xref: /titanic_41/usr/src/uts/common/io/rge/rge_chip.c (revision 4a6822d07d6d3f9ffe6907ef5f10d11dcadd75c6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 16;
48 
49 /*
50  * Operating register get/set access routines
51  */
52 #if	RGE_DEBUGGING
53 
54 static void rge_pci_check(rge_t *rgep);
55 #pragma	no_inline(rge_pci_check)
56 
57 static void
58 rge_pci_check(rge_t *rgep)
59 {
60 	uint16_t pcistatus;
61 
62 	pcistatus = pci_config_get16(rgep->cfg_handle, PCI_CONF_STAT);
63 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
64 		RGE_DEBUG(("rge_pci_check($%p): PCI status 0x%x",
65 			(void *)rgep, pcistatus));
66 }
67 
68 #endif	/* RGE_DEBUGGING */
69 
70 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
71 #pragma	inline(rge_reg_get32)
72 
73 static uint32_t
74 rge_reg_get32(rge_t *rgep, uintptr_t regno)
75 {
76 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
77 		(void *)rgep, regno));
78 
79 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
80 }
81 
82 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
83 #pragma	inline(rge_reg_put32)
84 
85 static void
86 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
87 {
88 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
89 		(void *)rgep, regno, data));
90 
91 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
92 	RGE_PCICHK(rgep);
93 }
94 
95 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
96 #pragma	inline(rge_reg_set32)
97 
98 static void
99 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
100 {
101 	uint32_t regval;
102 
103 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
104 		(void *)rgep, regno, bits));
105 
106 	regval = rge_reg_get32(rgep, regno);
107 	regval |= bits;
108 	rge_reg_put32(rgep, regno, regval);
109 }
110 
111 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
112 #pragma	inline(rge_reg_clr32)
113 
114 static void
115 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
116 {
117 	uint32_t regval;
118 
119 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
120 		(void *)rgep, regno, bits));
121 
122 	regval = rge_reg_get32(rgep, regno);
123 	regval &= ~bits;
124 	rge_reg_put32(rgep, regno, regval);
125 }
126 
127 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
128 #pragma	inline(rge_reg_get16)
129 
130 static uint16_t
131 rge_reg_get16(rge_t *rgep, uintptr_t regno)
132 {
133 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
134 		(void *)rgep, regno));
135 
136 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
137 }
138 
139 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
140 #pragma	inline(rge_reg_put16)
141 
142 static void
143 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
144 {
145 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
146 		(void *)rgep, regno, data));
147 
148 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
149 	RGE_PCICHK(rgep);
150 }
151 
152 static void rge_reg_set16(rge_t *rgep, uintptr_t regno, uint16_t bits);
153 #pragma	inline(rge_reg_set16)
154 
155 static void
156 rge_reg_set16(rge_t *rgep, uintptr_t regno, uint16_t bits)
157 {
158 	uint16_t regval;
159 
160 	RGE_TRACE(("rge_reg_set16($%p, 0x%lx, 0x%x)",
161 		(void *)rgep, regno, bits));
162 
163 	regval = rge_reg_get16(rgep, regno);
164 	regval |= bits;
165 	rge_reg_put16(rgep, regno, regval);
166 }
167 
168 static void rge_reg_clr16(rge_t *rgep, uintptr_t regno, uint16_t bits);
169 #pragma	inline(rge_reg_clr16)
170 
171 static void
172 rge_reg_clr16(rge_t *rgep, uintptr_t regno, uint16_t bits)
173 {
174 	uint16_t regval;
175 
176 	RGE_TRACE(("rge_reg_clr16($%p, 0x%lx, 0x%x)",
177 		(void *)rgep, regno, bits));
178 
179 	regval = rge_reg_get16(rgep, regno);
180 	regval &= ~bits;
181 	rge_reg_put16(rgep, regno, regval);
182 }
183 
184 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
185 #pragma	inline(rge_reg_get8)
186 
187 static uint8_t
188 rge_reg_get8(rge_t *rgep, uintptr_t regno)
189 {
190 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
191 		(void *)rgep, regno));
192 
193 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
194 }
195 
196 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
197 #pragma	inline(rge_reg_put8)
198 
199 static void
200 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
201 {
202 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
203 		(void *)rgep, regno, data));
204 
205 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
206 	RGE_PCICHK(rgep);
207 }
208 
209 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
210 #pragma	inline(rge_reg_set8)
211 
212 static void
213 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
214 {
215 	uint8_t regval;
216 
217 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
218 		(void *)rgep, regno, bits));
219 
220 	regval = rge_reg_get8(rgep, regno);
221 	regval |= bits;
222 	rge_reg_put8(rgep, regno, regval);
223 }
224 
225 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
226 #pragma	inline(rge_reg_clr8)
227 
228 static void
229 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
230 {
231 	uint8_t regval;
232 
233 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
234 		(void *)rgep, regno, bits));
235 
236 	regval = rge_reg_get8(rgep, regno);
237 	regval &= ~bits;
238 	rge_reg_put8(rgep, regno, regval);
239 }
240 
241 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
242 #pragma	no_inline(rge_mii_get16)
243 
244 uint16_t
245 rge_mii_get16(rge_t *rgep, uintptr_t mii)
246 {
247 	uint32_t regval;
248 	uint32_t val32;
249 	uint32_t i;
250 
251 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
252 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
253 
254 	/*
255 	 * Waiting for PHY reading OK
256 	 */
257 	for (i = 0; i < PHY_RESET_LOOP; i++) {
258 		drv_usecwait(1000);
259 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
260 		if (val32 & PHY_ACCESS_WR_FLAG)
261 			return ((uint16_t)(val32 & 0xffff));
262 	}
263 
264 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
265 	return ((uint16_t)~0u);
266 }
267 
268 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
269 #pragma	no_inline(rge_mii_put16)
270 
271 void
272 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
273 {
274 	uint32_t regval;
275 	uint32_t val32;
276 	uint32_t i;
277 
278 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
279 	regval |= data & PHY_DATA_MASK;
280 	regval |= PHY_ACCESS_WR_FLAG;
281 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
282 
283 	/*
284 	 * Waiting for PHY writing OK
285 	 */
286 	for (i = 0; i < PHY_RESET_LOOP; i++) {
287 		drv_usecwait(1000);
288 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
289 		if (!(val32 & PHY_ACCESS_WR_FLAG))
290 			return;
291 	}
292 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
293 	    mii, data));
294 }
295 
296 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
297 #pragma	no_inline(rge_ephy_put16)
298 
299 void
300 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
301 {
302 	uint32_t regval;
303 	uint32_t val32;
304 	uint32_t i;
305 
306 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
307 	regval |= data & EPHY_DATA_MASK;
308 	regval |= EPHY_ACCESS_WR_FLAG;
309 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
310 
311 	/*
312 	 * Waiting for PHY writing OK
313 	 */
314 	for (i = 0; i < PHY_RESET_LOOP; i++) {
315 		drv_usecwait(1000);
316 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
317 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
318 			return;
319 	}
320 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
321 	    emii, data));
322 }
323 
324 /*
325  * Atomically shift a 32-bit word left, returning
326  * the value it had *before* the shift was applied
327  */
328 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
329 #pragma	inline(rge_mii_put16)
330 
331 static uint32_t
332 rge_atomic_shl32(uint32_t *sp, uint_t count)
333 {
334 	uint32_t oldval;
335 	uint32_t newval;
336 
337 	/* ATOMICALLY */
338 	do {
339 		oldval = *sp;
340 		newval = oldval << count;
341 	} while (cas32(sp, oldval, newval) != oldval);
342 
343 	return (oldval);
344 }
345 
346 /*
347  * PHY operation routines
348  */
349 #if	RGE_DEBUGGING
350 
351 static void
352 rge_phydump(rge_t *rgep)
353 {
354 	uint16_t regs[32];
355 	int i;
356 
357 	ASSERT(mutex_owned(rgep->genlock));
358 
359 	for (i = 0; i < 32; ++i) {
360 		regs[i] = rge_mii_get16(rgep, i);
361 	}
362 
363 	for (i = 0; i < 32; i += 8)
364 		RGE_DEBUG(("rge_phydump: "
365 				"0x%04x %04x %04x %04x %04x %04x %04x %04x",
366 			regs[i+0], regs[i+1], regs[i+2], regs[i+3],
367 			regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
368 }
369 
370 #endif	/* RGE_DEBUGGING */
371 
372 /*
373  * Basic low-level function to probe for a PHY
374  *
375  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
376  */
377 static boolean_t
378 rge_phy_probe(rge_t *rgep)
379 {
380 	uint16_t phy_status;
381 
382 	ASSERT(mutex_owned(rgep->genlock));
383 
384 	/*
385 	 * Read the MII_STATUS register twice, in
386 	 * order to clear any sticky bits (but they should
387 	 * have been cleared by the RESET, I think).
388 	 */
389 	phy_status = rge_mii_get16(rgep, MII_STATUS);
390 	phy_status = rge_mii_get16(rgep, MII_STATUS);
391 	RGE_DEBUG(("rge_phy_probe: status 0x%x", phy_status));
392 
393 	/*
394 	 * Now check the value read; it should have at least one bit set
395 	 * (for the device capabilities) and at least one clear (one of
396 	 * the error bits). So if we see all 0s or all 1s, there's a
397 	 * problem.  In particular, rge_mii_get16() returns all 1s if
398 	 * communications fails ...
399 	 */
400 	switch (phy_status) {
401 	case 0x0000:
402 	case 0xffff:
403 		return (B_FALSE);
404 
405 	default :
406 		return (B_TRUE);
407 	}
408 }
409 
410 static void
411 rge_phy_check(rge_t *rgep)
412 {
413 	uint16_t gig_ctl;
414 
415 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
416 		/*
417 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
418 		 * every 15 seconds whin link down & advertise is 1000.
419 		 */
420 		if (rgep->chipid.phy_ver == PHY_VER_S) {
421 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
422 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
423 				rgep->link_down_count++;
424 				if (rgep->link_down_count > 15) {
425 					(void) rge_phy_reset(rgep);
426 					rgep->stats.phy_reset++;
427 					rgep->link_down_count = 0;
428 				}
429 			}
430 		}
431 	} else {
432 		rgep->link_down_count = 0;
433 	}
434 }
435 
436 /*
437  * Basic low-level function to reset the PHY.
438  * Doesn't incorporate any special-case workarounds.
439  *
440  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
441  */
442 boolean_t
443 rge_phy_reset(rge_t *rgep)
444 {
445 	uint16_t control;
446 	uint_t count;
447 
448 	/*
449 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
450 	 */
451 	control = rge_mii_get16(rgep, MII_CONTROL);
452 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
453 	for (count = 0; count < 5; count++) {
454 		drv_usecwait(100);
455 		control = rge_mii_get16(rgep, MII_CONTROL);
456 		if (BIC(control, MII_CONTROL_RESET))
457 			return (B_TRUE);
458 	}
459 
460 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
461 	return (B_FALSE);
462 }
463 
464 /*
465  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
466  * and advertisements with the required settings as specified by the various
467  * param_* variables that can be poked via the NDD interface.
468  *
469  * We always reset the PHY and reprogram *all* the relevant registers,
470  * not just those changed.  This should cause the link to go down, and then
471  * back up again once the link is stable and autonegotiation (if enabled)
472  * is complete.  We should get a link state change interrupt somewhere along
473  * the way ...
474  *
475  * NOTE: <genlock> must already be held by the caller
476  */
477 void
478 rge_phy_update(rge_t *rgep)
479 {
480 	boolean_t adv_autoneg;
481 	boolean_t adv_pause;
482 	boolean_t adv_asym_pause;
483 	boolean_t adv_1000fdx;
484 	boolean_t adv_1000hdx;
485 	boolean_t adv_100fdx;
486 	boolean_t adv_100hdx;
487 	boolean_t adv_10fdx;
488 	boolean_t adv_10hdx;
489 
490 	uint16_t control;
491 	uint16_t gigctrl;
492 	uint16_t anar;
493 
494 	ASSERT(mutex_owned(rgep->genlock));
495 
496 	RGE_DEBUG(("rge_phy_update: autoneg %d "
497 			"pause %d asym_pause %d "
498 			"1000fdx %d 1000hdx %d "
499 			"100fdx %d 100hdx %d "
500 			"10fdx %d 10hdx %d ",
501 		rgep->param_adv_autoneg,
502 		rgep->param_adv_pause, rgep->param_adv_asym_pause,
503 		rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
504 		rgep->param_adv_100fdx, rgep->param_adv_100hdx,
505 		rgep->param_adv_10fdx, rgep->param_adv_10hdx));
506 
507 	control = gigctrl = anar = 0;
508 
509 	/*
510 	 * PHY settings are normally based on the param_* variables,
511 	 * but if any loopback mode is in effect, that takes precedence.
512 	 *
513 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
514 	 * and External loopback at a variety of speeds (with a special
515 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
516 	 * is turned ON, and the speed/mastership is forced.
517 	 */
518 	switch (rgep->param_loop_mode) {
519 	case RGE_LOOP_NONE:
520 	default:
521 		adv_autoneg = rgep->param_adv_autoneg;
522 		adv_pause = rgep->param_adv_pause;
523 		adv_asym_pause = rgep->param_adv_asym_pause;
524 		adv_1000fdx = rgep->param_adv_1000fdx;
525 		adv_1000hdx = rgep->param_adv_1000hdx;
526 		adv_100fdx = rgep->param_adv_100fdx;
527 		adv_100hdx = rgep->param_adv_100hdx;
528 		adv_10fdx = rgep->param_adv_10fdx;
529 		adv_10hdx = rgep->param_adv_10hdx;
530 		break;
531 
532 	case RGE_LOOP_INTERNAL_PHY:
533 	case RGE_LOOP_INTERNAL_MAC:
534 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
535 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
536 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
537 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
538 
539 		switch (rgep->param_loop_mode) {
540 		case RGE_LOOP_INTERNAL_PHY:
541 			rgep->param_link_speed = 1000;
542 			adv_1000fdx = B_TRUE;
543 			control = MII_CONTROL_LOOPBACK;
544 			break;
545 
546 		case RGE_LOOP_INTERNAL_MAC:
547 			rgep->param_link_speed = 1000;
548 			adv_1000fdx = B_TRUE;
549 			break;
550 		}
551 	}
552 
553 	RGE_DEBUG(("rge_phy_update: autoneg %d "
554 			"pause %d asym_pause %d "
555 			"1000fdx %d 1000hdx %d "
556 			"100fdx %d 100hdx %d "
557 			"10fdx %d 10hdx %d ",
558 		adv_autoneg,
559 		adv_pause, adv_asym_pause,
560 		adv_1000fdx, adv_1000hdx,
561 		adv_100fdx, adv_100hdx,
562 		adv_10fdx, adv_10hdx));
563 
564 	/*
565 	 * We should have at least one technology capability set;
566 	 * if not, we select a default of 1000Mb/s full-duplex
567 	 */
568 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
569 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
570 		adv_1000fdx = B_TRUE;
571 
572 	/*
573 	 * Now transform the adv_* variables into the proper settings
574 	 * of the PHY registers ...
575 	 *
576 	 * If autonegotiation is (now) enabled, we want to trigger
577 	 * a new autonegotiation cycle once the PHY has been
578 	 * programmed with the capabilities to be advertised.
579 	 *
580 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
581 	 */
582 	if (adv_autoneg)
583 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
584 
585 	if (adv_1000fdx)
586 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
587 	else if (adv_1000hdx)
588 		control |= MII_CONTROL_1000MB;
589 	else if (adv_100fdx)
590 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
591 	else if (adv_100hdx)
592 		control |= MII_CONTROL_100MB;
593 	else if (adv_10fdx)
594 		control |= MII_CONTROL_FDUPLEX;
595 	else if (adv_10hdx)
596 		control |= 0;
597 	else
598 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
599 
600 	if (adv_1000fdx) {
601 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
602 		/*
603 		 * Chipset limitation: need set other capabilities to true
604 		 */
605 		if (rgep->chipid.is_pcie)
606 			adv_1000hdx = B_TRUE;
607 		adv_100fdx = B_TRUE;
608 		adv_100hdx  = B_TRUE;
609 		adv_10fdx = B_TRUE;
610 		adv_10hdx = B_TRUE;
611 	}
612 
613 	if (adv_1000hdx)
614 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
615 
616 	if (adv_100fdx)
617 		anar |= MII_ABILITY_100BASE_TX_FD;
618 	if (adv_100hdx)
619 		anar |= MII_ABILITY_100BASE_TX;
620 	if (adv_10fdx)
621 		anar |= MII_ABILITY_10BASE_T_FD;
622 	if (adv_10hdx)
623 		anar |= MII_ABILITY_10BASE_T;
624 
625 	if (adv_pause)
626 		anar |= MII_ABILITY_PAUSE;
627 	if (adv_asym_pause)
628 		anar |= MII_ABILITY_ASYM_PAUSE;
629 
630 	/*
631 	 * Munge in any other fixed bits we require ...
632 	 */
633 	anar |= MII_AN_SELECTOR_8023;
634 
635 	/*
636 	 * Restart the PHY and write the new values.  Note the
637 	 * time, so that we can say whether subsequent link state
638 	 * changes can be attributed to our reprogramming the PHY
639 	 */
640 	rge_phy_init(rgep);
641 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
642 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
643 	rge_mii_put16(rgep, MII_CONTROL, control);
644 
645 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
646 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
647 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
648 }
649 
650 void rge_phy_init(rge_t *rgep);
651 #pragma	no_inline(rge_phy_init)
652 
653 void
654 rge_phy_init(rge_t *rgep)
655 {
656 	rgep->phy_mii_addr = 1;
657 
658 	/*
659 	 * Below phy config steps are copied from the Programming Guide
660 	 * (there's no detail comments for these steps.)
661 	 */
662 	switch (rgep->chipid.mac_ver) {
663 	case MAC_VER_8169S_D:
664 	case MAC_VER_8169S_E :
665 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
666 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
667 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
668 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
669 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
670 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
671 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
672 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
673 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
674 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
675 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
676 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
677 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
678 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
679 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
680 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
681 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
682 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
683 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
684 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
685 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
686 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
687 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
688 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
689 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
690 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
691 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
692 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
693 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
694 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
695 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
696 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
697 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
698 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
699 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
700 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
701 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
702 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
703 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
704 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
705 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
706 		break;
707 
708 	case MAC_VER_8169SB:
709 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
710 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
711 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
712 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
713 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
714 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
715 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
716 		break;
717 
718 	case MAC_VER_8169SC:
719 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
720 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
721 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
722 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
723 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
724 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
725 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
726 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
727 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
728 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
729 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
730 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
731 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
732 		break;
733 
734 	case MAC_VER_8168:
735 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
736 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
737 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
738 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
739 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
740 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
741 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
742 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
743 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
744 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
745 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
746 		break;
747 
748 	case MAC_VER_8168B_B:
749 	case MAC_VER_8168B_C:
750 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
751 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
752 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
753 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
754 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
755 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
756 		break;
757 	}
758 }
759 
760 void rge_chip_ident(rge_t *rgep);
761 #pragma	no_inline(rge_chip_ident)
762 
763 void
764 rge_chip_ident(rge_t *rgep)
765 {
766 	chip_id_t *chip = &rgep->chipid;
767 	uint32_t val32;
768 	uint16_t val16;
769 
770 	/*
771 	 * Read and record MAC version
772 	 */
773 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
774 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
775 	chip->mac_ver = val32;
776 	switch (chip->mac_ver) {
777 	case MAC_VER_8168:
778 	case MAC_VER_8168B_B:
779 	case MAC_VER_8168B_C:
780 		chip->is_pcie = B_TRUE;
781 		break;
782 
783 	default:
784 		chip->is_pcie = B_FALSE;
785 		break;
786 	}
787 
788 	/*
789 	 * Read and record PHY version
790 	 */
791 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
792 	val16 &= PHY_VER_MASK;
793 	chip->phy_ver = val16;
794 
795 	/* set pci latency timer */
796 	if (chip->mac_ver == MAC_VER_8169 ||
797 	    chip->mac_ver == MAC_VER_8169S_D ||
798 	    chip->mac_ver == MAC_VER_8169SC)
799 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
800 
801 	if (chip->mac_ver == MAC_VER_8169SC) {
802 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
803 		val16 &= 0x0300;
804 		if (val16 == 0x1)	/* 66Mhz PCI */
805 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff);
806 		else if (val16 == 0x0) /* 33Mhz PCI */
807 			pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00);
808 	}
809 
810 	/*
811 	 * PCIE chipset require the Rx buffer start address must be
812 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
813 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
814 	 */
815 	if (chip->is_pcie) {
816 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
817 		if (rgep->default_mtu > ETHERMTU) {
818 			rge_notice(rgep, "Jumbo packets not supported "
819 			    "for this PCIE chipset");
820 			rgep->default_mtu = ETHERMTU;
821 		}
822 	}
823 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
824 		rgep->head_room = 0;
825 	else
826 		rgep->head_room = RGE_HEADROOM;
827 
828 	/*
829 	 * Initialize other variables.
830 	 */
831 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
832 		rgep->default_mtu = ETHERMTU;
833 	if (rgep->default_mtu > ETHERMTU) {
834 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
835 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
836 		rgep->ethmax_size = RGE_JUMBO_SIZE;
837 	} else {
838 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
839 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
840 		rgep->ethmax_size = ETHERMAX;
841 	}
842 	chip->rxconfig = RX_CONFIG_DEFAULT;
843 	chip->txconfig = TX_CONFIG_DEFAULT;
844 
845 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
846 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
847 }
848 
849 /*
850  * Perform first-stage chip (re-)initialisation, using only config-space
851  * accesses:
852  *
853  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
854  *   returning the data in the structure pointed to by <idp>.
855  * + Enable Memory Space accesses.
856  * + Enable Bus Mastering according.
857  */
858 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
859 #pragma	no_inline(rge_chip_cfg_init)
860 
861 void
862 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
863 {
864 	ddi_acc_handle_t handle;
865 	uint16_t commd;
866 
867 	handle = rgep->cfg_handle;
868 
869 	/*
870 	 * Save PCI cache line size and subsystem vendor ID
871 	 */
872 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
873 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
874 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
875 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
876 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
877 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
878 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
879 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
880 
881 	/*
882 	 * Turn on Master Enable (DMA) and IO Enable bits.
883 	 * Enable PCI Memory Space accesses
884 	 */
885 	commd = cidp->command;
886 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
887 	pci_config_put16(handle, PCI_CONF_COMM, commd);
888 
889 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
890 		cidp->vendor, cidp->device, cidp->revision));
891 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
892 		cidp->subven, cidp->subdev));
893 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
894 		cidp->clsize, cidp->latency, cidp->command));
895 }
896 
897 int rge_chip_reset(rge_t *rgep);
898 #pragma	no_inline(rge_chip_reset)
899 
900 int
901 rge_chip_reset(rge_t *rgep)
902 {
903 	int i;
904 	uint8_t val8;
905 
906 	/*
907 	 * Chip should be in STOP state
908 	 */
909 	rge_reg_clr8(rgep, RT_COMMAND_REG,
910 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
911 
912 	/*
913 	 * Disable interrupt
914 	 */
915 	rgep->int_mask = INT_MASK_NONE;
916 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
917 
918 	/*
919 	 * Clear pended interrupt
920 	 */
921 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
922 
923 	/*
924 	 * Reset chip
925 	 */
926 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
927 
928 	/*
929 	 * Wait for reset success
930 	 */
931 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
932 		drv_usecwait(10);
933 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
934 		if (!(val8 & RT_COMMAND_RESET)) {
935 			rgep->rge_chip_state = RGE_CHIP_RESET;
936 			return (0);
937 		}
938 	}
939 	RGE_REPORT((rgep, "rge_chip_reset fail."));
940 	return (-1);
941 }
942 
943 void rge_chip_init(rge_t *rgep);
944 #pragma	no_inline(rge_chip_init)
945 
946 void
947 rge_chip_init(rge_t *rgep)
948 {
949 	uint32_t val32;
950 	uint32_t val16;
951 	uint32_t *hashp;
952 	chip_id_t *chip = &rgep->chipid;
953 
954 	if (chip->is_pcie) {
955 		/*
956 		 * Increase the threshold voltage of RX sensitivity
957 		 */
958 		if (chip->mac_ver != MAC_VER_8168)
959 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
960 
961 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
962 		val16 = 0x12<<8 | val16;
963 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
964 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
965 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
966 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
967 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
968 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
969 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
970 		val32 |= 0x7000;
971 		val32 &= 0xffff5fff;
972 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
973 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
974 	}
975 
976 	/*
977 	 * Config MII register
978 	 */
979 	rgep->param_link_up = LINK_STATE_DOWN;
980 	rge_phy_update(rgep);
981 
982 	/*
983 	 * Enable Rx checksum offload.
984 	 *  Then for vlan support, we must enable receive vlan de-tagging.
985 	 *  Otherwise, there'll be checksum error.
986 	 */
987 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
988 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
989 	if (chip->mac_ver == MAC_VER_8169S_D) {
990 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
991 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
992 	}
993 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
994 
995 	/*
996 	 * Start transmit/receive before set tx/rx configuration register
997 	 */
998 	if (!chip->is_pcie)
999 		rge_reg_set8(rgep, RT_COMMAND_REG,
1000 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1001 
1002 	/*
1003 	 * Set dump tally counter register
1004 	 */
1005 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
1006 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
1007 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1008 	val32 &= DUMP_COUNTER_REG_RESV;
1009 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
1010 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
1011 
1012 	/*
1013 	 * Change to config register write enable mode
1014 	 */
1015 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1016 
1017 	/*
1018 	 * Set Tx/Rx maximum packet size
1019 	 */
1020 	if (rgep->default_mtu > ETHERMTU) {
1021 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
1022 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
1023 	} else {
1024 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
1025 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
1026 	}
1027 
1028 	/*
1029 	 * Set receive configuration register
1030 	 */
1031 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
1032 	val32 &= RX_CONFIG_REG_RESV;
1033 	if (rgep->promisc)
1034 		val32 |= RX_ACCEPT_ALL_PKT;
1035 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
1036 
1037 	/*
1038 	 * Set transmit configuration register
1039 	 */
1040 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
1041 	val32 &= TX_CONFIG_REG_RESV;
1042 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
1043 
1044 	/*
1045 	 * Set Tx/Rx descriptor register
1046 	 */
1047 	val32 = rgep->tx_desc.cookie.dmac_laddress;
1048 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
1049 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
1050 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
1051 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
1052 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
1053 	val32 = rgep->rx_desc.cookie.dmac_laddress;
1054 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
1055 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
1056 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
1057 
1058 	/*
1059 	 * Suggested setting from Realtek
1060 	 */
1061 	rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1062 
1063 	/*
1064 	 * Set multicast register
1065 	 */
1066 	hashp = (uint32_t *)rgep->mcast_hash;
1067 	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1068 	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1069 
1070 	/*
1071 	 * Msic register setting:
1072 	 *   -- Missed packet counter: clear it
1073 	 *   -- TimerInt Register
1074 	 *   -- Timer count register
1075 	 */
1076 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1077 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1078 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1079 
1080 	/*
1081 	 * Return to normal network/host communication mode
1082 	 */
1083 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1084 	drv_usecwait(20);
1085 }
1086 
1087 /*
1088  * rge_chip_start() -- start the chip transmitting and/or receiving,
1089  * including enabling interrupts
1090  */
1091 void rge_chip_start(rge_t *rgep);
1092 #pragma	no_inline(rge_chip_start)
1093 
1094 void
1095 rge_chip_start(rge_t *rgep)
1096 {
1097 	/*
1098 	 * Clear statistics
1099 	 */
1100 	bzero(&rgep->stats, sizeof (rge_stats_t));
1101 	DMA_ZERO(rgep->dma_area_stats);
1102 
1103 	/*
1104 	 * Start transmit/receive
1105 	 */
1106 	rge_reg_set8(rgep, RT_COMMAND_REG,
1107 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1108 
1109 	/*
1110 	 * Enable interrupt
1111 	 */
1112 	rgep->int_mask = RGE_INT_MASK;
1113 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1114 
1115 	/*
1116 	 * All done!
1117 	 */
1118 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1119 }
1120 
1121 /*
1122  * rge_chip_stop() -- stop board receiving
1123  */
1124 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1125 #pragma	no_inline(rge_chip_stop)
1126 
1127 void
1128 rge_chip_stop(rge_t *rgep, boolean_t fault)
1129 {
1130 	/*
1131 	 * Disable interrupt
1132 	 */
1133 	rgep->int_mask = INT_MASK_NONE;
1134 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1135 
1136 	/*
1137 	 * Clear pended interrupt
1138 	 */
1139 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1140 
1141 	/*
1142 	 * Stop the board and disable transmit/receive
1143 	 */
1144 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1145 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1146 
1147 	if (fault)
1148 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1149 	else
1150 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1151 }
1152 
1153 /*
1154  * rge_get_mac_addr() -- get the MAC address on NIC
1155  */
1156 static void rge_get_mac_addr(rge_t *rgep);
1157 #pragma	inline(rge_get_mac_addr)
1158 
1159 static void
1160 rge_get_mac_addr(rge_t *rgep)
1161 {
1162 	uint8_t *macaddr = rgep->netaddr;
1163 	uint32_t val32;
1164 
1165 	/*
1166 	 * Read first 4-byte of mac address
1167 	 */
1168 	val32 = rge_reg_get32(rgep, ID_0_REG);
1169 	macaddr[0] = val32 & 0xff;
1170 	val32 = val32 >> 8;
1171 	macaddr[1] = val32 & 0xff;
1172 	val32 = val32 >> 8;
1173 	macaddr[2] = val32 & 0xff;
1174 	val32 = val32 >> 8;
1175 	macaddr[3] = val32 & 0xff;
1176 
1177 	/*
1178 	 * Read last 2-byte of mac address
1179 	 */
1180 	val32 = rge_reg_get32(rgep, ID_4_REG);
1181 	macaddr[4] = val32 & 0xff;
1182 	val32 = val32 >> 8;
1183 	macaddr[5] = val32 & 0xff;
1184 }
1185 
1186 static void rge_set_mac_addr(rge_t *rgep);
1187 #pragma	inline(rge_set_mac_addr)
1188 
1189 static void
1190 rge_set_mac_addr(rge_t *rgep)
1191 {
1192 	uint8_t *p = rgep->netaddr;
1193 	uint32_t val32;
1194 
1195 	/*
1196 	 * Change to config register write enable mode
1197 	 */
1198 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1199 
1200 	/*
1201 	 * Get first 4 bytes of mac address
1202 	 */
1203 	val32 = p[3];
1204 	val32 = val32 << 8;
1205 	val32 |= p[2];
1206 	val32 = val32 << 8;
1207 	val32 |= p[1];
1208 	val32 = val32 << 8;
1209 	val32 |= p[0];
1210 
1211 	/*
1212 	 * Set first 4 bytes of mac address
1213 	 */
1214 	rge_reg_put32(rgep, ID_0_REG, val32);
1215 
1216 	/*
1217 	 * Get last 2 bytes of mac address
1218 	 */
1219 	val32 = p[5];
1220 	val32 = val32 << 8;
1221 	val32 |= p[4];
1222 
1223 	/*
1224 	 * Set last 2 bytes of mac address
1225 	 */
1226 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1227 	rge_reg_put32(rgep, ID_4_REG, val32);
1228 
1229 	/*
1230 	 * Return to normal network/host communication mode
1231 	 */
1232 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1233 }
1234 
1235 static void rge_set_multi_addr(rge_t *rgep);
1236 #pragma	inline(rge_set_multi_addr)
1237 
1238 static void
1239 rge_set_multi_addr(rge_t *rgep)
1240 {
1241 	uint32_t *hashp;
1242 
1243 	hashp = (uint32_t *)rgep->mcast_hash;
1244 
1245 	/*
1246 	 * Change to config register write enable mode
1247 	 */
1248 	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1249 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1250 
1251 	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1252 	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1253 
1254 	/*
1255 	 * Return to normal network/host communication mode
1256 	 */
1257 	if (rgep->chipid.mac_ver == MAC_VER_8169SC)
1258 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1259 }
1260 
1261 static void rge_set_promisc(rge_t *rgep);
1262 #pragma	inline(rge_set_promisc)
1263 
1264 static void
1265 rge_set_promisc(rge_t *rgep)
1266 {
1267 	if (rgep->promisc)
1268 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1269 	else
1270 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1271 }
1272 
1273 /*
1274  * rge_chip_sync() -- program the chip with the unicast MAC address,
1275  * the multicast hash table, the required level of promiscuity, and
1276  * the current loopback mode ...
1277  */
1278 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1279 #pragma	no_inline(rge_chip_sync)
1280 
1281 void
1282 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1283 {
1284 	switch (todo) {
1285 	case RGE_GET_MAC:
1286 		rge_get_mac_addr(rgep);
1287 		break;
1288 	case RGE_SET_MAC:
1289 		/* Reprogram the unicast MAC address(es) ... */
1290 		rge_set_mac_addr(rgep);
1291 		break;
1292 	case RGE_SET_MUL:
1293 		/* Reprogram the hashed multicast address table ... */
1294 		rge_set_multi_addr(rgep);
1295 		break;
1296 	case RGE_SET_PROMISC:
1297 		/* Set or clear the PROMISCUOUS mode bit */
1298 		rge_set_promisc(rgep);
1299 		break;
1300 	default:
1301 		break;
1302 	}
1303 }
1304 
1305 void rge_chip_blank(void *arg, time_t ticks, uint_t count);
1306 #pragma	no_inline(rge_chip_blank)
1307 
1308 void
1309 rge_chip_blank(void *arg, time_t ticks, uint_t count)
1310 {
1311 	_NOTE(ARGUNUSED(arg, ticks, count));
1312 }
1313 
1314 void rge_tx_trigger(rge_t *rgep);
1315 #pragma	no_inline(rge_tx_trigger)
1316 
1317 void
1318 rge_tx_trigger(rge_t *rgep)
1319 {
1320 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1321 }
1322 
1323 void rge_hw_stats_dump(rge_t *rgep);
1324 #pragma	no_inline(rge_tx_trigger)
1325 
1326 void
1327 rge_hw_stats_dump(rge_t *rgep)
1328 {
1329 	int i = 0;
1330 
1331 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1332 		drv_usecwait(100);
1333 		if (++i > STATS_DUMP_LOOP) {
1334 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1335 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1336 			return;
1337 		}
1338 	}
1339 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1340 
1341 	/*
1342 	 * Start H/W statistics dump for RTL8169 chip
1343 	 */
1344 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1345 }
1346 
1347 /*
1348  * ========== Hardware interrupt handler ==========
1349  */
1350 
1351 #undef	RGE_DBG
1352 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1353 
1354 static void rge_wake_factotum(rge_t *rgep);
1355 #pragma	inline(rge_wake_factotum)
1356 
1357 static void
1358 rge_wake_factotum(rge_t *rgep)
1359 {
1360 	if (rgep->factotum_flag == 0) {
1361 		rgep->factotum_flag = 1;
1362 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1363 	}
1364 }
1365 
1366 /*
1367  *	rge_intr() -- handle chip interrupts
1368  */
1369 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1370 #pragma	no_inline(rge_intr)
1371 
1372 uint_t
1373 rge_intr(caddr_t arg1, caddr_t arg2)
1374 {
1375 	rge_t *rgep = (rge_t *)arg1;
1376 	uint16_t int_status;
1377 
1378 	_NOTE(ARGUNUSED(arg2))
1379 
1380 	mutex_enter(rgep->genlock);
1381 	/*
1382 	 * Was this interrupt caused by our device...
1383 	 */
1384 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1385 	if (!(int_status & rgep->int_mask)) {
1386 		mutex_exit(rgep->genlock);
1387 		return (DDI_INTR_UNCLAIMED);
1388 				/* indicate it wasn't our interrupt */
1389 	}
1390 	rgep->stats.intr++;
1391 
1392 	/*
1393 	 * Clear interrupt
1394 	 *	For PCIE chipset, we need disable interrupt first.
1395 	 */
1396 	if (rgep->chipid.is_pcie)
1397 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1398 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1399 
1400 	/*
1401 	 * Cable link change interrupt
1402 	 */
1403 	if (int_status & LINK_CHANGE_INT) {
1404 		rge_chip_cyclic(rgep);
1405 	}
1406 
1407 	mutex_exit(rgep->genlock);
1408 
1409 	/*
1410 	 * Receive interrupt
1411 	 */
1412 	if (int_status & RGE_RX_INT)
1413 		rge_receive(rgep);
1414 
1415 	/*
1416 	 * Re-enable interrupt for PCIE chipset
1417 	 */
1418 	if (rgep->chipid.is_pcie)
1419 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1420 
1421 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1422 }
1423 
1424 /*
1425  * ========== Factotum, implemented as a softint handler ==========
1426  */
1427 
1428 #undef	RGE_DBG
1429 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1430 
1431 static boolean_t rge_factotum_link_check(rge_t *rgep);
1432 #pragma	no_inline(rge_factotum_link_check)
1433 
1434 static boolean_t
1435 rge_factotum_link_check(rge_t *rgep)
1436 {
1437 	uint8_t media_status;
1438 	int32_t link;
1439 
1440 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1441 	link = (media_status & PHY_STATUS_LINK_UP) ?
1442 	    LINK_STATE_UP : LINK_STATE_DOWN;
1443 	if (rgep->param_link_up != link) {
1444 		/*
1445 		 * Link change.
1446 		 */
1447 		rgep->param_link_up = link;
1448 
1449 		if (link == LINK_STATE_UP) {
1450 			if (media_status & PHY_STATUS_1000MF) {
1451 				rgep->param_link_speed = RGE_SPEED_1000M;
1452 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1453 			} else {
1454 				rgep->param_link_speed =
1455 				    (media_status & PHY_STATUS_100M) ?
1456 				    RGE_SPEED_100M : RGE_SPEED_10M;
1457 				rgep->param_link_duplex =
1458 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1459 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1460 			}
1461 		}
1462 		return (B_TRUE);
1463 	}
1464 	return (B_FALSE);
1465 }
1466 
1467 /*
1468  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1469  */
1470 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1471 #pragma	no_inline(rge_factotum_stall_check)
1472 
1473 static boolean_t
1474 rge_factotum_stall_check(rge_t *rgep)
1475 {
1476 	uint32_t dogval;
1477 
1478 	ASSERT(mutex_owned(rgep->genlock));
1479 
1480 	/*
1481 	 * Specific check for Tx stall ...
1482 	 *
1483 	 * The 'watchdog' counter is incremented whenever a packet
1484 	 * is queued, reset to 1 when some (but not all) buffers
1485 	 * are reclaimed, reset to 0 (disabled) when all buffers
1486 	 * are reclaimed, and shifted left here.  If it exceeds the
1487 	 * threshold value, the chip is assumed to have stalled and
1488 	 * is put into the ERROR state.  The factotum will then reset
1489 	 * it on the next pass.
1490 	 *
1491 	 * All of which should ensure that we don't get into a state
1492 	 * where packets are left pending indefinitely!
1493 	 */
1494 	if (rgep->resched_needed)
1495 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1496 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1497 	if (dogval < rge_watchdog_count)
1498 		return (B_FALSE);
1499 
1500 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1501 	return (B_TRUE);
1502 
1503 }
1504 
1505 /*
1506  * The factotum is woken up when there's something to do that we'd rather
1507  * not do from inside a hardware interrupt handler or high-level cyclic.
1508  * Its two main tasks are:
1509  *	reset & restart the chip after an error
1510  *	check the link status whenever necessary
1511  */
1512 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1513 #pragma	no_inline(rge_chip_factotum)
1514 
1515 uint_t
1516 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1517 {
1518 	rge_t *rgep;
1519 	uint_t result;
1520 	boolean_t error;
1521 	boolean_t linkchg;
1522 
1523 	rgep = (rge_t *)arg1;
1524 	_NOTE(ARGUNUSED(arg2))
1525 
1526 	if (rgep->factotum_flag == 0)
1527 		return (DDI_INTR_UNCLAIMED);
1528 
1529 	rgep->factotum_flag = 0;
1530 	result = DDI_INTR_CLAIMED;
1531 	error = B_FALSE;
1532 	linkchg = B_FALSE;
1533 
1534 	mutex_enter(rgep->genlock);
1535 	switch (rgep->rge_chip_state) {
1536 	default:
1537 		break;
1538 
1539 	case RGE_CHIP_RUNNING:
1540 		linkchg = rge_factotum_link_check(rgep);
1541 		error = rge_factotum_stall_check(rgep);
1542 		break;
1543 
1544 	case RGE_CHIP_ERROR:
1545 		error = B_TRUE;
1546 		break;
1547 
1548 	case RGE_CHIP_FAULT:
1549 		/*
1550 		 * Fault detected, time to reset ...
1551 		 */
1552 		if (rge_autorecover) {
1553 			RGE_REPORT((rgep, "automatic recovery activated"));
1554 			rge_restart(rgep);
1555 		}
1556 		break;
1557 	}
1558 
1559 	/*
1560 	 * If an error is detected, stop the chip now, marking it as
1561 	 * faulty, so that it will be reset next time through ...
1562 	 */
1563 	if (error)
1564 		rge_chip_stop(rgep, B_TRUE);
1565 	mutex_exit(rgep->genlock);
1566 
1567 	/*
1568 	 * If the link state changed, tell the world about it.
1569 	 * Note: can't do this while still holding the mutex.
1570 	 */
1571 	if (linkchg)
1572 		mac_link_update(rgep->mh, rgep->param_link_up);
1573 
1574 	return (result);
1575 }
1576 
1577 /*
1578  * High-level cyclic handler
1579  *
1580  * This routine schedules a (low-level) softint callback to the
1581  * factotum, and prods the chip to update the status block (which
1582  * will cause a hardware interrupt when complete).
1583  */
1584 void rge_chip_cyclic(void *arg);
1585 #pragma	no_inline(rge_chip_cyclic)
1586 
1587 void
1588 rge_chip_cyclic(void *arg)
1589 {
1590 	rge_t *rgep;
1591 
1592 	rgep = arg;
1593 
1594 	switch (rgep->rge_chip_state) {
1595 	default:
1596 		return;
1597 
1598 	case RGE_CHIP_RUNNING:
1599 		rge_phy_check(rgep);
1600 		break;
1601 
1602 	case RGE_CHIP_FAULT:
1603 	case RGE_CHIP_ERROR:
1604 		break;
1605 	}
1606 
1607 	rge_wake_factotum(rgep);
1608 }
1609 
1610 
1611 /*
1612  * ========== Ioctl subfunctions ==========
1613  */
1614 
1615 #undef	RGE_DBG
1616 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1617 
1618 #if	RGE_DEBUGGING || RGE_DO_PPIO
1619 
1620 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1621 #pragma	no_inline(rge_chip_peek_cfg)
1622 
1623 static void
1624 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1625 {
1626 	uint64_t regval;
1627 	uint64_t regno;
1628 
1629 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1630 		(void *)rgep, (void *)ppd));
1631 
1632 	regno = ppd->pp_acc_offset;
1633 
1634 	switch (ppd->pp_acc_size) {
1635 	case 1:
1636 		regval = pci_config_get8(rgep->cfg_handle, regno);
1637 		break;
1638 
1639 	case 2:
1640 		regval = pci_config_get16(rgep->cfg_handle, regno);
1641 		break;
1642 
1643 	case 4:
1644 		regval = pci_config_get32(rgep->cfg_handle, regno);
1645 		break;
1646 
1647 	case 8:
1648 		regval = pci_config_get64(rgep->cfg_handle, regno);
1649 		break;
1650 	}
1651 
1652 	ppd->pp_acc_data = regval;
1653 }
1654 
1655 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1656 #pragma	no_inline(rge_chip_poke_cfg)
1657 
1658 static void
1659 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1660 {
1661 	uint64_t regval;
1662 	uint64_t regno;
1663 
1664 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1665 		(void *)rgep, (void *)ppd));
1666 
1667 	regno = ppd->pp_acc_offset;
1668 	regval = ppd->pp_acc_data;
1669 
1670 	switch (ppd->pp_acc_size) {
1671 	case 1:
1672 		pci_config_put8(rgep->cfg_handle, regno, regval);
1673 		break;
1674 
1675 	case 2:
1676 		pci_config_put16(rgep->cfg_handle, regno, regval);
1677 		break;
1678 
1679 	case 4:
1680 		pci_config_put32(rgep->cfg_handle, regno, regval);
1681 		break;
1682 
1683 	case 8:
1684 		pci_config_put64(rgep->cfg_handle, regno, regval);
1685 		break;
1686 	}
1687 }
1688 
1689 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1690 #pragma	no_inline(rge_chip_peek_reg)
1691 
1692 static void
1693 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1694 {
1695 	uint64_t regval;
1696 	void *regaddr;
1697 
1698 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1699 		(void *)rgep, (void *)ppd));
1700 
1701 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1702 
1703 	switch (ppd->pp_acc_size) {
1704 	case 1:
1705 		regval = ddi_get8(rgep->io_handle, regaddr);
1706 		break;
1707 
1708 	case 2:
1709 		regval = ddi_get16(rgep->io_handle, regaddr);
1710 		break;
1711 
1712 	case 4:
1713 		regval = ddi_get32(rgep->io_handle, regaddr);
1714 		break;
1715 
1716 	case 8:
1717 		regval = ddi_get64(rgep->io_handle, regaddr);
1718 		break;
1719 	}
1720 
1721 	ppd->pp_acc_data = regval;
1722 }
1723 
1724 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1725 #pragma	no_inline(rge_chip_peek_reg)
1726 
1727 static void
1728 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1729 {
1730 	uint64_t regval;
1731 	void *regaddr;
1732 
1733 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1734 		(void *)rgep, (void *)ppd));
1735 
1736 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1737 	regval = ppd->pp_acc_data;
1738 
1739 	switch (ppd->pp_acc_size) {
1740 	case 1:
1741 		ddi_put8(rgep->io_handle, regaddr, regval);
1742 		break;
1743 
1744 	case 2:
1745 		ddi_put16(rgep->io_handle, regaddr, regval);
1746 		break;
1747 
1748 	case 4:
1749 		ddi_put32(rgep->io_handle, regaddr, regval);
1750 		break;
1751 
1752 	case 8:
1753 		ddi_put64(rgep->io_handle, regaddr, regval);
1754 		break;
1755 	}
1756 	RGE_PCICHK(rgep);
1757 }
1758 
1759 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1760 #pragma	no_inline(rge_chip_peek_mii)
1761 
1762 static void
1763 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1764 {
1765 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1766 		(void *)rgep, (void *)ppd));
1767 
1768 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1769 }
1770 
1771 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1772 #pragma	no_inline(rge_chip_poke_mii)
1773 
1774 static void
1775 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1776 {
1777 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1778 		(void *)rgep, (void *)ppd));
1779 
1780 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1781 }
1782 
1783 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1784 #pragma	no_inline(rge_chip_peek_mem)
1785 
1786 static void
1787 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1788 {
1789 	uint64_t regval;
1790 	void *vaddr;
1791 
1792 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1793 		(void *)rgep, (void *)ppd));
1794 
1795 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1796 
1797 	switch (ppd->pp_acc_size) {
1798 	case 1:
1799 		regval = *(uint8_t *)vaddr;
1800 		break;
1801 
1802 	case 2:
1803 		regval = *(uint16_t *)vaddr;
1804 		break;
1805 
1806 	case 4:
1807 		regval = *(uint32_t *)vaddr;
1808 		break;
1809 
1810 	case 8:
1811 		regval = *(uint64_t *)vaddr;
1812 		break;
1813 	}
1814 
1815 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1816 		(void *)rgep, (void *)ppd, regval, vaddr));
1817 
1818 	ppd->pp_acc_data = regval;
1819 }
1820 
1821 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1822 #pragma	no_inline(rge_chip_poke_mem)
1823 
1824 static void
1825 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1826 {
1827 	uint64_t regval;
1828 	void *vaddr;
1829 
1830 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1831 		(void *)rgep, (void *)ppd));
1832 
1833 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1834 	regval = ppd->pp_acc_data;
1835 
1836 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1837 		(void *)rgep, (void *)ppd, regval, vaddr));
1838 
1839 	switch (ppd->pp_acc_size) {
1840 	case 1:
1841 		*(uint8_t *)vaddr = (uint8_t)regval;
1842 		break;
1843 
1844 	case 2:
1845 		*(uint16_t *)vaddr = (uint16_t)regval;
1846 		break;
1847 
1848 	case 4:
1849 		*(uint32_t *)vaddr = (uint32_t)regval;
1850 		break;
1851 
1852 	case 8:
1853 		*(uint64_t *)vaddr = (uint64_t)regval;
1854 		break;
1855 	}
1856 }
1857 
1858 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1859 					struct iocblk *iocp);
1860 #pragma	no_inline(rge_pp_ioctl)
1861 
1862 static enum ioc_reply
1863 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1864 {
1865 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1866 	rge_peekpoke_t *ppd;
1867 	dma_area_t *areap;
1868 	uint64_t sizemask;
1869 	uint64_t mem_va;
1870 	uint64_t maxoff;
1871 	boolean_t peek;
1872 
1873 	switch (cmd) {
1874 	default:
1875 		/* NOTREACHED */
1876 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1877 		return (IOC_INVAL);
1878 
1879 	case RGE_PEEK:
1880 		peek = B_TRUE;
1881 		break;
1882 
1883 	case RGE_POKE:
1884 		peek = B_FALSE;
1885 		break;
1886 	}
1887 
1888 	/*
1889 	 * Validate format of ioctl
1890 	 */
1891 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1892 		return (IOC_INVAL);
1893 	if (mp->b_cont == NULL)
1894 		return (IOC_INVAL);
1895 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1896 
1897 	/*
1898 	 * Validate request parameters
1899 	 */
1900 	switch (ppd->pp_acc_space) {
1901 	default:
1902 		return (IOC_INVAL);
1903 
1904 	case RGE_PP_SPACE_CFG:
1905 		/*
1906 		 * Config space
1907 		 */
1908 		sizemask = 8|4|2|1;
1909 		mem_va = 0;
1910 		maxoff = PCI_CONF_HDR_SIZE;
1911 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1912 		break;
1913 
1914 	case RGE_PP_SPACE_REG:
1915 		/*
1916 		 * Memory-mapped I/O space
1917 		 */
1918 		sizemask = 8|4|2|1;
1919 		mem_va = 0;
1920 		maxoff = RGE_REGISTER_MAX;
1921 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1922 		break;
1923 
1924 	case RGE_PP_SPACE_MII:
1925 		/*
1926 		 * PHY's MII registers
1927 		 * NB: all PHY registers are two bytes, but the
1928 		 * addresses increment in ones (word addressing).
1929 		 * So we scale the address here, then undo the
1930 		 * transformation inside the peek/poke functions.
1931 		 */
1932 		ppd->pp_acc_offset *= 2;
1933 		sizemask = 2;
1934 		mem_va = 0;
1935 		maxoff = (MII_MAXREG+1)*2;
1936 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1937 		break;
1938 
1939 	case RGE_PP_SPACE_RGE:
1940 		/*
1941 		 * RGE data structure!
1942 		 */
1943 		sizemask = 8|4|2|1;
1944 		mem_va = (uintptr_t)rgep;
1945 		maxoff = sizeof (*rgep);
1946 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1947 		break;
1948 
1949 	case RGE_PP_SPACE_STATISTICS:
1950 	case RGE_PP_SPACE_TXDESC:
1951 	case RGE_PP_SPACE_TXBUFF:
1952 	case RGE_PP_SPACE_RXDESC:
1953 	case RGE_PP_SPACE_RXBUFF:
1954 		/*
1955 		 * Various DMA_AREAs
1956 		 */
1957 		switch (ppd->pp_acc_space) {
1958 		case RGE_PP_SPACE_TXDESC:
1959 			areap = &rgep->dma_area_txdesc;
1960 			break;
1961 		case RGE_PP_SPACE_RXDESC:
1962 			areap = &rgep->dma_area_rxdesc;
1963 			break;
1964 		case RGE_PP_SPACE_STATISTICS:
1965 			areap = &rgep->dma_area_stats;
1966 			break;
1967 		}
1968 
1969 		sizemask = 8|4|2|1;
1970 		mem_va = (uintptr_t)areap->mem_va;
1971 		maxoff = areap->alength;
1972 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1973 		break;
1974 	}
1975 
1976 	switch (ppd->pp_acc_size) {
1977 	default:
1978 		return (IOC_INVAL);
1979 
1980 	case 8:
1981 	case 4:
1982 	case 2:
1983 	case 1:
1984 		if ((ppd->pp_acc_size & sizemask) == 0)
1985 			return (IOC_INVAL);
1986 		break;
1987 	}
1988 
1989 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1990 		return (IOC_INVAL);
1991 
1992 	if (ppd->pp_acc_offset >= maxoff)
1993 		return (IOC_INVAL);
1994 
1995 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1996 		return (IOC_INVAL);
1997 
1998 	/*
1999 	 * All OK - go do it!
2000 	 */
2001 	ppd->pp_acc_offset += mem_va;
2002 	(*ppfn)(rgep, ppd);
2003 	return (peek ? IOC_REPLY : IOC_ACK);
2004 }
2005 
2006 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2007 					struct iocblk *iocp);
2008 #pragma	no_inline(rge_diag_ioctl)
2009 
2010 static enum ioc_reply
2011 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2012 {
2013 	ASSERT(mutex_owned(rgep->genlock));
2014 
2015 	switch (cmd) {
2016 	default:
2017 		/* NOTREACHED */
2018 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2019 		return (IOC_INVAL);
2020 
2021 	case RGE_DIAG:
2022 		/*
2023 		 * Currently a no-op
2024 		 */
2025 		return (IOC_ACK);
2026 
2027 	case RGE_PEEK:
2028 	case RGE_POKE:
2029 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2030 
2031 	case RGE_PHY_RESET:
2032 		return (IOC_RESTART_ACK);
2033 
2034 	case RGE_SOFT_RESET:
2035 	case RGE_HARD_RESET:
2036 		/*
2037 		 * Reset and reinitialise the 570x hardware
2038 		 */
2039 		rge_restart(rgep);
2040 		return (IOC_ACK);
2041 	}
2042 
2043 	/* NOTREACHED */
2044 }
2045 
2046 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2047 
2048 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2049 				    struct iocblk *iocp);
2050 #pragma	no_inline(rge_mii_ioctl)
2051 
2052 static enum ioc_reply
2053 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2054 {
2055 	struct rge_mii_rw *miirwp;
2056 
2057 	/*
2058 	 * Validate format of ioctl
2059 	 */
2060 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2061 		return (IOC_INVAL);
2062 	if (mp->b_cont == NULL)
2063 		return (IOC_INVAL);
2064 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2065 
2066 	/*
2067 	 * Validate request parameters ...
2068 	 */
2069 	if (miirwp->mii_reg > MII_MAXREG)
2070 		return (IOC_INVAL);
2071 
2072 	switch (cmd) {
2073 	default:
2074 		/* NOTREACHED */
2075 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2076 		return (IOC_INVAL);
2077 
2078 	case RGE_MII_READ:
2079 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2080 		return (IOC_REPLY);
2081 
2082 	case RGE_MII_WRITE:
2083 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2084 		return (IOC_ACK);
2085 	}
2086 
2087 	/* NOTREACHED */
2088 }
2089 
2090 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2091 				struct iocblk *iocp);
2092 #pragma	no_inline(rge_chip_ioctl)
2093 
2094 enum ioc_reply
2095 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2096 {
2097 	int cmd;
2098 
2099 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2100 		(void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2101 
2102 	ASSERT(mutex_owned(rgep->genlock));
2103 
2104 	cmd = iocp->ioc_cmd;
2105 	switch (cmd) {
2106 	default:
2107 		/* NOTREACHED */
2108 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2109 		return (IOC_INVAL);
2110 
2111 	case RGE_DIAG:
2112 	case RGE_PEEK:
2113 	case RGE_POKE:
2114 	case RGE_PHY_RESET:
2115 	case RGE_SOFT_RESET:
2116 	case RGE_HARD_RESET:
2117 #if	RGE_DEBUGGING || RGE_DO_PPIO
2118 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2119 #else
2120 		return (IOC_INVAL);
2121 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2122 
2123 	case RGE_MII_READ:
2124 	case RGE_MII_WRITE:
2125 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2126 
2127 	}
2128 
2129 	/* NOTREACHED */
2130 }
2131