mutex);
10227 	un->un_opens_in_progress--;
10228 	if (otyp == OTYP_LYR) {
10229 		un->un_layer_count--;
10230 	}
10231 	mutex_exit(&sd_detach_mutex);
10232 
10233 	return (rval);
10234 }
10235 
10236 
10237 /*
10238  *    Function: sdclose
10239  *
10240  * Description: Driver's close(9e) entry point function.
10241  *
10242  *   Arguments: dev    - device number
10243  *		flag   - file status flag, informational only
10244  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10245  *		cred_p - user credential pointer
10246  *
10247  * Return Code: ENXIO
10248  *
10249  *     Context: Kernel thread context
10250  */
10251 /* ARGSUSED */
10252 static int
10253 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10254 {
10255 	struct sd_lun	*un;
10256 	uchar_t		*cp;
10257 	int		part;
10258 	int		nodelay;
10259 	int		rval = 0;
10260 
10261 	/* Validate the open type */
10262 	if (otyp >= OTYPCNT) {
10263 		return (ENXIO);
10264 	}
10265 
10266 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10267 		return (ENXIO);
10268 	}
10269 
10270 	part = SDPART(dev);
10271 	nodelay = flag & (FNDELAY | FNONBLOCK);
10272 
10273 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10274 	    "sdclose: close of part %d type %d\n", part, otyp);
10275 
10276 	/*
10277 	 * We use a semaphore here in order to serialize
10278 	 * open and close requests on the device.
10279 	 */
10280 	sema_p(&un->un_semoclose);
10281 
10282 	mutex_enter(SD_MUTEX(un));
10283 
10284 	/* Don't proceed if power is being changed. */
10285 	while (un->un_state == SD_STATE_PM_CHANGING) {
10286 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10287 	}
10288 
10289 	if (un->un_exclopen & (1 << part)) {
10290 		un->un_exclopen &= ~(1 << part);
10291 	}
10292 
10293 	/* Update the open partition map */
10294 	if (otyp == OTYP_LYR) {
10295 		un->un_ocmap.lyropen[part] -= 1;
10296 	} else {
10297 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10298 	}
10299 
10300 	cp = &un->un_ocmap.chkd[0];
10301 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10302 		if (*cp != NULL) {
10303 			break;
10304 		}
10305 		cp++;
10306 	}
10307 
10308 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10309 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10310 
10311 		/*
10312 		 * We avoid persistance upon the last close, and set
10313 		 * the throttle back to the maximum.
10314 		 */
10315 		un->un_throttle = un->un_saved_throttle;
10316 
10317 		if (un->un_state == SD_STATE_OFFLINE) {
10318 			if (un->un_f_is_fibre == FALSE) {
10319 				scsi_log(SD_DEVINFO(un), sd_label,
10320 					CE_WARN, "offline\n");
10321 			}
10322 			un->un_f_geometry_is_valid = FALSE;
10323 
10324 		} else {
10325 			/*
10326 			 * Flush any outstanding writes in NVRAM cache.
10327 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10328 			 * cmd, it may not work for non-Pluto devices.
10329 			 * SYNCHRONIZE CACHE is not required for removables,
10330 			 * except DVD-RAM drives.
10331 			 *
10332 			 * Also note: because SYNCHRONIZE CACHE is currently
10333 			 * the only command issued here that requires the
10334 			 * drive be powered up, only do the power up before
10335 			 * sending the Sync Cache command. If additional
10336 			 * commands are added which require a powered up
10337 			 * drive, the following sequence may have to change.
10338 			 *
10339 			 * And finally, note that parallel SCSI on SPARC
10340 			 * only issues a Sync Cache to DVD-RAM, a newly
10341 			 * supported device.
10342 			 */
10343 #if defined(__i386) || defined(__amd64)
10344 			if (!ISREMOVABLE(un) ||
10345 			    un->un_f_dvdram_writable_device == TRUE) {
10346 #else
10347 			if (un->un_f_dvdram_writable_device == TRUE) {
10348 #endif
10349 				mutex_exit(SD_MUTEX(un));
10350 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10351 					if (sd_send_scsi_SYNCHRONIZE_CACHE(un)
10352 					    != 0) {
10353 						rval = EIO;
10354 					}
10355 					sd_pm_exit(un);
10356 				} else {
10357 					rval = EIO;
10358 				}
10359 				mutex_enter(SD_MUTEX(un));
10360 			}
10361 
10362 			/*
10363 			 * For removable media devices, send an ALLOW MEDIA
10364 			 * REMOVAL command, but don't get upset if it fails.
10365 			 * Also invalidate the geometry. We need to raise
10366 			 * the power of the drive before we can call
10367 			 * sd_send_scsi_DOORLOCK()
10368 			 */
10369 			if (ISREMOVABLE(un)) {
10370 				mutex_exit(SD_MUTEX(un));
10371 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10372 					rval = sd_send_scsi_DOORLOCK(un,
10373 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10374 
10375 					sd_pm_exit(un);
10376 					if (ISCD(un) && (rval != 0) &&
10377 					    (nodelay != 0)) {
10378 						rval = ENXIO;
10379 					}
10380 				} else {
10381 					rval = EIO;
10382 				}
10383 				mutex_enter(SD_MUTEX(un));
10384 
10385 				sr_ejected(un);
10386 				/*
10387 				 * Destroy the cache (if it exists) which was
10388 				 * allocated for the write maps since this is
10389 				 * the last close for this media.
10390 				 */
10391 				if (un->un_wm_cache) {
10392 					/*
10393 					 * Check if there are pending commands.
10394 					 * and if there are give a warning and
10395 					 * do not destroy the cache.
10396 					 */
10397 					if (un->un_ncmds_in_driver > 0) {
10398 						scsi_log(SD_DEVINFO(un),
10399 						    sd_label, CE_WARN,
10400 						    "Unable to clean up memory "
10401 						    "because of pending I/O\n");
10402 					} else {
10403 						kmem_cache_destroy(
10404 						    un->un_wm_cache);
10405 						un->un_wm_cache = NULL;
10406 					}
10407 				}
10408 			}
10409 		}
10410 	}
10411 
10412 	mutex_exit(SD_MUTEX(un));
10413 	sema_v(&un->un_semoclose);
10414 
10415 	if (otyp == OTYP_LYR) {
10416 		mutex_enter(&sd_detach_mutex);
10417 		/*
10418 		 * The detach routine may run when the layer count
10419 		 * drops to zero.
10420 		 */
10421 		un->un_layer_count--;
10422 		mutex_exit(&sd_detach_mutex);
10423 	}
10424 
10425 	return (rval);
10426 }
10427 
10428 
10429 /*
10430  *    Function: sd_ready_and_valid
10431  *
10432  * Description: Test if device is ready and has a valid geometry.
10433  *
10434  *   Arguments: dev - device number
10435  *		un  - driver soft state (unit) structure
10436  *
10437  * Return Code: SD_READY_VALID		ready and valid label
10438  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10439  *		SD_NOT_READY_VALID	not ready, no label
10440  *
10441  *     Context: Never called at interrupt context.
10442  */
10443 
10444 static int
10445 sd_ready_and_valid(struct sd_lun *un)
10446 {
10447 	struct sd_errstats	*stp;
10448 	uint64_t		capacity;
10449 	uint_t			lbasize;
10450 	int			rval = SD_READY_VALID;
10451 	char			name_str[48];
10452 
10453 	ASSERT(un != NULL);
10454 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10455 
10456 	mutex_enter(SD_MUTEX(un));
10457 	if (ISREMOVABLE(un)) {
10458 		mutex_exit(SD_MUTEX(un));
10459 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10460 			rval = SD_NOT_READY_VALID;
10461 			mutex_enter(SD_MUTEX(un));
10462 			goto done;
10463 		}
10464 
10465 		mutex_enter(SD_MUTEX(un));
10466 		if ((un->un_f_geometry_is_valid == FALSE) ||
10467 		    (un->un_f_blockcount_is_valid == FALSE) ||
10468 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10469 
10470 			/* capacity has to be read every open. */
10471 			mutex_exit(SD_MUTEX(un));
10472 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10473 			    &lbasize, SD_PATH_DIRECT) != 0) {
10474 				mutex_enter(SD_MUTEX(un));
10475 				un->un_f_geometry_is_valid = FALSE;
10476 				rval = SD_NOT_READY_VALID;
10477 				goto done;
10478 			} else {
10479 				mutex_enter(SD_MUTEX(un));
10480 				sd_update_block_info(un, lbasize, capacity);
10481 			}
10482 		}
10483 
10484 		/*
10485 		 * If this is a non 512 block device, allocate space for
10486 		 * the wmap cache. This is being done here since every time
10487 		 * a media is changed this routine will be called and the
10488 		 * block size is a function of media rather than device.
10489 		 */
10490 		if (NOT_DEVBSIZE(un)) {
10491 			if (!(un->un_wm_cache)) {
10492 				(void) snprintf(name_str, sizeof (name_str),
10493 				    "%s%d_cache",
10494 				    ddi_driver_name(SD_DEVINFO(un)),
10495 				    ddi_get_instance(SD_DEVINFO(un)));
10496 				un->un_wm_cache = kmem_cache_create(
10497 				    name_str, sizeof (struct sd_w_map),
10498 				    8, sd_wm_cache_constructor,
10499 				    sd_wm_cache_destructor, NULL,
10500 				    (void *)un, NULL, 0);
10501 				if (!(un->un_wm_cache)) {
10502 					rval = ENOMEM;
10503 					goto done;
10504 				}
10505 			}
10506 		}
10507 
10508 		/*
10509 		 * Check if the media in the device is writable or not.
10510 		 */
10511 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10512 			sd_check_for_writable_cd(un);
10513 		}
10514 
10515 	} else {
10516 		/*
10517 		 * Do a test unit ready to clear any unit attention from non-cd
10518 		 * devices.
10519 		 */
10520 		mutex_exit(SD_MUTEX(un));
10521 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10522 		mutex_enter(SD_MUTEX(un));
10523 	}
10524 
10525 
10526 	if (un->un_state == SD_STATE_NORMAL) {
10527 		/*
10528 		 * If the target is not yet ready here (defined by a TUR
10529 		 * failure), invalidate the geometry and print an 'offline'
10530 		 * message. This is a legacy message, as the state of the
10531 		 * target is not actually changed to SD_STATE_OFFLINE.
10532 		 *
10533 		 * If the TUR fails for EACCES (Reservation Conflict), it
10534 		 * means there actually is nothing wrong with the target that
10535 		 * would require invalidating the geometry, so continue in
10536 		 * that case as if the TUR was successful.
10537 		 */
10538 		int err;
10539 
10540 		mutex_exit(SD_MUTEX(un));
10541 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10542 		mutex_enter(SD_MUTEX(un));
10543 
10544 		if ((err != 0) && (err != EACCES)) {
10545 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10546 			    "offline\n");
10547 			un->un_f_geometry_is_valid = FALSE;
10548 			rval = SD_NOT_READY_VALID;
10549 			goto done;
10550 		}
10551 	}
10552 
10553 	if (un->un_f_format_in_progress == FALSE) {
10554 		/*
10555 		 * Note: sd_validate_geometry may return TRUE, but that does
10556 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10557 		 */
10558 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10559 		if (rval == ENOTSUP) {
10560 			if (un->un_f_geometry_is_valid == TRUE)
10561 				rval = 0;
10562 			else {
10563 				rval = SD_READY_NOT_VALID;
10564 				goto done;
10565 			}
10566 		}
10567 		if (rval != 0) {
10568 			/*
10569 			 * We don't check the validity of geometry for
10570 			 * CDROMs. Also we assume we have a good label
10571 			 * even if sd_validate_geometry returned ENOMEM.
10572 			 */
10573 			if (!ISCD(un) && rval != ENOMEM) {
10574 				rval = SD_NOT_READY_VALID;
10575 				goto done;
10576 			}
10577 		}
10578 	}
10579 
10580 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10581 	/*
10582 	 * check to see if this disk is write protected, if it is and we have
10583 	 * not set read-only, then fail
10584 	 */
10585 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10586 		New_state(un, SD_STATE_CLOSED);
10587 		goto done;
10588 	}
10589 #endif
10590 
10591 	/*
10592 	 * If this is a removable media device, try and send
10593 	 * a PREVENT MEDIA REMOVAL command, but don't get upset
10594 	 * if it fails. For a CD, however, it is an error
10595 	 */
10596 	if (ISREMOVABLE(un)) {
10597 		mutex_exit(SD_MUTEX(un));
10598 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10599 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10600 			rval = SD_NOT_READY_VALID;
10601 			mutex_enter(SD_MUTEX(un));
10602 			goto done;
10603 		}
10604 		mutex_enter(SD_MUTEX(un));
10605 	}
10606 
10607 	/* The state has changed, inform the media watch routines */
10608 	un->un_mediastate = DKIO_INSERTED;
10609 	cv_broadcast(&un->un_state_cv);
10610 	rval = SD_READY_VALID;
10611 
10612 done:
10613 
10614 	/*
10615 	 * Initialize the capacity kstat value, if no media previously
10616 	 * (capacity kstat is 0) and a media has been inserted
10617 	 * (un_blockcount > 0).
10618 	 * This is a more generic way then checking for ISREMOVABLE.
10619 	 */
10620 	if (un->un_errstats != NULL) {
10621 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10622 		if ((stp->sd_capacity.value.ui64 == 0) &&
10623 		    (un->un_f_blockcount_is_valid == TRUE)) {
10624 			stp->sd_capacity.value.ui64 =
10625 			    (uint64_t)((uint64_t)un->un_blockcount *
10626 			    un->un_sys_blocksize);
10627 		}
10628 	}
10629 
10630 	mutex_exit(SD_MUTEX(un));
10631 	return (rval);
10632 }
10633 
10634 
10635 /*
10636  *    Function: sdmin
10637  *
10638  * Description: Routine to limit the size of a data transfer. Used in
10639  *		conjunction with physio(9F).
10640  *
10641  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10642  *
10643  *     Context: Kernel thread context.
10644  */
10645 
10646 static void
10647 sdmin(struct buf *bp)
10648 {
10649 	struct sd_lun	*un;
10650 	int		instance;
10651 
10652 	instance = SDUNIT(bp->b_edev);
10653 
10654 	un = ddi_get_soft_state(sd_state, instance);
10655 	ASSERT(un != NULL);
10656 
10657 	if (bp->b_bcount > un->un_max_xfer_size) {
10658 		bp->b_bcount = un->un_max_xfer_size;
10659 	}
10660 }
10661 
10662 
10663 /*
10664  *    Function: sdread
10665  *
10666  * Description: Driver's read(9e) entry point function.
10667  *
10668  *   Arguments: dev   - device number
10669  *		uio   - structure pointer describing where data is to be stored
10670  *			in user's space
10671  *		cred_p  - user credential pointer
10672  *
10673  * Return Code: ENXIO
10674  *		EIO
10675  *		EINVAL
10676  *		value returned by physio
10677  *
10678  *     Context: Kernel thread context.
10679  */
10680 /* ARGSUSED */
10681 static int
10682 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10683 {
10684 	struct sd_lun	*un = NULL;
10685 	int		secmask;
10686 	int		err;
10687 
10688 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10689 		return (ENXIO);
10690 	}
10691 
10692 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10693 
10694 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10695 		mutex_enter(SD_MUTEX(un));
10696 		/*
10697 		 * Because the call to sd_ready_and_valid will issue I/O we
10698 		 * must wait here if either the device is suspended or
10699 		 * if it's power level is changing.
10700 		 */
10701 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10702 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10703 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10704 		}
10705 		un->un_ncmds_in_driver++;
10706 		mutex_exit(SD_MUTEX(un));
10707 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10708 			mutex_enter(SD_MUTEX(un));
10709 			un->un_ncmds_in_driver--;
10710 			ASSERT(un->un_ncmds_in_driver >= 0);
10711 			mutex_exit(SD_MUTEX(un));
10712 			return (EIO);
10713 		}
10714 		mutex_enter(SD_MUTEX(un));
10715 		un->un_ncmds_in_driver--;
10716 		ASSERT(un->un_ncmds_in_driver >= 0);
10717 		mutex_exit(SD_MUTEX(un));
10718 	}
10719 
10720 	/*
10721 	 * Read requests are restricted to multiples of the system block size.
10722 	 */
10723 	secmask = un->un_sys_blocksize - 1;
10724 
10725 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10726 		SD_ERROR(SD_LOG_READ_WRITE, un,
10727 		    "sdread: file offset not modulo %d\n",
10728 		    un->un_sys_blocksize);
10729 		err = EINVAL;
10730 	} else if (uio->uio_iov->iov_len & (secmask)) {
10731 		SD_ERROR(SD_LOG_READ_WRITE, un,
10732 		    "sdread: transfer length not modulo %d\n",
10733 		    un->un_sys_blocksize);
10734 		err = EINVAL;
10735 	} else {
10736 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10737 	}
10738 	return (err);
10739 }
10740 
10741 
10742 /*
10743  *    Function: sdwrite
10744  *
10745  * Description: Driver's write(9e) entry point function.
10746  *
10747  *   Arguments: dev   - device number
10748  *		uio   - structure pointer describing where data is stored in
10749  *			user's space
10750  *		cred_p  - user credential pointer
10751  *
10752  * Return Code: ENXIO
10753  *		EIO
10754  *		EINVAL
10755  *		value returned by physio
10756  *
10757  *     Context: Kernel thread context.
10758  */
10759 /* ARGSUSED */
10760 static int
10761 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10762 {
10763 	struct sd_lun	*un = NULL;
10764 	int		secmask;
10765 	int		err;
10766 
10767 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10768 		return (ENXIO);
10769 	}
10770 
10771 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10772 
10773 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10774 		mutex_enter(SD_MUTEX(un));
10775 		/*
10776 		 * Because the call to sd_ready_and_valid will issue I/O we
10777 		 * must wait here if either the device is suspended or
10778 		 * if it's power level is changing.
10779 		 */
10780 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10781 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10782 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10783 		}
10784 		un->un_ncmds_in_driver++;
10785 		mutex_exit(SD_MUTEX(un));
10786 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10787 			mutex_enter(SD_MUTEX(un));
10788 			un->un_ncmds_in_driver--;
10789 			ASSERT(un->un_ncmds_in_driver >= 0);
10790 			mutex_exit(SD_MUTEX(un));
10791 			return (EIO);
10792 		}
10793 		mutex_enter(SD_MUTEX(un));
10794 		un->un_ncmds_in_driver--;
10795 		ASSERT(un->un_ncmds_in_driver >= 0);
10796 		mutex_exit(SD_MUTEX(un));
10797 	}
10798 
10799 	/*
10800 	 * Write requests are restricted to multiples of the system block size.
10801 	 */
10802 	secmask = un->un_sys_blocksize - 1;
10803 
10804 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10805 		SD_ERROR(SD_LOG_READ_WRITE, un,
10806 		    "sdwrite: file offset not modulo %d\n",
10807 		    un->un_sys_blocksize);
10808 		err = EINVAL;
10809 	} else if (uio->uio_iov->iov_len & (secmask)) {
10810 		SD_ERROR(SD_LOG_READ_WRITE, un,
10811 		    "sdwrite: transfer length not modulo %d\n",
10812 		    un->un_sys_blocksize);
10813 		err = EINVAL;
10814 	} else {
10815 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10816 	}
10817 	return (err);
10818 }
10819 
10820 
10821 /*
10822  *    Function: sdaread
10823  *
10824  * Description: Driver's aread(9e) entry point function.
10825  *
10826  *   Arguments: dev   - device number
10827  *		aio   - structure pointer describing where data is to be stored
10828  *		cred_p  - user credential pointer
10829  *
10830  * Return Code: ENXIO
10831  *		EIO
10832  *		EINVAL
10833  *		value returned by aphysio
10834  *
10835  *     Context: Kernel thread context.
10836  */
10837 /* ARGSUSED */
10838 static int
10839 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10840 {
10841 	struct sd_lun	*un = NULL;
10842 	struct uio	*uio = aio->aio_uio;
10843 	int		secmask;
10844 	int		err;
10845 
10846 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10847 		return (ENXIO);
10848 	}
10849 
10850 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10851 
10852 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10853 		mutex_enter(SD_MUTEX(un));
10854 		/*
10855 		 * Because the call to sd_ready_and_valid will issue I/O we
10856 		 * must wait here if either the device is suspended or
10857 		 * if it's power level is changing.
10858 		 */
10859 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10860 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10861 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10862 		}
10863 		un->un_ncmds_in_driver++;
10864 		mutex_exit(SD_MUTEX(un));
10865 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10866 			mutex_enter(SD_MUTEX(un));
10867 			un->un_ncmds_in_driver--;
10868 			ASSERT(un->un_ncmds_in_driver >= 0);
10869 			mutex_exit(SD_MUTEX(un));
10870 			return (EIO);
10871 		}
10872 		mutex_enter(SD_MUTEX(un));
10873 		un->un_ncmds_in_driver--;
10874 		ASSERT(un->un_ncmds_in_driver >= 0);
10875 		mutex_exit(SD_MUTEX(un));
10876 	}
10877 
10878 	/*
10879 	 * Read requests are restricted to multiples of the system block size.
10880 	 */
10881 	secmask = un->un_sys_blocksize - 1;
10882 
10883 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10884 		SD_ERROR(SD_LOG_READ_WRITE, un,
10885 		    "sdaread: file offset not modulo %d\n",
10886 		    un->un_sys_blocksize);
10887 		err = EINVAL;
10888 	} else if (uio->uio_iov->iov_len & (secmask)) {
10889 		SD_ERROR(SD_LOG_READ_WRITE, un,
10890 		    "sdaread: transfer length not modulo %d\n",
10891 		    un->un_sys_blocksize);
10892 		err = EINVAL;
10893 	} else {
10894 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10895 	}
10896 	return (err);
10897 }
10898 
10899 
10900 /*
10901  *    Function: sdawrite
10902  *
10903  * Description: Driver's awrite(9e) entry point function.
10904  *
10905  *   Arguments: dev   - device number
10906  *		aio   - structure pointer describing where data is stored
10907  *		cred_p  - user credential pointer
10908  *
10909  * Return Code: ENXIO
10910  *		EIO
10911  *		EINVAL
10912  *		value returned by aphysio
10913  *
10914  *     Context: Kernel thread context.
10915  */
10916 /* ARGSUSED */
10917 static int
10918 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10919 {
10920 	struct sd_lun	*un = NULL;
10921 	struct uio	*uio = aio->aio_uio;
10922 	int		secmask;
10923 	int		err;
10924 
10925 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10926 		return (ENXIO);
10927 	}
10928 
10929 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10930 
10931 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10932 		mutex_enter(SD_MUTEX(un));
10933 		/*
10934 		 * Because the call to sd_ready_and_valid will issue I/O we
10935 		 * must wait here if either the device is suspended or
10936 		 * if it's power level is changing.
10937 		 */
10938 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10939 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10940 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10941 		}
10942 		un->un_ncmds_in_driver++;
10943 		mutex_exit(SD_MUTEX(un));
10944 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10945 			mutex_enter(SD_MUTEX(un));
10946 			un->un_ncmds_in_driver--;
10947 			ASSERT(un->un_ncmds_in_driver >= 0);
10948 			mutex_exit(SD_MUTEX(un));
10949 			return (EIO);
10950 		}
10951 		mutex_enter(SD_MUTEX(un));
10952 		un->un_ncmds_in_driver--;
10953 		ASSERT(un->un_ncmds_in_driver >= 0);
10954 		mutex_exit(SD_MUTEX(un));
10955 	}
10956 
10957 	/*
10958 	 * Write requests are restricted to multiples of the system block size.
10959 	 */
10960 	secmask = un->un_sys_blocksize - 1;
10961 
10962 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10963 		SD_ERROR(SD_LOG_READ_WRITE, un,
10964 		    "sdawrite: file offset not modulo %d\n",
10965 		    un->un_sys_blocksize);
10966 		err = EINVAL;
10967 	} else if (uio->uio_iov->iov_len & (secmask)) {
10968 		SD_ERROR(SD_LOG_READ_WRITE, un,
10969 		    "sdawrite: transfer length not modulo %d\n",
10970 		    un->un_sys_blocksize);
10971 		err = EINVAL;
10972 	} else {
10973 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10974 	}
10975 	return (err);
10976 }
10977 
10978 
10979 
10980 
10981 
10982 /*
10983  * Driver IO processing follows the following sequence:
10984  *
10985  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10986  *         |                |                     ^
10987  *         v                v                     |
10988  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10989  *         |                |                     |                   |
10990  *         v                |                     |                   |
10991  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10992  *         |                |                     ^                   ^
10993  *         v                v                     |                   |
10994  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10995  *         |                |                     |                   |
10996  *     +---+                |                     +------------+      +-------+
10997  *     |                    |                                  |              |
10998  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10999  *     |                    v                                  |              |
11000  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11001  *     |                    |                                  ^              |
11002  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11003  *     |                    v                                  |              |
11004  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11005  *     |                    |                                  ^              |
11006  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11007  *     |                    v                                  |              |
11008  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11009  *     |                    |                                  ^              |
11010  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11011  *     |                    v                                  |              |
11012  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11013  *     |                    |                                  ^              |
11014  *     |                    |                                  |              |
11015  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11016  *                          |                           ^
11017  *                          v                           |
11018  *                   sd_core_iostart()                  |
11019  *                          |                           |
11020  *                          |                           +------>(*destroypkt)()
11021  *                          +-> sd_start_cmds() <-+     |           |
11022  *                          |                     |     |           v
11023  *                          |                     |     |  scsi_destroy_pkt(9F)
11024  *                          |                     |     |
11025  *                          +->(*initpkt)()       +- sdintr()
11026  *                          |  |                        |  |
11027  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11028  *                          |  +-> scsi_setup_cdb(9F)   |
11029  *                          |                           |
11030  *                          +--> scsi_transport(9F)     |
11031  *                                     |                |
11032  *                                     +----> SCSA ---->+
11033  *
11034  *
11035  * This code is based upon the following presumtions:
11036  *
11037  *   - iostart and iodone functions operate on buf(9S) structures. These
11038  *     functions perform the necessary operations on the buf(9S) and pass
11039  *     them along to the next function in the chain by using the macros
11040  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11041  *     (for iodone side functions).
11042  *
11043  *   - The iostart side functions may sleep. The iodone side functions
11044  *     are called under interrupt context and may NOT sleep. Therefore
11045  *     iodone side functions also may not call iostart side functions.
11046  *     (NOTE: iostart side functions should NOT sleep for memory, as
11047  *     this could result in deadlock.)
11048  *
11049  *   - An iostart side function may call its corresponding iodone side
11050  *     function directly (if necessary).
11051  *
11052  *   - In the event of an error, an iostart side function can return a buf(9S)
11053  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11054  *     b_error in the usual way of course).
11055  *
11056  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11057  *     requests to the iostart side functions.  The iostart side functions in
11058  *     this case would be called under the context of a taskq thread, so it's
11059  *     OK for them to block/sleep/spin in this case.
11060  *
11061  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11062  *     pass them along to the next function in the chain.  The corresponding
11063  *     iodone side functions must coalesce the "shadow" bufs and return
11064  *     the "original" buf to the next higher layer.
11065  *
11066  *   - The b_private field of the buf(9S) struct holds a pointer to
11067  *     an sd_xbuf struct, which contains information needed to
11068  *     construct the scsi_pkt for the command.
11069  *
11070  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11071  *     layer must acquire & release the SD_MUTEX(un) as needed.
11072  */
11073 
11074 
11075 /*
11076  * Create taskq for all targets in the system. This is created at
11077  * _init(9E) and destroyed at _fini(9E).
11078  *
11079  * Note: here we set the minalloc to a reasonably high number to ensure that
11080  * we will have an adequate supply of task entries available at interrupt time.
11081  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11082  * sd_create_taskq().  Since we do not want to sleep for allocations at
11083  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11084  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11085  * requests any one instant in time.
11086  */
11087 #define	SD_TASKQ_NUMTHREADS	8
11088 #define	SD_TASKQ_MINALLOC	256
11089 #define	SD_TASKQ_MAXALLOC	256
11090 
11091 static taskq_t	*sd_tq = NULL;
11092 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11093 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11094 
11095 /*
11096  * The following task queue is being created for the write part of
11097  * read-modify-write of non-512 block size devices.
11098  * Limit the number of threads to 1 for now. This number has been choosen
11099  * considering the fact that it applies only to dvd ram drives/MO drives
11100  * currently. Performance for which is not main criteria at this stage.
11101  * Note: It needs to be explored if we can use a single taskq in future
11102  */
11103 #define	SD_WMR_TASKQ_NUMTHREADS	1
11104 static taskq_t	*sd_wmr_tq = NULL;
11105 
11106 /*
11107  *    Function: sd_taskq_create
11108  *
11109  * Description: Create taskq thread(s) and preallocate task entries
11110  *
11111  * Return Code: Returns a pointer to the allocated taskq_t.
11112  *
11113  *     Context: Can sleep. Requires blockable context.
11114  *
11115  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11116  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11117  *		- taskq_create() will block for memory, also it will panic
11118  *		  if it cannot create the requested number of threads.
11119  *		- Currently taskq_create() creates threads that cannot be
11120  *		  swapped.
11121  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11122  *		  supply of taskq entries at interrupt time (ie, so that we
11123  *		  do not have to sleep for memory)
11124  */
11125 
11126 static void
11127 sd_taskq_create(void)
11128 {
11129 	char	taskq_name[TASKQ_NAMELEN];
11130 
11131 	ASSERT(sd_tq == NULL);
11132 	ASSERT(sd_wmr_tq == NULL);
11133 
11134 	(void) snprintf(taskq_name, sizeof (taskq_name),
11135 	    "%s_drv_taskq", sd_label);
11136 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11137 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11138 	    TASKQ_PREPOPULATE));
11139 
11140 	(void) snprintf(taskq_name, sizeof (taskq_name),
11141 	    "%s_rmw_taskq", sd_label);
11142 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11143 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11144 	    TASKQ_PREPOPULATE));
11145 }
11146 
11147 
11148 /*
11149  *    Function: sd_taskq_delete
11150  *
11151  * Description: Complementary cleanup routine for sd_taskq_create().
11152  *
11153  *     Context: Kernel thread context.
11154  */
11155 
11156 static void
11157 sd_taskq_delete(void)
11158 {
11159 	ASSERT(sd_tq != NULL);
11160 	ASSERT(sd_wmr_tq != NULL);
11161 	taskq_destroy(sd_tq);
11162 	taskq_destroy(sd_wmr_tq);
11163 	sd_tq = NULL;
11164 	sd_wmr_tq = NULL;
11165 }
11166 
11167 
11168 /*
11169  *    Function: sdstrategy
11170  *
11171  * Description: Driver's strategy (9E) entry point function.
11172  *
11173  *   Arguments: bp - pointer to buf(9S)
11174  *
11175  * Return Code: Always returns zero
11176  *
11177  *     Context: Kernel thread context.
11178  */
11179 
11180 static int
11181 sdstrategy(struct buf *bp)
11182 {
11183 	struct sd_lun *un;
11184 
11185 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11186 	if (un == NULL) {
11187 		bioerror(bp, EIO);
11188 		bp->b_resid = bp->b_bcount;
11189 		biodone(bp);
11190 		return (0);
11191 	}
11192 	/* As was done in the past, fail new cmds. if state is dumping. */
11193 	if (un->un_state == SD_STATE_DUMPING) {
11194 		bioerror(bp, ENXIO);
11195 		bp->b_resid = bp->b_bcount;
11196 		biodone(bp);
11197 		return (0);
11198 	}
11199 
11200 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11201 
11202 	/*
11203 	 * Commands may sneak in while we released the mutex in
11204 	 * DDI_SUSPEND, we should block new commands. However, old
11205 	 * commands that are still in the driver at this point should
11206 	 * still be allowed to drain.
11207 	 */
11208 	mutex_enter(SD_MUTEX(un));
11209 	/*
11210 	 * Must wait here if either the device is suspended or
11211 	 * if it's power level is changing.
11212 	 */
11213 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11214 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11215 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11216 	}
11217 
11218 	un->un_ncmds_in_driver++;
11219 
11220 	/*
11221 	 * atapi: Since we are running the CD for now in PIO mode we need to
11222 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11223 	 * the HBA's init_pkt routine.
11224 	 */
11225 	if (un->un_f_cfg_is_atapi == TRUE) {
11226 		mutex_exit(SD_MUTEX(un));
11227 		bp_mapin(bp);
11228 		mutex_enter(SD_MUTEX(un));
11229 	}
11230 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11231 	    un->un_ncmds_in_driver);
11232 
11233 	mutex_exit(SD_MUTEX(un));
11234 
11235 	/*
11236 	 * This will (eventually) allocate the sd_xbuf area and
11237 	 * call sd_xbuf_strategy().  We just want to return the
11238 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11239 	 * imized tail call which saves us a stack frame.
11240 	 */
11241 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11242 }
11243 
11244 
11245 /*
11246  *    Function: sd_xbuf_strategy
11247  *
11248  * Description: Function for initiating IO operations via the
11249  *		ddi_xbuf_qstrategy() mechanism.
11250  *
11251  *     Context: Kernel thread context.
11252  */
11253 
11254 static void
11255 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11256 {
11257 	struct sd_lun *un = arg;
11258 
11259 	ASSERT(bp != NULL);
11260 	ASSERT(xp != NULL);
11261 	ASSERT(un != NULL);
11262 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11263 
11264 	/*
11265 	 * Initialize the fields in the xbuf and save a pointer to the
11266 	 * xbuf in bp->b_private.
11267 	 */
11268 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11269 
11270 	/* Send the buf down the iostart chain */
11271 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11272 }
11273 
11274 
11275 /*
11276  *    Function: sd_xbuf_init
11277  *
11278  * Description: Prepare the given sd_xbuf struct for use.
11279  *
11280  *   Arguments: un - ptr to softstate
11281  *		bp - ptr to associated buf(9S)
11282  *		xp - ptr to associated sd_xbuf
11283  *		chain_type - IO chain type to use:
11284  *			SD_CHAIN_NULL
11285  *			SD_CHAIN_BUFIO
11286  *			SD_CHAIN_USCSI
11287  *			SD_CHAIN_DIRECT
11288  *			SD_CHAIN_DIRECT_PRIORITY
11289  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11290  *			initialization; may be NULL if none.
11291  *
11292  *     Context: Kernel thread context
11293  */
11294 
11295 static void
11296 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11297 	uchar_t chain_type, void *pktinfop)
11298 {
11299 	int index;
11300 
11301 	ASSERT(un != NULL);
11302 	ASSERT(bp != NULL);
11303 	ASSERT(xp != NULL);
11304 
11305 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11306 	    bp, chain_type);
11307 
11308 	xp->xb_un	= un;
11309 	xp->xb_pktp	= NULL;
11310 	xp->xb_pktinfo	= pktinfop;
11311 	xp->xb_private	= bp->b_private;
11312 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11313 
11314 	/*
11315 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11316 	 * upon the specified chain type to use.
11317 	 */
11318 	switch (chain_type) {
11319 	case SD_CHAIN_NULL:
11320 		/*
11321 		 * Fall thru to just use the values for the buf type, even
11322 		 * tho for the NULL chain these values will never be used.
11323 		 */
11324 		/* FALLTHRU */
11325 	case SD_CHAIN_BUFIO:
11326 		index = un->un_buf_chain_type;
11327 		break;
11328 	case SD_CHAIN_USCSI:
11329 		index = un->un_uscsi_chain_type;
11330 		break;
11331 	case SD_CHAIN_DIRECT:
11332 		index = un->un_direct_chain_type;
11333 		break;
11334 	case SD_CHAIN_DIRECT_PRIORITY:
11335 		index = un->un_priority_chain_type;
11336 		break;
11337 	default:
11338 		/* We're really broken if we ever get here... */
11339 		panic("sd_xbuf_init: illegal chain type!");
11340 		/*NOTREACHED*/
11341 	}
11342 
11343 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11344 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11345 
11346 	/*
11347 	 * It might be a bit easier to simply bzero the entire xbuf above,
11348 	 * but it turns out that since we init a fair number of members anyway,
11349 	 * we save a fair number cycles by doing explicit assignment of zero.
11350 	 */
11351 	xp->xb_pkt_flags	= 0;
11352 	xp->xb_dma_resid	= 0;
11353 	xp->xb_retry_count	= 0;
11354 	xp->xb_victim_retry_count = 0;
11355 	xp->xb_ua_retry_count	= 0;
11356 	xp->xb_sense_bp		= NULL;
11357 	xp->xb_sense_status	= 0;
11358 	xp->xb_sense_state	= 0;
11359 	xp->xb_sense_resid	= 0;
11360 
11361 	bp->b_private	= xp;
11362 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11363 	bp->b_resid	= 0;
11364 	bp->av_forw	= NULL;
11365 	bp->av_back	= NULL;
11366 	bioerror(bp, 0);
11367 
11368 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11369 }
11370 
11371 
11372 /*
11373  *    Function: sd_uscsi_strategy
11374  *
11375  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11376  *
11377  *   Arguments: bp - buf struct ptr
11378  *
11379  * Return Code: Always returns 0
11380  *
11381  *     Context: Kernel thread context
11382  */
11383 
11384 static int
11385 sd_uscsi_strategy(struct buf *bp)
11386 {
11387 	struct sd_lun		*un;
11388 	struct sd_uscsi_info	*uip;
11389 	struct sd_xbuf		*xp;
11390 	uchar_t			chain_type;
11391 
11392 	ASSERT(bp != NULL);
11393 
11394 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11395 	if (un == NULL) {
11396 		bioerror(bp, EIO);
11397 		bp->b_resid = bp->b_bcount;
11398 		biodone(bp);
11399 		return (0);
11400 	}
11401 
11402 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11403 
11404 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11405 
11406 	mutex_enter(SD_MUTEX(un));
11407 	/*
11408 	 * atapi: Since we are running the CD for now in PIO mode we need to
11409 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11410 	 * the HBA's init_pkt routine.
11411 	 */
11412 	if (un->un_f_cfg_is_atapi == TRUE) {
11413 		mutex_exit(SD_MUTEX(un));
11414 		bp_mapin(bp);
11415 		mutex_enter(SD_MUTEX(un));
11416 	}
11417 	un->un_ncmds_in_driver++;
11418 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11419 	    un->un_ncmds_in_driver);
11420 	mutex_exit(SD_MUTEX(un));
11421 
11422 	/*
11423 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11424 	 */
11425 	ASSERT(bp->b_private != NULL);
11426 	uip = (struct sd_uscsi_info *)bp->b_private;
11427 
11428 	switch (uip->ui_flags) {
11429 	case SD_PATH_DIRECT:
11430 		chain_type = SD_CHAIN_DIRECT;
11431 		break;
11432 	case SD_PATH_DIRECT_PRIORITY:
11433 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11434 		break;
11435 	default:
11436 		chain_type = SD_CHAIN_USCSI;
11437 		break;
11438 	}
11439 
11440 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11441 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11442 
11443 	/* Use the index obtained within xbuf_init */
11444 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11445 
11446 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11447 
11448 	return (0);
11449 }
11450 
11451 
11452 /*
11453  * These routines perform raw i/o operations.
11454  */
11455 /*ARGSUSED*/
11456 static void
11457 sduscsimin(struct buf *bp)
11458 {
11459 	/*
11460 	 * do not break up because the CDB count would then
11461 	 * be incorrect and data underruns would result (incomplete
11462 	 * read/writes which would be retried and then failed, see
11463 	 * sdintr().
11464 	 */
11465 }
11466 
11467 
11468 
11469 /*
11470  *    Function: sd_send_scsi_cmd
11471  *
11472  * Description: Runs a USCSI command for user (when called thru sdioctl),
11473  *		or for the driver
11474  *
11475  *   Arguments: dev - the dev_t for the device
11476  *		incmd - ptr to a valid uscsi_cmd struct
11477  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11478  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11479  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11480  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11481  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11482  *			to use the USCSI "direct" chain and bypass the normal
11483  *			command waitq.
11484  *
11485  * Return Code: 0 -  successful completion of the given command
11486  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11487  *		ENXIO  - soft state not found for specified dev
11488  *		EINVAL
11489  *		EFAULT - copyin/copyout error
11490  *		return code of biowait(9F) or physio(9F):
11491  *			EIO - IO error, caller may check incmd->uscsi_status
11492  *			ENXIO
11493  *			EACCES - reservation conflict
11494  *
11495  *     Context: Waits for command to complete. Can sleep.
11496  */
11497 
11498 static int
11499 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11500 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11501 	int path_flag)
11502 {
11503 	struct sd_uscsi_info	*uip;
11504 	struct uscsi_cmd	*uscmd;
11505 	struct sd_lun	*un;
11506 	struct buf	*bp;
11507 	int	rval;
11508 	int	flags;
11509 
11510 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11511 	if (un == NULL) {
11512 		return (ENXIO);
11513 	}
11514 
11515 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11516 
11517 #ifdef SDDEBUG
11518 	switch (dataspace) {
11519 	case UIO_USERSPACE:
11520 		SD_TRACE(SD_LOG_IO, un,
11521 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11522 		break;
11523 	case UIO_SYSSPACE:
11524 		SD_TRACE(SD_LOG_IO, un,
11525 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11526 		break;
11527 	default:
11528 		SD_TRACE(SD_LOG_IO, un,
11529 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11530 		break;
11531 	}
11532 #endif
11533 
11534 	/*
11535 	 * Perform resets directly; no need to generate a command to do it.
11536 	 */
11537 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11538 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11539 		    RESET_ALL : RESET_TARGET;
11540 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11541 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11542 			/* Reset attempt was unsuccessful */
11543 			SD_TRACE(SD_LOG_IO, un,
11544 			    "sd_send_scsi_cmd: reset: failure\n");
11545 			return (EIO);
11546 		}
11547 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11548 		return (0);
11549 	}
11550 
11551 	/* Perfunctory sanity check... */
11552 	if (incmd->uscsi_cdblen <= 0) {
11553 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11554 		    "invalid uscsi_cdblen, returning EINVAL\n");
11555 		return (EINVAL);
11556 	}
11557 
11558 	/*
11559 	 * In order to not worry about where the uscsi structure came from
11560 	 * (or where the cdb it points to came from) we're going to make
11561 	 * kmem_alloc'd copies of them here. This will also allow reference
11562 	 * to the data they contain long after this process has gone to
11563 	 * sleep and its kernel stack has been unmapped, etc.
11564 	 *
11565 	 * First get some memory for the uscsi_cmd struct and copy the
11566 	 * contents of the given uscsi_cmd struct into it.
11567 	 */
11568 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11569 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11570 
11571 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11572 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11573 
11574 	/*
11575 	 * Now get some space for the CDB, and copy the given CDB into
11576 	 * it. Use ddi_copyin() in case the data is in user space.
11577 	 */
11578 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11579 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11580 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11581 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11582 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11583 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11584 		return (EFAULT);
11585 	}
11586 
11587 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11588 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11589 
11590 	bp = getrbuf(KM_SLEEP);
11591 
11592 	/*
11593 	 * Allocate an sd_uscsi_info struct and fill it with the info
11594 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11595 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11596 	 * since we allocate the buf here in this function, we do not
11597 	 * need to preserve the prior contents of b_private.
11598 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11599 	 */
11600 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11601 	uip->ui_flags = path_flag;
11602 	uip->ui_cmdp  = uscmd;
11603 	bp->b_private = uip;
11604 
11605 	/*
11606 	 * Initialize Request Sense buffering, if requested.
11607 	 */
11608 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11609 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11610 		/*
11611 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11612 		 * buffer, but we replace this with a kernel buffer that
11613 		 * we allocate to use with the sense data. The sense data
11614 		 * (if present) gets copied into this new buffer before the
11615 		 * command is completed.  Then we copy the sense data from
11616 		 * our allocated buf into the caller's buffer below. Note
11617 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11618 		 * below to perform the copy back to the caller's buf.
11619 		 */
11620 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11621 		if (rqbufspace == UIO_USERSPACE) {
11622 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11623 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11624 		} else {
11625 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11626 			uscmd->uscsi_rqlen   = rlen;
11627 			uscmd->uscsi_rqresid = rlen;
11628 		}
11629 	} else {
11630 		uscmd->uscsi_rqbuf = NULL;
11631 		uscmd->uscsi_rqlen   = 0;
11632 		uscmd->uscsi_rqresid = 0;
11633 	}
11634 
11635 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11636 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11637 
11638 	if (un->un_f_is_fibre == FALSE) {
11639 		/*
11640 		 * Force asynchronous mode, if necessary.  Doing this here
11641 		 * has the unfortunate effect of running other queued
11642 		 * commands async also, but since the main purpose of this
11643 		 * capability is downloading new drive firmware, we can
11644 		 * probably live with it.
11645 		 */
11646 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11647 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11648 				== 1) {
11649 				if (scsi_ifsetcap(SD_ADDRESS(un),
11650 					    "synchronous", 0, 1) == 1) {
11651 					SD_TRACE(SD_LOG_IO, un,
11652 					"sd_send_scsi_cmd: forced async ok\n");
11653 				} else {
11654 					SD_TRACE(SD_LOG_IO, un,
11655 					"sd_send_scsi_cmd:\
11656 					forced async failed\n");
11657 					rval = EINVAL;
11658 					goto done;
11659 				}
11660 			}
11661 		}
11662 
11663 		/*
11664 		 * Re-enable synchronous mode, if requested
11665 		 */
11666 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11667 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11668 				== 0) {
11669 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11670 						"synchronous", 1, 1);
11671 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11672 					"re-enabled sync %s\n",
11673 					(i == 1) ? "ok" : "failed");
11674 			}
11675 		}
11676 	}
11677 
11678 	/*
11679 	 * Commands sent with priority are intended for error recovery
11680 	 * situations, and do not have retries performed.
11681 	 */
11682 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11683 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11684 	}
11685 
11686 	/*
11687 	 * If we're going to do actual I/O, let physio do all the right things
11688 	 */
11689 	if (uscmd->uscsi_buflen != 0) {
11690 		struct iovec	aiov;
11691 		struct uio	auio;
11692 		struct uio	*uio = &auio;
11693 
11694 		bzero(&auio, sizeof (struct uio));
11695 		bzero(&aiov, sizeof (struct iovec));
11696 		aiov.iov_base = uscmd->uscsi_bufaddr;
11697 		aiov.iov_len  = uscmd->uscsi_buflen;
11698 		uio->uio_iov  = &aiov;
11699 
11700 		uio->uio_iovcnt  = 1;
11701 		uio->uio_resid   = uscmd->uscsi_buflen;
11702 		uio->uio_segflg  = dataspace;
11703 
11704 		/*
11705 		 * physio() will block here until the command completes....
11706 		 */
11707 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11708 
11709 		rval = physio(sd_uscsi_strategy, bp, dev,
11710 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11711 		    sduscsimin, uio);
11712 
11713 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11714 		    "returned from physio with 0x%x\n", rval);
11715 
11716 	} else {
11717 		/*
11718 		 * We have to mimic what physio would do here! Argh!
11719 		 */
11720 		bp->b_flags  = B_BUSY |
11721 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11722 		bp->b_edev   = dev;
11723 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11724 		bp->b_bcount = 0;
11725 		bp->b_blkno  = 0;
11726 
11727 		SD_TRACE(SD_LOG_IO, un,
11728 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11729 
11730 		(void) sd_uscsi_strategy(bp);
11731 
11732 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11733 
11734 		rval = biowait(bp);
11735 
11736 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11737 		    "returned from  biowait with 0x%x\n", rval);
11738 	}
11739 
11740 done:
11741 
11742 #ifdef SDDEBUG
11743 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11744 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11745 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11746 	if (uscmd->uscsi_bufaddr != NULL) {
11747 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11748 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11749 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11750 		if (dataspace == UIO_SYSSPACE) {
11751 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11752 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11753 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11754 		}
11755 	}
11756 #endif
11757 
11758 	/*
11759 	 * Get the status and residual to return to the caller.
11760 	 */
11761 	incmd->uscsi_status = uscmd->uscsi_status;
11762 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11763 
11764 	/*
11765 	 * If the caller wants sense data, copy back whatever sense data
11766 	 * we may have gotten, and update the relevant rqsense info.
11767 	 */
11768 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11769 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11770 
11771 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11772 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11773 
11774 		/* Update the Request Sense status and resid */
11775 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11776 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11777 
11778 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11779 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11780 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11781 
11782 		/* Copy out the sense data for user processes */
11783 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11784 			int flags =
11785 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11786 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11787 			    rqlen, flags) != 0) {
11788 				rval = EFAULT;
11789 			}
11790 			/*
11791 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11792 			 * uscmd->uscsi_rqbuf instead. They're the same.
11793 			 */
11794 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11795 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11796 			    incmd->uscsi_rqbuf, rqlen);
11797 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11798 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11799 		}
11800 	}
11801 
11802 	/*
11803 	 * Free allocated resources and return; mapout the buf in case it was
11804 	 * mapped in by a lower layer.
11805 	 */
11806 	bp_mapout(bp);
11807 	freerbuf(bp);
11808 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11809 	if (uscmd->uscsi_rqbuf != NULL) {
11810 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11811 	}
11812 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11813 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11814 
11815 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11816 
11817 	return (rval);
11818 }
11819 
11820 
11821 /*
11822  *    Function: sd_buf_iodone
11823  *
11824  * Description: Frees the sd_xbuf & returns the buf to its originator.
11825  *
11826  *     Context: May be called from interrupt context.
11827  */
11828 /* ARGSUSED */
11829 static void
11830 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11831 {
11832 	struct sd_xbuf *xp;
11833 
11834 	ASSERT(un != NULL);
11835 	ASSERT(bp != NULL);
11836 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11837 
11838 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11839 
11840 	xp = SD_GET_XBUF(bp);
11841 	ASSERT(xp != NULL);
11842 
11843 	mutex_enter(SD_MUTEX(un));
11844 
11845 	/*
11846 	 * Grab time when the cmd completed.
11847 	 * This is used for determining if the system has been
11848 	 * idle long enough to make it idle to the PM framework.
11849 	 * This is for lowering the overhead, and therefore improving
11850 	 * performance per I/O operation.
11851 	 */
11852 	un->un_pm_idle_time = ddi_get_time();
11853 
11854 	un->un_ncmds_in_driver--;
11855 	ASSERT(un->un_ncmds_in_driver >= 0);
11856 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11857 	    un->un_ncmds_in_driver);
11858 
11859 	mutex_exit(SD_MUTEX(un));
11860 
11861 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11862 	biodone(bp);				/* bp is gone after this */
11863 
11864 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11865 }
11866 
11867 
11868 /*
11869  *    Function: sd_uscsi_iodone
11870  *
11871  * Description: Frees the sd_xbuf & returns the buf to its originator.
11872  *
11873  *     Context: May be called from interrupt context.
11874  */
11875 /* ARGSUSED */
11876 static void
11877 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11878 {
11879 	struct sd_xbuf *xp;
11880 
11881 	ASSERT(un != NULL);
11882 	ASSERT(bp != NULL);
11883 
11884 	xp = SD_GET_XBUF(bp);
11885 	ASSERT(xp != NULL);
11886 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11887 
11888 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11889 
11890 	mutex_enter(SD_MUTEX(un));
11891 
11892 	/*
11893 	 * Grab time when the cmd completed.
11894 	 * This is used for determining if the system has been
11895 	 * idle long enough to make it idle to the PM framework.
11896 	 * This is for lowering the overhead, and therefore improving
11897 	 * performance per I/O operation.
11898 	 */
11899 	un->un_pm_idle_time = ddi_get_time();
11900 
11901 	un->un_ncmds_in_driver--;
11902 	ASSERT(un->un_ncmds_in_driver >= 0);
11903 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11904 	    un->un_ncmds_in_driver);
11905 
11906 	mutex_exit(SD_MUTEX(un));
11907 
11908 	kmem_free(xp, sizeof (struct sd_xbuf));
11909 	biodone(bp);
11910 
11911 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11912 }
11913 
11914 
11915 /*
11916  *    Function: sd_mapblockaddr_iostart
11917  *
11918  * Description: Verify request lies withing the partition limits for
11919  *		the indicated minor device.  Issue "overrun" buf if
11920  *		request would exceed partition range.  Converts
11921  *		partition-relative block address to absolute.
11922  *
11923  *     Context: Can sleep
11924  *
11925  *      Issues: This follows what the old code did, in terms of accessing
11926  *		some of the partition info in the unit struct without holding
11927  *		the mutext.  This is a general issue, if the partition info
11928  *		can be altered while IO is in progress... as soon as we send
11929  *		a buf, its partitioning can be invalid before it gets to the
11930  *		device.  Probably the right fix is to move partitioning out
11931  *		of the driver entirely.
11932  */
11933 
11934 static void
11935 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11936 {
11937 	daddr_t	nblocks;	/* #blocks in the given partition */
11938 	daddr_t	blocknum;	/* Block number specified by the buf */
11939 	size_t	requested_nblocks;
11940 	size_t	available_nblocks;
11941 	int	partition;
11942 	diskaddr_t	partition_offset;
11943 	struct sd_xbuf *xp;
11944 
11945 
11946 	ASSERT(un != NULL);
11947 	ASSERT(bp != NULL);
11948 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11949 
11950 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11951 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11952 
11953 	xp = SD_GET_XBUF(bp);
11954 	ASSERT(xp != NULL);
11955 
11956 	/*
11957 	 * If the geometry is not indicated as valid, attempt to access
11958 	 * the unit & verify the geometry/label. This can be the case for
11959 	 * removable-media devices, of if the device was opened in
11960 	 * NDELAY/NONBLOCK mode.
11961 	 */
11962 	if ((un->un_f_geometry_is_valid != TRUE) &&
11963 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
11964 		/*
11965 		 * For removable devices it is possible to start an I/O
11966 		 * without a media by opening the device in nodelay mode.
11967 		 * Also for writable CDs there can be many scenarios where
11968 		 * there is no geometry yet but volume manager is trying to
11969 		 * issue a read() just because it can see TOC on the CD. So
11970 		 * do not print a message for removables.
11971 		 */
11972 		if (!ISREMOVABLE(un)) {
11973 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11974 			    "i/o to invalid geometry\n");
11975 		}
11976 		bioerror(bp, EIO);
11977 		bp->b_resid = bp->b_bcount;
11978 		SD_BEGIN_IODONE(index, un, bp);
11979 		return;
11980 	}
11981 
11982 	partition = SDPART(bp->b_edev);
11983 
11984 	/* #blocks in partition */
11985 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
11986 
11987 	/* Use of a local variable potentially improves performance slightly */
11988 	partition_offset = un->un_offset[partition];
11989 
11990 	/*
11991 	 * blocknum is the starting block number of the request. At this
11992 	 * point it is still relative to the start of the minor device.
11993 	 */
11994 	blocknum = xp->xb_blkno;
11995 
11996 	/*
11997 	 * Legacy: If the starting block number is one past the last block
11998 	 * in the partition, do not set B_ERROR in the buf.
11999 	 */
12000 	if (blocknum == nblocks)  {
12001 		goto error_exit;
12002 	}
12003 
12004 	/*
12005 	 * Confirm that the first block of the request lies within the
12006 	 * partition limits. Also the requested number of bytes must be
12007 	 * a multiple of the system block size.
12008 	 */
12009 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12010 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12011 		bp->b_flags |= B_ERROR;
12012 		goto error_exit;
12013 	}
12014 
12015 	/*
12016 	 * If the requsted # blocks exceeds the available # blocks, that
12017 	 * is an overrun of the partition.
12018 	 */
12019 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12020 	available_nblocks = (size_t)(nblocks - blocknum);
12021 	ASSERT(nblocks >= blocknum);
12022 
12023 	if (requested_nblocks > available_nblocks) {
12024 		/*
12025 		 * Allocate an "overrun" buf to allow the request to proceed
12026 		 * for the amount of space available in the partition. The
12027 		 * amount not transferred will be added into the b_resid
12028 		 * when the operation is complete. The overrun buf
12029 		 * replaces the original buf here, and the original buf
12030 		 * is saved inside the overrun buf, for later use.
12031 		 */
12032 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12033 		    (offset_t)(requested_nblocks - available_nblocks));
12034 		size_t count = bp->b_bcount - resid;
12035 		/*
12036 		 * Note: count is an unsigned entity thus it'll NEVER
12037 		 * be less than 0 so ASSERT the original values are
12038 		 * correct.
12039 		 */
12040 		ASSERT(bp->b_bcount >= resid);
12041 
12042 		bp = sd_bioclone_alloc(bp, count, blocknum,
12043 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12044 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12045 		ASSERT(xp != NULL);
12046 	}
12047 
12048 	/* At this point there should be no residual for this buf. */
12049 	ASSERT(bp->b_resid == 0);
12050 
12051 	/* Convert the block number to an absolute address. */
12052 	xp->xb_blkno += partition_offset;
12053 
12054 	SD_NEXT_IOSTART(index, un, bp);
12055 
12056 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12057 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12058 
12059 	return;
12060 
12061 error_exit:
12062 	bp->b_resid = bp->b_bcount;
12063 	SD_BEGIN_IODONE(index, un, bp);
12064 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12065 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12066 }
12067 
12068 
12069 /*
12070  *    Function: sd_mapblockaddr_iodone
12071  *
12072  * Description: Completion-side processing for partition management.
12073  *
12074  *     Context: May be called under interrupt context
12075  */
12076 
12077 static void
12078 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12079 {
12080 	/* int	partition; */	/* Not used, see below. */
12081 	ASSERT(un != NULL);
12082 	ASSERT(bp != NULL);
12083 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12084 
12085 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12086 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12087 
12088 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12089 		/*
12090 		 * We have an "overrun" buf to deal with...
12091 		 */
12092 		struct sd_xbuf	*xp;
12093 		struct buf	*obp;	/* ptr to the original buf */
12094 
12095 		xp = SD_GET_XBUF(bp);
12096 		ASSERT(xp != NULL);
12097 
12098 		/* Retrieve the pointer to the original buf */
12099 		obp = (struct buf *)xp->xb_private;
12100 		ASSERT(obp != NULL);
12101 
12102 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12103 		bioerror(obp, bp->b_error);
12104 
12105 		sd_bioclone_free(bp);
12106 
12107 		/*
12108 		 * Get back the original buf.
12109 		 * Note that since the restoration of xb_blkno below
12110 		 * was removed, the sd_xbuf is not needed.
12111 		 */
12112 		bp = obp;
12113 		/*
12114 		 * xp = SD_GET_XBUF(bp);
12115 		 * ASSERT(xp != NULL);
12116 		 */
12117 	}
12118 
12119 	/*
12120 	 * Convert sd->xb_blkno back to a minor-device relative value.
12121 	 * Note: this has been commented out, as it is not needed in the
12122 	 * current implementation of the driver (ie, since this function
12123 	 * is at the top of the layering chains, so the info will be
12124 	 * discarded) and it is in the "hot" IO path.
12125 	 *
12126 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12127 	 * xp->xb_blkno -= un->un_offset[partition];
12128 	 */
12129 
12130 	SD_NEXT_IODONE(index, un, bp);
12131 
12132 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12133 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12134 }
12135 
12136 
12137 /*
12138  *    Function: sd_mapblocksize_iostart
12139  *
12140  * Description: Convert between system block size (un->un_sys_blocksize)
12141  *		and target block size (un->un_tgt_blocksize).
12142  *
12143  *     Context: Can sleep to allocate resources.
12144  *
12145  * Assumptions: A higher layer has already performed any partition validation,
12146  *		and converted the xp->xb_blkno to an absolute value relative
12147  *		to the start of the device.
12148  *
12149  *		It is also assumed that the higher layer has implemented
12150  *		an "overrun" mechanism for the case where the request would
12151  *		read/write beyond the end of a partition.  In this case we
12152  *		assume (and ASSERT) that bp->b_resid == 0.
12153  *
12154  *		Note: The implementation for this routine assumes the target
12155  *		block size remains constant between allocation and transport.
12156  */
12157 
12158 static void
12159 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12160 {
12161 	struct sd_mapblocksize_info	*bsp;
12162 	struct sd_xbuf			*xp;
12163 	offset_t first_byte;
12164 	daddr_t	start_block, end_block;
12165 	daddr_t	request_bytes;
12166 	ushort_t is_aligned = FALSE;
12167 
12168 	ASSERT(un != NULL);
12169 	ASSERT(bp != NULL);
12170 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12171 	ASSERT(bp->b_resid == 0);
12172 
12173 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12174 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12175 
12176 	/*
12177 	 * For a non-writable CD, a write request is an error
12178 	 */
12179 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12180 	    (un->un_f_mmc_writable_media == FALSE)) {
12181 		bioerror(bp, EIO);
12182 		bp->b_resid = bp->b_bcount;
12183 		SD_BEGIN_IODONE(index, un, bp);
12184 		return;
12185 	}
12186 
12187 	/*
12188 	 * We do not need a shadow buf if the device is using
12189 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12190 	 * In this case there is no layer-private data block allocated.
12191 	 */
12192 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12193 	    (bp->b_bcount == 0)) {
12194 		goto done;
12195 	}
12196 
12197 #if defined(__i386) || defined(__amd64)
12198 	/* We do not support non-block-aligned transfers for ROD devices */
12199 	ASSERT(!ISROD(un));
12200 #endif
12201 
12202 	xp = SD_GET_XBUF(bp);
12203 	ASSERT(xp != NULL);
12204 
12205 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12206 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12207 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12208 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12209 	    "request start block:0x%x\n", xp->xb_blkno);
12210 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12211 	    "request len:0x%x\n", bp->b_bcount);
12212 
12213 	/*
12214 	 * Allocate the layer-private data area for the mapblocksize layer.
12215 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12216 	 * struct to store the pointer to their layer-private data block, but
12217 	 * each layer also has the responsibility of restoring the prior
12218 	 * contents of xb_private before returning the buf/xbuf to the
12219 	 * higher layer that sent it.
12220 	 *
12221 	 * Here we save the prior contents of xp->xb_private into the
12222 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12223 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12224 	 * the layer-private area and returning the buf/xbuf to the layer
12225 	 * that sent it.
12226 	 *
12227 	 * Note that here we use kmem_zalloc for the allocation as there are
12228 	 * parts of the mapblocksize code that expect certain fields to be
12229 	 * zero unless explicitly set to a required value.
12230 	 */
12231 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12232 	bsp->mbs_oprivate = xp->xb_private;
12233 	xp->xb_private = bsp;
12234 
12235 	/*
12236 	 * This treats the data on the disk (target) as an array of bytes.
12237 	 * first_byte is the byte offset, from the beginning of the device,
12238 	 * to the location of the request. This is converted from a
12239 	 * un->un_sys_blocksize block address to a byte offset, and then back
12240 	 * to a block address based upon a un->un_tgt_blocksize block size.
12241 	 *
12242 	 * xp->xb_blkno should be absolute upon entry into this function,
12243 	 * but, but it is based upon partitions that use the "system"
12244 	 * block size. It must be adjusted to reflect the block size of
12245 	 * the target.
12246 	 *
12247 	 * Note that end_block is actually the block that follows the last
12248 	 * block of the request, but that's what is needed for the computation.
12249 	 */
12250 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12251 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12252 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12253 	    un->un_tgt_blocksize;
12254 
12255 	/* request_bytes is rounded up to a multiple of the target block size */
12256 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12257 
12258 	/*
12259 	 * See if the starting address of the request and the request
12260 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12261 	 * then we do not need to allocate a shadow buf to handle the request.
12262 	 */
12263 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12264 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12265 		is_aligned = TRUE;
12266 	}
12267 
12268 	if ((bp->b_flags & B_READ) == 0) {
12269 		/*
12270 		 * Lock the range for a write operation. An aligned request is
12271 		 * considered a simple write; otherwise the request must be a
12272 		 * read-modify-write.
12273 		 */
12274 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12275 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12276 	}
12277 
12278 	/*
12279 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12280 	 * where the READ command is generated for a read-modify-write. (The
12281 	 * write phase is deferred until after the read completes.)
12282 	 */
12283 	if (is_aligned == FALSE) {
12284 
12285 		struct sd_mapblocksize_info	*shadow_bsp;
12286 		struct sd_xbuf	*shadow_xp;
12287 		struct buf	*shadow_bp;
12288 
12289 		/*
12290 		 * Allocate the shadow buf and it associated xbuf. Note that
12291 		 * after this call the xb_blkno value in both the original
12292 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12293 		 * same: absolute relative to the start of the device, and
12294 		 * adjusted for the target block size. The b_blkno in the
12295 		 * shadow buf will also be set to this value. We should never
12296 		 * change b_blkno in the original bp however.
12297 		 *
12298 		 * Note also that the shadow buf will always need to be a
12299 		 * READ command, regardless of whether the incoming command
12300 		 * is a READ or a WRITE.
12301 		 */
12302 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12303 		    xp->xb_blkno,
12304 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12305 
12306 		shadow_xp = SD_GET_XBUF(shadow_bp);
12307 
12308 		/*
12309 		 * Allocate the layer-private data for the shadow buf.
12310 		 * (No need to preserve xb_private in the shadow xbuf.)
12311 		 */
12312 		shadow_xp->xb_private = shadow_bsp =
12313 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12314 
12315 		/*
12316 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12317 		 * to figure out where the start of the user data is (based upon
12318 		 * the system block size) in the data returned by the READ
12319 		 * command (which will be based upon the target blocksize). Note
12320 		 * that this is only really used if the request is unaligned.
12321 		 */
12322 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12323 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12324 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12325 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12326 
12327 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12328 
12329 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12330 
12331 		/* Transfer the wmap (if any) to the shadow buf */
12332 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12333 		bsp->mbs_wmp = NULL;
12334 
12335 		/*
12336 		 * The shadow buf goes on from here in place of the
12337 		 * original buf.
12338 		 */
12339 		shadow_bsp->mbs_orig_bp = bp;
12340 		bp = shadow_bp;
12341 	}
12342 
12343 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12344 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12345 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12346 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12347 	    request_bytes);
12348 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12349 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12350 
12351 done:
12352 	SD_NEXT_IOSTART(index, un, bp);
12353 
12354 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12355 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12356 }
12357 
12358 
12359 /*
12360  *    Function: sd_mapblocksize_iodone
12361  *
12362  * Description: Completion side processing for block-size mapping.
12363  *
12364  *     Context: May be called under interrupt context
12365  */
12366 
12367 static void
12368 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12369 {
12370 	struct sd_mapblocksize_info	*bsp;
12371 	struct sd_xbuf	*xp;
12372 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12373 	struct buf	*orig_bp;	/* ptr to the original buf */
12374 	offset_t	shadow_end;
12375 	offset_t	request_end;
12376 	offset_t	shadow_start;
12377 	ssize_t		copy_offset;
12378 	size_t		copy_length;
12379 	size_t		shortfall;
12380 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12381 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12382 
12383 	ASSERT(un != NULL);
12384 	ASSERT(bp != NULL);
12385 
12386 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12387 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12388 
12389 	/*
12390 	 * There is no shadow buf or layer-private data if the target is
12391 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12392 	 */
12393 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12394 	    (bp->b_bcount == 0)) {
12395 		goto exit;
12396 	}
12397 
12398 	xp = SD_GET_XBUF(bp);
12399 	ASSERT(xp != NULL);
12400 
12401 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12402 	bsp = xp->xb_private;
12403 
12404 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12405 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12406 
12407 	if (is_write) {
12408 		/*
12409 		 * For a WRITE request we must free up the block range that
12410 		 * we have locked up.  This holds regardless of whether this is
12411 		 * an aligned write request or a read-modify-write request.
12412 		 */
12413 		sd_range_unlock(un, bsp->mbs_wmp);
12414 		bsp->mbs_wmp = NULL;
12415 	}
12416 
12417 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12418 		/*
12419 		 * An aligned read or write command will have no shadow buf;
12420 		 * there is not much else to do with it.
12421 		 */
12422 		goto done;
12423 	}
12424 
12425 	orig_bp = bsp->mbs_orig_bp;
12426 	ASSERT(orig_bp != NULL);
12427 	orig_xp = SD_GET_XBUF(orig_bp);
12428 	ASSERT(orig_xp != NULL);
12429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12430 
12431 	if (!is_write && has_wmap) {
12432 		/*
12433 		 * A READ with a wmap means this is the READ phase of a
12434 		 * read-modify-write. If an error occurred on the READ then
12435 		 * we do not proceed with the WRITE phase or copy any data.
12436 		 * Just release the write maps and return with an error.
12437 		 */
12438 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12439 			orig_bp->b_resid = orig_bp->b_bcount;
12440 			bioerror(orig_bp, bp->b_error);
12441 			sd_range_unlock(un, bsp->mbs_wmp);
12442 			goto freebuf_done;
12443 		}
12444 	}
12445 
12446 	/*
12447 	 * Here is where we set up to copy the data from the shadow buf
12448 	 * into the space associated with the original buf.
12449 	 *
12450 	 * To deal with the conversion between block sizes, these
12451 	 * computations treat the data as an array of bytes, with the
12452 	 * first byte (byte 0) corresponding to the first byte in the
12453 	 * first block on the disk.
12454 	 */
12455 
12456 	/*
12457 	 * shadow_start and shadow_len indicate the location and size of
12458 	 * the data returned with the shadow IO request.
12459 	 */
12460 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12461 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12462 
12463 	/*
12464 	 * copy_offset gives the offset (in bytes) from the start of the first
12465 	 * block of the READ request to the beginning of the data.  We retrieve
12466 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12467 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12468 	 * data to be copied (in bytes).
12469 	 */
12470 	copy_offset  = bsp->mbs_copy_offset;
12471 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12472 	copy_length  = orig_bp->b_bcount;
12473 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12474 
12475 	/*
12476 	 * Set up the resid and error fields of orig_bp as appropriate.
12477 	 */
12478 	if (shadow_end >= request_end) {
12479 		/* We got all the requested data; set resid to zero */
12480 		orig_bp->b_resid = 0;
12481 	} else {
12482 		/*
12483 		 * We failed to get enough data to fully satisfy the original
12484 		 * request. Just copy back whatever data we got and set
12485 		 * up the residual and error code as required.
12486 		 *
12487 		 * 'shortfall' is the amount by which the data received with the
12488 		 * shadow buf has "fallen short" of the requested amount.
12489 		 */
12490 		shortfall = (size_t)(request_end - shadow_end);
12491 
12492 		if (shortfall > orig_bp->b_bcount) {
12493 			/*
12494 			 * We did not get enough data to even partially
12495 			 * fulfill the original request.  The residual is
12496 			 * equal to the amount requested.
12497 			 */
12498 			orig_bp->b_resid = orig_bp->b_bcount;
12499 		} else {
12500 			/*
12501 			 * We did not get all the data that we requested
12502 			 * from the device, but we will try to return what
12503 			 * portion we did get.
12504 			 */
12505 			orig_bp->b_resid = shortfall;
12506 		}
12507 		ASSERT(copy_length >= orig_bp->b_resid);
12508 		copy_length  -= orig_bp->b_resid;
12509 	}
12510 
12511 	/* Propagate the error code from the shadow buf to the original buf */
12512 	bioerror(orig_bp, bp->b_error);
12513 
12514 	if (is_write) {
12515 		goto freebuf_done;	/* No data copying for a WRITE */
12516 	}
12517 
12518 	if (has_wmap) {
12519 		/*
12520 		 * This is a READ command from the READ phase of a
12521 		 * read-modify-write request. We have to copy the data given
12522 		 * by the user OVER the data returned by the READ command,
12523 		 * then convert the command from a READ to a WRITE and send
12524 		 * it back to the target.
12525 		 */
12526 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12527 		    copy_length);
12528 
12529 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12530 
12531 		/*
12532 		 * Dispatch the WRITE command to the taskq thread, which
12533 		 * will in turn send the command to the target. When the
12534 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12535 		 * will get called again as part of the iodone chain
12536 		 * processing for it. Note that we will still be dealing
12537 		 * with the shadow buf at that point.
12538 		 */
12539 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12540 		    KM_NOSLEEP) != 0) {
12541 			/*
12542 			 * Dispatch was successful so we are done. Return
12543 			 * without going any higher up the iodone chain. Do
12544 			 * not free up any layer-private data until after the
12545 			 * WRITE completes.
12546 			 */
12547 			return;
12548 		}
12549 
12550 		/*
12551 		 * Dispatch of the WRITE command failed; set up the error
12552 		 * condition and send this IO back up the iodone chain.
12553 		 */
12554 		bioerror(orig_bp, EIO);
12555 		orig_bp->b_resid = orig_bp->b_bcount;
12556 
12557 	} else {
12558 		/*
12559 		 * This is a regular READ request (ie, not a RMW). Copy the
12560 		 * data from the shadow buf into the original buf. The
12561 		 * copy_offset compensates for any "misalignment" between the
12562 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12563 		 * original buf (with its un->un_sys_blocksize blocks).
12564 		 */
12565 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12566 		    copy_length);
12567 	}
12568 
12569 freebuf_done:
12570 
12571 	/*
12572 	 * At this point we still have both the shadow buf AND the original
12573 	 * buf to deal with, as well as the layer-private data area in each.
12574 	 * Local variables are as follows:
12575 	 *
12576 	 * bp -- points to shadow buf
12577 	 * xp -- points to xbuf of shadow buf
12578 	 * bsp -- points to layer-private data area of shadow buf
12579 	 * orig_bp -- points to original buf
12580 	 *
12581 	 * First free the shadow buf and its associated xbuf, then free the
12582 	 * layer-private data area from the shadow buf. There is no need to
12583 	 * restore xb_private in the shadow xbuf.
12584 	 */
12585 	sd_shadow_buf_free(bp);
12586 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12587 
12588 	/*
12589 	 * Now update the local variables to point to the original buf, xbuf,
12590 	 * and layer-private area.
12591 	 */
12592 	bp = orig_bp;
12593 	xp = SD_GET_XBUF(bp);
12594 	ASSERT(xp != NULL);
12595 	ASSERT(xp == orig_xp);
12596 	bsp = xp->xb_private;
12597 	ASSERT(bsp != NULL);
12598 
12599 done:
12600 	/*
12601 	 * Restore xb_private to whatever it was set to by the next higher
12602 	 * layer in the chain, then free the layer-private data area.
12603 	 */
12604 	xp->xb_private = bsp->mbs_oprivate;
12605 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12606 
12607 exit:
12608 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12609 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12610 
12611 	SD_NEXT_IODONE(index, un, bp);
12612 }
12613 
12614 
12615 /*
12616  *    Function: sd_checksum_iostart
12617  *
12618  * Description: A stub function for a layer that's currently not used.
12619  *		For now just a placeholder.
12620  *
12621  *     Context: Kernel thread context
12622  */
12623 
12624 static void
12625 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12626 {
12627 	ASSERT(un != NULL);
12628 	ASSERT(bp != NULL);
12629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12630 	SD_NEXT_IOSTART(index, un, bp);
12631 }
12632 
12633 
12634 /*
12635  *    Function: sd_checksum_iodone
12636  *
12637  * Description: A stub function for a layer that's currently not used.
12638  *		For now just a placeholder.
12639  *
12640  *     Context: May be called under interrupt context
12641  */
12642 
12643 static void
12644 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12645 {
12646 	ASSERT(un != NULL);
12647 	ASSERT(bp != NULL);
12648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12649 	SD_NEXT_IODONE(index, un, bp);
12650 }
12651 
12652 
12653 /*
12654  *    Function: sd_checksum_uscsi_iostart
12655  *
12656  * Description: A stub function for a layer that's currently not used.
12657  *		For now just a placeholder.
12658  *
12659  *     Context: Kernel thread context
12660  */
12661 
12662 static void
12663 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12664 {
12665 	ASSERT(un != NULL);
12666 	ASSERT(bp != NULL);
12667 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12668 	SD_NEXT_IOSTART(index, un, bp);
12669 }
12670 
12671 
12672 /*
12673  *    Function: sd_checksum_uscsi_iodone
12674  *
12675  * Description: A stub function for a layer that's currently not used.
12676  *		For now just a placeholder.
12677  *
12678  *     Context: May be called under interrupt context
12679  */
12680 
12681 static void
12682 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12683 {
12684 	ASSERT(un != NULL);
12685 	ASSERT(bp != NULL);
12686 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12687 	SD_NEXT_IODONE(index, un, bp);
12688 }
12689 
12690 
12691 /*
12692  *    Function: sd_pm_iostart
12693  *
12694  * Description: iostart-side routine for Power mangement.
12695  *
12696  *     Context: Kernel thread context
12697  */
12698 
12699 static void
12700 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12701 {
12702 	ASSERT(un != NULL);
12703 	ASSERT(bp != NULL);
12704 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12705 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12706 
12707 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12708 
12709 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12710 		/*
12711 		 * Set up to return the failed buf back up the 'iodone'
12712 		 * side of the calling chain.
12713 		 */
12714 		bioerror(bp, EIO);
12715 		bp->b_resid = bp->b_bcount;
12716 
12717 		SD_BEGIN_IODONE(index, un, bp);
12718 
12719 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12720 		return;
12721 	}
12722 
12723 	SD_NEXT_IOSTART(index, un, bp);
12724 
12725 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12726 }
12727 
12728 
12729 /*
12730  *    Function: sd_pm_iodone
12731  *
12732  * Description: iodone-side routine for power mangement.
12733  *
12734  *     Context: may be called from interrupt context
12735  */
12736 
12737 static void
12738 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12739 {
12740 	ASSERT(un != NULL);
12741 	ASSERT(bp != NULL);
12742 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12743 
12744 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12745 
12746 	/*
12747 	 * After attach the following flag is only read, so don't
12748 	 * take the penalty of acquiring a mutex for it.
12749 	 */
12750 	if (un->un_f_pm_is_enabled == TRUE) {
12751 		sd_pm_exit(un);
12752 	}
12753 
12754 	SD_NEXT_IODONE(index, un, bp);
12755 
12756 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12757 }
12758 
12759 
12760 /*
12761  *    Function: sd_core_iostart
12762  *
12763  * Description: Primary driver function for enqueuing buf(9S) structs from
12764  *		the system and initiating IO to the target device
12765  *
12766  *     Context: Kernel thread context. Can sleep.
12767  *
12768  * Assumptions:  - The given xp->xb_blkno is absolute
12769  *		   (ie, relative to the start of the device).
12770  *		 - The IO is to be done using the native blocksize of
12771  *		   the device, as specified in un->un_tgt_blocksize.
12772  */
12773 /* ARGSUSED */
12774 static void
12775 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12776 {
12777 	struct sd_xbuf *xp;
12778 
12779 	ASSERT(un != NULL);
12780 	ASSERT(bp != NULL);
12781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12782 	ASSERT(bp->b_resid == 0);
12783 
12784 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12785 
12786 	xp = SD_GET_XBUF(bp);
12787 	ASSERT(xp != NULL);
12788 
12789 	mutex_enter(SD_MUTEX(un));
12790 
12791 	/*
12792 	 * If we are currently in the failfast state, fail any new IO
12793 	 * that has B_FAILFAST set, then return.
12794 	 */
12795 	if ((bp->b_flags & B_FAILFAST) &&
12796 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12797 		mutex_exit(SD_MUTEX(un));
12798 		bioerror(bp, EIO);
12799 		bp->b_resid = bp->b_bcount;
12800 		SD_BEGIN_IODONE(index, un, bp);
12801 		return;
12802 	}
12803 
12804 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12805 		/*
12806 		 * Priority command -- transport it immediately.
12807 		 *
12808 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12809 		 * because all direct priority commands should be associated
12810 		 * with error recovery actions which we don't want to retry.
12811 		 */
12812 		sd_start_cmds(un, bp);
12813 	} else {
12814 		/*
12815 		 * Normal command -- add it to the wait queue, then start
12816 		 * transporting commands from the wait queue.
12817 		 */
12818 		sd_add_buf_to_waitq(un, bp);
12819 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12820 		sd_start_cmds(un, NULL);
12821 	}
12822 
12823 	mutex_exit(SD_MUTEX(un));
12824 
12825 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12826 }
12827 
12828 
12829 /*
12830  *    Function: sd_init_cdb_limits
12831  *
12832  * Description: This is to handle scsi_pkt initialization differences
12833  *		between the driver platforms.
12834  *
12835  *		Legacy behaviors:
12836  *
12837  *		If the block number or the sector count exceeds the
12838  *		capabilities of a Group 0 command, shift over to a
12839  *		Group 1 command. We don't blindly use Group 1
12840  *		commands because a) some drives (CDC Wren IVs) get a
12841  *		bit confused, and b) there is probably a fair amount
12842  *		of speed difference for a target to receive and decode
12843  *		a 10 byte command instead of a 6 byte command.
12844  *
12845  *		The xfer time difference of 6 vs 10 byte CDBs is
12846  *		still significant so this code is still worthwhile.
12847  *		10 byte CDBs are very inefficient with the fas HBA driver
12848  *		and older disks. Each CDB byte took 1 usec with some
12849  *		popular disks.
12850  *
12851  *     Context: Must be called at attach time
12852  */
12853 
12854 static void
12855 sd_init_cdb_limits(struct sd_lun *un)
12856 {
12857 	/*
12858 	 * Use CDB_GROUP1 commands for most devices except for
12859 	 * parallel SCSI fixed drives in which case we get better
12860 	 * performance using CDB_GROUP0 commands (where applicable).
12861 	 */
12862 	un->un_mincdb = SD_CDB_GROUP1;
12863 #if !defined(__fibre)
12864 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12865 	    !ISREMOVABLE(un)) {
12866 		un->un_mincdb = SD_CDB_GROUP0;
12867 	}
12868 #endif
12869 
12870 	/*
12871 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12872 	 * commands for fixed disks unless we are building for a 32 bit
12873 	 * kernel.
12874 	 */
12875 #ifdef _LP64
12876 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP4;
12877 #else
12878 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP1;
12879 #endif
12880 
12881 	/*
12882 	 * x86 systems require the PKT_DMA_PARTIAL flag
12883 	 */
12884 #if defined(__x86)
12885 	un->un_pkt_flags = PKT_DMA_PARTIAL;
12886 #else
12887 	un->un_pkt_flags = 0;
12888 #endif
12889 
12890 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12891 	    ? sizeof (struct scsi_arq_status) : 1);
12892 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12893 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12894 }
12895 
12896 
12897 /*
12898  *    Function: sd_initpkt_for_buf
12899  *
12900  * Description: Allocate and initialize for transport a scsi_pkt struct,
12901  *		based upon the info specified in the given buf struct.
12902  *
12903  *		Assumes the xb_blkno in the request is absolute (ie,
12904  *		relative to the start of the device (NOT partition!).
12905  *		Also assumes that the request is using the native block
12906  *		size of the device (as returned by the READ CAPACITY
12907  *		command).
12908  *
12909  * Return Code: SD_PKT_ALLOC_SUCCESS
12910  *		SD_PKT_ALLOC_FAILURE
12911  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12912  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12913  *
12914  *     Context: Kernel thread and may be called from software interrupt context
12915  *		as part of a sdrunout callback. This function may not block or
12916  *		call routines that block
12917  */
12918 
12919 static int
12920 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12921 {
12922 	struct sd_xbuf	*xp;
12923 	struct scsi_pkt *pktp = NULL;
12924 	struct sd_lun	*un;
12925 	size_t		blockcount;
12926 	daddr_t		startblock;
12927 	int		rval;
12928 	int		cmd_flags;
12929 
12930 	ASSERT(bp != NULL);
12931 	ASSERT(pktpp != NULL);
12932 	xp = SD_GET_XBUF(bp);
12933 	ASSERT(xp != NULL);
12934 	un = SD_GET_UN(bp);
12935 	ASSERT(un != NULL);
12936 	ASSERT(mutex_owned(SD_MUTEX(un)));
12937 	ASSERT(bp->b_resid == 0);
12938 
12939 	SD_TRACE(SD_LOG_IO_CORE, un,
12940 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12941 
12942 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12943 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12944 		/*
12945 		 * Already have a scsi_pkt -- just need DMA resources.
12946 		 * We must recompute the CDB in case the mapping returns
12947 		 * a nonzero pkt_resid.
12948 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12949 		 * that is being retried, the unmap/remap of the DMA resouces
12950 		 * will result in the entire transfer starting over again
12951 		 * from the very first block.
12952 		 */
12953 		ASSERT(xp->xb_pktp != NULL);
12954 		pktp = xp->xb_pktp;
12955 	} else {
12956 		pktp = NULL;
12957 	}
12958 #endif /* __i386 || __amd64 */
12959 
12960 	startblock = xp->xb_blkno;	/* Absolute block num. */
12961 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12962 
12963 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12964 
12965 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12966 
12967 #else
12968 
12969 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
12970 
12971 #endif
12972 
12973 	/*
12974 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12975 	 * call scsi_init_pkt, and build the CDB.
12976 	 */
12977 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12978 	    cmd_flags, sdrunout, (caddr_t)un,
12979 	    startblock, blockcount);
12980 
12981 	if (rval == 0) {
12982 		/*
12983 		 * Success.
12984 		 *
12985 		 * If partial DMA is being used and required for this transfer.
12986 		 * set it up here.
12987 		 */
12988 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12989 		    (pktp->pkt_resid != 0)) {
12990 
12991 			/*
12992 			 * Save the CDB length and pkt_resid for the
12993 			 * next xfer
12994 			 */
12995 			xp->xb_dma_resid = pktp->pkt_resid;
12996 
12997 			/* rezero resid */
12998 			pktp->pkt_resid = 0;
12999 
13000 		} else {
13001 			xp->xb_dma_resid = 0;
13002 		}
13003 
13004 		pktp->pkt_flags = un->un_tagflags;
13005 		pktp->pkt_time  = un->un_cmd_timeout;
13006 		pktp->pkt_comp  = sdintr;
13007 
13008 		pktp->pkt_private = bp;
13009 		*pktpp = pktp;
13010 
13011 		SD_TRACE(SD_LOG_IO_CORE, un,
13012 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13013 
13014 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13015 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13016 #endif
13017 
13018 		return (SD_PKT_ALLOC_SUCCESS);
13019 
13020 	}
13021 
13022 	/*
13023 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13024 	 * from sd_setup_rw_pkt.
13025 	 */
13026 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13027 
13028 	if (rval == SD_PKT_ALLOC_FAILURE) {
13029 		*pktpp = NULL;
13030 		/*
13031 		 * Set the driver state to RWAIT to indicate the driver
13032 		 * is waiting on resource allocations. The driver will not
13033 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13034 		 */
13035 		New_state(un, SD_STATE_RWAIT);
13036 
13037 		SD_ERROR(SD_LOG_IO_CORE, un,
13038 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13039 
13040 		if ((bp->b_flags & B_ERROR) != 0) {
13041 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13042 		}
13043 		return (SD_PKT_ALLOC_FAILURE);
13044 	} else {
13045 		/*
13046 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13047 		 *
13048 		 * This should never happen.  Maybe someone messed with the
13049 		 * kernel's minphys?
13050 		 */
13051 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13052 		    "Request rejected: too large for CDB: "
13053 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13054 		SD_ERROR(SD_LOG_IO_CORE, un,
13055 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13056 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13057 
13058 	}
13059 }
13060 
13061 
13062 /*
13063  *    Function: sd_destroypkt_for_buf
13064  *
13065  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13066  *
13067  *     Context: Kernel thread or interrupt context
13068  */
13069 
13070 static void
13071 sd_destroypkt_for_buf(struct buf *bp)
13072 {
13073 	ASSERT(bp != NULL);
13074 	ASSERT(SD_GET_UN(bp) != NULL);
13075 
13076 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13077 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13078 
13079 	ASSERT(SD_GET_PKTP(bp) != NULL);
13080 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13081 
13082 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13083 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13084 }
13085 
13086 /*
13087  *    Function: sd_setup_rw_pkt
13088  *
13089  * Description: Determines appropriate CDB group for the requested LBA
13090  *		and transfer length, calls scsi_init_pkt, and builds
13091  *		the CDB.  Do not use for partial DMA transfers except
13092  *		for the initial transfer since the CDB size must
13093  *		remain constant.
13094  *
13095  *     Context: Kernel thread and may be called from software interrupt
13096  *		context as part of a sdrunout callback. This function may not
13097  *		block or call routines that block
13098  */
13099 
13100 
13101 int
13102 sd_setup_rw_pkt(struct sd_lun *un,
13103     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13104     int (*callback)(caddr_t), caddr_t callback_arg,
13105     diskaddr_t lba, uint32_t blockcount)
13106 {
13107 	struct scsi_pkt *return_pktp;
13108 	union scsi_cdb *cdbp;
13109 	struct sd_cdbinfo *cp = NULL;
13110 	int i;
13111 
13112 	/*
13113 	 * See which size CDB to use, based upon the request.
13114 	 */
13115 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13116 
13117 		/*
13118 		 * Check lba and block count against sd_cdbtab limits.
13119 		 * In the partial DMA case, we have to use the same size
13120 		 * CDB for all the transfers.  Check lba + blockcount
13121 		 * against the max LBA so we know that segment of the
13122 		 * transfer can use the CDB we select.
13123 		 */
13124 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13125 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13126 
13127 			/*
13128 			 * The command will fit into the CDB type
13129 			 * specified by sd_cdbtab[i].
13130 			 */
13131 			cp = sd_cdbtab + i;
13132 
13133 			/*
13134 			 * Call scsi_init_pkt so we can fill in the
13135 			 * CDB.
13136 			 */
13137 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13138 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13139 			    flags, callback, callback_arg);
13140 
13141 			if (return_pktp != NULL) {
13142 
13143 				/*
13144 				 * Return new value of pkt
13145 				 */
13146 				*pktpp = return_pktp;
13147 
13148 				/*
13149 				 * To be safe, zero the CDB insuring there is
13150 				 * no leftover data from a previous command.
13151 				 */
13152 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13153 
13154 				/*
13155 				 * Handle partial DMA mapping
13156 				 */
13157 				if (return_pktp->pkt_resid != 0) {
13158 
13159 					/*
13160 					 * Not going to xfer as many blocks as
13161 					 * originally expected
13162 					 */
13163 					blockcount -=
13164 					    SD_BYTES2TGTBLOCKS(un,
13165 						return_pktp->pkt_resid);
13166 				}
13167 
13168 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13169 
13170 				/*
13171 				 * Set command byte based on the CDB
13172 				 * type we matched.
13173 				 */
13174 				cdbp->scc_cmd = cp->sc_grpmask |
13175 				    ((bp->b_flags & B_READ) ?
13176 					SCMD_READ : SCMD_WRITE);
13177 
13178 				SD_FILL_SCSI1_LUN(un, return_pktp);
13179 
13180 				/*
13181 				 * Fill in LBA and length
13182 				 */
13183 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13184 				    (cp->sc_grpcode == CDB_GROUP4) ||
13185 				    (cp->sc_grpcode == CDB_GROUP0) ||
13186 				    (cp->sc_grpcode == CDB_GROUP5));
13187 
13188 				if (cp->sc_grpcode == CDB_GROUP1) {
13189 					FORMG1ADDR(cdbp, lba);
13190 					FORMG1COUNT(cdbp, blockcount);
13191 					return (0);
13192 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13193 					FORMG4LONGADDR(cdbp, lba);
13194 					FORMG4COUNT(cdbp, blockcount);
13195 					return (0);
13196 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13197 					FORMG0ADDR(cdbp, lba);
13198 					FORMG0COUNT(cdbp, blockcount);
13199 					return (0);
13200 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13201 					FORMG5ADDR(cdbp, lba);
13202 					FORMG5COUNT(cdbp, blockcount);
13203 					return (0);
13204 				}
13205 
13206 				/*
13207 				 * It should be impossible to not match one
13208 				 * of the CDB types above, so we should never
13209 				 * reach this point.  Set the CDB command byte
13210 				 * to test-unit-ready to avoid writing
13211 				 * to somewhere we don't intend.
13212 				 */
13213 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13214 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13215 			} else {
13216 				/*
13217 				 * Couldn't get scsi_pkt
13218 				 */
13219 				return (SD_PKT_ALLOC_FAILURE);
13220 			}
13221 		}
13222 	}
13223 
13224 	/*
13225 	 * None of the available CDB types were suitable.  This really
13226 	 * should never happen:  on a 64 bit system we support
13227 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13228 	 * and on a 32 bit system we will refuse to bind to a device
13229 	 * larger than 2TB so addresses will never be larger than 32 bits.
13230 	 */
13231 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13232 }
13233 
13234 #if defined(__i386) || defined(__amd64)
13235 /*
13236  *    Function: sd_setup_next_rw_pkt
13237  *
13238  * Description: Setup packet for partial DMA transfers, except for the
13239  * 		initial transfer.  sd_setup_rw_pkt should be used for
13240  *		the initial transfer.
13241  *
13242  *     Context: Kernel thread and may be called from interrupt context.
13243  */
13244 
13245 int
13246 sd_setup_next_rw_pkt(struct sd_lun *un,
13247     struct scsi_pkt *pktp, struct buf *bp,
13248     diskaddr_t lba, uint32_t blockcount)
13249 {
13250 	uchar_t com;
13251 	union scsi_cdb *cdbp;
13252 	uchar_t cdb_group_id;
13253 
13254 	ASSERT(pktp != NULL);
13255 	ASSERT(pktp->pkt_cdbp != NULL);
13256 
13257 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13258 	com = cdbp->scc_cmd;
13259 	cdb_group_id = CDB_GROUPID(com);
13260 
13261 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13262 	    (cdb_group_id == CDB_GROUPID_1) ||
13263 	    (cdb_group_id == CDB_GROUPID_4) ||
13264 	    (cdb_group_id == CDB_GROUPID_5));
13265 
13266 	/*
13267 	 * Move pkt to the next portion of the xfer.
13268 	 * func is NULL_FUNC so we do not have to release
13269 	 * the disk mutex here.
13270 	 */
13271 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13272 	    NULL_FUNC, NULL) == pktp) {
13273 		/* Success.  Handle partial DMA */
13274 		if (pktp->pkt_resid != 0) {
13275 			blockcount -=
13276 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13277 		}
13278 
13279 		cdbp->scc_cmd = com;
13280 		SD_FILL_SCSI1_LUN(un, pktp);
13281 		if (cdb_group_id == CDB_GROUPID_1) {
13282 			FORMG1ADDR(cdbp, lba);
13283 			FORMG1COUNT(cdbp, blockcount);
13284 			return (0);
13285 		} else if (cdb_group_id == CDB_GROUPID_4) {
13286 			FORMG4LONGADDR(cdbp, lba);
13287 			FORMG4COUNT(cdbp, blockcount);
13288 			return (0);
13289 		} else if (cdb_group_id == CDB_GROUPID_0) {
13290 			FORMG0ADDR(cdbp, lba);
13291 			FORMG0COUNT(cdbp, blockcount);
13292 			return (0);
13293 		} else if (cdb_group_id == CDB_GROUPID_5) {
13294 			FORMG5ADDR(cdbp, lba);
13295 			FORMG5COUNT(cdbp, blockcount);
13296 			return (0);
13297 		}
13298 
13299 		/* Unreachable */
13300 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13301 	}
13302 
13303 	/*
13304 	 * Error setting up next portion of cmd transfer.
13305 	 * Something is definitely very wrong and this
13306 	 * should not happen.
13307 	 */
13308 	return (SD_PKT_ALLOC_FAILURE);
13309 }
13310 #endif /* defined(__i386) || defined(__amd64) */
13311 
13312 /*
13313  *    Function: sd_initpkt_for_uscsi
13314  *
13315  * Description: Allocate and initialize for transport a scsi_pkt struct,
13316  *		based upon the info specified in the given uscsi_cmd struct.
13317  *
13318  * Return Code: SD_PKT_ALLOC_SUCCESS
13319  *		SD_PKT_ALLOC_FAILURE
13320  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13321  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13322  *
13323  *     Context: Kernel thread and may be called from software interrupt context
13324  *		as part of a sdrunout callback. This function may not block or
13325  *		call routines that block
13326  */
13327 
13328 static int
13329 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13330 {
13331 	struct uscsi_cmd *uscmd;
13332 	struct sd_xbuf	*xp;
13333 	struct scsi_pkt	*pktp;
13334 	struct sd_lun	*un;
13335 	uint32_t	flags = 0;
13336 
13337 	ASSERT(bp != NULL);
13338 	ASSERT(pktpp != NULL);
13339 	xp = SD_GET_XBUF(bp);
13340 	ASSERT(xp != NULL);
13341 	un = SD_GET_UN(bp);
13342 	ASSERT(un != NULL);
13343 	ASSERT(mutex_owned(SD_MUTEX(un)));
13344 
13345 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13346 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13347 	ASSERT(uscmd != NULL);
13348 
13349 	SD_TRACE(SD_LOG_IO_CORE, un,
13350 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13351 
13352 	/* Allocate the scsi_pkt for the command. */
13353 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13354 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13355 	    sizeof (struct scsi_arq_status), 0, un->un_pkt_flags,
13356 	    sdrunout, (caddr_t)un);
13357 
13358 	if (pktp == NULL) {
13359 		*pktpp = NULL;
13360 		/*
13361 		 * Set the driver state to RWAIT to indicate the driver
13362 		 * is waiting on resource allocations. The driver will not
13363 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13364 		 */
13365 		New_state(un, SD_STATE_RWAIT);
13366 
13367 		SD_ERROR(SD_LOG_IO_CORE, un,
13368 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13369 
13370 		if ((bp->b_flags & B_ERROR) != 0) {
13371 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13372 		}
13373 		return (SD_PKT_ALLOC_FAILURE);
13374 	}
13375 
13376 	/*
13377 	 * We do not do DMA breakup for USCSI commands, so return failure
13378 	 * here if all the needed DMA resources were not allocated.
13379 	 */
13380 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13381 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13382 		scsi_destroy_pkt(pktp);
13383 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13384 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13385 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13386 	}
13387 
13388 	/* Init the cdb from the given uscsi struct */
13389 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13390 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13391 
13392 	SD_FILL_SCSI1_LUN(un, pktp);
13393 
13394 	/*
13395 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13396 	 * for listing of the supported flags.
13397 	 */
13398 
13399 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13400 		flags |= FLAG_SILENT;
13401 	}
13402 
13403 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13404 		flags |= FLAG_DIAGNOSE;
13405 	}
13406 
13407 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13408 		flags |= FLAG_ISOLATE;
13409 	}
13410 
13411 	if (un->un_f_is_fibre == FALSE) {
13412 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13413 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13414 		}
13415 	}
13416 
13417 	/*
13418 	 * Set the pkt flags here so we save time later.
13419 	 * Note: These flags are NOT in the uscsi man page!!!
13420 	 */
13421 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13422 		flags |= FLAG_HEAD;
13423 	}
13424 
13425 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13426 		flags |= FLAG_NOINTR;
13427 	}
13428 
13429 	/*
13430 	 * For tagged queueing, things get a bit complicated.
13431 	 * Check first for head of queue and last for ordered queue.
13432 	 * If neither head nor order, use the default driver tag flags.
13433 	 */
13434 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13435 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13436 			flags |= FLAG_HTAG;
13437 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13438 			flags |= FLAG_OTAG;
13439 		} else {
13440 			flags |= un->un_tagflags & FLAG_TAGMASK;
13441 		}
13442 	}
13443 
13444 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13445 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13446 	}
13447 
13448 	pktp->pkt_flags = flags;
13449 
13450 	/* Copy the caller's CDB into the pkt... */
13451 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13452 
13453 	if (uscmd->uscsi_timeout == 0) {
13454 		pktp->pkt_time = un->un_uscsi_timeout;
13455 	} else {
13456 		pktp->pkt_time = uscmd->uscsi_timeout;
13457 	}
13458 
13459 	/* need it later to identify USCSI request in sdintr */
13460 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13461 
13462 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13463 
13464 	pktp->pkt_private = bp;
13465 	pktp->pkt_comp = sdintr;
13466 	*pktpp = pktp;
13467 
13468 	SD_TRACE(SD_LOG_IO_CORE, un,
13469 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13470 
13471 	return (SD_PKT_ALLOC_SUCCESS);
13472 }
13473 
13474 
13475 /*
13476  *    Function: sd_destroypkt_for_uscsi
13477  *
13478  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13479  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13480  *		struct.
13481  *
13482  *     Context: May be called under interrupt context
13483  */
13484 
13485 static void
13486 sd_destroypkt_for_uscsi(struct buf *bp)
13487 {
13488 	struct uscsi_cmd *uscmd;
13489 	struct sd_xbuf	*xp;
13490 	struct scsi_pkt	*pktp;
13491 	struct sd_lun	*un;
13492 
13493 	ASSERT(bp != NULL);
13494 	xp = SD_GET_XBUF(bp);
13495 	ASSERT(xp != NULL);
13496 	un = SD_GET_UN(bp);
13497 	ASSERT(un != NULL);
13498 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13499 	pktp = SD_GET_PKTP(bp);
13500 	ASSERT(pktp != NULL);
13501 
13502 	SD_TRACE(SD_LOG_IO_CORE, un,
13503 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13504 
13505 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13506 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13507 	ASSERT(uscmd != NULL);
13508 
13509 	/* Save the status and the residual into the uscsi_cmd struct */
13510 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13511 	uscmd->uscsi_resid  = bp->b_resid;
13512 
13513 	/*
13514 	 * If enabled, copy any saved sense data into the area specified
13515 	 * by the uscsi command.
13516 	 */
13517 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13518 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13519 		/*
13520 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13521 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13522 		 */
13523 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13524 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13525 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13526 	}
13527 
13528 	/* We are done with the scsi_pkt; free it now */
13529 	ASSERT(SD_GET_PKTP(bp) != NULL);
13530 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13531 
13532 	SD_TRACE(SD_LOG_IO_CORE, un,
13533 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13534 }
13535 
13536 
13537 /*
13538  *    Function: sd_bioclone_alloc
13539  *
13540  * Description: Allocate a buf(9S) and init it as per the given buf
13541  *		and the various arguments.  The associated sd_xbuf
13542  *		struct is (nearly) duplicated.  The struct buf *bp
13543  *		argument is saved in new_xp->xb_private.
13544  *
13545  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13546  *		datalen - size of data area for the shadow bp
13547  *		blkno - starting LBA
13548  *		func - function pointer for b_iodone in the shadow buf. (May
13549  *			be NULL if none.)
13550  *
13551  * Return Code: Pointer to allocates buf(9S) struct
13552  *
13553  *     Context: Can sleep.
13554  */
13555 
13556 static struct buf *
13557 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13558 	daddr_t blkno, int (*func)(struct buf *))
13559 {
13560 	struct	sd_lun	*un;
13561 	struct	sd_xbuf	*xp;
13562 	struct	sd_xbuf	*new_xp;
13563 	struct	buf	*new_bp;
13564 
13565 	ASSERT(bp != NULL);
13566 	xp = SD_GET_XBUF(bp);
13567 	ASSERT(xp != NULL);
13568 	un = SD_GET_UN(bp);
13569 	ASSERT(un != NULL);
13570 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13571 
13572 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13573 	    NULL, KM_SLEEP);
13574 
13575 	new_bp->b_lblkno	= blkno;
13576 
13577 	/*
13578 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13579 	 * original xbuf into it.
13580 	 */
13581 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13582 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13583 
13584 	/*
13585 	 * The given bp is automatically saved in the xb_private member
13586 	 * of the new xbuf.  Callers are allowed to depend on this.
13587 	 */
13588 	new_xp->xb_private = bp;
13589 
13590 	new_bp->b_private  = new_xp;
13591 
13592 	return (new_bp);
13593 }
13594 
13595 /*
13596  *    Function: sd_shadow_buf_alloc
13597  *
13598  * Description: Allocate a buf(9S) and init it as per the given buf
13599  *		and the various arguments.  The associated sd_xbuf
13600  *		struct is (nearly) duplicated.  The struct buf *bp
13601  *		argument is saved in new_xp->xb_private.
13602  *
13603  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13604  *		datalen - size of data area for the shadow bp
13605  *		bflags - B_READ or B_WRITE (pseudo flag)
13606  *		blkno - starting LBA
13607  *		func - function pointer for b_iodone in the shadow buf. (May
13608  *			be NULL if none.)
13609  *
13610  * Return Code: Pointer to allocates buf(9S) struct
13611  *
13612  *     Context: Can sleep.
13613  */
13614 
13615 static struct buf *
13616 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13617 	daddr_t blkno, int (*func)(struct buf *))
13618 {
13619 	struct	sd_lun	*un;
13620 	struct	sd_xbuf	*xp;
13621 	struct	sd_xbuf	*new_xp;
13622 	struct	buf	*new_bp;
13623 
13624 	ASSERT(bp != NULL);
13625 	xp = SD_GET_XBUF(bp);
13626 	ASSERT(xp != NULL);
13627 	un = SD_GET_UN(bp);
13628 	ASSERT(un != NULL);
13629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13630 
13631 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13632 		bp_mapin(bp);
13633 	}
13634 
13635 	bflags &= (B_READ | B_WRITE);
13636 #if defined(__i386) || defined(__amd64)
13637 	new_bp = getrbuf(KM_SLEEP);
13638 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13639 	new_bp->b_bcount = datalen;
13640 	new_bp->b_flags	= bp->b_flags | bflags;
13641 #else
13642 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13643 	    datalen, bflags, SLEEP_FUNC, NULL);
13644 #endif
13645 	new_bp->av_forw	= NULL;
13646 	new_bp->av_back	= NULL;
13647 	new_bp->b_dev	= bp->b_dev;
13648 	new_bp->b_blkno	= blkno;
13649 	new_bp->b_iodone = func;
13650 	new_bp->b_edev	= bp->b_edev;
13651 	new_bp->b_resid	= 0;
13652 
13653 	/* We need to preserve the B_FAILFAST flag */
13654 	if (bp->b_flags & B_FAILFAST) {
13655 		new_bp->b_flags |= B_FAILFAST;
13656 	}
13657 
13658 	/*
13659 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13660 	 * original xbuf into it.
13661 	 */
13662 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13663 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13664 
13665 	/* Need later to copy data between the shadow buf & original buf! */
13666 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13667 
13668 	/*
13669 	 * The given bp is automatically saved in the xb_private member
13670 	 * of the new xbuf.  Callers are allowed to depend on this.
13671 	 */
13672 	new_xp->xb_private = bp;
13673 
13674 	new_bp->b_private  = new_xp;
13675 
13676 	return (new_bp);
13677 }
13678 
13679 /*
13680  *    Function: sd_bioclone_free
13681  *
13682  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13683  *		in the larger than partition operation.
13684  *
13685  *     Context: May be called under interrupt context
13686  */
13687 
13688 static void
13689 sd_bioclone_free(struct buf *bp)
13690 {
13691 	struct sd_xbuf	*xp;
13692 
13693 	ASSERT(bp != NULL);
13694 	xp = SD_GET_XBUF(bp);
13695 	ASSERT(xp != NULL);
13696 
13697 	/*
13698 	 * Call bp_mapout() before freeing the buf,  in case a lower
13699 	 * layer or HBA  had done a bp_mapin().  we must do this here
13700 	 * as we are the "originator" of the shadow buf.
13701 	 */
13702 	bp_mapout(bp);
13703 
13704 	/*
13705 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13706 	 * never gets confused by a stale value in this field. (Just a little
13707 	 * extra defensiveness here.)
13708 	 */
13709 	bp->b_iodone = NULL;
13710 
13711 	freerbuf(bp);
13712 
13713 	kmem_free(xp, sizeof (struct sd_xbuf));
13714 }
13715 
13716 /*
13717  *    Function: sd_shadow_buf_free
13718  *
13719  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13720  *
13721  *     Context: May be called under interrupt context
13722  */
13723 
13724 static void
13725 sd_shadow_buf_free(struct buf *bp)
13726 {
13727 	struct sd_xbuf	*xp;
13728 
13729 	ASSERT(bp != NULL);
13730 	xp = SD_GET_XBUF(bp);
13731 	ASSERT(xp != NULL);
13732 
13733 #if defined(__sparc)
13734 	/*
13735 	 * Call bp_mapout() before freeing the buf,  in case a lower
13736 	 * layer or HBA  had done a bp_mapin().  we must do this here
13737 	 * as we are the "originator" of the shadow buf.
13738 	 */
13739 	bp_mapout(bp);
13740 #endif
13741 
13742 	/*
13743 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13744 	 * never gets confused by a stale value in this field. (Just a little
13745 	 * extra defensiveness here.)
13746 	 */
13747 	bp->b_iodone = NULL;
13748 
13749 #if defined(__i386) || defined(__amd64)
13750 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13751 	freerbuf(bp);
13752 #else
13753 	scsi_free_consistent_buf(bp);
13754 #endif
13755 
13756 	kmem_free(xp, sizeof (struct sd_xbuf));
13757 }
13758 
13759 
13760 /*
13761  *    Function: sd_print_transport_rejected_message
13762  *
13763  * Description: This implements the ludicrously complex rules for printing
13764  *		a "transport rejected" message.  This is to address the
13765  *		specific problem of having a flood of this error message
13766  *		produced when a failover occurs.
13767  *
13768  *     Context: Any.
13769  */
13770 
13771 static void
13772 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13773 	int code)
13774 {
13775 	ASSERT(un != NULL);
13776 	ASSERT(mutex_owned(SD_MUTEX(un)));
13777 	ASSERT(xp != NULL);
13778 
13779 	/*
13780 	 * Print the "transport rejected" message under the following
13781 	 * conditions:
13782 	 *
13783 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13784 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13785 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13786 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13787 	 *   scsi_transport(9F) (which indicates that the target might have
13788 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13789 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13790 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13791 	 *   from scsi_transport().
13792 	 *
13793 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13794 	 * the preceeding cases in order for the message to be printed.
13795 	 */
13796 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13797 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13798 		    (code != TRAN_FATAL_ERROR) ||
13799 		    (un->un_tran_fatal_count == 1)) {
13800 			switch (code) {
13801 			case TRAN_BADPKT:
13802 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13803 				    "transport rejected bad packet\n");
13804 				break;
13805 			case TRAN_FATAL_ERROR:
13806 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13807 				    "transport rejected fatal error\n");
13808 				break;
13809 			default:
13810 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13811 				    "transport rejected (%d)\n", code);
13812 				break;
13813 			}
13814 		}
13815 	}
13816 }
13817 
13818 
13819 /*
13820  *    Function: sd_add_buf_to_waitq
13821  *
13822  * Description: Add the given buf(9S) struct to the wait queue for the
13823  *		instance.  If sorting is enabled, then the buf is added
13824  *		to the queue via an elevator sort algorithm (a la
13825  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13826  *		If sorting is not enabled, then the buf is just added
13827  *		to the end of the wait queue.
13828  *
13829  * Return Code: void
13830  *
13831  *     Context: Does not sleep/block, therefore technically can be called
13832  *		from any context.  However if sorting is enabled then the
13833  *		execution time is indeterminate, and may take long if
13834  *		the wait queue grows large.
13835  */
13836 
13837 static void
13838 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13839 {
13840 	struct buf *ap;
13841 
13842 	ASSERT(bp != NULL);
13843 	ASSERT(un != NULL);
13844 	ASSERT(mutex_owned(SD_MUTEX(un)));
13845 
13846 	/* If the queue is empty, add the buf as the only entry & return. */
13847 	if (un->un_waitq_headp == NULL) {
13848 		ASSERT(un->un_waitq_tailp == NULL);
13849 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13850 		bp->av_forw = NULL;
13851 		return;
13852 	}
13853 
13854 	ASSERT(un->un_waitq_tailp != NULL);
13855 
13856 	/*
13857 	 * If sorting is disabled, just add the buf to the tail end of
13858 	 * the wait queue and return.
13859 	 */
13860 	if (un->un_f_disksort_disabled) {
13861 		un->un_waitq_tailp->av_forw = bp;
13862 		un->un_waitq_tailp = bp;
13863 		bp->av_forw = NULL;
13864 		return;
13865 	}
13866 
13867 	/*
13868 	 * Sort thru the list of requests currently on the wait queue
13869 	 * and add the new buf request at the appropriate position.
13870 	 *
13871 	 * The un->un_waitq_headp is an activity chain pointer on which
13872 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13873 	 * first queue holds those requests which are positioned after
13874 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13875 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13876 	 * Thus we implement a one way scan, retracting after reaching
13877 	 * the end of the drive to the first request on the second
13878 	 * queue, at which time it becomes the first queue.
13879 	 * A one-way scan is natural because of the way UNIX read-ahead
13880 	 * blocks are allocated.
13881 	 *
13882 	 * If we lie after the first request, then we must locate the
13883 	 * second request list and add ourselves to it.
13884 	 */
13885 	ap = un->un_waitq_headp;
13886 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13887 		while (ap->av_forw != NULL) {
13888 			/*
13889 			 * Look for an "inversion" in the (normally
13890 			 * ascending) block numbers. This indicates
13891 			 * the start of the second request list.
13892 			 */
13893 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13894 				/*
13895 				 * Search the second request list for the
13896 				 * first request at a larger block number.
13897 				 * We go before that; however if there is
13898 				 * no such request, we go at the end.
13899 				 */
13900 				do {
13901 					if (SD_GET_BLKNO(bp) <
13902 					    SD_GET_BLKNO(ap->av_forw)) {
13903 						goto insert;
13904 					}
13905 					ap = ap->av_forw;
13906 				} while (ap->av_forw != NULL);
13907 				goto insert;		/* after last */
13908 			}
13909 			ap = ap->av_forw;
13910 		}
13911 
13912 		/*
13913 		 * No inversions... we will go after the last, and
13914 		 * be the first request in the second request list.
13915 		 */
13916 		goto insert;
13917 	}
13918 
13919 	/*
13920 	 * Request is at/after the current request...
13921 	 * sort in the first request list.
13922 	 */
13923 	while (ap->av_forw != NULL) {
13924 		/*
13925 		 * We want to go after the current request (1) if
13926 		 * there is an inversion after it (i.e. it is the end
13927 		 * of the first request list), or (2) if the next
13928 		 * request is a larger block no. than our request.
13929 		 */
13930 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13931 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13932 			goto insert;
13933 		}
13934 		ap = ap->av_forw;
13935 	}
13936 
13937 	/*
13938 	 * Neither a second list nor a larger request, therefore
13939 	 * we go at the end of the first list (which is the same
13940 	 * as the end of the whole schebang).
13941 	 */
13942 insert:
13943 	bp->av_forw = ap->av_forw;
13944 	ap->av_forw = bp;
13945 
13946 	/*
13947 	 * If we inserted onto the tail end of the waitq, make sure the
13948 	 * tail pointer is updated.
13949 	 */
13950 	if (ap == un->un_waitq_tailp) {
13951 		un->un_waitq_tailp = bp;
13952 	}
13953 }
13954 
13955 
13956 /*
13957  *    Function: sd_start_cmds
13958  *
13959  * Description: Remove and transport cmds from the driver queues.
13960  *
13961  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13962  *
13963  *		immed_bp - ptr to a buf to be transported immediately. Only
13964  *		the immed_bp is transported; bufs on the waitq are not
13965  *		processed and the un_retry_bp is not checked.  If immed_bp is
13966  *		NULL, then normal queue processing is performed.
13967  *
13968  *     Context: May be called from kernel thread context, interrupt context,
13969  *		or runout callback context. This function may not block or
13970  *		call routines that block.
13971  */
13972 
13973 static void
13974 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13975 {
13976 	struct	sd_xbuf	*xp;
13977 	struct	buf	*bp;
13978 	void	(*statp)(kstat_io_t *);
13979 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13980 	void	(*saved_statp)(kstat_io_t *);
13981 #endif
13982 	int	rval;
13983 
13984 	ASSERT(un != NULL);
13985 	ASSERT(mutex_owned(SD_MUTEX(un)));
13986 	ASSERT(un->un_ncmds_in_transport >= 0);
13987 	ASSERT(un->un_throttle >= 0);
13988 
13989 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
13990 
13991 	do {
13992 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13993 		saved_statp = NULL;
13994 #endif
13995 
13996 		/*
13997 		 * If we are syncing or dumping, fail the command to
13998 		 * avoid recursively calling back into scsi_transport().
13999 		 * See panic.c for more information about the states
14000 		 * the system can be in during panic.
14001 		 */
14002 		if ((un->un_state == SD_STATE_DUMPING) ||
14003 		    (un->un_in_callback > 1)) {
14004 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14005 			    "sd_start_cmds: panicking\n");
14006 			goto exit;
14007 		}
14008 
14009 		if ((bp = immed_bp) != NULL) {
14010 			/*
14011 			 * We have a bp that must be transported immediately.
14012 			 * It's OK to transport the immed_bp here without doing
14013 			 * the throttle limit check because the immed_bp is
14014 			 * always used in a retry/recovery case. This means
14015 			 * that we know we are not at the throttle limit by
14016 			 * virtue of the fact that to get here we must have
14017 			 * already gotten a command back via sdintr(). This also
14018 			 * relies on (1) the command on un_retry_bp preventing
14019 			 * further commands from the waitq from being issued;
14020 			 * and (2) the code in sd_retry_command checking the
14021 			 * throttle limit before issuing a delayed or immediate
14022 			 * retry. This holds even if the throttle limit is
14023 			 * currently ratcheted down from its maximum value.
14024 			 */
14025 			statp = kstat_runq_enter;
14026 			if (bp == un->un_retry_bp) {
14027 				ASSERT((un->un_retry_statp == NULL) ||
14028 				    (un->un_retry_statp == kstat_waitq_enter) ||
14029 				    (un->un_retry_statp ==
14030 				    kstat_runq_back_to_waitq));
14031 				/*
14032 				 * If the waitq kstat was incremented when
14033 				 * sd_set_retry_bp() queued this bp for a retry,
14034 				 * then we must set up statp so that the waitq
14035 				 * count will get decremented correctly below.
14036 				 * Also we must clear un->un_retry_statp to
14037 				 * ensure that we do not act on a stale value
14038 				 * in this field.
14039 				 */
14040 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14041 				    (un->un_retry_statp ==
14042 				    kstat_runq_back_to_waitq)) {
14043 					statp = kstat_waitq_to_runq;
14044 				}
14045 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14046 				saved_statp = un->un_retry_statp;
14047 #endif
14048 				un->un_retry_statp = NULL;
14049 
14050 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14051 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14052 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14053 				    un, un->un_retry_bp, un->un_throttle,
14054 				    un->un_ncmds_in_transport);
14055 			} else {
14056 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14057 				    "processing priority bp:0x%p\n", bp);
14058 			}
14059 
14060 		} else if ((bp = un->un_waitq_headp) != NULL) {
14061 			/*
14062 			 * A command on the waitq is ready to go, but do not
14063 			 * send it if:
14064 			 *
14065 			 * (1) the throttle limit has been reached, or
14066 			 * (2) a retry is pending, or
14067 			 * (3) a START_STOP_UNIT callback pending, or
14068 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14069 			 *	command is pending.
14070 			 *
14071 			 * For all of these conditions, IO processing will
14072 			 * restart after the condition is cleared.
14073 			 */
14074 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14075 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14076 				    "sd_start_cmds: exiting, "
14077 				    "throttle limit reached!\n");
14078 				goto exit;
14079 			}
14080 			if (un->un_retry_bp != NULL) {
14081 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14082 				    "sd_start_cmds: exiting, retry pending!\n");
14083 				goto exit;
14084 			}
14085 			if (un->un_startstop_timeid != NULL) {
14086 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14087 				    "sd_start_cmds: exiting, "
14088 				    "START_STOP pending!\n");
14089 				goto exit;
14090 			}
14091 			if (un->un_direct_priority_timeid != NULL) {
14092 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14093 				    "sd_start_cmds: exiting, "
14094 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14095 				goto exit;
14096 			}
14097 
14098 			/* Dequeue the command */
14099 			un->un_waitq_headp = bp->av_forw;
14100 			if (un->un_waitq_headp == NULL) {
14101 				un->un_waitq_tailp = NULL;
14102 			}
14103 			bp->av_forw = NULL;
14104 			statp = kstat_waitq_to_runq;
14105 			SD_TRACE(SD_LOG_IO_CORE, un,
14106 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14107 
14108 		} else {
14109 			/* No work to do so bail out now */
14110 			SD_TRACE(SD_LOG_IO_CORE, un,
14111 			    "sd_start_cmds: no more work, exiting!\n");
14112 			goto exit;
14113 		}
14114 
14115 		/*
14116 		 * Reset the state to normal. This is the mechanism by which
14117 		 * the state transitions from either SD_STATE_RWAIT or
14118 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14119 		 * If state is SD_STATE_PM_CHANGING then this command is
14120 		 * part of the device power control and the state must
14121 		 * not be put back to normal. Doing so would would
14122 		 * allow new commands to proceed when they shouldn't,
14123 		 * the device may be going off.
14124 		 */
14125 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14126 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14127 			New_state(un, SD_STATE_NORMAL);
14128 		    }
14129 
14130 		xp = SD_GET_XBUF(bp);
14131 		ASSERT(xp != NULL);
14132 
14133 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14134 		/*
14135 		 * Allocate the scsi_pkt if we need one, or attach DMA
14136 		 * resources if we have a scsi_pkt that needs them. The
14137 		 * latter should only occur for commands that are being
14138 		 * retried.
14139 		 */
14140 		if ((xp->xb_pktp == NULL) ||
14141 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14142 #else
14143 		if (xp->xb_pktp == NULL) {
14144 #endif
14145 			/*
14146 			 * There is no scsi_pkt allocated for this buf. Call
14147 			 * the initpkt function to allocate & init one.
14148 			 *
14149 			 * The scsi_init_pkt runout callback functionality is
14150 			 * implemented as follows:
14151 			 *
14152 			 * 1) The initpkt function always calls
14153 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14154 			 *    callback routine.
14155 			 * 2) A successful packet allocation is initialized and
14156 			 *    the I/O is transported.
14157 			 * 3) The I/O associated with an allocation resource
14158 			 *    failure is left on its queue to be retried via
14159 			 *    runout or the next I/O.
14160 			 * 4) The I/O associated with a DMA error is removed
14161 			 *    from the queue and failed with EIO. Processing of
14162 			 *    the transport queues is also halted to be
14163 			 *    restarted via runout or the next I/O.
14164 			 * 5) The I/O associated with a CDB size or packet
14165 			 *    size error is removed from the queue and failed
14166 			 *    with EIO. Processing of the transport queues is
14167 			 *    continued.
14168 			 *
14169 			 * Note: there is no interface for canceling a runout
14170 			 * callback. To prevent the driver from detaching or
14171 			 * suspending while a runout is pending the driver
14172 			 * state is set to SD_STATE_RWAIT
14173 			 *
14174 			 * Note: using the scsi_init_pkt callback facility can
14175 			 * result in an I/O request persisting at the head of
14176 			 * the list which cannot be satisfied even after
14177 			 * multiple retries. In the future the driver may
14178 			 * implement some kind of maximum runout count before
14179 			 * failing an I/O.
14180 			 *
14181 			 * Note: the use of funcp below may seem superfluous,
14182 			 * but it helps warlock figure out the correct
14183 			 * initpkt function calls (see [s]sd.wlcmd).
14184 			 */
14185 			struct scsi_pkt	*pktp;
14186 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14187 
14188 			ASSERT(bp != un->un_rqs_bp);
14189 
14190 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14191 			switch ((*funcp)(bp, &pktp)) {
14192 			case  SD_PKT_ALLOC_SUCCESS:
14193 				xp->xb_pktp = pktp;
14194 				SD_TRACE(SD_LOG_IO_CORE, un,
14195 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14196 				    pktp);
14197 				goto got_pkt;
14198 
14199 			case SD_PKT_ALLOC_FAILURE:
14200 				/*
14201 				 * Temporary (hopefully) resource depletion.
14202 				 * Since retries and RQS commands always have a
14203 				 * scsi_pkt allocated, these cases should never
14204 				 * get here. So the only cases this needs to
14205 				 * handle is a bp from the waitq (which we put
14206 				 * back onto the waitq for sdrunout), or a bp
14207 				 * sent as an immed_bp (which we just fail).
14208 				 */
14209 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14210 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14211 
14212 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14213 
14214 				if (bp == immed_bp) {
14215 					/*
14216 					 * If SD_XB_DMA_FREED is clear, then
14217 					 * this is a failure to allocate a
14218 					 * scsi_pkt, and we must fail the
14219 					 * command.
14220 					 */
14221 					if ((xp->xb_pkt_flags &
14222 					    SD_XB_DMA_FREED) == 0) {
14223 						break;
14224 					}
14225 
14226 					/*
14227 					 * If this immediate command is NOT our
14228 					 * un_retry_bp, then we must fail it.
14229 					 */
14230 					if (bp != un->un_retry_bp) {
14231 						break;
14232 					}
14233 
14234 					/*
14235 					 * We get here if this cmd is our
14236 					 * un_retry_bp that was DMAFREED, but
14237 					 * scsi_init_pkt() failed to reallocate
14238 					 * DMA resources when we attempted to
14239 					 * retry it. This can happen when an
14240 					 * mpxio failover is in progress, but
14241 					 * we don't want to just fail the
14242 					 * command in this case.
14243 					 *
14244 					 * Use timeout(9F) to restart it after
14245 					 * a 100ms delay.  We don't want to
14246 					 * let sdrunout() restart it, because
14247 					 * sdrunout() is just supposed to start
14248 					 * commands that are sitting on the
14249 					 * wait queue.  The un_retry_bp stays
14250 					 * set until the command completes, but
14251 					 * sdrunout can be called many times
14252 					 * before that happens.  Since sdrunout
14253 					 * cannot tell if the un_retry_bp is
14254 					 * already in the transport, it could
14255 					 * end up calling scsi_transport() for
14256 					 * the un_retry_bp multiple times.
14257 					 *
14258 					 * Also: don't schedule the callback
14259 					 * if some other callback is already
14260 					 * pending.
14261 					 */
14262 					if (un->un_retry_statp == NULL) {
14263 						/*
14264 						 * restore the kstat pointer to
14265 						 * keep kstat counts coherent
14266 						 * when we do retry the command.
14267 						 */
14268 						un->un_retry_statp =
14269 						    saved_statp;
14270 					}
14271 
14272 					if ((un->un_startstop_timeid == NULL) &&
14273 					    (un->un_retry_timeid == NULL) &&
14274 					    (un->un_direct_priority_timeid ==
14275 					    NULL)) {
14276 
14277 						un->un_retry_timeid =
14278 						    timeout(
14279 						    sd_start_retry_command,
14280 						    un, SD_RESTART_TIMEOUT);
14281 					}
14282 					goto exit;
14283 				}
14284 
14285 #else
14286 				if (bp == immed_bp) {
14287 					break;	/* Just fail the command */
14288 				}
14289 #endif
14290 
14291 				/* Add the buf back to the head of the waitq */
14292 				bp->av_forw = un->un_waitq_headp;
14293 				un->un_waitq_headp = bp;
14294 				if (un->un_waitq_tailp == NULL) {
14295 					un->un_waitq_tailp = bp;
14296 				}
14297 				goto exit;
14298 
14299 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14300 				/*
14301 				 * HBA DMA resource failure. Fail the command
14302 				 * and continue processing of the queues.
14303 				 */
14304 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14305 				    "sd_start_cmds: "
14306 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14307 				break;
14308 
14309 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14310 				/*
14311 				 * Note:x86: Partial DMA mapping not supported
14312 				 * for USCSI commands, and all the needed DMA
14313 				 * resources were not allocated.
14314 				 */
14315 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14316 				    "sd_start_cmds: "
14317 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14318 				break;
14319 
14320 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14321 				/*
14322 				 * Note:x86: Request cannot fit into CDB based
14323 				 * on lba and len.
14324 				 */
14325 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14326 				    "sd_start_cmds: "
14327 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14328 				break;
14329 
14330 			default:
14331 				/* Should NEVER get here! */
14332 				panic("scsi_initpkt error");
14333 				/*NOTREACHED*/
14334 			}
14335 
14336 			/*
14337 			 * Fatal error in allocating a scsi_pkt for this buf.
14338 			 * Update kstats & return the buf with an error code.
14339 			 * We must use sd_return_failed_command_no_restart() to
14340 			 * avoid a recursive call back into sd_start_cmds().
14341 			 * However this also means that we must keep processing
14342 			 * the waitq here in order to avoid stalling.
14343 			 */
14344 			if (statp == kstat_waitq_to_runq) {
14345 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14346 			}
14347 			sd_return_failed_command_no_restart(un, bp, EIO);
14348 			if (bp == immed_bp) {
14349 				/* immed_bp is gone by now, so clear this */
14350 				immed_bp = NULL;
14351 			}
14352 			continue;
14353 		}
14354 got_pkt:
14355 		if (bp == immed_bp) {
14356 			/* goto the head of the class.... */
14357 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14358 		}
14359 
14360 		un->un_ncmds_in_transport++;
14361 		SD_UPDATE_KSTATS(un, statp, bp);
14362 
14363 		/*
14364 		 * Call scsi_transport() to send the command to the target.
14365 		 * According to SCSA architecture, we must drop the mutex here
14366 		 * before calling scsi_transport() in order to avoid deadlock.
14367 		 * Note that the scsi_pkt's completion routine can be executed
14368 		 * (from interrupt context) even before the call to
14369 		 * scsi_transport() returns.
14370 		 */
14371 		SD_TRACE(SD_LOG_IO_CORE, un,
14372 		    "sd_start_cmds: calling scsi_transport()\n");
14373 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14374 
14375 		mutex_exit(SD_MUTEX(un));
14376 		rval = scsi_transport(xp->xb_pktp);
14377 		mutex_enter(SD_MUTEX(un));
14378 
14379 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14380 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14381 
14382 		switch (rval) {
14383 		case TRAN_ACCEPT:
14384 			/* Clear this with every pkt accepted by the HBA */
14385 			un->un_tran_fatal_count = 0;
14386 			break;	/* Success; try the next cmd (if any) */
14387 
14388 		case TRAN_BUSY:
14389 			un->un_ncmds_in_transport--;
14390 			ASSERT(un->un_ncmds_in_transport >= 0);
14391 
14392 			/*
14393 			 * Don't retry request sense, the sense data
14394 			 * is lost when another request is sent.
14395 			 * Free up the rqs buf and retry
14396 			 * the original failed cmd.  Update kstat.
14397 			 */
14398 			if (bp == un->un_rqs_bp) {
14399 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14400 				bp = sd_mark_rqs_idle(un, xp);
14401 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14402 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14403 					kstat_waitq_enter);
14404 				goto exit;
14405 			}
14406 
14407 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14408 			/*
14409 			 * Free the DMA resources for the  scsi_pkt. This will
14410 			 * allow mpxio to select another path the next time
14411 			 * we call scsi_transport() with this scsi_pkt.
14412 			 * See sdintr() for the rationalization behind this.
14413 			 */
14414 			if ((un->un_f_is_fibre == TRUE) &&
14415 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14416 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14417 				scsi_dmafree(xp->xb_pktp);
14418 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14419 			}
14420 #endif
14421 
14422 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14423 				/*
14424 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14425 				 * are for error recovery situations. These do
14426 				 * not use the normal command waitq, so if they
14427 				 * get a TRAN_BUSY we cannot put them back onto
14428 				 * the waitq for later retry. One possible
14429 				 * problem is that there could already be some
14430 				 * other command on un_retry_bp that is waiting
14431 				 * for this one to complete, so we would be
14432 				 * deadlocked if we put this command back onto
14433 				 * the waitq for later retry (since un_retry_bp
14434 				 * must complete before the driver gets back to
14435 				 * commands on the waitq).
14436 				 *
14437 				 * To avoid deadlock we must schedule a callback
14438 				 * that will restart this command after a set
14439 				 * interval.  This should keep retrying for as
14440 				 * long as the underlying transport keeps
14441 				 * returning TRAN_BUSY (just like for other
14442 				 * commands).  Use the same timeout interval as
14443 				 * for the ordinary TRAN_BUSY retry.
14444 				 */
14445 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14446 				    "sd_start_cmds: scsi_transport() returned "
14447 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14448 
14449 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14450 				un->un_direct_priority_timeid =
14451 				    timeout(sd_start_direct_priority_command,
14452 				    bp, SD_BSY_TIMEOUT / 500);
14453 
14454 				goto exit;
14455 			}
14456 
14457 			/*
14458 			 * For TRAN_BUSY, we want to reduce the throttle value,
14459 			 * unless we are retrying a command.
14460 			 */
14461 			if (bp != un->un_retry_bp) {
14462 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14463 			}
14464 
14465 			/*
14466 			 * Set up the bp to be tried again 10 ms later.
14467 			 * Note:x86: Is there a timeout value in the sd_lun
14468 			 * for this condition?
14469 			 */
14470 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14471 				kstat_runq_back_to_waitq);
14472 			goto exit;
14473 
14474 		case TRAN_FATAL_ERROR:
14475 			un->un_tran_fatal_count++;
14476 			/* FALLTHRU */
14477 
14478 		case TRAN_BADPKT:
14479 		default:
14480 			un->un_ncmds_in_transport--;
14481 			ASSERT(un->un_ncmds_in_transport >= 0);
14482 
14483 			/*
14484 			 * If this is our REQUEST SENSE command with a
14485 			 * transport error, we must get back the pointers
14486 			 * to the original buf, and mark the REQUEST
14487 			 * SENSE command as "available".
14488 			 */
14489 			if (bp == un->un_rqs_bp) {
14490 				bp = sd_mark_rqs_idle(un, xp);
14491 				xp = SD_GET_XBUF(bp);
14492 			} else {
14493 				/*
14494 				 * Legacy behavior: do not update transport
14495 				 * error count for request sense commands.
14496 				 */
14497 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14498 			}
14499 
14500 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14501 			sd_print_transport_rejected_message(un, xp, rval);
14502 
14503 			/*
14504 			 * We must use sd_return_failed_command_no_restart() to
14505 			 * avoid a recursive call back into sd_start_cmds().
14506 			 * However this also means that we must keep processing
14507 			 * the waitq here in order to avoid stalling.
14508 			 */
14509 			sd_return_failed_command_no_restart(un, bp, EIO);
14510 
14511 			/*
14512 			 * Notify any threads waiting in sd_ddi_suspend() that
14513 			 * a command completion has occurred.
14514 			 */
14515 			if (un->un_state == SD_STATE_SUSPENDED) {
14516 				cv_broadcast(&un->un_disk_busy_cv);
14517 			}
14518 
14519 			if (bp == immed_bp) {
14520 				/* immed_bp is gone by now, so clear this */
14521 				immed_bp = NULL;
14522 			}
14523 			break;
14524 		}
14525 
14526 	} while (immed_bp == NULL);
14527 
14528 exit:
14529 	ASSERT(mutex_owned(SD_MUTEX(un)));
14530 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14531 }
14532 
14533 
14534 /*
14535  *    Function: sd_return_command
14536  *
14537  * Description: Returns a command to its originator (with or without an
14538  *		error).  Also starts commands waiting to be transported
14539  *		to the target.
14540  *
14541  *     Context: May be called from interrupt, kernel, or timeout context
14542  */
14543 
14544 static void
14545 sd_return_command(struct sd_lun *un, struct buf *bp)
14546 {
14547 	struct sd_xbuf *xp;
14548 #if defined(__i386) || defined(__amd64)
14549 	struct scsi_pkt *pktp;
14550 #endif
14551 
14552 	ASSERT(bp != NULL);
14553 	ASSERT(un != NULL);
14554 	ASSERT(mutex_owned(SD_MUTEX(un)));
14555 	ASSERT(bp != un->un_rqs_bp);
14556 	xp = SD_GET_XBUF(bp);
14557 	ASSERT(xp != NULL);
14558 
14559 #if defined(__i386) || defined(__amd64)
14560 	pktp = SD_GET_PKTP(bp);
14561 #endif
14562 
14563 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14564 
14565 #if defined(__i386) || defined(__amd64)
14566 	/*
14567 	 * Note:x86: check for the "sdrestart failed" case.
14568 	 */
14569 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14570 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14571 		(xp->xb_pktp->pkt_resid == 0)) {
14572 
14573 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14574 			/*
14575 			 * Successfully set up next portion of cmd
14576 			 * transfer, try sending it
14577 			 */
14578 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14579 			    NULL, NULL, 0, (clock_t)0, NULL);
14580 			sd_start_cmds(un, NULL);
14581 			return;	/* Note:x86: need a return here? */
14582 		}
14583 	}
14584 #endif
14585 
14586 	/*
14587 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14588 	 * can happen if upon being re-tried the failfast bp either
14589 	 * succeeded or encountered another error (possibly even a different
14590 	 * error than the one that precipitated the failfast state, but in
14591 	 * that case it would have had to exhaust retries as well). Regardless,
14592 	 * this should not occur whenever the instance is in the active
14593 	 * failfast state.
14594 	 */
14595 	if (bp == un->un_failfast_bp) {
14596 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14597 		un->un_failfast_bp = NULL;
14598 	}
14599 
14600 	/*
14601 	 * Clear the failfast state upon successful completion of ANY cmd.
14602 	 */
14603 	if (bp->b_error == 0) {
14604 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14605 	}
14606 
14607 	/*
14608 	 * This is used if the command was retried one or more times. Show that
14609 	 * we are done with it, and allow processing of the waitq to resume.
14610 	 */
14611 	if (bp == un->un_retry_bp) {
14612 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14613 		    "sd_return_command: un:0x%p: "
14614 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14615 		un->un_retry_bp = NULL;
14616 		un->un_retry_statp = NULL;
14617 	}
14618 
14619 	SD_UPDATE_RDWR_STATS(un, bp);
14620 	SD_UPDATE_PARTITION_STATS(un, bp);
14621 
14622 	switch (un->un_state) {
14623 	case SD_STATE_SUSPENDED:
14624 		/*
14625 		 * Notify any threads waiting in sd_ddi_suspend() that
14626 		 * a command completion has occurred.
14627 		 */
14628 		cv_broadcast(&un->un_disk_busy_cv);
14629 		break;
14630 	default:
14631 		sd_start_cmds(un, NULL);
14632 		break;
14633 	}
14634 
14635 	/* Return this command up the iodone chain to its originator. */
14636 	mutex_exit(SD_MUTEX(un));
14637 
14638 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14639 	xp->xb_pktp = NULL;
14640 
14641 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14642 
14643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14644 	mutex_enter(SD_MUTEX(un));
14645 
14646 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14647 }
14648 
14649 
14650 /*
14651  *    Function: sd_return_failed_command
14652  *
14653  * Description: Command completion when an error occurred.
14654  *
14655  *     Context: May be called from interrupt context
14656  */
14657 
14658 static void
14659 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14660 {
14661 	ASSERT(bp != NULL);
14662 	ASSERT(un != NULL);
14663 	ASSERT(mutex_owned(SD_MUTEX(un)));
14664 
14665 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14666 	    "sd_return_failed_command: entry\n");
14667 
14668 	/*
14669 	 * b_resid could already be nonzero due to a partial data
14670 	 * transfer, so do not change it here.
14671 	 */
14672 	SD_BIOERROR(bp, errcode);
14673 
14674 	sd_return_command(un, bp);
14675 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14676 	    "sd_return_failed_command: exit\n");
14677 }
14678 
14679 
14680 /*
14681  *    Function: sd_return_failed_command_no_restart
14682  *
14683  * Description: Same as sd_return_failed_command, but ensures that no
14684  *		call back into sd_start_cmds will be issued.
14685  *
14686  *     Context: May be called from interrupt context
14687  */
14688 
14689 static void
14690 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14691 	int errcode)
14692 {
14693 	struct sd_xbuf *xp;
14694 
14695 	ASSERT(bp != NULL);
14696 	ASSERT(un != NULL);
14697 	ASSERT(mutex_owned(SD_MUTEX(un)));
14698 	xp = SD_GET_XBUF(bp);
14699 	ASSERT(xp != NULL);
14700 	ASSERT(errcode != 0);
14701 
14702 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14703 	    "sd_return_failed_command_no_restart: entry\n");
14704 
14705 	/*
14706 	 * b_resid could already be nonzero due to a partial data
14707 	 * transfer, so do not change it here.
14708 	 */
14709 	SD_BIOERROR(bp, errcode);
14710 
14711 	/*
14712 	 * If this is the failfast bp, clear it. This can happen if the
14713 	 * failfast bp encounterd a fatal error when we attempted to
14714 	 * re-try it (such as a scsi_transport(9F) failure).  However
14715 	 * we should NOT be in an active failfast state if the failfast
14716 	 * bp is not NULL.
14717 	 */
14718 	if (bp == un->un_failfast_bp) {
14719 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14720 		un->un_failfast_bp = NULL;
14721 	}
14722 
14723 	if (bp == un->un_retry_bp) {
14724 		/*
14725 		 * This command was retried one or more times. Show that we are
14726 		 * done with it, and allow processing of the waitq to resume.
14727 		 */
14728 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14729 		    "sd_return_failed_command_no_restart: "
14730 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14731 		un->un_retry_bp = NULL;
14732 		un->un_retry_statp = NULL;
14733 	}
14734 
14735 	SD_UPDATE_RDWR_STATS(un, bp);
14736 	SD_UPDATE_PARTITION_STATS(un, bp);
14737 
14738 	mutex_exit(SD_MUTEX(un));
14739 
14740 	if (xp->xb_pktp != NULL) {
14741 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14742 		xp->xb_pktp = NULL;
14743 	}
14744 
14745 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14746 
14747 	mutex_enter(SD_MUTEX(un));
14748 
14749 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14750 	    "sd_return_failed_command_no_restart: exit\n");
14751 }
14752 
14753 
14754 /*
14755  *    Function: sd_retry_command
14756  *
14757  * Description: queue up a command for retry, or (optionally) fail it
14758  *		if retry counts are exhausted.
14759  *
14760  *   Arguments: un - Pointer to the sd_lun struct for the target.
14761  *
14762  *		bp - Pointer to the buf for the command to be retried.
14763  *
14764  *		retry_check_flag - Flag to see which (if any) of the retry
14765  *		   counts should be decremented/checked. If the indicated
14766  *		   retry count is exhausted, then the command will not be
14767  *		   retried; it will be failed instead. This should use a
14768  *		   value equal to one of the following:
14769  *
14770  *			SD_RETRIES_NOCHECK
14771  *			SD_RESD_RETRIES_STANDARD
14772  *			SD_RETRIES_VICTIM
14773  *
14774  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14775  *		   if the check should be made to see of FLAG_ISOLATE is set
14776  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14777  *		   not retried, it is simply failed.
14778  *
14779  *		user_funcp - Ptr to function to call before dispatching the
14780  *		   command. May be NULL if no action needs to be performed.
14781  *		   (Primarily intended for printing messages.)
14782  *
14783  *		user_arg - Optional argument to be passed along to
14784  *		   the user_funcp call.
14785  *
14786  *		failure_code - errno return code to set in the bp if the
14787  *		   command is going to be failed.
14788  *
14789  *		retry_delay - Retry delay interval in (clock_t) units. May
14790  *		   be zero which indicates that the retry should be retried
14791  *		   immediately (ie, without an intervening delay).
14792  *
14793  *		statp - Ptr to kstat function to be updated if the command
14794  *		   is queued for a delayed retry. May be NULL if no kstat
14795  *		   update is desired.
14796  *
14797  *     Context: May be called from interupt context.
14798  */
14799 
14800 static void
14801 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14802 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14803 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14804 	void (*statp)(kstat_io_t *))
14805 {
14806 	struct sd_xbuf	*xp;
14807 	struct scsi_pkt	*pktp;
14808 
14809 	ASSERT(un != NULL);
14810 	ASSERT(mutex_owned(SD_MUTEX(un)));
14811 	ASSERT(bp != NULL);
14812 	xp = SD_GET_XBUF(bp);
14813 	ASSERT(xp != NULL);
14814 	pktp = SD_GET_PKTP(bp);
14815 	ASSERT(pktp != NULL);
14816 
14817 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14818 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14819 
14820 	/*
14821 	 * If we are syncing or dumping, fail the command to avoid
14822 	 * recursively calling back into scsi_transport().
14823 	 */
14824 	if (ddi_in_panic()) {
14825 		goto fail_command_no_log;
14826 	}
14827 
14828 	/*
14829 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14830 	 * log an error and fail the command.
14831 	 */
14832 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14833 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14834 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14835 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14836 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14837 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14838 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14839 		goto fail_command;
14840 	}
14841 
14842 	/*
14843 	 * If we are suspended, then put the command onto head of the
14844 	 * wait queue since we don't want to start more commands.
14845 	 */
14846 	switch (un->un_state) {
14847 	case SD_STATE_SUSPENDED:
14848 	case SD_STATE_DUMPING:
14849 		bp->av_forw = un->un_waitq_headp;
14850 		un->un_waitq_headp = bp;
14851 		if (un->un_waitq_tailp == NULL) {
14852 			un->un_waitq_tailp = bp;
14853 		}
14854 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14855 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14856 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14857 		return;
14858 	default:
14859 		break;
14860 	}
14861 
14862 	/*
14863 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14864 	 * is set; if it is then we do not want to retry the command.
14865 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14866 	 */
14867 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14868 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14869 			goto fail_command;
14870 		}
14871 	}
14872 
14873 
14874 	/*
14875 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14876 	 * command timeout or a selection timeout has occurred. This means
14877 	 * that we were unable to establish an kind of communication with
14878 	 * the target, and subsequent retries and/or commands are likely
14879 	 * to encounter similar results and take a long time to complete.
14880 	 *
14881 	 * If this is a failfast error condition, we need to update the
14882 	 * failfast state, even if this bp does not have B_FAILFAST set.
14883 	 */
14884 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14885 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14886 			ASSERT(un->un_failfast_bp == NULL);
14887 			/*
14888 			 * If we are already in the active failfast state, and
14889 			 * another failfast error condition has been detected,
14890 			 * then fail this command if it has B_FAILFAST set.
14891 			 * If B_FAILFAST is clear, then maintain the legacy
14892 			 * behavior of retrying heroically, even tho this will
14893 			 * take a lot more time to fail the command.
14894 			 */
14895 			if (bp->b_flags & B_FAILFAST) {
14896 				goto fail_command;
14897 			}
14898 		} else {
14899 			/*
14900 			 * We're not in the active failfast state, but we
14901 			 * have a failfast error condition, so we must begin
14902 			 * transition to the next state. We do this regardless
14903 			 * of whether or not this bp has B_FAILFAST set.
14904 			 */
14905 			if (un->un_failfast_bp == NULL) {
14906 				/*
14907 				 * This is the first bp to meet a failfast
14908 				 * condition so save it on un_failfast_bp &
14909 				 * do normal retry processing. Do not enter
14910 				 * active failfast state yet. This marks
14911 				 * entry into the "failfast pending" state.
14912 				 */
14913 				un->un_failfast_bp = bp;
14914 
14915 			} else if (un->un_failfast_bp == bp) {
14916 				/*
14917 				 * This is the second time *this* bp has
14918 				 * encountered a failfast error condition,
14919 				 * so enter active failfast state & flush
14920 				 * queues as appropriate.
14921 				 */
14922 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14923 				un->un_failfast_bp = NULL;
14924 				sd_failfast_flushq(un);
14925 
14926 				/*
14927 				 * Fail this bp now if B_FAILFAST set;
14928 				 * otherwise continue with retries. (It would
14929 				 * be pretty ironic if this bp succeeded on a
14930 				 * subsequent retry after we just flushed all
14931 				 * the queues).
14932 				 */
14933 				if (bp->b_flags & B_FAILFAST) {
14934 					goto fail_command;
14935 				}
14936 
14937 #if !defined(lint) && !defined(__lint)
14938 			} else {
14939 				/*
14940 				 * If neither of the preceeding conditionals
14941 				 * was true, it means that there is some
14942 				 * *other* bp that has met an inital failfast
14943 				 * condition and is currently either being
14944 				 * retried or is waiting to be retried. In
14945 				 * that case we should perform normal retry
14946 				 * processing on *this* bp, since there is a
14947 				 * chance that the current failfast condition
14948 				 * is transient and recoverable. If that does
14949 				 * not turn out to be the case, then retries
14950 				 * will be cleared when the wait queue is
14951 				 * flushed anyway.
14952 				 */
14953 #endif
14954 			}
14955 		}
14956 	} else {
14957 		/*
14958 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
14959 		 * likely were able to at least establish some level of
14960 		 * communication with the target and subsequent commands
14961 		 * and/or retries are likely to get through to the target,
14962 		 * In this case we want to be aggressive about clearing
14963 		 * the failfast state. Note that this does not affect
14964 		 * the "failfast pending" condition.
14965 		 */
14966 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14967 	}
14968 
14969 
14970 	/*
14971 	 * Check the specified retry count to see if we can still do
14972 	 * any retries with this pkt before we should fail it.
14973 	 */
14974 	switch (retry_check_flag & SD_RETRIES_MASK) {
14975 	case SD_RETRIES_VICTIM:
14976 		/*
14977 		 * Check the victim retry count. If exhausted, then fall
14978 		 * thru & check against the standard retry count.
14979 		 */
14980 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
14981 			/* Increment count & proceed with the retry */
14982 			xp->xb_victim_retry_count++;
14983 			break;
14984 		}
14985 		/* Victim retries exhausted, fall back to std. retries... */
14986 		/* FALLTHRU */
14987 
14988 	case SD_RETRIES_STANDARD:
14989 		if (xp->xb_retry_count >= un->un_retry_count) {
14990 			/* Retries exhausted, fail the command */
14991 			SD_TRACE(SD_LOG_IO_CORE, un,
14992 			    "sd_retry_command: retries exhausted!\n");
14993 			/*
14994 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
14995 			 * commands with nonzero pkt_resid.
14996 			 */
14997 			if ((pktp->pkt_reason == CMD_CMPLT) &&
14998 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
14999 			    (pktp->pkt_resid != 0)) {
15000 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15001 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15002 					SD_UPDATE_B_RESID(bp, pktp);
15003 				}
15004 			}
15005 			goto fail_command;
15006 		}
15007 		xp->xb_retry_count++;
15008 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15009 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15010 		break;
15011 
15012 	case SD_RETRIES_UA:
15013 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15014 			/* Retries exhausted, fail the command */
15015 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15016 			    "Unit Attention retries exhausted. "
15017 			    "Check the target.\n");
15018 			goto fail_command;
15019 		}
15020 		xp->xb_ua_retry_count++;
15021 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15022 		    "sd_retry_command: retry count:%d\n",
15023 			xp->xb_ua_retry_count);
15024 		break;
15025 
15026 	case SD_RETRIES_BUSY:
15027 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15028 			/* Retries exhausted, fail the command */
15029 			SD_TRACE(SD_LOG_IO_CORE, un,
15030 			    "sd_retry_command: retries exhausted!\n");
15031 			goto fail_command;
15032 		}
15033 		xp->xb_retry_count++;
15034 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15035 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15036 		break;
15037 
15038 	case SD_RETRIES_NOCHECK:
15039 	default:
15040 		/* No retry count to check. Just proceed with the retry */
15041 		break;
15042 	}
15043 
15044 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15045 
15046 	/*
15047 	 * If we were given a zero timeout, we must attempt to retry the
15048 	 * command immediately (ie, without a delay).
15049 	 */
15050 	if (retry_delay == 0) {
15051 		/*
15052 		 * Check some limiting conditions to see if we can actually
15053 		 * do the immediate retry.  If we cannot, then we must
15054 		 * fall back to queueing up a delayed retry.
15055 		 */
15056 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15057 			/*
15058 			 * We are at the throttle limit for the target,
15059 			 * fall back to delayed retry.
15060 			 */
15061 			retry_delay = SD_BSY_TIMEOUT;
15062 			statp = kstat_waitq_enter;
15063 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15064 			    "sd_retry_command: immed. retry hit "
15065 			    "throttle!\n");
15066 		} else {
15067 			/*
15068 			 * We're clear to proceed with the immediate retry.
15069 			 * First call the user-provided function (if any)
15070 			 */
15071 			if (user_funcp != NULL) {
15072 				(*user_funcp)(un, bp, user_arg,
15073 				    SD_IMMEDIATE_RETRY_ISSUED);
15074 			}
15075 
15076 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15077 			    "sd_retry_command: issuing immediate retry\n");
15078 
15079 			/*
15080 			 * Call sd_start_cmds() to transport the command to
15081 			 * the target.
15082 			 */
15083 			sd_start_cmds(un, bp);
15084 
15085 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15086 			    "sd_retry_command exit\n");
15087 			return;
15088 		}
15089 	}
15090 
15091 	/*
15092 	 * Set up to retry the command after a delay.
15093 	 * First call the user-provided function (if any)
15094 	 */
15095 	if (user_funcp != NULL) {
15096 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15097 	}
15098 
15099 	sd_set_retry_bp(un, bp, retry_delay, statp);
15100 
15101 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15102 	return;
15103 
15104 fail_command:
15105 
15106 	if (user_funcp != NULL) {
15107 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15108 	}
15109 
15110 fail_command_no_log:
15111 
15112 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15113 	    "sd_retry_command: returning failed command\n");
15114 
15115 	sd_return_failed_command(un, bp, failure_code);
15116 
15117 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15118 }
15119 
15120 
15121 /*
15122  *    Function: sd_set_retry_bp
15123  *
15124  * Description: Set up the given bp for retry.
15125  *
15126  *   Arguments: un - ptr to associated softstate
15127  *		bp - ptr to buf(9S) for the command
15128  *		retry_delay - time interval before issuing retry (may be 0)
15129  *		statp - optional pointer to kstat function
15130  *
15131  *     Context: May be called under interrupt context
15132  */
15133 
15134 static void
15135 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15136 	void (*statp)(kstat_io_t *))
15137 {
15138 	ASSERT(un != NULL);
15139 	ASSERT(mutex_owned(SD_MUTEX(un)));
15140 	ASSERT(bp != NULL);
15141 
15142 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15143 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15144 
15145 	/*
15146 	 * Indicate that the command is being retried. This will not allow any
15147 	 * other commands on the wait queue to be transported to the target
15148 	 * until this command has been completed (success or failure). The
15149 	 * "retry command" is not transported to the target until the given
15150 	 * time delay expires, unless the user specified a 0 retry_delay.
15151 	 *
15152 	 * Note: the timeout(9F) callback routine is what actually calls
15153 	 * sd_start_cmds() to transport the command, with the exception of a
15154 	 * zero retry_delay. The only current implementor of a zero retry delay
15155 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15156 	 */
15157 	if (un->un_retry_bp == NULL) {
15158 		ASSERT(un->un_retry_statp == NULL);
15159 		un->un_retry_bp = bp;
15160 
15161 		/*
15162 		 * If the user has not specified a delay the command should
15163 		 * be queued and no timeout should be scheduled.
15164 		 */
15165 		if (retry_delay == 0) {
15166 			/*
15167 			 * Save the kstat pointer that will be used in the
15168 			 * call to SD_UPDATE_KSTATS() below, so that
15169 			 * sd_start_cmds() can correctly decrement the waitq
15170 			 * count when it is time to transport this command.
15171 			 */
15172 			un->un_retry_statp = statp;
15173 			goto done;
15174 		}
15175 	}
15176 
15177 	if (un->un_retry_bp == bp) {
15178 		/*
15179 		 * Save the kstat pointer that will be used in the call to
15180 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15181 		 * correctly decrement the waitq count when it is time to
15182 		 * transport this command.
15183 		 */
15184 		un->un_retry_statp = statp;
15185 
15186 		/*
15187 		 * Schedule a timeout if:
15188 		 *   1) The user has specified a delay.
15189 		 *   2) There is not a START_STOP_UNIT callback pending.
15190 		 *
15191 		 * If no delay has been specified, then it is up to the caller
15192 		 * to ensure that IO processing continues without stalling.
15193 		 * Effectively, this means that the caller will issue the
15194 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15195 		 * callback does this after the START STOP UNIT command has
15196 		 * completed. In either of these cases we should not schedule
15197 		 * a timeout callback here.  Also don't schedule the timeout if
15198 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15199 		 */
15200 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15201 		    (un->un_direct_priority_timeid == NULL)) {
15202 			un->un_retry_timeid =
15203 			    timeout(sd_start_retry_command, un, retry_delay);
15204 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15205 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15206 			    " bp:0x%p un_retry_timeid:0x%p\n",
15207 			    un, bp, un->un_retry_timeid);
15208 		}
15209 	} else {
15210 		/*
15211 		 * We only get in here if there is already another command
15212 		 * waiting to be retried.  In this case, we just put the
15213 		 * given command onto the wait queue, so it can be transported
15214 		 * after the current retry command has completed.
15215 		 *
15216 		 * Also we have to make sure that if the command at the head
15217 		 * of the wait queue is the un_failfast_bp, that we do not
15218 		 * put ahead of it any other commands that are to be retried.
15219 		 */
15220 		if ((un->un_failfast_bp != NULL) &&
15221 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15222 			/*
15223 			 * Enqueue this command AFTER the first command on
15224 			 * the wait queue (which is also un_failfast_bp).
15225 			 */
15226 			bp->av_forw = un->un_waitq_headp->av_forw;
15227 			un->un_waitq_headp->av_forw = bp;
15228 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15229 				un->un_waitq_tailp = bp;
15230 			}
15231 		} else {
15232 			/* Enqueue this command at the head of the waitq. */
15233 			bp->av_forw = un->un_waitq_headp;
15234 			un->un_waitq_headp = bp;
15235 			if (un->un_waitq_tailp == NULL) {
15236 				un->un_waitq_tailp = bp;
15237 			}
15238 		}
15239 
15240 		if (statp == NULL) {
15241 			statp = kstat_waitq_enter;
15242 		}
15243 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15244 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15245 	}
15246 
15247 done:
15248 	if (statp != NULL) {
15249 		SD_UPDATE_KSTATS(un, statp, bp);
15250 	}
15251 
15252 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15253 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15254 }
15255 
15256 
15257 /*
15258  *    Function: sd_start_retry_command
15259  *
15260  * Description: Start the command that has been waiting on the target's
15261  *		retry queue.  Called from timeout(9F) context after the
15262  *		retry delay interval has expired.
15263  *
15264  *   Arguments: arg - pointer to associated softstate for the device.
15265  *
15266  *     Context: timeout(9F) thread context.  May not sleep.
15267  */
15268 
15269 static void
15270 sd_start_retry_command(void *arg)
15271 {
15272 	struct sd_lun *un = arg;
15273 
15274 	ASSERT(un != NULL);
15275 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15276 
15277 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15278 	    "sd_start_retry_command: entry\n");
15279 
15280 	mutex_enter(SD_MUTEX(un));
15281 
15282 	un->un_retry_timeid = NULL;
15283 
15284 	if (un->un_retry_bp != NULL) {
15285 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15286 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15287 		    un, un->un_retry_bp);
15288 		sd_start_cmds(un, un->un_retry_bp);
15289 	}
15290 
15291 	mutex_exit(SD_MUTEX(un));
15292 
15293 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15294 	    "sd_start_retry_command: exit\n");
15295 }
15296 
15297 
15298 /*
15299  *    Function: sd_start_direct_priority_command
15300  *
15301  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15302  *		received TRAN_BUSY when we called scsi_transport() to send it
15303  *		to the underlying HBA. This function is called from timeout(9F)
15304  *		context after the delay interval has expired.
15305  *
15306  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15307  *
15308  *     Context: timeout(9F) thread context.  May not sleep.
15309  */
15310 
15311 static void
15312 sd_start_direct_priority_command(void *arg)
15313 {
15314 	struct buf	*priority_bp = arg;
15315 	struct sd_lun	*un;
15316 
15317 	ASSERT(priority_bp != NULL);
15318 	un = SD_GET_UN(priority_bp);
15319 	ASSERT(un != NULL);
15320 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15321 
15322 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15323 	    "sd_start_direct_priority_command: entry\n");
15324 
15325 	mutex_enter(SD_MUTEX(un));
15326 	un->un_direct_priority_timeid = NULL;
15327 	sd_start_cmds(un, priority_bp);
15328 	mutex_exit(SD_MUTEX(un));
15329 
15330 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15331 	    "sd_start_direct_priority_command: exit\n");
15332 }
15333 
15334 
15335 /*
15336  *    Function: sd_send_request_sense_command
15337  *
15338  * Description: Sends a REQUEST SENSE command to the target
15339  *
15340  *     Context: May be called from interrupt context.
15341  */
15342 
15343 static void
15344 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15345 	struct scsi_pkt *pktp)
15346 {
15347 	ASSERT(bp != NULL);
15348 	ASSERT(un != NULL);
15349 	ASSERT(mutex_owned(SD_MUTEX(un)));
15350 
15351 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15352 	    "entry: buf:0x%p\n", bp);
15353 
15354 	/*
15355 	 * If we are syncing or dumping, then fail the command to avoid a
15356 	 * recursive callback into scsi_transport(). Also fail the command
15357 	 * if we are suspended (legacy behavior).
15358 	 */
15359 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15360 	    (un->un_state == SD_STATE_DUMPING)) {
15361 		sd_return_failed_command(un, bp, EIO);
15362 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15363 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15364 		return;
15365 	}
15366 
15367 	/*
15368 	 * Retry the failed command and don't issue the request sense if:
15369 	 *    1) the sense buf is busy
15370 	 *    2) we have 1 or more outstanding commands on the target
15371 	 *    (the sense data will be cleared or invalidated any way)
15372 	 *
15373 	 * Note: There could be an issue with not checking a retry limit here,
15374 	 * the problem is determining which retry limit to check.
15375 	 */
15376 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15377 		/* Don't retry if the command is flagged as non-retryable */
15378 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15379 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15380 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15381 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15382 			    "sd_send_request_sense_command: "
15383 			    "at full throttle, retrying exit\n");
15384 		} else {
15385 			sd_return_failed_command(un, bp, EIO);
15386 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15387 			    "sd_send_request_sense_command: "
15388 			    "at full throttle, non-retryable exit\n");
15389 		}
15390 		return;
15391 	}
15392 
15393 	sd_mark_rqs_busy(un, bp);
15394 	sd_start_cmds(un, un->un_rqs_bp);
15395 
15396 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15397 	    "sd_send_request_sense_command: exit\n");
15398 }
15399 
15400 
15401 /*
15402  *    Function: sd_mark_rqs_busy
15403  *
15404  * Description: Indicate that the request sense bp for this instance is
15405  *		in use.
15406  *
15407  *     Context: May be called under interrupt context
15408  */
15409 
15410 static void
15411 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15412 {
15413 	struct sd_xbuf	*sense_xp;
15414 
15415 	ASSERT(un != NULL);
15416 	ASSERT(bp != NULL);
15417 	ASSERT(mutex_owned(SD_MUTEX(un)));
15418 	ASSERT(un->un_sense_isbusy == 0);
15419 
15420 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15421 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15422 
15423 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15424 	ASSERT(sense_xp != NULL);
15425 
15426 	SD_INFO(SD_LOG_IO, un,
15427 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15428 
15429 	ASSERT(sense_xp->xb_pktp != NULL);
15430 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15431 	    == (FLAG_SENSING | FLAG_HEAD));
15432 
15433 	un->un_sense_isbusy = 1;
15434 	un->un_rqs_bp->b_resid = 0;
15435 	sense_xp->xb_pktp->pkt_resid  = 0;
15436 	sense_xp->xb_pktp->pkt_reason = 0;
15437 
15438 	/* So we can get back the bp at interrupt time! */
15439 	sense_xp->xb_sense_bp = bp;
15440 
15441 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15442 
15443 	/*
15444 	 * Mark this buf as awaiting sense data. (This is already set in
15445 	 * the pkt_flags for the RQS packet.)
15446 	 */
15447 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15448 
15449 	sense_xp->xb_retry_count	= 0;
15450 	sense_xp->xb_victim_retry_count = 0;
15451 	sense_xp->xb_ua_retry_count	= 0;
15452 	sense_xp->xb_dma_resid  = 0;
15453 
15454 	/* Clean up the fields for auto-request sense */
15455 	sense_xp->xb_sense_status = 0;
15456 	sense_xp->xb_sense_state  = 0;
15457 	sense_xp->xb_sense_resid  = 0;
15458 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15459 
15460 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15461 }
15462 
15463 
15464 /*
15465  *    Function: sd_mark_rqs_idle
15466  *
15467  * Description: SD_MUTEX must be held continuously through this routine
15468  *		to prevent reuse of the rqs struct before the caller can
15469  *		complete it's processing.
15470  *
15471  * Return Code: Pointer to the RQS buf
15472  *
15473  *     Context: May be called under interrupt context
15474  */
15475 
15476 static struct buf *
15477 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15478 {
15479 	struct buf *bp;
15480 	ASSERT(un != NULL);
15481 	ASSERT(sense_xp != NULL);
15482 	ASSERT(mutex_owned(SD_MUTEX(un)));
15483 	ASSERT(un->un_sense_isbusy != 0);
15484 
15485 	un->un_sense_isbusy = 0;
15486 	bp = sense_xp->xb_sense_bp;
15487 	sense_xp->xb_sense_bp = NULL;
15488 
15489 	/* This pkt is no longer interested in getting sense data */
15490 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15491 
15492 	return (bp);
15493 }
15494 
15495 
15496 
15497 /*
15498  *    Function: sd_alloc_rqs
15499  *
15500  * Description: Set up the unit to receive auto request sense data
15501  *
15502  * Return Code: DDI_SUCCESS or DDI_FAILURE
15503  *
15504  *     Context: Called under attach(9E) context
15505  */
15506 
15507 static int
15508 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15509 {
15510 	struct sd_xbuf *xp;
15511 
15512 	ASSERT(un != NULL);
15513 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15514 	ASSERT(un->un_rqs_bp == NULL);
15515 	ASSERT(un->un_rqs_pktp == NULL);
15516 
15517 	/*
15518 	 * First allocate the required buf and scsi_pkt structs, then set up
15519 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15520 	 */
15521 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15522 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15523 	if (un->un_rqs_bp == NULL) {
15524 		return (DDI_FAILURE);
15525 	}
15526 
15527 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15528 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15529 
15530 	if (un->un_rqs_pktp == NULL) {
15531 		sd_free_rqs(un);
15532 		return (DDI_FAILURE);
15533 	}
15534 
15535 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15536 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15537 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15538 
15539 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15540 
15541 	/* Set up the other needed members in the ARQ scsi_pkt. */
15542 	un->un_rqs_pktp->pkt_comp   = sdintr;
15543 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15544 	un->un_rqs_pktp->pkt_flags |=
15545 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15546 
15547 	/*
15548 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15549 	 * provide any intpkt, destroypkt routines as we take care of
15550 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15551 	 */
15552 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15553 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15554 	xp->xb_pktp = un->un_rqs_pktp;
15555 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15556 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15557 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15558 
15559 	/*
15560 	 * Save the pointer to the request sense private bp so it can
15561 	 * be retrieved in sdintr.
15562 	 */
15563 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15564 	ASSERT(un->un_rqs_bp->b_private == xp);
15565 
15566 	/*
15567 	 * See if the HBA supports auto-request sense for the specified
15568 	 * target/lun. If it does, then try to enable it (if not already
15569 	 * enabled).
15570 	 *
15571 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15572 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15573 	 * return success.  However, in both of these cases ARQ is always
15574 	 * enabled and scsi_ifgetcap will always return true. The best approach
15575 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15576 	 *
15577 	 * The 3rd case is the HBA (adp) always return enabled on
15578 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15579 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15580 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15581 	 */
15582 
15583 	if (un->un_f_is_fibre == TRUE) {
15584 		un->un_f_arq_enabled = TRUE;
15585 	} else {
15586 #if defined(__i386) || defined(__amd64)
15587 		/*
15588 		 * Circumvent the Adaptec bug, remove this code when
15589 		 * the bug is fixed
15590 		 */
15591 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15592 #endif
15593 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15594 		case 0:
15595 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15596 				"sd_alloc_rqs: HBA supports ARQ\n");
15597 			/*
15598 			 * ARQ is supported by this HBA but currently is not
15599 			 * enabled. Attempt to enable it and if successful then
15600 			 * mark this instance as ARQ enabled.
15601 			 */
15602 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15603 				== 1) {
15604 				/* Successfully enabled ARQ in the HBA */
15605 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15606 					"sd_alloc_rqs: ARQ enabled\n");
15607 				un->un_f_arq_enabled = TRUE;
15608 			} else {
15609 				/* Could not enable ARQ in the HBA */
15610 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15611 				"sd_alloc_rqs: failed ARQ enable\n");
15612 				un->un_f_arq_enabled = FALSE;
15613 			}
15614 			break;
15615 		case 1:
15616 			/*
15617 			 * ARQ is supported by this HBA and is already enabled.
15618 			 * Just mark ARQ as enabled for this instance.
15619 			 */
15620 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15621 				"sd_alloc_rqs: ARQ already enabled\n");
15622 			un->un_f_arq_enabled = TRUE;
15623 			break;
15624 		default:
15625 			/*
15626 			 * ARQ is not supported by this HBA; disable it for this
15627 			 * instance.
15628 			 */
15629 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15630 				"sd_alloc_rqs: HBA does not support ARQ\n");
15631 			un->un_f_arq_enabled = FALSE;
15632 			break;
15633 		}
15634 	}
15635 
15636 	return (DDI_SUCCESS);
15637 }
15638 
15639 
15640 /*
15641  *    Function: sd_free_rqs
15642  *
15643  * Description: Cleanup for the pre-instance RQS command.
15644  *
15645  *     Context: Kernel thread context
15646  */
15647 
15648 static void
15649 sd_free_rqs(struct sd_lun *un)
15650 {
15651 	ASSERT(un != NULL);
15652 
15653 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15654 
15655 	/*
15656 	 * If consistent memory is bound to a scsi_pkt, the pkt
15657 	 * has to be destroyed *before* freeing the consistent memory.
15658 	 * Don't change the sequence of this operations.
15659 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15660 	 * after it was freed in scsi_free_consistent_buf().
15661 	 */
15662 	if (un->un_rqs_pktp != NULL) {
15663 		scsi_destroy_pkt(un->un_rqs_pktp);
15664 		un->un_rqs_pktp = NULL;
15665 	}
15666 
15667 	if (un->un_rqs_bp != NULL) {
15668 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15669 		scsi_free_consistent_buf(un->un_rqs_bp);
15670 		un->un_rqs_bp = NULL;
15671 	}
15672 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15673 }
15674 
15675 
15676 
15677 /*
15678  *    Function: sd_reduce_throttle
15679  *
15680  * Description: Reduces the maximun # of outstanding commands on a
15681  *		target to the current number of outstanding commands.
15682  *		Queues a tiemout(9F) callback to restore the limit
15683  *		after a specified interval has elapsed.
15684  *		Typically used when we get a TRAN_BUSY return code
15685  *		back from scsi_transport().
15686  *
15687  *   Arguments: un - ptr to the sd_lun softstate struct
15688  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15689  *
15690  *     Context: May be called from interrupt context
15691  */
15692 
15693 static void
15694 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15695 {
15696 	ASSERT(un != NULL);
15697 	ASSERT(mutex_owned(SD_MUTEX(un)));
15698 	ASSERT(un->un_ncmds_in_transport >= 0);
15699 
15700 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15701 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15702 	    un, un->un_throttle, un->un_ncmds_in_transport);
15703 
15704 	if (un->un_throttle > 1) {
15705 		if (un->un_f_use_adaptive_throttle == TRUE) {
15706 			switch (throttle_type) {
15707 			case SD_THROTTLE_TRAN_BUSY:
15708 				if (un->un_busy_throttle == 0) {
15709 					un->un_busy_throttle = un->un_throttle;
15710 				}
15711 				break;
15712 			case SD_THROTTLE_QFULL:
15713 				un->un_busy_throttle = 0;
15714 				break;
15715 			default:
15716 				ASSERT(FALSE);
15717 			}
15718 
15719 			if (un->un_ncmds_in_transport > 0) {
15720 			    un->un_throttle = un->un_ncmds_in_transport;
15721 			}
15722 
15723 		} else {
15724 			if (un->un_ncmds_in_transport == 0) {
15725 				un->un_throttle = 1;
15726 			} else {
15727 				un->un_throttle = un->un_ncmds_in_transport;
15728 			}
15729 		}
15730 	}
15731 
15732 	/* Reschedule the timeout if none is currently active */
15733 	if (un->un_reset_throttle_timeid == NULL) {
15734 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15735 		    un, SD_THROTTLE_RESET_INTERVAL);
15736 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15737 		    "sd_reduce_throttle: timeout scheduled!\n");
15738 	}
15739 
15740 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15741 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15742 }
15743 
15744 
15745 
15746 /*
15747  *    Function: sd_restore_throttle
15748  *
15749  * Description: Callback function for timeout(9F).  Resets the current
15750  *		value of un->un_throttle to its default.
15751  *
15752  *   Arguments: arg - pointer to associated softstate for the device.
15753  *
15754  *     Context: May be called from interrupt context
15755  */
15756 
15757 static void
15758 sd_restore_throttle(void *arg)
15759 {
15760 	struct sd_lun	*un = arg;
15761 
15762 	ASSERT(un != NULL);
15763 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15764 
15765 	mutex_enter(SD_MUTEX(un));
15766 
15767 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15768 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15769 
15770 	un->un_reset_throttle_timeid = NULL;
15771 
15772 	if (un->un_f_use_adaptive_throttle == TRUE) {
15773 		/*
15774 		 * If un_busy_throttle is nonzero, then it contains the
15775 		 * value that un_throttle was when we got a TRAN_BUSY back
15776 		 * from scsi_transport(). We want to revert back to this
15777 		 * value.
15778 		 *
15779 		 * In the QFULL case, the throttle limit will incrementally
15780 		 * increase until it reaches max throttle.
15781 		 */
15782 		if (un->un_busy_throttle > 0) {
15783 			un->un_throttle = un->un_busy_throttle;
15784 			un->un_busy_throttle = 0;
15785 		} else {
15786 			/*
15787 			 * increase throttle by 10% open gate slowly, schedule
15788 			 * another restore if saved throttle has not been
15789 			 * reached
15790 			 */
15791 			short throttle;
15792 			if (sd_qfull_throttle_enable) {
15793 				throttle = un->un_throttle +
15794 				    max((un->un_throttle / 10), 1);
15795 				un->un_throttle =
15796 				    (throttle < un->un_saved_throttle) ?
15797 				    throttle : un->un_saved_throttle;
15798 				if (un->un_throttle < un->un_saved_throttle) {
15799 				    un->un_reset_throttle_timeid =
15800 					timeout(sd_restore_throttle,
15801 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
15802 				}
15803 			}
15804 		}
15805 
15806 		/*
15807 		 * If un_throttle has fallen below the low-water mark, we
15808 		 * restore the maximum value here (and allow it to ratchet
15809 		 * down again if necessary).
15810 		 */
15811 		if (un->un_throttle < un->un_min_throttle) {
15812 			un->un_throttle = un->un_saved_throttle;
15813 		}
15814 	} else {
15815 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15816 		    "restoring limit from 0x%x to 0x%x\n",
15817 		    un->un_throttle, un->un_saved_throttle);
15818 		un->un_throttle = un->un_saved_throttle;
15819 	}
15820 
15821 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15822 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15823 
15824 	sd_start_cmds(un, NULL);
15825 
15826 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15827 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15828 	    un, un->un_throttle);
15829 
15830 	mutex_exit(SD_MUTEX(un));
15831 
15832 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15833 }
15834 
15835 /*
15836  *    Function: sdrunout
15837  *
15838  * Description: Callback routine for scsi_init_pkt when a resource allocation
15839  *		fails.
15840  *
15841  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15842  *		soft state instance.
15843  *
15844  * Return Code: The scsi_init_pkt routine allows for the callback function to
15845  *		return a 0 indicating the callback should be rescheduled or a 1
15846  *		indicating not to reschedule. This routine always returns 1
15847  *		because the driver always provides a callback function to
15848  *		scsi_init_pkt. This results in a callback always being scheduled
15849  *		(via the scsi_init_pkt callback implementation) if a resource
15850  *		failure occurs.
15851  *
15852  *     Context: This callback function may not block or call routines that block
15853  *
15854  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15855  *		request persisting at the head of the list which cannot be
15856  *		satisfied even after multiple retries. In the future the driver
15857  *		may implement some time of maximum runout count before failing
15858  *		an I/O.
15859  */
15860 
15861 static int
15862 sdrunout(caddr_t arg)
15863 {
15864 	struct sd_lun	*un = (struct sd_lun *)arg;
15865 
15866 	ASSERT(un != NULL);
15867 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15868 
15869 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15870 
15871 	mutex_enter(SD_MUTEX(un));
15872 	sd_start_cmds(un, NULL);
15873 	mutex_exit(SD_MUTEX(un));
15874 	/*
15875 	 * This callback routine always returns 1 (i.e. do not reschedule)
15876 	 * because we always specify sdrunout as the callback handler for
15877 	 * scsi_init_pkt inside the call to sd_start_cmds.
15878 	 */
15879 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15880 	return (1);
15881 }
15882 
15883 
15884 /*
15885  *    Function: sdintr
15886  *
15887  * Description: Completion callback routine for scsi_pkt(9S) structs
15888  *		sent to the HBA driver via scsi_transport(9F).
15889  *
15890  *     Context: Interrupt context
15891  */
15892 
15893 static void
15894 sdintr(struct scsi_pkt *pktp)
15895 {
15896 	struct buf	*bp;
15897 	struct sd_xbuf	*xp;
15898 	struct sd_lun	*un;
15899 
15900 	ASSERT(pktp != NULL);
15901 	bp = (struct buf *)pktp->pkt_private;
15902 	ASSERT(bp != NULL);
15903 	xp = SD_GET_XBUF(bp);
15904 	ASSERT(xp != NULL);
15905 	ASSERT(xp->xb_pktp != NULL);
15906 	un = SD_GET_UN(bp);
15907 	ASSERT(un != NULL);
15908 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15909 
15910 #ifdef SD_FAULT_INJECTION
15911 
15912 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
15913 	/* SD FaultInjection */
15914 	sd_faultinjection(pktp);
15915 
15916 #endif /* SD_FAULT_INJECTION */
15917 
15918 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
15919 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
15920 
15921 	mutex_enter(SD_MUTEX(un));
15922 
15923 	/* Reduce the count of the #commands currently in transport */
15924 	un->un_ncmds_in_transport--;
15925 	ASSERT(un->un_ncmds_in_transport >= 0);
15926 
15927 	/* Increment counter to indicate that the callback routine is active */
15928 	un->un_in_callback++;
15929 
15930 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15931 
15932 #ifdef	SDDEBUG
15933 	if (bp == un->un_retry_bp) {
15934 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
15935 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
15936 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
15937 	}
15938 #endif
15939 
15940 	/*
15941 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
15942 	 */
15943 	if (pktp->pkt_reason == CMD_DEV_GONE) {
15944 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15945 			    "Device is gone\n");
15946 		sd_return_failed_command(un, bp, EIO);
15947 		goto exit;
15948 	}
15949 
15950 	/*
15951 	 * First see if the pkt has auto-request sense data with it....
15952 	 * Look at the packet state first so we don't take a performance
15953 	 * hit looking at the arq enabled flag unless absolutely necessary.
15954 	 */
15955 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
15956 	    (un->un_f_arq_enabled == TRUE)) {
15957 		/*
15958 		 * The HBA did an auto request sense for this command so check
15959 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15960 		 * driver command that should not be retried.
15961 		 */
15962 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15963 			/*
15964 			 * Save the relevant sense info into the xp for the
15965 			 * original cmd.
15966 			 */
15967 			struct scsi_arq_status *asp;
15968 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15969 			xp->xb_sense_status =
15970 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
15971 			xp->xb_sense_state  = asp->sts_rqpkt_state;
15972 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15973 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15974 			    min(sizeof (struct scsi_extended_sense),
15975 			    SENSE_LENGTH));
15976 
15977 			/* fail the command */
15978 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15979 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
15980 			sd_return_failed_command(un, bp, EIO);
15981 			goto exit;
15982 		}
15983 
15984 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15985 		/*
15986 		 * We want to either retry or fail this command, so free
15987 		 * the DMA resources here.  If we retry the command then
15988 		 * the DMA resources will be reallocated in sd_start_cmds().
15989 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
15990 		 * causes the *entire* transfer to start over again from the
15991 		 * beginning of the request, even for PARTIAL chunks that
15992 		 * have already transferred successfully.
15993 		 */
15994 		if ((un->un_f_is_fibre == TRUE) &&
15995 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15996 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15997 			scsi_dmafree(pktp);
15998 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15999 		}
16000 #endif
16001 
16002 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16003 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16004 
16005 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16006 		goto exit;
16007 	}
16008 
16009 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16010 	if (pktp->pkt_flags & FLAG_SENSING)  {
16011 		/* This pktp is from the unit's REQUEST_SENSE command */
16012 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16013 		    "sdintr: sd_handle_request_sense\n");
16014 		sd_handle_request_sense(un, bp, xp, pktp);
16015 		goto exit;
16016 	}
16017 
16018 	/*
16019 	 * Check to see if the command successfully completed as requested;
16020 	 * this is the most common case (and also the hot performance path).
16021 	 *
16022 	 * Requirements for successful completion are:
16023 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16024 	 * In addition:
16025 	 * - A residual of zero indicates successful completion no matter what
16026 	 *   the command is.
16027 	 * - If the residual is not zero and the command is not a read or
16028 	 *   write, then it's still defined as successful completion. In other
16029 	 *   words, if the command is a read or write the residual must be
16030 	 *   zero for successful completion.
16031 	 * - If the residual is not zero and the command is a read or
16032 	 *   write, and it's a USCSICMD, then it's still defined as
16033 	 *   successful completion.
16034 	 */
16035 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16036 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16037 
16038 		/*
16039 		 * Since this command is returned with a good status, we
16040 		 * can reset the count for Sonoma failover.
16041 		 */
16042 		un->un_sonoma_failure_count = 0;
16043 
16044 		/*
16045 		 * Return all USCSI commands on good status
16046 		 */
16047 		if (pktp->pkt_resid == 0) {
16048 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16049 			    "sdintr: returning command for resid == 0\n");
16050 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16051 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16052 			SD_UPDATE_B_RESID(bp, pktp);
16053 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16054 			    "sdintr: returning command for resid != 0\n");
16055 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16056 			SD_UPDATE_B_RESID(bp, pktp);
16057 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16058 				"sdintr: returning uscsi command\n");
16059 		} else {
16060 			goto not_successful;
16061 		}
16062 		sd_return_command(un, bp);
16063 
16064 		/*
16065 		 * Decrement counter to indicate that the callback routine
16066 		 * is done.
16067 		 */
16068 		un->un_in_callback--;
16069 		ASSERT(un->un_in_callback >= 0);
16070 		mutex_exit(SD_MUTEX(un));
16071 
16072 		return;
16073 	}
16074 
16075 not_successful:
16076 
16077 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16078 	/*
16079 	 * The following is based upon knowledge of the underlying transport
16080 	 * and its use of DMA resources.  This code should be removed when
16081 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16082 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16083 	 * and sd_start_cmds().
16084 	 *
16085 	 * Free any DMA resources associated with this command if there
16086 	 * is a chance it could be retried or enqueued for later retry.
16087 	 * If we keep the DMA binding then mpxio cannot reissue the
16088 	 * command on another path whenever a path failure occurs.
16089 	 *
16090 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16091 	 * causes the *entire* transfer to start over again from the
16092 	 * beginning of the request, even for PARTIAL chunks that
16093 	 * have already transferred successfully.
16094 	 *
16095 	 * This is only done for non-uscsi commands (and also skipped for the
16096 	 * driver's internal RQS command). Also just do this for Fibre Channel
16097 	 * devices as these are the only ones that support mpxio.
16098 	 */
16099 	if ((un->un_f_is_fibre == TRUE) &&
16100 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16101 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16102 		scsi_dmafree(pktp);
16103 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16104 	}
16105 #endif
16106 
16107 	/*
16108 	 * The command did not successfully complete as requested so check
16109 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16110 	 * driver command that should not be retried so just return. If
16111 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16112 	 */
16113 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16114 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16115 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16116 		/*
16117 		 * Issue a request sense if a check condition caused the error
16118 		 * (we handle the auto request sense case above), otherwise
16119 		 * just fail the command.
16120 		 */
16121 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16122 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16123 			sd_send_request_sense_command(un, bp, pktp);
16124 		} else {
16125 			sd_return_failed_command(un, bp, EIO);
16126 		}
16127 		goto exit;
16128 	}
16129 
16130 	/*
16131 	 * The command did not successfully complete as requested so process
16132 	 * the error, retry, and/or attempt recovery.
16133 	 */
16134 	switch (pktp->pkt_reason) {
16135 	case CMD_CMPLT:
16136 		switch (SD_GET_PKT_STATUS(pktp)) {
16137 		case STATUS_GOOD:
16138 			/*
16139 			 * The command completed successfully with a non-zero
16140 			 * residual
16141 			 */
16142 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16143 			    "sdintr: STATUS_GOOD \n");
16144 			sd_pkt_status_good(un, bp, xp, pktp);
16145 			break;
16146 
16147 		case STATUS_CHECK:
16148 		case STATUS_TERMINATED:
16149 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16150 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16151 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16152 			break;
16153 
16154 		case STATUS_BUSY:
16155 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16156 			    "sdintr: STATUS_BUSY\n");
16157 			sd_pkt_status_busy(un, bp, xp, pktp);
16158 			break;
16159 
16160 		case STATUS_RESERVATION_CONFLICT:
16161 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16162 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16163 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16164 			break;
16165 
16166 		case STATUS_QFULL:
16167 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16168 			    "sdintr: STATUS_QFULL\n");
16169 			sd_pkt_status_qfull(un, bp, xp, pktp);
16170 			break;
16171 
16172 		case STATUS_MET:
16173 		case STATUS_INTERMEDIATE:
16174 		case STATUS_SCSI2:
16175 		case STATUS_INTERMEDIATE_MET:
16176 		case STATUS_ACA_ACTIVE:
16177 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16178 			    "Unexpected SCSI status received: 0x%x\n",
16179 			    SD_GET_PKT_STATUS(pktp));
16180 			sd_return_failed_command(un, bp, EIO);
16181 			break;
16182 
16183 		default:
16184 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16185 			    "Invalid SCSI status received: 0x%x\n",
16186 			    SD_GET_PKT_STATUS(pktp));
16187 			sd_return_failed_command(un, bp, EIO);
16188 			break;
16189 
16190 		}
16191 		break;
16192 
16193 	case CMD_INCOMPLETE:
16194 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16195 		    "sdintr:  CMD_INCOMPLETE\n");
16196 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16197 		break;
16198 	case CMD_TRAN_ERR:
16199 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16200 		    "sdintr: CMD_TRAN_ERR\n");
16201 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16202 		break;
16203 	case CMD_RESET:
16204 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16205 		    "sdintr: CMD_RESET \n");
16206 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16207 		break;
16208 	case CMD_ABORTED:
16209 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16210 		    "sdintr: CMD_ABORTED \n");
16211 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16212 		break;
16213 	case CMD_TIMEOUT:
16214 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16215 		    "sdintr: CMD_TIMEOUT\n");
16216 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16217 		break;
16218 	case CMD_UNX_BUS_FREE:
16219 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16220 		    "sdintr: CMD_UNX_BUS_FREE \n");
16221 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16222 		break;
16223 	case CMD_TAG_REJECT:
16224 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16225 		    "sdintr: CMD_TAG_REJECT\n");
16226 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16227 		break;
16228 	default:
16229 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16230 		    "sdintr: default\n");
16231 		sd_pkt_reason_default(un, bp, xp, pktp);
16232 		break;
16233 	}
16234 
16235 exit:
16236 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16237 
16238 	/* Decrement counter to indicate that the callback routine is done. */
16239 	un->un_in_callback--;
16240 	ASSERT(un->un_in_callback >= 0);
16241 
16242 	/*
16243 	 * At this point, the pkt has been dispatched, ie, it is either
16244 	 * being re-tried or has been returned to its caller and should
16245 	 * not be referenced.
16246 	 */
16247 
16248 	mutex_exit(SD_MUTEX(un));
16249 }
16250 
16251 
16252 /*
16253  *    Function: sd_print_incomplete_msg
16254  *
16255  * Description: Prints the error message for a CMD_INCOMPLETE error.
16256  *
16257  *   Arguments: un - ptr to associated softstate for the device.
16258  *		bp - ptr to the buf(9S) for the command.
16259  *		arg - message string ptr
16260  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16261  *			or SD_NO_RETRY_ISSUED.
16262  *
16263  *     Context: May be called under interrupt context
16264  */
16265 
16266 static void
16267 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16268 {
16269 	struct scsi_pkt	*pktp;
16270 	char	*msgp;
16271 	char	*cmdp = arg;
16272 
16273 	ASSERT(un != NULL);
16274 	ASSERT(mutex_owned(SD_MUTEX(un)));
16275 	ASSERT(bp != NULL);
16276 	ASSERT(arg != NULL);
16277 	pktp = SD_GET_PKTP(bp);
16278 	ASSERT(pktp != NULL);
16279 
16280 	switch (code) {
16281 	case SD_DELAYED_RETRY_ISSUED:
16282 	case SD_IMMEDIATE_RETRY_ISSUED:
16283 		msgp = "retrying";
16284 		break;
16285 	case SD_NO_RETRY_ISSUED:
16286 	default:
16287 		msgp = "giving up";
16288 		break;
16289 	}
16290 
16291 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16292 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16293 		    "incomplete %s- %s\n", cmdp, msgp);
16294 	}
16295 }
16296 
16297 
16298 
16299 /*
16300  *    Function: sd_pkt_status_good
16301  *
16302  * Description: Processing for a STATUS_GOOD code in pkt_status.
16303  *
16304  *     Context: May be called under interrupt context
16305  */
16306 
16307 static void
16308 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16309 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16310 {
16311 	char	*cmdp;
16312 
16313 	ASSERT(un != NULL);
16314 	ASSERT(mutex_owned(SD_MUTEX(un)));
16315 	ASSERT(bp != NULL);
16316 	ASSERT(xp != NULL);
16317 	ASSERT(pktp != NULL);
16318 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16319 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16320 	ASSERT(pktp->pkt_resid != 0);
16321 
16322 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16323 
16324 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16325 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16326 	case SCMD_READ:
16327 		cmdp = "read";
16328 		break;
16329 	case SCMD_WRITE:
16330 		cmdp = "write";
16331 		break;
16332 	default:
16333 		SD_UPDATE_B_RESID(bp, pktp);
16334 		sd_return_command(un, bp);
16335 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16336 		return;
16337 	}
16338 
16339 	/*
16340 	 * See if we can retry the read/write, preferrably immediately.
16341 	 * If retries are exhaused, then sd_retry_command() will update
16342 	 * the b_resid count.
16343 	 */
16344 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16345 	    cmdp, EIO, (clock_t)0, NULL);
16346 
16347 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16348 }
16349 
16350 
16351 
16352 
16353 
16354 /*
16355  *    Function: sd_handle_request_sense
16356  *
16357  * Description: Processing for non-auto Request Sense command.
16358  *
16359  *   Arguments: un - ptr to associated softstate
16360  *		sense_bp - ptr to buf(9S) for the RQS command
16361  *		sense_xp - ptr to the sd_xbuf for the RQS command
16362  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16363  *
16364  *     Context: May be called under interrupt context
16365  */
16366 
16367 static void
16368 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16369 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16370 {
16371 	struct buf	*cmd_bp;	/* buf for the original command */
16372 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16373 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16374 
16375 	ASSERT(un != NULL);
16376 	ASSERT(mutex_owned(SD_MUTEX(un)));
16377 	ASSERT(sense_bp != NULL);
16378 	ASSERT(sense_xp != NULL);
16379 	ASSERT(sense_pktp != NULL);
16380 
16381 	/*
16382 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16383 	 * RQS command and not the original command.
16384 	 */
16385 	ASSERT(sense_pktp == un->un_rqs_pktp);
16386 	ASSERT(sense_bp   == un->un_rqs_bp);
16387 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16388 	    (FLAG_SENSING | FLAG_HEAD));
16389 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16390 	    FLAG_SENSING) == FLAG_SENSING);
16391 
16392 	/* These are the bp, xp, and pktp for the original command */
16393 	cmd_bp = sense_xp->xb_sense_bp;
16394 	cmd_xp = SD_GET_XBUF(cmd_bp);
16395 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16396 
16397 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16398 		/*
16399 		 * The REQUEST SENSE command failed.  Release the REQUEST
16400 		 * SENSE command for re-use, get back the bp for the original
16401 		 * command, and attempt to re-try the original command if
16402 		 * FLAG_DIAGNOSE is not set in the original packet.
16403 		 */
16404 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16405 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16406 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16407 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16408 			    NULL, NULL, EIO, (clock_t)0, NULL);
16409 			return;
16410 		}
16411 	}
16412 
16413 	/*
16414 	 * Save the relevant sense info into the xp for the original cmd.
16415 	 *
16416 	 * Note: if the request sense failed the state info will be zero
16417 	 * as set in sd_mark_rqs_busy()
16418 	 */
16419 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16420 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16421 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16422 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16423 
16424 	/*
16425 	 *  Free up the RQS command....
16426 	 *  NOTE:
16427 	 *	Must do this BEFORE calling sd_validate_sense_data!
16428 	 *	sd_validate_sense_data may return the original command in
16429 	 *	which case the pkt will be freed and the flags can no
16430 	 *	longer be touched.
16431 	 *	SD_MUTEX is held through this process until the command
16432 	 *	is dispatched based upon the sense data, so there are
16433 	 *	no race conditions.
16434 	 */
16435 	(void) sd_mark_rqs_idle(un, sense_xp);
16436 
16437 	/*
16438 	 * For a retryable command see if we have valid sense data, if so then
16439 	 * turn it over to sd_decode_sense() to figure out the right course of
16440 	 * action. Just fail a non-retryable command.
16441 	 */
16442 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16443 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16444 		    SD_SENSE_DATA_IS_VALID) {
16445 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16446 		}
16447 	} else {
16448 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16449 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16450 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16451 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16452 		sd_return_failed_command(un, cmd_bp, EIO);
16453 	}
16454 }
16455 
16456 
16457 
16458 
16459 /*
16460  *    Function: sd_handle_auto_request_sense
16461  *
16462  * Description: Processing for auto-request sense information.
16463  *
16464  *   Arguments: un - ptr to associated softstate
16465  *		bp - ptr to buf(9S) for the command
16466  *		xp - ptr to the sd_xbuf for the command
16467  *		pktp - ptr to the scsi_pkt(9S) for the command
16468  *
16469  *     Context: May be called under interrupt context
16470  */
16471 
16472 static void
16473 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16474 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16475 {
16476 	struct scsi_arq_status *asp;
16477 
16478 	ASSERT(un != NULL);
16479 	ASSERT(mutex_owned(SD_MUTEX(un)));
16480 	ASSERT(bp != NULL);
16481 	ASSERT(xp != NULL);
16482 	ASSERT(pktp != NULL);
16483 	ASSERT(pktp != un->un_rqs_pktp);
16484 	ASSERT(bp   != un->un_rqs_bp);
16485 
16486 	/*
16487 	 * For auto-request sense, we get a scsi_arq_status back from
16488 	 * the HBA, with the sense data in the sts_sensedata member.
16489 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16490 	 */
16491 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16492 
16493 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16494 		/*
16495 		 * The auto REQUEST SENSE failed; see if we can re-try
16496 		 * the original command.
16497 		 */
16498 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16499 		    "auto request sense failed (reason=%s)\n",
16500 		    scsi_rname(asp->sts_rqpkt_reason));
16501 
16502 		sd_reset_target(un, pktp);
16503 
16504 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16505 		    NULL, NULL, EIO, (clock_t)0, NULL);
16506 		return;
16507 	}
16508 
16509 	/* Save the relevant sense info into the xp for the original cmd. */
16510 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16511 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16512 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16513 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16514 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16515 
16516 	/*
16517 	 * See if we have valid sense data, if so then turn it over to
16518 	 * sd_decode_sense() to figure out the right course of action.
16519 	 */
16520 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16521 		sd_decode_sense(un, bp, xp, pktp);
16522 	}
16523 }
16524 
16525 
16526 /*
16527  *    Function: sd_print_sense_failed_msg
16528  *
16529  * Description: Print log message when RQS has failed.
16530  *
16531  *   Arguments: un - ptr to associated softstate
16532  *		bp - ptr to buf(9S) for the command
16533  *		arg - generic message string ptr
16534  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16535  *			or SD_NO_RETRY_ISSUED
16536  *
16537  *     Context: May be called from interrupt context
16538  */
16539 
16540 static void
16541 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16542 	int code)
16543 {
16544 	char	*msgp = arg;
16545 
16546 	ASSERT(un != NULL);
16547 	ASSERT(mutex_owned(SD_MUTEX(un)));
16548 	ASSERT(bp != NULL);
16549 
16550 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16551 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16552 	}
16553 }
16554 
16555 
16556 /*
16557  *    Function: sd_validate_sense_data
16558  *
16559  * Description: Check the given sense data for validity.
16560  *		If the sense data is not valid, the command will
16561  *		be either failed or retried!
16562  *
16563  * Return Code: SD_SENSE_DATA_IS_INVALID
16564  *		SD_SENSE_DATA_IS_VALID
16565  *
16566  *     Context: May be called from interrupt context
16567  */
16568 
16569 static int
16570 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16571 {
16572 	struct scsi_extended_sense *esp;
16573 	struct	scsi_pkt *pktp;
16574 	size_t	actual_len;
16575 	char	*msgp = NULL;
16576 
16577 	ASSERT(un != NULL);
16578 	ASSERT(mutex_owned(SD_MUTEX(un)));
16579 	ASSERT(bp != NULL);
16580 	ASSERT(bp != un->un_rqs_bp);
16581 	ASSERT(xp != NULL);
16582 
16583 	pktp = SD_GET_PKTP(bp);
16584 	ASSERT(pktp != NULL);
16585 
16586 	/*
16587 	 * Check the status of the RQS command (auto or manual).
16588 	 */
16589 	switch (xp->xb_sense_status & STATUS_MASK) {
16590 	case STATUS_GOOD:
16591 		break;
16592 
16593 	case STATUS_RESERVATION_CONFLICT:
16594 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16595 		return (SD_SENSE_DATA_IS_INVALID);
16596 
16597 	case STATUS_BUSY:
16598 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16599 		    "Busy Status on REQUEST SENSE\n");
16600 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16601 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16602 		return (SD_SENSE_DATA_IS_INVALID);
16603 
16604 	case STATUS_QFULL:
16605 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16606 		    "QFULL Status on REQUEST SENSE\n");
16607 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16608 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16609 		return (SD_SENSE_DATA_IS_INVALID);
16610 
16611 	case STATUS_CHECK:
16612 	case STATUS_TERMINATED:
16613 		msgp = "Check Condition on REQUEST SENSE\n";
16614 		goto sense_failed;
16615 
16616 	default:
16617 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16618 		goto sense_failed;
16619 	}
16620 
16621 	/*
16622 	 * See if we got the minimum required amount of sense data.
16623 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16624 	 * or less.
16625 	 */
16626 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16627 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16628 	    (actual_len == 0)) {
16629 		msgp = "Request Sense couldn't get sense data\n";
16630 		goto sense_failed;
16631 	}
16632 
16633 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16634 		msgp = "Not enough sense information\n";
16635 		goto sense_failed;
16636 	}
16637 
16638 	/*
16639 	 * We require the extended sense data
16640 	 */
16641 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16642 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16643 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16644 			static char tmp[8];
16645 			static char buf[148];
16646 			char *p = (char *)(xp->xb_sense_data);
16647 			int i;
16648 
16649 			mutex_enter(&sd_sense_mutex);
16650 			(void) strcpy(buf, "undecodable sense information:");
16651 			for (i = 0; i < actual_len; i++) {
16652 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16653 				(void) strcpy(&buf[strlen(buf)], tmp);
16654 			}
16655 			i = strlen(buf);
16656 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16657 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16658 			mutex_exit(&sd_sense_mutex);
16659 		}
16660 		/* Note: Legacy behavior, fail the command with no retry */
16661 		sd_return_failed_command(un, bp, EIO);
16662 		return (SD_SENSE_DATA_IS_INVALID);
16663 	}
16664 
16665 	/*
16666 	 * Check that es_code is valid (es_class concatenated with es_code
16667 	 * make up the "response code" field.  es_class will always be 7, so
16668 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16669 	 * format.
16670 	 */
16671 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16672 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16673 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16674 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16675 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16676 		goto sense_failed;
16677 	}
16678 
16679 	return (SD_SENSE_DATA_IS_VALID);
16680 
16681 sense_failed:
16682 	/*
16683 	 * If the request sense failed (for whatever reason), attempt
16684 	 * to retry the original command.
16685 	 */
16686 #if defined(__i386) || defined(__amd64)
16687 	/*
16688 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16689 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16690 	 * for both SCSI/FC.
16691 	 * The SD_RETRY_DELAY value need to be adjusted here
16692 	 * when SD_RETRY_DELAY change in sddef.h
16693 	 */
16694 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16695 	    sd_print_sense_failed_msg, msgp, EIO,
16696 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16697 #else
16698 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16699 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16700 #endif
16701 
16702 	return (SD_SENSE_DATA_IS_INVALID);
16703 }
16704 
16705 
16706 
16707 /*
16708  *    Function: sd_decode_sense
16709  *
16710  * Description: Take recovery action(s) when SCSI Sense Data is received.
16711  *
16712  *     Context: Interrupt context.
16713  */
16714 
16715 static void
16716 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16717 	struct scsi_pkt *pktp)
16718 {
16719 	struct scsi_extended_sense *esp;
16720 	struct scsi_descr_sense_hdr *sdsp;
16721 	uint8_t asc, ascq, sense_key;
16722 
16723 	ASSERT(un != NULL);
16724 	ASSERT(mutex_owned(SD_MUTEX(un)));
16725 	ASSERT(bp != NULL);
16726 	ASSERT(bp != un->un_rqs_bp);
16727 	ASSERT(xp != NULL);
16728 	ASSERT(pktp != NULL);
16729 
16730 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16731 
16732 	switch (esp->es_code) {
16733 	case CODE_FMT_DESCR_CURRENT:
16734 	case CODE_FMT_DESCR_DEFERRED:
16735 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16736 		sense_key = sdsp->ds_key;
16737 		asc = sdsp->ds_add_code;
16738 		ascq = sdsp->ds_qual_code;
16739 		break;
16740 	case CODE_FMT_VENDOR_SPECIFIC:
16741 	case CODE_FMT_FIXED_CURRENT:
16742 	case CODE_FMT_FIXED_DEFERRED:
16743 	default:
16744 		sense_key = esp->es_key;
16745 		asc = esp->es_add_code;
16746 		ascq = esp->es_qual_code;
16747 		break;
16748 	}
16749 
16750 	switch (sense_key) {
16751 	case KEY_NO_SENSE:
16752 		sd_sense_key_no_sense(un, bp, xp, pktp);
16753 		break;
16754 	case KEY_RECOVERABLE_ERROR:
16755 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16756 		break;
16757 	case KEY_NOT_READY:
16758 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16759 		break;
16760 	case KEY_MEDIUM_ERROR:
16761 	case KEY_HARDWARE_ERROR:
16762 		sd_sense_key_medium_or_hardware_error(un,
16763 		    sense_key, asc, bp, xp, pktp);
16764 		break;
16765 	case KEY_ILLEGAL_REQUEST:
16766 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16767 		break;
16768 	case KEY_UNIT_ATTENTION:
16769 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16770 		break;
16771 	case KEY_WRITE_PROTECT:
16772 	case KEY_VOLUME_OVERFLOW:
16773 	case KEY_MISCOMPARE:
16774 		sd_sense_key_fail_command(un, bp, xp, pktp);
16775 		break;
16776 	case KEY_BLANK_CHECK:
16777 		sd_sense_key_blank_check(un, bp, xp, pktp);
16778 		break;
16779 	case KEY_ABORTED_COMMAND:
16780 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16781 		break;
16782 	case KEY_VENDOR_UNIQUE:
16783 	case KEY_COPY_ABORTED:
16784 	case KEY_EQUAL:
16785 	case KEY_RESERVED:
16786 	default:
16787 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16788 		break;
16789 	}
16790 }
16791 
16792 
16793 /*
16794  *    Function: sd_dump_memory
16795  *
16796  * Description: Debug logging routine to print the contents of a user provided
16797  *		buffer. The output of the buffer is broken up into 256 byte
16798  *		segments due to a size constraint of the scsi_log.
16799  *		implementation.
16800  *
16801  *   Arguments: un - ptr to softstate
16802  *		comp - component mask
16803  *		title - "title" string to preceed data when printed
16804  *		data - ptr to data block to be printed
16805  *		len - size of data block to be printed
16806  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16807  *
16808  *     Context: May be called from interrupt context
16809  */
16810 
16811 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16812 
16813 static char *sd_dump_format_string[] = {
16814 		" 0x%02x",
16815 		" %c"
16816 };
16817 
16818 static void
16819 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16820     int len, int fmt)
16821 {
16822 	int	i, j;
16823 	int	avail_count;
16824 	int	start_offset;
16825 	int	end_offset;
16826 	size_t	entry_len;
16827 	char	*bufp;
16828 	char	*local_buf;
16829 	char	*format_string;
16830 
16831 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16832 
16833 	/*
16834 	 * In the debug version of the driver, this function is called from a
16835 	 * number of places which are NOPs in the release driver.
16836 	 * The debug driver therefore has additional methods of filtering
16837 	 * debug output.
16838 	 */
16839 #ifdef SDDEBUG
16840 	/*
16841 	 * In the debug version of the driver we can reduce the amount of debug
16842 	 * messages by setting sd_error_level to something other than
16843 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16844 	 * sd_component_mask.
16845 	 */
16846 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16847 	    (sd_error_level != SCSI_ERR_ALL)) {
16848 		return;
16849 	}
16850 	if (((sd_component_mask & comp) == 0) ||
16851 	    (sd_error_level != SCSI_ERR_ALL)) {
16852 		return;
16853 	}
16854 #else
16855 	if (sd_error_level != SCSI_ERR_ALL) {
16856 		return;
16857 	}
16858 #endif
16859 
16860 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
16861 	bufp = local_buf;
16862 	/*
16863 	 * Available length is the length of local_buf[], minus the
16864 	 * length of the title string, minus one for the ":", minus
16865 	 * one for the newline, minus one for the NULL terminator.
16866 	 * This gives the #bytes available for holding the printed
16867 	 * values from the given data buffer.
16868 	 */
16869 	if (fmt == SD_LOG_HEX) {
16870 		format_string = sd_dump_format_string[0];
16871 	} else /* SD_LOG_CHAR */ {
16872 		format_string = sd_dump_format_string[1];
16873 	}
16874 	/*
16875 	 * Available count is the number of elements from the given
16876 	 * data buffer that we can fit into the available length.
16877 	 * This is based upon the size of the format string used.
16878 	 * Make one entry and find it's size.
16879 	 */
16880 	(void) sprintf(bufp, format_string, data[0]);
16881 	entry_len = strlen(bufp);
16882 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
16883 
16884 	j = 0;
16885 	while (j < len) {
16886 		bufp = local_buf;
16887 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
16888 		start_offset = j;
16889 
16890 		end_offset = start_offset + avail_count;
16891 
16892 		(void) sprintf(bufp, "%s:", title);
16893 		bufp += strlen(bufp);
16894 		for (i = start_offset; ((i < end_offset) && (j < len));
16895 		    i++, j++) {
16896 			(void) sprintf(bufp, format_string, data[i]);
16897 			bufp += entry_len;
16898 		}
16899 		(void) sprintf(bufp, "\n");
16900 
16901 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
16902 	}
16903 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
16904 }
16905 
16906 /*
16907  *    Function: sd_print_sense_msg
16908  *
16909  * Description: Log a message based upon the given sense data.
16910  *
16911  *   Arguments: un - ptr to associated softstate
16912  *		bp - ptr to buf(9S) for the command
16913  *		arg - ptr to associate sd_sense_info struct
16914  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16915  *			or SD_NO_RETRY_ISSUED
16916  *
16917  *     Context: May be called from interrupt context
16918  */
16919 
16920 static void
16921 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16922 {
16923 	struct sd_xbuf	*xp;
16924 	struct scsi_pkt	*pktp;
16925 	struct scsi_extended_sense *sensep;
16926 	daddr_t request_blkno;
16927 	diskaddr_t err_blkno;
16928 	int severity;
16929 	int pfa_flag;
16930 	int fixed_format = TRUE;
16931 	extern struct scsi_key_strings scsi_cmds[];
16932 
16933 	ASSERT(un != NULL);
16934 	ASSERT(mutex_owned(SD_MUTEX(un)));
16935 	ASSERT(bp != NULL);
16936 	xp = SD_GET_XBUF(bp);
16937 	ASSERT(xp != NULL);
16938 	pktp = SD_GET_PKTP(bp);
16939 	ASSERT(pktp != NULL);
16940 	ASSERT(arg != NULL);
16941 
16942 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
16943 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
16944 
16945 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
16946 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
16947 		severity = SCSI_ERR_RETRYABLE;
16948 	}
16949 
16950 	/* Use absolute block number for the request block number */
16951 	request_blkno = xp->xb_blkno;
16952 
16953 	/*
16954 	 * Now try to get the error block number from the sense data
16955 	 */
16956 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
16957 	switch (sensep->es_code) {
16958 	case CODE_FMT_DESCR_CURRENT:
16959 	case CODE_FMT_DESCR_DEFERRED:
16960 		err_blkno =
16961 		    sd_extract_sense_info_descr(
16962 			(struct scsi_descr_sense_hdr *)sensep);
16963 		fixed_format = FALSE;
16964 		break;
16965 	case CODE_FMT_FIXED_CURRENT:
16966 	case CODE_FMT_FIXED_DEFERRED:
16967 	case CODE_FMT_VENDOR_SPECIFIC:
16968 	default:
16969 		/*
16970 		 * With the es_valid bit set, we assume that the error
16971 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
16972 		 * greater than 0xffffffff then the target *should* have used
16973 		 * a descriptor sense format (or it shouldn't have set
16974 		 * the es_valid bit), and we may as well ignore the
16975 		 * 32-bit value.
16976 		 */
16977 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
16978 			err_blkno = (diskaddr_t)
16979 			    ((sensep->es_info_1 << 24) |
16980 			    (sensep->es_info_2 << 16) |
16981 			    (sensep->es_info_3 << 8)  |
16982 			    (sensep->es_info_4));
16983 		} else {
16984 			err_blkno = (diskaddr_t)-1;
16985 		}
16986 		break;
16987 	}
16988 
16989 	if (err_blkno == (diskaddr_t)-1) {
16990 		/*
16991 		 * Without the es_valid bit set (for fixed format) or an
16992 		 * information descriptor (for descriptor format) we cannot
16993 		 * be certain of the error blkno, so just use the
16994 		 * request_blkno.
16995 		 */
16996 		err_blkno = (diskaddr_t)request_blkno;
16997 	} else {
16998 		/*
16999 		 * We retrieved the error block number from the information
17000 		 * portion of the sense data.
17001 		 *
17002 		 * For USCSI commands we are better off using the error
17003 		 * block no. as the requested block no. (This is the best
17004 		 * we can estimate.)
17005 		 */
17006 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17007 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17008 			request_blkno = err_blkno;
17009 		}
17010 	}
17011 
17012 	/*
17013 	 * The following will log the buffer contents for the release driver
17014 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17015 	 * level is set to verbose.
17016 	 */
17017 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17018 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17019 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17020 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17021 
17022 	if (pfa_flag == FALSE) {
17023 		/* This is normally only set for USCSI */
17024 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17025 			return;
17026 		}
17027 
17028 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17029 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17030 		    (severity < sd_error_level))) {
17031 			return;
17032 		}
17033 	}
17034 
17035 	/*
17036 	 * If the data is fixed format then check for Sonoma Failover,
17037 	 * and keep a count of how many failed I/O's.  We should not have
17038 	 * to worry about Sonoma returning descriptor format sense data,
17039 	 * and asc/ascq are in a different location in descriptor format.
17040 	 */
17041 	if (fixed_format &&
17042 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
17043 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
17044 		un->un_sonoma_failure_count++;
17045 		if (un->un_sonoma_failure_count > 1) {
17046 			return;
17047 		}
17048 	}
17049 
17050 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17051 	    request_blkno, err_blkno, scsi_cmds, sensep,
17052 	    un->un_additional_codes, NULL);
17053 }
17054 
17055 /*
17056  *    Function: sd_extract_sense_info_descr
17057  *
17058  * Description: Retrieve "information" field from descriptor format
17059  *              sense data.  Iterates through each sense descriptor
17060  *              looking for the information descriptor and returns
17061  *              the information field from that descriptor.
17062  *
17063  *     Context: May be called from interrupt context
17064  */
17065 
17066 static diskaddr_t
17067 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17068 {
17069 	diskaddr_t result;
17070 	uint8_t *descr_offset;
17071 	int valid_sense_length;
17072 	struct scsi_information_sense_descr *isd;
17073 
17074 	/*
17075 	 * Initialize result to -1 indicating there is no information
17076 	 * descriptor
17077 	 */
17078 	result = (diskaddr_t)-1;
17079 
17080 	/*
17081 	 * The first descriptor will immediately follow the header
17082 	 */
17083 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17084 
17085 	/*
17086 	 * Calculate the amount of valid sense data
17087 	 */
17088 	valid_sense_length =
17089 	    min((sizeof (struct scsi_descr_sense_hdr) +
17090 	    sdsp->ds_addl_sense_length),
17091 	    SENSE_LENGTH);
17092 
17093 	/*
17094 	 * Iterate through the list of descriptors, stopping when we
17095 	 * run out of sense data
17096 	 */
17097 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17098 	    (uint8_t *)sdsp + valid_sense_length) {
17099 		/*
17100 		 * Check if this is an information descriptor.  We can
17101 		 * use the scsi_information_sense_descr structure as a
17102 		 * template sense the first two fields are always the
17103 		 * same
17104 		 */
17105 		isd = (struct scsi_information_sense_descr *)descr_offset;
17106 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17107 			/*
17108 			 * Found an information descriptor.  Copy the
17109 			 * information field.  There will only be one
17110 			 * information descriptor so we can stop looking.
17111 			 */
17112 			result =
17113 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17114 				((diskaddr_t)isd->isd_information[1] << 48) |
17115 				((diskaddr_t)isd->isd_information[2] << 40) |
17116 				((diskaddr_t)isd->isd_information[3] << 32) |
17117 				((diskaddr_t)isd->isd_information[4] << 24) |
17118 				((diskaddr_t)isd->isd_information[5] << 16) |
17119 				((diskaddr_t)isd->isd_information[6] << 8)  |
17120 				((diskaddr_t)isd->isd_information[7]));
17121 			break;
17122 		}
17123 
17124 		/*
17125 		 * Get pointer to the next descriptor.  The "additional
17126 		 * length" field holds the length of the descriptor except
17127 		 * for the "type" and "additional length" fields, so
17128 		 * we need to add 2 to get the total length.
17129 		 */
17130 		descr_offset += (isd->isd_addl_length + 2);
17131 	}
17132 
17133 	return (result);
17134 }
17135 
17136 /*
17137  *    Function: sd_sense_key_no_sense
17138  *
17139  * Description: Recovery action when sense data was not received.
17140  *
17141  *     Context: May be called from interrupt context
17142  */
17143 
17144 static void
17145 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17146 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17147 {
17148 	struct sd_sense_info	si;
17149 
17150 	ASSERT(un != NULL);
17151 	ASSERT(mutex_owned(SD_MUTEX(un)));
17152 	ASSERT(bp != NULL);
17153 	ASSERT(xp != NULL);
17154 	ASSERT(pktp != NULL);
17155 
17156 	si.ssi_severity = SCSI_ERR_FATAL;
17157 	si.ssi_pfa_flag = FALSE;
17158 
17159 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17160 
17161 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17162 		&si, EIO, (clock_t)0, NULL);
17163 }
17164 
17165 
17166 /*
17167  *    Function: sd_sense_key_recoverable_error
17168  *
17169  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17170  *
17171  *     Context: May be called from interrupt context
17172  */
17173 
17174 static void
17175 sd_sense_key_recoverable_error(struct sd_lun *un,
17176 	uint8_t asc,
17177 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17178 {
17179 	struct sd_sense_info	si;
17180 
17181 	ASSERT(un != NULL);
17182 	ASSERT(mutex_owned(SD_MUTEX(un)));
17183 	ASSERT(bp != NULL);
17184 	ASSERT(xp != NULL);
17185 	ASSERT(pktp != NULL);
17186 
17187 	/*
17188 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17189 	 */
17190 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17191 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17192 		si.ssi_severity = SCSI_ERR_INFO;
17193 		si.ssi_pfa_flag = TRUE;
17194 	} else {
17195 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17196 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17197 		si.ssi_severity = SCSI_ERR_RECOVERED;
17198 		si.ssi_pfa_flag = FALSE;
17199 	}
17200 
17201 	if (pktp->pkt_resid == 0) {
17202 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17203 		sd_return_command(un, bp);
17204 		return;
17205 	}
17206 
17207 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17208 	    &si, EIO, (clock_t)0, NULL);
17209 }
17210 
17211 
17212 
17213 
17214 /*
17215  *    Function: sd_sense_key_not_ready
17216  *
17217  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17218  *
17219  *     Context: May be called from interrupt context
17220  */
17221 
17222 static void
17223 sd_sense_key_not_ready(struct sd_lun *un,
17224 	uint8_t asc, uint8_t ascq,
17225 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17226 {
17227 	struct sd_sense_info	si;
17228 
17229 	ASSERT(un != NULL);
17230 	ASSERT(mutex_owned(SD_MUTEX(un)));
17231 	ASSERT(bp != NULL);
17232 	ASSERT(xp != NULL);
17233 	ASSERT(pktp != NULL);
17234 
17235 	si.ssi_severity = SCSI_ERR_FATAL;
17236 	si.ssi_pfa_flag = FALSE;
17237 
17238 	/*
17239 	 * Update error stats after first NOT READY error. Disks may have
17240 	 * been powered down and may need to be restarted.  For CDROMs,
17241 	 * report NOT READY errors only if media is present.
17242 	 */
17243 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17244 	    (xp->xb_retry_count > 0)) {
17245 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17246 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17247 	}
17248 
17249 	/*
17250 	 * Just fail if the "not ready" retry limit has been reached.
17251 	 */
17252 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17253 		/* Special check for error message printing for removables. */
17254 		if ((ISREMOVABLE(un)) && (asc == 0x04) &&
17255 		    (ascq >= 0x04)) {
17256 			si.ssi_severity = SCSI_ERR_ALL;
17257 		}
17258 		goto fail_command;
17259 	}
17260 
17261 	/*
17262 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17263 	 * what to do.
17264 	 */
17265 	switch (asc) {
17266 	case 0x04:	/* LOGICAL UNIT NOT READY */
17267 		/*
17268 		 * disk drives that don't spin up result in a very long delay
17269 		 * in format without warning messages. We will log a message
17270 		 * if the error level is set to verbose.
17271 		 */
17272 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17273 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17274 			    "logical unit not ready, resetting disk\n");
17275 		}
17276 
17277 		/*
17278 		 * There are different requirements for CDROMs and disks for
17279 		 * the number of retries.  If a CD-ROM is giving this, it is
17280 		 * probably reading TOC and is in the process of getting
17281 		 * ready, so we should keep on trying for a long time to make
17282 		 * sure that all types of media are taken in account (for
17283 		 * some media the drive takes a long time to read TOC).  For
17284 		 * disks we do not want to retry this too many times as this
17285 		 * can cause a long hang in format when the drive refuses to
17286 		 * spin up (a very common failure).
17287 		 */
17288 		switch (ascq) {
17289 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17290 			/*
17291 			 * Disk drives frequently refuse to spin up which
17292 			 * results in a very long hang in format without
17293 			 * warning messages.
17294 			 *
17295 			 * Note: This code preserves the legacy behavior of
17296 			 * comparing xb_retry_count against zero for fibre
17297 			 * channel targets instead of comparing against the
17298 			 * un_reset_retry_count value.  The reason for this
17299 			 * discrepancy has been so utterly lost beneath the
17300 			 * Sands of Time that even Indiana Jones could not
17301 			 * find it.
17302 			 */
17303 			if (un->un_f_is_fibre == TRUE) {
17304 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17305 					(xp->xb_retry_count > 0)) &&
17306 					(un->un_startstop_timeid == NULL)) {
17307 					scsi_log(SD_DEVINFO(un), sd_label,
17308 					CE_WARN, "logical unit not ready, "
17309 					"resetting disk\n");
17310 					sd_reset_target(un, pktp);
17311 				}
17312 			} else {
17313 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17314 					(xp->xb_retry_count >
17315 					un->un_reset_retry_count)) &&
17316 					(un->un_startstop_timeid == NULL)) {
17317 					scsi_log(SD_DEVINFO(un), sd_label,
17318 					CE_WARN, "logical unit not ready, "
17319 					"resetting disk\n");
17320 					sd_reset_target(un, pktp);
17321 				}
17322 			}
17323 			break;
17324 
17325 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17326 			/*
17327 			 * If the target is in the process of becoming
17328 			 * ready, just proceed with the retry. This can
17329 			 * happen with CD-ROMs that take a long time to
17330 			 * read TOC after a power cycle or reset.
17331 			 */
17332 			goto do_retry;
17333 
17334 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17335 			break;
17336 
17337 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17338 			/*
17339 			 * Retries cannot help here so just fail right away.
17340 			 */
17341 			goto fail_command;
17342 
17343 		case 0x88:
17344 			/*
17345 			 * Vendor-unique code for T3/T4: it indicates a
17346 			 * path problem in a mutipathed config, but as far as
17347 			 * the target driver is concerned it equates to a fatal
17348 			 * error, so we should just fail the command right away
17349 			 * (without printing anything to the console). If this
17350 			 * is not a T3/T4, fall thru to the default recovery
17351 			 * action.
17352 			 * T3/T4 is FC only, don't need to check is_fibre
17353 			 */
17354 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17355 				sd_return_failed_command(un, bp, EIO);
17356 				return;
17357 			}
17358 			/* FALLTHRU */
17359 
17360 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17361 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17362 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17363 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17364 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17365 		default:    /* Possible future codes in SCSI spec? */
17366 			/*
17367 			 * For removable-media devices, do not retry if
17368 			 * ASCQ > 2 as these result mostly from USCSI commands
17369 			 * on MMC devices issued to check status of an
17370 			 * operation initiated in immediate mode.  Also for
17371 			 * ASCQ >= 4 do not print console messages as these
17372 			 * mainly represent a user-initiated operation
17373 			 * instead of a system failure.
17374 			 */
17375 			if (ISREMOVABLE(un)) {
17376 				si.ssi_severity = SCSI_ERR_ALL;
17377 				goto fail_command;
17378 			}
17379 			break;
17380 		}
17381 
17382 		/*
17383 		 * As part of our recovery attempt for the NOT READY
17384 		 * condition, we issue a START STOP UNIT command. However
17385 		 * we want to wait for a short delay before attempting this
17386 		 * as there may still be more commands coming back from the
17387 		 * target with the check condition. To do this we use
17388 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17389 		 * the delay interval expires. (sd_start_stop_unit_callback()
17390 		 * dispatches sd_start_stop_unit_task(), which will issue
17391 		 * the actual START STOP UNIT command. The delay interval
17392 		 * is one-half of the delay that we will use to retry the
17393 		 * command that generated the NOT READY condition.
17394 		 *
17395 		 * Note that we could just dispatch sd_start_stop_unit_task()
17396 		 * from here and allow it to sleep for the delay interval,
17397 		 * but then we would be tying up the taskq thread
17398 		 * uncesessarily for the duration of the delay.
17399 		 *
17400 		 * Do not issue the START STOP UNIT if the current command
17401 		 * is already a START STOP UNIT.
17402 		 */
17403 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17404 			break;
17405 		}
17406 
17407 		/*
17408 		 * Do not schedule the timeout if one is already pending.
17409 		 */
17410 		if (un->un_startstop_timeid != NULL) {
17411 			SD_INFO(SD_LOG_ERROR, un,
17412 			    "sd_sense_key_not_ready: restart already issued to"
17413 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17414 			    ddi_get_instance(SD_DEVINFO(un)));
17415 			break;
17416 		}
17417 
17418 		/*
17419 		 * Schedule the START STOP UNIT command, then queue the command
17420 		 * for a retry.
17421 		 *
17422 		 * Note: A timeout is not scheduled for this retry because we
17423 		 * want the retry to be serial with the START_STOP_UNIT. The
17424 		 * retry will be started when the START_STOP_UNIT is completed
17425 		 * in sd_start_stop_unit_task.
17426 		 */
17427 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17428 		    un, SD_BSY_TIMEOUT / 2);
17429 		xp->xb_retry_count++;
17430 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17431 		return;
17432 
17433 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17434 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17435 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17436 			    "unit does not respond to selection\n");
17437 		}
17438 		break;
17439 
17440 	case 0x3A:	/* MEDIUM NOT PRESENT */
17441 		if (sd_error_level >= SCSI_ERR_FATAL) {
17442 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17443 			    "Caddy not inserted in drive\n");
17444 		}
17445 
17446 		sr_ejected(un);
17447 		un->un_mediastate = DKIO_EJECTED;
17448 		/* The state has changed, inform the media watch routines */
17449 		cv_broadcast(&un->un_state_cv);
17450 		/* Just fail if no media is present in the drive. */
17451 		goto fail_command;
17452 
17453 	default:
17454 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17455 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17456 			    "Unit not Ready. Additional sense code 0x%x\n",
17457 			    asc);
17458 		}
17459 		break;
17460 	}
17461 
17462 do_retry:
17463 
17464 	/*
17465 	 * Retry the command, as some targets may report NOT READY for
17466 	 * several seconds after being reset.
17467 	 */
17468 	xp->xb_retry_count++;
17469 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17470 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17471 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17472 
17473 	return;
17474 
17475 fail_command:
17476 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17477 	sd_return_failed_command(un, bp, EIO);
17478 }
17479 
17480 
17481 
17482 /*
17483  *    Function: sd_sense_key_medium_or_hardware_error
17484  *
17485  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17486  *		sense key.
17487  *
17488  *     Context: May be called from interrupt context
17489  */
17490 
17491 static void
17492 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17493 	int sense_key, uint8_t asc,
17494 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17495 {
17496 	struct sd_sense_info	si;
17497 
17498 	ASSERT(un != NULL);
17499 	ASSERT(mutex_owned(SD_MUTEX(un)));
17500 	ASSERT(bp != NULL);
17501 	ASSERT(xp != NULL);
17502 	ASSERT(pktp != NULL);
17503 
17504 	si.ssi_severity = SCSI_ERR_FATAL;
17505 	si.ssi_pfa_flag = FALSE;
17506 
17507 	if (sense_key == KEY_MEDIUM_ERROR) {
17508 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17509 	}
17510 
17511 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17512 
17513 	if ((un->un_reset_retry_count != 0) &&
17514 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17515 		mutex_exit(SD_MUTEX(un));
17516 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17517 		if (un->un_f_allow_bus_device_reset == TRUE) {
17518 
17519 			boolean_t try_resetting_target = B_TRUE;
17520 
17521 			/*
17522 			 * We need to be able to handle specific ASC when we are
17523 			 * handling a KEY_HARDWARE_ERROR. In particular
17524 			 * taking the default action of resetting the target may
17525 			 * not be the appropriate way to attempt recovery.
17526 			 * Resetting a target because of a single LUN failure
17527 			 * victimizes all LUNs on that target.
17528 			 *
17529 			 * This is true for the LSI arrays, if an LSI
17530 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17531 			 * should trust it.
17532 			 */
17533 
17534 			if (sense_key == KEY_HARDWARE_ERROR) {
17535 				switch (asc) {
17536 				case 0x84:
17537 					if (SD_IS_LSI(un)) {
17538 						try_resetting_target = B_FALSE;
17539 					}
17540 					break;
17541 				default:
17542 					break;
17543 				}
17544 			}
17545 
17546 			if (try_resetting_target == B_TRUE) {
17547 				int reset_retval = 0;
17548 				if (un->un_f_lun_reset_enabled == TRUE) {
17549 					SD_TRACE(SD_LOG_IO_CORE, un,
17550 					    "sd_sense_key_medium_or_hardware_"
17551 					    "error: issuing RESET_LUN\n");
17552 					reset_retval =
17553 					    scsi_reset(SD_ADDRESS(un),
17554 					    RESET_LUN);
17555 				}
17556 				if (reset_retval == 0) {
17557 					SD_TRACE(SD_LOG_IO_CORE, un,
17558 					    "sd_sense_key_medium_or_hardware_"
17559 					    "error: issuing RESET_TARGET\n");
17560 					(void) scsi_reset(SD_ADDRESS(un),
17561 					    RESET_TARGET);
17562 				}
17563 			}
17564 		}
17565 		mutex_enter(SD_MUTEX(un));
17566 	}
17567 
17568 	/*
17569 	 * This really ought to be a fatal error, but we will retry anyway
17570 	 * as some drives report this as a spurious error.
17571 	 */
17572 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17573 	    &si, EIO, (clock_t)0, NULL);
17574 }
17575 
17576 
17577 
17578 /*
17579  *    Function: sd_sense_key_illegal_request
17580  *
17581  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17582  *
17583  *     Context: May be called from interrupt context
17584  */
17585 
17586 static void
17587 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17588 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17589 {
17590 	struct sd_sense_info	si;
17591 
17592 	ASSERT(un != NULL);
17593 	ASSERT(mutex_owned(SD_MUTEX(un)));
17594 	ASSERT(bp != NULL);
17595 	ASSERT(xp != NULL);
17596 	ASSERT(pktp != NULL);
17597 
17598 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17599 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17600 
17601 	si.ssi_severity = SCSI_ERR_INFO;
17602 	si.ssi_pfa_flag = FALSE;
17603 
17604 	/* Pointless to retry if the target thinks it's an illegal request */
17605 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17606 	sd_return_failed_command(un, bp, EIO);
17607 }
17608 
17609 
17610 
17611 
17612 /*
17613  *    Function: sd_sense_key_unit_attention
17614  *
17615  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17616  *
17617  *     Context: May be called from interrupt context
17618  */
17619 
17620 static void
17621 sd_sense_key_unit_attention(struct sd_lun *un,
17622 	uint8_t asc,
17623 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17624 {
17625 	/*
17626 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17627 	 * like Sonoma can return UNIT ATTENTION close to a minute
17628 	 * under certain conditions.
17629 	 */
17630 	int	retry_check_flag = SD_RETRIES_UA;
17631 	struct	sd_sense_info		si;
17632 
17633 	ASSERT(un != NULL);
17634 	ASSERT(mutex_owned(SD_MUTEX(un)));
17635 	ASSERT(bp != NULL);
17636 	ASSERT(xp != NULL);
17637 	ASSERT(pktp != NULL);
17638 
17639 	si.ssi_severity = SCSI_ERR_INFO;
17640 	si.ssi_pfa_flag = FALSE;
17641 
17642 
17643 	switch (asc) {
17644 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17645 		if (sd_report_pfa != 0) {
17646 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17647 			si.ssi_pfa_flag = TRUE;
17648 			retry_check_flag = SD_RETRIES_STANDARD;
17649 			goto do_retry;
17650 		}
17651 		break;
17652 
17653 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17654 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17655 			un->un_resvd_status |=
17656 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17657 		}
17658 		/* FALLTHRU */
17659 
17660 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17661 		if (!ISREMOVABLE(un)) {
17662 			break;
17663 		}
17664 
17665 		/*
17666 		 * When we get a unit attention from a removable-media device,
17667 		 * it may be in a state that will take a long time to recover
17668 		 * (e.g., from a reset).  Since we are executing in interrupt
17669 		 * context here, we cannot wait around for the device to come
17670 		 * back. So hand this command off to sd_media_change_task()
17671 		 * for deferred processing under taskq thread context. (Note
17672 		 * that the command still may be failed if a problem is
17673 		 * encountered at a later time.)
17674 		 */
17675 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17676 		    KM_NOSLEEP) == 0) {
17677 			/*
17678 			 * Cannot dispatch the request so fail the command.
17679 			 */
17680 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17681 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17682 			si.ssi_severity = SCSI_ERR_FATAL;
17683 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17684 			sd_return_failed_command(un, bp, EIO);
17685 		}
17686 		/*
17687 		 * Either the command has been successfully dispatched to a
17688 		 * task Q for retrying, or the dispatch failed. In either case
17689 		 * do NOT retry again by calling sd_retry_command. This sets up
17690 		 * two retries of the same command and when one completes and
17691 		 * frees the resources the other will access freed memory,
17692 		 * a bad thing.
17693 		 */
17694 		return;
17695 
17696 	default:
17697 		break;
17698 	}
17699 
17700 	if (!ISREMOVABLE(un)) {
17701 		/*
17702 		 * Do not update these here for removables. For removables
17703 		 * these stats are updated (1) above if we failed to dispatch
17704 		 * sd_media_change_task(), or (2) sd_media_change_task() may
17705 		 * update these later if it encounters an error.
17706 		 */
17707 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17708 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17709 	}
17710 
17711 do_retry:
17712 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17713 	    EIO, SD_UA_RETRY_DELAY, NULL);
17714 }
17715 
17716 
17717 
17718 /*
17719  *    Function: sd_sense_key_fail_command
17720  *
17721  * Description: Use to fail a command when we don't like the sense key that
17722  *		was returned.
17723  *
17724  *     Context: May be called from interrupt context
17725  */
17726 
17727 static void
17728 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17729 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17730 {
17731 	struct sd_sense_info	si;
17732 
17733 	ASSERT(un != NULL);
17734 	ASSERT(mutex_owned(SD_MUTEX(un)));
17735 	ASSERT(bp != NULL);
17736 	ASSERT(xp != NULL);
17737 	ASSERT(pktp != NULL);
17738 
17739 	si.ssi_severity = SCSI_ERR_FATAL;
17740 	si.ssi_pfa_flag = FALSE;
17741 
17742 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17743 	sd_return_failed_command(un, bp, EIO);
17744 }
17745 
17746 
17747 
17748 /*
17749  *    Function: sd_sense_key_blank_check
17750  *
17751  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17752  *		Has no monetary connotation.
17753  *
17754  *     Context: May be called from interrupt context
17755  */
17756 
17757 static void
17758 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17759 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17760 {
17761 	struct sd_sense_info	si;
17762 
17763 	ASSERT(un != NULL);
17764 	ASSERT(mutex_owned(SD_MUTEX(un)));
17765 	ASSERT(bp != NULL);
17766 	ASSERT(xp != NULL);
17767 	ASSERT(pktp != NULL);
17768 
17769 	/*
17770 	 * Blank check is not fatal for removable devices, therefore
17771 	 * it does not require a console message.
17772 	 */
17773 	si.ssi_severity = (ISREMOVABLE(un)) ? SCSI_ERR_ALL : SCSI_ERR_FATAL;
17774 	si.ssi_pfa_flag = FALSE;
17775 
17776 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17777 	sd_return_failed_command(un, bp, EIO);
17778 }
17779 
17780 
17781 
17782 
17783 /*
17784  *    Function: sd_sense_key_aborted_command
17785  *
17786  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17787  *
17788  *     Context: May be called from interrupt context
17789  */
17790 
17791 static void
17792 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17793 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17794 {
17795 	struct sd_sense_info	si;
17796 
17797 	ASSERT(un != NULL);
17798 	ASSERT(mutex_owned(SD_MUTEX(un)));
17799 	ASSERT(bp != NULL);
17800 	ASSERT(xp != NULL);
17801 	ASSERT(pktp != NULL);
17802 
17803 	si.ssi_severity = SCSI_ERR_FATAL;
17804 	si.ssi_pfa_flag = FALSE;
17805 
17806 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17807 
17808 	/*
17809 	 * This really ought to be a fatal error, but we will retry anyway
17810 	 * as some drives report this as a spurious error.
17811 	 */
17812 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17813 	    &si, EIO, (clock_t)0, NULL);
17814 }
17815 
17816 
17817 
17818 /*
17819  *    Function: sd_sense_key_default
17820  *
17821  * Description: Default recovery action for several SCSI sense keys (basically
17822  *		attempts a retry).
17823  *
17824  *     Context: May be called from interrupt context
17825  */
17826 
17827 static void
17828 sd_sense_key_default(struct sd_lun *un,
17829 	int sense_key,
17830 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17831 {
17832 	struct sd_sense_info	si;
17833 
17834 	ASSERT(un != NULL);
17835 	ASSERT(mutex_owned(SD_MUTEX(un)));
17836 	ASSERT(bp != NULL);
17837 	ASSERT(xp != NULL);
17838 	ASSERT(pktp != NULL);
17839 
17840 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17841 
17842 	/*
17843 	 * Undecoded sense key.	Attempt retries and hope that will fix
17844 	 * the problem.  Otherwise, we're dead.
17845 	 */
17846 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17847 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17848 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17849 	}
17850 
17851 	si.ssi_severity = SCSI_ERR_FATAL;
17852 	si.ssi_pfa_flag = FALSE;
17853 
17854 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17855 	    &si, EIO, (clock_t)0, NULL);
17856 }
17857 
17858 
17859 
17860 /*
17861  *    Function: sd_print_retry_msg
17862  *
17863  * Description: Print a message indicating the retry action being taken.
17864  *
17865  *   Arguments: un - ptr to associated softstate
17866  *		bp - ptr to buf(9S) for the command
17867  *		arg - not used.
17868  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17869  *			or SD_NO_RETRY_ISSUED
17870  *
17871  *     Context: May be called from interrupt context
17872  */
17873 /* ARGSUSED */
17874 static void
17875 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
17876 {
17877 	struct sd_xbuf	*xp;
17878 	struct scsi_pkt *pktp;
17879 	char *reasonp;
17880 	char *msgp;
17881 
17882 	ASSERT(un != NULL);
17883 	ASSERT(mutex_owned(SD_MUTEX(un)));
17884 	ASSERT(bp != NULL);
17885 	pktp = SD_GET_PKTP(bp);
17886 	ASSERT(pktp != NULL);
17887 	xp = SD_GET_XBUF(bp);
17888 	ASSERT(xp != NULL);
17889 
17890 	ASSERT(!mutex_owned(&un->un_pm_mutex));
17891 	mutex_enter(&un->un_pm_mutex);
17892 	if ((un->un_state == SD_STATE_SUSPENDED) ||
17893 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
17894 	    (pktp->pkt_flags & FLAG_SILENT)) {
17895 		mutex_exit(&un->un_pm_mutex);
17896 		goto update_pkt_reason;
17897 	}
17898 	mutex_exit(&un->un_pm_mutex);
17899 
17900 	/*
17901 	 * Suppress messages if they are all the same pkt_reason; with
17902 	 * TQ, many (up to 256) are returned with the same pkt_reason.
17903 	 * If we are in panic, then suppress the retry messages.
17904 	 */
17905 	switch (flag) {
17906 	case SD_NO_RETRY_ISSUED:
17907 		msgp = "giving up";
17908 		break;
17909 	case SD_IMMEDIATE_RETRY_ISSUED:
17910 	case SD_DELAYED_RETRY_ISSUED:
17911 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
17912 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
17913 		    (sd_error_level != SCSI_ERR_ALL))) {
17914 			return;
17915 		}
17916 		msgp = "retrying command";
17917 		break;
17918 	default:
17919 		goto update_pkt_reason;
17920 	}
17921 
17922 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
17923 	    scsi_rname(pktp->pkt_reason));
17924 
17925 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17926 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
17927 
17928 update_pkt_reason:
17929 	/*
17930 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
17931 	 * This is to prevent multiple console messages for the same failure
17932 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
17933 	 * when the command is retried successfully because there still may be
17934 	 * more commands coming back with the same value of pktp->pkt_reason.
17935 	 */
17936 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
17937 		un->un_last_pkt_reason = pktp->pkt_reason;
17938 	}
17939 }
17940 
17941 
17942 /*
17943  *    Function: sd_print_cmd_incomplete_msg
17944  *
17945  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
17946  *
17947  *   Arguments: un - ptr to associated softstate
17948  *		bp - ptr to buf(9S) for the command
17949  *		arg - passed to sd_print_retry_msg()
17950  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17951  *			or SD_NO_RETRY_ISSUED
17952  *
17953  *     Context: May be called from interrupt context
17954  */
17955 
17956 static void
17957 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
17958 	int code)
17959 {
17960 	dev_info_t	*dip;
17961 
17962 	ASSERT(un != NULL);
17963 	ASSERT(mutex_owned(SD_MUTEX(un)));
17964 	ASSERT(bp != NULL);
17965 
17966 	switch (code) {
17967 	case SD_NO_RETRY_ISSUED:
17968 		/* Command was failed. Someone turned off this target? */
17969 		if (un->un_state != SD_STATE_OFFLINE) {
17970 			/*
17971 			 * Suppress message if we are detaching and
17972 			 * device has been disconnected
17973 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
17974 			 * private interface and not part of the DDI
17975 			 */
17976 			dip = un->un_sd->sd_dev;
17977 			if (!(DEVI_IS_DETACHING(dip) &&
17978 			    DEVI_IS_DEVICE_REMOVED(dip))) {
17979 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17980 				"disk not responding to selection\n");
17981 			}
17982 			New_state(un, SD_STATE_OFFLINE);
17983 		}
17984 		break;
17985 
17986 	case SD_DELAYED_RETRY_ISSUED:
17987 	case SD_IMMEDIATE_RETRY_ISSUED:
17988 	default:
17989 		/* Command was successfully queued for retry */
17990 		sd_print_retry_msg(un, bp, arg, code);
17991 		break;
17992 	}
17993 }
17994 
17995 
17996 /*
17997  *    Function: sd_pkt_reason_cmd_incomplete
17998  *
17999  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18000  *
18001  *     Context: May be called from interrupt context
18002  */
18003 
18004 static void
18005 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18006 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18007 {
18008 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18009 
18010 	ASSERT(un != NULL);
18011 	ASSERT(mutex_owned(SD_MUTEX(un)));
18012 	ASSERT(bp != NULL);
18013 	ASSERT(xp != NULL);
18014 	ASSERT(pktp != NULL);
18015 
18016 	/* Do not do a reset if selection did not complete */
18017 	/* Note: Should this not just check the bit? */
18018 	if (pktp->pkt_state != STATE_GOT_BUS) {
18019 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18020 		sd_reset_target(un, pktp);
18021 	}
18022 
18023 	/*
18024 	 * If the target was not successfully selected, then set
18025 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18026 	 * with the target, and further retries and/or commands are
18027 	 * likely to take a long time.
18028 	 */
18029 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18030 		flag |= SD_RETRIES_FAILFAST;
18031 	}
18032 
18033 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18034 
18035 	sd_retry_command(un, bp, flag,
18036 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18037 }
18038 
18039 
18040 
18041 /*
18042  *    Function: sd_pkt_reason_cmd_tran_err
18043  *
18044  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18045  *
18046  *     Context: May be called from interrupt context
18047  */
18048 
18049 static void
18050 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18051 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18052 {
18053 	ASSERT(un != NULL);
18054 	ASSERT(mutex_owned(SD_MUTEX(un)));
18055 	ASSERT(bp != NULL);
18056 	ASSERT(xp != NULL);
18057 	ASSERT(pktp != NULL);
18058 
18059 	/*
18060 	 * Do not reset if we got a parity error, or if
18061 	 * selection did not complete.
18062 	 */
18063 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18064 	/* Note: Should this not just check the bit for pkt_state? */
18065 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18066 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18067 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18068 		sd_reset_target(un, pktp);
18069 	}
18070 
18071 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18072 
18073 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18074 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18075 }
18076 
18077 
18078 
18079 /*
18080  *    Function: sd_pkt_reason_cmd_reset
18081  *
18082  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18083  *
18084  *     Context: May be called from interrupt context
18085  */
18086 
18087 static void
18088 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18089 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18090 {
18091 	ASSERT(un != NULL);
18092 	ASSERT(mutex_owned(SD_MUTEX(un)));
18093 	ASSERT(bp != NULL);
18094 	ASSERT(xp != NULL);
18095 	ASSERT(pktp != NULL);
18096 
18097 	/* The target may still be running the command, so try to reset. */
18098 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18099 	sd_reset_target(un, pktp);
18100 
18101 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18102 
18103 	/*
18104 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18105 	 * reset because another target on this bus caused it. The target
18106 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18107 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18108 	 */
18109 
18110 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18111 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18112 }
18113 
18114 
18115 
18116 
18117 /*
18118  *    Function: sd_pkt_reason_cmd_aborted
18119  *
18120  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18121  *
18122  *     Context: May be called from interrupt context
18123  */
18124 
18125 static void
18126 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18127 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18128 {
18129 	ASSERT(un != NULL);
18130 	ASSERT(mutex_owned(SD_MUTEX(un)));
18131 	ASSERT(bp != NULL);
18132 	ASSERT(xp != NULL);
18133 	ASSERT(pktp != NULL);
18134 
18135 	/* The target may still be running the command, so try to reset. */
18136 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18137 	sd_reset_target(un, pktp);
18138 
18139 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18140 
18141 	/*
18142 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18143 	 * aborted because another target on this bus caused it. The target
18144 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18145 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18146 	 */
18147 
18148 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18149 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18150 }
18151 
18152 
18153 
18154 /*
18155  *    Function: sd_pkt_reason_cmd_timeout
18156  *
18157  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18158  *
18159  *     Context: May be called from interrupt context
18160  */
18161 
18162 static void
18163 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18164 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18165 {
18166 	ASSERT(un != NULL);
18167 	ASSERT(mutex_owned(SD_MUTEX(un)));
18168 	ASSERT(bp != NULL);
18169 	ASSERT(xp != NULL);
18170 	ASSERT(pktp != NULL);
18171 
18172 
18173 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18174 	sd_reset_target(un, pktp);
18175 
18176 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18177 
18178 	/*
18179 	 * A command timeout indicates that we could not establish
18180 	 * communication with the target, so set SD_RETRIES_FAILFAST
18181 	 * as further retries/commands are likely to take a long time.
18182 	 */
18183 	sd_retry_command(un, bp,
18184 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18185 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18186 }
18187 
18188 
18189 
18190 /*
18191  *    Function: sd_pkt_reason_cmd_unx_bus_free
18192  *
18193  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18194  *
18195  *     Context: May be called from interrupt context
18196  */
18197 
18198 static void
18199 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18200 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18201 {
18202 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18203 
18204 	ASSERT(un != NULL);
18205 	ASSERT(mutex_owned(SD_MUTEX(un)));
18206 	ASSERT(bp != NULL);
18207 	ASSERT(xp != NULL);
18208 	ASSERT(pktp != NULL);
18209 
18210 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18211 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18212 
18213 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18214 	    sd_print_retry_msg : NULL;
18215 
18216 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18217 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18218 }
18219 
18220 
18221 /*
18222  *    Function: sd_pkt_reason_cmd_tag_reject
18223  *
18224  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18225  *
18226  *     Context: May be called from interrupt context
18227  */
18228 
18229 static void
18230 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18231 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18232 {
18233 	ASSERT(un != NULL);
18234 	ASSERT(mutex_owned(SD_MUTEX(un)));
18235 	ASSERT(bp != NULL);
18236 	ASSERT(xp != NULL);
18237 	ASSERT(pktp != NULL);
18238 
18239 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18240 	pktp->pkt_flags = 0;
18241 	un->un_tagflags = 0;
18242 	if (un->un_f_opt_queueing == TRUE) {
18243 		un->un_throttle = min(un->un_throttle, 3);
18244 	} else {
18245 		un->un_throttle = 1;
18246 	}
18247 	mutex_exit(SD_MUTEX(un));
18248 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18249 	mutex_enter(SD_MUTEX(un));
18250 
18251 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18252 
18253 	/* Legacy behavior not to check retry counts here. */
18254 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18255 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18256 }
18257 
18258 
18259 /*
18260  *    Function: sd_pkt_reason_default
18261  *
18262  * Description: Default recovery actions for SCSA pkt_reason values that
18263  *		do not have more explicit recovery actions.
18264  *
18265  *     Context: May be called from interrupt context
18266  */
18267 
18268 static void
18269 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18270 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18271 {
18272 	ASSERT(un != NULL);
18273 	ASSERT(mutex_owned(SD_MUTEX(un)));
18274 	ASSERT(bp != NULL);
18275 	ASSERT(xp != NULL);
18276 	ASSERT(pktp != NULL);
18277 
18278 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18279 	sd_reset_target(un, pktp);
18280 
18281 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18282 
18283 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18284 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18285 }
18286 
18287 
18288 
18289 /*
18290  *    Function: sd_pkt_status_check_condition
18291  *
18292  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18293  *
18294  *     Context: May be called from interrupt context
18295  */
18296 
18297 static void
18298 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18299 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18300 {
18301 	ASSERT(un != NULL);
18302 	ASSERT(mutex_owned(SD_MUTEX(un)));
18303 	ASSERT(bp != NULL);
18304 	ASSERT(xp != NULL);
18305 	ASSERT(pktp != NULL);
18306 
18307 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18308 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18309 
18310 	/*
18311 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18312 	 * command will be retried after the request sense). Otherwise, retry
18313 	 * the command. Note: we are issuing the request sense even though the
18314 	 * retry limit may have been reached for the failed command.
18315 	 */
18316 	if (un->un_f_arq_enabled == FALSE) {
18317 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18318 		    "no ARQ, sending request sense command\n");
18319 		sd_send_request_sense_command(un, bp, pktp);
18320 	} else {
18321 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18322 		    "ARQ,retrying request sense command\n");
18323 #if defined(__i386) || defined(__amd64)
18324 		/*
18325 		 * The SD_RETRY_DELAY value need to be adjusted here
18326 		 * when SD_RETRY_DELAY change in sddef.h
18327 		 */
18328 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 0,
18329 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18330 			NULL);
18331 #else
18332 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18333 		    0, SD_RETRY_DELAY, NULL);
18334 #endif
18335 	}
18336 
18337 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18338 }
18339 
18340 
18341 /*
18342  *    Function: sd_pkt_status_busy
18343  *
18344  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18345  *
18346  *     Context: May be called from interrupt context
18347  */
18348 
18349 static void
18350 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18351 	struct scsi_pkt *pktp)
18352 {
18353 	ASSERT(un != NULL);
18354 	ASSERT(mutex_owned(SD_MUTEX(un)));
18355 	ASSERT(bp != NULL);
18356 	ASSERT(xp != NULL);
18357 	ASSERT(pktp != NULL);
18358 
18359 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18360 	    "sd_pkt_status_busy: entry\n");
18361 
18362 	/* If retries are exhausted, just fail the command. */
18363 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18364 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18365 		    "device busy too long\n");
18366 		sd_return_failed_command(un, bp, EIO);
18367 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18368 		    "sd_pkt_status_busy: exit\n");
18369 		return;
18370 	}
18371 	xp->xb_retry_count++;
18372 
18373 	/*
18374 	 * Try to reset the target. However, we do not want to perform
18375 	 * more than one reset if the device continues to fail. The reset
18376 	 * will be performed when the retry count reaches the reset
18377 	 * threshold.  This threshold should be set such that at least
18378 	 * one retry is issued before the reset is performed.
18379 	 */
18380 	if (xp->xb_retry_count ==
18381 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18382 		int rval = 0;
18383 		mutex_exit(SD_MUTEX(un));
18384 		if (un->un_f_allow_bus_device_reset == TRUE) {
18385 			/*
18386 			 * First try to reset the LUN; if we cannot then
18387 			 * try to reset the target.
18388 			 */
18389 			if (un->un_f_lun_reset_enabled == TRUE) {
18390 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18391 				    "sd_pkt_status_busy: RESET_LUN\n");
18392 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18393 			}
18394 			if (rval == 0) {
18395 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18396 				    "sd_pkt_status_busy: RESET_TARGET\n");
18397 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18398 			}
18399 		}
18400 		if (rval == 0) {
18401 			/*
18402 			 * If the RESET_LUN and/or RESET_TARGET failed,
18403 			 * try RESET_ALL
18404 			 */
18405 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18406 			    "sd_pkt_status_busy: RESET_ALL\n");
18407 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18408 		}
18409 		mutex_enter(SD_MUTEX(un));
18410 		if (rval == 0) {
18411 			/*
18412 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18413 			 * At this point we give up & fail the command.
18414 			 */
18415 			sd_return_failed_command(un, bp, EIO);
18416 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18417 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18418 			return;
18419 		}
18420 	}
18421 
18422 	/*
18423 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18424 	 * we have already checked the retry counts above.
18425 	 */
18426 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18427 	    EIO, SD_BSY_TIMEOUT, NULL);
18428 
18429 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18430 	    "sd_pkt_status_busy: exit\n");
18431 }
18432 
18433 
18434 /*
18435  *    Function: sd_pkt_status_reservation_conflict
18436  *
18437  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18438  *		command status.
18439  *
18440  *     Context: May be called from interrupt context
18441  */
18442 
18443 static void
18444 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18445 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18446 {
18447 	ASSERT(un != NULL);
18448 	ASSERT(mutex_owned(SD_MUTEX(un)));
18449 	ASSERT(bp != NULL);
18450 	ASSERT(xp != NULL);
18451 	ASSERT(pktp != NULL);
18452 
18453 	/*
18454 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18455 	 * conflict could be due to various reasons like incorrect keys, not
18456 	 * registered or not reserved etc. So, we return EACCES to the caller.
18457 	 */
18458 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18459 		int cmd = SD_GET_PKT_OPCODE(pktp);
18460 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18461 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18462 			sd_return_failed_command(un, bp, EACCES);
18463 			return;
18464 		}
18465 	}
18466 
18467 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18468 
18469 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18470 		if (sd_failfast_enable != 0) {
18471 			/* By definition, we must panic here.... */
18472 			panic("Reservation Conflict");
18473 			/*NOTREACHED*/
18474 		}
18475 		SD_ERROR(SD_LOG_IO, un,
18476 		    "sd_handle_resv_conflict: Disk Reserved\n");
18477 		sd_return_failed_command(un, bp, EACCES);
18478 		return;
18479 	}
18480 
18481 	/*
18482 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18483 	 * property is set (default is 1). Retries will not succeed
18484 	 * on a disk reserved by another initiator. HA systems
18485 	 * may reset this via sd.conf to avoid these retries.
18486 	 *
18487 	 * Note: The legacy return code for this failure is EIO, however EACCES
18488 	 * seems more appropriate for a reservation conflict.
18489 	 */
18490 	if (sd_retry_on_reservation_conflict == 0) {
18491 		SD_ERROR(SD_LOG_IO, un,
18492 		    "sd_handle_resv_conflict: Device Reserved\n");
18493 		sd_return_failed_command(un, bp, EIO);
18494 		return;
18495 	}
18496 
18497 	/*
18498 	 * Retry the command if we can.
18499 	 *
18500 	 * Note: The legacy return code for this failure is EIO, however EACCES
18501 	 * seems more appropriate for a reservation conflict.
18502 	 */
18503 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18504 	    (clock_t)2, NULL);
18505 }
18506 
18507 
18508 
18509 /*
18510  *    Function: sd_pkt_status_qfull
18511  *
18512  * Description: Handle a QUEUE FULL condition from the target.  This can
18513  *		occur if the HBA does not handle the queue full condition.
18514  *		(Basically this means third-party HBAs as Sun HBAs will
18515  *		handle the queue full condition.)  Note that if there are
18516  *		some commands already in the transport, then the queue full
18517  *		has occurred because the queue for this nexus is actually
18518  *		full. If there are no commands in the transport, then the
18519  *		queue full is resulting from some other initiator or lun
18520  *		consuming all the resources at the target.
18521  *
18522  *     Context: May be called from interrupt context
18523  */
18524 
18525 static void
18526 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18527 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18528 {
18529 	ASSERT(un != NULL);
18530 	ASSERT(mutex_owned(SD_MUTEX(un)));
18531 	ASSERT(bp != NULL);
18532 	ASSERT(xp != NULL);
18533 	ASSERT(pktp != NULL);
18534 
18535 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18536 	    "sd_pkt_status_qfull: entry\n");
18537 
18538 	/*
18539 	 * Just lower the QFULL throttle and retry the command.  Note that
18540 	 * we do not limit the number of retries here.
18541 	 */
18542 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18543 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18544 	    SD_RESTART_TIMEOUT, NULL);
18545 
18546 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18547 	    "sd_pkt_status_qfull: exit\n");
18548 }
18549 
18550 
18551 /*
18552  *    Function: sd_reset_target
18553  *
18554  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18555  *		RESET_TARGET, or RESET_ALL.
18556  *
18557  *     Context: May be called under interrupt context.
18558  */
18559 
18560 static void
18561 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18562 {
18563 	int rval = 0;
18564 
18565 	ASSERT(un != NULL);
18566 	ASSERT(mutex_owned(SD_MUTEX(un)));
18567 	ASSERT(pktp != NULL);
18568 
18569 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18570 
18571 	/*
18572 	 * No need to reset if the transport layer has already done so.
18573 	 */
18574 	if ((pktp->pkt_statistics &
18575 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18576 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18577 		    "sd_reset_target: no reset\n");
18578 		return;
18579 	}
18580 
18581 	mutex_exit(SD_MUTEX(un));
18582 
18583 	if (un->un_f_allow_bus_device_reset == TRUE) {
18584 		if (un->un_f_lun_reset_enabled == TRUE) {
18585 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18586 			    "sd_reset_target: RESET_LUN\n");
18587 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18588 		}
18589 		if (rval == 0) {
18590 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18591 			    "sd_reset_target: RESET_TARGET\n");
18592 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18593 		}
18594 	}
18595 
18596 	if (rval == 0) {
18597 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18598 		    "sd_reset_target: RESET_ALL\n");
18599 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18600 	}
18601 
18602 	mutex_enter(SD_MUTEX(un));
18603 
18604 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18605 }
18606 
18607 
18608 /*
18609  *    Function: sd_media_change_task
18610  *
18611  * Description: Recovery action for CDROM to become available.
18612  *
18613  *     Context: Executes in a taskq() thread context
18614  */
18615 
18616 static void
18617 sd_media_change_task(void *arg)
18618 {
18619 	struct	scsi_pkt	*pktp = arg;
18620 	struct	sd_lun		*un;
18621 	struct	buf		*bp;
18622 	struct	sd_xbuf		*xp;
18623 	int	err		= 0;
18624 	int	retry_count	= 0;
18625 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18626 	struct	sd_sense_info	si;
18627 
18628 	ASSERT(pktp != NULL);
18629 	bp = (struct buf *)pktp->pkt_private;
18630 	ASSERT(bp != NULL);
18631 	xp = SD_GET_XBUF(bp);
18632 	ASSERT(xp != NULL);
18633 	un = SD_GET_UN(bp);
18634 	ASSERT(un != NULL);
18635 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18636 	ASSERT(ISREMOVABLE(un));
18637 
18638 	si.ssi_severity = SCSI_ERR_INFO;
18639 	si.ssi_pfa_flag = FALSE;
18640 
18641 	/*
18642 	 * When a reset is issued on a CDROM, it takes a long time to
18643 	 * recover. First few attempts to read capacity and other things
18644 	 * related to handling unit attention fail (with a ASC 0x4 and
18645 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18646 	 * to limit the retries in other cases of genuine failures like
18647 	 * no media in drive.
18648 	 */
18649 	while (retry_count++ < retry_limit) {
18650 		if ((err = sd_handle_mchange(un)) == 0) {
18651 			break;
18652 		}
18653 		if (err == EAGAIN) {
18654 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18655 		}
18656 		/* Sleep for 0.5 sec. & try again */
18657 		delay(drv_usectohz(500000));
18658 	}
18659 
18660 	/*
18661 	 * Dispatch (retry or fail) the original command here,
18662 	 * along with appropriate console messages....
18663 	 *
18664 	 * Must grab the mutex before calling sd_retry_command,
18665 	 * sd_print_sense_msg and sd_return_failed_command.
18666 	 */
18667 	mutex_enter(SD_MUTEX(un));
18668 	if (err != SD_CMD_SUCCESS) {
18669 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18670 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18671 		si.ssi_severity = SCSI_ERR_FATAL;
18672 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18673 		sd_return_failed_command(un, bp, EIO);
18674 	} else {
18675 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18676 		    &si, EIO, (clock_t)0, NULL);
18677 	}
18678 	mutex_exit(SD_MUTEX(un));
18679 }
18680 
18681 
18682 
18683 /*
18684  *    Function: sd_handle_mchange
18685  *
18686  * Description: Perform geometry validation & other recovery when CDROM
18687  *		has been removed from drive.
18688  *
18689  * Return Code: 0 for success
18690  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18691  *		sd_send_scsi_READ_CAPACITY()
18692  *
18693  *     Context: Executes in a taskq() thread context
18694  */
18695 
18696 static int
18697 sd_handle_mchange(struct sd_lun *un)
18698 {
18699 	uint64_t	capacity;
18700 	uint32_t	lbasize;
18701 	int		rval;
18702 
18703 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18704 	ASSERT(ISREMOVABLE(un));
18705 
18706 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18707 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18708 		return (rval);
18709 	}
18710 
18711 	mutex_enter(SD_MUTEX(un));
18712 	sd_update_block_info(un, lbasize, capacity);
18713 
18714 	if (un->un_errstats != NULL) {
18715 		struct	sd_errstats *stp =
18716 		    (struct sd_errstats *)un->un_errstats->ks_data;
18717 		stp->sd_capacity.value.ui64 = (uint64_t)
18718 		    ((uint64_t)un->un_blockcount *
18719 		    (uint64_t)un->un_tgt_blocksize);
18720 	}
18721 
18722 	/*
18723 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18724 	 * valid geometry.
18725 	 */
18726 	un->un_f_geometry_is_valid = FALSE;
18727 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18728 	if (un->un_f_geometry_is_valid == FALSE) {
18729 		mutex_exit(SD_MUTEX(un));
18730 		return (EIO);
18731 	}
18732 
18733 	mutex_exit(SD_MUTEX(un));
18734 
18735 	/*
18736 	 * Try to lock the door
18737 	 */
18738 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18739 	    SD_PATH_DIRECT_PRIORITY));
18740 }
18741 
18742 
18743 /*
18744  *    Function: sd_send_scsi_DOORLOCK
18745  *
18746  * Description: Issue the scsi DOOR LOCK command
18747  *
18748  *   Arguments: un    - pointer to driver soft state (unit) structure for
18749  *			this target.
18750  *		flag  - SD_REMOVAL_ALLOW
18751  *			SD_REMOVAL_PREVENT
18752  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18753  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18754  *			to use the USCSI "direct" chain and bypass the normal
18755  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18756  *			command is issued as part of an error recovery action.
18757  *
18758  * Return Code: 0   - Success
18759  *		errno return code from sd_send_scsi_cmd()
18760  *
18761  *     Context: Can sleep.
18762  */
18763 
18764 static int
18765 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18766 {
18767 	union scsi_cdb		cdb;
18768 	struct uscsi_cmd	ucmd_buf;
18769 	struct scsi_extended_sense	sense_buf;
18770 	int			status;
18771 
18772 	ASSERT(un != NULL);
18773 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18774 
18775 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18776 
18777 	/* already determined doorlock is not supported, fake success */
18778 	if (un->un_f_doorlock_supported == FALSE) {
18779 		return (0);
18780 	}
18781 
18782 	bzero(&cdb, sizeof (cdb));
18783 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18784 
18785 	cdb.scc_cmd = SCMD_DOORLOCK;
18786 	cdb.cdb_opaque[4] = (uchar_t)flag;
18787 
18788 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18789 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18790 	ucmd_buf.uscsi_bufaddr	= NULL;
18791 	ucmd_buf.uscsi_buflen	= 0;
18792 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18793 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18794 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18795 	ucmd_buf.uscsi_timeout	= 15;
18796 
18797 	SD_TRACE(SD_LOG_IO, un,
18798 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18799 
18800 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18801 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18802 
18803 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18804 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18805 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18806 		/* fake success and skip subsequent doorlock commands */
18807 		un->un_f_doorlock_supported = FALSE;
18808 		return (0);
18809 	}
18810 
18811 	return (status);
18812 }
18813 
18814 
18815 /*
18816  *    Function: sd_send_scsi_READ_CAPACITY
18817  *
18818  * Description: This routine uses the scsi READ CAPACITY command to determine
18819  *		the device capacity in number of blocks and the device native
18820  *		block size. If this function returns a failure, then the
18821  *		values in *capp and *lbap are undefined.  If the capacity
18822  *		returned is 0xffffffff then the lun is too large for a
18823  *		normal READ CAPACITY command and the results of a
18824  *		READ CAPACITY 16 will be used instead.
18825  *
18826  *   Arguments: un   - ptr to soft state struct for the target
18827  *		capp - ptr to unsigned 64-bit variable to receive the
18828  *			capacity value from the command.
18829  *		lbap - ptr to unsigned 32-bit varaible to receive the
18830  *			block size value from the command
18831  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18832  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18833  *			to use the USCSI "direct" chain and bypass the normal
18834  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18835  *			command is issued as part of an error recovery action.
18836  *
18837  * Return Code: 0   - Success
18838  *		EIO - IO error
18839  *		EACCES - Reservation conflict detected
18840  *		EAGAIN - Device is becoming ready
18841  *		errno return code from sd_send_scsi_cmd()
18842  *
18843  *     Context: Can sleep.  Blocks until command completes.
18844  */
18845 
18846 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18847 
18848 static int
18849 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18850 	int path_flag)
18851 {
18852 	struct	scsi_extended_sense	sense_buf;
18853 	struct	uscsi_cmd	ucmd_buf;
18854 	union	scsi_cdb	cdb;
18855 	uint32_t		*capacity_buf;
18856 	uint64_t		capacity;
18857 	uint32_t		lbasize;
18858 	int			status;
18859 
18860 	ASSERT(un != NULL);
18861 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18862 	ASSERT(capp != NULL);
18863 	ASSERT(lbap != NULL);
18864 
18865 	SD_TRACE(SD_LOG_IO, un,
18866 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18867 
18868 	/*
18869 	 * First send a READ_CAPACITY command to the target.
18870 	 * (This command is mandatory under SCSI-2.)
18871 	 *
18872 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
18873 	 * Medium Indicator bit is cleared.  The address field must be
18874 	 * zero if the PMI bit is zero.
18875 	 */
18876 	bzero(&cdb, sizeof (cdb));
18877 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18878 
18879 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
18880 
18881 	cdb.scc_cmd = SCMD_READ_CAPACITY;
18882 
18883 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18884 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18885 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
18886 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
18887 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18888 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18889 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18890 	ucmd_buf.uscsi_timeout	= 60;
18891 
18892 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18893 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18894 
18895 	switch (status) {
18896 	case 0:
18897 		/* Return failure if we did not get valid capacity data. */
18898 		if (ucmd_buf.uscsi_resid != 0) {
18899 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18900 			return (EIO);
18901 		}
18902 
18903 		/*
18904 		 * Read capacity and block size from the READ CAPACITY 10 data.
18905 		 * This data may be adjusted later due to device specific
18906 		 * issues.
18907 		 *
18908 		 * According to the SCSI spec, the READ CAPACITY 10
18909 		 * command returns the following:
18910 		 *
18911 		 *  bytes 0-3: Maximum logical block address available.
18912 		 *		(MSB in byte:0 & LSB in byte:3)
18913 		 *
18914 		 *  bytes 4-7: Block length in bytes
18915 		 *		(MSB in byte:4 & LSB in byte:7)
18916 		 *
18917 		 */
18918 		capacity = BE_32(capacity_buf[0]);
18919 		lbasize = BE_32(capacity_buf[1]);
18920 
18921 		/*
18922 		 * Done with capacity_buf
18923 		 */
18924 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18925 
18926 		/*
18927 		 * if the reported capacity is set to all 0xf's, then
18928 		 * this disk is too large and requires SBC-2 commands.
18929 		 * Reissue the request using READ CAPACITY 16.
18930 		 */
18931 		if (capacity == 0xffffffff) {
18932 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18933 			    &lbasize, path_flag);
18934 			if (status != 0) {
18935 				return (status);
18936 			}
18937 		}
18938 		break;	/* Success! */
18939 	case EIO:
18940 		switch (ucmd_buf.uscsi_status) {
18941 		case STATUS_RESERVATION_CONFLICT:
18942 			status = EACCES;
18943 			break;
18944 		case STATUS_CHECK:
18945 			/*
18946 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18947 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18948 			 */
18949 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18950 			    (sense_buf.es_add_code  == 0x04) &&
18951 			    (sense_buf.es_qual_code == 0x01)) {
18952 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18953 				return (EAGAIN);
18954 			}
18955 			break;
18956 		default:
18957 			break;
18958 		}
18959 		/* FALLTHRU */
18960 	default:
18961 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18962 		return (status);
18963 	}
18964 
18965 	/*
18966 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18967 	 * (2352 and 0 are common) so for these devices always force the value
18968 	 * to 2048 as required by the ATAPI specs.
18969 	 */
18970 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18971 		lbasize = 2048;
18972 	}
18973 
18974 	/*
18975 	 * Get the maximum LBA value from the READ CAPACITY data.
18976 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18977 	 * was cleared when issuing the command. This means that the LBA
18978 	 * returned from the device is the LBA of the last logical block
18979 	 * on the logical unit.  The actual logical block count will be
18980 	 * this value plus one.
18981 	 *
18982 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18983 	 * so scale the capacity value to reflect this.
18984 	 */
18985 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18986 
18987 #if defined(__i386) || defined(__amd64)
18988 	/*
18989 	 * On x86, compensate for off-by-1 error (number of sectors on
18990 	 * media)  (1175930)
18991 	 */
18992 	if (!ISREMOVABLE(un) && (lbasize == un->un_sys_blocksize)) {
18993 		capacity -= 1;
18994 	}
18995 #endif
18996 
18997 	/*
18998 	 * Copy the values from the READ CAPACITY command into the space
18999 	 * provided by the caller.
19000 	 */
19001 	*capp = capacity;
19002 	*lbap = lbasize;
19003 
19004 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19005 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19006 
19007 	/*
19008 	 * Both the lbasize and capacity from the device must be nonzero,
19009 	 * otherwise we assume that the values are not valid and return
19010 	 * failure to the caller. (4203735)
19011 	 */
19012 	if ((capacity == 0) || (lbasize == 0)) {
19013 		return (EIO);
19014 	}
19015 
19016 	return (0);
19017 }
19018 
19019 /*
19020  *    Function: sd_send_scsi_READ_CAPACITY_16
19021  *
19022  * Description: This routine uses the scsi READ CAPACITY 16 command to
19023  *		determine the device capacity in number of blocks and the
19024  *		device native block size.  If this function returns a failure,
19025  *		then the values in *capp and *lbap are undefined.
19026  *		This routine should always be called by
19027  *		sd_send_scsi_READ_CAPACITY which will appy any device
19028  *		specific adjustments to capacity and lbasize.
19029  *
19030  *   Arguments: un   - ptr to soft state struct for the target
19031  *		capp - ptr to unsigned 64-bit variable to receive the
19032  *			capacity value from the command.
19033  *		lbap - ptr to unsigned 32-bit varaible to receive the
19034  *			block size value from the command
19035  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19036  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19037  *			to use the USCSI "direct" chain and bypass the normal
19038  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19039  *			this command is issued as part of an error recovery
19040  *			action.
19041  *
19042  * Return Code: 0   - Success
19043  *		EIO - IO error
19044  *		EACCES - Reservation conflict detected
19045  *		EAGAIN - Device is becoming ready
19046  *		errno return code from sd_send_scsi_cmd()
19047  *
19048  *     Context: Can sleep.  Blocks until command completes.
19049  */
19050 
19051 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19052 
19053 static int
19054 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19055 	uint32_t *lbap, int path_flag)
19056 {
19057 	struct	scsi_extended_sense	sense_buf;
19058 	struct	uscsi_cmd	ucmd_buf;
19059 	union	scsi_cdb	cdb;
19060 	uint64_t		*capacity16_buf;
19061 	uint64_t		capacity;
19062 	uint32_t		lbasize;
19063 	int			status;
19064 
19065 	ASSERT(un != NULL);
19066 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19067 	ASSERT(capp != NULL);
19068 	ASSERT(lbap != NULL);
19069 
19070 	SD_TRACE(SD_LOG_IO, un,
19071 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19072 
19073 	/*
19074 	 * First send a READ_CAPACITY_16 command to the target.
19075 	 *
19076 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19077 	 * Medium Indicator bit is cleared.  The address field must be
19078 	 * zero if the PMI bit is zero.
19079 	 */
19080 	bzero(&cdb, sizeof (cdb));
19081 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19082 
19083 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19084 
19085 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19086 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19087 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19088 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19089 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19090 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19091 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19092 	ucmd_buf.uscsi_timeout	= 60;
19093 
19094 	/*
19095 	 * Read Capacity (16) is a Service Action In command.  One
19096 	 * command byte (0x9E) is overloaded for multiple operations,
19097 	 * with the second CDB byte specifying the desired operation
19098 	 */
19099 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19100 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19101 
19102 	/*
19103 	 * Fill in allocation length field
19104 	 */
19105 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19106 
19107 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19108 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19109 
19110 	switch (status) {
19111 	case 0:
19112 		/* Return failure if we did not get valid capacity data. */
19113 		if (ucmd_buf.uscsi_resid > 20) {
19114 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19115 			return (EIO);
19116 		}
19117 
19118 		/*
19119 		 * Read capacity and block size from the READ CAPACITY 10 data.
19120 		 * This data may be adjusted later due to device specific
19121 		 * issues.
19122 		 *
19123 		 * According to the SCSI spec, the READ CAPACITY 10
19124 		 * command returns the following:
19125 		 *
19126 		 *  bytes 0-7: Maximum logical block address available.
19127 		 *		(MSB in byte:0 & LSB in byte:7)
19128 		 *
19129 		 *  bytes 8-11: Block length in bytes
19130 		 *		(MSB in byte:8 & LSB in byte:11)
19131 		 *
19132 		 */
19133 		capacity = BE_64(capacity16_buf[0]);
19134 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19135 
19136 		/*
19137 		 * Done with capacity16_buf
19138 		 */
19139 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19140 
19141 		/*
19142 		 * if the reported capacity is set to all 0xf's, then
19143 		 * this disk is too large.  This could only happen with
19144 		 * a device that supports LBAs larger than 64 bits which
19145 		 * are not defined by any current T10 standards.
19146 		 */
19147 		if (capacity == 0xffffffffffffffff) {
19148 			return (EIO);
19149 		}
19150 		break;	/* Success! */
19151 	case EIO:
19152 		switch (ucmd_buf.uscsi_status) {
19153 		case STATUS_RESERVATION_CONFLICT:
19154 			status = EACCES;
19155 			break;
19156 		case STATUS_CHECK:
19157 			/*
19158 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19159 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19160 			 */
19161 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19162 			    (sense_buf.es_add_code  == 0x04) &&
19163 			    (sense_buf.es_qual_code == 0x01)) {
19164 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19165 				return (EAGAIN);
19166 			}
19167 			break;
19168 		default:
19169 			break;
19170 		}
19171 		/* FALLTHRU */
19172 	default:
19173 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19174 		return (status);
19175 	}
19176 
19177 	*capp = capacity;
19178 	*lbap = lbasize;
19179 
19180 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19181 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19182 
19183 	return (0);
19184 }
19185 
19186 
19187 /*
19188  *    Function: sd_send_scsi_START_STOP_UNIT
19189  *
19190  * Description: Issue a scsi START STOP UNIT command to the target.
19191  *
19192  *   Arguments: un    - pointer to driver soft state (unit) structure for
19193  *			this target.
19194  *		flag  - SD_TARGET_START
19195  *			SD_TARGET_STOP
19196  *			SD_TARGET_EJECT
19197  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19198  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19199  *			to use the USCSI "direct" chain and bypass the normal
19200  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19201  *			command is issued as part of an error recovery action.
19202  *
19203  * Return Code: 0   - Success
19204  *		EIO - IO error
19205  *		EACCES - Reservation conflict detected
19206  *		ENXIO  - Not Ready, medium not present
19207  *		errno return code from sd_send_scsi_cmd()
19208  *
19209  *     Context: Can sleep.
19210  */
19211 
19212 static int
19213 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19214 {
19215 	struct	scsi_extended_sense	sense_buf;
19216 	union scsi_cdb		cdb;
19217 	struct uscsi_cmd	ucmd_buf;
19218 	int			status;
19219 
19220 	ASSERT(un != NULL);
19221 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19222 
19223 	SD_TRACE(SD_LOG_IO, un,
19224 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19225 
19226 	if (ISREMOVABLE(un) &&
19227 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19228 	    (un->un_f_start_stop_supported != TRUE)) {
19229 		return (0);
19230 	}
19231 
19232 	bzero(&cdb, sizeof (cdb));
19233 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19234 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19235 
19236 	cdb.scc_cmd = SCMD_START_STOP;
19237 	cdb.cdb_opaque[4] = (uchar_t)flag;
19238 
19239 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19240 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19241 	ucmd_buf.uscsi_bufaddr	= NULL;
19242 	ucmd_buf.uscsi_buflen	= 0;
19243 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19244 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19245 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19246 	ucmd_buf.uscsi_timeout	= 200;
19247 
19248 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19249 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19250 
19251 	switch (status) {
19252 	case 0:
19253 		break;	/* Success! */
19254 	case EIO:
19255 		switch (ucmd_buf.uscsi_status) {
19256 		case STATUS_RESERVATION_CONFLICT:
19257 			status = EACCES;
19258 			break;
19259 		case STATUS_CHECK:
19260 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19261 				switch (sense_buf.es_key) {
19262 				case KEY_ILLEGAL_REQUEST:
19263 					status = ENOTSUP;
19264 					break;
19265 				case KEY_NOT_READY:
19266 					if (sense_buf.es_add_code == 0x3A) {
19267 						status = ENXIO;
19268 					}
19269 					break;
19270 				default:
19271 					break;
19272 				}
19273 			}
19274 			break;
19275 		default:
19276 			break;
19277 		}
19278 		break;
19279 	default:
19280 		break;
19281 	}
19282 
19283 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19284 
19285 	return (status);
19286 }
19287 
19288 
19289 /*
19290  *    Function: sd_start_stop_unit_callback
19291  *
19292  * Description: timeout(9F) callback to begin recovery process for a
19293  *		device that has spun down.
19294  *
19295  *   Arguments: arg - pointer to associated softstate struct.
19296  *
19297  *     Context: Executes in a timeout(9F) thread context
19298  */
19299 
19300 static void
19301 sd_start_stop_unit_callback(void *arg)
19302 {
19303 	struct sd_lun	*un = arg;
19304 	ASSERT(un != NULL);
19305 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19306 
19307 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19308 
19309 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19310 }
19311 
19312 
19313 /*
19314  *    Function: sd_start_stop_unit_task
19315  *
19316  * Description: Recovery procedure when a drive is spun down.
19317  *
19318  *   Arguments: arg - pointer to associated softstate struct.
19319  *
19320  *     Context: Executes in a taskq() thread context
19321  */
19322 
19323 static void
19324 sd_start_stop_unit_task(void *arg)
19325 {
19326 	struct sd_lun	*un = arg;
19327 
19328 	ASSERT(un != NULL);
19329 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19330 
19331 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19332 
19333 	/*
19334 	 * Some unformatted drives report not ready error, no need to
19335 	 * restart if format has been initiated.
19336 	 */
19337 	mutex_enter(SD_MUTEX(un));
19338 	if (un->un_f_format_in_progress == TRUE) {
19339 		mutex_exit(SD_MUTEX(un));
19340 		return;
19341 	}
19342 	mutex_exit(SD_MUTEX(un));
19343 
19344 	/*
19345 	 * When a START STOP command is issued from here, it is part of a
19346 	 * failure recovery operation and must be issued before any other
19347 	 * commands, including any pending retries. Thus it must be sent
19348 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19349 	 * succeeds or not, we will start I/O after the attempt.
19350 	 */
19351 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19352 	    SD_PATH_DIRECT_PRIORITY);
19353 
19354 	/*
19355 	 * The above call blocks until the START_STOP_UNIT command completes.
19356 	 * Now that it has completed, we must re-try the original IO that
19357 	 * received the NOT READY condition in the first place. There are
19358 	 * three possible conditions here:
19359 	 *
19360 	 *  (1) The original IO is on un_retry_bp.
19361 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19362 	 *	is NULL.
19363 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19364 	 *	points to some other, unrelated bp.
19365 	 *
19366 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19367 	 * as the argument. If un_retry_bp is NULL, this will initiate
19368 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19369 	 * then this will process the bp on un_retry_bp. That may or may not
19370 	 * be the original IO, but that does not matter: the important thing
19371 	 * is to keep the IO processing going at this point.
19372 	 *
19373 	 * Note: This is a very specific error recovery sequence associated
19374 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19375 	 * serialize the I/O with completion of the spin-up.
19376 	 */
19377 	mutex_enter(SD_MUTEX(un));
19378 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19379 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19380 	    un, un->un_retry_bp);
19381 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19382 	sd_start_cmds(un, un->un_retry_bp);
19383 	mutex_exit(SD_MUTEX(un));
19384 
19385 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19386 }
19387 
19388 
19389 /*
19390  *    Function: sd_send_scsi_INQUIRY
19391  *
19392  * Description: Issue the scsi INQUIRY command.
19393  *
19394  *   Arguments: un
19395  *		bufaddr
19396  *		buflen
19397  *		evpd
19398  *		page_code
19399  *		page_length
19400  *
19401  * Return Code: 0   - Success
19402  *		errno return code from sd_send_scsi_cmd()
19403  *
19404  *     Context: Can sleep. Does not return until command is completed.
19405  */
19406 
19407 static int
19408 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19409 	uchar_t evpd, uchar_t page_code, size_t *residp)
19410 {
19411 	union scsi_cdb		cdb;
19412 	struct uscsi_cmd	ucmd_buf;
19413 	int			status;
19414 
19415 	ASSERT(un != NULL);
19416 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19417 	ASSERT(bufaddr != NULL);
19418 
19419 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19420 
19421 	bzero(&cdb, sizeof (cdb));
19422 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19423 	bzero(bufaddr, buflen);
19424 
19425 	cdb.scc_cmd = SCMD_INQUIRY;
19426 	cdb.cdb_opaque[1] = evpd;
19427 	cdb.cdb_opaque[2] = page_code;
19428 	FORMG0COUNT(&cdb, buflen);
19429 
19430 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19431 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19432 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19433 	ucmd_buf.uscsi_buflen	= buflen;
19434 	ucmd_buf.uscsi_rqbuf	= NULL;
19435 	ucmd_buf.uscsi_rqlen	= 0;
19436 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19437 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19438 
19439 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19440 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19441 
19442 	if ((status == 0) && (residp != NULL)) {
19443 		*residp = ucmd_buf.uscsi_resid;
19444 	}
19445 
19446 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19447 
19448 	return (status);
19449 }
19450 
19451 
19452 /*
19453  *    Function: sd_send_scsi_TEST_UNIT_READY
19454  *
19455  * Description: Issue the scsi TEST UNIT READY command.
19456  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19457  *		prevent retrying failed commands. Use this when the intent
19458  *		is either to check for device readiness, to clear a Unit
19459  *		Attention, or to clear any outstanding sense data.
19460  *		However under specific conditions the expected behavior
19461  *		is for retries to bring a device ready, so use the flag
19462  *		with caution.
19463  *
19464  *   Arguments: un
19465  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19466  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19467  *			0: dont check for media present, do retries on cmd.
19468  *
19469  * Return Code: 0   - Success
19470  *		EIO - IO error
19471  *		EACCES - Reservation conflict detected
19472  *		ENXIO  - Not Ready, medium not present
19473  *		errno return code from sd_send_scsi_cmd()
19474  *
19475  *     Context: Can sleep. Does not return until command is completed.
19476  */
19477 
19478 static int
19479 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19480 {
19481 	struct	scsi_extended_sense	sense_buf;
19482 	union scsi_cdb		cdb;
19483 	struct uscsi_cmd	ucmd_buf;
19484 	int			status;
19485 
19486 	ASSERT(un != NULL);
19487 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19488 
19489 	SD_TRACE(SD_LOG_IO, un,
19490 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19491 
19492 	/*
19493 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19494 	 * timeouts when they receive a TUR and the queue is not empty. Check
19495 	 * the configuration flag set during attach (indicating the drive has
19496 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19497 	 * TUR. If there are
19498 	 * pending commands return success, this is a bit arbitrary but is ok
19499 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19500 	 * configurations.
19501 	 */
19502 	if (un->un_f_cfg_tur_check == TRUE) {
19503 		mutex_enter(SD_MUTEX(un));
19504 		if (un->un_ncmds_in_transport != 0) {
19505 			mutex_exit(SD_MUTEX(un));
19506 			return (0);
19507 		}
19508 		mutex_exit(SD_MUTEX(un));
19509 	}
19510 
19511 	bzero(&cdb, sizeof (cdb));
19512 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19513 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19514 
19515 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19516 
19517 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19518 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19519 	ucmd_buf.uscsi_bufaddr	= NULL;
19520 	ucmd_buf.uscsi_buflen	= 0;
19521 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19522 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19523 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19524 
19525 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19526 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19527 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19528 	}
19529 	ucmd_buf.uscsi_timeout	= 60;
19530 
19531 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19532 	    UIO_SYSSPACE, UIO_SYSSPACE,
19533 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19534 
19535 	switch (status) {
19536 	case 0:
19537 		break;	/* Success! */
19538 	case EIO:
19539 		switch (ucmd_buf.uscsi_status) {
19540 		case STATUS_RESERVATION_CONFLICT:
19541 			status = EACCES;
19542 			break;
19543 		case STATUS_CHECK:
19544 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19545 				break;
19546 			}
19547 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19548 			    (sense_buf.es_key == KEY_NOT_READY) &&
19549 			    (sense_buf.es_add_code == 0x3A)) {
19550 				status = ENXIO;
19551 			}
19552 			break;
19553 		default:
19554 			break;
19555 		}
19556 		break;
19557 	default:
19558 		break;
19559 	}
19560 
19561 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19562 
19563 	return (status);
19564 }
19565 
19566 
19567 /*
19568  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19569  *
19570  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19571  *
19572  *   Arguments: un
19573  *
19574  * Return Code: 0   - Success
19575  *		EACCES
19576  *		ENOTSUP
19577  *		errno return code from sd_send_scsi_cmd()
19578  *
19579  *     Context: Can sleep. Does not return until command is completed.
19580  */
19581 
19582 static int
19583 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19584 	uint16_t data_len, uchar_t *data_bufp)
19585 {
19586 	struct scsi_extended_sense	sense_buf;
19587 	union scsi_cdb		cdb;
19588 	struct uscsi_cmd	ucmd_buf;
19589 	int			status;
19590 	int			no_caller_buf = FALSE;
19591 
19592 	ASSERT(un != NULL);
19593 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19594 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19595 
19596 	SD_TRACE(SD_LOG_IO, un,
19597 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19598 
19599 	bzero(&cdb, sizeof (cdb));
19600 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19601 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19602 	if (data_bufp == NULL) {
19603 		/* Allocate a default buf if the caller did not give one */
19604 		ASSERT(data_len == 0);
19605 		data_len  = MHIOC_RESV_KEY_SIZE;
19606 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19607 		no_caller_buf = TRUE;
19608 	}
19609 
19610 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19611 	cdb.cdb_opaque[1] = usr_cmd;
19612 	FORMG1COUNT(&cdb, data_len);
19613 
19614 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19615 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19616 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19617 	ucmd_buf.uscsi_buflen	= data_len;
19618 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19619 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19620 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19621 	ucmd_buf.uscsi_timeout	= 60;
19622 
19623 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19624 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19625 
19626 	switch (status) {
19627 	case 0:
19628 		break;	/* Success! */
19629 	case EIO:
19630 		switch (ucmd_buf.uscsi_status) {
19631 		case STATUS_RESERVATION_CONFLICT:
19632 			status = EACCES;
19633 			break;
19634 		case STATUS_CHECK:
19635 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19636 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19637 				status = ENOTSUP;
19638 			}
19639 			break;
19640 		default:
19641 			break;
19642 		}
19643 		break;
19644 	default:
19645 		break;
19646 	}
19647 
19648 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19649 
19650 	if (no_caller_buf == TRUE) {
19651 		kmem_free(data_bufp, data_len);
19652 	}
19653 
19654 	return (status);
19655 }
19656 
19657 
19658 /*
19659  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19660  *
19661  * Description: This routine is the driver entry point for handling CD-ROM
19662  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19663  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19664  *		device.
19665  *
19666  *   Arguments: un  -   Pointer to soft state struct for the target.
19667  *		usr_cmd SCSI-3 reservation facility command (one of
19668  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19669  *			SD_SCSI3_PREEMPTANDABORT)
19670  *		usr_bufp - user provided pointer register, reserve descriptor or
19671  *			preempt and abort structure (mhioc_register_t,
19672  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19673  *
19674  * Return Code: 0   - Success
19675  *		EACCES
19676  *		ENOTSUP
19677  *		errno return code from sd_send_scsi_cmd()
19678  *
19679  *     Context: Can sleep. Does not return until command is completed.
19680  */
19681 
19682 static int
19683 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19684 	uchar_t	*usr_bufp)
19685 {
19686 	struct scsi_extended_sense	sense_buf;
19687 	union scsi_cdb		cdb;
19688 	struct uscsi_cmd	ucmd_buf;
19689 	int			status;
19690 	uchar_t			data_len = sizeof (sd_prout_t);
19691 	sd_prout_t		*prp;
19692 
19693 	ASSERT(un != NULL);
19694 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19695 	ASSERT(data_len == 24);	/* required by scsi spec */
19696 
19697 	SD_TRACE(SD_LOG_IO, un,
19698 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19699 
19700 	if (usr_bufp == NULL) {
19701 		return (EINVAL);
19702 	}
19703 
19704 	bzero(&cdb, sizeof (cdb));
19705 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19706 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19707 	prp = kmem_zalloc(data_len, KM_SLEEP);
19708 
19709 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19710 	cdb.cdb_opaque[1] = usr_cmd;
19711 	FORMG1COUNT(&cdb, data_len);
19712 
19713 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19714 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19715 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19716 	ucmd_buf.uscsi_buflen	= data_len;
19717 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19718 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19719 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19720 	ucmd_buf.uscsi_timeout	= 60;
19721 
19722 	switch (usr_cmd) {
19723 	case SD_SCSI3_REGISTER: {
19724 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19725 
19726 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19727 		bcopy(ptr->newkey.key, prp->service_key,
19728 		    MHIOC_RESV_KEY_SIZE);
19729 		prp->aptpl = ptr->aptpl;
19730 		break;
19731 	}
19732 	case SD_SCSI3_RESERVE:
19733 	case SD_SCSI3_RELEASE: {
19734 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19735 
19736 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19737 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19738 		cdb.cdb_opaque[2] = ptr->type;
19739 		break;
19740 	}
19741 	case SD_SCSI3_PREEMPTANDABORT: {
19742 		mhioc_preemptandabort_t *ptr =
19743 		    (mhioc_preemptandabort_t *)usr_bufp;
19744 
19745 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19746 		bcopy(ptr->victim_key.key, prp->service_key,
19747 		    MHIOC_RESV_KEY_SIZE);
19748 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19749 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19750 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19751 		break;
19752 	}
19753 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19754 	{
19755 		mhioc_registerandignorekey_t *ptr;
19756 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19757 		bcopy(ptr->newkey.key,
19758 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19759 		prp->aptpl = ptr->aptpl;
19760 		break;
19761 	}
19762 	default:
19763 		ASSERT(FALSE);
19764 		break;
19765 	}
19766 
19767 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19768 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19769 
19770 	switch (status) {
19771 	case 0:
19772 		break;	/* Success! */
19773 	case EIO:
19774 		switch (ucmd_buf.uscsi_status) {
19775 		case STATUS_RESERVATION_CONFLICT:
19776 			status = EACCES;
19777 			break;
19778 		case STATUS_CHECK:
19779 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19780 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19781 				status = ENOTSUP;
19782 			}
19783 			break;
19784 		default:
19785 			break;
19786 		}
19787 		break;
19788 	default:
19789 		break;
19790 	}
19791 
19792 	kmem_free(prp, data_len);
19793 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19794 	return (status);
19795 }
19796 
19797 
19798 /*
19799  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19800  *
19801  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19802  *
19803  *   Arguments: un - pointer to the target's soft state struct
19804  *
19805  * Return Code: 0 - success
19806  *		errno-type error code
19807  *
19808  *     Context: kernel thread context only.
19809  */
19810 
19811 static int
19812 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un)
19813 {
19814 	struct	scsi_extended_sense	sense_buf;
19815 	union scsi_cdb		cdb;
19816 	struct uscsi_cmd	ucmd_buf;
19817 	int			status;
19818 
19819 	ASSERT(un != NULL);
19820 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19821 
19822 	SD_TRACE(SD_LOG_IO, un,
19823 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19824 
19825 	bzero(&cdb, sizeof (cdb));
19826 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19827 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19828 
19829 	cdb.scc_cmd = SCMD_SYNCHRONIZE_CACHE;
19830 
19831 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19832 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19833 	ucmd_buf.uscsi_bufaddr	= NULL;
19834 	ucmd_buf.uscsi_buflen	= 0;
19835 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19836 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19837 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19838 	ucmd_buf.uscsi_timeout	= 240;
19839 
19840 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19841 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19842 
19843 	switch (status) {
19844 	case 0:
19845 		break;	/* Success! */
19846 	case EIO:
19847 		switch (ucmd_buf.uscsi_status) {
19848 		case STATUS_RESERVATION_CONFLICT:
19849 			/* Ignore reservation conflict */
19850 			status = 0;
19851 			goto done;
19852 
19853 		case STATUS_CHECK:
19854 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19855 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19856 				/* Ignore Illegal Request error */
19857 				status = 0;
19858 				goto done;
19859 			}
19860 			break;
19861 		default:
19862 			break;
19863 		}
19864 		/* FALLTHRU */
19865 	default:
19866 		/* Ignore error if the media is not present. */
19867 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
19868 			status = 0;
19869 			goto done;
19870 		}
19871 		/* If we reach this, we had an error */
19872 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19873 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19874 		break;
19875 	}
19876 
19877 done:
19878 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: exit\n");
19879 
19880 	return (status);
19881 }
19882 
19883 
19884 /*
19885  *    Function: sd_send_scsi_GET_CONFIGURATION
19886  *
19887  * Description: Issues the get configuration command to the device.
19888  *		Called from sd_check_for_writable_cd & sd_get_media_info
19889  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19890  *   Arguments: un
19891  *		ucmdbuf
19892  *		rqbuf
19893  *		rqbuflen
19894  *		bufaddr
19895  *		buflen
19896  *
19897  * Return Code: 0   - Success
19898  *		errno return code from sd_send_scsi_cmd()
19899  *
19900  *     Context: Can sleep. Does not return until command is completed.
19901  *
19902  */
19903 
19904 static int
19905 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19906 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
19907 {
19908 	char	cdb[CDB_GROUP1];
19909 	int	status;
19910 
19911 	ASSERT(un != NULL);
19912 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19913 	ASSERT(bufaddr != NULL);
19914 	ASSERT(ucmdbuf != NULL);
19915 	ASSERT(rqbuf != NULL);
19916 
19917 	SD_TRACE(SD_LOG_IO, un,
19918 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19919 
19920 	bzero(cdb, sizeof (cdb));
19921 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19922 	bzero(rqbuf, rqbuflen);
19923 	bzero(bufaddr, buflen);
19924 
19925 	/*
19926 	 * Set up cdb field for the get configuration command.
19927 	 */
19928 	cdb[0] = SCMD_GET_CONFIGURATION;
19929 	cdb[1] = 0x02;  /* Requested Type */
19930 	cdb[8] = SD_PROFILE_HEADER_LEN;
19931 	ucmdbuf->uscsi_cdb = cdb;
19932 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19933 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19934 	ucmdbuf->uscsi_buflen = buflen;
19935 	ucmdbuf->uscsi_timeout = sd_io_time;
19936 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19937 	ucmdbuf->uscsi_rqlen = rqbuflen;
19938 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19939 
19940 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19941 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19942 
19943 	switch (status) {
19944 	case 0:
19945 		break;  /* Success! */
19946 	case EIO:
19947 		switch (ucmdbuf->uscsi_status) {
19948 		case STATUS_RESERVATION_CONFLICT:
19949 			status = EACCES;
19950 			break;
19951 		default:
19952 			break;
19953 		}
19954 		break;
19955 	default:
19956 		break;
19957 	}
19958 
19959 	if (status == 0) {
19960 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19961 		    "sd_send_scsi_GET_CONFIGURATION: data",
19962 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19963 	}
19964 
19965 	SD_TRACE(SD_LOG_IO, un,
19966 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19967 
19968 	return (status);
19969 }
19970 
19971 /*
19972  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19973  *
19974  * Description: Issues the get configuration command to the device to
19975  *              retrieve a specfic feature. Called from
19976  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19977  *   Arguments: un
19978  *              ucmdbuf
19979  *              rqbuf
19980  *              rqbuflen
19981  *              bufaddr
19982  *              buflen
19983  *		feature
19984  *
19985  * Return Code: 0   - Success
19986  *              errno return code from sd_send_scsi_cmd()
19987  *
19988  *     Context: Can sleep. Does not return until command is completed.
19989  *
19990  */
19991 static int
19992 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19993 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19994 	uchar_t *bufaddr, uint_t buflen, char feature)
19995 {
19996 	char    cdb[CDB_GROUP1];
19997 	int	status;
19998 
19999 	ASSERT(un != NULL);
20000 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20001 	ASSERT(bufaddr != NULL);
20002 	ASSERT(ucmdbuf != NULL);
20003 	ASSERT(rqbuf != NULL);
20004 
20005 	SD_TRACE(SD_LOG_IO, un,
20006 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20007 
20008 	bzero(cdb, sizeof (cdb));
20009 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20010 	bzero(rqbuf, rqbuflen);
20011 	bzero(bufaddr, buflen);
20012 
20013 	/*
20014 	 * Set up cdb field for the get configuration command.
20015 	 */
20016 	cdb[0] = SCMD_GET_CONFIGURATION;
20017 	cdb[1] = 0x02;  /* Requested Type */
20018 	cdb[3] = feature;
20019 	cdb[8] = buflen;
20020 	ucmdbuf->uscsi_cdb = cdb;
20021 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20022 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20023 	ucmdbuf->uscsi_buflen = buflen;
20024 	ucmdbuf->uscsi_timeout = sd_io_time;
20025 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20026 	ucmdbuf->uscsi_rqlen = rqbuflen;
20027 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20028 
20029 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20030 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20031 
20032 	switch (status) {
20033 	case 0:
20034 		break;  /* Success! */
20035 	case EIO:
20036 		switch (ucmdbuf->uscsi_status) {
20037 		case STATUS_RESERVATION_CONFLICT:
20038 			status = EACCES;
20039 			break;
20040 		default:
20041 			break;
20042 		}
20043 		break;
20044 	default:
20045 		break;
20046 	}
20047 
20048 	if (status == 0) {
20049 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20050 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20051 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20052 	}
20053 
20054 	SD_TRACE(SD_LOG_IO, un,
20055 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20056 
20057 	return (status);
20058 }
20059 
20060 
20061 /*
20062  *    Function: sd_send_scsi_MODE_SENSE
20063  *
20064  * Description: Utility function for issuing a scsi MODE SENSE command.
20065  *		Note: This routine uses a consistent implementation for Group0,
20066  *		Group1, and Group2 commands across all platforms. ATAPI devices
20067  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20068  *
20069  *   Arguments: un - pointer to the softstate struct for the target.
20070  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20071  *			  CDB_GROUP[1|2] (10 byte).
20072  *		bufaddr - buffer for page data retrieved from the target.
20073  *		buflen - size of page to be retrieved.
20074  *		page_code - page code of data to be retrieved from the target.
20075  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20076  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20077  *			to use the USCSI "direct" chain and bypass the normal
20078  *			command waitq.
20079  *
20080  * Return Code: 0   - Success
20081  *		errno return code from sd_send_scsi_cmd()
20082  *
20083  *     Context: Can sleep. Does not return until command is completed.
20084  */
20085 
20086 static int
20087 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20088 	size_t buflen,  uchar_t page_code, int path_flag)
20089 {
20090 	struct	scsi_extended_sense	sense_buf;
20091 	union scsi_cdb		cdb;
20092 	struct uscsi_cmd	ucmd_buf;
20093 	int			status;
20094 
20095 	ASSERT(un != NULL);
20096 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20097 	ASSERT(bufaddr != NULL);
20098 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20099 	    (cdbsize == CDB_GROUP2));
20100 
20101 	SD_TRACE(SD_LOG_IO, un,
20102 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20103 
20104 	bzero(&cdb, sizeof (cdb));
20105 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20106 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20107 	bzero(bufaddr, buflen);
20108 
20109 	if (cdbsize == CDB_GROUP0) {
20110 		cdb.scc_cmd = SCMD_MODE_SENSE;
20111 		cdb.cdb_opaque[2] = page_code;
20112 		FORMG0COUNT(&cdb, buflen);
20113 	} else {
20114 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20115 		cdb.cdb_opaque[2] = page_code;
20116 		FORMG1COUNT(&cdb, buflen);
20117 	}
20118 
20119 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20120 
20121 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20122 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20123 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20124 	ucmd_buf.uscsi_buflen	= buflen;
20125 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20126 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20127 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20128 	ucmd_buf.uscsi_timeout	= 60;
20129 
20130 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20131 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20132 
20133 	switch (status) {
20134 	case 0:
20135 		break;	/* Success! */
20136 	case EIO:
20137 		switch (ucmd_buf.uscsi_status) {
20138 		case STATUS_RESERVATION_CONFLICT:
20139 			status = EACCES;
20140 			break;
20141 		default:
20142 			break;
20143 		}
20144 		break;
20145 	default:
20146 		break;
20147 	}
20148 
20149 	if (status == 0) {
20150 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20151 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20152 	}
20153 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20154 
20155 	return (status);
20156 }
20157 
20158 
20159 /*
20160  *    Function: sd_send_scsi_MODE_SELECT
20161  *
20162  * Description: Utility function for issuing a scsi MODE SELECT command.
20163  *		Note: This routine uses a consistent implementation for Group0,
20164  *		Group1, and Group2 commands across all platforms. ATAPI devices
20165  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20166  *
20167  *   Arguments: un - pointer to the softstate struct for the target.
20168  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20169  *			  CDB_GROUP[1|2] (10 byte).
20170  *		bufaddr - buffer for page data retrieved from the target.
20171  *		buflen - size of page to be retrieved.
20172  *		save_page - boolean to determin if SP bit should be set.
20173  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20174  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20175  *			to use the USCSI "direct" chain and bypass the normal
20176  *			command waitq.
20177  *
20178  * Return Code: 0   - Success
20179  *		errno return code from sd_send_scsi_cmd()
20180  *
20181  *     Context: Can sleep. Does not return until command is completed.
20182  */
20183 
20184 static int
20185 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20186 	size_t buflen,  uchar_t save_page, int path_flag)
20187 {
20188 	struct	scsi_extended_sense	sense_buf;
20189 	union scsi_cdb		cdb;
20190 	struct uscsi_cmd	ucmd_buf;
20191 	int			status;
20192 
20193 	ASSERT(un != NULL);
20194 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20195 	ASSERT(bufaddr != NULL);
20196 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20197 	    (cdbsize == CDB_GROUP2));
20198 
20199 	SD_TRACE(SD_LOG_IO, un,
20200 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20201 
20202 	bzero(&cdb, sizeof (cdb));
20203 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20204 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20205 
20206 	/* Set the PF bit for many third party drives */
20207 	cdb.cdb_opaque[1] = 0x10;
20208 
20209 	/* Set the savepage(SP) bit if given */
20210 	if (save_page == SD_SAVE_PAGE) {
20211 		cdb.cdb_opaque[1] |= 0x01;
20212 	}
20213 
20214 	if (cdbsize == CDB_GROUP0) {
20215 		cdb.scc_cmd = SCMD_MODE_SELECT;
20216 		FORMG0COUNT(&cdb, buflen);
20217 	} else {
20218 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20219 		FORMG1COUNT(&cdb, buflen);
20220 	}
20221 
20222 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20223 
20224 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20225 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20226 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20227 	ucmd_buf.uscsi_buflen	= buflen;
20228 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20229 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20230 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20231 	ucmd_buf.uscsi_timeout	= 60;
20232 
20233 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20234 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20235 
20236 	switch (status) {
20237 	case 0:
20238 		break;	/* Success! */
20239 	case EIO:
20240 		switch (ucmd_buf.uscsi_status) {
20241 		case STATUS_RESERVATION_CONFLICT:
20242 			status = EACCES;
20243 			break;
20244 		default:
20245 			break;
20246 		}
20247 		break;
20248 	default:
20249 		break;
20250 	}
20251 
20252 	if (status == 0) {
20253 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20254 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20255 	}
20256 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20257 
20258 	return (status);
20259 }
20260 
20261 
20262 /*
20263  *    Function: sd_send_scsi_RDWR
20264  *
20265  * Description: Issue a scsi READ or WRITE command with the given parameters.
20266  *
20267  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20268  *		cmd:	 SCMD_READ or SCMD_WRITE
20269  *		bufaddr: Address of caller's buffer to receive the RDWR data
20270  *		buflen:  Length of caller's buffer receive the RDWR data.
20271  *		start_block: Block number for the start of the RDWR operation.
20272  *			 (Assumes target-native block size.)
20273  *		residp:  Pointer to variable to receive the redisual of the
20274  *			 RDWR operation (may be NULL of no residual requested).
20275  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20276  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20277  *			to use the USCSI "direct" chain and bypass the normal
20278  *			command waitq.
20279  *
20280  * Return Code: 0   - Success
20281  *		errno return code from sd_send_scsi_cmd()
20282  *
20283  *     Context: Can sleep. Does not return until command is completed.
20284  */
20285 
20286 static int
20287 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20288 	size_t buflen, daddr_t start_block, int path_flag)
20289 {
20290 	struct	scsi_extended_sense	sense_buf;
20291 	union scsi_cdb		cdb;
20292 	struct uscsi_cmd	ucmd_buf;
20293 	uint32_t		block_count;
20294 	int			status;
20295 	int			cdbsize;
20296 	uchar_t			flag;
20297 
20298 	ASSERT(un != NULL);
20299 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20300 	ASSERT(bufaddr != NULL);
20301 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20302 
20303 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20304 
20305 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20306 		return (EINVAL);
20307 	}
20308 
20309 	mutex_enter(SD_MUTEX(un));
20310 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20311 	mutex_exit(SD_MUTEX(un));
20312 
20313 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20314 
20315 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20316 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20317 	    bufaddr, buflen, start_block, block_count);
20318 
20319 	bzero(&cdb, sizeof (cdb));
20320 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20321 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20322 
20323 	/* Compute CDB size to use */
20324 	if (start_block > 0xffffffff)
20325 		cdbsize = CDB_GROUP4;
20326 	else if ((start_block & 0xFFE00000) ||
20327 	    (un->un_f_cfg_is_atapi == TRUE))
20328 		cdbsize = CDB_GROUP1;
20329 	else
20330 		cdbsize = CDB_GROUP0;
20331 
20332 	switch (cdbsize) {
20333 	case CDB_GROUP0:	/* 6-byte CDBs */
20334 		cdb.scc_cmd = cmd;
20335 		FORMG0ADDR(&cdb, start_block);
20336 		FORMG0COUNT(&cdb, block_count);
20337 		break;
20338 	case CDB_GROUP1:	/* 10-byte CDBs */
20339 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20340 		FORMG1ADDR(&cdb, start_block);
20341 		FORMG1COUNT(&cdb, block_count);
20342 		break;
20343 	case CDB_GROUP4:	/* 16-byte CDBs */
20344 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20345 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20346 		FORMG4COUNT(&cdb, block_count);
20347 		break;
20348 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20349 	default:
20350 		/* All others reserved */
20351 		return (EINVAL);
20352 	}
20353 
20354 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20355 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20356 
20357 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20358 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20359 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20360 	ucmd_buf.uscsi_buflen	= buflen;
20361 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20362 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20363 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20364 	ucmd_buf.uscsi_timeout	= 60;
20365 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20366 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20367 	switch (status) {
20368 	case 0:
20369 		break;	/* Success! */
20370 	case EIO:
20371 		switch (ucmd_buf.uscsi_status) {
20372 		case STATUS_RESERVATION_CONFLICT:
20373 			status = EACCES;
20374 			break;
20375 		default:
20376 			break;
20377 		}
20378 		break;
20379 	default:
20380 		break;
20381 	}
20382 
20383 	if (status == 0) {
20384 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20385 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20386 	}
20387 
20388 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20389 
20390 	return (status);
20391 }
20392 
20393 
20394 /*
20395  *    Function: sd_send_scsi_LOG_SENSE
20396  *
20397  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20398  *
20399  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20400  *
20401  * Return Code: 0   - Success
20402  *		errno return code from sd_send_scsi_cmd()
20403  *
20404  *     Context: Can sleep. Does not return until command is completed.
20405  */
20406 
20407 static int
20408 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20409 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20410 	int path_flag)
20411 
20412 {
20413 	struct	scsi_extended_sense	sense_buf;
20414 	union scsi_cdb		cdb;
20415 	struct uscsi_cmd	ucmd_buf;
20416 	int			status;
20417 
20418 	ASSERT(un != NULL);
20419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20420 
20421 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20422 
20423 	bzero(&cdb, sizeof (cdb));
20424 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20425 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20426 
20427 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20428 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20429 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20430 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20431 	FORMG1COUNT(&cdb, buflen);
20432 
20433 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20434 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20435 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20436 	ucmd_buf.uscsi_buflen	= buflen;
20437 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20438 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20439 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20440 	ucmd_buf.uscsi_timeout	= 60;
20441 
20442 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20443 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20444 
20445 	switch (status) {
20446 	case 0:
20447 		break;
20448 	case EIO:
20449 		switch (ucmd_buf.uscsi_status) {
20450 		case STATUS_RESERVATION_CONFLICT:
20451 			status = EACCES;
20452 			break;
20453 		case STATUS_CHECK:
20454 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20455 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20456 			    (sense_buf.es_add_code == 0x24)) {
20457 				/*
20458 				 * ASC 0x24: INVALID FIELD IN CDB
20459 				 */
20460 				switch (page_code) {
20461 				case START_STOP_CYCLE_PAGE:
20462 					/*
20463 					 * The start stop cycle counter is
20464 					 * implemented as page 0x31 in earlier
20465 					 * generation disks. In new generation
20466 					 * disks the start stop cycle counter is
20467 					 * implemented as page 0xE. To properly
20468 					 * handle this case if an attempt for
20469 					 * log page 0xE is made and fails we
20470 					 * will try again using page 0x31.
20471 					 *
20472 					 * Network storage BU committed to
20473 					 * maintain the page 0x31 for this
20474 					 * purpose and will not have any other
20475 					 * page implemented with page code 0x31
20476 					 * until all disks transition to the
20477 					 * standard page.
20478 					 */
20479 					mutex_enter(SD_MUTEX(un));
20480 					un->un_start_stop_cycle_page =
20481 					    START_STOP_CYCLE_VU_PAGE;
20482 					cdb.cdb_opaque[2] =
20483 					    (char)(page_control << 6) |
20484 					    un->un_start_stop_cycle_page;
20485 					mutex_exit(SD_MUTEX(un));
20486 					status = sd_send_scsi_cmd(
20487 					    SD_GET_DEV(un), &ucmd_buf,
20488 					    UIO_SYSSPACE, UIO_SYSSPACE,
20489 					    UIO_SYSSPACE, path_flag);
20490 
20491 					break;
20492 				case TEMPERATURE_PAGE:
20493 					status = ENOTTY;
20494 					break;
20495 				default:
20496 					break;
20497 				}
20498 			}
20499 			break;
20500 		default:
20501 			break;
20502 		}
20503 		break;
20504 	default:
20505 		break;
20506 	}
20507 
20508 	if (status == 0) {
20509 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20510 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20511 	}
20512 
20513 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20514 
20515 	return (status);
20516 }
20517 
20518 
20519 /*
20520  *    Function: sdioctl
20521  *
20522  * Description: Driver's ioctl(9e) entry point function.
20523  *
20524  *   Arguments: dev     - device number
20525  *		cmd     - ioctl operation to be performed
20526  *		arg     - user argument, contains data to be set or reference
20527  *			  parameter for get
20528  *		flag    - bit flag, indicating open settings, 32/64 bit type
20529  *		cred_p  - user credential pointer
20530  *		rval_p  - calling process return value (OPT)
20531  *
20532  * Return Code: EINVAL
20533  *		ENOTTY
20534  *		ENXIO
20535  *		EIO
20536  *		EFAULT
20537  *		ENOTSUP
20538  *		EPERM
20539  *
20540  *     Context: Called from the device switch at normal priority.
20541  */
20542 
20543 static int
20544 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20545 {
20546 	struct sd_lun	*un = NULL;
20547 	int		geom_validated = FALSE;
20548 	int		err = 0;
20549 	int		i = 0;
20550 	cred_t		*cr;
20551 
20552 	/*
20553 	 * All device accesses go thru sdstrategy where we check on suspend
20554 	 * status
20555 	 */
20556 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20557 		return (ENXIO);
20558 	}
20559 
20560 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20561 
20562 	/*
20563 	 * Moved this wait from sd_uscsi_strategy to here for
20564 	 * reasons of deadlock prevention. Internal driver commands,
20565 	 * specifically those to change a devices power level, result
20566 	 * in a call to sd_uscsi_strategy.
20567 	 */
20568 	mutex_enter(SD_MUTEX(un));
20569 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20570 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20571 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20572 	}
20573 	/*
20574 	 * Twiddling the counter here protects commands from now
20575 	 * through to the top of sd_uscsi_strategy. Without the
20576 	 * counter inc. a power down, for example, could get in
20577 	 * after the above check for state is made and before
20578 	 * execution gets to the top of sd_uscsi_strategy.
20579 	 * That would cause problems.
20580 	 */
20581 	un->un_ncmds_in_driver++;
20582 
20583 	if ((un->un_f_geometry_is_valid == FALSE) &&
20584 	    (flag & (FNDELAY | FNONBLOCK))) {
20585 		switch (cmd) {
20586 		case CDROMPAUSE:
20587 		case CDROMRESUME:
20588 		case CDROMPLAYMSF:
20589 		case CDROMPLAYTRKIND:
20590 		case CDROMREADTOCHDR:
20591 		case CDROMREADTOCENTRY:
20592 		case CDROMSTOP:
20593 		case CDROMSTART:
20594 		case CDROMVOLCTRL:
20595 		case CDROMSUBCHNL:
20596 		case CDROMREADMODE2:
20597 		case CDROMREADMODE1:
20598 		case CDROMREADOFFSET:
20599 		case CDROMSBLKMODE:
20600 		case CDROMGBLKMODE:
20601 		case CDROMGDRVSPEED:
20602 		case CDROMSDRVSPEED:
20603 		case CDROMCDDA:
20604 		case CDROMCDXA:
20605 		case CDROMSUBCODE:
20606 			if (!ISCD(un)) {
20607 				un->un_ncmds_in_driver--;
20608 				ASSERT(un->un_ncmds_in_driver >= 0);
20609 				mutex_exit(SD_MUTEX(un));
20610 				return (ENOTTY);
20611 			}
20612 			break;
20613 		case FDEJECT:
20614 		case DKIOCEJECT:
20615 		case CDROMEJECT:
20616 			if (!ISREMOVABLE(un)) {
20617 				un->un_ncmds_in_driver--;
20618 				ASSERT(un->un_ncmds_in_driver >= 0);
20619 				mutex_exit(SD_MUTEX(un));
20620 				return (ENOTTY);
20621 			}
20622 			break;
20623 		case DKIOCSVTOC:
20624 		case DKIOCSETEFI:
20625 		case DKIOCSMBOOT:
20626 			mutex_exit(SD_MUTEX(un));
20627 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20628 			if (err != 0) {
20629 				mutex_enter(SD_MUTEX(un));
20630 				un->un_ncmds_in_driver--;
20631 				ASSERT(un->un_ncmds_in_driver >= 0);
20632 				mutex_exit(SD_MUTEX(un));
20633 				return (EIO);
20634 			}
20635 			mutex_enter(SD_MUTEX(un));
20636 			/* FALLTHROUGH */
20637 		case DKIOCREMOVABLE:
20638 		case DKIOCINFO:
20639 		case DKIOCGMEDIAINFO:
20640 		case MHIOCENFAILFAST:
20641 		case MHIOCSTATUS:
20642 		case MHIOCTKOWN:
20643 		case MHIOCRELEASE:
20644 		case MHIOCGRP_INKEYS:
20645 		case MHIOCGRP_INRESV:
20646 		case MHIOCGRP_REGISTER:
20647 		case MHIOCGRP_RESERVE:
20648 		case MHIOCGRP_PREEMPTANDABORT:
20649 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20650 		case CDROMCLOSETRAY:
20651 		case USCSICMD:
20652 			goto skip_ready_valid;
20653 		default:
20654 			break;
20655 		}
20656 
20657 		mutex_exit(SD_MUTEX(un));
20658 		err = sd_ready_and_valid(un);
20659 		mutex_enter(SD_MUTEX(un));
20660 		if (err == SD_READY_NOT_VALID) {
20661 			switch (cmd) {
20662 			case DKIOCGAPART:
20663 			case DKIOCGGEOM:
20664 			case DKIOCSGEOM:
20665 			case DKIOCGVTOC:
20666 			case DKIOCSVTOC:
20667 			case DKIOCSAPART:
20668 			case DKIOCG_PHYGEOM:
20669 			case DKIOCG_VIRTGEOM:
20670 				err = ENOTSUP;
20671 				un->un_ncmds_in_driver--;
20672 				ASSERT(un->un_ncmds_in_driver >= 0);
20673 				mutex_exit(SD_MUTEX(un));
20674 				return (err);
20675 			}
20676 		}
20677 		if (err != SD_READY_VALID) {
20678 			switch (cmd) {
20679 			case DKIOCSTATE:
20680 			case CDROMGDRVSPEED:
20681 			case CDROMSDRVSPEED:
20682 			case FDEJECT:	/* for eject command */
20683 			case DKIOCEJECT:
20684 			case CDROMEJECT:
20685 			case DKIOCGETEFI:
20686 			case DKIOCSGEOM:
20687 			case DKIOCREMOVABLE:
20688 			case DKIOCSAPART:
20689 			case DKIOCSETEFI:
20690 				break;
20691 			default:
20692 				if (ISREMOVABLE(un)) {
20693 					err = ENXIO;
20694 				} else {
20695 					/* Do not map EACCES to EIO */
20696 					if (err != EACCES)
20697 						err = EIO;
20698 				}
20699 				un->un_ncmds_in_driver--;
20700 				ASSERT(un->un_ncmds_in_driver >= 0);
20701 				mutex_exit(SD_MUTEX(un));
20702 				return (err);
20703 			}
20704 		}
20705 		geom_validated = TRUE;
20706 	}
20707 	if ((un->un_f_geometry_is_valid == TRUE) &&
20708 	    (un->un_solaris_size > 0)) {
20709 		/*
20710 		 * the "geometry_is_valid" flag could be true if we
20711 		 * have an fdisk table but no Solaris partition
20712 		 */
20713 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20714 			/* it is EFI, so return ENOTSUP for these */
20715 			switch (cmd) {
20716 			case DKIOCGAPART:
20717 			case DKIOCGGEOM:
20718 			case DKIOCGVTOC:
20719 			case DKIOCSVTOC:
20720 			case DKIOCSAPART:
20721 				err = ENOTSUP;
20722 				un->un_ncmds_in_driver--;
20723 				ASSERT(un->un_ncmds_in_driver >= 0);
20724 				mutex_exit(SD_MUTEX(un));
20725 				return (err);
20726 			}
20727 		}
20728 	}
20729 
20730 skip_ready_valid:
20731 	mutex_exit(SD_MUTEX(un));
20732 
20733 	switch (cmd) {
20734 	case DKIOCINFO:
20735 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20736 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20737 		break;
20738 
20739 	case DKIOCGMEDIAINFO:
20740 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20741 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20742 		break;
20743 
20744 	case DKIOCGGEOM:
20745 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20746 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20747 		    geom_validated);
20748 		break;
20749 
20750 	case DKIOCSGEOM:
20751 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20752 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20753 		break;
20754 
20755 	case DKIOCGAPART:
20756 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20757 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20758 		    geom_validated);
20759 		break;
20760 
20761 	case DKIOCSAPART:
20762 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20763 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20764 		break;
20765 
20766 	case DKIOCGVTOC:
20767 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20768 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20769 		    geom_validated);
20770 		break;
20771 
20772 	case DKIOCGETEFI:
20773 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
20774 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
20775 		break;
20776 
20777 	case DKIOCPARTITION:
20778 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
20779 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
20780 		break;
20781 
20782 	case DKIOCSVTOC:
20783 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
20784 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
20785 		break;
20786 
20787 	case DKIOCSETEFI:
20788 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
20789 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
20790 		break;
20791 
20792 	case DKIOCGMBOOT:
20793 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
20794 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
20795 		break;
20796 
20797 	case DKIOCSMBOOT:
20798 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
20799 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
20800 		break;
20801 
20802 	case DKIOCLOCK:
20803 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20804 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20805 		    SD_PATH_STANDARD);
20806 		break;
20807 
20808 	case DKIOCUNLOCK:
20809 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20810 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20811 		    SD_PATH_STANDARD);
20812 		break;
20813 
20814 	case DKIOCSTATE: {
20815 		enum dkio_state		state;
20816 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20817 
20818 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20819 			err = EFAULT;
20820 		} else {
20821 			err = sd_check_media(dev, state);
20822 			if (err == 0) {
20823 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20824 				    sizeof (int), flag) != 0)
20825 					err = EFAULT;
20826 			}
20827 		}
20828 		break;
20829 	}
20830 
20831 	case DKIOCREMOVABLE:
20832 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20833 		if (ISREMOVABLE(un)) {
20834 			i = 1;
20835 		} else {
20836 			i = 0;
20837 		}
20838 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20839 			err = EFAULT;
20840 		} else {
20841 			err = 0;
20842 		}
20843 		break;
20844 
20845 	case DKIOCGTEMPERATURE:
20846 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20847 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20848 		break;
20849 
20850 	case MHIOCENFAILFAST:
20851 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20852 		if ((err = drv_priv(cred_p)) == 0) {
20853 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20854 		}
20855 		break;
20856 
20857 	case MHIOCTKOWN:
20858 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20859 		if ((err = drv_priv(cred_p)) == 0) {
20860 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20861 		}
20862 		break;
20863 
20864 	case MHIOCRELEASE:
20865 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20866 		if ((err = drv_priv(cred_p)) == 0) {
20867 			err = sd_mhdioc_release(dev);
20868 		}
20869 		break;
20870 
20871 	case MHIOCSTATUS:
20872 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20873 		if ((err = drv_priv(cred_p)) == 0) {
20874 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20875 			case 0:
20876 				err = 0;
20877 				break;
20878 			case EACCES:
20879 				*rval_p = 1;
20880 				err = 0;
20881 				break;
20882 			default:
20883 				err = EIO;
20884 				break;
20885 			}
20886 		}
20887 		break;
20888 
20889 	case MHIOCQRESERVE:
20890 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20891 		if ((err = drv_priv(cred_p)) == 0) {
20892 			err = sd_reserve_release(dev, SD_RESERVE);
20893 		}
20894 		break;
20895 
20896 	case MHIOCREREGISTERDEVID:
20897 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20898 		if (drv_priv(cred_p) == EPERM) {
20899 			err = EPERM;
20900 		} else if (ISREMOVABLE(un) || ISCD(un)) {
20901 			err = ENOTTY;
20902 		} else {
20903 			err = sd_mhdioc_register_devid(dev);
20904 		}
20905 		break;
20906 
20907 	case MHIOCGRP_INKEYS:
20908 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20909 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20910 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20911 				err = ENOTSUP;
20912 			} else {
20913 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20914 				    flag);
20915 			}
20916 		}
20917 		break;
20918 
20919 	case MHIOCGRP_INRESV:
20920 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20921 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20922 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20923 				err = ENOTSUP;
20924 			} else {
20925 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20926 			}
20927 		}
20928 		break;
20929 
20930 	case MHIOCGRP_REGISTER:
20931 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20932 		if ((err = drv_priv(cred_p)) != EPERM) {
20933 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20934 				err = ENOTSUP;
20935 			} else if (arg != NULL) {
20936 				mhioc_register_t reg;
20937 				if (ddi_copyin((void *)arg, &reg,
20938 				    sizeof (mhioc_register_t), flag) != 0) {
20939 					err = EFAULT;
20940 				} else {
20941 					err =
20942 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20943 					    un, SD_SCSI3_REGISTER,
20944 					    (uchar_t *)&reg);
20945 				}
20946 			}
20947 		}
20948 		break;
20949 
20950 	case MHIOCGRP_RESERVE:
20951 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20952 		if ((err = drv_priv(cred_p)) != EPERM) {
20953 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20954 				err = ENOTSUP;
20955 			} else if (arg != NULL) {
20956 				mhioc_resv_desc_t resv_desc;
20957 				if (ddi_copyin((void *)arg, &resv_desc,
20958 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20959 					err = EFAULT;
20960 				} else {
20961 					err =
20962 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20963 					    un, SD_SCSI3_RESERVE,
20964 					    (uchar_t *)&resv_desc);
20965 				}
20966 			}
20967 		}
20968 		break;
20969 
20970 	case MHIOCGRP_PREEMPTANDABORT:
20971 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20972 		if ((err = drv_priv(cred_p)) != EPERM) {
20973 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20974 				err = ENOTSUP;
20975 			} else if (arg != NULL) {
20976 				mhioc_preemptandabort_t preempt_abort;
20977 				if (ddi_copyin((void *)arg, &preempt_abort,
20978 				    sizeof (mhioc_preemptandabort_t),
20979 				    flag) != 0) {
20980 					err = EFAULT;
20981 				} else {
20982 					err =
20983 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20984 					    un, SD_SCSI3_PREEMPTANDABORT,
20985 					    (uchar_t *)&preempt_abort);
20986 				}
20987 			}
20988 		}
20989 		break;
20990 
20991 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20992 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20993 		if ((err = drv_priv(cred_p)) != EPERM) {
20994 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20995 				err = ENOTSUP;
20996 			} else if (arg != NULL) {
20997 				mhioc_registerandignorekey_t r_and_i;
20998 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20999 				    sizeof (mhioc_registerandignorekey_t),
21000 				    flag) != 0) {
21001 					err = EFAULT;
21002 				} else {
21003 					err =
21004 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21005 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21006 					    (uchar_t *)&r_and_i);
21007 				}
21008 			}
21009 		}
21010 		break;
21011 
21012 	case USCSICMD:
21013 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21014 		cr = ddi_get_cred();
21015 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21016 			err = EPERM;
21017 		} else {
21018 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21019 		}
21020 		break;
21021 
21022 	case CDROMPAUSE:
21023 	case CDROMRESUME:
21024 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21025 		if (!ISCD(un)) {
21026 			err = ENOTTY;
21027 		} else {
21028 			err = sr_pause_resume(dev, cmd);
21029 		}
21030 		break;
21031 
21032 	case CDROMPLAYMSF:
21033 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21034 		if (!ISCD(un)) {
21035 			err = ENOTTY;
21036 		} else {
21037 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21038 		}
21039 		break;
21040 
21041 	case CDROMPLAYTRKIND:
21042 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21043 #if defined(__i386) || defined(__amd64)
21044 		/*
21045 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21046 		 */
21047 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21048 #else
21049 		if (!ISCD(un)) {
21050 #endif
21051 			err = ENOTTY;
21052 		} else {
21053 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21054 		}
21055 		break;
21056 
21057 	case CDROMREADTOCHDR:
21058 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21059 		if (!ISCD(un)) {
21060 			err = ENOTTY;
21061 		} else {
21062 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21063 		}
21064 		break;
21065 
21066 	case CDROMREADTOCENTRY:
21067 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21068 		if (!ISCD(un)) {
21069 			err = ENOTTY;
21070 		} else {
21071 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21072 		}
21073 		break;
21074 
21075 	case CDROMSTOP:
21076 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21077 		if (!ISCD(un)) {
21078 			err = ENOTTY;
21079 		} else {
21080 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21081 			    SD_PATH_STANDARD);
21082 		}
21083 		break;
21084 
21085 	case CDROMSTART:
21086 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21087 		if (!ISCD(un)) {
21088 			err = ENOTTY;
21089 		} else {
21090 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21091 			    SD_PATH_STANDARD);
21092 		}
21093 		break;
21094 
21095 	case CDROMCLOSETRAY:
21096 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21097 		if (!ISCD(un)) {
21098 			err = ENOTTY;
21099 		} else {
21100 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21101 			    SD_PATH_STANDARD);
21102 		}
21103 		break;
21104 
21105 	case FDEJECT:	/* for eject command */
21106 	case DKIOCEJECT:
21107 	case CDROMEJECT:
21108 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21109 		if (!ISREMOVABLE(un)) {
21110 			err = ENOTTY;
21111 		} else {
21112 			err = sr_eject(dev);
21113 		}
21114 		break;
21115 
21116 	case CDROMVOLCTRL:
21117 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21118 		if (!ISCD(un)) {
21119 			err = ENOTTY;
21120 		} else {
21121 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21122 		}
21123 		break;
21124 
21125 	case CDROMSUBCHNL:
21126 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21127 		if (!ISCD(un)) {
21128 			err = ENOTTY;
21129 		} else {
21130 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21131 		}
21132 		break;
21133 
21134 	case CDROMREADMODE2:
21135 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21136 		if (!ISCD(un)) {
21137 			err = ENOTTY;
21138 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21139 			/*
21140 			 * If the drive supports READ CD, use that instead of
21141 			 * switching the LBA size via a MODE SELECT
21142 			 * Block Descriptor
21143 			 */
21144 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21145 		} else {
21146 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21147 		}
21148 		break;
21149 
21150 	case CDROMREADMODE1:
21151 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21152 		if (!ISCD(un)) {
21153 			err = ENOTTY;
21154 		} else {
21155 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21156 		}
21157 		break;
21158 
21159 	case CDROMREADOFFSET:
21160 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21161 		if (!ISCD(un)) {
21162 			err = ENOTTY;
21163 		} else {
21164 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21165 			    flag);
21166 		}
21167 		break;
21168 
21169 	case CDROMSBLKMODE:
21170 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21171 		/*
21172 		 * There is no means of changing block size in case of atapi
21173 		 * drives, thus return ENOTTY if drive type is atapi
21174 		 */
21175 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21176 			err = ENOTTY;
21177 		} else if (un->un_f_mmc_cap == TRUE) {
21178 
21179 			/*
21180 			 * MMC Devices do not support changing the
21181 			 * logical block size
21182 			 *
21183 			 * Note: EINVAL is being returned instead of ENOTTY to
21184 			 * maintain consistancy with the original mmc
21185 			 * driver update.
21186 			 */
21187 			err = EINVAL;
21188 		} else {
21189 			mutex_enter(SD_MUTEX(un));
21190 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21191 			    (un->un_ncmds_in_transport > 0)) {
21192 				mutex_exit(SD_MUTEX(un));
21193 				err = EINVAL;
21194 			} else {
21195 				mutex_exit(SD_MUTEX(un));
21196 				err = sr_change_blkmode(dev, cmd, arg, flag);
21197 			}
21198 		}
21199 		break;
21200 
21201 	case CDROMGBLKMODE:
21202 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21203 		if (!ISCD(un)) {
21204 			err = ENOTTY;
21205 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21206 		    (un->un_f_blockcount_is_valid != FALSE)) {
21207 			/*
21208 			 * Drive is an ATAPI drive so return target block
21209 			 * size for ATAPI drives since we cannot change the
21210 			 * blocksize on ATAPI drives. Used primarily to detect
21211 			 * if an ATAPI cdrom is present.
21212 			 */
21213 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21214 			    sizeof (int), flag) != 0) {
21215 				err = EFAULT;
21216 			} else {
21217 				err = 0;
21218 			}
21219 
21220 		} else {
21221 			/*
21222 			 * Drive supports changing block sizes via a Mode
21223 			 * Select.
21224 			 */
21225 			err = sr_change_blkmode(dev, cmd, arg, flag);
21226 		}
21227 		break;
21228 
21229 	case CDROMGDRVSPEED:
21230 	case CDROMSDRVSPEED:
21231 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21232 		if (!ISCD(un)) {
21233 			err = ENOTTY;
21234 		} else if (un->un_f_mmc_cap == TRUE) {
21235 			/*
21236 			 * Note: In the future the driver implementation
21237 			 * for getting and
21238 			 * setting cd speed should entail:
21239 			 * 1) If non-mmc try the Toshiba mode page
21240 			 *    (sr_change_speed)
21241 			 * 2) If mmc but no support for Real Time Streaming try
21242 			 *    the SET CD SPEED (0xBB) command
21243 			 *   (sr_atapi_change_speed)
21244 			 * 3) If mmc and support for Real Time Streaming
21245 			 *    try the GET PERFORMANCE and SET STREAMING
21246 			 *    commands (not yet implemented, 4380808)
21247 			 */
21248 			/*
21249 			 * As per recent MMC spec, CD-ROM speed is variable
21250 			 * and changes with LBA. Since there is no such
21251 			 * things as drive speed now, fail this ioctl.
21252 			 *
21253 			 * Note: EINVAL is returned for consistancy of original
21254 			 * implementation which included support for getting
21255 			 * the drive speed of mmc devices but not setting
21256 			 * the drive speed. Thus EINVAL would be returned
21257 			 * if a set request was made for an mmc device.
21258 			 * We no longer support get or set speed for
21259 			 * mmc but need to remain consistant with regard
21260 			 * to the error code returned.
21261 			 */
21262 			err = EINVAL;
21263 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21264 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21265 		} else {
21266 			err = sr_change_speed(dev, cmd, arg, flag);
21267 		}
21268 		break;
21269 
21270 	case CDROMCDDA:
21271 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21272 		if (!ISCD(un)) {
21273 			err = ENOTTY;
21274 		} else {
21275 			err = sr_read_cdda(dev, (void *)arg, flag);
21276 		}
21277 		break;
21278 
21279 	case CDROMCDXA:
21280 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21281 		if (!ISCD(un)) {
21282 			err = ENOTTY;
21283 		} else {
21284 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21285 		}
21286 		break;
21287 
21288 	case CDROMSUBCODE:
21289 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21290 		if (!ISCD(un)) {
21291 			err = ENOTTY;
21292 		} else {
21293 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21294 		}
21295 		break;
21296 
21297 	case DKIOCPARTINFO: {
21298 		/*
21299 		 * Return parameters describing the selected disk slice.
21300 		 * Note: this ioctl is for the intel platform only
21301 		 */
21302 #if defined(__i386) || defined(__amd64)
21303 		int part;
21304 
21305 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21306 		part = SDPART(dev);
21307 
21308 		/* don't check un_solaris_size for pN */
21309 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21310 			err = EIO;
21311 		} else {
21312 			struct part_info p;
21313 
21314 			p.p_start = (daddr_t)un->un_offset[part];
21315 			p.p_length = (int)un->un_map[part].dkl_nblk;
21316 #ifdef _MULTI_DATAMODEL
21317 			switch (ddi_model_convert_from(flag & FMODELS)) {
21318 			case DDI_MODEL_ILP32:
21319 			{
21320 				struct part_info32 p32;
21321 
21322 				p32.p_start = (daddr32_t)p.p_start;
21323 				p32.p_length = p.p_length;
21324 				if (ddi_copyout(&p32, (void *)arg,
21325 				    sizeof (p32), flag))
21326 					err = EFAULT;
21327 				break;
21328 			}
21329 
21330 			case DDI_MODEL_NONE:
21331 			{
21332 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21333 				    flag))
21334 					err = EFAULT;
21335 				break;
21336 			}
21337 			}
21338 #else /* ! _MULTI_DATAMODEL */
21339 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21340 				err = EFAULT;
21341 #endif /* _MULTI_DATAMODEL */
21342 		}
21343 #else
21344 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21345 		err = ENOTTY;
21346 #endif
21347 		break;
21348 	}
21349 
21350 	case DKIOCG_PHYGEOM: {
21351 		/* Return the driver's notion of the media physical geometry */
21352 #if defined(__i386) || defined(__amd64)
21353 		struct dk_geom	disk_geom;
21354 		struct dk_geom	*dkgp = &disk_geom;
21355 
21356 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21357 		mutex_enter(SD_MUTEX(un));
21358 
21359 		if (un->un_g.dkg_nhead != 0 &&
21360 		    un->un_g.dkg_nsect != 0) {
21361 			/*
21362 			 * We succeeded in getting a geometry, but
21363 			 * right now it is being reported as just the
21364 			 * Solaris fdisk partition, just like for
21365 			 * DKIOCGGEOM. We need to change that to be
21366 			 * correct for the entire disk now.
21367 			 */
21368 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21369 			dkgp->dkg_acyl = 0;
21370 			dkgp->dkg_ncyl = un->un_blockcount /
21371 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21372 		} else {
21373 			bzero(dkgp, sizeof (struct dk_geom));
21374 			/*
21375 			 * This disk does not have a Solaris VTOC
21376 			 * so we must present a physical geometry
21377 			 * that will remain consistent regardless
21378 			 * of how the disk is used. This will ensure
21379 			 * that the geometry does not change regardless
21380 			 * of the fdisk partition type (ie. EFI, FAT32,
21381 			 * Solaris, etc).
21382 			 */
21383 			if (ISCD(un)) {
21384 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21385 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21386 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21387 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21388 			} else {
21389 				sd_convert_geometry(un->un_blockcount, dkgp);
21390 				dkgp->dkg_acyl = 0;
21391 				dkgp->dkg_ncyl = un->un_blockcount /
21392 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21393 			}
21394 		}
21395 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21396 
21397 		if (ddi_copyout(dkgp, (void *)arg,
21398 		    sizeof (struct dk_geom), flag)) {
21399 			mutex_exit(SD_MUTEX(un));
21400 			err = EFAULT;
21401 		} else {
21402 			mutex_exit(SD_MUTEX(un));
21403 			err = 0;
21404 		}
21405 #else
21406 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21407 		err = ENOTTY;
21408 #endif
21409 		break;
21410 	}
21411 
21412 	case DKIOCG_VIRTGEOM: {
21413 		/* Return the driver's notion of the media's logical geometry */
21414 #if defined(__i386) || defined(__amd64)
21415 		struct dk_geom	disk_geom;
21416 		struct dk_geom	*dkgp = &disk_geom;
21417 
21418 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21419 		mutex_enter(SD_MUTEX(un));
21420 		/*
21421 		 * If there is no HBA geometry available, or
21422 		 * if the HBA returned us something that doesn't
21423 		 * really fit into an Int 13/function 8 geometry
21424 		 * result, just fail the ioctl.  See PSARC 1998/313.
21425 		 */
21426 		if (un->un_lgeom.g_nhead == 0 ||
21427 		    un->un_lgeom.g_nsect == 0 ||
21428 		    un->un_lgeom.g_ncyl > 1024) {
21429 			mutex_exit(SD_MUTEX(un));
21430 			err = EINVAL;
21431 		} else {
21432 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21433 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21434 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21435 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21436 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21437 
21438 			if (ddi_copyout(dkgp, (void *)arg,
21439 			    sizeof (struct dk_geom), flag)) {
21440 				mutex_exit(SD_MUTEX(un));
21441 				err = EFAULT;
21442 			} else {
21443 				mutex_exit(SD_MUTEX(un));
21444 				err = 0;
21445 			}
21446 		}
21447 #else
21448 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21449 		err = ENOTTY;
21450 #endif
21451 		break;
21452 	}
21453 #ifdef SDDEBUG
21454 /* RESET/ABORTS testing ioctls */
21455 	case DKIOCRESET: {
21456 		int	reset_level;
21457 
21458 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21459 			err = EFAULT;
21460 		} else {
21461 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21462 			    "reset_level = 0x%lx\n", reset_level);
21463 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21464 				err = 0;
21465 			} else {
21466 				err = EIO;
21467 			}
21468 		}
21469 		break;
21470 	}
21471 
21472 	case DKIOCABORT:
21473 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21474 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21475 			err = 0;
21476 		} else {
21477 			err = EIO;
21478 		}
21479 		break;
21480 #endif
21481 
21482 #ifdef SD_FAULT_INJECTION
21483 /* SDIOC FaultInjection testing ioctls */
21484 	case SDIOCSTART:
21485 	case SDIOCSTOP:
21486 	case SDIOCINSERTPKT:
21487 	case SDIOCINSERTXB:
21488 	case SDIOCINSERTUN:
21489 	case SDIOCINSERTARQ:
21490 	case SDIOCPUSH:
21491 	case SDIOCRETRIEVE:
21492 	case SDIOCRUN:
21493 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21494 		    "SDIOC detected cmd:0x%X:\n", cmd);
21495 		/* call error generator */
21496 		sd_faultinjection_ioctl(cmd, arg, un);
21497 		err = 0;
21498 		break;
21499 
21500 #endif /* SD_FAULT_INJECTION */
21501 
21502 	default:
21503 		err = ENOTTY;
21504 		break;
21505 	}
21506 	mutex_enter(SD_MUTEX(un));
21507 	un->un_ncmds_in_driver--;
21508 	ASSERT(un->un_ncmds_in_driver >= 0);
21509 	mutex_exit(SD_MUTEX(un));
21510 
21511 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21512 	return (err);
21513 }
21514 
21515 
21516 /*
21517  *    Function: sd_uscsi_ioctl
21518  *
21519  * Description: This routine is the driver entry point for handling USCSI ioctl
21520  *		requests (USCSICMD).
21521  *
21522  *   Arguments: dev	- the device number
21523  *		arg	- user provided scsi command
21524  *		flag	- this argument is a pass through to ddi_copyxxx()
21525  *			  directly from the mode argument of ioctl().
21526  *
21527  * Return Code: code returned by sd_send_scsi_cmd
21528  *		ENXIO
21529  *		EFAULT
21530  *		EAGAIN
21531  */
21532 
21533 static int
21534 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21535 {
21536 #ifdef _MULTI_DATAMODEL
21537 	/*
21538 	 * For use when a 32 bit app makes a call into a
21539 	 * 64 bit ioctl
21540 	 */
21541 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21542 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21543 	model_t			model;
21544 #endif /* _MULTI_DATAMODEL */
21545 	struct uscsi_cmd	*scmd = NULL;
21546 	struct sd_lun		*un = NULL;
21547 	enum uio_seg		uioseg;
21548 	char			cdb[CDB_GROUP0];
21549 	int			rval = 0;
21550 
21551 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21552 		return (ENXIO);
21553 	}
21554 
21555 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21556 
21557 	scmd = (struct uscsi_cmd *)
21558 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21559 
21560 #ifdef _MULTI_DATAMODEL
21561 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21562 	case DDI_MODEL_ILP32:
21563 	{
21564 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21565 			rval = EFAULT;
21566 			goto done;
21567 		}
21568 		/*
21569 		 * Convert the ILP32 uscsi data from the
21570 		 * application to LP64 for internal use.
21571 		 */
21572 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21573 		break;
21574 	}
21575 	case DDI_MODEL_NONE:
21576 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21577 			rval = EFAULT;
21578 			goto done;
21579 		}
21580 		break;
21581 	}
21582 #else /* ! _MULTI_DATAMODEL */
21583 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21584 		rval = EFAULT;
21585 		goto done;
21586 	}
21587 #endif /* _MULTI_DATAMODEL */
21588 
21589 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21590 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21591 	if (un->un_f_format_in_progress == TRUE) {
21592 		rval = EAGAIN;
21593 		goto done;
21594 	}
21595 
21596 	/*
21597 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21598 	 * we will have a valid cdb[0] to test.
21599 	 */
21600 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21601 	    (cdb[0] == SCMD_FORMAT)) {
21602 		SD_TRACE(SD_LOG_IOCTL, un,
21603 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21604 		mutex_enter(SD_MUTEX(un));
21605 		un->un_f_format_in_progress = TRUE;
21606 		mutex_exit(SD_MUTEX(un));
21607 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21608 		    SD_PATH_STANDARD);
21609 		mutex_enter(SD_MUTEX(un));
21610 		un->un_f_format_in_progress = FALSE;
21611 		mutex_exit(SD_MUTEX(un));
21612 	} else {
21613 		SD_TRACE(SD_LOG_IOCTL, un,
21614 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21615 		/*
21616 		 * It's OK to fall into here even if the ddi_copyin()
21617 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21618 		 * does this same copyin and will return the EFAULT
21619 		 * if it fails.
21620 		 */
21621 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21622 		    SD_PATH_STANDARD);
21623 	}
21624 #ifdef _MULTI_DATAMODEL
21625 	switch (model) {
21626 	case DDI_MODEL_ILP32:
21627 		/*
21628 		 * Convert back to ILP32 before copyout to the
21629 		 * application
21630 		 */
21631 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21632 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21633 			if (rval != 0) {
21634 				rval = EFAULT;
21635 			}
21636 		}
21637 		break;
21638 	case DDI_MODEL_NONE:
21639 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21640 			if (rval != 0) {
21641 				rval = EFAULT;
21642 			}
21643 		}
21644 		break;
21645 	}
21646 #else /* ! _MULTI_DATAMODE */
21647 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21648 		if (rval != 0) {
21649 			rval = EFAULT;
21650 		}
21651 	}
21652 #endif /* _MULTI_DATAMODE */
21653 done:
21654 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21655 
21656 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21657 
21658 	return (rval);
21659 }
21660 
21661 
21662 /*
21663  *    Function: sd_dkio_ctrl_info
21664  *
21665  * Description: This routine is the driver entry point for handling controller
21666  *		information ioctl requests (DKIOCINFO).
21667  *
21668  *   Arguments: dev  - the device number
21669  *		arg  - pointer to user provided dk_cinfo structure
21670  *		       specifying the controller type and attributes.
21671  *		flag - this argument is a pass through to ddi_copyxxx()
21672  *		       directly from the mode argument of ioctl().
21673  *
21674  * Return Code: 0
21675  *		EFAULT
21676  *		ENXIO
21677  */
21678 
21679 static int
21680 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21681 {
21682 	struct sd_lun	*un = NULL;
21683 	struct dk_cinfo	*info;
21684 	dev_info_t	*pdip;
21685 	int		lun, tgt;
21686 
21687 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21688 		return (ENXIO);
21689 	}
21690 
21691 	info = (struct dk_cinfo *)
21692 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21693 
21694 	switch (un->un_ctype) {
21695 	case CTYPE_CDROM:
21696 		info->dki_ctype = DKC_CDROM;
21697 		break;
21698 	default:
21699 		info->dki_ctype = DKC_SCSI_CCS;
21700 		break;
21701 	}
21702 	pdip = ddi_get_parent(SD_DEVINFO(un));
21703 	info->dki_cnum = ddi_get_instance(pdip);
21704 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21705 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21706 	} else {
21707 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21708 		    DK_DEVLEN - 1);
21709 	}
21710 
21711 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21712 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
21713 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21714 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
21715 
21716 	/* Unit Information */
21717 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
21718 	info->dki_slave = ((tgt << 3) | lun);
21719 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
21720 	    DK_DEVLEN - 1);
21721 	info->dki_flags = DKI_FMTVOL;
21722 	info->dki_partition = SDPART(dev);
21723 
21724 	/* Max Transfer size of this device in blocks */
21725 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
21726 	info->dki_addr = 0;
21727 	info->dki_space = 0;
21728 	info->dki_prio = 0;
21729 	info->dki_vec = 0;
21730 
21731 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
21732 		kmem_free(info, sizeof (struct dk_cinfo));
21733 		return (EFAULT);
21734 	} else {
21735 		kmem_free(info, sizeof (struct dk_cinfo));
21736 		return (0);
21737 	}
21738 }
21739 
21740 
21741 /*
21742  *    Function: sd_get_media_info
21743  *
21744  * Description: This routine is the driver entry point for handling ioctl
21745  *		requests for the media type or command set profile used by the
21746  *		drive to operate on the media (DKIOCGMEDIAINFO).
21747  *
21748  *   Arguments: dev	- the device number
21749  *		arg	- pointer to user provided dk_minfo structure
21750  *			  specifying the media type, logical block size and
21751  *			  drive capacity.
21752  *		flag	- this argument is a pass through to ddi_copyxxx()
21753  *			  directly from the mode argument of ioctl().
21754  *
21755  * Return Code: 0
21756  *		EACCESS
21757  *		EFAULT
21758  *		ENXIO
21759  *		EIO
21760  */
21761 
21762 static int
21763 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
21764 {
21765 	struct sd_lun		*un = NULL;
21766 	struct uscsi_cmd	com;
21767 	struct scsi_inquiry	*sinq;
21768 	struct dk_minfo		media_info;
21769 	u_longlong_t		media_capacity;
21770 	uint64_t		capacity;
21771 	uint_t			lbasize;
21772 	uchar_t			*out_data;
21773 	uchar_t			*rqbuf;
21774 	int			rval = 0;
21775 	int			rtn;
21776 
21777 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
21778 	    (un->un_state == SD_STATE_OFFLINE)) {
21779 		return (ENXIO);
21780 	}
21781 
21782 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
21783 
21784 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
21785 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21786 
21787 	/* Issue a TUR to determine if the drive is ready with media present */
21788 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
21789 	if (rval == ENXIO) {
21790 		goto done;
21791 	}
21792 
21793 	/* Now get configuration data */
21794 	if (ISCD(un)) {
21795 		media_info.dki_media_type = DK_CDROM;
21796 
21797 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
21798 		if (un->un_f_mmc_cap == TRUE) {
21799 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
21800 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
21801 
21802 			if (rtn) {
21803 				/*
21804 				 * Failed for other than an illegal request
21805 				 * or command not supported
21806 				 */
21807 				if ((com.uscsi_status == STATUS_CHECK) &&
21808 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
21809 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
21810 					    (rqbuf[12] != 0x20)) {
21811 						rval = EIO;
21812 						goto done;
21813 					}
21814 				}
21815 			} else {
21816 				/*
21817 				 * The GET CONFIGURATION command succeeded
21818 				 * so set the media type according to the
21819 				 * returned data
21820 				 */
21821 				media_info.dki_media_type = out_data[6];
21822 				media_info.dki_media_type <<= 8;
21823 				media_info.dki_media_type |= out_data[7];
21824 			}
21825 		}
21826 	} else {
21827 		/*
21828 		 * The profile list is not available, so we attempt to identify
21829 		 * the media type based on the inquiry data
21830 		 */
21831 		sinq = un->un_sd->sd_inq;
21832 		if (sinq->inq_qual == 0) {
21833 			/* This is a direct access device */
21834 			media_info.dki_media_type = DK_FIXED_DISK;
21835 
21836 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
21837 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
21838 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
21839 					media_info.dki_media_type = DK_ZIP;
21840 				} else if (
21841 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
21842 					media_info.dki_media_type = DK_JAZ;
21843 				}
21844 			}
21845 		} else {
21846 			/* Not a CD or direct access so return unknown media */
21847 			media_info.dki_media_type = DK_UNKNOWN;
21848 		}
21849 	}
21850 
21851 	/* Now read the capacity so we can provide the lbasize and capacity */
21852 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21853 	    SD_PATH_DIRECT)) {
21854 	case 0:
21855 		break;
21856 	case EACCES:
21857 		rval = EACCES;
21858 		goto done;
21859 	default:
21860 		rval = EIO;
21861 		goto done;
21862 	}
21863 
21864 	media_info.dki_lbsize = lbasize;
21865 	media_capacity = capacity;
21866 
21867 	/*
21868 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21869 	 * un->un_sys_blocksize chunks. So we need to convert it into
21870 	 * cap.lbasize chunks.
21871 	 */
21872 	media_capacity *= un->un_sys_blocksize;
21873 	media_capacity /= lbasize;
21874 	media_info.dki_capacity = media_capacity;
21875 
21876 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21877 		rval = EFAULT;
21878 		/* Put goto. Anybody might add some code below in future */
21879 		goto done;
21880 	}
21881 done:
21882 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21883 	kmem_free(rqbuf, SENSE_LENGTH);
21884 	return (rval);
21885 }
21886 
21887 
21888 /*
21889  *    Function: sd_dkio_get_geometry
21890  *
21891  * Description: This routine is the driver entry point for handling user
21892  *		requests to get the device geometry (DKIOCGGEOM).
21893  *
21894  *   Arguments: dev  - the device number
21895  *		arg  - pointer to user provided dk_geom structure specifying
21896  *			the controller's notion of the current geometry.
21897  *		flag - this argument is a pass through to ddi_copyxxx()
21898  *		       directly from the mode argument of ioctl().
21899  *		geom_validated - flag indicating if the device geometry has been
21900  *				 previously validated in the sdioctl routine.
21901  *
21902  * Return Code: 0
21903  *		EFAULT
21904  *		ENXIO
21905  *		EIO
21906  */
21907 
21908 static int
21909 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
21910 {
21911 	struct sd_lun	*un = NULL;
21912 	struct dk_geom	*tmp_geom = NULL;
21913 	int		rval = 0;
21914 
21915 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21916 		return (ENXIO);
21917 	}
21918 
21919 #if defined(__i386) || defined(__amd64)
21920 	if (un->un_solaris_size == 0) {
21921 		return (EIO);
21922 	}
21923 #endif
21924 	if (geom_validated == FALSE) {
21925 		/*
21926 		 * sd_validate_geometry does not spin a disk up
21927 		 * if it was spun down. We need to make sure it
21928 		 * is ready.
21929 		 */
21930 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21931 			return (rval);
21932 		}
21933 		mutex_enter(SD_MUTEX(un));
21934 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
21935 		mutex_exit(SD_MUTEX(un));
21936 	}
21937 	if (rval)
21938 		return (rval);
21939 
21940 	/*
21941 	 * Make a local copy of the soft state geometry to avoid some potential
21942 	 * race conditions associated with holding the mutex and updating the
21943 	 * write_reinstruct value
21944 	 */
21945 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21946 	mutex_enter(SD_MUTEX(un));
21947 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
21948 	mutex_exit(SD_MUTEX(un));
21949 
21950 	if (tmp_geom->dkg_write_reinstruct == 0) {
21951 		tmp_geom->dkg_write_reinstruct =
21952 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
21953 		    sd_rot_delay) / (int)60000);
21954 	}
21955 
21956 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
21957 	    flag);
21958 	if (rval != 0) {
21959 		rval = EFAULT;
21960 	}
21961 
21962 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21963 	return (rval);
21964 
21965 }
21966 
21967 
21968 /*
21969  *    Function: sd_dkio_set_geometry
21970  *
21971  * Description: This routine is the driver entry point for handling user
21972  *		requests to set the device geometry (DKIOCSGEOM). The actual
21973  *		device geometry is not updated, just the driver "notion" of it.
21974  *
21975  *   Arguments: dev  - the device number
21976  *		arg  - pointer to user provided dk_geom structure used to set
21977  *			the controller's notion of the current geometry.
21978  *		flag - this argument is a pass through to ddi_copyxxx()
21979  *		       directly from the mode argument of ioctl().
21980  *
21981  * Return Code: 0
21982  *		EFAULT
21983  *		ENXIO
21984  *		EIO
21985  */
21986 
21987 static int
21988 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
21989 {
21990 	struct sd_lun	*un = NULL;
21991 	struct dk_geom	*tmp_geom;
21992 	struct dk_map	*lp;
21993 	int		rval = 0;
21994 	int		i;
21995 
21996 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21997 		return (ENXIO);
21998 	}
21999 
22000 #if defined(__i386) || defined(__amd64)
22001 	if (un->un_solaris_size == 0) {
22002 		return (EIO);
22003 	}
22004 #endif
22005 	/*
22006 	 * We need to copy the user specified geometry into local
22007 	 * storage and then update the softstate. We don't want to hold
22008 	 * the mutex and copyin directly from the user to the soft state
22009 	 */
22010 	tmp_geom = (struct dk_geom *)
22011 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22012 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22013 	if (rval != 0) {
22014 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22015 		return (EFAULT);
22016 	}
22017 
22018 	mutex_enter(SD_MUTEX(un));
22019 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22020 	for (i = 0; i < NDKMAP; i++) {
22021 		lp  = &un->un_map[i];
22022 		un->un_offset[i] =
22023 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22024 #if defined(__i386) || defined(__amd64)
22025 		un->un_offset[i] += un->un_solaris_offset;
22026 #endif
22027 	}
22028 	un->un_f_geometry_is_valid = FALSE;
22029 	mutex_exit(SD_MUTEX(un));
22030 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22031 
22032 	return (rval);
22033 }
22034 
22035 
22036 /*
22037  *    Function: sd_dkio_get_partition
22038  *
22039  * Description: This routine is the driver entry point for handling user
22040  *		requests to get the partition table (DKIOCGAPART).
22041  *
22042  *   Arguments: dev  - the device number
22043  *		arg  - pointer to user provided dk_allmap structure specifying
22044  *			the controller's notion of the current partition table.
22045  *		flag - this argument is a pass through to ddi_copyxxx()
22046  *		       directly from the mode argument of ioctl().
22047  *		geom_validated - flag indicating if the device geometry has been
22048  *				 previously validated in the sdioctl routine.
22049  *
22050  * Return Code: 0
22051  *		EFAULT
22052  *		ENXIO
22053  *		EIO
22054  */
22055 
22056 static int
22057 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22058 {
22059 	struct sd_lun	*un = NULL;
22060 	int		rval = 0;
22061 	int		size;
22062 
22063 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22064 		return (ENXIO);
22065 	}
22066 
22067 #if defined(__i386) || defined(__amd64)
22068 	if (un->un_solaris_size == 0) {
22069 		return (EIO);
22070 	}
22071 #endif
22072 	/*
22073 	 * Make sure the geometry is valid before getting the partition
22074 	 * information.
22075 	 */
22076 	mutex_enter(SD_MUTEX(un));
22077 	if (geom_validated == FALSE) {
22078 		/*
22079 		 * sd_validate_geometry does not spin a disk up
22080 		 * if it was spun down. We need to make sure it
22081 		 * is ready before validating the geometry.
22082 		 */
22083 		mutex_exit(SD_MUTEX(un));
22084 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22085 			return (rval);
22086 		}
22087 		mutex_enter(SD_MUTEX(un));
22088 
22089 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22090 			mutex_exit(SD_MUTEX(un));
22091 			return (rval);
22092 		}
22093 	}
22094 	mutex_exit(SD_MUTEX(un));
22095 
22096 #ifdef _MULTI_DATAMODEL
22097 	switch (ddi_model_convert_from(flag & FMODELS)) {
22098 	case DDI_MODEL_ILP32: {
22099 		struct dk_map32 dk_map32[NDKMAP];
22100 		int		i;
22101 
22102 		for (i = 0; i < NDKMAP; i++) {
22103 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22104 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22105 		}
22106 		size = NDKMAP * sizeof (struct dk_map32);
22107 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22108 		if (rval != 0) {
22109 			rval = EFAULT;
22110 		}
22111 		break;
22112 	}
22113 	case DDI_MODEL_NONE:
22114 		size = NDKMAP * sizeof (struct dk_map);
22115 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22116 		if (rval != 0) {
22117 			rval = EFAULT;
22118 		}
22119 		break;
22120 	}
22121 #else /* ! _MULTI_DATAMODEL */
22122 	size = NDKMAP * sizeof (struct dk_map);
22123 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22124 	if (rval != 0) {
22125 		rval = EFAULT;
22126 	}
22127 #endif /* _MULTI_DATAMODEL */
22128 	return (rval);
22129 }
22130 
22131 
22132 /*
22133  *    Function: sd_dkio_set_partition
22134  *
22135  * Description: This routine is the driver entry point for handling user
22136  *		requests to set the partition table (DKIOCSAPART). The actual
22137  *		device partition is not updated.
22138  *
22139  *   Arguments: dev  - the device number
22140  *		arg  - pointer to user provided dk_allmap structure used to set
22141  *			the controller's notion of the partition table.
22142  *		flag - this argument is a pass through to ddi_copyxxx()
22143  *		       directly from the mode argument of ioctl().
22144  *
22145  * Return Code: 0
22146  *		EINVAL
22147  *		EFAULT
22148  *		ENXIO
22149  *		EIO
22150  */
22151 
22152 static int
22153 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22154 {
22155 	struct sd_lun	*un = NULL;
22156 	struct dk_map	dk_map[NDKMAP];
22157 	struct dk_map	*lp;
22158 	int		rval = 0;
22159 	int		size;
22160 	int		i;
22161 #if defined(_SUNOS_VTOC_16)
22162 	struct dkl_partition	*vp;
22163 #endif
22164 
22165 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22166 		return (ENXIO);
22167 	}
22168 
22169 	/*
22170 	 * Set the map for all logical partitions.  We lock
22171 	 * the priority just to make sure an interrupt doesn't
22172 	 * come in while the map is half updated.
22173 	 */
22174 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22175 	mutex_enter(SD_MUTEX(un));
22176 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22177 		mutex_exit(SD_MUTEX(un));
22178 		return (ENOTSUP);
22179 	}
22180 	mutex_exit(SD_MUTEX(un));
22181 	if (un->un_solaris_size == 0) {
22182 		return (EIO);
22183 	}
22184 
22185 #ifdef _MULTI_DATAMODEL
22186 	switch (ddi_model_convert_from(flag & FMODELS)) {
22187 	case DDI_MODEL_ILP32: {
22188 		struct dk_map32 dk_map32[NDKMAP];
22189 
22190 		size = NDKMAP * sizeof (struct dk_map32);
22191 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22192 		if (rval != 0) {
22193 			return (EFAULT);
22194 		}
22195 		for (i = 0; i < NDKMAP; i++) {
22196 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22197 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22198 		}
22199 		break;
22200 	}
22201 	case DDI_MODEL_NONE:
22202 		size = NDKMAP * sizeof (struct dk_map);
22203 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22204 		if (rval != 0) {
22205 			return (EFAULT);
22206 		}
22207 		break;
22208 	}
22209 #else /* ! _MULTI_DATAMODEL */
22210 	size = NDKMAP * sizeof (struct dk_map);
22211 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22212 	if (rval != 0) {
22213 		return (EFAULT);
22214 	}
22215 #endif /* _MULTI_DATAMODEL */
22216 
22217 	mutex_enter(SD_MUTEX(un));
22218 	/* Note: The size used in this bcopy is set based upon the data model */
22219 	bcopy(dk_map, un->un_map, size);
22220 #if defined(_SUNOS_VTOC_16)
22221 	vp = (struct dkl_partition *)&(un->un_vtoc);
22222 #endif	/* defined(_SUNOS_VTOC_16) */
22223 	for (i = 0; i < NDKMAP; i++) {
22224 		lp  = &un->un_map[i];
22225 		un->un_offset[i] =
22226 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22227 #if defined(_SUNOS_VTOC_16)
22228 		vp->p_start = un->un_offset[i];
22229 		vp->p_size = lp->dkl_nblk;
22230 		vp++;
22231 #endif	/* defined(_SUNOS_VTOC_16) */
22232 #if defined(__i386) || defined(__amd64)
22233 		un->un_offset[i] += un->un_solaris_offset;
22234 #endif
22235 	}
22236 	mutex_exit(SD_MUTEX(un));
22237 	return (rval);
22238 }
22239 
22240 
22241 /*
22242  *    Function: sd_dkio_get_vtoc
22243  *
22244  * Description: This routine is the driver entry point for handling user
22245  *		requests to get the current volume table of contents
22246  *		(DKIOCGVTOC).
22247  *
22248  *   Arguments: dev  - the device number
22249  *		arg  - pointer to user provided vtoc structure specifying
22250  *			the current vtoc.
22251  *		flag - this argument is a pass through to ddi_copyxxx()
22252  *		       directly from the mode argument of ioctl().
22253  *		geom_validated - flag indicating if the device geometry has been
22254  *				 previously validated in the sdioctl routine.
22255  *
22256  * Return Code: 0
22257  *		EFAULT
22258  *		ENXIO
22259  *		EIO
22260  */
22261 
22262 static int
22263 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22264 {
22265 	struct sd_lun	*un = NULL;
22266 #if defined(_SUNOS_VTOC_8)
22267 	struct vtoc	user_vtoc;
22268 #endif	/* defined(_SUNOS_VTOC_8) */
22269 	int		rval = 0;
22270 
22271 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22272 		return (ENXIO);
22273 	}
22274 
22275 	mutex_enter(SD_MUTEX(un));
22276 	if (geom_validated == FALSE) {
22277 		/*
22278 		 * sd_validate_geometry does not spin a disk up
22279 		 * if it was spun down. We need to make sure it
22280 		 * is ready.
22281 		 */
22282 		mutex_exit(SD_MUTEX(un));
22283 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22284 			return (rval);
22285 		}
22286 		mutex_enter(SD_MUTEX(un));
22287 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22288 			mutex_exit(SD_MUTEX(un));
22289 			return (rval);
22290 		}
22291 	}
22292 
22293 #if defined(_SUNOS_VTOC_8)
22294 	sd_build_user_vtoc(un, &user_vtoc);
22295 	mutex_exit(SD_MUTEX(un));
22296 
22297 #ifdef _MULTI_DATAMODEL
22298 	switch (ddi_model_convert_from(flag & FMODELS)) {
22299 	case DDI_MODEL_ILP32: {
22300 		struct vtoc32 user_vtoc32;
22301 
22302 		vtoctovtoc32(user_vtoc, user_vtoc32);
22303 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22304 		    sizeof (struct vtoc32), flag)) {
22305 			return (EFAULT);
22306 		}
22307 		break;
22308 	}
22309 
22310 	case DDI_MODEL_NONE:
22311 		if (ddi_copyout(&user_vtoc, (void *)arg,
22312 		    sizeof (struct vtoc), flag)) {
22313 			return (EFAULT);
22314 		}
22315 		break;
22316 	}
22317 #else /* ! _MULTI_DATAMODEL */
22318 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22319 		return (EFAULT);
22320 	}
22321 #endif /* _MULTI_DATAMODEL */
22322 
22323 #elif defined(_SUNOS_VTOC_16)
22324 	mutex_exit(SD_MUTEX(un));
22325 
22326 #ifdef _MULTI_DATAMODEL
22327 	/*
22328 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22329 	 * 32-bit to maintain compatibility with existing on-disk
22330 	 * structures.  Thus, we need to convert the structure when copying
22331 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22332 	 * program.  If the target is a 32-bit program, then no conversion
22333 	 * is necessary.
22334 	 */
22335 	/* LINTED: logical expression always true: op "||" */
22336 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22337 	switch (ddi_model_convert_from(flag & FMODELS)) {
22338 	case DDI_MODEL_ILP32:
22339 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22340 		    sizeof (un->un_vtoc), flag)) {
22341 			return (EFAULT);
22342 		}
22343 		break;
22344 
22345 	case DDI_MODEL_NONE: {
22346 		struct vtoc user_vtoc;
22347 
22348 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22349 		if (ddi_copyout(&user_vtoc, (void *)arg,
22350 		    sizeof (struct vtoc), flag)) {
22351 			return (EFAULT);
22352 		}
22353 		break;
22354 	}
22355 	}
22356 #else /* ! _MULTI_DATAMODEL */
22357 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22358 	    flag)) {
22359 		return (EFAULT);
22360 	}
22361 #endif /* _MULTI_DATAMODEL */
22362 #else
22363 #error "No VTOC format defined."
22364 #endif
22365 
22366 	return (rval);
22367 }
22368 
22369 static int
22370 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22371 {
22372 	struct sd_lun	*un = NULL;
22373 	dk_efi_t	user_efi;
22374 	int		rval = 0;
22375 	void		*buffer;
22376 
22377 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22378 		return (ENXIO);
22379 
22380 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22381 		return (EFAULT);
22382 
22383 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22384 
22385 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22386 	    (user_efi.dki_length > un->un_max_xfer_size))
22387 		return (EINVAL);
22388 
22389 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22390 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22391 	    user_efi.dki_lba, SD_PATH_DIRECT);
22392 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22393 	    user_efi.dki_length, flag) != 0)
22394 		rval = EFAULT;
22395 
22396 	kmem_free(buffer, user_efi.dki_length);
22397 	return (rval);
22398 }
22399 
22400 /*
22401  *    Function: sd_build_user_vtoc
22402  *
22403  * Description: This routine populates a pass by reference variable with the
22404  *		current volume table of contents.
22405  *
22406  *   Arguments: un - driver soft state (unit) structure
22407  *		user_vtoc - pointer to vtoc structure to be populated
22408  */
22409 
22410 static void
22411 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22412 {
22413 	struct dk_map2		*lpart;
22414 	struct dk_map		*lmap;
22415 	struct partition	*vpart;
22416 	int			nblks;
22417 	int			i;
22418 
22419 	ASSERT(mutex_owned(SD_MUTEX(un)));
22420 
22421 	/*
22422 	 * Return vtoc structure fields in the provided VTOC area, addressed
22423 	 * by *vtoc.
22424 	 */
22425 	bzero(user_vtoc, sizeof (struct vtoc));
22426 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22427 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22428 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22429 	user_vtoc->v_sanity	= VTOC_SANE;
22430 	user_vtoc->v_version	= un->un_vtoc.v_version;
22431 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22432 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22433 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22434 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22435 	    sizeof (un->un_vtoc.v_reserved));
22436 	/*
22437 	 * Convert partitioning information.
22438 	 *
22439 	 * Note the conversion from starting cylinder number
22440 	 * to starting sector number.
22441 	 */
22442 	lmap = un->un_map;
22443 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22444 	vpart = user_vtoc->v_part;
22445 
22446 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22447 
22448 	for (i = 0; i < V_NUMPAR; i++) {
22449 		vpart->p_tag	= lpart->p_tag;
22450 		vpart->p_flag	= lpart->p_flag;
22451 		vpart->p_start	= lmap->dkl_cylno * nblks;
22452 		vpart->p_size	= lmap->dkl_nblk;
22453 		lmap++;
22454 		lpart++;
22455 		vpart++;
22456 
22457 		/* (4364927) */
22458 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22459 	}
22460 
22461 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22462 }
22463 
22464 static int
22465 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22466 {
22467 	struct sd_lun		*un = NULL;
22468 	struct partition64	p64;
22469 	int			rval = 0;
22470 	uint_t			nparts;
22471 	efi_gpe_t		*partitions;
22472 	efi_gpt_t		*buffer;
22473 	diskaddr_t		gpe_lba;
22474 
22475 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22476 		return (ENXIO);
22477 	}
22478 
22479 	if (ddi_copyin((const void *)arg, &p64,
22480 	    sizeof (struct partition64), flag)) {
22481 		return (EFAULT);
22482 	}
22483 
22484 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22485 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22486 		1, SD_PATH_DIRECT);
22487 	if (rval != 0)
22488 		goto done_error;
22489 
22490 	sd_swap_efi_gpt(buffer);
22491 
22492 	if ((rval = sd_validate_efi(buffer)) != 0)
22493 		goto done_error;
22494 
22495 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22496 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22497 	if (p64.p_partno > nparts) {
22498 		/* couldn't find it */
22499 		rval = ESRCH;
22500 		goto done_error;
22501 	}
22502 	/*
22503 	 * if we're dealing with a partition that's out of the normal
22504 	 * 16K block, adjust accordingly
22505 	 */
22506 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22507 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22508 			gpe_lba, SD_PATH_DIRECT);
22509 	if (rval) {
22510 		goto done_error;
22511 	}
22512 	partitions = (efi_gpe_t *)buffer;
22513 
22514 	sd_swap_efi_gpe(nparts, partitions);
22515 
22516 	partitions += p64.p_partno;
22517 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22518 	    sizeof (struct uuid));
22519 	p64.p_start = partitions->efi_gpe_StartingLBA;
22520 	p64.p_size = partitions->efi_gpe_EndingLBA -
22521 			p64.p_start + 1;
22522 
22523 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22524 		rval = EFAULT;
22525 
22526 done_error:
22527 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22528 	return (rval);
22529 }
22530 
22531 
22532 /*
22533  *    Function: sd_dkio_set_vtoc
22534  *
22535  * Description: This routine is the driver entry point for handling user
22536  *		requests to set the current volume table of contents
22537  *		(DKIOCSVTOC).
22538  *
22539  *   Arguments: dev  - the device number
22540  *		arg  - pointer to user provided vtoc structure used to set the
22541  *			current vtoc.
22542  *		flag - this argument is a pass through to ddi_copyxxx()
22543  *		       directly from the mode argument of ioctl().
22544  *
22545  * Return Code: 0
22546  *		EFAULT
22547  *		ENXIO
22548  *		EINVAL
22549  *		ENOTSUP
22550  */
22551 
22552 static int
22553 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22554 {
22555 	struct sd_lun	*un = NULL;
22556 	struct vtoc	user_vtoc;
22557 	int		rval = 0;
22558 
22559 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22560 		return (ENXIO);
22561 	}
22562 
22563 #if defined(__i386) || defined(__amd64)
22564 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22565 		return (EINVAL);
22566 	}
22567 #endif
22568 
22569 #ifdef _MULTI_DATAMODEL
22570 	switch (ddi_model_convert_from(flag & FMODELS)) {
22571 	case DDI_MODEL_ILP32: {
22572 		struct vtoc32 user_vtoc32;
22573 
22574 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22575 		    sizeof (struct vtoc32), flag)) {
22576 			return (EFAULT);
22577 		}
22578 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22579 		break;
22580 	}
22581 
22582 	case DDI_MODEL_NONE:
22583 		if (ddi_copyin((const void *)arg, &user_vtoc,
22584 		    sizeof (struct vtoc), flag)) {
22585 			return (EFAULT);
22586 		}
22587 		break;
22588 	}
22589 #else /* ! _MULTI_DATAMODEL */
22590 	if (ddi_copyin((const void *)arg, &user_vtoc,
22591 	    sizeof (struct vtoc), flag)) {
22592 		return (EFAULT);
22593 	}
22594 #endif /* _MULTI_DATAMODEL */
22595 
22596 	mutex_enter(SD_MUTEX(un));
22597 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22598 		mutex_exit(SD_MUTEX(un));
22599 		return (ENOTSUP);
22600 	}
22601 	if (un->un_g.dkg_ncyl == 0) {
22602 		mutex_exit(SD_MUTEX(un));
22603 		return (EINVAL);
22604 	}
22605 
22606 	mutex_exit(SD_MUTEX(un));
22607 	sd_clear_efi(un);
22608 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22609 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22610 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22611 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22612 	    un->un_node_type, NULL);
22613 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22614 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22615 	    un->un_node_type, NULL);
22616 	mutex_enter(SD_MUTEX(un));
22617 
22618 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22619 		if ((rval = sd_write_label(dev)) == 0) {
22620 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22621 			    != 0) {
22622 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22623 				    "sd_dkio_set_vtoc: "
22624 				    "Failed validate geometry\n");
22625 			}
22626 		}
22627 	}
22628 
22629 	/*
22630 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22631 	 * devid anyway, what can it hurt? Also preserve the device id by
22632 	 * writing to the disk acyl for the case where a devid has been
22633 	 * fabricated.
22634 	 */
22635 	if (!ISREMOVABLE(un) && !ISCD(un) &&
22636 	    (un->un_f_opt_fab_devid == TRUE)) {
22637 		if (un->un_devid == NULL) {
22638 			sd_register_devid(un, SD_DEVINFO(un),
22639 			    SD_TARGET_IS_UNRESERVED);
22640 		} else {
22641 			/*
22642 			 * The device id for this disk has been
22643 			 * fabricated. Fabricated device id's are
22644 			 * managed by storing them in the last 2
22645 			 * available sectors on the drive. The device
22646 			 * id must be preserved by writing it back out
22647 			 * to this location.
22648 			 */
22649 			if (sd_write_deviceid(un) != 0) {
22650 				ddi_devid_free(un->un_devid);
22651 				un->un_devid = NULL;
22652 			}
22653 		}
22654 	}
22655 	mutex_exit(SD_MUTEX(un));
22656 	return (rval);
22657 }
22658 
22659 
22660 /*
22661  *    Function: sd_build_label_vtoc
22662  *
22663  * Description: This routine updates the driver soft state current volume table
22664  *		of contents based on a user specified vtoc.
22665  *
22666  *   Arguments: un - driver soft state (unit) structure
22667  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22668  *			    to update the driver soft state.
22669  *
22670  * Return Code: 0
22671  *		EINVAL
22672  */
22673 
22674 static int
22675 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22676 {
22677 	struct dk_map		*lmap;
22678 	struct partition	*vpart;
22679 	int			nblks;
22680 #if defined(_SUNOS_VTOC_8)
22681 	int			ncyl;
22682 	struct dk_map2		*lpart;
22683 #endif	/* defined(_SUNOS_VTOC_8) */
22684 	int			i;
22685 
22686 	ASSERT(mutex_owned(SD_MUTEX(un)));
22687 
22688 	/* Sanity-check the vtoc */
22689 	if (user_vtoc->v_sanity != VTOC_SANE ||
22690 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22691 	    user_vtoc->v_nparts != V_NUMPAR) {
22692 		return (EINVAL);
22693 	}
22694 
22695 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22696 	if (nblks == 0) {
22697 		return (EINVAL);
22698 	}
22699 
22700 #if defined(_SUNOS_VTOC_8)
22701 	vpart = user_vtoc->v_part;
22702 	for (i = 0; i < V_NUMPAR; i++) {
22703 		if ((vpart->p_start % nblks) != 0) {
22704 			return (EINVAL);
22705 		}
22706 		ncyl = vpart->p_start / nblks;
22707 		ncyl += vpart->p_size / nblks;
22708 		if ((vpart->p_size % nblks) != 0) {
22709 			ncyl++;
22710 		}
22711 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22712 			return (EINVAL);
22713 		}
22714 		vpart++;
22715 	}
22716 #endif	/* defined(_SUNOS_VTOC_8) */
22717 
22718 	/* Put appropriate vtoc structure fields into the disk label */
22719 #if defined(_SUNOS_VTOC_16)
22720 	/*
22721 	 * The vtoc is always a 32bit data structure to maintain the
22722 	 * on-disk format. Convert "in place" instead of bcopying it.
22723 	 */
22724 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
22725 
22726 	/*
22727 	 * in the 16-slice vtoc, starting sectors are expressed in
22728 	 * numbers *relative* to the start of the Solaris fdisk partition.
22729 	 */
22730 	lmap = un->un_map;
22731 	vpart = user_vtoc->v_part;
22732 
22733 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
22734 		lmap->dkl_cylno = vpart->p_start / nblks;
22735 		lmap->dkl_nblk = vpart->p_size;
22736 	}
22737 
22738 #elif defined(_SUNOS_VTOC_8)
22739 
22740 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
22741 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
22742 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
22743 
22744 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
22745 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
22746 
22747 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
22748 
22749 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
22750 
22751 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
22752 	    sizeof (un->un_vtoc.v_reserved));
22753 
22754 	/*
22755 	 * Note the conversion from starting sector number
22756 	 * to starting cylinder number.
22757 	 * Return error if division results in a remainder.
22758 	 */
22759 	lmap = un->un_map;
22760 	lpart = un->un_vtoc.v_part;
22761 	vpart = user_vtoc->v_part;
22762 
22763 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
22764 		lpart->p_tag  = vpart->p_tag;
22765 		lpart->p_flag = vpart->p_flag;
22766 		lmap->dkl_cylno = vpart->p_start / nblks;
22767 		lmap->dkl_nblk = vpart->p_size;
22768 
22769 		lmap++;
22770 		lpart++;
22771 		vpart++;
22772 
22773 		/* (4387723) */
22774 #ifdef _LP64
22775 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
22776 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
22777 		} else {
22778 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22779 		}
22780 #else
22781 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22782 #endif
22783 	}
22784 
22785 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
22786 #else
22787 #error "No VTOC format defined."
22788 #endif
22789 	return (0);
22790 }
22791 
22792 /*
22793  *    Function: sd_clear_efi
22794  *
22795  * Description: This routine clears all EFI labels.
22796  *
22797  *   Arguments: un - driver soft state (unit) structure
22798  *
22799  * Return Code: void
22800  */
22801 
22802 static void
22803 sd_clear_efi(struct sd_lun *un)
22804 {
22805 	efi_gpt_t	*gpt;
22806 	uint_t		lbasize;
22807 	uint64_t	cap;
22808 	int rval;
22809 
22810 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22811 
22812 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
22813 
22814 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
22815 		goto done;
22816 	}
22817 
22818 	sd_swap_efi_gpt(gpt);
22819 	rval = sd_validate_efi(gpt);
22820 	if (rval == 0) {
22821 		/* clear primary */
22822 		bzero(gpt, sizeof (efi_gpt_t));
22823 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
22824 			SD_PATH_DIRECT))) {
22825 			SD_INFO(SD_LOG_IO_PARTITION, un,
22826 				"sd_clear_efi: clear primary label failed\n");
22827 		}
22828 	}
22829 	/* the backup */
22830 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
22831 	    SD_PATH_DIRECT);
22832 	if (rval) {
22833 		goto done;
22834 	}
22835 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
22836 	    cap - 1, SD_PATH_DIRECT)) != 0) {
22837 		goto done;
22838 	}
22839 	sd_swap_efi_gpt(gpt);
22840 	rval = sd_validate_efi(gpt);
22841 	if (rval == 0) {
22842 		/* clear backup */
22843 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
22844 			cap-1);
22845 		bzero(gpt, sizeof (efi_gpt_t));
22846 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
22847 		    cap-1, SD_PATH_DIRECT))) {
22848 			SD_INFO(SD_LOG_IO_PARTITION, un,
22849 				"sd_clear_efi: clear backup label failed\n");
22850 		}
22851 	}
22852 
22853 done:
22854 	kmem_free(gpt, sizeof (efi_gpt_t));
22855 }
22856 
22857 /*
22858  *    Function: sd_set_vtoc
22859  *
22860  * Description: This routine writes data to the appropriate positions
22861  *
22862  *   Arguments: un - driver soft state (unit) structure
22863  *              dkl  - the data to be written
22864  *
22865  * Return: void
22866  */
22867 
22868 static int
22869 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
22870 {
22871 	void			*shadow_buf;
22872 	uint_t			label_addr;
22873 	int			sec;
22874 	int			blk;
22875 	int			head;
22876 	int			cyl;
22877 	int			rval;
22878 
22879 #if defined(__i386) || defined(__amd64)
22880 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
22881 #else
22882 	/* Write the primary label at block 0 of the solaris partition. */
22883 	label_addr = 0;
22884 #endif
22885 
22886 	if (NOT_DEVBSIZE(un)) {
22887 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
22888 		/*
22889 		 * Read the target's first block.
22890 		 */
22891 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
22892 		    un->un_tgt_blocksize, label_addr,
22893 		    SD_PATH_STANDARD)) != 0) {
22894 			goto exit;
22895 		}
22896 		/*
22897 		 * Copy the contents of the label into the shadow buffer
22898 		 * which is of the size of target block size.
22899 		 */
22900 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22901 	}
22902 
22903 	/* Write the primary label */
22904 	if (NOT_DEVBSIZE(un)) {
22905 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
22906 		    label_addr, SD_PATH_STANDARD);
22907 	} else {
22908 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22909 		    label_addr, SD_PATH_STANDARD);
22910 	}
22911 	if (rval != 0) {
22912 		return (rval);
22913 	}
22914 
22915 	/*
22916 	 * Calculate where the backup labels go.  They are always on
22917 	 * the last alternate cylinder, but some older drives put them
22918 	 * on head 2 instead of the last head.	They are always on the
22919 	 * first 5 odd sectors of the appropriate track.
22920 	 *
22921 	 * We have no choice at this point, but to believe that the
22922 	 * disk label is valid.	 Use the geometry of the disk
22923 	 * as described in the label.
22924 	 */
22925 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
22926 	head = dkl->dkl_nhead - 1;
22927 
22928 	/*
22929 	 * Write and verify the backup labels. Make sure we don't try to
22930 	 * write past the last cylinder.
22931 	 */
22932 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
22933 		blk = (daddr_t)(
22934 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
22935 		    (head * dkl->dkl_nsect) + sec);
22936 #if defined(__i386) || defined(__amd64)
22937 		blk += un->un_solaris_offset;
22938 #endif
22939 		if (NOT_DEVBSIZE(un)) {
22940 			uint64_t	tblk;
22941 			/*
22942 			 * Need to read the block first for read modify write.
22943 			 */
22944 			tblk = (uint64_t)blk;
22945 			blk = (int)((tblk * un->un_sys_blocksize) /
22946 			    un->un_tgt_blocksize);
22947 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
22948 			    un->un_tgt_blocksize, blk,
22949 			    SD_PATH_STANDARD)) != 0) {
22950 				goto exit;
22951 			}
22952 			/*
22953 			 * Modify the shadow buffer with the label.
22954 			 */
22955 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22956 			rval = sd_send_scsi_WRITE(un, shadow_buf,
22957 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
22958 		} else {
22959 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22960 			    blk, SD_PATH_STANDARD);
22961 			SD_INFO(SD_LOG_IO_PARTITION, un,
22962 			"sd_set_vtoc: wrote backup label %d\n", blk);
22963 		}
22964 		if (rval != 0) {
22965 			goto exit;
22966 		}
22967 	}
22968 exit:
22969 	if (NOT_DEVBSIZE(un)) {
22970 		kmem_free(shadow_buf, un->un_tgt_blocksize);
22971 	}
22972 	return (rval);
22973 }
22974 
22975 /*
22976  *    Function: sd_clear_vtoc
22977  *
22978  * Description: This routine clears out the VTOC labels.
22979  *
22980  *   Arguments: un - driver soft state (unit) structure
22981  *
22982  * Return: void
22983  */
22984 
22985 static void
22986 sd_clear_vtoc(struct sd_lun *un)
22987 {
22988 	struct dk_label		*dkl;
22989 
22990 	mutex_exit(SD_MUTEX(un));
22991 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
22992 	mutex_enter(SD_MUTEX(un));
22993 	/*
22994 	 * sd_set_vtoc uses these fields in order to figure out
22995 	 * where to overwrite the backup labels
22996 	 */
22997 	dkl->dkl_apc    = un->un_g.dkg_apc;
22998 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
22999 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23000 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23001 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23002 	mutex_exit(SD_MUTEX(un));
23003 	(void) sd_set_vtoc(un, dkl);
23004 	kmem_free(dkl, sizeof (struct dk_label));
23005 
23006 	mutex_enter(SD_MUTEX(un));
23007 }
23008 
23009 /*
23010  *    Function: sd_write_label
23011  *
23012  * Description: This routine will validate and write the driver soft state vtoc
23013  *		contents to the device.
23014  *
23015  *   Arguments: dev - the device number
23016  *
23017  * Return Code: the code returned by sd_send_scsi_cmd()
23018  *		0
23019  *		EINVAL
23020  *		ENXIO
23021  *		ENOMEM
23022  */
23023 
23024 static int
23025 sd_write_label(dev_t dev)
23026 {
23027 	struct sd_lun		*un;
23028 	struct dk_label		*dkl;
23029 	short			sum;
23030 	short			*sp;
23031 	int			i;
23032 	int			rval;
23033 
23034 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23035 	    (un->un_state == SD_STATE_OFFLINE)) {
23036 		return (ENXIO);
23037 	}
23038 	ASSERT(mutex_owned(SD_MUTEX(un)));
23039 	mutex_exit(SD_MUTEX(un));
23040 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23041 	mutex_enter(SD_MUTEX(un));
23042 
23043 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23044 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23045 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23046 	dkl->dkl_apc	= un->un_g.dkg_apc;
23047 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23048 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23049 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23050 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23051 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23052 
23053 #if defined(_SUNOS_VTOC_8)
23054 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23055 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23056 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23057 	for (i = 0; i < NDKMAP; i++) {
23058 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23059 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23060 	}
23061 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23062 #elif defined(_SUNOS_VTOC_16)
23063 	dkl->dkl_skew	= un->un_dkg_skew;
23064 #else
23065 #error "No VTOC format defined."
23066 #endif
23067 
23068 	dkl->dkl_magic			= DKL_MAGIC;
23069 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23070 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23071 
23072 	/* Construct checksum for the new disk label */
23073 	sum = 0;
23074 	sp = (short *)dkl;
23075 	i = sizeof (struct dk_label) / sizeof (short);
23076 	while (i--) {
23077 		sum ^= *sp++;
23078 	}
23079 	dkl->dkl_cksum = sum;
23080 
23081 	mutex_exit(SD_MUTEX(un));
23082 
23083 	rval = sd_set_vtoc(un, dkl);
23084 exit:
23085 	kmem_free(dkl, sizeof (struct dk_label));
23086 	mutex_enter(SD_MUTEX(un));
23087 	return (rval);
23088 }
23089 
23090 static int
23091 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23092 {
23093 	struct sd_lun	*un = NULL;
23094 	dk_efi_t	user_efi;
23095 	int		rval = 0;
23096 	void		*buffer;
23097 
23098 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23099 		return (ENXIO);
23100 
23101 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23102 		return (EFAULT);
23103 
23104 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23105 
23106 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23107 	    (user_efi.dki_length > un->un_max_xfer_size))
23108 		return (EINVAL);
23109 
23110 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23111 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23112 		rval = EFAULT;
23113 	} else {
23114 		/*
23115 		 * let's clear the vtoc labels and clear the softstate
23116 		 * vtoc.
23117 		 */
23118 		mutex_enter(SD_MUTEX(un));
23119 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23120 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23121 				"sd_dkio_set_efi: CLEAR VTOC\n");
23122 			sd_clear_vtoc(un);
23123 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23124 			mutex_exit(SD_MUTEX(un));
23125 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23126 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23127 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23128 			    S_IFBLK,
23129 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23130 			    un->un_node_type, NULL);
23131 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23132 			    S_IFCHR,
23133 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23134 			    un->un_node_type, NULL);
23135 		} else
23136 			mutex_exit(SD_MUTEX(un));
23137 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23138 		    user_efi.dki_lba, SD_PATH_DIRECT);
23139 		if (rval == 0) {
23140 			mutex_enter(SD_MUTEX(un));
23141 			un->un_f_geometry_is_valid = FALSE;
23142 			mutex_exit(SD_MUTEX(un));
23143 		}
23144 	}
23145 	kmem_free(buffer, user_efi.dki_length);
23146 	return (rval);
23147 }
23148 
23149 /*
23150  *    Function: sd_dkio_get_mboot
23151  *
23152  * Description: This routine is the driver entry point for handling user
23153  *		requests to get the current device mboot (DKIOCGMBOOT)
23154  *
23155  *   Arguments: dev  - the device number
23156  *		arg  - pointer to user provided mboot structure specifying
23157  *			the current mboot.
23158  *		flag - this argument is a pass through to ddi_copyxxx()
23159  *		       directly from the mode argument of ioctl().
23160  *
23161  * Return Code: 0
23162  *		EINVAL
23163  *		EFAULT
23164  *		ENXIO
23165  */
23166 
23167 static int
23168 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23169 {
23170 	struct sd_lun	*un;
23171 	struct mboot	*mboot;
23172 	int		rval;
23173 	size_t		buffer_size;
23174 
23175 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23176 	    (un->un_state == SD_STATE_OFFLINE)) {
23177 		return (ENXIO);
23178 	}
23179 
23180 #if defined(_SUNOS_VTOC_8)
23181 	if ((!ISREMOVABLE(un)) || (arg == NULL)) {
23182 #elif defined(_SUNOS_VTOC_16)
23183 	if (arg == NULL) {
23184 #endif
23185 		return (EINVAL);
23186 	}
23187 
23188 	/*
23189 	 * Read the mboot block, located at absolute block 0 on the target.
23190 	 */
23191 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23192 
23193 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23194 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23195 
23196 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23197 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23198 	    SD_PATH_STANDARD)) == 0) {
23199 		if (ddi_copyout(mboot, (void *)arg,
23200 		    sizeof (struct mboot), flag) != 0) {
23201 			rval = EFAULT;
23202 		}
23203 	}
23204 	kmem_free(mboot, buffer_size);
23205 	return (rval);
23206 }
23207 
23208 
23209 /*
23210  *    Function: sd_dkio_set_mboot
23211  *
23212  * Description: This routine is the driver entry point for handling user
23213  *		requests to validate and set the device master boot
23214  *		(DKIOCSMBOOT).
23215  *
23216  *   Arguments: dev  - the device number
23217  *		arg  - pointer to user provided mboot structure used to set the
23218  *			master boot.
23219  *		flag - this argument is a pass through to ddi_copyxxx()
23220  *		       directly from the mode argument of ioctl().
23221  *
23222  * Return Code: 0
23223  *		EINVAL
23224  *		EFAULT
23225  *		ENXIO
23226  */
23227 
23228 static int
23229 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23230 {
23231 	struct sd_lun	*un = NULL;
23232 	struct mboot	*mboot = NULL;
23233 	int		rval;
23234 	ushort_t	magic;
23235 
23236 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23237 		return (ENXIO);
23238 	}
23239 
23240 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23241 
23242 #if defined(_SUNOS_VTOC_8)
23243 	if (!ISREMOVABLE(un)) {
23244 		return (EINVAL);
23245 	}
23246 #endif
23247 
23248 	if (arg == NULL) {
23249 		return (EINVAL);
23250 	}
23251 
23252 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23253 
23254 	if (ddi_copyin((const void *)arg, mboot,
23255 	    sizeof (struct mboot), flag) != 0) {
23256 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23257 		return (EFAULT);
23258 	}
23259 
23260 	/* Is this really a master boot record? */
23261 	magic = LE_16(mboot->signature);
23262 	if (magic != MBB_MAGIC) {
23263 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23264 		return (EINVAL);
23265 	}
23266 
23267 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23268 	    SD_PATH_STANDARD);
23269 
23270 	mutex_enter(SD_MUTEX(un));
23271 #if defined(__i386) || defined(__amd64)
23272 	if (rval == 0) {
23273 		/*
23274 		 * mboot has been written successfully.
23275 		 * update the fdisk and vtoc tables in memory
23276 		 */
23277 		rval = sd_update_fdisk_and_vtoc(un);
23278 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23279 			mutex_exit(SD_MUTEX(un));
23280 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23281 			return (rval);
23282 		}
23283 	}
23284 
23285 	/*
23286 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23287 	 * Also preserve the device id by writing to the disk acyl for the case
23288 	 * where a devid has been fabricated.
23289 	 */
23290 	if (!ISREMOVABLE(un) && !ISCD(un) &&
23291 	    (un->un_f_opt_fab_devid == TRUE)) {
23292 		if (un->un_devid == NULL) {
23293 			sd_register_devid(un, SD_DEVINFO(un),
23294 			    SD_TARGET_IS_UNRESERVED);
23295 		} else {
23296 			/*
23297 			 * The device id for this disk has been
23298 			 * fabricated. Fabricated device id's are
23299 			 * managed by storing them in the last 2
23300 			 * available sectors on the drive. The device
23301 			 * id must be preserved by writing it back out
23302 			 * to this location.
23303 			 */
23304 			if (sd_write_deviceid(un) != 0) {
23305 				ddi_devid_free(un->un_devid);
23306 				un->un_devid = NULL;
23307 			}
23308 		}
23309 	}
23310 #else
23311 	if (rval == 0) {
23312 		/*
23313 		 * mboot has been written successfully.
23314 		 * set up the default geometry and VTOC
23315 		 */
23316 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23317 			sd_setup_default_geometry(un);
23318 	}
23319 #endif
23320 	mutex_exit(SD_MUTEX(un));
23321 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23322 	return (rval);
23323 }
23324 
23325 
23326 /*
23327  *    Function: sd_setup_default_geometry
23328  *
23329  * Description: This local utility routine sets the default geometry as part of
23330  *		setting the device mboot.
23331  *
23332  *   Arguments: un - driver soft state (unit) structure
23333  *
23334  * Note: This may be redundant with sd_build_default_label.
23335  */
23336 
23337 static void
23338 sd_setup_default_geometry(struct sd_lun *un)
23339 {
23340 	/* zero out the soft state geometry and partition table. */
23341 	bzero(&un->un_g, sizeof (struct dk_geom));
23342 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23343 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23344 	un->un_asciilabel[0] = '\0';
23345 
23346 	/*
23347 	 * For the rpm, we use the minimum for the disk.
23348 	 * For the head, cyl and number of sector per track,
23349 	 * if the capacity <= 1GB, head = 64, sect = 32.
23350 	 * else head = 255, sect 63
23351 	 * Note: the capacity should be equal to C*H*S values.
23352 	 * This will cause some truncation of size due to
23353 	 * round off errors. For CD-ROMs, this truncation can
23354 	 * have adverse side effects, so returning ncyl and
23355 	 * nhead as 1. The nsect will overflow for most of
23356 	 * CD-ROMs as nsect is of type ushort.
23357 	 */
23358 	if (ISCD(un)) {
23359 		un->un_g.dkg_ncyl = 1;
23360 		un->un_g.dkg_nhead = 1;
23361 		un->un_g.dkg_nsect = un->un_blockcount;
23362 	} else {
23363 		if (un->un_blockcount <= 0x1000) {
23364 			/* Needed for unlabeled SCSI floppies. */
23365 			un->un_g.dkg_nhead = 2;
23366 			un->un_g.dkg_ncyl = 80;
23367 			un->un_g.dkg_pcyl = 80;
23368 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23369 		} else if (un->un_blockcount <= 0x200000) {
23370 			un->un_g.dkg_nhead = 64;
23371 			un->un_g.dkg_nsect = 32;
23372 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23373 		} else {
23374 			un->un_g.dkg_nhead = 255;
23375 			un->un_g.dkg_nsect = 63;
23376 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23377 		}
23378 		un->un_blockcount = un->un_g.dkg_ncyl *
23379 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23380 	}
23381 	un->un_g.dkg_acyl = 0;
23382 	un->un_g.dkg_bcyl = 0;
23383 	un->un_g.dkg_intrlv = 1;
23384 	un->un_g.dkg_rpm = 200;
23385 	un->un_g.dkg_read_reinstruct = 0;
23386 	un->un_g.dkg_write_reinstruct = 0;
23387 	if (un->un_g.dkg_pcyl == 0) {
23388 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23389 	}
23390 
23391 	un->un_map['a'-'a'].dkl_cylno = 0;
23392 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23393 	un->un_map['c'-'a'].dkl_cylno = 0;
23394 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23395 	un->un_f_geometry_is_valid = FALSE;
23396 }
23397 
23398 
23399 #if defined(__i386) || defined(__amd64)
23400 /*
23401  *    Function: sd_update_fdisk_and_vtoc
23402  *
23403  * Description: This local utility routine updates the device fdisk and vtoc
23404  *		as part of setting the device mboot.
23405  *
23406  *   Arguments: un - driver soft state (unit) structure
23407  *
23408  * Return Code: 0 for success or errno-type return code.
23409  *
23410  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23411  *		these did exist seperately in x86 sd.c!!!
23412  */
23413 
23414 static int
23415 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23416 {
23417 	static char	labelstring[128];
23418 	static char	buf[256];
23419 	char		*label = 0;
23420 	int		count;
23421 	int		label_rc = 0;
23422 	int		gvalid = un->un_f_geometry_is_valid;
23423 	int		fdisk_rval;
23424 	int		lbasize;
23425 	int		capacity;
23426 
23427 	ASSERT(mutex_owned(SD_MUTEX(un)));
23428 
23429 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23430 		return (EINVAL);
23431 	}
23432 
23433 	if (un->un_f_blockcount_is_valid == FALSE) {
23434 		return (EINVAL);
23435 	}
23436 
23437 #if defined(_SUNOS_VTOC_16)
23438 	/*
23439 	 * Set up the "whole disk" fdisk partition; this should always
23440 	 * exist, regardless of whether the disk contains an fdisk table
23441 	 * or vtoc.
23442 	 */
23443 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23444 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23445 #endif	/* defined(_SUNOS_VTOC_16) */
23446 
23447 	/*
23448 	 * copy the lbasize and capacity so that if they're
23449 	 * reset while we're not holding the SD_MUTEX(un), we will
23450 	 * continue to use valid values after the SD_MUTEX(un) is
23451 	 * reacquired.
23452 	 */
23453 	lbasize  = un->un_tgt_blocksize;
23454 	capacity = un->un_blockcount;
23455 
23456 	/*
23457 	 * refresh the logical and physical geometry caches.
23458 	 * (data from mode sense format/rigid disk geometry pages,
23459 	 * and scsi_ifgetcap("geometry").
23460 	 */
23461 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23462 
23463 	/*
23464 	 * Only DIRECT ACCESS devices will have Sun labels.
23465 	 * CD's supposedly have a Sun label, too
23466 	 */
23467 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
23468 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23469 		    SD_PATH_DIRECT);
23470 		if (fdisk_rval == SD_CMD_FAILURE) {
23471 			ASSERT(mutex_owned(SD_MUTEX(un)));
23472 			return (EIO);
23473 		}
23474 
23475 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23476 			ASSERT(mutex_owned(SD_MUTEX(un)));
23477 			return (EACCES);
23478 		}
23479 
23480 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23481 			/*
23482 			 * Found fdisk table but no Solaris partition entry,
23483 			 * so don't call sd_uselabel() and don't create
23484 			 * a default label.
23485 			 */
23486 			label_rc = 0;
23487 			un->un_f_geometry_is_valid = TRUE;
23488 			goto no_solaris_partition;
23489 		}
23490 
23491 #if defined(_SUNOS_VTOC_8)
23492 		label = (char *)un->un_asciilabel;
23493 #elif defined(_SUNOS_VTOC_16)
23494 		label = (char *)un->un_vtoc.v_asciilabel;
23495 #else
23496 #error "No VTOC format defined."
23497 #endif
23498 	} else if (capacity < 0) {
23499 		ASSERT(mutex_owned(SD_MUTEX(un)));
23500 		return (EINVAL);
23501 	}
23502 
23503 	/*
23504 	 * For Removable media We reach here if we have found a
23505 	 * SOLARIS PARTITION.
23506 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23507 	 * PARTITION has changed from the previous one, hence we will setup a
23508 	 * default VTOC in this case.
23509 	 */
23510 	if (un->un_f_geometry_is_valid == FALSE) {
23511 		sd_build_default_label(un);
23512 		label_rc = 0;
23513 	}
23514 
23515 no_solaris_partition:
23516 	if ((!ISREMOVABLE(un) ||
23517 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
23518 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
23519 		/*
23520 		 * Print out a message indicating who and what we are.
23521 		 * We do this only when we happen to really validate the
23522 		 * geometry. We may call sd_validate_geometry() at other
23523 		 * times, ioctl()'s like Get VTOC in which case we
23524 		 * don't want to print the label.
23525 		 * If the geometry is valid, print the label string,
23526 		 * else print vendor and product info, if available
23527 		 */
23528 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23529 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23530 		} else {
23531 			mutex_enter(&sd_label_mutex);
23532 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23533 			    labelstring);
23534 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23535 			    &labelstring[64]);
23536 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23537 			    labelstring, &labelstring[64]);
23538 			if (un->un_f_blockcount_is_valid == TRUE) {
23539 				(void) sprintf(&buf[strlen(buf)],
23540 				    ", %" PRIu64 " %u byte blocks\n",
23541 				    un->un_blockcount,
23542 				    un->un_tgt_blocksize);
23543 			} else {
23544 				(void) sprintf(&buf[strlen(buf)],
23545 				    ", (unknown capacity)\n");
23546 			}
23547 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23548 			mutex_exit(&sd_label_mutex);
23549 		}
23550 	}
23551 
23552 #if defined(_SUNOS_VTOC_16)
23553 	/*
23554 	 * If we have valid geometry, set up the remaining fdisk partitions.
23555 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23556 	 * we set it to an entirely bogus value.
23557 	 */
23558 	for (count = 0; count < FD_NUMPART; count++) {
23559 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23560 		un->un_map[FDISK_P1 + count].dkl_nblk =
23561 		    un->un_fmap[count].fmap_nblk;
23562 		un->un_offset[FDISK_P1 + count] =
23563 		    un->un_fmap[count].fmap_start;
23564 	}
23565 #endif
23566 
23567 	for (count = 0; count < NDKMAP; count++) {
23568 #if defined(_SUNOS_VTOC_8)
23569 		struct dk_map *lp  = &un->un_map[count];
23570 		un->un_offset[count] =
23571 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23572 #elif defined(_SUNOS_VTOC_16)
23573 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23574 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23575 #else
23576 #error "No VTOC format defined."
23577 #endif
23578 	}
23579 
23580 	ASSERT(mutex_owned(SD_MUTEX(un)));
23581 	return (label_rc);
23582 }
23583 #endif
23584 
23585 
23586 /*
23587  *    Function: sd_check_media
23588  *
23589  * Description: This utility routine implements the functionality for the
23590  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23591  *		driver state changes from that specified by the user
23592  *		(inserted or ejected). For example, if the user specifies
23593  *		DKIO_EJECTED and the current media state is inserted this
23594  *		routine will immediately return DKIO_INSERTED. However, if the
23595  *		current media state is not inserted the user thread will be
23596  *		blocked until the drive state changes. If DKIO_NONE is specified
23597  *		the user thread will block until a drive state change occurs.
23598  *
23599  *   Arguments: dev  - the device number
23600  *		state  - user pointer to a dkio_state, updated with the current
23601  *			drive state at return.
23602  *
23603  * Return Code: ENXIO
23604  *		EIO
23605  *		EAGAIN
23606  *		EINTR
23607  */
23608 
23609 static int
23610 sd_check_media(dev_t dev, enum dkio_state state)
23611 {
23612 	struct sd_lun		*un = NULL;
23613 	enum dkio_state		prev_state;
23614 	opaque_t		token = NULL;
23615 	int			rval = 0;
23616 
23617 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23618 		return (ENXIO);
23619 	}
23620 
23621 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23622 
23623 	mutex_enter(SD_MUTEX(un));
23624 
23625 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23626 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23627 
23628 	prev_state = un->un_mediastate;
23629 
23630 	/* is there anything to do? */
23631 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23632 		/*
23633 		 * submit the request to the scsi_watch service;
23634 		 * scsi_media_watch_cb() does the real work
23635 		 */
23636 		mutex_exit(SD_MUTEX(un));
23637 
23638 		/*
23639 		 * This change handles the case where a scsi watch request is
23640 		 * added to a device that is powered down. To accomplish this
23641 		 * we power up the device before adding the scsi watch request,
23642 		 * since the scsi watch sends a TUR directly to the device
23643 		 * which the device cannot handle if it is powered down.
23644 		 */
23645 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23646 			mutex_enter(SD_MUTEX(un));
23647 			goto done;
23648 		}
23649 
23650 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23651 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23652 		    (caddr_t)dev);
23653 
23654 		sd_pm_exit(un);
23655 
23656 		mutex_enter(SD_MUTEX(un));
23657 		if (token == NULL) {
23658 			rval = EAGAIN;
23659 			goto done;
23660 		}
23661 
23662 		/*
23663 		 * This is a special case IOCTL that doesn't return
23664 		 * until the media state changes. Routine sdpower
23665 		 * knows about and handles this so don't count it
23666 		 * as an active cmd in the driver, which would
23667 		 * keep the device busy to the pm framework.
23668 		 * If the count isn't decremented the device can't
23669 		 * be powered down.
23670 		 */
23671 		un->un_ncmds_in_driver--;
23672 		ASSERT(un->un_ncmds_in_driver >= 0);
23673 
23674 		/*
23675 		 * if a prior request had been made, this will be the same
23676 		 * token, as scsi_watch was designed that way.
23677 		 */
23678 		un->un_swr_token = token;
23679 		un->un_specified_mediastate = state;
23680 
23681 		/*
23682 		 * now wait for media change
23683 		 * we will not be signalled unless mediastate == state but it is
23684 		 * still better to test for this condition, since there is a
23685 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23686 		 */
23687 		SD_TRACE(SD_LOG_COMMON, un,
23688 		    "sd_check_media: waiting for media state change\n");
23689 		while (un->un_mediastate == state) {
23690 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23691 				SD_TRACE(SD_LOG_COMMON, un,
23692 				    "sd_check_media: waiting for media state "
23693 				    "was interrupted\n");
23694 				un->un_ncmds_in_driver++;
23695 				rval = EINTR;
23696 				goto done;
23697 			}
23698 			SD_TRACE(SD_LOG_COMMON, un,
23699 			    "sd_check_media: received signal, state=%x\n",
23700 			    un->un_mediastate);
23701 		}
23702 		/*
23703 		 * Inc the counter to indicate the device once again
23704 		 * has an active outstanding cmd.
23705 		 */
23706 		un->un_ncmds_in_driver++;
23707 	}
23708 
23709 	/* invalidate geometry */
23710 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23711 		sr_ejected(un);
23712 	}
23713 
23714 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23715 		uint64_t	capacity;
23716 		uint_t		lbasize;
23717 
23718 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23719 		mutex_exit(SD_MUTEX(un));
23720 		/*
23721 		 * Since the following routines use SD_PATH_DIRECT, we must
23722 		 * call PM directly before the upcoming disk accesses. This
23723 		 * may cause the disk to be power/spin up.
23724 		 */
23725 
23726 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23727 			rval = sd_send_scsi_READ_CAPACITY(un,
23728 			    &capacity,
23729 			    &lbasize, SD_PATH_DIRECT);
23730 			if (rval != 0) {
23731 				sd_pm_exit(un);
23732 				mutex_enter(SD_MUTEX(un));
23733 				goto done;
23734 			}
23735 		} else {
23736 			rval = EIO;
23737 			mutex_enter(SD_MUTEX(un));
23738 			goto done;
23739 		}
23740 		mutex_enter(SD_MUTEX(un));
23741 
23742 		sd_update_block_info(un, lbasize, capacity);
23743 
23744 		un->un_f_geometry_is_valid	= FALSE;
23745 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
23746 
23747 		mutex_exit(SD_MUTEX(un));
23748 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
23749 		    SD_PATH_DIRECT);
23750 		sd_pm_exit(un);
23751 
23752 		mutex_enter(SD_MUTEX(un));
23753 	}
23754 done:
23755 	un->un_f_watcht_stopped = FALSE;
23756 	if (un->un_swr_token) {
23757 		/*
23758 		 * Use of this local token and the mutex ensures that we avoid
23759 		 * some race conditions associated with terminating the
23760 		 * scsi watch.
23761 		 */
23762 		token = un->un_swr_token;
23763 		un->un_swr_token = (opaque_t)NULL;
23764 		mutex_exit(SD_MUTEX(un));
23765 		(void) scsi_watch_request_terminate(token,
23766 		    SCSI_WATCH_TERMINATE_WAIT);
23767 		mutex_enter(SD_MUTEX(un));
23768 	}
23769 
23770 	/*
23771 	 * Update the capacity kstat value, if no media previously
23772 	 * (capacity kstat is 0) and a media has been inserted
23773 	 * (un_f_blockcount_is_valid == TRUE)
23774 	 * This is a more generic way then checking for ISREMOVABLE.
23775 	 */
23776 	if (un->un_errstats) {
23777 		struct sd_errstats	*stp = NULL;
23778 
23779 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23780 		if ((stp->sd_capacity.value.ui64 == 0) &&
23781 		    (un->un_f_blockcount_is_valid == TRUE)) {
23782 			stp->sd_capacity.value.ui64 =
23783 			    (uint64_t)((uint64_t)un->un_blockcount *
23784 			    un->un_sys_blocksize);
23785 		}
23786 	}
23787 	mutex_exit(SD_MUTEX(un));
23788 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23789 	return (rval);
23790 }
23791 
23792 
23793 /*
23794  *    Function: sd_delayed_cv_broadcast
23795  *
23796  * Description: Delayed cv_broadcast to allow for target to recover from media
23797  *		insertion.
23798  *
23799  *   Arguments: arg - driver soft state (unit) structure
23800  */
23801 
23802 static void
23803 sd_delayed_cv_broadcast(void *arg)
23804 {
23805 	struct sd_lun *un = arg;
23806 
23807 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23808 
23809 	mutex_enter(SD_MUTEX(un));
23810 	un->un_dcvb_timeid = NULL;
23811 	cv_broadcast(&un->un_state_cv);
23812 	mutex_exit(SD_MUTEX(un));
23813 }
23814 
23815 
23816 /*
23817  *    Function: sd_media_watch_cb
23818  *
23819  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23820  *		routine processes the TUR sense data and updates the driver
23821  *		state if a transition has occurred. The user thread
23822  *		(sd_check_media) is then signalled.
23823  *
23824  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23825  *			among multiple watches that share this callback function
23826  *		resultp - scsi watch facility result packet containing scsi
23827  *			  packet, status byte and sense data
23828  *
23829  * Return Code: 0 for success, -1 for failure
23830  */
23831 
23832 static int
23833 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23834 {
23835 	struct sd_lun			*un;
23836 	struct scsi_status		*statusp = resultp->statusp;
23837 	struct scsi_extended_sense	*sensep = resultp->sensep;
23838 	enum dkio_state			state = DKIO_NONE;
23839 	dev_t				dev = (dev_t)arg;
23840 	uchar_t				actual_sense_length;
23841 
23842 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23843 		return (-1);
23844 	}
23845 	actual_sense_length = resultp->actual_sense_length;
23846 
23847 	mutex_enter(SD_MUTEX(un));
23848 	SD_TRACE(SD_LOG_COMMON, un,
23849 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23850 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23851 
23852 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23853 		un->un_mediastate = DKIO_DEV_GONE;
23854 		printf("sd_media_watch_cb: dev gone\n");
23855 		cv_broadcast(&un->un_state_cv);
23856 		mutex_exit(SD_MUTEX(un));
23857 
23858 		return (0);
23859 	}
23860 
23861 	/*
23862 	 * If there was a check condition then sensep points to valid sense data
23863 	 * If status was not a check condition but a reservation or busy status
23864 	 * then the new state is DKIO_NONE
23865 	 */
23866 	if (sensep != NULL) {
23867 		SD_INFO(SD_LOG_COMMON, un,
23868 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23869 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
23870 		/* This routine only uses up to 13 bytes of sense data. */
23871 		if (actual_sense_length >= 13) {
23872 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
23873 				if (sensep->es_add_code == 0x28) {
23874 					state = DKIO_INSERTED;
23875 				}
23876 			} else {
23877 				/*
23878 				 * if 02/04/02  means that the host
23879 				 * should send start command. Explicitly
23880 				 * leave the media state as is
23881 				 * (inserted) as the media is inserted
23882 				 * and host has stopped device for PM
23883 				 * reasons. Upon next true read/write
23884 				 * to this media will bring the
23885 				 * device to the right state good for
23886 				 * media access.
23887 				 */
23888 				if ((sensep->es_key == KEY_NOT_READY) &&
23889 				    (sensep->es_add_code == 0x3a)) {
23890 					state = DKIO_EJECTED;
23891 				}
23892 
23893 				/*
23894 				 * If the drivge is busy with an operation
23895 				 * or long write, keep the media in an
23896 				 * inserted state.
23897 				 */
23898 
23899 				if ((sensep->es_key == KEY_NOT_READY) &&
23900 				    (sensep->es_add_code == 0x04) &&
23901 				    ((sensep->es_qual_code == 0x02) ||
23902 				    (sensep->es_qual_code == 0x07) ||
23903 				    (sensep->es_qual_code == 0x08))) {
23904 					state = DKIO_INSERTED;
23905 				}
23906 			}
23907 		}
23908 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23909 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23910 		state = DKIO_INSERTED;
23911 	}
23912 
23913 	SD_TRACE(SD_LOG_COMMON, un,
23914 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23915 	    state, un->un_specified_mediastate);
23916 
23917 	/*
23918 	 * now signal the waiting thread if this is *not* the specified state;
23919 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23920 	 * to recover
23921 	 */
23922 	if (state != un->un_specified_mediastate) {
23923 		un->un_mediastate = state;
23924 		if (state == DKIO_INSERTED) {
23925 			/*
23926 			 * delay the signal to give the drive a chance
23927 			 * to do what it apparently needs to do
23928 			 */
23929 			SD_TRACE(SD_LOG_COMMON, un,
23930 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23931 			if (un->un_dcvb_timeid == NULL) {
23932 				un->un_dcvb_timeid =
23933 				    timeout(sd_delayed_cv_broadcast, un,
23934 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23935 			}
23936 		} else {
23937 			SD_TRACE(SD_LOG_COMMON, un,
23938 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23939 			cv_broadcast(&un->un_state_cv);
23940 		}
23941 	}
23942 	mutex_exit(SD_MUTEX(un));
23943 	return (0);
23944 }
23945 
23946 
23947 /*
23948  *    Function: sd_dkio_get_temp
23949  *
23950  * Description: This routine is the driver entry point for handling ioctl
23951  *		requests to get the disk temperature.
23952  *
23953  *   Arguments: dev  - the device number
23954  *		arg  - pointer to user provided dk_temperature structure.
23955  *		flag - this argument is a pass through to ddi_copyxxx()
23956  *		       directly from the mode argument of ioctl().
23957  *
23958  * Return Code: 0
23959  *		EFAULT
23960  *		ENXIO
23961  *		EAGAIN
23962  */
23963 
23964 static int
23965 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23966 {
23967 	struct sd_lun		*un = NULL;
23968 	struct dk_temperature	*dktemp = NULL;
23969 	uchar_t			*temperature_page;
23970 	int			rval = 0;
23971 	int			path_flag = SD_PATH_STANDARD;
23972 
23973 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23974 		return (ENXIO);
23975 	}
23976 
23977 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23978 
23979 	/* copyin the disk temp argument to get the user flags */
23980 	if (ddi_copyin((void *)arg, dktemp,
23981 	    sizeof (struct dk_temperature), flag) != 0) {
23982 		rval = EFAULT;
23983 		goto done;
23984 	}
23985 
23986 	/* Initialize the temperature to invalid. */
23987 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23988 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23989 
23990 	/*
23991 	 * Note: Investigate removing the "bypass pm" semantic.
23992 	 * Can we just bypass PM always?
23993 	 */
23994 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23995 		path_flag = SD_PATH_DIRECT;
23996 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23997 		mutex_enter(&un->un_pm_mutex);
23998 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23999 			/*
24000 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24001 			 * in low power mode, we can not wake it up, Need to
24002 			 * return EAGAIN.
24003 			 */
24004 			mutex_exit(&un->un_pm_mutex);
24005 			rval = EAGAIN;
24006 			goto done;
24007 		} else {
24008 			/*
24009 			 * Indicate to PM the device is busy. This is required
24010 			 * to avoid a race - i.e. the ioctl is issuing a
24011 			 * command and the pm framework brings down the device
24012 			 * to low power mode (possible power cut-off on some
24013 			 * platforms).
24014 			 */
24015 			mutex_exit(&un->un_pm_mutex);
24016 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24017 				rval = EAGAIN;
24018 				goto done;
24019 			}
24020 		}
24021 	}
24022 
24023 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24024 
24025 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24026 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24027 		goto done2;
24028 	}
24029 
24030 	/*
24031 	 * For the current temperature verify that the parameter length is 0x02
24032 	 * and the parameter code is 0x00
24033 	 */
24034 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24035 	    (temperature_page[5] == 0x00)) {
24036 		if (temperature_page[9] == 0xFF) {
24037 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24038 		} else {
24039 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24040 		}
24041 	}
24042 
24043 	/*
24044 	 * For the reference temperature verify that the parameter
24045 	 * length is 0x02 and the parameter code is 0x01
24046 	 */
24047 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24048 	    (temperature_page[11] == 0x01)) {
24049 		if (temperature_page[15] == 0xFF) {
24050 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24051 		} else {
24052 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24053 		}
24054 	}
24055 
24056 	/* Do the copyout regardless of the temperature commands status. */
24057 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24058 	    flag) != 0) {
24059 		rval = EFAULT;
24060 	}
24061 
24062 done2:
24063 	if (path_flag == SD_PATH_DIRECT) {
24064 		sd_pm_exit(un);
24065 	}
24066 
24067 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24068 done:
24069 	if (dktemp != NULL) {
24070 		kmem_free(dktemp, sizeof (struct dk_temperature));
24071 	}
24072 
24073 	return (rval);
24074 }
24075 
24076 
24077 /*
24078  *    Function: sd_log_page_supported
24079  *
24080  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24081  *		supported log pages.
24082  *
24083  *   Arguments: un -
24084  *		log_page -
24085  *
24086  * Return Code: -1 - on error (log sense is optional and may not be supported).
24087  *		0  - log page not found.
24088  *  		1  - log page found.
24089  */
24090 
24091 static int
24092 sd_log_page_supported(struct sd_lun *un, int log_page)
24093 {
24094 	uchar_t *log_page_data;
24095 	int	i;
24096 	int	match = 0;
24097 	int	log_size;
24098 
24099 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24100 
24101 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24102 	    SD_PATH_DIRECT) != 0) {
24103 		SD_ERROR(SD_LOG_COMMON, un,
24104 		    "sd_log_page_supported: failed log page retrieval\n");
24105 		kmem_free(log_page_data, 0xFF);
24106 		return (-1);
24107 	}
24108 	log_size = log_page_data[3];
24109 
24110 	/*
24111 	 * The list of supported log pages start from the fourth byte. Check
24112 	 * until we run out of log pages or a match is found.
24113 	 */
24114 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24115 		if (log_page_data[i] == log_page) {
24116 			match++;
24117 		}
24118 	}
24119 	kmem_free(log_page_data, 0xFF);
24120 	return (match);
24121 }
24122 
24123 
24124 /*
24125  *    Function: sd_mhdioc_failfast
24126  *
24127  * Description: This routine is the driver entry point for handling ioctl
24128  *		requests to enable/disable the multihost failfast option.
24129  *		(MHIOCENFAILFAST)
24130  *
24131  *   Arguments: dev	- the device number
24132  *		arg	- user specified probing interval.
24133  *		flag	- this argument is a pass through to ddi_copyxxx()
24134  *			  directly from the mode argument of ioctl().
24135  *
24136  * Return Code: 0
24137  *		EFAULT
24138  *		ENXIO
24139  */
24140 
24141 static int
24142 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24143 {
24144 	struct sd_lun	*un = NULL;
24145 	int		mh_time;
24146 	int		rval = 0;
24147 
24148 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24149 		return (ENXIO);
24150 	}
24151 
24152 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24153 		return (EFAULT);
24154 
24155 	if (mh_time) {
24156 		mutex_enter(SD_MUTEX(un));
24157 		un->un_resvd_status |= SD_FAILFAST;
24158 		mutex_exit(SD_MUTEX(un));
24159 		/*
24160 		 * If mh_time is INT_MAX, then this ioctl is being used for
24161 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24162 		 */
24163 		if (mh_time != INT_MAX) {
24164 			rval = sd_check_mhd(dev, mh_time);
24165 		}
24166 	} else {
24167 		(void) sd_check_mhd(dev, 0);
24168 		mutex_enter(SD_MUTEX(un));
24169 		un->un_resvd_status &= ~SD_FAILFAST;
24170 		mutex_exit(SD_MUTEX(un));
24171 	}
24172 	return (rval);
24173 }
24174 
24175 
24176 /*
24177  *    Function: sd_mhdioc_takeown
24178  *
24179  * Description: This routine is the driver entry point for handling ioctl
24180  *		requests to forcefully acquire exclusive access rights to the
24181  *		multihost disk (MHIOCTKOWN).
24182  *
24183  *   Arguments: dev	- the device number
24184  *		arg	- user provided structure specifying the delay
24185  *			  parameters in milliseconds
24186  *		flag	- this argument is a pass through to ddi_copyxxx()
24187  *			  directly from the mode argument of ioctl().
24188  *
24189  * Return Code: 0
24190  *		EFAULT
24191  *		ENXIO
24192  */
24193 
24194 static int
24195 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24196 {
24197 	struct sd_lun		*un = NULL;
24198 	struct mhioctkown	*tkown = NULL;
24199 	int			rval = 0;
24200 
24201 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24202 		return (ENXIO);
24203 	}
24204 
24205 	if (arg != NULL) {
24206 		tkown = (struct mhioctkown *)
24207 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24208 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24209 		if (rval != 0) {
24210 			rval = EFAULT;
24211 			goto error;
24212 		}
24213 	}
24214 
24215 	rval = sd_take_ownership(dev, tkown);
24216 	mutex_enter(SD_MUTEX(un));
24217 	if (rval == 0) {
24218 		un->un_resvd_status |= SD_RESERVE;
24219 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24220 			sd_reinstate_resv_delay =
24221 			    tkown->reinstate_resv_delay * 1000;
24222 		} else {
24223 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24224 		}
24225 		/*
24226 		 * Give the scsi_watch routine interval set by
24227 		 * the MHIOCENFAILFAST ioctl precedence here.
24228 		 */
24229 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24230 			mutex_exit(SD_MUTEX(un));
24231 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24232 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24233 			    "sd_mhdioc_takeown : %d\n",
24234 			    sd_reinstate_resv_delay);
24235 		} else {
24236 			mutex_exit(SD_MUTEX(un));
24237 		}
24238 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24239 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24240 	} else {
24241 		un->un_resvd_status &= ~SD_RESERVE;
24242 		mutex_exit(SD_MUTEX(un));
24243 	}
24244 
24245 error:
24246 	if (tkown != NULL) {
24247 		kmem_free(tkown, sizeof (struct mhioctkown));
24248 	}
24249 	return (rval);
24250 }
24251 
24252 
24253 /*
24254  *    Function: sd_mhdioc_release
24255  *
24256  * Description: This routine is the driver entry point for handling ioctl
24257  *		requests to release exclusive access rights to the multihost
24258  *		disk (MHIOCRELEASE).
24259  *
24260  *   Arguments: dev	- the device number
24261  *
24262  * Return Code: 0
24263  *		ENXIO
24264  */
24265 
24266 static int
24267 sd_mhdioc_release(dev_t dev)
24268 {
24269 	struct sd_lun		*un = NULL;
24270 	timeout_id_t		resvd_timeid_save;
24271 	int			resvd_status_save;
24272 	int			rval = 0;
24273 
24274 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24275 		return (ENXIO);
24276 	}
24277 
24278 	mutex_enter(SD_MUTEX(un));
24279 	resvd_status_save = un->un_resvd_status;
24280 	un->un_resvd_status &=
24281 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24282 	if (un->un_resvd_timeid) {
24283 		resvd_timeid_save = un->un_resvd_timeid;
24284 		un->un_resvd_timeid = NULL;
24285 		mutex_exit(SD_MUTEX(un));
24286 		(void) untimeout(resvd_timeid_save);
24287 	} else {
24288 		mutex_exit(SD_MUTEX(un));
24289 	}
24290 
24291 	/*
24292 	 * destroy any pending timeout thread that may be attempting to
24293 	 * reinstate reservation on this device.
24294 	 */
24295 	sd_rmv_resv_reclaim_req(dev);
24296 
24297 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24298 		mutex_enter(SD_MUTEX(un));
24299 		if ((un->un_mhd_token) &&
24300 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24301 			mutex_exit(SD_MUTEX(un));
24302 			(void) sd_check_mhd(dev, 0);
24303 		} else {
24304 			mutex_exit(SD_MUTEX(un));
24305 		}
24306 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24307 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24308 	} else {
24309 		/*
24310 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24311 		 */
24312 		mutex_enter(SD_MUTEX(un));
24313 		un->un_resvd_status = resvd_status_save;
24314 		mutex_exit(SD_MUTEX(un));
24315 	}
24316 	return (rval);
24317 }
24318 
24319 
24320 /*
24321  *    Function: sd_mhdioc_register_devid
24322  *
24323  * Description: This routine is the driver entry point for handling ioctl
24324  *		requests to register the device id (MHIOCREREGISTERDEVID).
24325  *
24326  *		Note: The implementation for this ioctl has been updated to
24327  *		be consistent with the original PSARC case (1999/357)
24328  *		(4375899, 4241671, 4220005)
24329  *
24330  *   Arguments: dev	- the device number
24331  *
24332  * Return Code: 0
24333  *		ENXIO
24334  */
24335 
24336 static int
24337 sd_mhdioc_register_devid(dev_t dev)
24338 {
24339 	struct sd_lun	*un = NULL;
24340 	int		rval = 0;
24341 
24342 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24343 		return (ENXIO);
24344 	}
24345 
24346 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24347 
24348 	mutex_enter(SD_MUTEX(un));
24349 
24350 	/* If a devid already exists, de-register it */
24351 	if (un->un_devid != NULL) {
24352 		ddi_devid_unregister(SD_DEVINFO(un));
24353 		/*
24354 		 * After unregister devid, needs to free devid memory
24355 		 */
24356 		ddi_devid_free(un->un_devid);
24357 		un->un_devid = NULL;
24358 	}
24359 
24360 	/* Check for reservation conflict */
24361 	mutex_exit(SD_MUTEX(un));
24362 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24363 	mutex_enter(SD_MUTEX(un));
24364 
24365 	switch (rval) {
24366 	case 0:
24367 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24368 		break;
24369 	case EACCES:
24370 		break;
24371 	default:
24372 		rval = EIO;
24373 	}
24374 
24375 	mutex_exit(SD_MUTEX(un));
24376 	return (rval);
24377 }
24378 
24379 
24380 /*
24381  *    Function: sd_mhdioc_inkeys
24382  *
24383  * Description: This routine is the driver entry point for handling ioctl
24384  *		requests to issue the SCSI-3 Persistent In Read Keys command
24385  *		to the device (MHIOCGRP_INKEYS).
24386  *
24387  *   Arguments: dev	- the device number
24388  *		arg	- user provided in_keys structure
24389  *		flag	- this argument is a pass through to ddi_copyxxx()
24390  *			  directly from the mode argument of ioctl().
24391  *
24392  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24393  *		ENXIO
24394  *		EFAULT
24395  */
24396 
24397 static int
24398 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24399 {
24400 	struct sd_lun		*un;
24401 	mhioc_inkeys_t		inkeys;
24402 	int			rval = 0;
24403 
24404 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24405 		return (ENXIO);
24406 	}
24407 
24408 #ifdef _MULTI_DATAMODEL
24409 	switch (ddi_model_convert_from(flag & FMODELS)) {
24410 	case DDI_MODEL_ILP32: {
24411 		struct mhioc_inkeys32	inkeys32;
24412 
24413 		if (ddi_copyin(arg, &inkeys32,
24414 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24415 			return (EFAULT);
24416 		}
24417 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24418 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24419 		    &inkeys, flag)) != 0) {
24420 			return (rval);
24421 		}
24422 		inkeys32.generation = inkeys.generation;
24423 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24424 		    flag) != 0) {
24425 			return (EFAULT);
24426 		}
24427 		break;
24428 	}
24429 	case DDI_MODEL_NONE:
24430 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24431 		    flag) != 0) {
24432 			return (EFAULT);
24433 		}
24434 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24435 		    &inkeys, flag)) != 0) {
24436 			return (rval);
24437 		}
24438 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24439 		    flag) != 0) {
24440 			return (EFAULT);
24441 		}
24442 		break;
24443 	}
24444 
24445 #else /* ! _MULTI_DATAMODEL */
24446 
24447 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24448 		return (EFAULT);
24449 	}
24450 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24451 	if (rval != 0) {
24452 		return (rval);
24453 	}
24454 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24455 		return (EFAULT);
24456 	}
24457 
24458 #endif /* _MULTI_DATAMODEL */
24459 
24460 	return (rval);
24461 }
24462 
24463 
24464 /*
24465  *    Function: sd_mhdioc_inresv
24466  *
24467  * Description: This routine is the driver entry point for handling ioctl
24468  *		requests to issue the SCSI-3 Persistent In Read Reservations
24469  *		command to the device (MHIOCGRP_INKEYS).
24470  *
24471  *   Arguments: dev	- the device number
24472  *		arg	- user provided in_resv structure
24473  *		flag	- this argument is a pass through to ddi_copyxxx()
24474  *			  directly from the mode argument of ioctl().
24475  *
24476  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24477  *		ENXIO
24478  *		EFAULT
24479  */
24480 
24481 static int
24482 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24483 {
24484 	struct sd_lun		*un;
24485 	mhioc_inresvs_t		inresvs;
24486 	int			rval = 0;
24487 
24488 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24489 		return (ENXIO);
24490 	}
24491 
24492 #ifdef _MULTI_DATAMODEL
24493 
24494 	switch (ddi_model_convert_from(flag & FMODELS)) {
24495 	case DDI_MODEL_ILP32: {
24496 		struct mhioc_inresvs32	inresvs32;
24497 
24498 		if (ddi_copyin(arg, &inresvs32,
24499 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24500 			return (EFAULT);
24501 		}
24502 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24503 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24504 		    &inresvs, flag)) != 0) {
24505 			return (rval);
24506 		}
24507 		inresvs32.generation = inresvs.generation;
24508 		if (ddi_copyout(&inresvs32, arg,
24509 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24510 			return (EFAULT);
24511 		}
24512 		break;
24513 	}
24514 	case DDI_MODEL_NONE:
24515 		if (ddi_copyin(arg, &inresvs,
24516 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24517 			return (EFAULT);
24518 		}
24519 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24520 		    &inresvs, flag)) != 0) {
24521 			return (rval);
24522 		}
24523 		if (ddi_copyout(&inresvs, arg,
24524 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24525 			return (EFAULT);
24526 		}
24527 		break;
24528 	}
24529 
24530 #else /* ! _MULTI_DATAMODEL */
24531 
24532 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24533 		return (EFAULT);
24534 	}
24535 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24536 	if (rval != 0) {
24537 		return (rval);
24538 	}
24539 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24540 		return (EFAULT);
24541 	}
24542 
24543 #endif /* ! _MULTI_DATAMODEL */
24544 
24545 	return (rval);
24546 }
24547 
24548 
24549 /*
24550  * The following routines support the clustering functionality described below
24551  * and implement lost reservation reclaim functionality.
24552  *
24553  * Clustering
24554  * ----------
24555  * The clustering code uses two different, independent forms of SCSI
24556  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24557  * Persistent Group Reservations. For any particular disk, it will use either
24558  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24559  *
24560  * SCSI-2
24561  * The cluster software takes ownership of a multi-hosted disk by issuing the
24562  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24563  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24564  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24565  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24566  * meaning of failfast is that if the driver (on this host) ever encounters the
24567  * scsi error return code RESERVATION_CONFLICT from the device, it should
24568  * immediately panic the host. The motivation for this ioctl is that if this
24569  * host does encounter reservation conflict, the underlying cause is that some
24570  * other host of the cluster has decided that this host is no longer in the
24571  * cluster and has seized control of the disks for itself. Since this host is no
24572  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24573  * does two things:
24574  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24575  *      error to panic the host
24576  *      (b) it sets up a periodic timer to test whether this host still has
24577  *      "access" (in that no other host has reserved the device):  if the
24578  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24579  *      purpose of that periodic timer is to handle scenarios where the host is
24580  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24581  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24582  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24583  * the device itself.
24584  *
24585  * SCSI-3 PGR
24586  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24587  * facility is supported through the shared multihost disk ioctls
24588  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24589  * MHIOCGRP_PREEMPTANDABORT)
24590  *
24591  * Reservation Reclaim:
24592  * --------------------
24593  * To support the lost reservation reclaim operations this driver creates a
24594  * single thread to handle reinstating reservations on all devices that have
24595  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24596  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24597  * and the reservation reclaim thread loops through the requests to regain the
24598  * lost reservations.
24599  */
24600 
24601 /*
24602  *    Function: sd_check_mhd()
24603  *
24604  * Description: This function sets up and submits a scsi watch request or
24605  *		terminates an existing watch request. This routine is used in
24606  *		support of reservation reclaim.
24607  *
24608  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24609  *			 among multiple watches that share the callback function
24610  *		interval - the number of microseconds specifying the watch
24611  *			   interval for issuing TEST UNIT READY commands. If
24612  *			   set to 0 the watch should be terminated. If the
24613  *			   interval is set to 0 and if the device is required
24614  *			   to hold reservation while disabling failfast, the
24615  *			   watch is restarted with an interval of
24616  *			   reinstate_resv_delay.
24617  *
24618  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24619  *		ENXIO      - Indicates an invalid device was specified
24620  *		EAGAIN     - Unable to submit the scsi watch request
24621  */
24622 
24623 static int
24624 sd_check_mhd(dev_t dev, int interval)
24625 {
24626 	struct sd_lun	*un;
24627 	opaque_t	token;
24628 
24629 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24630 		return (ENXIO);
24631 	}
24632 
24633 	/* is this a watch termination request? */
24634 	if (interval == 0) {
24635 		mutex_enter(SD_MUTEX(un));
24636 		/* if there is an existing watch task then terminate it */
24637 		if (un->un_mhd_token) {
24638 			token = un->un_mhd_token;
24639 			un->un_mhd_token = NULL;
24640 			mutex_exit(SD_MUTEX(un));
24641 			(void) scsi_watch_request_terminate(token,
24642 			    SCSI_WATCH_TERMINATE_WAIT);
24643 			mutex_enter(SD_MUTEX(un));
24644 		} else {
24645 			mutex_exit(SD_MUTEX(un));
24646 			/*
24647 			 * Note: If we return here we don't check for the
24648 			 * failfast case. This is the original legacy
24649 			 * implementation but perhaps we should be checking
24650 			 * the failfast case.
24651 			 */
24652 			return (0);
24653 		}
24654 		/*
24655 		 * If the device is required to hold reservation while
24656 		 * disabling failfast, we need to restart the scsi_watch
24657 		 * routine with an interval of reinstate_resv_delay.
24658 		 */
24659 		if (un->un_resvd_status & SD_RESERVE) {
24660 			interval = sd_reinstate_resv_delay/1000;
24661 		} else {
24662 			/* no failfast so bail */
24663 			mutex_exit(SD_MUTEX(un));
24664 			return (0);
24665 		}
24666 		mutex_exit(SD_MUTEX(un));
24667 	}
24668 
24669 	/*
24670 	 * adjust minimum time interval to 1 second,
24671 	 * and convert from msecs to usecs
24672 	 */
24673 	if (interval > 0 && interval < 1000) {
24674 		interval = 1000;
24675 	}
24676 	interval *= 1000;
24677 
24678 	/*
24679 	 * submit the request to the scsi_watch service
24680 	 */
24681 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24682 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24683 	if (token == NULL) {
24684 		return (EAGAIN);
24685 	}
24686 
24687 	/*
24688 	 * save token for termination later on
24689 	 */
24690 	mutex_enter(SD_MUTEX(un));
24691 	un->un_mhd_token = token;
24692 	mutex_exit(SD_MUTEX(un));
24693 	return (0);
24694 }
24695 
24696 
24697 /*
24698  *    Function: sd_mhd_watch_cb()
24699  *
24700  * Description: This function is the call back function used by the scsi watch
24701  *		facility. The scsi watch facility sends the "Test Unit Ready"
24702  *		and processes the status. If applicable (i.e. a "Unit Attention"
24703  *		status and automatic "Request Sense" not used) the scsi watch
24704  *		facility will send a "Request Sense" and retrieve the sense data
24705  *		to be passed to this callback function. In either case the
24706  *		automatic "Request Sense" or the facility submitting one, this
24707  *		callback is passed the status and sense data.
24708  *
24709  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24710  *			among multiple watches that share this callback function
24711  *		resultp - scsi watch facility result packet containing scsi
24712  *			  packet, status byte and sense data
24713  *
24714  * Return Code: 0 - continue the watch task
24715  *		non-zero - terminate the watch task
24716  */
24717 
24718 static int
24719 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24720 {
24721 	struct sd_lun			*un;
24722 	struct scsi_status		*statusp;
24723 	struct scsi_extended_sense	*sensep;
24724 	struct scsi_pkt			*pkt;
24725 	uchar_t				actual_sense_length;
24726 	dev_t  				dev = (dev_t)arg;
24727 
24728 	ASSERT(resultp != NULL);
24729 	statusp			= resultp->statusp;
24730 	sensep			= resultp->sensep;
24731 	pkt			= resultp->pkt;
24732 	actual_sense_length	= resultp->actual_sense_length;
24733 
24734 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24735 		return (ENXIO);
24736 	}
24737 
24738 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24739 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24740 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24741 
24742 	/* Begin processing of the status and/or sense data */
24743 	if (pkt->pkt_reason != CMD_CMPLT) {
24744 		/* Handle the incomplete packet */
24745 		sd_mhd_watch_incomplete(un, pkt);
24746 		return (0);
24747 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24748 		if (*((unsigned char *)statusp)
24749 		    == STATUS_RESERVATION_CONFLICT) {
24750 			/*
24751 			 * Handle a reservation conflict by panicking if
24752 			 * configured for failfast or by logging the conflict
24753 			 * and updating the reservation status
24754 			 */
24755 			mutex_enter(SD_MUTEX(un));
24756 			if ((un->un_resvd_status & SD_FAILFAST) &&
24757 			    (sd_failfast_enable)) {
24758 				panic("Reservation Conflict");
24759 				/*NOTREACHED*/
24760 			}
24761 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24762 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24763 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24764 			mutex_exit(SD_MUTEX(un));
24765 		}
24766 	}
24767 
24768 	if (sensep != NULL) {
24769 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24770 			mutex_enter(SD_MUTEX(un));
24771 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
24772 			    (un->un_resvd_status & SD_RESERVE)) {
24773 				/*
24774 				 * The additional sense code indicates a power
24775 				 * on or bus device reset has occurred; update
24776 				 * the reservation status.
24777 				 */
24778 				un->un_resvd_status |=
24779 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24780 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24781 				    "sd_mhd_watch_cb: Lost Reservation\n");
24782 			}
24783 		} else {
24784 			return (0);
24785 		}
24786 	} else {
24787 		mutex_enter(SD_MUTEX(un));
24788 	}
24789 
24790 	if ((un->un_resvd_status & SD_RESERVE) &&
24791 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24792 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24793 			/*
24794 			 * A reset occurred in between the last probe and this
24795 			 * one so if a timeout is pending cancel it.
24796 			 */
24797 			if (un->un_resvd_timeid) {
24798 				timeout_id_t temp_id = un->un_resvd_timeid;
24799 				un->un_resvd_timeid = NULL;
24800 				mutex_exit(SD_MUTEX(un));
24801 				(void) untimeout(temp_id);
24802 				mutex_enter(SD_MUTEX(un));
24803 			}
24804 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24805 		}
24806 		if (un->un_resvd_timeid == 0) {
24807 			/* Schedule a timeout to handle the lost reservation */
24808 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24809 			    (void *)dev,
24810 			    drv_usectohz(sd_reinstate_resv_delay));
24811 		}
24812 	}
24813 	mutex_exit(SD_MUTEX(un));
24814 	return (0);
24815 }
24816 
24817 
24818 /*
24819  *    Function: sd_mhd_watch_incomplete()
24820  *
24821  * Description: This function is used to find out why a scsi pkt sent by the
24822  *		scsi watch facility was not completed. Under some scenarios this
24823  *		routine will return. Otherwise it will send a bus reset to see
24824  *		if the drive is still online.
24825  *
24826  *   Arguments: un  - driver soft state (unit) structure
24827  *		pkt - incomplete scsi pkt
24828  */
24829 
24830 static void
24831 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24832 {
24833 	int	be_chatty;
24834 	int	perr;
24835 
24836 	ASSERT(pkt != NULL);
24837 	ASSERT(un != NULL);
24838 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24839 	perr		= (pkt->pkt_statistics & STAT_PERR);
24840 
24841 	mutex_enter(SD_MUTEX(un));
24842 	if (un->un_state == SD_STATE_DUMPING) {
24843 		mutex_exit(SD_MUTEX(un));
24844 		return;
24845 	}
24846 
24847 	switch (pkt->pkt_reason) {
24848 	case CMD_UNX_BUS_FREE:
24849 		/*
24850 		 * If we had a parity error that caused the target to drop BSY*,
24851 		 * don't be chatty about it.
24852 		 */
24853 		if (perr && be_chatty) {
24854 			be_chatty = 0;
24855 		}
24856 		break;
24857 	case CMD_TAG_REJECT:
24858 		/*
24859 		 * The SCSI-2 spec states that a tag reject will be sent by the
24860 		 * target if tagged queuing is not supported. A tag reject may
24861 		 * also be sent during certain initialization periods or to
24862 		 * control internal resources. For the latter case the target
24863 		 * may also return Queue Full.
24864 		 *
24865 		 * If this driver receives a tag reject from a target that is
24866 		 * going through an init period or controlling internal
24867 		 * resources tagged queuing will be disabled. This is a less
24868 		 * than optimal behavior but the driver is unable to determine
24869 		 * the target state and assumes tagged queueing is not supported
24870 		 */
24871 		pkt->pkt_flags = 0;
24872 		un->un_tagflags = 0;
24873 
24874 		if (un->un_f_opt_queueing == TRUE) {
24875 			un->un_throttle = min(un->un_throttle, 3);
24876 		} else {
24877 			un->un_throttle = 1;
24878 		}
24879 		mutex_exit(SD_MUTEX(un));
24880 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24881 		mutex_enter(SD_MUTEX(un));
24882 		break;
24883 	case CMD_INCOMPLETE:
24884 		/*
24885 		 * The transport stopped with an abnormal state, fallthrough and
24886 		 * reset the target and/or bus unless selection did not complete
24887 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24888 		 * go through a target/bus reset
24889 		 */
24890 		if (pkt->pkt_state == STATE_GOT_BUS) {
24891 			break;
24892 		}
24893 		/*FALLTHROUGH*/
24894 
24895 	case CMD_TIMEOUT:
24896 	default:
24897 		/*
24898 		 * The lun may still be running the command, so a lun reset
24899 		 * should be attempted. If the lun reset fails or cannot be
24900 		 * issued, than try a target reset. Lastly try a bus reset.
24901 		 */
24902 		if ((pkt->pkt_statistics &
24903 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24904 			int reset_retval = 0;
24905 			mutex_exit(SD_MUTEX(un));
24906 			if (un->un_f_allow_bus_device_reset == TRUE) {
24907 				if (un->un_f_lun_reset_enabled == TRUE) {
24908 					reset_retval =
24909 					    scsi_reset(SD_ADDRESS(un),
24910 					    RESET_LUN);
24911 				}
24912 				if (reset_retval == 0) {
24913 					reset_retval =
24914 					    scsi_reset(SD_ADDRESS(un),
24915 					    RESET_TARGET);
24916 				}
24917 			}
24918 			if (reset_retval == 0) {
24919 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24920 			}
24921 			mutex_enter(SD_MUTEX(un));
24922 		}
24923 		break;
24924 	}
24925 
24926 	/* A device/bus reset has occurred; update the reservation status. */
24927 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24928 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24929 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24930 			un->un_resvd_status |=
24931 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24932 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24933 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24934 		}
24935 	}
24936 
24937 	/*
24938 	 * The disk has been turned off; Update the device state.
24939 	 *
24940 	 * Note: Should we be offlining the disk here?
24941 	 */
24942 	if (pkt->pkt_state == STATE_GOT_BUS) {
24943 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24944 		    "Disk not responding to selection\n");
24945 		if (un->un_state != SD_STATE_OFFLINE) {
24946 			New_state(un, SD_STATE_OFFLINE);
24947 		}
24948 	} else if (be_chatty) {
24949 		/*
24950 		 * suppress messages if they are all the same pkt reason;
24951 		 * with TQ, many (up to 256) are returned with the same
24952 		 * pkt_reason
24953 		 */
24954 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24955 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24956 			    "sd_mhd_watch_incomplete: "
24957 			    "SCSI transport failed: reason '%s'\n",
24958 			    scsi_rname(pkt->pkt_reason));
24959 		}
24960 	}
24961 	un->un_last_pkt_reason = pkt->pkt_reason;
24962 	mutex_exit(SD_MUTEX(un));
24963 }
24964 
24965 
24966 /*
24967  *    Function: sd_sname()
24968  *
24969  * Description: This is a simple little routine to return a string containing
24970  *		a printable description of command status byte for use in
24971  *		logging.
24972  *
24973  *   Arguments: status - pointer to a status byte
24974  *
24975  * Return Code: char * - string containing status description.
24976  */
24977 
24978 static char *
24979 sd_sname(uchar_t status)
24980 {
24981 	switch (status & STATUS_MASK) {
24982 	case STATUS_GOOD:
24983 		return ("good status");
24984 	case STATUS_CHECK:
24985 		return ("check condition");
24986 	case STATUS_MET:
24987 		return ("condition met");
24988 	case STATUS_BUSY:
24989 		return ("busy");
24990 	case STATUS_INTERMEDIATE:
24991 		return ("intermediate");
24992 	case STATUS_INTERMEDIATE_MET:
24993 		return ("intermediate - condition met");
24994 	case STATUS_RESERVATION_CONFLICT:
24995 		return ("reservation_conflict");
24996 	case STATUS_TERMINATED:
24997 		return ("command terminated");
24998 	case STATUS_QFULL:
24999 		return ("queue full");
25000 	default:
25001 		return ("<unknown status>");
25002 	}
25003 }
25004 
25005 
25006 /*
25007  *    Function: sd_mhd_resvd_recover()
25008  *
25009  * Description: This function adds a reservation entry to the
25010  *		sd_resv_reclaim_request list and signals the reservation
25011  *		reclaim thread that there is work pending. If the reservation
25012  *		reclaim thread has not been previously created this function
25013  *		will kick it off.
25014  *
25015  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25016  *			among multiple watches that share this callback function
25017  *
25018  *     Context: This routine is called by timeout() and is run in interrupt
25019  *		context. It must not sleep or call other functions which may
25020  *		sleep.
25021  */
25022 
25023 static void
25024 sd_mhd_resvd_recover(void *arg)
25025 {
25026 	dev_t			dev = (dev_t)arg;
25027 	struct sd_lun		*un;
25028 	struct sd_thr_request	*sd_treq = NULL;
25029 	struct sd_thr_request	*sd_cur = NULL;
25030 	struct sd_thr_request	*sd_prev = NULL;
25031 	int			already_there = 0;
25032 
25033 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25034 		return;
25035 	}
25036 
25037 	mutex_enter(SD_MUTEX(un));
25038 	un->un_resvd_timeid = NULL;
25039 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25040 		/*
25041 		 * There was a reset so don't issue the reserve, allow the
25042 		 * sd_mhd_watch_cb callback function to notice this and
25043 		 * reschedule the timeout for reservation.
25044 		 */
25045 		mutex_exit(SD_MUTEX(un));
25046 		return;
25047 	}
25048 	mutex_exit(SD_MUTEX(un));
25049 
25050 	/*
25051 	 * Add this device to the sd_resv_reclaim_request list and the
25052 	 * sd_resv_reclaim_thread should take care of the rest.
25053 	 *
25054 	 * Note: We can't sleep in this context so if the memory allocation
25055 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25056 	 * reschedule the timeout for reservation.  (4378460)
25057 	 */
25058 	sd_treq = (struct sd_thr_request *)
25059 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25060 	if (sd_treq == NULL) {
25061 		return;
25062 	}
25063 
25064 	sd_treq->sd_thr_req_next = NULL;
25065 	sd_treq->dev = dev;
25066 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25067 	if (sd_tr.srq_thr_req_head == NULL) {
25068 		sd_tr.srq_thr_req_head = sd_treq;
25069 	} else {
25070 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25071 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25072 			if (sd_cur->dev == dev) {
25073 				/*
25074 				 * already in Queue so don't log
25075 				 * another request for the device
25076 				 */
25077 				already_there = 1;
25078 				break;
25079 			}
25080 			sd_prev = sd_cur;
25081 		}
25082 		if (!already_there) {
25083 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25084 			    "logging request for %lx\n", dev);
25085 			sd_prev->sd_thr_req_next = sd_treq;
25086 		} else {
25087 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25088 		}
25089 	}
25090 
25091 	/*
25092 	 * Create a kernel thread to do the reservation reclaim and free up this
25093 	 * thread. We cannot block this thread while we go away to do the
25094 	 * reservation reclaim
25095 	 */
25096 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25097 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25098 		    sd_resv_reclaim_thread, NULL,
25099 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25100 
25101 	/* Tell the reservation reclaim thread that it has work to do */
25102 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25103 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25104 }
25105 
25106 /*
25107  *    Function: sd_resv_reclaim_thread()
25108  *
25109  * Description: This function implements the reservation reclaim operations
25110  *
25111  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25112  *		      among multiple watches that share this callback function
25113  */
25114 
25115 static void
25116 sd_resv_reclaim_thread()
25117 {
25118 	struct sd_lun		*un;
25119 	struct sd_thr_request	*sd_mhreq;
25120 
25121 	/* Wait for work */
25122 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25123 	if (sd_tr.srq_thr_req_head == NULL) {
25124 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25125 		    &sd_tr.srq_resv_reclaim_mutex);
25126 	}
25127 
25128 	/* Loop while we have work */
25129 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25130 		un = ddi_get_soft_state(sd_state,
25131 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25132 		if (un == NULL) {
25133 			/*
25134 			 * softstate structure is NULL so just
25135 			 * dequeue the request and continue
25136 			 */
25137 			sd_tr.srq_thr_req_head =
25138 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25139 			kmem_free(sd_tr.srq_thr_cur_req,
25140 			    sizeof (struct sd_thr_request));
25141 			continue;
25142 		}
25143 
25144 		/* dequeue the request */
25145 		sd_mhreq = sd_tr.srq_thr_cur_req;
25146 		sd_tr.srq_thr_req_head =
25147 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25148 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25149 
25150 		/*
25151 		 * Reclaim reservation only if SD_RESERVE is still set. There
25152 		 * may have been a call to MHIOCRELEASE before we got here.
25153 		 */
25154 		mutex_enter(SD_MUTEX(un));
25155 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25156 			/*
25157 			 * Note: The SD_LOST_RESERVE flag is cleared before
25158 			 * reclaiming the reservation. If this is done after the
25159 			 * call to sd_reserve_release a reservation loss in the
25160 			 * window between pkt completion of reserve cmd and
25161 			 * mutex_enter below may not be recognized
25162 			 */
25163 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25164 			mutex_exit(SD_MUTEX(un));
25165 
25166 			if (sd_reserve_release(sd_mhreq->dev,
25167 			    SD_RESERVE) == 0) {
25168 				mutex_enter(SD_MUTEX(un));
25169 				un->un_resvd_status |= SD_RESERVE;
25170 				mutex_exit(SD_MUTEX(un));
25171 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25172 				    "sd_resv_reclaim_thread: "
25173 				    "Reservation Recovered\n");
25174 			} else {
25175 				mutex_enter(SD_MUTEX(un));
25176 				un->un_resvd_status |= SD_LOST_RESERVE;
25177 				mutex_exit(SD_MUTEX(un));
25178 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25179 				    "sd_resv_reclaim_thread: Failed "
25180 				    "Reservation Recovery\n");
25181 			}
25182 		} else {
25183 			mutex_exit(SD_MUTEX(un));
25184 		}
25185 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25186 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25187 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25188 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25189 		/*
25190 		 * wakeup the destroy thread if anyone is waiting on
25191 		 * us to complete.
25192 		 */
25193 		cv_signal(&sd_tr.srq_inprocess_cv);
25194 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25195 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25196 	}
25197 
25198 	/*
25199 	 * cleanup the sd_tr structure now that this thread will not exist
25200 	 */
25201 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25202 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25203 	sd_tr.srq_resv_reclaim_thread = NULL;
25204 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25205 	thread_exit();
25206 }
25207 
25208 
25209 /*
25210  *    Function: sd_rmv_resv_reclaim_req()
25211  *
25212  * Description: This function removes any pending reservation reclaim requests
25213  *		for the specified device.
25214  *
25215  *   Arguments: dev - the device 'dev_t'
25216  */
25217 
25218 static void
25219 sd_rmv_resv_reclaim_req(dev_t dev)
25220 {
25221 	struct sd_thr_request *sd_mhreq;
25222 	struct sd_thr_request *sd_prev;
25223 
25224 	/* Remove a reservation reclaim request from the list */
25225 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25226 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25227 		/*
25228 		 * We are attempting to reinstate reservation for
25229 		 * this device. We wait for sd_reserve_release()
25230 		 * to return before we return.
25231 		 */
25232 		cv_wait(&sd_tr.srq_inprocess_cv,
25233 		    &sd_tr.srq_resv_reclaim_mutex);
25234 	} else {
25235 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25236 		if (sd_mhreq && sd_mhreq->dev == dev) {
25237 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25238 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25239 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25240 			return;
25241 		}
25242 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25243 			if (sd_mhreq && sd_mhreq->dev == dev) {
25244 				break;
25245 			}
25246 			sd_prev = sd_mhreq;
25247 		}
25248 		if (sd_mhreq != NULL) {
25249 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25250 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25251 		}
25252 	}
25253 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25254 }
25255 
25256 
25257 /*
25258  *    Function: sd_mhd_reset_notify_cb()
25259  *
25260  * Description: This is a call back function for scsi_reset_notify. This
25261  *		function updates the softstate reserved status and logs the
25262  *		reset. The driver scsi watch facility callback function
25263  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25264  *		will reclaim the reservation.
25265  *
25266  *   Arguments: arg  - driver soft state (unit) structure
25267  */
25268 
25269 static void
25270 sd_mhd_reset_notify_cb(caddr_t arg)
25271 {
25272 	struct sd_lun *un = (struct sd_lun *)arg;
25273 
25274 	mutex_enter(SD_MUTEX(un));
25275 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25276 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25277 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25278 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25279 	}
25280 	mutex_exit(SD_MUTEX(un));
25281 }
25282 
25283 
25284 /*
25285  *    Function: sd_take_ownership()
25286  *
25287  * Description: This routine implements an algorithm to achieve a stable
25288  *		reservation on disks which don't implement priority reserve,
25289  *		and makes sure that other host lose re-reservation attempts.
25290  *		This algorithm contains of a loop that keeps issuing the RESERVE
25291  *		for some period of time (min_ownership_delay, default 6 seconds)
25292  *		During that loop, it looks to see if there has been a bus device
25293  *		reset or bus reset (both of which cause an existing reservation
25294  *		to be lost). If the reservation is lost issue RESERVE until a
25295  *		period of min_ownership_delay with no resets has gone by, or
25296  *		until max_ownership_delay has expired. This loop ensures that
25297  *		the host really did manage to reserve the device, in spite of
25298  *		resets. The looping for min_ownership_delay (default six
25299  *		seconds) is important to early generation clustering products,
25300  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25301  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25302  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25303  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25304  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25305  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25306  *		no longer "owns" the disk and will have panicked itself.  Thus,
25307  *		the host issuing the MHIOCTKOWN is assured (with timing
25308  *		dependencies) that by the time it actually starts to use the
25309  *		disk for real work, the old owner is no longer accessing it.
25310  *
25311  *		min_ownership_delay is the minimum amount of time for which the
25312  *		disk must be reserved continuously devoid of resets before the
25313  *		MHIOCTKOWN ioctl will return success.
25314  *
25315  *		max_ownership_delay indicates the amount of time by which the
25316  *		take ownership should succeed or timeout with an error.
25317  *
25318  *   Arguments: dev - the device 'dev_t'
25319  *		*p  - struct containing timing info.
25320  *
25321  * Return Code: 0 for success or error code
25322  */
25323 
25324 static int
25325 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25326 {
25327 	struct sd_lun	*un;
25328 	int		rval;
25329 	int		err;
25330 	int		reservation_count   = 0;
25331 	int		min_ownership_delay =  6000000; /* in usec */
25332 	int		max_ownership_delay = 30000000; /* in usec */
25333 	clock_t		start_time;	/* starting time of this algorithm */
25334 	clock_t		end_time;	/* time limit for giving up */
25335 	clock_t		ownership_time;	/* time limit for stable ownership */
25336 	clock_t		current_time;
25337 	clock_t		previous_current_time;
25338 
25339 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25340 		return (ENXIO);
25341 	}
25342 
25343 	/*
25344 	 * Attempt a device reservation. A priority reservation is requested.
25345 	 */
25346 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25347 	    != SD_SUCCESS) {
25348 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25349 		    "sd_take_ownership: return(1)=%d\n", rval);
25350 		return (rval);
25351 	}
25352 
25353 	/* Update the softstate reserved status to indicate the reservation */
25354 	mutex_enter(SD_MUTEX(un));
25355 	un->un_resvd_status |= SD_RESERVE;
25356 	un->un_resvd_status &=
25357 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25358 	mutex_exit(SD_MUTEX(un));
25359 
25360 	if (p != NULL) {
25361 		if (p->min_ownership_delay != 0) {
25362 			min_ownership_delay = p->min_ownership_delay * 1000;
25363 		}
25364 		if (p->max_ownership_delay != 0) {
25365 			max_ownership_delay = p->max_ownership_delay * 1000;
25366 		}
25367 	}
25368 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25369 	    "sd_take_ownership: min, max delays: %d, %d\n",
25370 	    min_ownership_delay, max_ownership_delay);
25371 
25372 	start_time = ddi_get_lbolt();
25373 	current_time	= start_time;
25374 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25375 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25376 
25377 	while (current_time - end_time < 0) {
25378 		delay(drv_usectohz(500000));
25379 
25380 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25381 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25382 				mutex_enter(SD_MUTEX(un));
25383 				rval = (un->un_resvd_status &
25384 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25385 				mutex_exit(SD_MUTEX(un));
25386 				break;
25387 			}
25388 		}
25389 		previous_current_time = current_time;
25390 		current_time = ddi_get_lbolt();
25391 		mutex_enter(SD_MUTEX(un));
25392 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25393 			ownership_time = ddi_get_lbolt() +
25394 			    drv_usectohz(min_ownership_delay);
25395 			reservation_count = 0;
25396 		} else {
25397 			reservation_count++;
25398 		}
25399 		un->un_resvd_status |= SD_RESERVE;
25400 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25401 		mutex_exit(SD_MUTEX(un));
25402 
25403 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25404 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25405 		    "reservation=%s\n", (current_time - previous_current_time),
25406 		    reservation_count ? "ok" : "reclaimed");
25407 
25408 		if (current_time - ownership_time >= 0 &&
25409 		    reservation_count >= 4) {
25410 			rval = 0; /* Achieved a stable ownership */
25411 			break;
25412 		}
25413 		if (current_time - end_time >= 0) {
25414 			rval = EACCES; /* No ownership in max possible time */
25415 			break;
25416 		}
25417 	}
25418 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25419 	    "sd_take_ownership: return(2)=%d\n", rval);
25420 	return (rval);
25421 }
25422 
25423 
25424 /*
25425  *    Function: sd_reserve_release()
25426  *
25427  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25428  *		PRIORITY RESERVE commands based on a user specified command type
25429  *
25430  *   Arguments: dev - the device 'dev_t'
25431  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25432  *		      SD_RESERVE, SD_RELEASE
25433  *
25434  * Return Code: 0 or Error Code
25435  */
25436 
25437 static int
25438 sd_reserve_release(dev_t dev, int cmd)
25439 {
25440 	struct uscsi_cmd	*com = NULL;
25441 	struct sd_lun		*un = NULL;
25442 	char			cdb[CDB_GROUP0];
25443 	int			rval;
25444 
25445 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25446 	    (cmd == SD_PRIORITY_RESERVE));
25447 
25448 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25449 		return (ENXIO);
25450 	}
25451 
25452 	/* instantiate and initialize the command and cdb */
25453 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25454 	bzero(cdb, CDB_GROUP0);
25455 	com->uscsi_flags   = USCSI_SILENT;
25456 	com->uscsi_timeout = un->un_reserve_release_time;
25457 	com->uscsi_cdblen  = CDB_GROUP0;
25458 	com->uscsi_cdb	   = cdb;
25459 	if (cmd == SD_RELEASE) {
25460 		cdb[0] = SCMD_RELEASE;
25461 	} else {
25462 		cdb[0] = SCMD_RESERVE;
25463 	}
25464 
25465 	/* Send the command. */
25466 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25467 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25468 
25469 	/*
25470 	 * "break" a reservation that is held by another host, by issuing a
25471 	 * reset if priority reserve is desired, and we could not get the
25472 	 * device.
25473 	 */
25474 	if ((cmd == SD_PRIORITY_RESERVE) &&
25475 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25476 		/*
25477 		 * First try to reset the LUN. If we cannot, then try a target
25478 		 * reset, followed by a bus reset if the target reset fails.
25479 		 */
25480 		int reset_retval = 0;
25481 		if (un->un_f_lun_reset_enabled == TRUE) {
25482 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25483 		}
25484 		if (reset_retval == 0) {
25485 			/* The LUN reset either failed or was not issued */
25486 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25487 		}
25488 		if ((reset_retval == 0) &&
25489 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25490 			rval = EIO;
25491 			kmem_free(com, sizeof (*com));
25492 			return (rval);
25493 		}
25494 
25495 		bzero(com, sizeof (struct uscsi_cmd));
25496 		com->uscsi_flags   = USCSI_SILENT;
25497 		com->uscsi_cdb	   = cdb;
25498 		com->uscsi_cdblen  = CDB_GROUP0;
25499 		com->uscsi_timeout = 5;
25500 
25501 		/*
25502 		 * Reissue the last reserve command, this time without request
25503 		 * sense.  Assume that it is just a regular reserve command.
25504 		 */
25505 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25506 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25507 	}
25508 
25509 	/* Return an error if still getting a reservation conflict. */
25510 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25511 		rval = EACCES;
25512 	}
25513 
25514 	kmem_free(com, sizeof (*com));
25515 	return (rval);
25516 }
25517 
25518 
25519 #define	SD_NDUMP_RETRIES	12
25520 /*
25521  *	System Crash Dump routine
25522  */
25523 
25524 static int
25525 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25526 {
25527 	int		instance;
25528 	int		partition;
25529 	int		i;
25530 	int		err;
25531 	struct sd_lun	*un;
25532 	struct dk_map	*lp;
25533 	struct scsi_pkt *wr_pktp;
25534 	struct buf	*wr_bp;
25535 	struct buf	wr_buf;
25536 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25537 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25538 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25539 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25540 	size_t		io_start_offset;
25541 	int		doing_rmw = FALSE;
25542 	int		rval;
25543 #if defined(__i386) || defined(__amd64)
25544 	ssize_t dma_resid;
25545 	daddr_t oblkno;
25546 #endif
25547 
25548 	instance = SDUNIT(dev);
25549 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25550 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25551 		return (ENXIO);
25552 	}
25553 
25554 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25555 
25556 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25557 
25558 	partition = SDPART(dev);
25559 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25560 
25561 	/* Validate blocks to dump at against partition size. */
25562 	lp = &un->un_map[partition];
25563 	if ((blkno + nblk) > lp->dkl_nblk) {
25564 		SD_TRACE(SD_LOG_DUMP, un,
25565 		    "sddump: dump range larger than partition: "
25566 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25567 		    blkno, nblk, lp->dkl_nblk);
25568 		return (EINVAL);
25569 	}
25570 
25571 	mutex_enter(&un->un_pm_mutex);
25572 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25573 		struct scsi_pkt *start_pktp;
25574 
25575 		mutex_exit(&un->un_pm_mutex);
25576 
25577 		/*
25578 		 * use pm framework to power on HBA 1st
25579 		 */
25580 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25581 
25582 		/*
25583 		 * Dump no long uses sdpower to power on a device, it's
25584 		 * in-line here so it can be done in polled mode.
25585 		 */
25586 
25587 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25588 
25589 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25590 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25591 
25592 		if (start_pktp == NULL) {
25593 			/* We were not given a SCSI packet, fail. */
25594 			return (EIO);
25595 		}
25596 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25597 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25598 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25599 		start_pktp->pkt_flags = FLAG_NOINTR;
25600 
25601 		mutex_enter(SD_MUTEX(un));
25602 		SD_FILL_SCSI1_LUN(un, start_pktp);
25603 		mutex_exit(SD_MUTEX(un));
25604 		/*
25605 		 * Scsi_poll returns 0 (success) if the command completes and
25606 		 * the status block is STATUS_GOOD.
25607 		 */
25608 		if (sd_scsi_poll(un, start_pktp) != 0) {
25609 			scsi_destroy_pkt(start_pktp);
25610 			return (EIO);
25611 		}
25612 		scsi_destroy_pkt(start_pktp);
25613 		(void) sd_ddi_pm_resume(un);
25614 	} else {
25615 		mutex_exit(&un->un_pm_mutex);
25616 	}
25617 
25618 	mutex_enter(SD_MUTEX(un));
25619 	un->un_throttle = 0;
25620 
25621 	/*
25622 	 * The first time through, reset the specific target device.
25623 	 * However, when cpr calls sddump we know that sd is in a
25624 	 * a good state so no bus reset is required.
25625 	 * Clear sense data via Request Sense cmd.
25626 	 * In sddump we don't care about allow_bus_device_reset anymore
25627 	 */
25628 
25629 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25630 	    (un->un_state != SD_STATE_DUMPING)) {
25631 
25632 		New_state(un, SD_STATE_DUMPING);
25633 
25634 		if (un->un_f_is_fibre == FALSE) {
25635 			mutex_exit(SD_MUTEX(un));
25636 			/*
25637 			 * Attempt a bus reset for parallel scsi.
25638 			 *
25639 			 * Note: A bus reset is required because on some host
25640 			 * systems (i.e. E420R) a bus device reset is
25641 			 * insufficient to reset the state of the target.
25642 			 *
25643 			 * Note: Don't issue the reset for fibre-channel,
25644 			 * because this tends to hang the bus (loop) for
25645 			 * too long while everyone is logging out and in
25646 			 * and the deadman timer for dumping will fire
25647 			 * before the dump is complete.
25648 			 */
25649 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25650 				mutex_enter(SD_MUTEX(un));
25651 				Restore_state(un);
25652 				mutex_exit(SD_MUTEX(un));
25653 				return (EIO);
25654 			}
25655 
25656 			/* Delay to give the device some recovery time. */
25657 			drv_usecwait(10000);
25658 
25659 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25660 				SD_INFO(SD_LOG_DUMP, un,
25661 					"sddump: sd_send_polled_RQS failed\n");
25662 			}
25663 			mutex_enter(SD_MUTEX(un));
25664 		}
25665 	}
25666 
25667 	/*
25668 	 * Convert the partition-relative block number to a
25669 	 * disk physical block number.
25670 	 */
25671 	blkno += un->un_offset[partition];
25672 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25673 
25674 
25675 	/*
25676 	 * Check if the device has a non-512 block size.
25677 	 */
25678 	wr_bp = NULL;
25679 	if (NOT_DEVBSIZE(un)) {
25680 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25681 		tgt_byte_count = nblk * un->un_sys_blocksize;
25682 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25683 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25684 			doing_rmw = TRUE;
25685 			/*
25686 			 * Calculate the block number and number of block
25687 			 * in terms of the media block size.
25688 			 */
25689 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25690 			tgt_nblk =
25691 			    ((tgt_byte_offset + tgt_byte_count +
25692 				(un->un_tgt_blocksize - 1)) /
25693 				un->un_tgt_blocksize) - tgt_blkno;
25694 
25695 			/*
25696 			 * Invoke the routine which is going to do read part
25697 			 * of read-modify-write.
25698 			 * Note that this routine returns a pointer to
25699 			 * a valid bp in wr_bp.
25700 			 */
25701 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25702 			    &wr_bp);
25703 			if (err) {
25704 				mutex_exit(SD_MUTEX(un));
25705 				return (err);
25706 			}
25707 			/*
25708 			 * Offset is being calculated as -
25709 			 * (original block # * system block size) -
25710 			 * (new block # * target block size)
25711 			 */
25712 			io_start_offset =
25713 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25714 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25715 
25716 			ASSERT((io_start_offset >= 0) &&
25717 			    (io_start_offset < un->un_tgt_blocksize));
25718 			/*
25719 			 * Do the modify portion of read modify write.
25720 			 */
25721 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25722 			    (size_t)nblk * un->un_sys_blocksize);
25723 		} else {
25724 			doing_rmw = FALSE;
25725 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25726 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25727 		}
25728 
25729 		/* Convert blkno and nblk to target blocks */
25730 		blkno = tgt_blkno;
25731 		nblk = tgt_nblk;
25732 	} else {
25733 		wr_bp = &wr_buf;
25734 		bzero(wr_bp, sizeof (struct buf));
25735 		wr_bp->b_flags		= B_BUSY;
25736 		wr_bp->b_un.b_addr	= addr;
25737 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25738 		wr_bp->b_resid		= 0;
25739 	}
25740 
25741 	mutex_exit(SD_MUTEX(un));
25742 
25743 	/*
25744 	 * Obtain a SCSI packet for the write command.
25745 	 * It should be safe to call the allocator here without
25746 	 * worrying about being locked for DVMA mapping because
25747 	 * the address we're passed is already a DVMA mapping
25748 	 *
25749 	 * We are also not going to worry about semaphore ownership
25750 	 * in the dump buffer. Dumping is single threaded at present.
25751 	 */
25752 
25753 	wr_pktp = NULL;
25754 
25755 #if defined(__i386) || defined(__amd64)
25756 	dma_resid = wr_bp->b_bcount;
25757 	oblkno = blkno;
25758 	while (dma_resid != 0) {
25759 #endif
25760 
25761 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25762 		wr_bp->b_flags &= ~B_ERROR;
25763 
25764 #if defined(__i386) || defined(__amd64)
25765 		blkno = oblkno +
25766 			((wr_bp->b_bcount - dma_resid) /
25767 			    un->un_tgt_blocksize);
25768 		nblk = dma_resid / un->un_tgt_blocksize;
25769 
25770 		if (wr_pktp) {
25771 			/* Partial DMA transfers after initial transfer */
25772 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25773 			    blkno, nblk);
25774 		} else {
25775 			/* Initial transfer */
25776 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25777 			    un->un_pkt_flags, NULL_FUNC, NULL,
25778 			    blkno, nblk);
25779 		}
25780 #else
25781 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25782 		    0, NULL_FUNC, NULL, blkno, nblk);
25783 #endif
25784 
25785 		if (rval == 0) {
25786 			/* We were given a SCSI packet, continue. */
25787 			break;
25788 		}
25789 
25790 		if (i == 0) {
25791 			if (wr_bp->b_flags & B_ERROR) {
25792 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25793 				    "no resources for dumping; "
25794 				    "error code: 0x%x, retrying",
25795 				    geterror(wr_bp));
25796 			} else {
25797 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25798 				    "no resources for dumping; retrying");
25799 			}
25800 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25801 			if (wr_bp->b_flags & B_ERROR) {
25802 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25803 				    "no resources for dumping; error code: "
25804 				    "0x%x, retrying\n", geterror(wr_bp));
25805 			}
25806 		} else {
25807 			if (wr_bp->b_flags & B_ERROR) {
25808 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25809 				    "no resources for dumping; "
25810 				    "error code: 0x%x, retries failed, "
25811 				    "giving up.\n", geterror(wr_bp));
25812 			} else {
25813 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25814 				    "no resources for dumping; "
25815 				    "retries failed, giving up.\n");
25816 			}
25817 			mutex_enter(SD_MUTEX(un));
25818 			Restore_state(un);
25819 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25820 				mutex_exit(SD_MUTEX(un));
25821 				scsi_free_consistent_buf(wr_bp);
25822 			} else {
25823 				mutex_exit(SD_MUTEX(un));
25824 			}
25825 			return (EIO);
25826 		}
25827 		drv_usecwait(10000);
25828 	}
25829 
25830 #if defined(__i386) || defined(__amd64)
25831 	/*
25832 	 * save the resid from PARTIAL_DMA
25833 	 */
25834 	dma_resid = wr_pktp->pkt_resid;
25835 	if (dma_resid != 0)
25836 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
25837 	wr_pktp->pkt_resid = 0;
25838 #endif
25839 
25840 	/* SunBug 1222170 */
25841 	wr_pktp->pkt_flags = FLAG_NOINTR;
25842 
25843 	err = EIO;
25844 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25845 
25846 		/*
25847 		 * Scsi_poll returns 0 (success) if the command completes and
25848 		 * the status block is STATUS_GOOD.  We should only check
25849 		 * errors if this condition is not true.  Even then we should
25850 		 * send our own request sense packet only if we have a check
25851 		 * condition and auto request sense has not been performed by
25852 		 * the hba.
25853 		 */
25854 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
25855 
25856 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
25857 		    (wr_pktp->pkt_resid == 0)) {
25858 			err = SD_SUCCESS;
25859 			break;
25860 		}
25861 
25862 		/*
25863 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
25864 		 */
25865 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25866 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25867 			    "Device is gone\n");
25868 			break;
25869 		}
25870 
25871 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25872 			SD_INFO(SD_LOG_DUMP, un,
25873 			    "sddump: write failed with CHECK, try # %d\n", i);
25874 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25875 				(void) sd_send_polled_RQS(un);
25876 			}
25877 
25878 			continue;
25879 		}
25880 
25881 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25882 			int reset_retval = 0;
25883 
25884 			SD_INFO(SD_LOG_DUMP, un,
25885 			    "sddump: write failed with BUSY, try # %d\n", i);
25886 
25887 			if (un->un_f_lun_reset_enabled == TRUE) {
25888 				reset_retval = scsi_reset(SD_ADDRESS(un),
25889 				    RESET_LUN);
25890 			}
25891 			if (reset_retval == 0) {
25892 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25893 			}
25894 			(void) sd_send_polled_RQS(un);
25895 
25896 		} else {
25897 			SD_INFO(SD_LOG_DUMP, un,
25898 			    "sddump: write failed with 0x%x, try # %d\n",
25899 			    SD_GET_PKT_STATUS(wr_pktp), i);
25900 			mutex_enter(SD_MUTEX(un));
25901 			sd_reset_target(un, wr_pktp);
25902 			mutex_exit(SD_MUTEX(un));
25903 		}
25904 
25905 		/*
25906 		 * If we are not getting anywhere with lun/target resets,
25907 		 * let's reset the bus.
25908 		 */
25909 		if (i == SD_NDUMP_RETRIES/2) {
25910 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25911 			(void) sd_send_polled_RQS(un);
25912 		}
25913 
25914 	}
25915 #if defined(__i386) || defined(__amd64)
25916 	}	/* dma_resid */
25917 #endif
25918 
25919 	scsi_destroy_pkt(wr_pktp);
25920 	mutex_enter(SD_MUTEX(un));
25921 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25922 		mutex_exit(SD_MUTEX(un));
25923 		scsi_free_consistent_buf(wr_bp);
25924 	} else {
25925 		mutex_exit(SD_MUTEX(un));
25926 	}
25927 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25928 	return (err);
25929 }
25930 
25931 /*
25932  *    Function: sd_scsi_poll()
25933  *
25934  * Description: This is a wrapper for the scsi_poll call.
25935  *
25936  *   Arguments: sd_lun - The unit structure
25937  *              scsi_pkt - The scsi packet being sent to the device.
25938  *
25939  * Return Code: 0 - Command completed successfully with good status
25940  *             -1 - Command failed.  This could indicate a check condition
25941  *                  or other status value requiring recovery action.
25942  *
25943  */
25944 
25945 static int
25946 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25947 {
25948 	int status;
25949 
25950 	ASSERT(un != NULL);
25951 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25952 	ASSERT(pktp != NULL);
25953 
25954 	status = SD_SUCCESS;
25955 
25956 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25957 		pktp->pkt_flags |= un->un_tagflags;
25958 		pktp->pkt_flags &= ~FLAG_NODISCON;
25959 	}
25960 
25961 	status = sd_ddi_scsi_poll(pktp);
25962 	/*
25963 	 * Scsi_poll returns 0 (success) if the command completes and the
25964 	 * status block is STATUS_GOOD.  We should only check errors if this
25965 	 * condition is not true.  Even then we should send our own request
25966 	 * sense packet only if we have a check condition and auto
25967 	 * request sense has not been performed by the hba.
25968 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25969 	 */
25970 	if ((status != SD_SUCCESS) &&
25971 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25972 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25973 	    (pktp->pkt_reason != CMD_DEV_GONE))
25974 		(void) sd_send_polled_RQS(un);
25975 
25976 	return (status);
25977 }
25978 
25979 /*
25980  *    Function: sd_send_polled_RQS()
25981  *
25982  * Description: This sends the request sense command to a device.
25983  *
25984  *   Arguments: sd_lun - The unit structure
25985  *
25986  * Return Code: 0 - Command completed successfully with good status
25987  *             -1 - Command failed.
25988  *
25989  */
25990 
25991 static int
25992 sd_send_polled_RQS(struct sd_lun *un)
25993 {
25994 	int	ret_val;
25995 	struct	scsi_pkt	*rqs_pktp;
25996 	struct	buf		*rqs_bp;
25997 
25998 	ASSERT(un != NULL);
25999 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26000 
26001 	ret_val = SD_SUCCESS;
26002 
26003 	rqs_pktp = un->un_rqs_pktp;
26004 	rqs_bp	 = un->un_rqs_bp;
26005 
26006 	mutex_enter(SD_MUTEX(un));
26007 
26008 	if (un->un_sense_isbusy) {
26009 		ret_val = SD_FAILURE;
26010 		mutex_exit(SD_MUTEX(un));
26011 		return (ret_val);
26012 	}
26013 
26014 	/*
26015 	 * If the request sense buffer (and packet) is not in use,
26016 	 * let's set the un_sense_isbusy and send our packet
26017 	 */
26018 	un->un_sense_isbusy 	= 1;
26019 	rqs_pktp->pkt_resid  	= 0;
26020 	rqs_pktp->pkt_reason 	= 0;
26021 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26022 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26023 
26024 	mutex_exit(SD_MUTEX(un));
26025 
26026 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26027 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26028 
26029 	/*
26030 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26031 	 * axle - it has a call into us!
26032 	 */
26033 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26034 		SD_INFO(SD_LOG_COMMON, un,
26035 		    "sd_send_polled_RQS: RQS failed\n");
26036 	}
26037 
26038 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26039 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26040 
26041 	mutex_enter(SD_MUTEX(un));
26042 	un->un_sense_isbusy = 0;
26043 	mutex_exit(SD_MUTEX(un));
26044 
26045 	return (ret_val);
26046 }
26047 
26048 /*
26049  * Defines needed for localized version of the scsi_poll routine.
26050  */
26051 #define	SD_CSEC		10000			/* usecs */
26052 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26053 
26054 
26055 /*
26056  *    Function: sd_ddi_scsi_poll()
26057  *
26058  * Description: Localized version of the scsi_poll routine.  The purpose is to
26059  *		send a scsi_pkt to a device as a polled command.  This version
26060  *		is to ensure more robust handling of transport errors.
26061  *		Specifically this routine cures not ready, coming ready
26062  *		transition for power up and reset of sonoma's.  This can take
26063  *		up to 45 seconds for power-on and 20 seconds for reset of a
26064  * 		sonoma lun.
26065  *
26066  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26067  *
26068  * Return Code: 0 - Command completed successfully with good status
26069  *             -1 - Command failed.
26070  *
26071  */
26072 
26073 static int
26074 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26075 {
26076 	int busy_count;
26077 	int timeout;
26078 	int rval = SD_FAILURE;
26079 	int savef;
26080 	struct scsi_extended_sense *sensep;
26081 	long savet;
26082 	void (*savec)();
26083 	/*
26084 	 * The following is defined in machdep.c and is used in determining if
26085 	 * the scsi transport system will do polled I/O instead of interrupt
26086 	 * I/O when called from xx_dump().
26087 	 */
26088 	extern int do_polled_io;
26089 
26090 	/*
26091 	 * save old flags in pkt, to restore at end
26092 	 */
26093 	savef = pkt->pkt_flags;
26094 	savec = pkt->pkt_comp;
26095 	savet = pkt->pkt_time;
26096 
26097 	pkt->pkt_flags |= FLAG_NOINTR;
26098 
26099 	/*
26100 	 * XXX there is nothing in the SCSA spec that states that we should not
26101 	 * do a callback for polled cmds; however, removing this will break sd
26102 	 * and probably other target drivers
26103 	 */
26104 	pkt->pkt_comp = NULL;
26105 
26106 	/*
26107 	 * we don't like a polled command without timeout.
26108 	 * 60 seconds seems long enough.
26109 	 */
26110 	if (pkt->pkt_time == 0) {
26111 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26112 	}
26113 
26114 	/*
26115 	 * Send polled cmd.
26116 	 *
26117 	 * We do some error recovery for various errors.  Tran_busy,
26118 	 * queue full, and non-dispatched commands are retried every 10 msec.
26119 	 * as they are typically transient failures.  Busy status and Not
26120 	 * Ready are retried every second as this status takes a while to
26121 	 * change.  Unit attention is retried for pkt_time (60) times
26122 	 * with no delay.
26123 	 */
26124 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26125 
26126 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26127 		int rc;
26128 		int poll_delay;
26129 
26130 		/*
26131 		 * Initialize pkt status variables.
26132 		 */
26133 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26134 
26135 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26136 			if (rc != TRAN_BUSY) {
26137 				/* Transport failed - give up. */
26138 				break;
26139 			} else {
26140 				/* Transport busy - try again. */
26141 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26142 			}
26143 		} else {
26144 			/*
26145 			 * Transport accepted - check pkt status.
26146 			 */
26147 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26148 			if (pkt->pkt_reason == CMD_CMPLT &&
26149 			    rc == STATUS_CHECK &&
26150 			    pkt->pkt_state & STATE_ARQ_DONE) {
26151 				struct scsi_arq_status *arqstat =
26152 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26153 
26154 				sensep = &arqstat->sts_sensedata;
26155 			} else {
26156 				sensep = NULL;
26157 			}
26158 
26159 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26160 			    (rc == STATUS_GOOD)) {
26161 				/* No error - we're done */
26162 				rval = SD_SUCCESS;
26163 				break;
26164 
26165 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26166 				/* Lost connection - give up */
26167 				break;
26168 
26169 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26170 			    (pkt->pkt_state == 0)) {
26171 				/* Pkt not dispatched - try again. */
26172 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26173 
26174 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26175 			    (rc == STATUS_QFULL)) {
26176 				/* Queue full - try again. */
26177 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26178 
26179 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26180 			    (rc == STATUS_BUSY)) {
26181 				/* Busy - try again. */
26182 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26183 				busy_count += (SD_SEC_TO_CSEC - 1);
26184 
26185 			} else if ((sensep != NULL) &&
26186 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26187 				/* Unit Attention - try again */
26188 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26189 				continue;
26190 
26191 			} else if ((sensep != NULL) &&
26192 			    (sensep->es_key == KEY_NOT_READY) &&
26193 			    (sensep->es_add_code == 0x04) &&
26194 			    (sensep->es_qual_code == 0x01)) {
26195 				/* Not ready -> ready - try again. */
26196 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26197 				busy_count += (SD_SEC_TO_CSEC - 1);
26198 
26199 			} else {
26200 				/* BAD status - give up. */
26201 				break;
26202 			}
26203 		}
26204 
26205 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26206 		    !do_polled_io) {
26207 			delay(drv_usectohz(poll_delay));
26208 		} else {
26209 			/* we busy wait during cpr_dump or interrupt threads */
26210 			drv_usecwait(poll_delay);
26211 		}
26212 	}
26213 
26214 	pkt->pkt_flags = savef;
26215 	pkt->pkt_comp = savec;
26216 	pkt->pkt_time = savet;
26217 	return (rval);
26218 }
26219 
26220 
26221 /*
26222  *    Function: sd_persistent_reservation_in_read_keys
26223  *
26224  * Description: This routine is the driver entry point for handling CD-ROM
26225  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26226  *		by sending the SCSI-3 PRIN commands to the device.
26227  *		Processes the read keys command response by copying the
26228  *		reservation key information into the user provided buffer.
26229  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26230  *
26231  *   Arguments: un   -  Pointer to soft state struct for the target.
26232  *		usrp -	user provided pointer to multihost Persistent In Read
26233  *			Keys structure (mhioc_inkeys_t)
26234  *		flag -	this argument is a pass through to ddi_copyxxx()
26235  *			directly from the mode argument of ioctl().
26236  *
26237  * Return Code: 0   - Success
26238  *		EACCES
26239  *		ENOTSUP
26240  *		errno return code from sd_send_scsi_cmd()
26241  *
26242  *     Context: Can sleep. Does not return until command is completed.
26243  */
26244 
26245 static int
26246 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26247     mhioc_inkeys_t *usrp, int flag)
26248 {
26249 #ifdef _MULTI_DATAMODEL
26250 	struct mhioc_key_list32	li32;
26251 #endif
26252 	sd_prin_readkeys_t	*in;
26253 	mhioc_inkeys_t		*ptr;
26254 	mhioc_key_list_t	li;
26255 	uchar_t			*data_bufp;
26256 	int 			data_len;
26257 	int			rval;
26258 	size_t			copysz;
26259 
26260 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26261 		return (EINVAL);
26262 	}
26263 	bzero(&li, sizeof (mhioc_key_list_t));
26264 
26265 	/*
26266 	 * Get the listsize from user
26267 	 */
26268 #ifdef _MULTI_DATAMODEL
26269 
26270 	switch (ddi_model_convert_from(flag & FMODELS)) {
26271 	case DDI_MODEL_ILP32:
26272 		copysz = sizeof (struct mhioc_key_list32);
26273 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26274 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26275 			    "sd_persistent_reservation_in_read_keys: "
26276 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26277 			rval = EFAULT;
26278 			goto done;
26279 		}
26280 		li.listsize = li32.listsize;
26281 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26282 		break;
26283 
26284 	case DDI_MODEL_NONE:
26285 		copysz = sizeof (mhioc_key_list_t);
26286 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26287 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26288 			    "sd_persistent_reservation_in_read_keys: "
26289 			    "failed ddi_copyin: mhioc_key_list_t\n");
26290 			rval = EFAULT;
26291 			goto done;
26292 		}
26293 		break;
26294 	}
26295 
26296 #else /* ! _MULTI_DATAMODEL */
26297 	copysz = sizeof (mhioc_key_list_t);
26298 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26299 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26300 		    "sd_persistent_reservation_in_read_keys: "
26301 		    "failed ddi_copyin: mhioc_key_list_t\n");
26302 		rval = EFAULT;
26303 		goto done;
26304 	}
26305 #endif
26306 
26307 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26308 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26309 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26310 
26311 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26312 	    data_len, data_bufp)) != 0) {
26313 		goto done;
26314 	}
26315 	in = (sd_prin_readkeys_t *)data_bufp;
26316 	ptr->generation = BE_32(in->generation);
26317 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26318 
26319 	/*
26320 	 * Return the min(listsize, listlen) keys
26321 	 */
26322 #ifdef _MULTI_DATAMODEL
26323 
26324 	switch (ddi_model_convert_from(flag & FMODELS)) {
26325 	case DDI_MODEL_ILP32:
26326 		li32.listlen = li.listlen;
26327 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26328 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26329 			    "sd_persistent_reservation_in_read_keys: "
26330 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26331 			rval = EFAULT;
26332 			goto done;
26333 		}
26334 		break;
26335 
26336 	case DDI_MODEL_NONE:
26337 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26338 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26339 			    "sd_persistent_reservation_in_read_keys: "
26340 			    "failed ddi_copyout: mhioc_key_list_t\n");
26341 			rval = EFAULT;
26342 			goto done;
26343 		}
26344 		break;
26345 	}
26346 
26347 #else /* ! _MULTI_DATAMODEL */
26348 
26349 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26350 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26351 		    "sd_persistent_reservation_in_read_keys: "
26352 		    "failed ddi_copyout: mhioc_key_list_t\n");
26353 		rval = EFAULT;
26354 		goto done;
26355 	}
26356 
26357 #endif /* _MULTI_DATAMODEL */
26358 
26359 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26360 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26361 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26362 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26363 		    "sd_persistent_reservation_in_read_keys: "
26364 		    "failed ddi_copyout: keylist\n");
26365 		rval = EFAULT;
26366 	}
26367 done:
26368 	kmem_free(data_bufp, data_len);
26369 	return (rval);
26370 }
26371 
26372 
26373 /*
26374  *    Function: sd_persistent_reservation_in_read_resv
26375  *
26376  * Description: This routine is the driver entry point for handling CD-ROM
26377  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26378  *		by sending the SCSI-3 PRIN commands to the device.
26379  *		Process the read persistent reservations command response by
26380  *		copying the reservation information into the user provided
26381  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26382  *
26383  *   Arguments: un   -  Pointer to soft state struct for the target.
26384  *		usrp -	user provided pointer to multihost Persistent In Read
26385  *			Keys structure (mhioc_inkeys_t)
26386  *		flag -	this argument is a pass through to ddi_copyxxx()
26387  *			directly from the mode argument of ioctl().
26388  *
26389  * Return Code: 0   - Success
26390  *		EACCES
26391  *		ENOTSUP
26392  *		errno return code from sd_send_scsi_cmd()
26393  *
26394  *     Context: Can sleep. Does not return until command is completed.
26395  */
26396 
26397 static int
26398 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26399     mhioc_inresvs_t *usrp, int flag)
26400 {
26401 #ifdef _MULTI_DATAMODEL
26402 	struct mhioc_resv_desc_list32 resvlist32;
26403 #endif
26404 	sd_prin_readresv_t	*in;
26405 	mhioc_inresvs_t		*ptr;
26406 	sd_readresv_desc_t	*readresv_ptr;
26407 	mhioc_resv_desc_list_t	resvlist;
26408 	mhioc_resv_desc_t 	resvdesc;
26409 	uchar_t			*data_bufp;
26410 	int 			data_len;
26411 	int			rval;
26412 	int			i;
26413 	size_t			copysz;
26414 	mhioc_resv_desc_t	*bufp;
26415 
26416 	if ((ptr = usrp) == NULL) {
26417 		return (EINVAL);
26418 	}
26419 
26420 	/*
26421 	 * Get the listsize from user
26422 	 */
26423 #ifdef _MULTI_DATAMODEL
26424 	switch (ddi_model_convert_from(flag & FMODELS)) {
26425 	case DDI_MODEL_ILP32:
26426 		copysz = sizeof (struct mhioc_resv_desc_list32);
26427 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26428 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26429 			    "sd_persistent_reservation_in_read_resv: "
26430 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26431 			rval = EFAULT;
26432 			goto done;
26433 		}
26434 		resvlist.listsize = resvlist32.listsize;
26435 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26436 		break;
26437 
26438 	case DDI_MODEL_NONE:
26439 		copysz = sizeof (mhioc_resv_desc_list_t);
26440 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26441 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26442 			    "sd_persistent_reservation_in_read_resv: "
26443 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26444 			rval = EFAULT;
26445 			goto done;
26446 		}
26447 		break;
26448 	}
26449 #else /* ! _MULTI_DATAMODEL */
26450 	copysz = sizeof (mhioc_resv_desc_list_t);
26451 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26452 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26453 		    "sd_persistent_reservation_in_read_resv: "
26454 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26455 		rval = EFAULT;
26456 		goto done;
26457 	}
26458 #endif /* ! _MULTI_DATAMODEL */
26459 
26460 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26461 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26462 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26463 
26464 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26465 	    data_len, data_bufp)) != 0) {
26466 		goto done;
26467 	}
26468 	in = (sd_prin_readresv_t *)data_bufp;
26469 	ptr->generation = BE_32(in->generation);
26470 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26471 
26472 	/*
26473 	 * Return the min(listsize, listlen( keys
26474 	 */
26475 #ifdef _MULTI_DATAMODEL
26476 
26477 	switch (ddi_model_convert_from(flag & FMODELS)) {
26478 	case DDI_MODEL_ILP32:
26479 		resvlist32.listlen = resvlist.listlen;
26480 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26481 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26482 			    "sd_persistent_reservation_in_read_resv: "
26483 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26484 			rval = EFAULT;
26485 			goto done;
26486 		}
26487 		break;
26488 
26489 	case DDI_MODEL_NONE:
26490 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26491 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26492 			    "sd_persistent_reservation_in_read_resv: "
26493 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26494 			rval = EFAULT;
26495 			goto done;
26496 		}
26497 		break;
26498 	}
26499 
26500 #else /* ! _MULTI_DATAMODEL */
26501 
26502 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26503 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26504 		    "sd_persistent_reservation_in_read_resv: "
26505 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26506 		rval = EFAULT;
26507 		goto done;
26508 	}
26509 
26510 #endif /* ! _MULTI_DATAMODEL */
26511 
26512 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26513 	bufp = resvlist.list;
26514 	copysz = sizeof (mhioc_resv_desc_t);
26515 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26516 	    i++, readresv_ptr++, bufp++) {
26517 
26518 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26519 		    MHIOC_RESV_KEY_SIZE);
26520 		resvdesc.type  = readresv_ptr->type;
26521 		resvdesc.scope = readresv_ptr->scope;
26522 		resvdesc.scope_specific_addr =
26523 		    BE_32(readresv_ptr->scope_specific_addr);
26524 
26525 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26526 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26527 			    "sd_persistent_reservation_in_read_resv: "
26528 			    "failed ddi_copyout: resvlist\n");
26529 			rval = EFAULT;
26530 			goto done;
26531 		}
26532 	}
26533 done:
26534 	kmem_free(data_bufp, data_len);
26535 	return (rval);
26536 }
26537 
26538 
26539 /*
26540  *    Function: sr_change_blkmode()
26541  *
26542  * Description: This routine is the driver entry point for handling CD-ROM
26543  *		block mode ioctl requests. Support for returning and changing
26544  *		the current block size in use by the device is implemented. The
26545  *		LBA size is changed via a MODE SELECT Block Descriptor.
26546  *
26547  *		This routine issues a mode sense with an allocation length of
26548  *		12 bytes for the mode page header and a single block descriptor.
26549  *
26550  *   Arguments: dev - the device 'dev_t'
26551  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26552  *		      CDROMSBLKMODE (set)
26553  *		data - current block size or requested block size
26554  *		flag - this argument is a pass through to ddi_copyxxx() directly
26555  *		       from the mode argument of ioctl().
26556  *
26557  * Return Code: the code returned by sd_send_scsi_cmd()
26558  *		EINVAL if invalid arguments are provided
26559  *		EFAULT if ddi_copyxxx() fails
26560  *		ENXIO if fail ddi_get_soft_state
26561  *		EIO if invalid mode sense block descriptor length
26562  *
26563  */
26564 
26565 static int
26566 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26567 {
26568 	struct sd_lun			*un = NULL;
26569 	struct mode_header		*sense_mhp, *select_mhp;
26570 	struct block_descriptor		*sense_desc, *select_desc;
26571 	int				current_bsize;
26572 	int				rval = EINVAL;
26573 	uchar_t				*sense = NULL;
26574 	uchar_t				*select = NULL;
26575 
26576 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26577 
26578 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26579 		return (ENXIO);
26580 	}
26581 
26582 	/*
26583 	 * The block length is changed via the Mode Select block descriptor, the
26584 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26585 	 * required as part of this routine. Therefore the mode sense allocation
26586 	 * length is specified to be the length of a mode page header and a
26587 	 * block descriptor.
26588 	 */
26589 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26590 
26591 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26592 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26593 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26594 		    "sr_change_blkmode: Mode Sense Failed\n");
26595 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26596 		return (rval);
26597 	}
26598 
26599 	/* Check the block descriptor len to handle only 1 block descriptor */
26600 	sense_mhp = (struct mode_header *)sense;
26601 	if ((sense_mhp->bdesc_length == 0) ||
26602 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26603 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26604 		    "sr_change_blkmode: Mode Sense returned invalid block"
26605 		    " descriptor length\n");
26606 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26607 		return (EIO);
26608 	}
26609 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26610 	current_bsize = ((sense_desc->blksize_hi << 16) |
26611 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26612 
26613 	/* Process command */
26614 	switch (cmd) {
26615 	case CDROMGBLKMODE:
26616 		/* Return the block size obtained during the mode sense */
26617 		if (ddi_copyout(&current_bsize, (void *)data,
26618 		    sizeof (int), flag) != 0)
26619 			rval = EFAULT;
26620 		break;
26621 	case CDROMSBLKMODE:
26622 		/* Validate the requested block size */
26623 		switch (data) {
26624 		case CDROM_BLK_512:
26625 		case CDROM_BLK_1024:
26626 		case CDROM_BLK_2048:
26627 		case CDROM_BLK_2056:
26628 		case CDROM_BLK_2336:
26629 		case CDROM_BLK_2340:
26630 		case CDROM_BLK_2352:
26631 		case CDROM_BLK_2368:
26632 		case CDROM_BLK_2448:
26633 		case CDROM_BLK_2646:
26634 		case CDROM_BLK_2647:
26635 			break;
26636 		default:
26637 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26638 			    "sr_change_blkmode: "
26639 			    "Block Size '%ld' Not Supported\n", data);
26640 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26641 			return (EINVAL);
26642 		}
26643 
26644 		/*
26645 		 * The current block size matches the requested block size so
26646 		 * there is no need to send the mode select to change the size
26647 		 */
26648 		if (current_bsize == data) {
26649 			break;
26650 		}
26651 
26652 		/* Build the select data for the requested block size */
26653 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26654 		select_mhp = (struct mode_header *)select;
26655 		select_desc =
26656 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26657 		/*
26658 		 * The LBA size is changed via the block descriptor, so the
26659 		 * descriptor is built according to the user data
26660 		 */
26661 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26662 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26663 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26664 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26665 
26666 		/* Send the mode select for the requested block size */
26667 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26668 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26669 		    SD_PATH_STANDARD)) != 0) {
26670 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26671 			    "sr_change_blkmode: Mode Select Failed\n");
26672 			/*
26673 			 * The mode select failed for the requested block size,
26674 			 * so reset the data for the original block size and
26675 			 * send it to the target. The error is indicated by the
26676 			 * return value for the failed mode select.
26677 			 */
26678 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26679 			select_desc->blksize_mid = sense_desc->blksize_mid;
26680 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26681 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26682 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26683 			    SD_PATH_STANDARD);
26684 		} else {
26685 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26686 			mutex_enter(SD_MUTEX(un));
26687 			sd_update_block_info(un, (uint32_t)data, 0);
26688 
26689 			mutex_exit(SD_MUTEX(un));
26690 		}
26691 		break;
26692 	default:
26693 		/* should not reach here, but check anyway */
26694 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26695 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26696 		rval = EINVAL;
26697 		break;
26698 	}
26699 
26700 	if (select) {
26701 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26702 	}
26703 	if (sense) {
26704 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26705 	}
26706 	return (rval);
26707 }
26708 
26709 
26710 /*
26711  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26712  * implement driver support for getting and setting the CD speed. The command
26713  * set used will be based on the device type. If the device has not been
26714  * identified as MMC the Toshiba vendor specific mode page will be used. If
26715  * the device is MMC but does not support the Real Time Streaming feature
26716  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26717  * be used to read the speed.
26718  */
26719 
26720 /*
26721  *    Function: sr_change_speed()
26722  *
26723  * Description: This routine is the driver entry point for handling CD-ROM
26724  *		drive speed ioctl requests for devices supporting the Toshiba
26725  *		vendor specific drive speed mode page. Support for returning
26726  *		and changing the current drive speed in use by the device is
26727  *		implemented.
26728  *
26729  *   Arguments: dev - the device 'dev_t'
26730  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26731  *		      CDROMSDRVSPEED (set)
26732  *		data - current drive speed or requested drive speed
26733  *		flag - this argument is a pass through to ddi_copyxxx() directly
26734  *		       from the mode argument of ioctl().
26735  *
26736  * Return Code: the code returned by sd_send_scsi_cmd()
26737  *		EINVAL if invalid arguments are provided
26738  *		EFAULT if ddi_copyxxx() fails
26739  *		ENXIO if fail ddi_get_soft_state
26740  *		EIO if invalid mode sense block descriptor length
26741  */
26742 
26743 static int
26744 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26745 {
26746 	struct sd_lun			*un = NULL;
26747 	struct mode_header		*sense_mhp, *select_mhp;
26748 	struct mode_speed		*sense_page, *select_page;
26749 	int				current_speed;
26750 	int				rval = EINVAL;
26751 	int				bd_len;
26752 	uchar_t				*sense = NULL;
26753 	uchar_t				*select = NULL;
26754 
26755 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26757 		return (ENXIO);
26758 	}
26759 
26760 	/*
26761 	 * Note: The drive speed is being modified here according to a Toshiba
26762 	 * vendor specific mode page (0x31).
26763 	 */
26764 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26765 
26766 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26767 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26768 	    SD_PATH_STANDARD)) != 0) {
26769 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26770 		    "sr_change_speed: Mode Sense Failed\n");
26771 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26772 		return (rval);
26773 	}
26774 	sense_mhp  = (struct mode_header *)sense;
26775 
26776 	/* Check the block descriptor len to handle only 1 block descriptor */
26777 	bd_len = sense_mhp->bdesc_length;
26778 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26779 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26780 		    "sr_change_speed: Mode Sense returned invalid block "
26781 		    "descriptor length\n");
26782 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26783 		return (EIO);
26784 	}
26785 
26786 	sense_page = (struct mode_speed *)
26787 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26788 	current_speed = sense_page->speed;
26789 
26790 	/* Process command */
26791 	switch (cmd) {
26792 	case CDROMGDRVSPEED:
26793 		/* Return the drive speed obtained during the mode sense */
26794 		if (current_speed == 0x2) {
26795 			current_speed = CDROM_TWELVE_SPEED;
26796 		}
26797 		if (ddi_copyout(&current_speed, (void *)data,
26798 		    sizeof (int), flag) != 0) {
26799 			rval = EFAULT;
26800 		}
26801 		break;
26802 	case CDROMSDRVSPEED:
26803 		/* Validate the requested drive speed */
26804 		switch ((uchar_t)data) {
26805 		case CDROM_TWELVE_SPEED:
26806 			data = 0x2;
26807 			/*FALLTHROUGH*/
26808 		case CDROM_NORMAL_SPEED:
26809 		case CDROM_DOUBLE_SPEED:
26810 		case CDROM_QUAD_SPEED:
26811 		case CDROM_MAXIMUM_SPEED:
26812 			break;
26813 		default:
26814 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26815 			    "sr_change_speed: "
26816 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26817 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26818 			return (EINVAL);
26819 		}
26820 
26821 		/*
26822 		 * The current drive speed matches the requested drive speed so
26823 		 * there is no need to send the mode select to change the speed
26824 		 */
26825 		if (current_speed == data) {
26826 			break;
26827 		}
26828 
26829 		/* Build the select data for the requested drive speed */
26830 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26831 		select_mhp = (struct mode_header *)select;
26832 		select_mhp->bdesc_length = 0;
26833 		select_page =
26834 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26835 		select_page =
26836 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26837 		select_page->mode_page.code = CDROM_MODE_SPEED;
26838 		select_page->mode_page.length = 2;
26839 		select_page->speed = (uchar_t)data;
26840 
26841 		/* Send the mode select for the requested block size */
26842 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26843 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26844 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
26845 			/*
26846 			 * The mode select failed for the requested drive speed,
26847 			 * so reset the data for the original drive speed and
26848 			 * send it to the target. The error is indicated by the
26849 			 * return value for the failed mode select.
26850 			 */
26851 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26852 			    "sr_drive_speed: Mode Select Failed\n");
26853 			select_page->speed = sense_page->speed;
26854 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26855 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26856 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26857 		}
26858 		break;
26859 	default:
26860 		/* should not reach here, but check anyway */
26861 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26862 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26863 		rval = EINVAL;
26864 		break;
26865 	}
26866 
26867 	if (select) {
26868 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26869 	}
26870 	if (sense) {
26871 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26872 	}
26873 
26874 	return (rval);
26875 }
26876 
26877 
26878 /*
26879  *    Function: sr_atapi_change_speed()
26880  *
26881  * Description: This routine is the driver entry point for handling CD-ROM
26882  *		drive speed ioctl requests for MMC devices that do not support
26883  *		the Real Time Streaming feature (0x107).
26884  *
26885  *		Note: This routine will use the SET SPEED command which may not
26886  *		be supported by all devices.
26887  *
26888  *   Arguments: dev- the device 'dev_t'
26889  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26890  *		     CDROMSDRVSPEED (set)
26891  *		data- current drive speed or requested drive speed
26892  *		flag- this argument is a pass through to ddi_copyxxx() directly
26893  *		      from the mode argument of ioctl().
26894  *
26895  * Return Code: the code returned by sd_send_scsi_cmd()
26896  *		EINVAL if invalid arguments are provided
26897  *		EFAULT if ddi_copyxxx() fails
26898  *		ENXIO if fail ddi_get_soft_state
26899  *		EIO if invalid mode sense block descriptor length
26900  */
26901 
26902 static int
26903 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26904 {
26905 	struct sd_lun			*un;
26906 	struct uscsi_cmd		*com = NULL;
26907 	struct mode_header_grp2		*sense_mhp;
26908 	uchar_t				*sense_page;
26909 	uchar_t				*sense = NULL;
26910 	char				cdb[CDB_GROUP5];
26911 	int				bd_len;
26912 	int				current_speed = 0;
26913 	int				max_speed = 0;
26914 	int				rval;
26915 
26916 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26917 
26918 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26919 		return (ENXIO);
26920 	}
26921 
26922 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26923 
26924 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26925 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26926 	    SD_PATH_STANDARD)) != 0) {
26927 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26928 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26929 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26930 		return (rval);
26931 	}
26932 
26933 	/* Check the block descriptor len to handle only 1 block descriptor */
26934 	sense_mhp = (struct mode_header_grp2 *)sense;
26935 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26936 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26937 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26938 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26939 		    "block descriptor length\n");
26940 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26941 		return (EIO);
26942 	}
26943 
26944 	/* Calculate the current and maximum drive speeds */
26945 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26946 	current_speed = (sense_page[14] << 8) | sense_page[15];
26947 	max_speed = (sense_page[8] << 8) | sense_page[9];
26948 
26949 	/* Process the command */
26950 	switch (cmd) {
26951 	case CDROMGDRVSPEED:
26952 		current_speed /= SD_SPEED_1X;
26953 		if (ddi_copyout(&current_speed, (void *)data,
26954 		    sizeof (int), flag) != 0)
26955 			rval = EFAULT;
26956 		break;
26957 	case CDROMSDRVSPEED:
26958 		/* Convert the speed code to KB/sec */
26959 		switch ((uchar_t)data) {
26960 		case CDROM_NORMAL_SPEED:
26961 			current_speed = SD_SPEED_1X;
26962 			break;
26963 		case CDROM_DOUBLE_SPEED:
26964 			current_speed = 2 * SD_SPEED_1X;
26965 			break;
26966 		case CDROM_QUAD_SPEED:
26967 			current_speed = 4 * SD_SPEED_1X;
26968 			break;
26969 		case CDROM_TWELVE_SPEED:
26970 			current_speed = 12 * SD_SPEED_1X;
26971 			break;
26972 		case CDROM_MAXIMUM_SPEED:
26973 			current_speed = 0xffff;
26974 			break;
26975 		default:
26976 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26977 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26978 			    (uchar_t)data);
26979 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26980 			return (EINVAL);
26981 		}
26982 
26983 		/* Check the request against the drive's max speed. */
26984 		if (current_speed != 0xffff) {
26985 			if (current_speed > max_speed) {
26986 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26987 				return (EINVAL);
26988 			}
26989 		}
26990 
26991 		/*
26992 		 * Build and send the SET SPEED command
26993 		 *
26994 		 * Note: The SET SPEED (0xBB) command used in this routine is
26995 		 * obsolete per the SCSI MMC spec but still supported in the
26996 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26997 		 * therefore the command is still implemented in this routine.
26998 		 */
26999 		bzero(cdb, sizeof (cdb));
27000 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27001 		cdb[2] = (uchar_t)(current_speed >> 8);
27002 		cdb[3] = (uchar_t)current_speed;
27003 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27004 		com->uscsi_cdb	   = (caddr_t)cdb;
27005 		com->uscsi_cdblen  = CDB_GROUP5;
27006 		com->uscsi_bufaddr = NULL;
27007 		com->uscsi_buflen  = 0;
27008 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27009 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27010 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27011 		break;
27012 	default:
27013 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27014 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27015 		rval = EINVAL;
27016 	}
27017 
27018 	if (sense) {
27019 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27020 	}
27021 	if (com) {
27022 		kmem_free(com, sizeof (*com));
27023 	}
27024 	return (rval);
27025 }
27026 
27027 
27028 /*
27029  *    Function: sr_pause_resume()
27030  *
27031  * Description: This routine is the driver entry point for handling CD-ROM
27032  *		pause/resume ioctl requests. This only affects the audio play
27033  *		operation.
27034  *
27035  *   Arguments: dev - the device 'dev_t'
27036  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27037  *		      for setting the resume bit of the cdb.
27038  *
27039  * Return Code: the code returned by sd_send_scsi_cmd()
27040  *		EINVAL if invalid mode specified
27041  *
27042  */
27043 
27044 static int
27045 sr_pause_resume(dev_t dev, int cmd)
27046 {
27047 	struct sd_lun		*un;
27048 	struct uscsi_cmd	*com;
27049 	char			cdb[CDB_GROUP1];
27050 	int			rval;
27051 
27052 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27053 		return (ENXIO);
27054 	}
27055 
27056 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27057 	bzero(cdb, CDB_GROUP1);
27058 	cdb[0] = SCMD_PAUSE_RESUME;
27059 	switch (cmd) {
27060 	case CDROMRESUME:
27061 		cdb[8] = 1;
27062 		break;
27063 	case CDROMPAUSE:
27064 		cdb[8] = 0;
27065 		break;
27066 	default:
27067 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27068 		    " Command '%x' Not Supported\n", cmd);
27069 		rval = EINVAL;
27070 		goto done;
27071 	}
27072 
27073 	com->uscsi_cdb    = cdb;
27074 	com->uscsi_cdblen = CDB_GROUP1;
27075 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27076 
27077 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27078 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27079 
27080 done:
27081 	kmem_free(com, sizeof (*com));
27082 	return (rval);
27083 }
27084 
27085 
27086 /*
27087  *    Function: sr_play_msf()
27088  *
27089  * Description: This routine is the driver entry point for handling CD-ROM
27090  *		ioctl requests to output the audio signals at the specified
27091  *		starting address and continue the audio play until the specified
27092  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27093  *		Frame (MSF) format.
27094  *
27095  *   Arguments: dev	- the device 'dev_t'
27096  *		data	- pointer to user provided audio msf structure,
27097  *		          specifying start/end addresses.
27098  *		flag	- this argument is a pass through to ddi_copyxxx()
27099  *		          directly from the mode argument of ioctl().
27100  *
27101  * Return Code: the code returned by sd_send_scsi_cmd()
27102  *		EFAULT if ddi_copyxxx() fails
27103  *		ENXIO if fail ddi_get_soft_state
27104  *		EINVAL if data pointer is NULL
27105  */
27106 
27107 static int
27108 sr_play_msf(dev_t dev, caddr_t data, int flag)
27109 {
27110 	struct sd_lun		*un;
27111 	struct uscsi_cmd	*com;
27112 	struct cdrom_msf	msf_struct;
27113 	struct cdrom_msf	*msf = &msf_struct;
27114 	char			cdb[CDB_GROUP1];
27115 	int			rval;
27116 
27117 	if (data == NULL) {
27118 		return (EINVAL);
27119 	}
27120 
27121 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27122 		return (ENXIO);
27123 	}
27124 
27125 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27126 		return (EFAULT);
27127 	}
27128 
27129 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27130 	bzero(cdb, CDB_GROUP1);
27131 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27132 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27133 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27134 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27135 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27136 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27137 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27138 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27139 	} else {
27140 		cdb[3] = msf->cdmsf_min0;
27141 		cdb[4] = msf->cdmsf_sec0;
27142 		cdb[5] = msf->cdmsf_frame0;
27143 		cdb[6] = msf->cdmsf_min1;
27144 		cdb[7] = msf->cdmsf_sec1;
27145 		cdb[8] = msf->cdmsf_frame1;
27146 	}
27147 	com->uscsi_cdb    = cdb;
27148 	com->uscsi_cdblen = CDB_GROUP1;
27149 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27150 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27151 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27152 	kmem_free(com, sizeof (*com));
27153 	return (rval);
27154 }
27155 
27156 
27157 /*
27158  *    Function: sr_play_trkind()
27159  *
27160  * Description: This routine is the driver entry point for handling CD-ROM
27161  *		ioctl requests to output the audio signals at the specified
27162  *		starting address and continue the audio play until the specified
27163  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27164  *		format.
27165  *
27166  *   Arguments: dev	- the device 'dev_t'
27167  *		data	- pointer to user provided audio track/index structure,
27168  *		          specifying start/end addresses.
27169  *		flag	- this argument is a pass through to ddi_copyxxx()
27170  *		          directly from the mode argument of ioctl().
27171  *
27172  * Return Code: the code returned by sd_send_scsi_cmd()
27173  *		EFAULT if ddi_copyxxx() fails
27174  *		ENXIO if fail ddi_get_soft_state
27175  *		EINVAL if data pointer is NULL
27176  */
27177 
27178 static int
27179 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27180 {
27181 	struct cdrom_ti		ti_struct;
27182 	struct cdrom_ti		*ti = &ti_struct;
27183 	struct uscsi_cmd	*com = NULL;
27184 	char			cdb[CDB_GROUP1];
27185 	int			rval;
27186 
27187 	if (data == NULL) {
27188 		return (EINVAL);
27189 	}
27190 
27191 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27192 		return (EFAULT);
27193 	}
27194 
27195 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27196 	bzero(cdb, CDB_GROUP1);
27197 	cdb[0] = SCMD_PLAYAUDIO_TI;
27198 	cdb[4] = ti->cdti_trk0;
27199 	cdb[5] = ti->cdti_ind0;
27200 	cdb[7] = ti->cdti_trk1;
27201 	cdb[8] = ti->cdti_ind1;
27202 	com->uscsi_cdb    = cdb;
27203 	com->uscsi_cdblen = CDB_GROUP1;
27204 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27205 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27206 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27207 	kmem_free(com, sizeof (*com));
27208 	return (rval);
27209 }
27210 
27211 
27212 /*
27213  *    Function: sr_read_all_subcodes()
27214  *
27215  * Description: This routine is the driver entry point for handling CD-ROM
27216  *		ioctl requests to return raw subcode data while the target is
27217  *		playing audio (CDROMSUBCODE).
27218  *
27219  *   Arguments: dev	- the device 'dev_t'
27220  *		data	- pointer to user provided cdrom subcode structure,
27221  *		          specifying the transfer length and address.
27222  *		flag	- this argument is a pass through to ddi_copyxxx()
27223  *		          directly from the mode argument of ioctl().
27224  *
27225  * Return Code: the code returned by sd_send_scsi_cmd()
27226  *		EFAULT if ddi_copyxxx() fails
27227  *		ENXIO if fail ddi_get_soft_state
27228  *		EINVAL if data pointer is NULL
27229  */
27230 
27231 static int
27232 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27233 {
27234 	struct sd_lun		*un = NULL;
27235 	struct uscsi_cmd	*com = NULL;
27236 	struct cdrom_subcode	*subcode = NULL;
27237 	int			rval;
27238 	size_t			buflen;
27239 	char			cdb[CDB_GROUP5];
27240 
27241 #ifdef _MULTI_DATAMODEL
27242 	/* To support ILP32 applications in an LP64 world */
27243 	struct cdrom_subcode32		cdrom_subcode32;
27244 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27245 #endif
27246 	if (data == NULL) {
27247 		return (EINVAL);
27248 	}
27249 
27250 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27251 		return (ENXIO);
27252 	}
27253 
27254 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27255 
27256 #ifdef _MULTI_DATAMODEL
27257 	switch (ddi_model_convert_from(flag & FMODELS)) {
27258 	case DDI_MODEL_ILP32:
27259 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27260 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27261 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27262 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27263 			return (EFAULT);
27264 		}
27265 		/* Convert the ILP32 uscsi data from the application to LP64 */
27266 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27267 		break;
27268 	case DDI_MODEL_NONE:
27269 		if (ddi_copyin(data, subcode,
27270 		    sizeof (struct cdrom_subcode), flag)) {
27271 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27272 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27273 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27274 			return (EFAULT);
27275 		}
27276 		break;
27277 	}
27278 #else /* ! _MULTI_DATAMODEL */
27279 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27280 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27281 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27282 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27283 		return (EFAULT);
27284 	}
27285 #endif /* _MULTI_DATAMODEL */
27286 
27287 	/*
27288 	 * Since MMC-2 expects max 3 bytes for length, check if the
27289 	 * length input is greater than 3 bytes
27290 	 */
27291 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27292 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27293 		    "sr_read_all_subcodes: "
27294 		    "cdrom transfer length too large: %d (limit %d)\n",
27295 		    subcode->cdsc_length, 0xFFFFFF);
27296 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27297 		return (EINVAL);
27298 	}
27299 
27300 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27301 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27302 	bzero(cdb, CDB_GROUP5);
27303 
27304 	if (un->un_f_mmc_cap == TRUE) {
27305 		cdb[0] = (char)SCMD_READ_CD;
27306 		cdb[2] = (char)0xff;
27307 		cdb[3] = (char)0xff;
27308 		cdb[4] = (char)0xff;
27309 		cdb[5] = (char)0xff;
27310 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27311 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27312 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27313 		cdb[10] = 1;
27314 	} else {
27315 		/*
27316 		 * Note: A vendor specific command (0xDF) is being used her to
27317 		 * request a read of all subcodes.
27318 		 */
27319 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27320 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27321 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27322 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27323 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27324 	}
27325 	com->uscsi_cdb	   = cdb;
27326 	com->uscsi_cdblen  = CDB_GROUP5;
27327 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27328 	com->uscsi_buflen  = buflen;
27329 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27330 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27331 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27332 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27333 	kmem_free(com, sizeof (*com));
27334 	return (rval);
27335 }
27336 
27337 
27338 /*
27339  *    Function: sr_read_subchannel()
27340  *
27341  * Description: This routine is the driver entry point for handling CD-ROM
27342  *		ioctl requests to return the Q sub-channel data of the CD
27343  *		current position block. (CDROMSUBCHNL) The data includes the
27344  *		track number, index number, absolute CD-ROM address (LBA or MSF
27345  *		format per the user) , track relative CD-ROM address (LBA or MSF
27346  *		format per the user), control data and audio status.
27347  *
27348  *   Arguments: dev	- the device 'dev_t'
27349  *		data	- pointer to user provided cdrom sub-channel structure
27350  *		flag	- this argument is a pass through to ddi_copyxxx()
27351  *		          directly from the mode argument of ioctl().
27352  *
27353  * Return Code: the code returned by sd_send_scsi_cmd()
27354  *		EFAULT if ddi_copyxxx() fails
27355  *		ENXIO if fail ddi_get_soft_state
27356  *		EINVAL if data pointer is NULL
27357  */
27358 
27359 static int
27360 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27361 {
27362 	struct sd_lun		*un;
27363 	struct uscsi_cmd	*com;
27364 	struct cdrom_subchnl	subchanel;
27365 	struct cdrom_subchnl	*subchnl = &subchanel;
27366 	char			cdb[CDB_GROUP1];
27367 	caddr_t			buffer;
27368 	int			rval;
27369 
27370 	if (data == NULL) {
27371 		return (EINVAL);
27372 	}
27373 
27374 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27375 	    (un->un_state == SD_STATE_OFFLINE)) {
27376 		return (ENXIO);
27377 	}
27378 
27379 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27380 		return (EFAULT);
27381 	}
27382 
27383 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27384 	bzero(cdb, CDB_GROUP1);
27385 	cdb[0] = SCMD_READ_SUBCHANNEL;
27386 	/* Set the MSF bit based on the user requested address format */
27387 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27388 	/*
27389 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27390 	 * returned
27391 	 */
27392 	cdb[2] = 0x40;
27393 	/*
27394 	 * Set byte 3 to specify the return data format. A value of 0x01
27395 	 * indicates that the CD-ROM current position should be returned.
27396 	 */
27397 	cdb[3] = 0x01;
27398 	cdb[8] = 0x10;
27399 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27400 	com->uscsi_cdb	   = cdb;
27401 	com->uscsi_cdblen  = CDB_GROUP1;
27402 	com->uscsi_bufaddr = buffer;
27403 	com->uscsi_buflen  = 16;
27404 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27405 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27406 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27407 	if (rval != 0) {
27408 		kmem_free(buffer, 16);
27409 		kmem_free(com, sizeof (*com));
27410 		return (rval);
27411 	}
27412 
27413 	/* Process the returned Q sub-channel data */
27414 	subchnl->cdsc_audiostatus = buffer[1];
27415 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27416 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27417 	subchnl->cdsc_trk	= buffer[6];
27418 	subchnl->cdsc_ind	= buffer[7];
27419 	if (subchnl->cdsc_format & CDROM_LBA) {
27420 		subchnl->cdsc_absaddr.lba =
27421 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27422 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27423 		subchnl->cdsc_reladdr.lba =
27424 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27425 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27426 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27427 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27428 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27429 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27430 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27431 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27432 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27433 	} else {
27434 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27435 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27436 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27437 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27438 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27439 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27440 	}
27441 	kmem_free(buffer, 16);
27442 	kmem_free(com, sizeof (*com));
27443 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27444 	    != 0) {
27445 		return (EFAULT);
27446 	}
27447 	return (rval);
27448 }
27449 
27450 
27451 /*
27452  *    Function: sr_read_tocentry()
27453  *
27454  * Description: This routine is the driver entry point for handling CD-ROM
27455  *		ioctl requests to read from the Table of Contents (TOC)
27456  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27457  *		fields, the starting address (LBA or MSF format per the user)
27458  *		and the data mode if the user specified track is a data track.
27459  *
27460  *		Note: The READ HEADER (0x44) command used in this routine is
27461  *		obsolete per the SCSI MMC spec but still supported in the
27462  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27463  *		therefore the command is still implemented in this routine.
27464  *
27465  *   Arguments: dev	- the device 'dev_t'
27466  *		data	- pointer to user provided toc entry structure,
27467  *			  specifying the track # and the address format
27468  *			  (LBA or MSF).
27469  *		flag	- this argument is a pass through to ddi_copyxxx()
27470  *		          directly from the mode argument of ioctl().
27471  *
27472  * Return Code: the code returned by sd_send_scsi_cmd()
27473  *		EFAULT if ddi_copyxxx() fails
27474  *		ENXIO if fail ddi_get_soft_state
27475  *		EINVAL if data pointer is NULL
27476  */
27477 
27478 static int
27479 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27480 {
27481 	struct sd_lun		*un = NULL;
27482 	struct uscsi_cmd	*com;
27483 	struct cdrom_tocentry	toc_entry;
27484 	struct cdrom_tocentry	*entry = &toc_entry;
27485 	caddr_t			buffer;
27486 	int			rval;
27487 	char			cdb[CDB_GROUP1];
27488 
27489 	if (data == NULL) {
27490 		return (EINVAL);
27491 	}
27492 
27493 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27494 	    (un->un_state == SD_STATE_OFFLINE)) {
27495 		return (ENXIO);
27496 	}
27497 
27498 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27499 		return (EFAULT);
27500 	}
27501 
27502 	/* Validate the requested track and address format */
27503 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27504 		return (EINVAL);
27505 	}
27506 
27507 	if (entry->cdte_track == 0) {
27508 		return (EINVAL);
27509 	}
27510 
27511 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27512 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27513 	bzero(cdb, CDB_GROUP1);
27514 
27515 	cdb[0] = SCMD_READ_TOC;
27516 	/* Set the MSF bit based on the user requested address format  */
27517 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27518 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27519 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27520 	} else {
27521 		cdb[6] = entry->cdte_track;
27522 	}
27523 
27524 	/*
27525 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27526 	 * (4 byte TOC response header + 8 byte track descriptor)
27527 	 */
27528 	cdb[8] = 12;
27529 	com->uscsi_cdb	   = cdb;
27530 	com->uscsi_cdblen  = CDB_GROUP1;
27531 	com->uscsi_bufaddr = buffer;
27532 	com->uscsi_buflen  = 0x0C;
27533 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27534 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27535 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27536 	if (rval != 0) {
27537 		kmem_free(buffer, 12);
27538 		kmem_free(com, sizeof (*com));
27539 		return (rval);
27540 	}
27541 
27542 	/* Process the toc entry */
27543 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27544 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27545 	if (entry->cdte_format & CDROM_LBA) {
27546 		entry->cdte_addr.lba =
27547 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27548 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27549 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27550 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27551 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27552 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27553 		/*
27554 		 * Send a READ TOC command using the LBA address format to get
27555 		 * the LBA for the track requested so it can be used in the
27556 		 * READ HEADER request
27557 		 *
27558 		 * Note: The MSF bit of the READ HEADER command specifies the
27559 		 * output format. The block address specified in that command
27560 		 * must be in LBA format.
27561 		 */
27562 		cdb[1] = 0;
27563 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27564 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27565 		if (rval != 0) {
27566 			kmem_free(buffer, 12);
27567 			kmem_free(com, sizeof (*com));
27568 			return (rval);
27569 		}
27570 	} else {
27571 		entry->cdte_addr.msf.minute	= buffer[9];
27572 		entry->cdte_addr.msf.second	= buffer[10];
27573 		entry->cdte_addr.msf.frame	= buffer[11];
27574 		/*
27575 		 * Send a READ TOC command using the LBA address format to get
27576 		 * the LBA for the track requested so it can be used in the
27577 		 * READ HEADER request
27578 		 *
27579 		 * Note: The MSF bit of the READ HEADER command specifies the
27580 		 * output format. The block address specified in that command
27581 		 * must be in LBA format.
27582 		 */
27583 		cdb[1] = 0;
27584 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27585 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27586 		if (rval != 0) {
27587 			kmem_free(buffer, 12);
27588 			kmem_free(com, sizeof (*com));
27589 			return (rval);
27590 		}
27591 	}
27592 
27593 	/*
27594 	 * Build and send the READ HEADER command to determine the data mode of
27595 	 * the user specified track.
27596 	 */
27597 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27598 	    (entry->cdte_track != CDROM_LEADOUT)) {
27599 		bzero(cdb, CDB_GROUP1);
27600 		cdb[0] = SCMD_READ_HEADER;
27601 		cdb[2] = buffer[8];
27602 		cdb[3] = buffer[9];
27603 		cdb[4] = buffer[10];
27604 		cdb[5] = buffer[11];
27605 		cdb[8] = 0x08;
27606 		com->uscsi_buflen = 0x08;
27607 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27608 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27609 		if (rval == 0) {
27610 			entry->cdte_datamode = buffer[0];
27611 		} else {
27612 			/*
27613 			 * READ HEADER command failed, since this is
27614 			 * obsoleted in one spec, its better to return
27615 			 * -1 for an invlid track so that we can still
27616 			 * recieve the rest of the TOC data.
27617 			 */
27618 			entry->cdte_datamode = (uchar_t)-1;
27619 		}
27620 	} else {
27621 		entry->cdte_datamode = (uchar_t)-1;
27622 	}
27623 
27624 	kmem_free(buffer, 12);
27625 	kmem_free(com, sizeof (*com));
27626 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27627 		return (EFAULT);
27628 
27629 	return (rval);
27630 }
27631 
27632 
27633 /*
27634  *    Function: sr_read_tochdr()
27635  *
27636  * Description: This routine is the driver entry point for handling CD-ROM
27637  * 		ioctl requests to read the Table of Contents (TOC) header
27638  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27639  *		and ending track numbers
27640  *
27641  *   Arguments: dev	- the device 'dev_t'
27642  *		data	- pointer to user provided toc header structure,
27643  *			  specifying the starting and ending track numbers.
27644  *		flag	- this argument is a pass through to ddi_copyxxx()
27645  *			  directly from the mode argument of ioctl().
27646  *
27647  * Return Code: the code returned by sd_send_scsi_cmd()
27648  *		EFAULT if ddi_copyxxx() fails
27649  *		ENXIO if fail ddi_get_soft_state
27650  *		EINVAL if data pointer is NULL
27651  */
27652 
27653 static int
27654 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27655 {
27656 	struct sd_lun		*un;
27657 	struct uscsi_cmd	*com;
27658 	struct cdrom_tochdr	toc_header;
27659 	struct cdrom_tochdr	*hdr = &toc_header;
27660 	char			cdb[CDB_GROUP1];
27661 	int			rval;
27662 	caddr_t			buffer;
27663 
27664 	if (data == NULL) {
27665 		return (EINVAL);
27666 	}
27667 
27668 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27669 	    (un->un_state == SD_STATE_OFFLINE)) {
27670 		return (ENXIO);
27671 	}
27672 
27673 	buffer = kmem_zalloc(4, KM_SLEEP);
27674 	bzero(cdb, CDB_GROUP1);
27675 	cdb[0] = SCMD_READ_TOC;
27676 	/*
27677 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27678 	 * that the TOC header should be returned
27679 	 */
27680 	cdb[6] = 0x00;
27681 	/*
27682 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27683 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27684 	 */
27685 	cdb[8] = 0x04;
27686 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27687 	com->uscsi_cdb	   = cdb;
27688 	com->uscsi_cdblen  = CDB_GROUP1;
27689 	com->uscsi_bufaddr = buffer;
27690 	com->uscsi_buflen  = 0x04;
27691 	com->uscsi_timeout = 300;
27692 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27693 
27694 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27695 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27696 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27697 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27698 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27699 	} else {
27700 		hdr->cdth_trk0 = buffer[2];
27701 		hdr->cdth_trk1 = buffer[3];
27702 	}
27703 	kmem_free(buffer, 4);
27704 	kmem_free(com, sizeof (*com));
27705 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27706 		return (EFAULT);
27707 	}
27708 	return (rval);
27709 }
27710 
27711 
27712 /*
27713  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27714  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27715  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27716  * digital audio and extended architecture digital audio. These modes are
27717  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27718  * MMC specs.
27719  *
27720  * In addition to support for the various data formats these routines also
27721  * include support for devices that implement only the direct access READ
27722  * commands (0x08, 0x28), devices that implement the READ_CD commands
27723  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27724  * READ CDXA commands (0xD8, 0xDB)
27725  */
27726 
27727 /*
27728  *    Function: sr_read_mode1()
27729  *
27730  * Description: This routine is the driver entry point for handling CD-ROM
27731  *		ioctl read mode1 requests (CDROMREADMODE1).
27732  *
27733  *   Arguments: dev	- the device 'dev_t'
27734  *		data	- pointer to user provided cd read structure specifying
27735  *			  the lba buffer address and length.
27736  *		flag	- this argument is a pass through to ddi_copyxxx()
27737  *			  directly from the mode argument of ioctl().
27738  *
27739  * Return Code: the code returned by sd_send_scsi_cmd()
27740  *		EFAULT if ddi_copyxxx() fails
27741  *		ENXIO if fail ddi_get_soft_state
27742  *		EINVAL if data pointer is NULL
27743  */
27744 
27745 static int
27746 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27747 {
27748 	struct sd_lun		*un;
27749 	struct cdrom_read	mode1_struct;
27750 	struct cdrom_read	*mode1 = &mode1_struct;
27751 	int			rval;
27752 #ifdef _MULTI_DATAMODEL
27753 	/* To support ILP32 applications in an LP64 world */
27754 	struct cdrom_read32	cdrom_read32;
27755 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27756 #endif /* _MULTI_DATAMODEL */
27757 
27758 	if (data == NULL) {
27759 		return (EINVAL);
27760 	}
27761 
27762 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27763 	    (un->un_state == SD_STATE_OFFLINE)) {
27764 		return (ENXIO);
27765 	}
27766 
27767 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27768 	    "sd_read_mode1: entry: un:0x%p\n", un);
27769 
27770 #ifdef _MULTI_DATAMODEL
27771 	switch (ddi_model_convert_from(flag & FMODELS)) {
27772 	case DDI_MODEL_ILP32:
27773 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27774 			return (EFAULT);
27775 		}
27776 		/* Convert the ILP32 uscsi data from the application to LP64 */
27777 		cdrom_read32tocdrom_read(cdrd32, mode1);
27778 		break;
27779 	case DDI_MODEL_NONE:
27780 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27781 			return (EFAULT);
27782 		}
27783 	}
27784 #else /* ! _MULTI_DATAMODEL */
27785 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27786 		return (EFAULT);
27787 	}
27788 #endif /* _MULTI_DATAMODEL */
27789 
27790 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
27791 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
27792 
27793 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27794 	    "sd_read_mode1: exit: un:0x%p\n", un);
27795 
27796 	return (rval);
27797 }
27798 
27799 
27800 /*
27801  *    Function: sr_read_cd_mode2()
27802  *
27803  * Description: This routine is the driver entry point for handling CD-ROM
27804  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27805  *		support the READ CD (0xBE) command or the 1st generation
27806  *		READ CD (0xD4) command.
27807  *
27808  *   Arguments: dev	- the device 'dev_t'
27809  *		data	- pointer to user provided cd read structure specifying
27810  *			  the lba buffer address and length.
27811  *		flag	- this argument is a pass through to ddi_copyxxx()
27812  *			  directly from the mode argument of ioctl().
27813  *
27814  * Return Code: the code returned by sd_send_scsi_cmd()
27815  *		EFAULT if ddi_copyxxx() fails
27816  *		ENXIO if fail ddi_get_soft_state
27817  *		EINVAL if data pointer is NULL
27818  */
27819 
27820 static int
27821 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27822 {
27823 	struct sd_lun		*un;
27824 	struct uscsi_cmd	*com;
27825 	struct cdrom_read	mode2_struct;
27826 	struct cdrom_read	*mode2 = &mode2_struct;
27827 	uchar_t			cdb[CDB_GROUP5];
27828 	int			nblocks;
27829 	int			rval;
27830 #ifdef _MULTI_DATAMODEL
27831 	/*  To support ILP32 applications in an LP64 world */
27832 	struct cdrom_read32	cdrom_read32;
27833 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27834 #endif /* _MULTI_DATAMODEL */
27835 
27836 	if (data == NULL) {
27837 		return (EINVAL);
27838 	}
27839 
27840 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27841 	    (un->un_state == SD_STATE_OFFLINE)) {
27842 		return (ENXIO);
27843 	}
27844 
27845 #ifdef _MULTI_DATAMODEL
27846 	switch (ddi_model_convert_from(flag & FMODELS)) {
27847 	case DDI_MODEL_ILP32:
27848 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27849 			return (EFAULT);
27850 		}
27851 		/* Convert the ILP32 uscsi data from the application to LP64 */
27852 		cdrom_read32tocdrom_read(cdrd32, mode2);
27853 		break;
27854 	case DDI_MODEL_NONE:
27855 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27856 			return (EFAULT);
27857 		}
27858 		break;
27859 	}
27860 
27861 #else /* ! _MULTI_DATAMODEL */
27862 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27863 		return (EFAULT);
27864 	}
27865 #endif /* _MULTI_DATAMODEL */
27866 
27867 	bzero(cdb, sizeof (cdb));
27868 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27869 		/* Read command supported by 1st generation atapi drives */
27870 		cdb[0] = SCMD_READ_CDD4;
27871 	} else {
27872 		/* Universal CD Access Command */
27873 		cdb[0] = SCMD_READ_CD;
27874 	}
27875 
27876 	/*
27877 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27878 	 */
27879 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27880 
27881 	/* set the start address */
27882 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27883 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27884 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27885 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27886 
27887 	/* set the transfer length */
27888 	nblocks = mode2->cdread_buflen / 2336;
27889 	cdb[6] = (uchar_t)(nblocks >> 16);
27890 	cdb[7] = (uchar_t)(nblocks >> 8);
27891 	cdb[8] = (uchar_t)nblocks;
27892 
27893 	/* set the filter bits */
27894 	cdb[9] = CDROM_READ_CD_USERDATA;
27895 
27896 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27897 	com->uscsi_cdb = (caddr_t)cdb;
27898 	com->uscsi_cdblen = sizeof (cdb);
27899 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27900 	com->uscsi_buflen = mode2->cdread_buflen;
27901 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27902 
27903 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27904 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27905 	kmem_free(com, sizeof (*com));
27906 	return (rval);
27907 }
27908 
27909 
27910 /*
27911  *    Function: sr_read_mode2()
27912  *
27913  * Description: This routine is the driver entry point for handling CD-ROM
27914  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27915  *		do not support the READ CD (0xBE) command.
27916  *
27917  *   Arguments: dev	- the device 'dev_t'
27918  *		data	- pointer to user provided cd read structure specifying
27919  *			  the lba buffer address and length.
27920  *		flag	- this argument is a pass through to ddi_copyxxx()
27921  *			  directly from the mode argument of ioctl().
27922  *
27923  * Return Code: the code returned by sd_send_scsi_cmd()
27924  *		EFAULT if ddi_copyxxx() fails
27925  *		ENXIO if fail ddi_get_soft_state
27926  *		EINVAL if data pointer is NULL
27927  *		EIO if fail to reset block size
27928  *		EAGAIN if commands are in progress in the driver
27929  */
27930 
27931 static int
27932 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27933 {
27934 	struct sd_lun		*un;
27935 	struct cdrom_read	mode2_struct;
27936 	struct cdrom_read	*mode2 = &mode2_struct;
27937 	int			rval;
27938 	uint32_t		restore_blksize;
27939 	struct uscsi_cmd	*com;
27940 	uchar_t			cdb[CDB_GROUP0];
27941 	int			nblocks;
27942 
27943 #ifdef _MULTI_DATAMODEL
27944 	/* To support ILP32 applications in an LP64 world */
27945 	struct cdrom_read32	cdrom_read32;
27946 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27947 #endif /* _MULTI_DATAMODEL */
27948 
27949 	if (data == NULL) {
27950 		return (EINVAL);
27951 	}
27952 
27953 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27954 	    (un->un_state == SD_STATE_OFFLINE)) {
27955 		return (ENXIO);
27956 	}
27957 
27958 	/*
27959 	 * Because this routine will update the device and driver block size
27960 	 * being used we want to make sure there are no commands in progress.
27961 	 * If commands are in progress the user will have to try again.
27962 	 *
27963 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27964 	 * in sdioctl to protect commands from sdioctl through to the top of
27965 	 * sd_uscsi_strategy. See sdioctl for details.
27966 	 */
27967 	mutex_enter(SD_MUTEX(un));
27968 	if (un->un_ncmds_in_driver != 1) {
27969 		mutex_exit(SD_MUTEX(un));
27970 		return (EAGAIN);
27971 	}
27972 	mutex_exit(SD_MUTEX(un));
27973 
27974 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27975 	    "sd_read_mode2: entry: un:0x%p\n", un);
27976 
27977 #ifdef _MULTI_DATAMODEL
27978 	switch (ddi_model_convert_from(flag & FMODELS)) {
27979 	case DDI_MODEL_ILP32:
27980 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27981 			return (EFAULT);
27982 		}
27983 		/* Convert the ILP32 uscsi data from the application to LP64 */
27984 		cdrom_read32tocdrom_read(cdrd32, mode2);
27985 		break;
27986 	case DDI_MODEL_NONE:
27987 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27988 			return (EFAULT);
27989 		}
27990 		break;
27991 	}
27992 #else /* ! _MULTI_DATAMODEL */
27993 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27994 		return (EFAULT);
27995 	}
27996 #endif /* _MULTI_DATAMODEL */
27997 
27998 	/* Store the current target block size for restoration later */
27999 	restore_blksize = un->un_tgt_blocksize;
28000 
28001 	/* Change the device and soft state target block size to 2336 */
28002 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28003 		rval = EIO;
28004 		goto done;
28005 	}
28006 
28007 
28008 	bzero(cdb, sizeof (cdb));
28009 
28010 	/* set READ operation */
28011 	cdb[0] = SCMD_READ;
28012 
28013 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28014 	mode2->cdread_lba >>= 2;
28015 
28016 	/* set the start address */
28017 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28018 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28019 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28020 
28021 	/* set the transfer length */
28022 	nblocks = mode2->cdread_buflen / 2336;
28023 	cdb[4] = (uchar_t)nblocks & 0xFF;
28024 
28025 	/* build command */
28026 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28027 	com->uscsi_cdb = (caddr_t)cdb;
28028 	com->uscsi_cdblen = sizeof (cdb);
28029 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28030 	com->uscsi_buflen = mode2->cdread_buflen;
28031 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28032 
28033 	/*
28034 	 * Issue SCSI command with user space address for read buffer.
28035 	 *
28036 	 * This sends the command through main channel in the driver.
28037 	 *
28038 	 * Since this is accessed via an IOCTL call, we go through the
28039 	 * standard path, so that if the device was powered down, then
28040 	 * it would be 'awakened' to handle the command.
28041 	 */
28042 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28043 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28044 
28045 	kmem_free(com, sizeof (*com));
28046 
28047 	/* Restore the device and soft state target block size */
28048 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28049 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28050 		    "can't do switch back to mode 1\n");
28051 		/*
28052 		 * If sd_send_scsi_READ succeeded we still need to report
28053 		 * an error because we failed to reset the block size
28054 		 */
28055 		if (rval == 0) {
28056 			rval = EIO;
28057 		}
28058 	}
28059 
28060 done:
28061 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28062 	    "sd_read_mode2: exit: un:0x%p\n", un);
28063 
28064 	return (rval);
28065 }
28066 
28067 
28068 /*
28069  *    Function: sr_sector_mode()
28070  *
28071  * Description: This utility function is used by sr_read_mode2 to set the target
28072  *		block size based on the user specified size. This is a legacy
28073  *		implementation based upon a vendor specific mode page
28074  *
28075  *   Arguments: dev	- the device 'dev_t'
28076  *		data	- flag indicating if block size is being set to 2336 or
28077  *			  512.
28078  *
28079  * Return Code: the code returned by sd_send_scsi_cmd()
28080  *		EFAULT if ddi_copyxxx() fails
28081  *		ENXIO if fail ddi_get_soft_state
28082  *		EINVAL if data pointer is NULL
28083  */
28084 
28085 static int
28086 sr_sector_mode(dev_t dev, uint32_t blksize)
28087 {
28088 	struct sd_lun	*un;
28089 	uchar_t		*sense;
28090 	uchar_t		*select;
28091 	int		rval;
28092 
28093 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28094 	    (un->un_state == SD_STATE_OFFLINE)) {
28095 		return (ENXIO);
28096 	}
28097 
28098 	sense = kmem_zalloc(20, KM_SLEEP);
28099 
28100 	/* Note: This is a vendor specific mode page (0x81) */
28101 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28102 	    SD_PATH_STANDARD)) != 0) {
28103 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28104 		    "sr_sector_mode: Mode Sense failed\n");
28105 		kmem_free(sense, 20);
28106 		return (rval);
28107 	}
28108 	select = kmem_zalloc(20, KM_SLEEP);
28109 	select[3] = 0x08;
28110 	select[10] = ((blksize >> 8) & 0xff);
28111 	select[11] = (blksize & 0xff);
28112 	select[12] = 0x01;
28113 	select[13] = 0x06;
28114 	select[14] = sense[14];
28115 	select[15] = sense[15];
28116 	if (blksize == SD_MODE2_BLKSIZE) {
28117 		select[14] |= 0x01;
28118 	}
28119 
28120 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28121 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28122 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28123 		    "sr_sector_mode: Mode Select failed\n");
28124 	} else {
28125 		/*
28126 		 * Only update the softstate block size if we successfully
28127 		 * changed the device block mode.
28128 		 */
28129 		mutex_enter(SD_MUTEX(un));
28130 		sd_update_block_info(un, blksize, 0);
28131 		mutex_exit(SD_MUTEX(un));
28132 	}
28133 	kmem_free(sense, 20);
28134 	kmem_free(select, 20);
28135 	return (rval);
28136 }
28137 
28138 
28139 /*
28140  *    Function: sr_read_cdda()
28141  *
28142  * Description: This routine is the driver entry point for handling CD-ROM
28143  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28144  *		the target supports CDDA these requests are handled via a vendor
28145  *		specific command (0xD8) If the target does not support CDDA
28146  *		these requests are handled via the READ CD command (0xBE).
28147  *
28148  *   Arguments: dev	- the device 'dev_t'
28149  *		data	- pointer to user provided CD-DA structure specifying
28150  *			  the track starting address, transfer length, and
28151  *			  subcode options.
28152  *		flag	- this argument is a pass through to ddi_copyxxx()
28153  *			  directly from the mode argument of ioctl().
28154  *
28155  * Return Code: the code returned by sd_send_scsi_cmd()
28156  *		EFAULT if ddi_copyxxx() fails
28157  *		ENXIO if fail ddi_get_soft_state
28158  *		EINVAL if invalid arguments are provided
28159  *		ENOTTY
28160  */
28161 
28162 static int
28163 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28164 {
28165 	struct sd_lun			*un;
28166 	struct uscsi_cmd		*com;
28167 	struct cdrom_cdda		*cdda;
28168 	int				rval;
28169 	size_t				buflen;
28170 	char				cdb[CDB_GROUP5];
28171 
28172 #ifdef _MULTI_DATAMODEL
28173 	/* To support ILP32 applications in an LP64 world */
28174 	struct cdrom_cdda32	cdrom_cdda32;
28175 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28176 #endif /* _MULTI_DATAMODEL */
28177 
28178 	if (data == NULL) {
28179 		return (EINVAL);
28180 	}
28181 
28182 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28183 		return (ENXIO);
28184 	}
28185 
28186 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28187 
28188 #ifdef _MULTI_DATAMODEL
28189 	switch (ddi_model_convert_from(flag & FMODELS)) {
28190 	case DDI_MODEL_ILP32:
28191 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28192 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28193 			    "sr_read_cdda: ddi_copyin Failed\n");
28194 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28195 			return (EFAULT);
28196 		}
28197 		/* Convert the ILP32 uscsi data from the application to LP64 */
28198 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28199 		break;
28200 	case DDI_MODEL_NONE:
28201 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28202 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28203 			    "sr_read_cdda: ddi_copyin Failed\n");
28204 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28205 			return (EFAULT);
28206 		}
28207 		break;
28208 	}
28209 #else /* ! _MULTI_DATAMODEL */
28210 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28211 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28212 		    "sr_read_cdda: ddi_copyin Failed\n");
28213 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28214 		return (EFAULT);
28215 	}
28216 #endif /* _MULTI_DATAMODEL */
28217 
28218 	/*
28219 	 * Since MMC-2 expects max 3 bytes for length, check if the
28220 	 * length input is greater than 3 bytes
28221 	 */
28222 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28223 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28224 		    "cdrom transfer length too large: %d (limit %d)\n",
28225 		    cdda->cdda_length, 0xFFFFFF);
28226 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28227 		return (EINVAL);
28228 	}
28229 
28230 	switch (cdda->cdda_subcode) {
28231 	case CDROM_DA_NO_SUBCODE:
28232 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28233 		break;
28234 	case CDROM_DA_SUBQ:
28235 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28236 		break;
28237 	case CDROM_DA_ALL_SUBCODE:
28238 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28239 		break;
28240 	case CDROM_DA_SUBCODE_ONLY:
28241 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28242 		break;
28243 	default:
28244 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28245 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28246 		    cdda->cdda_subcode);
28247 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28248 		return (EINVAL);
28249 	}
28250 
28251 	/* Build and send the command */
28252 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28253 	bzero(cdb, CDB_GROUP5);
28254 
28255 	if (un->un_f_cfg_cdda == TRUE) {
28256 		cdb[0] = (char)SCMD_READ_CD;
28257 		cdb[1] = 0x04;
28258 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28259 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28260 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28261 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28262 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28263 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28264 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28265 		cdb[9] = 0x10;
28266 		switch (cdda->cdda_subcode) {
28267 		case CDROM_DA_NO_SUBCODE :
28268 			cdb[10] = 0x0;
28269 			break;
28270 		case CDROM_DA_SUBQ :
28271 			cdb[10] = 0x2;
28272 			break;
28273 		case CDROM_DA_ALL_SUBCODE :
28274 			cdb[10] = 0x1;
28275 			break;
28276 		case CDROM_DA_SUBCODE_ONLY :
28277 			/* FALLTHROUGH */
28278 		default :
28279 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28280 			kmem_free(com, sizeof (*com));
28281 			return (ENOTTY);
28282 		}
28283 	} else {
28284 		cdb[0] = (char)SCMD_READ_CDDA;
28285 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28286 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28287 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28288 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28289 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28290 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28291 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28292 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28293 		cdb[10] = cdda->cdda_subcode;
28294 	}
28295 
28296 	com->uscsi_cdb = cdb;
28297 	com->uscsi_cdblen = CDB_GROUP5;
28298 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28299 	com->uscsi_buflen = buflen;
28300 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28301 
28302 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28303 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28304 
28305 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28306 	kmem_free(com, sizeof (*com));
28307 	return (rval);
28308 }
28309 
28310 
28311 /*
28312  *    Function: sr_read_cdxa()
28313  *
28314  * Description: This routine is the driver entry point for handling CD-ROM
28315  *		ioctl requests to return CD-XA (Extended Architecture) data.
28316  *		(CDROMCDXA).
28317  *
28318  *   Arguments: dev	- the device 'dev_t'
28319  *		data	- pointer to user provided CD-XA structure specifying
28320  *			  the data starting address, transfer length, and format
28321  *		flag	- this argument is a pass through to ddi_copyxxx()
28322  *			  directly from the mode argument of ioctl().
28323  *
28324  * Return Code: the code returned by sd_send_scsi_cmd()
28325  *		EFAULT if ddi_copyxxx() fails
28326  *		ENXIO if fail ddi_get_soft_state
28327  *		EINVAL if data pointer is NULL
28328  */
28329 
28330 static int
28331 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28332 {
28333 	struct sd_lun		*un;
28334 	struct uscsi_cmd	*com;
28335 	struct cdrom_cdxa	*cdxa;
28336 	int			rval;
28337 	size_t			buflen;
28338 	char			cdb[CDB_GROUP5];
28339 	uchar_t			read_flags;
28340 
28341 #ifdef _MULTI_DATAMODEL
28342 	/* To support ILP32 applications in an LP64 world */
28343 	struct cdrom_cdxa32		cdrom_cdxa32;
28344 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28345 #endif /* _MULTI_DATAMODEL */
28346 
28347 	if (data == NULL) {
28348 		return (EINVAL);
28349 	}
28350 
28351 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28352 		return (ENXIO);
28353 	}
28354 
28355 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28356 
28357 #ifdef _MULTI_DATAMODEL
28358 	switch (ddi_model_convert_from(flag & FMODELS)) {
28359 	case DDI_MODEL_ILP32:
28360 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28361 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28362 			return (EFAULT);
28363 		}
28364 		/*
28365 		 * Convert the ILP32 uscsi data from the
28366 		 * application to LP64 for internal use.
28367 		 */
28368 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28369 		break;
28370 	case DDI_MODEL_NONE:
28371 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28372 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28373 			return (EFAULT);
28374 		}
28375 		break;
28376 	}
28377 #else /* ! _MULTI_DATAMODEL */
28378 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28379 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28380 		return (EFAULT);
28381 	}
28382 #endif /* _MULTI_DATAMODEL */
28383 
28384 	/*
28385 	 * Since MMC-2 expects max 3 bytes for length, check if the
28386 	 * length input is greater than 3 bytes
28387 	 */
28388 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28389 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28390 		    "cdrom transfer length too large: %d (limit %d)\n",
28391 		    cdxa->cdxa_length, 0xFFFFFF);
28392 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28393 		return (EINVAL);
28394 	}
28395 
28396 	switch (cdxa->cdxa_format) {
28397 	case CDROM_XA_DATA:
28398 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28399 		read_flags = 0x10;
28400 		break;
28401 	case CDROM_XA_SECTOR_DATA:
28402 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28403 		read_flags = 0xf8;
28404 		break;
28405 	case CDROM_XA_DATA_W_ERROR:
28406 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28407 		read_flags = 0xfc;
28408 		break;
28409 	default:
28410 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28411 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28412 		    cdxa->cdxa_format);
28413 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28414 		return (EINVAL);
28415 	}
28416 
28417 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28418 	bzero(cdb, CDB_GROUP5);
28419 	if (un->un_f_mmc_cap == TRUE) {
28420 		cdb[0] = (char)SCMD_READ_CD;
28421 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28422 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28423 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28424 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28425 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28426 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28427 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28428 		cdb[9] = (char)read_flags;
28429 	} else {
28430 		/*
28431 		 * Note: A vendor specific command (0xDB) is being used her to
28432 		 * request a read of all subcodes.
28433 		 */
28434 		cdb[0] = (char)SCMD_READ_CDXA;
28435 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28436 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28437 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28438 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28439 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28440 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28441 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28442 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28443 		cdb[10] = cdxa->cdxa_format;
28444 	}
28445 	com->uscsi_cdb	   = cdb;
28446 	com->uscsi_cdblen  = CDB_GROUP5;
28447 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28448 	com->uscsi_buflen  = buflen;
28449 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28450 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28451 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28452 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28453 	kmem_free(com, sizeof (*com));
28454 	return (rval);
28455 }
28456 
28457 
28458 /*
28459  *    Function: sr_eject()
28460  *
28461  * Description: This routine is the driver entry point for handling CD-ROM
28462  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28463  *
28464  *   Arguments: dev	- the device 'dev_t'
28465  *
28466  * Return Code: the code returned by sd_send_scsi_cmd()
28467  */
28468 
28469 static int
28470 sr_eject(dev_t dev)
28471 {
28472 	struct sd_lun	*un;
28473 	int		rval;
28474 
28475 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28476 	    (un->un_state == SD_STATE_OFFLINE)) {
28477 		return (ENXIO);
28478 	}
28479 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28480 	    SD_PATH_STANDARD)) != 0) {
28481 		return (rval);
28482 	}
28483 
28484 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28485 	    SD_PATH_STANDARD);
28486 
28487 	if (rval == 0) {
28488 		mutex_enter(SD_MUTEX(un));
28489 		sr_ejected(un);
28490 		un->un_mediastate = DKIO_EJECTED;
28491 		cv_broadcast(&un->un_state_cv);
28492 		mutex_exit(SD_MUTEX(un));
28493 	}
28494 	return (rval);
28495 }
28496 
28497 
28498 /*
28499  *    Function: sr_ejected()
28500  *
28501  * Description: This routine updates the soft state structure to invalidate the
28502  *		geometry information after the media has been ejected or a
28503  *		media eject has been detected.
28504  *
28505  *   Arguments: un - driver soft state (unit) structure
28506  */
28507 
28508 static void
28509 sr_ejected(struct sd_lun *un)
28510 {
28511 	struct sd_errstats *stp;
28512 
28513 	ASSERT(un != NULL);
28514 	ASSERT(mutex_owned(SD_MUTEX(un)));
28515 
28516 	un->un_f_blockcount_is_valid	= FALSE;
28517 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28518 	un->un_f_geometry_is_valid	= FALSE;
28519 
28520 	if (un->un_errstats != NULL) {
28521 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28522 		stp->sd_capacity.value.ui64 = 0;
28523 	}
28524 }
28525 
28526 
28527 /*
28528  *    Function: sr_check_wp()
28529  *
28530  * Description: This routine checks the write protection of a removable media
28531  *		disk via the write protect bit of the Mode Page Header device
28532  *		specific field.  This routine has been implemented to use the
28533  *		error recovery mode page for all device types.
28534  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28535  *
28536  *   Arguments: dev		- the device 'dev_t'
28537  *
28538  * Return Code: int indicating if the device is write protected (1) or not (0)
28539  *
28540  *     Context: Kernel thread.
28541  *
28542  */
28543 
28544 static int
28545 sr_check_wp(dev_t dev)
28546 {
28547 	struct sd_lun	*un;
28548 	uchar_t		device_specific;
28549 	uchar_t		*sense;
28550 	int		hdrlen;
28551 	int		rval;
28552 	int		retry_flag = FALSE;
28553 
28554 	/*
28555 	 * Note: The return codes for this routine should be reworked to
28556 	 * properly handle the case of a NULL softstate.
28557 	 */
28558 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28559 		return (FALSE);
28560 	}
28561 
28562 	if (un->un_f_cfg_is_atapi == TRUE) {
28563 		retry_flag = TRUE;
28564 	}
28565 
28566 retry:
28567 	if (un->un_f_cfg_is_atapi == TRUE) {
28568 		/*
28569 		 * The mode page contents are not required; set the allocation
28570 		 * length for the mode page header only
28571 		 */
28572 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28573 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28574 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28575 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28576 		device_specific =
28577 		    ((struct mode_header_grp2 *)sense)->device_specific;
28578 	} else {
28579 		hdrlen = MODE_HEADER_LENGTH;
28580 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28581 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28582 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28583 		device_specific =
28584 		    ((struct mode_header *)sense)->device_specific;
28585 	}
28586 
28587 	if (rval != 0) {
28588 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28589 			/*
28590 			 * For an Atapi Zip drive, observed the drive
28591 			 * reporting check condition for the first attempt.
28592 			 * Sense data indicating power on or bus device/reset.
28593 			 * Hence in case of failure need to try at least once
28594 			 * for Atapi devices.
28595 			 */
28596 			retry_flag = FALSE;
28597 			kmem_free(sense, hdrlen);
28598 			goto retry;
28599 		} else {
28600 			/*
28601 			 * Write protect mode sense failed; not all disks
28602 			 * understand this query. Return FALSE assuming that
28603 			 * these devices are not writable.
28604 			 */
28605 			rval = FALSE;
28606 		}
28607 	} else {
28608 		if (device_specific & WRITE_PROTECT) {
28609 			rval = TRUE;
28610 		} else {
28611 			rval = FALSE;
28612 		}
28613 	}
28614 	kmem_free(sense, hdrlen);
28615 	return (rval);
28616 }
28617 
28618 
28619 /*
28620  *    Function: sr_volume_ctrl()
28621  *
28622  * Description: This routine is the driver entry point for handling CD-ROM
28623  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28624  *
28625  *   Arguments: dev	- the device 'dev_t'
28626  *		data	- pointer to user audio volume control structure
28627  *		flag	- this argument is a pass through to ddi_copyxxx()
28628  *			  directly from the mode argument of ioctl().
28629  *
28630  * Return Code: the code returned by sd_send_scsi_cmd()
28631  *		EFAULT if ddi_copyxxx() fails
28632  *		ENXIO if fail ddi_get_soft_state
28633  *		EINVAL if data pointer is NULL
28634  *
28635  */
28636 
28637 static int
28638 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28639 {
28640 	struct sd_lun		*un;
28641 	struct cdrom_volctrl    volume;
28642 	struct cdrom_volctrl    *vol = &volume;
28643 	uchar_t			*sense_page;
28644 	uchar_t			*select_page;
28645 	uchar_t			*sense;
28646 	uchar_t			*select;
28647 	int			sense_buflen;
28648 	int			select_buflen;
28649 	int			rval;
28650 
28651 	if (data == NULL) {
28652 		return (EINVAL);
28653 	}
28654 
28655 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28656 	    (un->un_state == SD_STATE_OFFLINE)) {
28657 		return (ENXIO);
28658 	}
28659 
28660 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28661 		return (EFAULT);
28662 	}
28663 
28664 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28665 		struct mode_header_grp2		*sense_mhp;
28666 		struct mode_header_grp2		*select_mhp;
28667 		int				bd_len;
28668 
28669 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28670 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28671 		    MODEPAGE_AUDIO_CTRL_LEN;
28672 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28673 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28674 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28675 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28676 		    SD_PATH_STANDARD)) != 0) {
28677 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28678 			    "sr_volume_ctrl: Mode Sense Failed\n");
28679 			kmem_free(sense, sense_buflen);
28680 			kmem_free(select, select_buflen);
28681 			return (rval);
28682 		}
28683 		sense_mhp = (struct mode_header_grp2 *)sense;
28684 		select_mhp = (struct mode_header_grp2 *)select;
28685 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28686 		    sense_mhp->bdesc_length_lo;
28687 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28688 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28689 			    "sr_volume_ctrl: Mode Sense returned invalid "
28690 			    "block descriptor length\n");
28691 			kmem_free(sense, sense_buflen);
28692 			kmem_free(select, select_buflen);
28693 			return (EIO);
28694 		}
28695 		sense_page = (uchar_t *)
28696 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28697 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28698 		select_mhp->length_msb = 0;
28699 		select_mhp->length_lsb = 0;
28700 		select_mhp->bdesc_length_hi = 0;
28701 		select_mhp->bdesc_length_lo = 0;
28702 	} else {
28703 		struct mode_header		*sense_mhp, *select_mhp;
28704 
28705 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28706 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28707 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28708 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28709 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
28710 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28711 		    SD_PATH_STANDARD)) != 0) {
28712 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28713 			    "sr_volume_ctrl: Mode Sense Failed\n");
28714 			kmem_free(sense, sense_buflen);
28715 			kmem_free(select, select_buflen);
28716 			return (rval);
28717 		}
28718 		sense_mhp  = (struct mode_header *)sense;
28719 		select_mhp = (struct mode_header *)select;
28720 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
28721 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28722 			    "sr_volume_ctrl: Mode Sense returned invalid "
28723 			    "block descriptor length\n");
28724 			kmem_free(sense, sense_buflen);
28725 			kmem_free(select, select_buflen);
28726 			return (EIO);
28727 		}
28728 		sense_page = (uchar_t *)
28729 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
28730 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
28731 		select_mhp->length = 0;
28732 		select_mhp->bdesc_length = 0;
28733 	}
28734 	/*
28735 	 * Note: An audio control data structure could be created and overlayed
28736 	 * on the following in place of the array indexing method implemented.
28737 	 */
28738 
28739 	/* Build the select data for the user volume data */
28740 	select_page[0] = MODEPAGE_AUDIO_CTRL;
28741 	select_page[1] = 0xE;
28742 	/* Set the immediate bit */
28743 	select_page[2] = 0x04;
28744 	/* Zero out reserved fields */
28745 	select_page[3] = 0x00;
28746 	select_page[4] = 0x00;
28747 	/* Return sense data for fields not to be modified */
28748 	select_page[5] = sense_page[5];
28749 	select_page[6] = sense_page[6];
28750 	select_page[7] = sense_page[7];
28751 	/* Set the user specified volume levels for channel 0 and 1 */
28752 	select_page[8] = 0x01;
28753 	select_page[9] = vol->channel0;
28754 	select_page[10] = 0x02;
28755 	select_page[11] = vol->channel1;
28756 	/* Channel 2 and 3 are currently unsupported so return the sense data */
28757 	select_page[12] = sense_page[12];
28758 	select_page[13] = sense_page[13];
28759 	select_page[14] = sense_page[14];
28760 	select_page[15] = sense_page[15];
28761 
28762 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28763 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
28764 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28765 	} else {
28766 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
28767 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28768 	}
28769 
28770 	kmem_free(sense, sense_buflen);
28771 	kmem_free(select, select_buflen);
28772 	return (rval);
28773 }
28774 
28775 
28776 /*
28777  *    Function: sr_read_sony_session_offset()
28778  *
28779  * Description: This routine is the driver entry point for handling CD-ROM
28780  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28781  *		The address of the first track in the last session of a
28782  *		multi-session CD-ROM is returned
28783  *
28784  *		Note: This routine uses a vendor specific key value in the
28785  *		command control field without implementing any vendor check here
28786  *		or in the ioctl routine.
28787  *
28788  *   Arguments: dev	- the device 'dev_t'
28789  *		data	- pointer to an int to hold the requested address
28790  *		flag	- this argument is a pass through to ddi_copyxxx()
28791  *			  directly from the mode argument of ioctl().
28792  *
28793  * Return Code: the code returned by sd_send_scsi_cmd()
28794  *		EFAULT if ddi_copyxxx() fails
28795  *		ENXIO if fail ddi_get_soft_state
28796  *		EINVAL if data pointer is NULL
28797  */
28798 
28799 static int
28800 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28801 {
28802 	struct sd_lun		*un;
28803 	struct uscsi_cmd	*com;
28804 	caddr_t			buffer;
28805 	char			cdb[CDB_GROUP1];
28806 	int			session_offset = 0;
28807 	int			rval;
28808 
28809 	if (data == NULL) {
28810 		return (EINVAL);
28811 	}
28812 
28813 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28814 	    (un->un_state == SD_STATE_OFFLINE)) {
28815 		return (ENXIO);
28816 	}
28817 
28818 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28819 	bzero(cdb, CDB_GROUP1);
28820 	cdb[0] = SCMD_READ_TOC;
28821 	/*
28822 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28823 	 * (4 byte TOC response header + 8 byte response data)
28824 	 */
28825 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28826 	/* Byte 9 is the control byte. A vendor specific value is used */
28827 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28828 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28829 	com->uscsi_cdb = cdb;
28830 	com->uscsi_cdblen = CDB_GROUP1;
28831 	com->uscsi_bufaddr = buffer;
28832 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28833 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28834 
28835 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28836 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28837 	if (rval != 0) {
28838 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28839 		kmem_free(com, sizeof (*com));
28840 		return (rval);
28841 	}
28842 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28843 		session_offset =
28844 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28845 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28846 		/*
28847 		 * Offset returned offset in current lbasize block's. Convert to
28848 		 * 2k block's to return to the user
28849 		 */
28850 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28851 			session_offset >>= 2;
28852 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28853 			session_offset >>= 1;
28854 		}
28855 	}
28856 
28857 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28858 		rval = EFAULT;
28859 	}
28860 
28861 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28862 	kmem_free(com, sizeof (*com));
28863 	return (rval);
28864 }
28865 
28866 
28867 /*
28868  *    Function: sd_wm_cache_constructor()
28869  *
28870  * Description: Cache Constructor for the wmap cache for the read/modify/write
28871  * 		devices.
28872  *
28873  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28874  *		un	- sd_lun structure for the device.
28875  *		flag	- the km flags passed to constructor
28876  *
28877  * Return Code: 0 on success.
28878  *		-1 on failure.
28879  */
28880 
28881 /*ARGSUSED*/
28882 static int
28883 sd_wm_cache_constructor(void *wm, void *un, int flags)
28884 {
28885 	bzero(wm, sizeof (struct sd_w_map));
28886 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28887 	return (0);
28888 }
28889 
28890 
28891 /*
28892  *    Function: sd_wm_cache_destructor()
28893  *
28894  * Description: Cache destructor for the wmap cache for the read/modify/write
28895  * 		devices.
28896  *
28897  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28898  *		un	- sd_lun structure for the device.
28899  */
28900 /*ARGSUSED*/
28901 static void
28902 sd_wm_cache_destructor(void *wm, void *un)
28903 {
28904 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28905 }
28906 
28907 
28908 /*
28909  *    Function: sd_range_lock()
28910  *
28911  * Description: Lock the range of blocks specified as parameter to ensure
28912  *		that read, modify write is atomic and no other i/o writes
28913  *		to the same location. The range is specified in terms
28914  *		of start and end blocks. Block numbers are the actual
28915  *		media block numbers and not system.
28916  *
28917  *   Arguments: un	- sd_lun structure for the device.
28918  *		startb - The starting block number
28919  *		endb - The end block number
28920  *		typ - type of i/o - simple/read_modify_write
28921  *
28922  * Return Code: wm  - pointer to the wmap structure.
28923  *
28924  *     Context: This routine can sleep.
28925  */
28926 
28927 static struct sd_w_map *
28928 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28929 {
28930 	struct sd_w_map *wmp = NULL;
28931 	struct sd_w_map *sl_wmp = NULL;
28932 	struct sd_w_map *tmp_wmp;
28933 	wm_state state = SD_WM_CHK_LIST;
28934 
28935 
28936 	ASSERT(un != NULL);
28937 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28938 
28939 	mutex_enter(SD_MUTEX(un));
28940 
28941 	while (state != SD_WM_DONE) {
28942 
28943 		switch (state) {
28944 		case SD_WM_CHK_LIST:
28945 			/*
28946 			 * This is the starting state. Check the wmap list
28947 			 * to see if the range is currently available.
28948 			 */
28949 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28950 				/*
28951 				 * If this is a simple write and no rmw
28952 				 * i/o is pending then try to lock the
28953 				 * range as the range should be available.
28954 				 */
28955 				state = SD_WM_LOCK_RANGE;
28956 			} else {
28957 				tmp_wmp = sd_get_range(un, startb, endb);
28958 				if (tmp_wmp != NULL) {
28959 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28960 						/*
28961 						 * Should not keep onlist wmps
28962 						 * while waiting this macro
28963 						 * will also do wmp = NULL;
28964 						 */
28965 						FREE_ONLIST_WMAP(un, wmp);
28966 					}
28967 					/*
28968 					 * sl_wmp is the wmap on which wait
28969 					 * is done, since the tmp_wmp points
28970 					 * to the inuse wmap, set sl_wmp to
28971 					 * tmp_wmp and change the state to sleep
28972 					 */
28973 					sl_wmp = tmp_wmp;
28974 					state = SD_WM_WAIT_MAP;
28975 				} else {
28976 					state = SD_WM_LOCK_RANGE;
28977 				}
28978 
28979 			}
28980 			break;
28981 
28982 		case SD_WM_LOCK_RANGE:
28983 			ASSERT(un->un_wm_cache);
28984 			/*
28985 			 * The range need to be locked, try to get a wmap.
28986 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28987 			 * if possible as we will have to release the sd mutex
28988 			 * if we have to sleep.
28989 			 */
28990 			if (wmp == NULL)
28991 				wmp = kmem_cache_alloc(un->un_wm_cache,
28992 				    KM_NOSLEEP);
28993 			if (wmp == NULL) {
28994 				mutex_exit(SD_MUTEX(un));
28995 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28996 				    (sd_lun::un_wm_cache))
28997 				wmp = kmem_cache_alloc(un->un_wm_cache,
28998 				    KM_SLEEP);
28999 				mutex_enter(SD_MUTEX(un));
29000 				/*
29001 				 * we released the mutex so recheck and go to
29002 				 * check list state.
29003 				 */
29004 				state = SD_WM_CHK_LIST;
29005 			} else {
29006 				/*
29007 				 * We exit out of state machine since we
29008 				 * have the wmap. Do the housekeeping first.
29009 				 * place the wmap on the wmap list if it is not
29010 				 * on it already and then set the state to done.
29011 				 */
29012 				wmp->wm_start = startb;
29013 				wmp->wm_end = endb;
29014 				wmp->wm_flags = typ | SD_WM_BUSY;
29015 				if (typ & SD_WTYPE_RMW) {
29016 					un->un_rmw_count++;
29017 				}
29018 				/*
29019 				 * If not already on the list then link
29020 				 */
29021 				if (!ONLIST(un, wmp)) {
29022 					wmp->wm_next = un->un_wm;
29023 					wmp->wm_prev = NULL;
29024 					if (wmp->wm_next)
29025 						wmp->wm_next->wm_prev = wmp;
29026 					un->un_wm = wmp;
29027 				}
29028 				state = SD_WM_DONE;
29029 			}
29030 			break;
29031 
29032 		case SD_WM_WAIT_MAP:
29033 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29034 			/*
29035 			 * Wait is done on sl_wmp, which is set in the
29036 			 * check_list state.
29037 			 */
29038 			sl_wmp->wm_wanted_count++;
29039 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29040 			sl_wmp->wm_wanted_count--;
29041 			if (!(sl_wmp->wm_flags & SD_WM_BUSY)) {
29042 				if (wmp != NULL)
29043 					CHK_N_FREEWMP(un, wmp);
29044 				wmp = sl_wmp;
29045 			}
29046 			sl_wmp = NULL;
29047 			/*
29048 			 * After waking up, need to recheck for availability of
29049 			 * range.
29050 			 */
29051 			state = SD_WM_CHK_LIST;
29052 			break;
29053 
29054 		default:
29055 			panic("sd_range_lock: "
29056 			    "Unknown state %d in sd_range_lock", state);
29057 			/*NOTREACHED*/
29058 		} /* switch(state) */
29059 
29060 	} /* while(state != SD_WM_DONE) */
29061 
29062 	mutex_exit(SD_MUTEX(un));
29063 
29064 	ASSERT(wmp != NULL);
29065 
29066 	return (wmp);
29067 }
29068 
29069 
29070 /*
29071  *    Function: sd_get_range()
29072  *
29073  * Description: Find if there any overlapping I/O to this one
29074  *		Returns the write-map of 1st such I/O, NULL otherwise.
29075  *
29076  *   Arguments: un	- sd_lun structure for the device.
29077  *		startb - The starting block number
29078  *		endb - The end block number
29079  *
29080  * Return Code: wm  - pointer to the wmap structure.
29081  */
29082 
29083 static struct sd_w_map *
29084 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29085 {
29086 	struct sd_w_map *wmp;
29087 
29088 	ASSERT(un != NULL);
29089 
29090 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29091 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29092 			continue;
29093 		}
29094 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29095 			break;
29096 		}
29097 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29098 			break;
29099 		}
29100 	}
29101 
29102 	return (wmp);
29103 }
29104 
29105 
29106 /*
29107  *    Function: sd_free_inlist_wmap()
29108  *
29109  * Description: Unlink and free a write map struct.
29110  *
29111  *   Arguments: un      - sd_lun structure for the device.
29112  *		wmp	- sd_w_map which needs to be unlinked.
29113  */
29114 
29115 static void
29116 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29117 {
29118 	ASSERT(un != NULL);
29119 
29120 	if (un->un_wm == wmp) {
29121 		un->un_wm = wmp->wm_next;
29122 	} else {
29123 		wmp->wm_prev->wm_next = wmp->wm_next;
29124 	}
29125 
29126 	if (wmp->wm_next) {
29127 		wmp->wm_next->wm_prev = wmp->wm_prev;
29128 	}
29129 
29130 	wmp->wm_next = wmp->wm_prev = NULL;
29131 
29132 	kmem_cache_free(un->un_wm_cache, wmp);
29133 }
29134 
29135 
29136 /*
29137  *    Function: sd_range_unlock()
29138  *
29139  * Description: Unlock the range locked by wm.
29140  *		Free write map if nobody else is waiting on it.
29141  *
29142  *   Arguments: un      - sd_lun structure for the device.
29143  *              wmp     - sd_w_map which needs to be unlinked.
29144  */
29145 
29146 static void
29147 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29148 {
29149 	ASSERT(un != NULL);
29150 	ASSERT(wm != NULL);
29151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29152 
29153 	mutex_enter(SD_MUTEX(un));
29154 
29155 	if (wm->wm_flags & SD_WTYPE_RMW) {
29156 		un->un_rmw_count--;
29157 	}
29158 
29159 	if (wm->wm_wanted_count) {
29160 		wm->wm_flags = 0;
29161 		/*
29162 		 * Broadcast that the wmap is available now.
29163 		 */
29164 		cv_broadcast(&wm->wm_avail);
29165 	} else {
29166 		/*
29167 		 * If no one is waiting on the map, it should be free'ed.
29168 		 */
29169 		sd_free_inlist_wmap(un, wm);
29170 	}
29171 
29172 	mutex_exit(SD_MUTEX(un));
29173 }
29174 
29175 
29176 /*
29177  *    Function: sd_read_modify_write_task
29178  *
29179  * Description: Called from a taskq thread to initiate the write phase of
29180  *		a read-modify-write request.  This is used for targets where
29181  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29182  *
29183  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29184  *
29185  *     Context: Called under taskq thread context.
29186  */
29187 
29188 static void
29189 sd_read_modify_write_task(void *arg)
29190 {
29191 	struct sd_mapblocksize_info	*bsp;
29192 	struct buf	*bp;
29193 	struct sd_xbuf	*xp;
29194 	struct sd_lun	*un;
29195 
29196 	bp = arg;	/* The bp is given in arg */
29197 	ASSERT(bp != NULL);
29198 
29199 	/* Get the pointer to the layer-private data struct */
29200 	xp = SD_GET_XBUF(bp);
29201 	ASSERT(xp != NULL);
29202 	bsp = xp->xb_private;
29203 	ASSERT(bsp != NULL);
29204 
29205 	un = SD_GET_UN(bp);
29206 	ASSERT(un != NULL);
29207 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29208 
29209 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29210 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29211 
29212 	/*
29213 	 * This is the write phase of a read-modify-write request, called
29214 	 * under the context of a taskq thread in response to the completion
29215 	 * of the read portion of the rmw request completing under interrupt
29216 	 * context. The write request must be sent from here down the iostart
29217 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29218 	 * we use the layer index saved in the layer-private data area.
29219 	 */
29220 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29221 
29222 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29223 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29224 }
29225 
29226 
29227 /*
29228  *    Function: sddump_do_read_of_rmw()
29229  *
29230  * Description: This routine will be called from sddump, If sddump is called
29231  *		with an I/O which not aligned on device blocksize boundary
29232  *		then the write has to be converted to read-modify-write.
29233  *		Do the read part here in order to keep sddump simple.
29234  *		Note - That the sd_mutex is held across the call to this
29235  *		routine.
29236  *
29237  *   Arguments: un	- sd_lun
29238  *		blkno	- block number in terms of media block size.
29239  *		nblk	- number of blocks.
29240  *		bpp	- pointer to pointer to the buf structure. On return
29241  *			from this function, *bpp points to the valid buffer
29242  *			to which the write has to be done.
29243  *
29244  * Return Code: 0 for success or errno-type return code
29245  */
29246 
29247 static int
29248 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29249 	struct buf **bpp)
29250 {
29251 	int err;
29252 	int i;
29253 	int rval;
29254 	struct buf *bp;
29255 	struct scsi_pkt *pkt = NULL;
29256 	uint32_t target_blocksize;
29257 
29258 	ASSERT(un != NULL);
29259 	ASSERT(mutex_owned(SD_MUTEX(un)));
29260 
29261 	target_blocksize = un->un_tgt_blocksize;
29262 
29263 	mutex_exit(SD_MUTEX(un));
29264 
29265 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29266 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29267 	if (bp == NULL) {
29268 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29269 		    "no resources for dumping; giving up");
29270 		err = ENOMEM;
29271 		goto done;
29272 	}
29273 
29274 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29275 	    blkno, nblk);
29276 	if (rval != 0) {
29277 		scsi_free_consistent_buf(bp);
29278 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29279 		    "no resources for dumping; giving up");
29280 		err = ENOMEM;
29281 		goto done;
29282 	}
29283 
29284 	pkt->pkt_flags |= FLAG_NOINTR;
29285 
29286 	err = EIO;
29287 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29288 
29289 		/*
29290 		 * Scsi_poll returns 0 (success) if the command completes and
29291 		 * the status block is STATUS_GOOD.  We should only check
29292 		 * errors if this condition is not true.  Even then we should
29293 		 * send our own request sense packet only if we have a check
29294 		 * condition and auto request sense has not been performed by
29295 		 * the hba.
29296 		 */
29297 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29298 
29299 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29300 			err = 0;
29301 			break;
29302 		}
29303 
29304 		/*
29305 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29306 		 * no need to read RQS data.
29307 		 */
29308 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29309 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29310 			    "Device is gone\n");
29311 			break;
29312 		}
29313 
29314 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29315 			SD_INFO(SD_LOG_DUMP, un,
29316 			    "sddump: read failed with CHECK, try # %d\n", i);
29317 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29318 				(void) sd_send_polled_RQS(un);
29319 			}
29320 
29321 			continue;
29322 		}
29323 
29324 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29325 			int reset_retval = 0;
29326 
29327 			SD_INFO(SD_LOG_DUMP, un,
29328 			    "sddump: read failed with BUSY, try # %d\n", i);
29329 
29330 			if (un->un_f_lun_reset_enabled == TRUE) {
29331 				reset_retval = scsi_reset(SD_ADDRESS(un),
29332 				    RESET_LUN);
29333 			}
29334 			if (reset_retval == 0) {
29335 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29336 			}
29337 			(void) sd_send_polled_RQS(un);
29338 
29339 		} else {
29340 			SD_INFO(SD_LOG_DUMP, un,
29341 			    "sddump: read failed with 0x%x, try # %d\n",
29342 			    SD_GET_PKT_STATUS(pkt), i);
29343 			mutex_enter(SD_MUTEX(un));
29344 			sd_reset_target(un, pkt);
29345 			mutex_exit(SD_MUTEX(un));
29346 		}
29347 
29348 		/*
29349 		 * If we are not getting anywhere with lun/target resets,
29350 		 * let's reset the bus.
29351 		 */
29352 		if (i > SD_NDUMP_RETRIES/2) {
29353 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29354 			(void) sd_send_polled_RQS(un);
29355 		}
29356 
29357 	}
29358 	scsi_destroy_pkt(pkt);
29359 
29360 	if (err != 0) {
29361 		scsi_free_consistent_buf(bp);
29362 		*bpp = NULL;
29363 	} else {
29364 		*bpp = bp;
29365 	}
29366 
29367 done:
29368 	mutex_enter(SD_MUTEX(un));
29369 	return (err);
29370 }
29371 
29372 
29373 /*
29374  *    Function: sd_failfast_flushq
29375  *
29376  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29377  *		in b_flags and move them onto the failfast queue, then kick
29378  *		off a thread to return all bp's on the failfast queue to
29379  *		their owners with an error set.
29380  *
29381  *   Arguments: un - pointer to the soft state struct for the instance.
29382  *
29383  *     Context: may execute in interrupt context.
29384  */
29385 
29386 static void
29387 sd_failfast_flushq(struct sd_lun *un)
29388 {
29389 	struct buf *bp;
29390 	struct buf *next_waitq_bp;
29391 	struct buf *prev_waitq_bp = NULL;
29392 
29393 	ASSERT(un != NULL);
29394 	ASSERT(mutex_owned(SD_MUTEX(un)));
29395 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29396 	ASSERT(un->un_failfast_bp == NULL);
29397 
29398 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29399 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29400 
29401 	/*
29402 	 * Check if we should flush all bufs when entering failfast state, or
29403 	 * just those with B_FAILFAST set.
29404 	 */
29405 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29406 		/*
29407 		 * Move *all* bp's on the wait queue to the failfast flush
29408 		 * queue, including those that do NOT have B_FAILFAST set.
29409 		 */
29410 		if (un->un_failfast_headp == NULL) {
29411 			ASSERT(un->un_failfast_tailp == NULL);
29412 			un->un_failfast_headp = un->un_waitq_headp;
29413 		} else {
29414 			ASSERT(un->un_failfast_tailp != NULL);
29415 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29416 		}
29417 
29418 		un->un_failfast_tailp = un->un_waitq_tailp;
29419 
29420 		/* update kstat for each bp moved out of the waitq */
29421 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29422 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29423 		}
29424 
29425 		/* empty the waitq */
29426 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29427 
29428 	} else {
29429 		/*
29430 		 * Go thru the wait queue, pick off all entries with
29431 		 * B_FAILFAST set, and move these onto the failfast queue.
29432 		 */
29433 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29434 			/*
29435 			 * Save the pointer to the next bp on the wait queue,
29436 			 * so we get to it on the next iteration of this loop.
29437 			 */
29438 			next_waitq_bp = bp->av_forw;
29439 
29440 			/*
29441 			 * If this bp from the wait queue does NOT have
29442 			 * B_FAILFAST set, just move on to the next element
29443 			 * in the wait queue. Note, this is the only place
29444 			 * where it is correct to set prev_waitq_bp.
29445 			 */
29446 			if ((bp->b_flags & B_FAILFAST) == 0) {
29447 				prev_waitq_bp = bp;
29448 				continue;
29449 			}
29450 
29451 			/*
29452 			 * Remove the bp from the wait queue.
29453 			 */
29454 			if (bp == un->un_waitq_headp) {
29455 				/* The bp is the first element of the waitq. */
29456 				un->un_waitq_headp = next_waitq_bp;
29457 				if (un->un_waitq_headp == NULL) {
29458 					/* The wait queue is now empty */
29459 					un->un_waitq_tailp = NULL;
29460 				}
29461 			} else {
29462 				/*
29463 				 * The bp is either somewhere in the middle
29464 				 * or at the end of the wait queue.
29465 				 */
29466 				ASSERT(un->un_waitq_headp != NULL);
29467 				ASSERT(prev_waitq_bp != NULL);
29468 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29469 				    == 0);
29470 				if (bp == un->un_waitq_tailp) {
29471 					/* bp is the last entry on the waitq. */
29472 					ASSERT(next_waitq_bp == NULL);
29473 					un->un_waitq_tailp = prev_waitq_bp;
29474 				}
29475 				prev_waitq_bp->av_forw = next_waitq_bp;
29476 			}
29477 			bp->av_forw = NULL;
29478 
29479 			/*
29480 			 * update kstat since the bp is moved out of
29481 			 * the waitq
29482 			 */
29483 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29484 
29485 			/*
29486 			 * Now put the bp onto the failfast queue.
29487 			 */
29488 			if (un->un_failfast_headp == NULL) {
29489 				/* failfast queue is currently empty */
29490 				ASSERT(un->un_failfast_tailp == NULL);
29491 				un->un_failfast_headp =
29492 				    un->un_failfast_tailp = bp;
29493 			} else {
29494 				/* Add the bp to the end of the failfast q */
29495 				ASSERT(un->un_failfast_tailp != NULL);
29496 				ASSERT(un->un_failfast_tailp->b_flags &
29497 				    B_FAILFAST);
29498 				un->un_failfast_tailp->av_forw = bp;
29499 				un->un_failfast_tailp = bp;
29500 			}
29501 		}
29502 	}
29503 
29504 	/*
29505 	 * Now return all bp's on the failfast queue to their owners.
29506 	 */
29507 	while ((bp = un->un_failfast_headp) != NULL) {
29508 
29509 		un->un_failfast_headp = bp->av_forw;
29510 		if (un->un_failfast_headp == NULL) {
29511 			un->un_failfast_tailp = NULL;
29512 		}
29513 
29514 		/*
29515 		 * We want to return the bp with a failure error code, but
29516 		 * we do not want a call to sd_start_cmds() to occur here,
29517 		 * so use sd_return_failed_command_no_restart() instead of
29518 		 * sd_return_failed_command().
29519 		 */
29520 		sd_return_failed_command_no_restart(un, bp, EIO);
29521 	}
29522 
29523 	/* Flush the xbuf queues if required. */
29524 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29525 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29526 	}
29527 
29528 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29529 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29530 }
29531 
29532 
29533 /*
29534  *    Function: sd_failfast_flushq_callback
29535  *
29536  * Description: Return TRUE if the given bp meets the criteria for failfast
29537  *		flushing. Used with ddi_xbuf_flushq(9F).
29538  *
29539  *   Arguments: bp - ptr to buf struct to be examined.
29540  *
29541  *     Context: Any
29542  */
29543 
29544 static int
29545 sd_failfast_flushq_callback(struct buf *bp)
29546 {
29547 	/*
29548 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29549 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29550 	 */
29551 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29552 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29553 }
29554 
29555 
29556 
29557 #if defined(__i386) || defined(__amd64)
29558 /*
29559  * Function: sd_setup_next_xfer
29560  *
29561  * Description: Prepare next I/O operation using DMA_PARTIAL
29562  *
29563  */
29564 
29565 static int
29566 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29567     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29568 {
29569 	ssize_t	num_blks_not_xfered;
29570 	daddr_t	strt_blk_num;
29571 	ssize_t	bytes_not_xfered;
29572 	int	rval;
29573 
29574 	ASSERT(pkt->pkt_resid == 0);
29575 
29576 	/*
29577 	 * Calculate next block number and amount to be transferred.
29578 	 *
29579 	 * How much data NOT transfered to the HBA yet.
29580 	 */
29581 	bytes_not_xfered = xp->xb_dma_resid;
29582 
29583 	/*
29584 	 * figure how many blocks NOT transfered to the HBA yet.
29585 	 */
29586 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29587 
29588 	/*
29589 	 * set starting block number to the end of what WAS transfered.
29590 	 */
29591 	strt_blk_num = xp->xb_blkno +
29592 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29593 
29594 	/*
29595 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29596 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29597 	 * the disk mutex here.
29598 	 */
29599 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29600 	    strt_blk_num, num_blks_not_xfered);
29601 
29602 	if (rval == 0) {
29603 
29604 		/*
29605 		 * Success.
29606 		 *
29607 		 * Adjust things if there are still more blocks to be
29608 		 * transfered.
29609 		 */
29610 		xp->xb_dma_resid = pkt->pkt_resid;
29611 		pkt->pkt_resid = 0;
29612 
29613 		return (1);
29614 	}
29615 
29616 	/*
29617 	 * There's really only one possible return value from
29618 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29619 	 * returns NULL.
29620 	 */
29621 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29622 
29623 	bp->b_resid = bp->b_bcount;
29624 	bp->b_flags |= B_ERROR;
29625 
29626 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29627 	    "Error setting up next portion of DMA transfer\n");
29628 
29629 	return (0);
29630 }
29631 #endif
29632 
29633 /*
29634  * Note: The following sd_faultinjection_ioctl( ) routines implement
29635  * driver support for handling fault injection for error analysis
29636  * causing faults in multiple layers of the driver.
29637  *
29638  */
29639 
29640 #ifdef SD_FAULT_INJECTION
29641 static uint_t   sd_fault_injection_on = 0;
29642 
29643 /*
29644  *    Function: sd_faultinjection_ioctl()
29645  *
29646  * Description: This routine is the driver entry point for handling
29647  *              faultinjection ioctls to inject errors into the
29648  *              layer model
29649  *
29650  *   Arguments: cmd	- the ioctl cmd recieved
29651  *		arg	- the arguments from user and returns
29652  */
29653 
29654 static void
29655 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29656 
29657 	uint_t i;
29658 	uint_t rval;
29659 
29660 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29661 
29662 	mutex_enter(SD_MUTEX(un));
29663 
29664 	switch (cmd) {
29665 	case SDIOCRUN:
29666 		/* Allow pushed faults to be injected */
29667 		SD_INFO(SD_LOG_SDTEST, un,
29668 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29669 
29670 		sd_fault_injection_on = 1;
29671 
29672 		SD_INFO(SD_LOG_IOERR, un,
29673 		    "sd_faultinjection_ioctl: run finished\n");
29674 		break;
29675 
29676 	case SDIOCSTART:
29677 		/* Start Injection Session */
29678 		SD_INFO(SD_LOG_SDTEST, un,
29679 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29680 
29681 		sd_fault_injection_on = 0;
29682 		un->sd_injection_mask = 0xFFFFFFFF;
29683 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29684 			un->sd_fi_fifo_pkt[i] = NULL;
29685 			un->sd_fi_fifo_xb[i] = NULL;
29686 			un->sd_fi_fifo_un[i] = NULL;
29687 			un->sd_fi_fifo_arq[i] = NULL;
29688 		}
29689 		un->sd_fi_fifo_start = 0;
29690 		un->sd_fi_fifo_end = 0;
29691 
29692 		mutex_enter(&(un->un_fi_mutex));
29693 		un->sd_fi_log[0] = '\0';
29694 		un->sd_fi_buf_len = 0;
29695 		mutex_exit(&(un->un_fi_mutex));
29696 
29697 		SD_INFO(SD_LOG_IOERR, un,
29698 		    "sd_faultinjection_ioctl: start finished\n");
29699 		break;
29700 
29701 	case SDIOCSTOP:
29702 		/* Stop Injection Session */
29703 		SD_INFO(SD_LOG_SDTEST, un,
29704 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
29705 		sd_fault_injection_on = 0;
29706 		un->sd_injection_mask = 0x0;
29707 
29708 		/* Empty stray or unuseds structs from fifo */
29709 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29710 			if (un->sd_fi_fifo_pkt[i] != NULL) {
29711 				kmem_free(un->sd_fi_fifo_pkt[i],
29712 				    sizeof (struct sd_fi_pkt));
29713 			}
29714 			if (un->sd_fi_fifo_xb[i] != NULL) {
29715 				kmem_free(un->sd_fi_fifo_xb[i],
29716 				    sizeof (struct sd_fi_xb));
29717 			}
29718 			if (un->sd_fi_fifo_un[i] != NULL) {
29719 				kmem_free(un->sd_fi_fifo_un[i],
29720 				    sizeof (struct sd_fi_un));
29721 			}
29722 			if (un->sd_fi_fifo_arq[i] != NULL) {
29723 				kmem_free(un->sd_fi_fifo_arq[i],
29724 				    sizeof (struct sd_fi_arq));
29725 			}
29726 			un->sd_fi_fifo_pkt[i] = NULL;
29727 			un->sd_fi_fifo_un[i] = NULL;
29728 			un->sd_fi_fifo_xb[i] = NULL;
29729 			un->sd_fi_fifo_arq[i] = NULL;
29730 		}
29731 		un->sd_fi_fifo_start = 0;
29732 		un->sd_fi_fifo_end = 0;
29733 
29734 		SD_INFO(SD_LOG_IOERR, un,
29735 		    "sd_faultinjection_ioctl: stop finished\n");
29736 		break;
29737 
29738 	case SDIOCINSERTPKT:
29739 		/* Store a packet struct to be pushed onto fifo */
29740 		SD_INFO(SD_LOG_SDTEST, un,
29741 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29742 
29743 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29744 
29745 		sd_fault_injection_on = 0;
29746 
29747 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29748 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29749 			kmem_free(un->sd_fi_fifo_pkt[i],
29750 			    sizeof (struct sd_fi_pkt));
29751 		}
29752 		if (arg != NULL) {
29753 			un->sd_fi_fifo_pkt[i] =
29754 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29755 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29756 				/* Alloc failed don't store anything */
29757 				break;
29758 			}
29759 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29760 			    sizeof (struct sd_fi_pkt), 0);
29761 			if (rval == -1) {
29762 				kmem_free(un->sd_fi_fifo_pkt[i],
29763 				    sizeof (struct sd_fi_pkt));
29764 				un->sd_fi_fifo_pkt[i] = NULL;
29765 			}
29766 		} else {
29767 			SD_INFO(SD_LOG_IOERR, un,
29768 			    "sd_faultinjection_ioctl: pkt null\n");
29769 		}
29770 		break;
29771 
29772 	case SDIOCINSERTXB:
29773 		/* Store a xb struct to be pushed onto fifo */
29774 		SD_INFO(SD_LOG_SDTEST, un,
29775 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29776 
29777 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29778 
29779 		sd_fault_injection_on = 0;
29780 
29781 		if (un->sd_fi_fifo_xb[i] != NULL) {
29782 			kmem_free(un->sd_fi_fifo_xb[i],
29783 			    sizeof (struct sd_fi_xb));
29784 			un->sd_fi_fifo_xb[i] = NULL;
29785 		}
29786 		if (arg != NULL) {
29787 			un->sd_fi_fifo_xb[i] =
29788 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29789 			if (un->sd_fi_fifo_xb[i] == NULL) {
29790 				/* Alloc failed don't store anything */
29791 				break;
29792 			}
29793 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29794 			    sizeof (struct sd_fi_xb), 0);
29795 
29796 			if (rval == -1) {
29797 				kmem_free(un->sd_fi_fifo_xb[i],
29798 				    sizeof (struct sd_fi_xb));
29799 				un->sd_fi_fifo_xb[i] = NULL;
29800 			}
29801 		} else {
29802 			SD_INFO(SD_LOG_IOERR, un,
29803 			    "sd_faultinjection_ioctl: xb null\n");
29804 		}
29805 		break;
29806 
29807 	case SDIOCINSERTUN:
29808 		/* Store a un struct to be pushed onto fifo */
29809 		SD_INFO(SD_LOG_SDTEST, un,
29810 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29811 
29812 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29813 
29814 		sd_fault_injection_on = 0;
29815 
29816 		if (un->sd_fi_fifo_un[i] != NULL) {
29817 			kmem_free(un->sd_fi_fifo_un[i],
29818 			    sizeof (struct sd_fi_un));
29819 			un->sd_fi_fifo_un[i] = NULL;
29820 		}
29821 		if (arg != NULL) {
29822 			un->sd_fi_fifo_un[i] =
29823 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29824 			if (un->sd_fi_fifo_un[i] == NULL) {
29825 				/* Alloc failed don't store anything */
29826 				break;
29827 			}
29828 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29829 			    sizeof (struct sd_fi_un), 0);
29830 			if (rval == -1) {
29831 				kmem_free(un->sd_fi_fifo_un[i],
29832 				    sizeof (struct sd_fi_un));
29833 				un->sd_fi_fifo_un[i] = NULL;
29834 			}
29835 
29836 		} else {
29837 			SD_INFO(SD_LOG_IOERR, un,
29838 			    "sd_faultinjection_ioctl: un null\n");
29839 		}
29840 
29841 		break;
29842 
29843 	case SDIOCINSERTARQ:
29844 		/* Store a arq struct to be pushed onto fifo */
29845 		SD_INFO(SD_LOG_SDTEST, un,
29846 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29847 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29848 
29849 		sd_fault_injection_on = 0;
29850 
29851 		if (un->sd_fi_fifo_arq[i] != NULL) {
29852 			kmem_free(un->sd_fi_fifo_arq[i],
29853 			    sizeof (struct sd_fi_arq));
29854 			un->sd_fi_fifo_arq[i] = NULL;
29855 		}
29856 		if (arg != NULL) {
29857 			un->sd_fi_fifo_arq[i] =
29858 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29859 			if (un->sd_fi_fifo_arq[i] == NULL) {
29860 				/* Alloc failed don't store anything */
29861 				break;
29862 			}
29863 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29864 			    sizeof (struct sd_fi_arq), 0);
29865 			if (rval == -1) {
29866 				kmem_free(un->sd_fi_fifo_arq[i],
29867 				    sizeof (struct sd_fi_arq));
29868 				un->sd_fi_fifo_arq[i] = NULL;
29869 			}
29870 
29871 		} else {
29872 			SD_INFO(SD_LOG_IOERR, un,
29873 			    "sd_faultinjection_ioctl: arq null\n");
29874 		}
29875 
29876 		break;
29877 
29878 	case SDIOCPUSH:
29879 		/* Push stored xb, pkt, un, and arq onto fifo */
29880 		sd_fault_injection_on = 0;
29881 
29882 		if (arg != NULL) {
29883 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29884 			if (rval != -1 &&
29885 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29886 				un->sd_fi_fifo_end += i;
29887 			}
29888 		} else {
29889 			SD_INFO(SD_LOG_IOERR, un,
29890 			    "sd_faultinjection_ioctl: push arg null\n");
29891 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29892 				un->sd_fi_fifo_end++;
29893 			}
29894 		}
29895 		SD_INFO(SD_LOG_IOERR, un,
29896 		    "sd_faultinjection_ioctl: push to end=%d\n",
29897 		    un->sd_fi_fifo_end);
29898 		break;
29899 
29900 	case SDIOCRETRIEVE:
29901 		/* Return buffer of log from Injection session */
29902 		SD_INFO(SD_LOG_SDTEST, un,
29903 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29904 
29905 		sd_fault_injection_on = 0;
29906 
29907 		mutex_enter(&(un->un_fi_mutex));
29908 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29909 		    un->sd_fi_buf_len+1, 0);
29910 		mutex_exit(&(un->un_fi_mutex));
29911 
29912 		if (rval == -1) {
29913 			/*
29914 			 * arg is possibly invalid setting
29915 			 * it to NULL for return
29916 			 */
29917 			arg = NULL;
29918 		}
29919 		break;
29920 	}
29921 
29922 	mutex_exit(SD_MUTEX(un));
29923 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29924 			    " exit\n");
29925 }
29926 
29927 
29928 /*
29929  *    Function: sd_injection_log()
29930  *
29931  * Description: This routine adds buff to the already existing injection log
29932  *              for retrieval via faultinjection_ioctl for use in fault
29933  *              detection and recovery
29934  *
29935  *   Arguments: buf - the string to add to the log
29936  */
29937 
29938 static void
29939 sd_injection_log(char *buf, struct sd_lun *un)
29940 {
29941 	uint_t len;
29942 
29943 	ASSERT(un != NULL);
29944 	ASSERT(buf != NULL);
29945 
29946 	mutex_enter(&(un->un_fi_mutex));
29947 
29948 	len = min(strlen(buf), 255);
29949 	/* Add logged value to Injection log to be returned later */
29950 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29951 		uint_t	offset = strlen((char *)un->sd_fi_log);
29952 		char *destp = (char *)un->sd_fi_log + offset;
29953 		int i;
29954 		for (i = 0; i < len; i++) {
29955 			*destp++ = *buf++;
29956 		}
29957 		un->sd_fi_buf_len += len;
29958 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29959 	}
29960 
29961 	mutex_exit(&(un->un_fi_mutex));
29962 }
29963 
29964 
29965 /*
29966  *    Function: sd_faultinjection()
29967  *
29968  * Description: This routine takes the pkt and changes its
29969  *		content based on error injection scenerio.
29970  *
29971  *   Arguments: pktp	- packet to be changed
29972  */
29973 
29974 static void
29975 sd_faultinjection(struct scsi_pkt *pktp)
29976 {
29977 	uint_t i;
29978 	struct sd_fi_pkt *fi_pkt;
29979 	struct sd_fi_xb *fi_xb;
29980 	struct sd_fi_un *fi_un;
29981 	struct sd_fi_arq *fi_arq;
29982 	struct buf *bp;
29983 	struct sd_xbuf *xb;
29984 	struct sd_lun *un;
29985 
29986 	ASSERT(pktp != NULL);
29987 
29988 	/* pull bp xb and un from pktp */
29989 	bp = (struct buf *)pktp->pkt_private;
29990 	xb = SD_GET_XBUF(bp);
29991 	un = SD_GET_UN(bp);
29992 
29993 	ASSERT(un != NULL);
29994 
29995 	mutex_enter(SD_MUTEX(un));
29996 
29997 	SD_TRACE(SD_LOG_SDTEST, un,
29998 	    "sd_faultinjection: entry Injection from sdintr\n");
29999 
30000 	/* if injection is off return */
30001 	if (sd_fault_injection_on == 0 ||
30002 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30003 		mutex_exit(SD_MUTEX(un));
30004 		return;
30005 	}
30006 
30007 
30008 	/* take next set off fifo */
30009 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30010 
30011 	fi_pkt = un->sd_fi_fifo_pkt[i];
30012 	fi_xb = un->sd_fi_fifo_xb[i];
30013 	fi_un = un->sd_fi_fifo_un[i];
30014 	fi_arq = un->sd_fi_fifo_arq[i];
30015 
30016 
30017 	/* set variables accordingly */
30018 	/* set pkt if it was on fifo */
30019 	if (fi_pkt != NULL) {
30020 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30021 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30022 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30023 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30024 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30025 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30026 
30027 	}
30028 
30029 	/* set xb if it was on fifo */
30030 	if (fi_xb != NULL) {
30031 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30032 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30033 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30034 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30035 		    "xb_victim_retry_count");
30036 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30037 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30038 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30039 
30040 		/* copy in block data from sense */
30041 		if (fi_xb->xb_sense_data[0] != -1) {
30042 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30043 			    SENSE_LENGTH);
30044 		}
30045 
30046 		/* copy in extended sense codes */
30047 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30048 		    "es_code");
30049 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30050 		    "es_key");
30051 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30052 		    "es_add_code");
30053 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30054 		    es_qual_code, "es_qual_code");
30055 	}
30056 
30057 	/* set un if it was on fifo */
30058 	if (fi_un != NULL) {
30059 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30060 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30061 		SD_CONDSET(un, un, un_reset_retry_count,
30062 		    "un_reset_retry_count");
30063 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30064 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30065 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30066 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30067 		    "un_f_geometry_is_valid");
30068 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30069 		    "un_f_allow_bus_device_reset");
30070 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30071 
30072 	}
30073 
30074 	/* copy in auto request sense if it was on fifo */
30075 	if (fi_arq != NULL) {
30076 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30077 	}
30078 
30079 	/* free structs */
30080 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30081 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30082 	}
30083 	if (un->sd_fi_fifo_xb[i] != NULL) {
30084 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30085 	}
30086 	if (un->sd_fi_fifo_un[i] != NULL) {
30087 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30088 	}
30089 	if (un->sd_fi_fifo_arq[i] != NULL) {
30090 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30091 	}
30092 
30093 	/*
30094 	 * kmem_free does not gurantee to set to NULL
30095 	 * since we uses these to determine if we set
30096 	 * values or not lets confirm they are always
30097 	 * NULL after free
30098 	 */
30099 	un->sd_fi_fifo_pkt[i] = NULL;
30100 	un->sd_fi_fifo_un[i] = NULL;
30101 	un->sd_fi_fifo_xb[i] = NULL;
30102 	un->sd_fi_fifo_arq[i] = NULL;
30103 
30104 	un->sd_fi_fifo_start++;
30105 
30106 	mutex_exit(SD_MUTEX(un));
30107 
30108 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30109 }
30110 
30111 #endif /* SD_FAULT_INJECTION */
30112