1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include "rge.h" 29 30 /* 31 * This is the string displayed by modinfo, etc. 32 * Make sure you keep the version ID up to date! 33 */ 34 static char rge_ident[] = "Realtek 1Gb Ethernet v%I%"; 35 36 /* 37 * Used for buffers allocated by ddi_dma_mem_alloc() 38 */ 39 static ddi_dma_attr_t dma_attr_buf = { 40 DMA_ATTR_V0, /* dma_attr version */ 41 (uint32_t)0, /* dma_attr_addr_lo */ 42 (uint32_t)0xFFFFFFFF, /* dma_attr_addr_hi */ 43 (uint32_t)0xFFFFFFFF, /* dma_attr_count_max */ 44 (uint32_t)16, /* dma_attr_align */ 45 0xFFFFFFFF, /* dma_attr_burstsizes */ 46 1, /* dma_attr_minxfer */ 47 (uint32_t)0xFFFFFFFF, /* dma_attr_maxxfer */ 48 (uint32_t)0xFFFFFFFF, /* dma_attr_seg */ 49 1, /* dma_attr_sgllen */ 50 1, /* dma_attr_granular */ 51 0, /* dma_attr_flags */ 52 }; 53 54 /* 55 * Used for BDs allocated by ddi_dma_mem_alloc() 56 */ 57 static ddi_dma_attr_t dma_attr_desc = { 58 DMA_ATTR_V0, /* dma_attr version */ 59 (uint32_t)0, /* dma_attr_addr_lo */ 60 (uint32_t)0xFFFFFFFF, /* dma_attr_addr_hi */ 61 (uint32_t)0xFFFFFFFF, /* dma_attr_count_max */ 62 (uint32_t)256, /* dma_attr_align */ 63 0xFFFFFFFF, /* dma_attr_burstsizes */ 64 1, /* dma_attr_minxfer */ 65 (uint32_t)0xFFFFFFFF, /* dma_attr_maxxfer */ 66 (uint32_t)0xFFFFFFFF, /* dma_attr_seg */ 67 1, /* dma_attr_sgllen */ 68 1, /* dma_attr_granular */ 69 0, /* dma_attr_flags */ 70 }; 71 72 /* 73 * PIO access attributes for registers 74 */ 75 static ddi_device_acc_attr_t rge_reg_accattr = { 76 DDI_DEVICE_ATTR_V0, 77 DDI_STRUCTURE_LE_ACC, 78 DDI_STRICTORDER_ACC, 79 DDI_DEFAULT_ACC 80 }; 81 82 /* 83 * DMA access attributes for descriptors 84 */ 85 static ddi_device_acc_attr_t rge_desc_accattr = { 86 DDI_DEVICE_ATTR_V0, 87 DDI_NEVERSWAP_ACC, 88 DDI_STRICTORDER_ACC, 89 DDI_DEFAULT_ACC 90 }; 91 92 /* 93 * DMA access attributes for data 94 */ 95 static ddi_device_acc_attr_t rge_buf_accattr = { 96 DDI_DEVICE_ATTR_V0, 97 DDI_NEVERSWAP_ACC, 98 DDI_STRICTORDER_ACC, 99 DDI_DEFAULT_ACC 100 }; 101 102 /* 103 * Property names 104 */ 105 static char debug_propname[] = "rge_debug_flags"; 106 static char mtu_propname[] = "default_mtu"; 107 static char msi_propname[] = "msi_enable"; 108 109 static int rge_m_start(void *); 110 static void rge_m_stop(void *); 111 static int rge_m_promisc(void *, boolean_t); 112 static int rge_m_multicst(void *, boolean_t, const uint8_t *); 113 static int rge_m_unicst(void *, const uint8_t *); 114 static void rge_m_resources(void *); 115 static void rge_m_ioctl(void *, queue_t *, mblk_t *); 116 static boolean_t rge_m_getcapab(void *, mac_capab_t, void *); 117 118 #define RGE_M_CALLBACK_FLAGS (MC_RESOURCES | MC_IOCTL | MC_GETCAPAB) 119 120 static mac_callbacks_t rge_m_callbacks = { 121 RGE_M_CALLBACK_FLAGS, 122 rge_m_stat, 123 rge_m_start, 124 rge_m_stop, 125 rge_m_promisc, 126 rge_m_multicst, 127 rge_m_unicst, 128 rge_m_tx, 129 rge_m_resources, 130 rge_m_ioctl, 131 rge_m_getcapab 132 }; 133 134 /* 135 * Allocate an area of memory and a DMA handle for accessing it 136 */ 137 static int 138 rge_alloc_dma_mem(rge_t *rgep, size_t memsize, ddi_dma_attr_t *dma_attr_p, 139 ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, dma_area_t *dma_p) 140 { 141 caddr_t vaddr; 142 int err; 143 144 /* 145 * Allocate handle 146 */ 147 err = ddi_dma_alloc_handle(rgep->devinfo, dma_attr_p, 148 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl); 149 if (err != DDI_SUCCESS) { 150 dma_p->dma_hdl = NULL; 151 return (DDI_FAILURE); 152 } 153 154 /* 155 * Allocate memory 156 */ 157 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p, 158 dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), 159 DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl); 160 if (err != DDI_SUCCESS) { 161 ddi_dma_free_handle(&dma_p->dma_hdl); 162 dma_p->dma_hdl = NULL; 163 dma_p->acc_hdl = NULL; 164 return (DDI_FAILURE); 165 } 166 167 /* 168 * Bind the two together 169 */ 170 dma_p->mem_va = vaddr; 171 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 172 vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL, 173 &dma_p->cookie, &dma_p->ncookies); 174 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) { 175 ddi_dma_mem_free(&dma_p->acc_hdl); 176 ddi_dma_free_handle(&dma_p->dma_hdl); 177 dma_p->acc_hdl = NULL; 178 dma_p->dma_hdl = NULL; 179 return (DDI_FAILURE); 180 } 181 182 dma_p->nslots = ~0U; 183 dma_p->size = ~0U; 184 dma_p->token = ~0U; 185 dma_p->offset = 0; 186 return (DDI_SUCCESS); 187 } 188 189 /* 190 * Free one allocated area of DMAable memory 191 */ 192 static void 193 rge_free_dma_mem(dma_area_t *dma_p) 194 { 195 if (dma_p->dma_hdl != NULL) { 196 if (dma_p->ncookies) { 197 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 198 dma_p->ncookies = 0; 199 } 200 ddi_dma_free_handle(&dma_p->dma_hdl); 201 dma_p->dma_hdl = NULL; 202 } 203 204 if (dma_p->acc_hdl != NULL) { 205 ddi_dma_mem_free(&dma_p->acc_hdl); 206 dma_p->acc_hdl = NULL; 207 } 208 } 209 210 /* 211 * Utility routine to carve a slice off a chunk of allocated memory, 212 * updating the chunk descriptor accordingly. The size of the slice 213 * is given by the product of the <qty> and <size> parameters. 214 */ 215 static void 216 rge_slice_chunk(dma_area_t *slice, dma_area_t *chunk, 217 uint32_t qty, uint32_t size) 218 { 219 static uint32_t sequence = 0xbcd5704a; 220 size_t totsize; 221 222 totsize = qty*size; 223 ASSERT(size >= 0); 224 ASSERT(totsize <= chunk->alength); 225 226 *slice = *chunk; 227 slice->nslots = qty; 228 slice->size = size; 229 slice->alength = totsize; 230 slice->token = ++sequence; 231 232 chunk->mem_va = (caddr_t)chunk->mem_va + totsize; 233 chunk->alength -= totsize; 234 chunk->offset += totsize; 235 chunk->cookie.dmac_laddress += totsize; 236 chunk->cookie.dmac_size -= totsize; 237 } 238 239 static int 240 rge_alloc_bufs(rge_t *rgep) 241 { 242 size_t txdescsize; 243 size_t rxdescsize; 244 int err; 245 246 /* 247 * Allocate memory & handle for packet statistics 248 */ 249 err = rge_alloc_dma_mem(rgep, 250 RGE_STATS_DUMP_SIZE, 251 &dma_attr_desc, 252 &rge_desc_accattr, 253 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 254 &rgep->dma_area_stats); 255 if (err != DDI_SUCCESS) 256 return (DDI_FAILURE); 257 rgep->hw_stats = DMA_VPTR(rgep->dma_area_stats); 258 259 /* 260 * Allocate memory & handle for Tx descriptor ring 261 */ 262 txdescsize = RGE_SEND_SLOTS * sizeof (rge_bd_t); 263 err = rge_alloc_dma_mem(rgep, 264 txdescsize, 265 &dma_attr_desc, 266 &rge_desc_accattr, 267 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 268 &rgep->dma_area_txdesc); 269 if (err != DDI_SUCCESS) 270 return (DDI_FAILURE); 271 272 /* 273 * Allocate memory & handle for Rx descriptor ring 274 */ 275 rxdescsize = RGE_RECV_SLOTS * sizeof (rge_bd_t); 276 err = rge_alloc_dma_mem(rgep, 277 rxdescsize, 278 &dma_attr_desc, 279 &rge_desc_accattr, 280 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 281 &rgep->dma_area_rxdesc); 282 if (err != DDI_SUCCESS) 283 return (DDI_FAILURE); 284 285 return (DDI_SUCCESS); 286 } 287 288 /* 289 * rge_free_bufs() -- free descriptors/buffers allocated for this 290 * device instance. 291 */ 292 static void 293 rge_free_bufs(rge_t *rgep) 294 { 295 rge_free_dma_mem(&rgep->dma_area_stats); 296 rge_free_dma_mem(&rgep->dma_area_txdesc); 297 rge_free_dma_mem(&rgep->dma_area_rxdesc); 298 } 299 300 /* 301 * ========== Transmit and receive ring reinitialisation ========== 302 */ 303 304 /* 305 * These <reinit> routines each reset the rx/tx rings to an initial 306 * state, assuming that the corresponding <init> routine has already 307 * been called exactly once. 308 */ 309 static void 310 rge_reinit_send_ring(rge_t *rgep) 311 { 312 sw_sbd_t *ssbdp; 313 rge_bd_t *bdp; 314 uint32_t slot; 315 316 /* 317 * re-init send ring 318 */ 319 DMA_ZERO(rgep->tx_desc); 320 ssbdp = rgep->sw_sbds; 321 bdp = rgep->tx_ring; 322 for (slot = 0; slot < RGE_SEND_SLOTS; slot++) { 323 bdp->host_buf_addr = 324 RGE_BSWAP_32(ssbdp->pbuf.cookie.dmac_laddress); 325 bdp->host_buf_addr_hi = 326 RGE_BSWAP_32(ssbdp->pbuf.cookie.dmac_laddress >> 32); 327 /* last BD in Tx ring */ 328 if (slot == (RGE_SEND_SLOTS - 1)) 329 bdp->flags_len = RGE_BSWAP_32(BD_FLAG_EOR); 330 ssbdp++; 331 bdp++; 332 } 333 DMA_SYNC(rgep->tx_desc, DDI_DMA_SYNC_FORDEV); 334 rgep->tx_next = 0; 335 rgep->tc_next = 0; 336 rgep->tc_tail = 0; 337 rgep->tx_flow = 0; 338 rgep->tx_free = RGE_SEND_SLOTS; 339 } 340 341 static void 342 rge_reinit_recv_ring(rge_t *rgep) 343 { 344 rge_bd_t *bdp; 345 sw_rbd_t *srbdp; 346 dma_area_t *pbuf; 347 uint32_t slot; 348 349 /* 350 * re-init receive ring 351 */ 352 DMA_ZERO(rgep->rx_desc); 353 srbdp = rgep->sw_rbds; 354 bdp = rgep->rx_ring; 355 for (slot = 0; slot < RGE_RECV_SLOTS; slot++) { 356 pbuf = &srbdp->rx_buf->pbuf; 357 bdp->host_buf_addr = 358 RGE_BSWAP_32(pbuf->cookie.dmac_laddress + rgep->head_room); 359 bdp->host_buf_addr_hi = 360 RGE_BSWAP_32(pbuf->cookie.dmac_laddress >> 32); 361 bdp->flags_len = RGE_BSWAP_32(BD_FLAG_HW_OWN | 362 (rgep->rxbuf_size - rgep->head_room)); 363 /* last BD in Tx ring */ 364 if (slot == (RGE_RECV_SLOTS - 1)) 365 bdp->flags_len |= RGE_BSWAP_32(BD_FLAG_EOR); 366 srbdp++; 367 bdp++; 368 } 369 DMA_SYNC(rgep->rx_desc, DDI_DMA_SYNC_FORDEV); 370 rgep->watchdog = 0; 371 rgep->rx_next = 0; 372 } 373 374 static void 375 rge_reinit_buf_ring(rge_t *rgep) 376 { 377 378 if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) 379 return; 380 381 /* 382 * If all the up-sending buffers haven't been returned to driver, 383 * use bcopy() only in rx process. 384 */ 385 if (rgep->rx_free != RGE_BUF_SLOTS) 386 rgep->rx_bcopy = B_TRUE; 387 } 388 389 static void 390 rge_reinit_rings(rge_t *rgep) 391 { 392 rge_reinit_send_ring(rgep); 393 rge_reinit_recv_ring(rgep); 394 rge_reinit_buf_ring(rgep); 395 } 396 397 static void 398 rge_fini_send_ring(rge_t *rgep) 399 { 400 sw_sbd_t *ssbdp; 401 uint32_t slot; 402 403 ssbdp = rgep->sw_sbds; 404 for (slot = 0; slot < RGE_SEND_SLOTS; ++slot) { 405 rge_free_dma_mem(&ssbdp->pbuf); 406 ssbdp++; 407 } 408 409 kmem_free(rgep->sw_sbds, RGE_SEND_SLOTS * sizeof (sw_sbd_t)); 410 rgep->sw_sbds = NULL; 411 } 412 413 static void 414 rge_fini_recv_ring(rge_t *rgep) 415 { 416 sw_rbd_t *srbdp; 417 uint32_t slot; 418 419 srbdp = rgep->sw_rbds; 420 for (slot = 0; slot < RGE_RECV_SLOTS; ++srbdp, ++slot) { 421 if (srbdp->rx_buf) { 422 if (srbdp->rx_buf->mp != NULL) { 423 freemsg(srbdp->rx_buf->mp); 424 srbdp->rx_buf->mp = NULL; 425 } 426 rge_free_dma_mem(&srbdp->rx_buf->pbuf); 427 kmem_free(srbdp->rx_buf, sizeof (dma_buf_t)); 428 srbdp->rx_buf = NULL; 429 } 430 } 431 432 kmem_free(rgep->sw_rbds, RGE_RECV_SLOTS * sizeof (sw_rbd_t)); 433 rgep->sw_rbds = NULL; 434 } 435 436 static void 437 rge_fini_buf_ring(rge_t *rgep) 438 { 439 sw_rbd_t *srbdp; 440 uint32_t slot; 441 442 if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) 443 return; 444 445 ASSERT(rgep->rx_free == RGE_BUF_SLOTS); 446 447 srbdp = rgep->free_srbds; 448 for (slot = 0; slot < RGE_BUF_SLOTS; ++srbdp, ++slot) { 449 if (srbdp->rx_buf != NULL) { 450 if (srbdp->rx_buf->mp != NULL) { 451 freemsg(srbdp->rx_buf->mp); 452 srbdp->rx_buf->mp = NULL; 453 } 454 rge_free_dma_mem(&srbdp->rx_buf->pbuf); 455 kmem_free(srbdp->rx_buf, sizeof (dma_buf_t)); 456 srbdp->rx_buf = NULL; 457 } 458 } 459 460 kmem_free(rgep->free_srbds, RGE_BUF_SLOTS * sizeof (sw_rbd_t)); 461 rgep->free_srbds = NULL; 462 } 463 464 static void 465 rge_fini_rings(rge_t *rgep) 466 { 467 rge_fini_send_ring(rgep); 468 rge_fini_recv_ring(rgep); 469 rge_fini_buf_ring(rgep); 470 } 471 472 static int 473 rge_init_send_ring(rge_t *rgep) 474 { 475 uint32_t slot; 476 sw_sbd_t *ssbdp; 477 dma_area_t *pbuf; 478 dma_area_t desc; 479 int err; 480 481 /* 482 * Allocate the array of s/w Tx Buffer Descriptors 483 */ 484 ssbdp = kmem_zalloc(RGE_SEND_SLOTS*sizeof (*ssbdp), KM_SLEEP); 485 rgep->sw_sbds = ssbdp; 486 487 /* 488 * Init send ring 489 */ 490 rgep->tx_desc = rgep->dma_area_txdesc; 491 DMA_ZERO(rgep->tx_desc); 492 rgep->tx_ring = rgep->tx_desc.mem_va; 493 494 desc = rgep->tx_desc; 495 for (slot = 0; slot < RGE_SEND_SLOTS; slot++) { 496 rge_slice_chunk(&ssbdp->desc, &desc, 1, sizeof (rge_bd_t)); 497 498 /* 499 * Allocate memory & handle for Tx buffers 500 */ 501 pbuf = &ssbdp->pbuf; 502 err = rge_alloc_dma_mem(rgep, rgep->txbuf_size, 503 &dma_attr_buf, &rge_buf_accattr, 504 DDI_DMA_WRITE | DDI_DMA_STREAMING, pbuf); 505 if (err != DDI_SUCCESS) { 506 rge_error(rgep, 507 "rge_init_send_ring: alloc tx buffer failed"); 508 rge_fini_send_ring(rgep); 509 return (DDI_FAILURE); 510 } 511 ssbdp++; 512 } 513 ASSERT(desc.alength == 0); 514 515 DMA_SYNC(rgep->tx_desc, DDI_DMA_SYNC_FORDEV); 516 return (DDI_SUCCESS); 517 } 518 519 static int 520 rge_init_recv_ring(rge_t *rgep) 521 { 522 uint32_t slot; 523 sw_rbd_t *srbdp; 524 dma_buf_t *rx_buf; 525 dma_area_t *pbuf; 526 int err; 527 528 /* 529 * Allocate the array of s/w Rx Buffer Descriptors 530 */ 531 srbdp = kmem_zalloc(RGE_RECV_SLOTS*sizeof (*srbdp), KM_SLEEP); 532 rgep->sw_rbds = srbdp; 533 534 /* 535 * Init receive ring 536 */ 537 rgep->rx_next = 0; 538 rgep->rx_desc = rgep->dma_area_rxdesc; 539 DMA_ZERO(rgep->rx_desc); 540 rgep->rx_ring = rgep->rx_desc.mem_va; 541 542 for (slot = 0; slot < RGE_RECV_SLOTS; slot++) { 543 srbdp->rx_buf = rx_buf = 544 kmem_zalloc(sizeof (dma_buf_t), KM_SLEEP); 545 546 /* 547 * Allocate memory & handle for Rx buffers 548 */ 549 pbuf = &rx_buf->pbuf; 550 err = rge_alloc_dma_mem(rgep, rgep->rxbuf_size, 551 &dma_attr_buf, &rge_buf_accattr, 552 DDI_DMA_READ | DDI_DMA_STREAMING, pbuf); 553 if (err != DDI_SUCCESS) { 554 rge_fini_recv_ring(rgep); 555 rge_error(rgep, 556 "rge_init_recv_ring: alloc rx buffer failed"); 557 return (DDI_FAILURE); 558 } 559 560 pbuf->alength -= rgep->head_room; 561 pbuf->offset += rgep->head_room; 562 if (!(rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)) { 563 rx_buf->rx_recycle.free_func = rge_rx_recycle; 564 rx_buf->rx_recycle.free_arg = (caddr_t)rx_buf; 565 rx_buf->private = (caddr_t)rgep; 566 rx_buf->mp = desballoc(DMA_VPTR(rx_buf->pbuf), 567 rgep->rxbuf_size, 0, &rx_buf->rx_recycle); 568 if (rx_buf->mp == NULL) { 569 rge_fini_recv_ring(rgep); 570 rge_problem(rgep, 571 "rge_init_recv_ring: desballoc() failed"); 572 return (DDI_FAILURE); 573 } 574 } 575 srbdp++; 576 } 577 DMA_SYNC(rgep->rx_desc, DDI_DMA_SYNC_FORDEV); 578 return (DDI_SUCCESS); 579 } 580 581 static int 582 rge_init_buf_ring(rge_t *rgep) 583 { 584 uint32_t slot; 585 sw_rbd_t *free_srbdp; 586 dma_buf_t *rx_buf; 587 dma_area_t *pbuf; 588 int err; 589 590 if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) { 591 rgep->rx_bcopy = B_TRUE; 592 return (DDI_SUCCESS); 593 } 594 595 /* 596 * Allocate the array of s/w free Buffer Descriptors 597 */ 598 free_srbdp = kmem_zalloc(RGE_BUF_SLOTS*sizeof (*free_srbdp), KM_SLEEP); 599 rgep->free_srbds = free_srbdp; 600 601 /* 602 * Init free buffer ring 603 */ 604 rgep->rc_next = 0; 605 rgep->rf_next = 0; 606 rgep->rx_bcopy = B_FALSE; 607 rgep->rx_free = RGE_BUF_SLOTS; 608 for (slot = 0; slot < RGE_BUF_SLOTS; slot++) { 609 free_srbdp->rx_buf = rx_buf = 610 kmem_zalloc(sizeof (dma_buf_t), KM_SLEEP); 611 612 /* 613 * Allocate memory & handle for free Rx buffers 614 */ 615 pbuf = &rx_buf->pbuf; 616 err = rge_alloc_dma_mem(rgep, rgep->rxbuf_size, 617 &dma_attr_buf, &rge_buf_accattr, 618 DDI_DMA_READ | DDI_DMA_STREAMING, pbuf); 619 if (err != DDI_SUCCESS) { 620 rge_fini_buf_ring(rgep); 621 rge_error(rgep, 622 "rge_init_buf_ring: alloc rx free buffer failed"); 623 return (DDI_FAILURE); 624 } 625 pbuf->alength -= rgep->head_room; 626 pbuf->offset += rgep->head_room; 627 rx_buf->rx_recycle.free_func = rge_rx_recycle; 628 rx_buf->rx_recycle.free_arg = (caddr_t)rx_buf; 629 rx_buf->private = (caddr_t)rgep; 630 rx_buf->mp = desballoc(DMA_VPTR(rx_buf->pbuf), 631 rgep->rxbuf_size, 0, &rx_buf->rx_recycle); 632 if (rx_buf->mp == NULL) { 633 rge_fini_buf_ring(rgep); 634 rge_problem(rgep, 635 "rge_init_buf_ring: desballoc() failed"); 636 return (DDI_FAILURE); 637 } 638 free_srbdp++; 639 } 640 return (DDI_SUCCESS); 641 } 642 643 static int 644 rge_init_rings(rge_t *rgep) 645 { 646 int err; 647 648 err = rge_init_send_ring(rgep); 649 if (err != DDI_SUCCESS) 650 return (DDI_FAILURE); 651 652 err = rge_init_recv_ring(rgep); 653 if (err != DDI_SUCCESS) { 654 rge_fini_send_ring(rgep); 655 return (DDI_FAILURE); 656 } 657 658 err = rge_init_buf_ring(rgep); 659 if (err != DDI_SUCCESS) { 660 rge_fini_send_ring(rgep); 661 rge_fini_recv_ring(rgep); 662 return (DDI_FAILURE); 663 } 664 665 return (DDI_SUCCESS); 666 } 667 668 /* 669 * ========== Internal state management entry points ========== 670 */ 671 672 #undef RGE_DBG 673 #define RGE_DBG RGE_DBG_NEMO /* debug flag for this code */ 674 675 /* 676 * These routines provide all the functionality required by the 677 * corresponding MAC layer entry points, but don't update the 678 * MAC state so they can be called internally without disturbing 679 * our record of what NEMO thinks we should be doing ... 680 */ 681 682 /* 683 * rge_reset() -- reset h/w & rings to initial state 684 */ 685 static void 686 rge_reset(rge_t *rgep) 687 { 688 ASSERT(mutex_owned(rgep->genlock)); 689 690 /* 691 * Grab all the other mutexes in the world (this should 692 * ensure no other threads are manipulating driver state) 693 */ 694 mutex_enter(rgep->rx_lock); 695 mutex_enter(rgep->rc_lock); 696 rw_enter(rgep->errlock, RW_WRITER); 697 698 (void) rge_chip_reset(rgep); 699 rge_reinit_rings(rgep); 700 rge_chip_init(rgep); 701 702 /* 703 * Free the world ... 704 */ 705 rw_exit(rgep->errlock); 706 mutex_exit(rgep->rc_lock); 707 mutex_exit(rgep->rx_lock); 708 709 RGE_DEBUG(("rge_reset($%p) done", (void *)rgep)); 710 } 711 712 /* 713 * rge_stop() -- stop processing, don't reset h/w or rings 714 */ 715 static void 716 rge_stop(rge_t *rgep) 717 { 718 ASSERT(mutex_owned(rgep->genlock)); 719 720 rge_chip_stop(rgep, B_FALSE); 721 722 RGE_DEBUG(("rge_stop($%p) done", (void *)rgep)); 723 } 724 725 /* 726 * rge_start() -- start transmitting/receiving 727 */ 728 static void 729 rge_start(rge_t *rgep) 730 { 731 ASSERT(mutex_owned(rgep->genlock)); 732 733 /* 734 * Start chip processing, including enabling interrupts 735 */ 736 rge_chip_start(rgep); 737 rgep->watchdog = 0; 738 } 739 740 /* 741 * rge_restart - restart transmitting/receiving after error or suspend 742 */ 743 void 744 rge_restart(rge_t *rgep) 745 { 746 uint32_t i; 747 748 ASSERT(mutex_owned(rgep->genlock)); 749 /* 750 * Wait for posted buffer to be freed... 751 */ 752 if (!rgep->rx_bcopy) { 753 for (i = 0; i < RXBUFF_FREE_LOOP; i++) { 754 if (rgep->rx_free == RGE_BUF_SLOTS) 755 break; 756 drv_usecwait(1000); 757 RGE_DEBUG(("rge_restart: waiting for rx buf free...")); 758 } 759 } 760 rge_reset(rgep); 761 rgep->stats.chip_reset++; 762 if (rgep->rge_mac_state == RGE_MAC_STARTED) { 763 rge_start(rgep); 764 rgep->resched_needed = B_TRUE; 765 (void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL); 766 } 767 } 768 769 770 /* 771 * ========== Nemo-required management entry points ========== 772 */ 773 774 #undef RGE_DBG 775 #define RGE_DBG RGE_DBG_NEMO /* debug flag for this code */ 776 777 /* 778 * rge_m_stop() -- stop transmitting/receiving 779 */ 780 static void 781 rge_m_stop(void *arg) 782 { 783 rge_t *rgep = arg; /* private device info */ 784 uint32_t i; 785 786 /* 787 * Just stop processing, then record new MAC state 788 */ 789 mutex_enter(rgep->genlock); 790 rge_stop(rgep); 791 /* 792 * Wait for posted buffer to be freed... 793 */ 794 if (!rgep->rx_bcopy) { 795 for (i = 0; i < RXBUFF_FREE_LOOP; i++) { 796 if (rgep->rx_free == RGE_BUF_SLOTS) 797 break; 798 drv_usecwait(1000); 799 RGE_DEBUG(("rge_m_stop: waiting for rx buf free...")); 800 } 801 } 802 rgep->rge_mac_state = RGE_MAC_STOPPED; 803 RGE_DEBUG(("rge_m_stop($%p) done", arg)); 804 mutex_exit(rgep->genlock); 805 } 806 807 /* 808 * rge_m_start() -- start transmitting/receiving 809 */ 810 static int 811 rge_m_start(void *arg) 812 { 813 rge_t *rgep = arg; /* private device info */ 814 815 mutex_enter(rgep->genlock); 816 817 /* 818 * Clear hw/sw statistics 819 */ 820 DMA_ZERO(rgep->dma_area_stats); 821 bzero(&rgep->stats, sizeof (rge_stats_t)); 822 823 /* 824 * Start processing and record new MAC state 825 */ 826 rge_reset(rgep); 827 rge_start(rgep); 828 rgep->rge_mac_state = RGE_MAC_STARTED; 829 RGE_DEBUG(("rge_m_start($%p) done", arg)); 830 831 mutex_exit(rgep->genlock); 832 833 return (0); 834 } 835 836 /* 837 * rge_m_unicst_set() -- set the physical network address 838 */ 839 static int 840 rge_m_unicst(void *arg, const uint8_t *macaddr) 841 { 842 rge_t *rgep = arg; /* private device info */ 843 844 /* 845 * Remember the new current address in the driver state 846 * Sync the chip's idea of the address too ... 847 */ 848 mutex_enter(rgep->genlock); 849 bcopy(macaddr, rgep->netaddr, ETHERADDRL); 850 rge_chip_sync(rgep, RGE_SET_MAC); 851 mutex_exit(rgep->genlock); 852 853 return (0); 854 } 855 856 /* 857 * Compute the index of the required bit in the multicast hash map. 858 * This must mirror the way the hardware actually does it! 859 */ 860 static uint32_t 861 rge_hash_index(const uint8_t *mca) 862 { 863 uint32_t crc = (uint32_t)RGE_HASH_CRC; 864 uint32_t const POLY = RGE_HASH_POLY; 865 uint32_t msb; 866 int bytes; 867 uchar_t currentbyte; 868 uint32_t index; 869 int bit; 870 871 for (bytes = 0; bytes < ETHERADDRL; bytes++) { 872 currentbyte = mca[bytes]; 873 for (bit = 0; bit < 8; bit++) { 874 msb = crc >> 31; 875 crc <<= 1; 876 if (msb ^ (currentbyte & 1)) 877 crc ^= POLY; 878 currentbyte >>= 1; 879 } 880 } 881 index = crc >> 26; 882 /* the index value is between 0 and 63(0x3f) */ 883 884 return (index); 885 } 886 887 /* 888 * rge_m_multicst_add() -- enable/disable a multicast address 889 */ 890 static int 891 rge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 892 { 893 rge_t *rgep = arg; /* private device info */ 894 struct ether_addr *addr; 895 uint32_t index; 896 uint32_t reg; 897 uint8_t *hashp; 898 899 mutex_enter(rgep->genlock); 900 hashp = rgep->mcast_hash; 901 addr = (struct ether_addr *)mca; 902 /* 903 * Calculate the Multicast address hash index value 904 * Normally, the position of MAR0-MAR7 is 905 * MAR0: offset 0x08, ..., MAR7: offset 0x0F. 906 * 907 * For pcie chipset, the position of MAR0-MAR7 is 908 * different from others: 909 * MAR0: offset 0x0F, ..., MAR7: offset 0x08. 910 */ 911 index = rge_hash_index(addr->ether_addr_octet); 912 if (rgep->chipid.is_pcie) 913 reg = (~(index / RGE_MCAST_NUM)) & 0x7; 914 else 915 reg = index / RGE_MCAST_NUM; 916 917 if (add) { 918 if (rgep->mcast_refs[index]++) { 919 mutex_exit(rgep->genlock); 920 return (0); 921 } 922 hashp[reg] |= 1 << (index % RGE_MCAST_NUM); 923 } else { 924 if (--rgep->mcast_refs[index]) { 925 mutex_exit(rgep->genlock); 926 return (0); 927 } 928 hashp[reg] &= ~ (1 << (index % RGE_MCAST_NUM)); 929 } 930 931 /* 932 * Set multicast register 933 */ 934 rge_chip_sync(rgep, RGE_SET_MUL); 935 936 mutex_exit(rgep->genlock); 937 return (0); 938 } 939 940 /* 941 * rge_m_promisc() -- set or reset promiscuous mode on the board 942 * 943 * Program the hardware to enable/disable promiscuous and/or 944 * receive-all-multicast modes. 945 */ 946 static int 947 rge_m_promisc(void *arg, boolean_t on) 948 { 949 rge_t *rgep = arg; 950 951 /* 952 * Store MAC layer specified mode and pass to chip layer to update h/w 953 */ 954 mutex_enter(rgep->genlock); 955 956 if (rgep->promisc == on) { 957 mutex_exit(rgep->genlock); 958 return (0); 959 } 960 rgep->promisc = on; 961 rge_chip_sync(rgep, RGE_SET_PROMISC); 962 RGE_DEBUG(("rge_m_promisc_set($%p) done", arg)); 963 mutex_exit(rgep->genlock); 964 return (0); 965 } 966 967 /* 968 * Loopback ioctl code 969 */ 970 971 static lb_property_t loopmodes[] = { 972 { normal, "normal", RGE_LOOP_NONE }, 973 { internal, "PHY", RGE_LOOP_INTERNAL_PHY }, 974 { internal, "MAC", RGE_LOOP_INTERNAL_MAC } 975 }; 976 977 static enum ioc_reply 978 rge_set_loop_mode(rge_t *rgep, uint32_t mode) 979 { 980 /* 981 * If the mode isn't being changed, there's nothing to do ... 982 */ 983 if (mode == rgep->param_loop_mode) 984 return (IOC_ACK); 985 986 /* 987 * Validate the requested mode and prepare a suitable message 988 * to explain the link down/up cycle that the change will 989 * probably induce ... 990 */ 991 switch (mode) { 992 default: 993 return (IOC_INVAL); 994 995 case RGE_LOOP_NONE: 996 case RGE_LOOP_INTERNAL_PHY: 997 case RGE_LOOP_INTERNAL_MAC: 998 break; 999 } 1000 1001 /* 1002 * All OK; tell the caller to reprogram 1003 * the PHY and/or MAC for the new mode ... 1004 */ 1005 rgep->param_loop_mode = mode; 1006 return (IOC_RESTART_ACK); 1007 } 1008 1009 static enum ioc_reply 1010 rge_loop_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 1011 { 1012 lb_info_sz_t *lbsp; 1013 lb_property_t *lbpp; 1014 uint32_t *lbmp; 1015 int cmd; 1016 1017 _NOTE(ARGUNUSED(wq)) 1018 1019 /* 1020 * Validate format of ioctl 1021 */ 1022 if (mp->b_cont == NULL) 1023 return (IOC_INVAL); 1024 1025 cmd = iocp->ioc_cmd; 1026 switch (cmd) { 1027 default: 1028 /* NOTREACHED */ 1029 rge_error(rgep, "rge_loop_ioctl: invalid cmd 0x%x", cmd); 1030 return (IOC_INVAL); 1031 1032 case LB_GET_INFO_SIZE: 1033 if (iocp->ioc_count != sizeof (lb_info_sz_t)) 1034 return (IOC_INVAL); 1035 lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr; 1036 *lbsp = sizeof (loopmodes); 1037 return (IOC_REPLY); 1038 1039 case LB_GET_INFO: 1040 if (iocp->ioc_count != sizeof (loopmodes)) 1041 return (IOC_INVAL); 1042 lbpp = (lb_property_t *)mp->b_cont->b_rptr; 1043 bcopy(loopmodes, lbpp, sizeof (loopmodes)); 1044 return (IOC_REPLY); 1045 1046 case LB_GET_MODE: 1047 if (iocp->ioc_count != sizeof (uint32_t)) 1048 return (IOC_INVAL); 1049 lbmp = (uint32_t *)mp->b_cont->b_rptr; 1050 *lbmp = rgep->param_loop_mode; 1051 return (IOC_REPLY); 1052 1053 case LB_SET_MODE: 1054 if (iocp->ioc_count != sizeof (uint32_t)) 1055 return (IOC_INVAL); 1056 lbmp = (uint32_t *)mp->b_cont->b_rptr; 1057 return (rge_set_loop_mode(rgep, *lbmp)); 1058 } 1059 } 1060 1061 /* 1062 * Specific rge IOCTLs, the MAC layer handles the generic ones. 1063 */ 1064 static void 1065 rge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 1066 { 1067 rge_t *rgep = arg; 1068 struct iocblk *iocp; 1069 enum ioc_reply status; 1070 boolean_t need_privilege; 1071 int err; 1072 int cmd; 1073 1074 /* 1075 * Validate the command before bothering with the mutex ... 1076 */ 1077 iocp = (struct iocblk *)mp->b_rptr; 1078 iocp->ioc_error = 0; 1079 need_privilege = B_TRUE; 1080 cmd = iocp->ioc_cmd; 1081 switch (cmd) { 1082 default: 1083 miocnak(wq, mp, 0, EINVAL); 1084 return; 1085 1086 case RGE_MII_READ: 1087 case RGE_MII_WRITE: 1088 case RGE_DIAG: 1089 case RGE_PEEK: 1090 case RGE_POKE: 1091 case RGE_PHY_RESET: 1092 case RGE_SOFT_RESET: 1093 case RGE_HARD_RESET: 1094 break; 1095 1096 case LB_GET_INFO_SIZE: 1097 case LB_GET_INFO: 1098 case LB_GET_MODE: 1099 need_privilege = B_FALSE; 1100 /* FALLTHRU */ 1101 case LB_SET_MODE: 1102 break; 1103 1104 case ND_GET: 1105 need_privilege = B_FALSE; 1106 /* FALLTHRU */ 1107 case ND_SET: 1108 break; 1109 } 1110 1111 if (need_privilege) { 1112 /* 1113 * Check for specific net_config privilege 1114 */ 1115 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); 1116 if (err != 0) { 1117 miocnak(wq, mp, 0, err); 1118 return; 1119 } 1120 } 1121 1122 mutex_enter(rgep->genlock); 1123 1124 switch (cmd) { 1125 default: 1126 _NOTE(NOTREACHED) 1127 status = IOC_INVAL; 1128 break; 1129 1130 case RGE_MII_READ: 1131 case RGE_MII_WRITE: 1132 case RGE_DIAG: 1133 case RGE_PEEK: 1134 case RGE_POKE: 1135 case RGE_PHY_RESET: 1136 case RGE_SOFT_RESET: 1137 case RGE_HARD_RESET: 1138 status = rge_chip_ioctl(rgep, wq, mp, iocp); 1139 break; 1140 1141 case LB_GET_INFO_SIZE: 1142 case LB_GET_INFO: 1143 case LB_GET_MODE: 1144 case LB_SET_MODE: 1145 status = rge_loop_ioctl(rgep, wq, mp, iocp); 1146 break; 1147 1148 case ND_GET: 1149 case ND_SET: 1150 status = rge_nd_ioctl(rgep, wq, mp, iocp); 1151 break; 1152 } 1153 1154 /* 1155 * Do we need to reprogram the PHY and/or the MAC? 1156 * Do it now, while we still have the mutex. 1157 * 1158 * Note: update the PHY first, 'cos it controls the 1159 * speed/duplex parameters that the MAC code uses. 1160 */ 1161 switch (status) { 1162 case IOC_RESTART_REPLY: 1163 case IOC_RESTART_ACK: 1164 rge_phy_update(rgep); 1165 break; 1166 } 1167 1168 mutex_exit(rgep->genlock); 1169 1170 /* 1171 * Finally, decide how to reply 1172 */ 1173 switch (status) { 1174 default: 1175 case IOC_INVAL: 1176 /* 1177 * Error, reply with a NAK and EINVAL or the specified error 1178 */ 1179 miocnak(wq, mp, 0, iocp->ioc_error == 0 ? 1180 EINVAL : iocp->ioc_error); 1181 break; 1182 1183 case IOC_DONE: 1184 /* 1185 * OK, reply already sent 1186 */ 1187 break; 1188 1189 case IOC_RESTART_ACK: 1190 case IOC_ACK: 1191 /* 1192 * OK, reply with an ACK 1193 */ 1194 miocack(wq, mp, 0, 0); 1195 break; 1196 1197 case IOC_RESTART_REPLY: 1198 case IOC_REPLY: 1199 /* 1200 * OK, send prepared reply as ACK or NAK 1201 */ 1202 mp->b_datap->db_type = iocp->ioc_error == 0 ? 1203 M_IOCACK : M_IOCNAK; 1204 qreply(wq, mp); 1205 break; 1206 } 1207 } 1208 1209 static void 1210 rge_m_resources(void *arg) 1211 { 1212 rge_t *rgep = arg; 1213 mac_rx_fifo_t mrf; 1214 1215 mutex_enter(rgep->genlock); 1216 1217 /* 1218 * Register Rx rings as resources and save mac 1219 * resource id for future reference 1220 */ 1221 mrf.mrf_type = MAC_RX_FIFO; 1222 mrf.mrf_blank = rge_chip_blank; 1223 mrf.mrf_arg = (void *)rgep; 1224 mrf.mrf_normal_blank_time = RGE_RX_INT_TIME; 1225 mrf.mrf_normal_pkt_count = RGE_RX_INT_PKTS; 1226 rgep->handle = mac_resource_add(rgep->mh, (mac_resource_t *)&mrf); 1227 1228 mutex_exit(rgep->genlock); 1229 } 1230 1231 /* ARGSUSED */ 1232 static boolean_t 1233 rge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 1234 { 1235 switch (cap) { 1236 case MAC_CAPAB_HCKSUM: { 1237 uint32_t *hcksum_txflags = cap_data; 1238 *hcksum_txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; 1239 break; 1240 } 1241 case MAC_CAPAB_POLL: 1242 /* 1243 * There's nothing for us to fill in, simply returning 1244 * B_TRUE stating that we support polling is sufficient. 1245 */ 1246 break; 1247 default: 1248 return (B_FALSE); 1249 } 1250 return (B_TRUE); 1251 } 1252 1253 /* 1254 * ============ Init MSI/Fixed Interrupt routines ============== 1255 */ 1256 1257 /* 1258 * rge_add_intrs: 1259 * 1260 * Register FIXED or MSI interrupts. 1261 */ 1262 static int 1263 rge_add_intrs(rge_t *rgep, int intr_type) 1264 { 1265 dev_info_t *dip = rgep->devinfo; 1266 int avail; 1267 int actual; 1268 int intr_size; 1269 int count; 1270 int i, j; 1271 int ret; 1272 1273 /* Get number of interrupts */ 1274 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 1275 if ((ret != DDI_SUCCESS) || (count == 0)) { 1276 rge_error(rgep, "ddi_intr_get_nintrs() failure, ret: %d, " 1277 "count: %d", ret, count); 1278 return (DDI_FAILURE); 1279 } 1280 1281 /* Get number of available interrupts */ 1282 ret = ddi_intr_get_navail(dip, intr_type, &avail); 1283 if ((ret != DDI_SUCCESS) || (avail == 0)) { 1284 rge_error(rgep, "ddi_intr_get_navail() failure, " 1285 "ret: %d, avail: %d\n", ret, avail); 1286 return (DDI_FAILURE); 1287 } 1288 1289 /* Allocate an array of interrupt handles */ 1290 intr_size = count * sizeof (ddi_intr_handle_t); 1291 rgep->htable = kmem_alloc(intr_size, KM_SLEEP); 1292 rgep->intr_rqst = count; 1293 1294 /* Call ddi_intr_alloc() */ 1295 ret = ddi_intr_alloc(dip, rgep->htable, intr_type, 0, 1296 count, &actual, DDI_INTR_ALLOC_NORMAL); 1297 if (ret != DDI_SUCCESS || actual == 0) { 1298 rge_error(rgep, "ddi_intr_alloc() failed %d\n", ret); 1299 kmem_free(rgep->htable, intr_size); 1300 return (DDI_FAILURE); 1301 } 1302 if (actual < count) { 1303 rge_log(rgep, "ddi_intr_alloc() Requested: %d, Received: %d\n", 1304 count, actual); 1305 } 1306 rgep->intr_cnt = actual; 1307 1308 /* 1309 * Get priority for first msi, assume remaining are all the same 1310 */ 1311 if ((ret = ddi_intr_get_pri(rgep->htable[0], &rgep->intr_pri)) != 1312 DDI_SUCCESS) { 1313 rge_error(rgep, "ddi_intr_get_pri() failed %d\n", ret); 1314 /* Free already allocated intr */ 1315 for (i = 0; i < actual; i++) { 1316 (void) ddi_intr_free(rgep->htable[i]); 1317 } 1318 kmem_free(rgep->htable, intr_size); 1319 return (DDI_FAILURE); 1320 } 1321 1322 /* Test for high level mutex */ 1323 if (rgep->intr_pri >= ddi_intr_get_hilevel_pri()) { 1324 rge_error(rgep, "rge_add_intrs:" 1325 "Hi level interrupt not supported"); 1326 for (i = 0; i < actual; i++) 1327 (void) ddi_intr_free(rgep->htable[i]); 1328 kmem_free(rgep->htable, intr_size); 1329 return (DDI_FAILURE); 1330 } 1331 1332 /* Call ddi_intr_add_handler() */ 1333 for (i = 0; i < actual; i++) { 1334 if ((ret = ddi_intr_add_handler(rgep->htable[i], rge_intr, 1335 (caddr_t)rgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 1336 rge_error(rgep, "ddi_intr_add_handler() " 1337 "failed %d\n", ret); 1338 /* Remove already added intr */ 1339 for (j = 0; j < i; j++) 1340 (void) ddi_intr_remove_handler(rgep->htable[j]); 1341 /* Free already allocated intr */ 1342 for (i = 0; i < actual; i++) { 1343 (void) ddi_intr_free(rgep->htable[i]); 1344 } 1345 kmem_free(rgep->htable, intr_size); 1346 return (DDI_FAILURE); 1347 } 1348 } 1349 1350 if ((ret = ddi_intr_get_cap(rgep->htable[0], &rgep->intr_cap)) 1351 != DDI_SUCCESS) { 1352 rge_error(rgep, "ddi_intr_get_cap() failed %d\n", ret); 1353 for (i = 0; i < actual; i++) { 1354 (void) ddi_intr_remove_handler(rgep->htable[i]); 1355 (void) ddi_intr_free(rgep->htable[i]); 1356 } 1357 kmem_free(rgep->htable, intr_size); 1358 return (DDI_FAILURE); 1359 } 1360 1361 return (DDI_SUCCESS); 1362 } 1363 1364 /* 1365 * rge_rem_intrs: 1366 * 1367 * Unregister FIXED or MSI interrupts 1368 */ 1369 static void 1370 rge_rem_intrs(rge_t *rgep) 1371 { 1372 int i; 1373 1374 /* Disable all interrupts */ 1375 if (rgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 1376 /* Call ddi_intr_block_disable() */ 1377 (void) ddi_intr_block_disable(rgep->htable, rgep->intr_cnt); 1378 } else { 1379 for (i = 0; i < rgep->intr_cnt; i++) { 1380 (void) ddi_intr_disable(rgep->htable[i]); 1381 } 1382 } 1383 1384 /* Call ddi_intr_remove_handler() */ 1385 for (i = 0; i < rgep->intr_cnt; i++) { 1386 (void) ddi_intr_remove_handler(rgep->htable[i]); 1387 (void) ddi_intr_free(rgep->htable[i]); 1388 } 1389 1390 kmem_free(rgep->htable, rgep->intr_rqst * sizeof (ddi_intr_handle_t)); 1391 } 1392 1393 /* 1394 * ========== Per-instance setup/teardown code ========== 1395 */ 1396 1397 #undef RGE_DBG 1398 #define RGE_DBG RGE_DBG_INIT /* debug flag for this code */ 1399 1400 static void 1401 rge_unattach(rge_t *rgep) 1402 { 1403 /* 1404 * Flag that no more activity may be initiated 1405 */ 1406 rgep->progress &= ~PROGRESS_READY; 1407 rgep->rge_mac_state = RGE_MAC_UNATTACH; 1408 1409 /* 1410 * Quiesce the PHY and MAC (leave it reset but still powered). 1411 * Clean up and free all RGE data structures 1412 */ 1413 if (rgep->periodic_id != NULL) { 1414 ddi_periodic_delete(rgep->periodic_id); 1415 rgep->periodic_id = NULL; 1416 } 1417 1418 if (rgep->progress & PROGRESS_KSTATS) 1419 rge_fini_kstats(rgep); 1420 1421 if (rgep->progress & PROGRESS_PHY) 1422 (void) rge_phy_reset(rgep); 1423 1424 if (rgep->progress & PROGRESS_INIT) { 1425 mutex_enter(rgep->genlock); 1426 (void) rge_chip_reset(rgep); 1427 mutex_exit(rgep->genlock); 1428 rge_fini_rings(rgep); 1429 } 1430 1431 if (rgep->progress & PROGRESS_INTR) { 1432 rge_rem_intrs(rgep); 1433 mutex_destroy(rgep->rc_lock); 1434 mutex_destroy(rgep->rx_lock); 1435 mutex_destroy(rgep->tc_lock); 1436 mutex_destroy(rgep->tx_lock); 1437 rw_destroy(rgep->errlock); 1438 mutex_destroy(rgep->genlock); 1439 } 1440 1441 if (rgep->progress & PROGRESS_FACTOTUM) 1442 (void) ddi_intr_remove_softint(rgep->factotum_hdl); 1443 1444 if (rgep->progress & PROGRESS_RESCHED) 1445 (void) ddi_intr_remove_softint(rgep->resched_hdl); 1446 1447 if (rgep->progress & PROGRESS_NDD) 1448 rge_nd_cleanup(rgep); 1449 1450 rge_free_bufs(rgep); 1451 1452 if (rgep->progress & PROGRESS_REGS) 1453 ddi_regs_map_free(&rgep->io_handle); 1454 1455 if (rgep->progress & PROGRESS_CFG) 1456 pci_config_teardown(&rgep->cfg_handle); 1457 1458 ddi_remove_minor_node(rgep->devinfo, NULL); 1459 kmem_free(rgep, sizeof (*rgep)); 1460 } 1461 1462 static int 1463 rge_resume(dev_info_t *devinfo) 1464 { 1465 rge_t *rgep; /* Our private data */ 1466 chip_id_t *cidp; 1467 chip_id_t chipid; 1468 1469 rgep = ddi_get_driver_private(devinfo); 1470 if (rgep == NULL) 1471 return (DDI_FAILURE); 1472 1473 /* 1474 * Refuse to resume if the data structures aren't consistent 1475 */ 1476 if (rgep->devinfo != devinfo) 1477 return (DDI_FAILURE); 1478 1479 /* 1480 * Read chip ID & set up config space command register(s) 1481 * Refuse to resume if the chip has changed its identity! 1482 */ 1483 cidp = &rgep->chipid; 1484 rge_chip_cfg_init(rgep, &chipid); 1485 if (chipid.vendor != cidp->vendor) 1486 return (DDI_FAILURE); 1487 if (chipid.device != cidp->device) 1488 return (DDI_FAILURE); 1489 if (chipid.revision != cidp->revision) 1490 return (DDI_FAILURE); 1491 1492 /* 1493 * All OK, reinitialise h/w & kick off NEMO scheduling 1494 */ 1495 mutex_enter(rgep->genlock); 1496 rge_restart(rgep); 1497 mutex_exit(rgep->genlock); 1498 return (DDI_SUCCESS); 1499 } 1500 1501 1502 /* 1503 * attach(9E) -- Attach a device to the system 1504 * 1505 * Called once for each board successfully probed. 1506 */ 1507 static int 1508 rge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 1509 { 1510 rge_t *rgep; /* Our private data */ 1511 mac_register_t *macp; 1512 chip_id_t *cidp; 1513 int intr_types; 1514 caddr_t regs; 1515 int instance; 1516 int i; 1517 int err; 1518 1519 /* 1520 * we don't support high level interrupts in the driver 1521 */ 1522 if (ddi_intr_hilevel(devinfo, 0) != 0) { 1523 cmn_err(CE_WARN, 1524 "rge_attach -- unsupported high level interrupt"); 1525 return (DDI_FAILURE); 1526 } 1527 1528 instance = ddi_get_instance(devinfo); 1529 RGE_GTRACE(("rge_attach($%p, %d) instance %d", 1530 (void *)devinfo, cmd, instance)); 1531 RGE_BRKPT(NULL, "rge_attach"); 1532 1533 switch (cmd) { 1534 default: 1535 return (DDI_FAILURE); 1536 1537 case DDI_RESUME: 1538 return (rge_resume(devinfo)); 1539 1540 case DDI_ATTACH: 1541 break; 1542 } 1543 1544 rgep = kmem_zalloc(sizeof (*rgep), KM_SLEEP); 1545 ddi_set_driver_private(devinfo, rgep); 1546 rgep->devinfo = devinfo; 1547 1548 /* 1549 * Initialize more fields in RGE private data 1550 */ 1551 rgep->rge_mac_state = RGE_MAC_ATTACH; 1552 rgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1553 DDI_PROP_DONTPASS, debug_propname, rge_debug); 1554 rgep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1555 DDI_PROP_DONTPASS, mtu_propname, ETHERMTU); 1556 rgep->msi_enable = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1557 DDI_PROP_DONTPASS, msi_propname, B_TRUE); 1558 (void) snprintf(rgep->ifname, sizeof (rgep->ifname), "%s%d", 1559 RGE_DRIVER_NAME, instance); 1560 1561 /* 1562 * Map config space registers 1563 * Read chip ID & set up config space command register(s) 1564 * 1565 * Note: this leaves the chip accessible by Memory Space 1566 * accesses, but with interrupts and Bus Mastering off. 1567 * This should ensure that nothing untoward will happen 1568 * if it has been left active by the (net-)bootloader. 1569 * We'll re-enable Bus Mastering once we've reset the chip, 1570 * and allow interrupts only when everything else is set up. 1571 */ 1572 err = pci_config_setup(devinfo, &rgep->cfg_handle); 1573 if (err != DDI_SUCCESS) { 1574 rge_problem(rgep, "pci_config_setup() failed"); 1575 goto attach_fail; 1576 } 1577 rgep->progress |= PROGRESS_CFG; 1578 cidp = &rgep->chipid; 1579 bzero(cidp, sizeof (*cidp)); 1580 rge_chip_cfg_init(rgep, cidp); 1581 1582 /* 1583 * Map operating registers 1584 */ 1585 err = ddi_regs_map_setup(devinfo, 1, ®s, 1586 0, 0, &rge_reg_accattr, &rgep->io_handle); 1587 if (err != DDI_SUCCESS) { 1588 rge_problem(rgep, "ddi_regs_map_setup() failed"); 1589 goto attach_fail; 1590 } 1591 rgep->io_regs = regs; 1592 rgep->progress |= PROGRESS_REGS; 1593 1594 /* 1595 * Characterise the device, so we know its requirements. 1596 * Then allocate the appropriate TX and RX descriptors & buffers. 1597 */ 1598 rge_chip_ident(rgep); 1599 err = rge_alloc_bufs(rgep); 1600 if (err != DDI_SUCCESS) { 1601 rge_problem(rgep, "DMA buffer allocation failed"); 1602 goto attach_fail; 1603 } 1604 1605 /* 1606 * Register NDD-tweakable parameters 1607 */ 1608 if (rge_nd_init(rgep)) { 1609 rge_problem(rgep, "rge_nd_init() failed"); 1610 goto attach_fail; 1611 } 1612 rgep->progress |= PROGRESS_NDD; 1613 1614 /* 1615 * Add the softint handlers: 1616 * 1617 * Both of these handlers are used to avoid restrictions on the 1618 * context and/or mutexes required for some operations. In 1619 * particular, the hardware interrupt handler and its subfunctions 1620 * can detect a number of conditions that we don't want to handle 1621 * in that context or with that set of mutexes held. So, these 1622 * softints are triggered instead: 1623 * 1624 * the <resched> softint is triggered if if we have previously 1625 * had to refuse to send a packet because of resource shortage 1626 * (we've run out of transmit buffers), but the send completion 1627 * interrupt handler has now detected that more buffers have 1628 * become available. 1629 * 1630 * the <factotum> is triggered if the h/w interrupt handler 1631 * sees the <link state changed> or <error> bits in the status 1632 * block. It's also triggered periodically to poll the link 1633 * state, just in case we aren't getting link status change 1634 * interrupts ... 1635 */ 1636 err = ddi_intr_add_softint(devinfo, &rgep->resched_hdl, 1637 DDI_INTR_SOFTPRI_MIN, rge_reschedule, (caddr_t)rgep); 1638 if (err != DDI_SUCCESS) { 1639 rge_problem(rgep, "ddi_intr_add_softint() failed"); 1640 goto attach_fail; 1641 } 1642 rgep->progress |= PROGRESS_RESCHED; 1643 err = ddi_intr_add_softint(devinfo, &rgep->factotum_hdl, 1644 DDI_INTR_SOFTPRI_MIN, rge_chip_factotum, (caddr_t)rgep); 1645 if (err != DDI_SUCCESS) { 1646 rge_problem(rgep, "ddi_intr_add_softint() failed"); 1647 goto attach_fail; 1648 } 1649 rgep->progress |= PROGRESS_FACTOTUM; 1650 1651 /* 1652 * Get supported interrupt types 1653 */ 1654 if (ddi_intr_get_supported_types(devinfo, &intr_types) 1655 != DDI_SUCCESS) { 1656 rge_error(rgep, "ddi_intr_get_supported_types failed\n"); 1657 goto attach_fail; 1658 } 1659 1660 /* 1661 * Add the h/w interrupt handler and initialise mutexes 1662 */ 1663 if ((intr_types & DDI_INTR_TYPE_MSI) && rgep->msi_enable) { 1664 if (rge_add_intrs(rgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) { 1665 rge_error(rgep, "MSI registration failed, " 1666 "trying FIXED interrupt type\n"); 1667 } else { 1668 rge_log(rgep, "Using MSI interrupt type\n"); 1669 rgep->intr_type = DDI_INTR_TYPE_MSI; 1670 rgep->progress |= PROGRESS_INTR; 1671 } 1672 } 1673 if (!(rgep->progress & PROGRESS_INTR) && 1674 (intr_types & DDI_INTR_TYPE_FIXED)) { 1675 if (rge_add_intrs(rgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) { 1676 rge_error(rgep, "FIXED interrupt " 1677 "registration failed\n"); 1678 goto attach_fail; 1679 } 1680 rge_log(rgep, "Using FIXED interrupt type\n"); 1681 rgep->intr_type = DDI_INTR_TYPE_FIXED; 1682 rgep->progress |= PROGRESS_INTR; 1683 } 1684 if (!(rgep->progress & PROGRESS_INTR)) { 1685 rge_error(rgep, "No interrupts registered\n"); 1686 goto attach_fail; 1687 } 1688 mutex_init(rgep->genlock, NULL, MUTEX_DRIVER, 1689 DDI_INTR_PRI(rgep->intr_pri)); 1690 rw_init(rgep->errlock, NULL, RW_DRIVER, 1691 DDI_INTR_PRI(rgep->intr_pri)); 1692 mutex_init(rgep->tx_lock, NULL, MUTEX_DRIVER, 1693 DDI_INTR_PRI(rgep->intr_pri)); 1694 mutex_init(rgep->tc_lock, NULL, MUTEX_DRIVER, 1695 DDI_INTR_PRI(rgep->intr_pri)); 1696 mutex_init(rgep->rx_lock, NULL, MUTEX_DRIVER, 1697 DDI_INTR_PRI(rgep->intr_pri)); 1698 mutex_init(rgep->rc_lock, NULL, MUTEX_DRIVER, 1699 DDI_INTR_PRI(rgep->intr_pri)); 1700 1701 /* 1702 * Initialize rings 1703 */ 1704 err = rge_init_rings(rgep); 1705 if (err != DDI_SUCCESS) { 1706 rge_problem(rgep, "rge_init_rings() failed"); 1707 goto attach_fail; 1708 } 1709 rgep->progress |= PROGRESS_INIT; 1710 1711 /* 1712 * Now that mutex locks are initialized, enable interrupts. 1713 */ 1714 if (rgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 1715 /* Call ddi_intr_block_enable() for MSI interrupts */ 1716 (void) ddi_intr_block_enable(rgep->htable, rgep->intr_cnt); 1717 } else { 1718 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 1719 for (i = 0; i < rgep->intr_cnt; i++) { 1720 (void) ddi_intr_enable(rgep->htable[i]); 1721 } 1722 } 1723 1724 /* 1725 * Initialise link state variables 1726 * Stop, reset & reinitialise the chip. 1727 * Initialise the (internal) PHY. 1728 */ 1729 rgep->param_link_up = LINK_STATE_UNKNOWN; 1730 1731 /* 1732 * Reset chip & rings to initial state; also reset address 1733 * filtering, promiscuity, loopback mode. 1734 */ 1735 mutex_enter(rgep->genlock); 1736 (void) rge_chip_reset(rgep); 1737 rge_chip_sync(rgep, RGE_GET_MAC); 1738 bzero(rgep->mcast_hash, sizeof (rgep->mcast_hash)); 1739 bzero(rgep->mcast_refs, sizeof (rgep->mcast_refs)); 1740 rgep->promisc = B_FALSE; 1741 rgep->param_loop_mode = RGE_LOOP_NONE; 1742 mutex_exit(rgep->genlock); 1743 rge_phy_init(rgep); 1744 rgep->progress |= PROGRESS_PHY; 1745 1746 /* 1747 * Create & initialise named kstats 1748 */ 1749 rge_init_kstats(rgep, instance); 1750 rgep->progress |= PROGRESS_KSTATS; 1751 1752 if ((macp = mac_alloc(MAC_VERSION)) == NULL) 1753 goto attach_fail; 1754 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 1755 macp->m_driver = rgep; 1756 macp->m_dip = devinfo; 1757 macp->m_src_addr = rgep->netaddr; 1758 macp->m_callbacks = &rge_m_callbacks; 1759 macp->m_min_sdu = 0; 1760 macp->m_max_sdu = rgep->default_mtu; 1761 macp->m_margin = VLAN_TAGSZ; 1762 1763 /* 1764 * Finally, we're ready to register ourselves with the MAC layer 1765 * interface; if this succeeds, we're all ready to start() 1766 */ 1767 err = mac_register(macp, &rgep->mh); 1768 mac_free(macp); 1769 if (err != 0) 1770 goto attach_fail; 1771 1772 /* 1773 * Register a periodical handler. 1774 * reg_chip_cyclic() is invoked in kernel context. 1775 */ 1776 rgep->periodic_id = ddi_periodic_add(rge_chip_cyclic, rgep, 1777 RGE_CYCLIC_PERIOD, DDI_IPL_0); 1778 1779 rgep->progress |= PROGRESS_READY; 1780 return (DDI_SUCCESS); 1781 1782 attach_fail: 1783 rge_unattach(rgep); 1784 return (DDI_FAILURE); 1785 } 1786 1787 /* 1788 * rge_suspend() -- suspend transmit/receive for powerdown 1789 */ 1790 static int 1791 rge_suspend(rge_t *rgep) 1792 { 1793 /* 1794 * Stop processing and idle (powerdown) the PHY ... 1795 */ 1796 mutex_enter(rgep->genlock); 1797 rge_stop(rgep); 1798 mutex_exit(rgep->genlock); 1799 1800 return (DDI_SUCCESS); 1801 } 1802 1803 /* 1804 * detach(9E) -- Detach a device from the system 1805 */ 1806 static int 1807 rge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 1808 { 1809 rge_t *rgep; 1810 1811 RGE_GTRACE(("rge_detach($%p, %d)", (void *)devinfo, cmd)); 1812 1813 rgep = ddi_get_driver_private(devinfo); 1814 1815 switch (cmd) { 1816 default: 1817 return (DDI_FAILURE); 1818 1819 case DDI_SUSPEND: 1820 return (rge_suspend(rgep)); 1821 1822 case DDI_DETACH: 1823 break; 1824 } 1825 1826 /* 1827 * If there is any posted buffer, the driver should reject to be 1828 * detached. Need notice upper layer to release them. 1829 */ 1830 if (!(rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) && 1831 rgep->rx_free != RGE_BUF_SLOTS) 1832 return (DDI_FAILURE); 1833 1834 /* 1835 * Unregister from the MAC layer subsystem. This can fail, in 1836 * particular if there are DLPI style-2 streams still open - 1837 * in which case we just return failure without shutting 1838 * down chip operations. 1839 */ 1840 if (mac_unregister(rgep->mh) != 0) 1841 return (DDI_FAILURE); 1842 1843 /* 1844 * All activity stopped, so we can clean up & exit 1845 */ 1846 rge_unattach(rgep); 1847 return (DDI_SUCCESS); 1848 } 1849 1850 1851 /* 1852 * ========== Module Loading Data & Entry Points ========== 1853 */ 1854 1855 #undef RGE_DBG 1856 #define RGE_DBG RGE_DBG_INIT /* debug flag for this code */ 1857 DDI_DEFINE_STREAM_OPS(rge_dev_ops, nulldev, nulldev, rge_attach, rge_detach, 1858 nodev, NULL, D_MP, NULL); 1859 1860 static struct modldrv rge_modldrv = { 1861 &mod_driverops, /* Type of module. This one is a driver */ 1862 rge_ident, /* short description */ 1863 &rge_dev_ops /* driver specific ops */ 1864 }; 1865 1866 static struct modlinkage modlinkage = { 1867 MODREV_1, (void *)&rge_modldrv, NULL 1868 }; 1869 1870 1871 int 1872 _info(struct modinfo *modinfop) 1873 { 1874 return (mod_info(&modlinkage, modinfop)); 1875 } 1876 1877 int 1878 _init(void) 1879 { 1880 int status; 1881 1882 mac_init_ops(&rge_dev_ops, "rge"); 1883 status = mod_install(&modlinkage); 1884 if (status == DDI_SUCCESS) 1885 mutex_init(rge_log_mutex, NULL, MUTEX_DRIVER, NULL); 1886 else 1887 mac_fini_ops(&rge_dev_ops); 1888 1889 return (status); 1890 } 1891 1892 int 1893 _fini(void) 1894 { 1895 int status; 1896 1897 status = mod_remove(&modlinkage); 1898 if (status == DDI_SUCCESS) { 1899 mac_fini_ops(&rge_dev_ops); 1900 mutex_destroy(rge_log_mutex); 1901 } 1902 return (status); 1903 } 1904