1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains global data and code shared between master and slave parts 30 * of the pseudo-terminal driver. 31 * 32 * Pseudo terminals (or pt's for short) are allocated dynamically. 33 * pt's are put in the global ptms_slots array indexed by minor numbers. 34 * 35 * The slots array is initially small (of the size NPTY_MIN). When more pt's are 36 * needed than the slot array size, the larger slot array is allocated and all 37 * opened pt's move to the new one. 38 * 39 * Resource allocation: 40 * 41 * pt_ttys structures are allocated via pt_ttys_alloc, which uses 42 * kmem_cache_alloc(). 43 * Minor number space is allocated via vmem_alloc() interface. 44 * ptms_slots arrays are allocated via kmem_alloc(). 45 * 46 * Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case 47 * of failure. Also, in anticipation of removing clone device interface to 48 * pseudo-terminal subsystem, minor 0 should not be used. (Potential future 49 * development). 50 * 51 * After the table slot size reaches pt_maxdelta, we stop 2^N extension 52 * algorithm and start extending the slot table size by pt_maxdelta. 53 * 54 * Device entries /dev/pts directory are created dynamically by the 55 * /dev filesystem. We no longer call ddi_create_minor_node() on 56 * behalf of the slave driver. The /dev filesystem creates /dev/pts 57 * nodes based on the pt_ttys array. 58 * 59 * Synchronization: 60 * 61 * All global data synchronization between ptm/pts is done via global 62 * ptms_lock mutex which is implicitly initialized by declaring it global. 63 * 64 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and 65 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex. 66 * 67 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks 68 * which allow reader locks to be reacquired by the same thread (usual 69 * reader/writer locks can't be used for that purpose since it is illegal for 70 * a thread to acquire a lock it already holds, even as a reader). The sole 71 * purpose of these macros is to guarantee that the peer queue will not 72 * disappear (due to closing peer) while it is used. It is safe to use 73 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since 74 * they are not real locks but reference counts). 75 * 76 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave 77 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should 78 * be set to appropriate queues *after* qprocson() is called during open (to 79 * prevent peer from accessing the queue with incomplete plumbing) and set to 80 * NULL before qprocsoff() is called during close. Put and service procedures 81 * use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes. 82 * 83 * The pt_nullmsg field is only used in open/close routines and is also 84 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex 85 * holds. 86 * 87 * Lock Ordering: 88 * 89 * If both ptms_lock and per-pty lock should be held, ptms_lock should always 90 * be entered first, followed by per-pty lock. 91 * 92 * Global functions: 93 * 94 * void ptms_init(void); 95 * 96 * Called by pts/ptm _init entry points. It performes one-time 97 * initialization needed for both pts and ptm. This initialization is done 98 * here and not in ptms_initspace because all these data structures are not 99 * needed if pseudo-terminals are not used in the system. 100 * 101 * struct pt_ttys *pt_ttys_alloc(void); 102 * 103 * Allocate new minor number and pseudo-terminal entry. May sleep. 104 * New minor number is recorded in pt_minor field of the entry returned. 105 * This routine also initializes pt_minor and pt_state fields of the new 106 * pseudo-terminal and puts a pointer to it into ptms_slots array. 107 * 108 * struct pt_ttys *ptms_minor2ptty(minor_t minor) 109 * 110 * Find pt_ttys structure by minor number. 111 * Returns NULL when minor is out of range. 112 * 113 * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid) 114 * 115 * Check if minor refers to an allocated pty in the current zone. 116 * Returns 117 * 0 if not allocated or not for this zone. 118 * 1 if an allocated pty in the current zone. 119 * Also returns owner of pty. 120 * 121 * int ptms_minor_exists(minor_t minor) 122 * Check if minor refers to an allocated pty (in any zone) 123 * Returns 124 * 0 if not an allocated pty 125 * 1 if an allocated pty 126 * 127 * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid) 128 * 129 * Sets the owner associated with a pty. 130 * 131 * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear); 132 * 133 * Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not 134 * set) free pt entry and corresponding slot. 135 * 136 * Tuneables and configuration: 137 * 138 * pt_cnt: minimum number of pseudo-terminals in the system. The system 139 * should provide at least this number of ptys (provided sufficient 140 * memory is available). It is different from the older semantics 141 * of pt_cnt meaning maximum number of ptys. 142 * Set to 0 by default. 143 * 144 * pt_max_pty: Maximum number of pseudo-terminals in the system. The system 145 * should not allocate more ptys than pt_max_pty (although, it may 146 * impose stricter maximum). Zero value means no user-defined 147 * maximum. This is intended to be used as "denial-of-service" 148 * protection. 149 * Set to 0 by default. 150 * 151 * Both pt_cnt and pt_max_pty may be modified during system lifetime 152 * with their semantics preserved. 153 * 154 * pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL. 155 * 156 * pt_ptyofmem: Approximate percentage of system memory that may be 157 * occupied by pty data structures. Initially set to NPTY_PERCENT. 158 * This variable is used once during initialization to estimate 159 * maximum number of ptys in the system. The actual maximum is 160 * determined as minimum of pt_max_pty and calculated value. 161 * 162 * pt_maxdelta: Maximum extension chunk of the slot table. 163 */ 164 165 166 167 #include <sys/types.h> 168 #include <sys/param.h> 169 #include <sys/termios.h> 170 #include <sys/stream.h> 171 #include <sys/stropts.h> 172 #include <sys/kmem.h> 173 #include <sys/ptms.h> 174 #include <sys/stat.h> 175 #include <sys/sunddi.h> 176 #include <sys/ddi.h> 177 #include <sys/bitmap.h> 178 #include <sys/sysmacros.h> 179 #include <sys/ddi_impldefs.h> 180 #include <sys/zone.h> 181 #ifdef DEBUG 182 #include <sys/strlog.h> 183 #endif 184 185 186 /* Initial number of ptms slots */ 187 #define NPTY_INITIAL 16 188 189 #define NPTY_PERCENT 5 190 191 /* Maximum increment of the slot table size */ 192 #define PTY_MAXDELTA 128 193 194 /* 195 * Tuneable variables. 196 */ 197 uint_t pt_cnt = 0; /* Minimum number of ptys */ 198 size_t pt_max_pty = 0; /* Maximum number of ptys */ 199 uint_t pt_init_cnt = NPTY_INITIAL; /* Initial number of ptms slots */ 200 uint_t pt_pctofmem = NPTY_PERCENT; /* Percent of memory to use for ptys */ 201 uint_t pt_maxdelta = PTY_MAXDELTA; /* Max increment for slot table size */ 202 203 /* Other global variables */ 204 205 kmutex_t ptms_lock; /* Global data access lock */ 206 207 /* 208 * Slot array and its management variables 209 */ 210 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */ 211 static size_t ptms_nslots = 0; /* Size of slot array */ 212 static size_t ptms_ptymax = 0; /* Maximum number of ptys */ 213 static size_t ptms_inuse = 0; /* # of ptys currently allocated */ 214 215 dev_info_t *pts_dip = NULL; /* set if slave is attached */ 216 217 static struct kmem_cache *ptms_cache = NULL; /* pty cache */ 218 219 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */ 220 221 static uint_t ptms_roundup(uint_t); 222 static int ptms_constructor(void *, void *, int); 223 static void ptms_destructor(void *, void *); 224 static minor_t ptms_grow(void); 225 226 /* 227 * Total size occupied by one pty. Each pty master/slave pair consumes one 228 * pointer for ptms_slots array, one pt_ttys structure and one empty message 229 * preallocated for pts close. 230 */ 231 232 #define PTY_SIZE (sizeof (struct pt_ttys) + \ 233 sizeof (struct pt_ttys *) + \ 234 sizeof (dblk_t)) 235 236 #ifdef DEBUG 237 int ptms_debug = 0; 238 #define PTMOD_ID 5 239 #endif 240 241 /* 242 * Clear all bits of x except the highest bit 243 */ 244 #define truncate(x) ((x) <= 2 ? (x) : (1 << (highbit(x) - 1))) 245 246 /* 247 * Roundup the number to the nearest power of 2 248 */ 249 static uint_t 250 ptms_roundup(uint_t x) 251 { 252 uint_t p = truncate(x); /* x with non-high bits stripped */ 253 254 /* 255 * If x is a power of 2, return x, otherwise roundup. 256 */ 257 return (p == x ? p : (p * 2)); 258 } 259 260 /* 261 * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is 262 * only called once during system lifetime. Called from ptm or pts _init 263 * routine. 264 */ 265 void 266 ptms_init(void) 267 { 268 mutex_enter(&ptms_lock); 269 270 if (ptms_slots == NULL) { 271 ptms_slots = kmem_zalloc(pt_init_cnt * 272 sizeof (struct pt_ttys *), KM_SLEEP); 273 274 ptms_cache = kmem_cache_create("pty_map", 275 sizeof (struct pt_ttys), 0, ptms_constructor, 276 ptms_destructor, NULL, NULL, NULL, 0); 277 278 ptms_nslots = pt_init_cnt; 279 280 /* Allocate integer space for minor numbers */ 281 ptms_minor_arena = vmem_create("ptms_minor", (void *)1, 282 ptms_nslots, 1, NULL, NULL, NULL, 0, 283 VM_SLEEP | VMC_IDENTIFIER); 284 285 /* 286 * Calculate available number of ptys - how many ptys can we 287 * allocate in pt_pctofmem % of available memory. The value is 288 * rounded up to the nearest power of 2. 289 */ 290 ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) / 291 (100 * PTY_SIZE)); 292 } 293 mutex_exit(&ptms_lock); 294 } 295 296 /* 297 * This routine attaches the pts dip. 298 */ 299 int 300 ptms_attach_slave(void) 301 { 302 if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL) 303 return (-1); 304 305 ASSERT(pts_dip); 306 return (0); 307 } 308 309 /* 310 * Called from /dev fs. Checks if dip is attached, 311 * and if it is, returns its major number. 312 */ 313 major_t 314 ptms_slave_attached(void) 315 { 316 major_t maj = (major_t)-1; 317 318 mutex_enter(&ptms_lock); 319 if (pts_dip) 320 maj = ddi_driver_major(pts_dip); 321 mutex_exit(&ptms_lock); 322 323 return (maj); 324 } 325 326 /* 327 * Allocate new minor number and pseudo-terminal entry. Returns the new entry or 328 * NULL if no memory or maximum number of entries reached. 329 */ 330 struct pt_ttys * 331 pt_ttys_alloc(void) 332 { 333 minor_t dminor; 334 struct pt_ttys *pt = NULL; 335 336 mutex_enter(&ptms_lock); 337 338 /* 339 * Always try to allocate new pty when pt_cnt minimum limit is not 340 * achieved. If it is achieved, the maximum is determined by either 341 * user-specified value (if it is non-zero) or our memory estimations - 342 * whatever is less. 343 */ 344 if (ptms_inuse >= pt_cnt) { 345 /* 346 * When system achieved required minimum of ptys, check for the 347 * denial of service limits. 348 * 349 * Since pt_max_pty may be zero, the formula below is used to 350 * avoid conditional expression. It will equal to pt_max_pty if 351 * it is not zero and ptms_ptymax otherwise. 352 */ 353 size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty); 354 355 /* Do not try to allocate more than allowed */ 356 if (ptms_inuse >= min(ptms_ptymax, user_max)) { 357 mutex_exit(&ptms_lock); 358 return (NULL); 359 } 360 } 361 ptms_inuse++; 362 363 /* 364 * Allocate new minor number. If this fails, all slots are busy and 365 * we need to grow the hash. 366 */ 367 dminor = (minor_t)(uintptr_t) 368 vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP); 369 370 if (dminor == 0) { 371 /* Grow the cache and retry allocation */ 372 dminor = ptms_grow(); 373 } 374 375 if (dminor == 0) { 376 /* Not enough memory now */ 377 ptms_inuse--; 378 mutex_exit(&ptms_lock); 379 return (NULL); 380 } 381 382 pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP); 383 if (pt == NULL) { 384 /* Not enough memory - this entry can't be used now. */ 385 vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1); 386 ptms_inuse--; 387 } else { 388 pt->pt_minor = dminor; 389 pt->pt_pid = curproc->p_pid; /* For debugging */ 390 pt->pt_state = (PTMOPEN | PTLOCK); 391 pt->pt_zoneid = getzoneid(); 392 pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */ 393 pt->pt_rgid = 0; 394 ASSERT(ptms_slots[dminor - 1] == NULL); 395 ptms_slots[dminor - 1] = pt; 396 } 397 398 mutex_exit(&ptms_lock); 399 return (pt); 400 } 401 402 /* 403 * Get pt_ttys structure by minor number. 404 * Returns NULL when minor is out of range. 405 */ 406 struct pt_ttys * 407 ptms_minor2ptty(minor_t dminor) 408 { 409 struct pt_ttys *pt = NULL; 410 411 ASSERT(mutex_owned(&ptms_lock)); 412 if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL) 413 pt = ptms_slots[dminor - 1]; 414 415 return (pt); 416 } 417 418 /* 419 * Invoked in response to chown on /dev/pts nodes to change the 420 * permission on a pty 421 */ 422 void 423 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid) 424 { 425 struct pt_ttys *pt; 426 427 ASSERT(ruid >= 0); 428 ASSERT(rgid >= 0); 429 430 if (ruid < 0 || rgid < 0) 431 return; 432 433 /* 434 * /dev/pts/0 is not used, but some applications may check it. There 435 * is no pty backing it - so we have nothing to do. 436 */ 437 if (dminor == 0) 438 return; 439 440 mutex_enter(&ptms_lock); 441 pt = ptms_minor2ptty(dminor); 442 if (pt != NULL && pt->pt_zoneid == getzoneid()) { 443 pt->pt_ruid = ruid; 444 pt->pt_rgid = rgid; 445 } 446 mutex_exit(&ptms_lock); 447 } 448 449 /* 450 * Given a ptm/pts minor number 451 * returns: 452 * 1 if the pty is allocated to the current zone. 453 * 0 otherwise 454 * 455 * If the pty is allocated to the current zone, it also returns the owner. 456 */ 457 int 458 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid) 459 { 460 struct pt_ttys *pt; 461 int ret; 462 463 ASSERT(ruid); 464 ASSERT(rgid); 465 466 *ruid = -1; 467 *rgid = -1; 468 469 /* 470 * /dev/pts/0 is not used, but some applications may check it, so create 471 * it also. Report the owner as root. It belongs to all zones. 472 */ 473 if (dminor == 0) { 474 *ruid = 0; 475 *rgid = 0; 476 return (1); 477 } 478 479 ret = 0; 480 mutex_enter(&ptms_lock); 481 pt = ptms_minor2ptty(dminor); 482 if (pt != NULL) { 483 ASSERT(pt->pt_ruid >= 0); 484 ASSERT(pt->pt_rgid >= 0); 485 if (pt->pt_zoneid == getzoneid()) { 486 ret = 1; 487 *ruid = pt->pt_ruid; 488 *rgid = pt->pt_rgid; 489 } 490 } 491 mutex_exit(&ptms_lock); 492 493 return (ret); 494 } 495 496 /* 497 * Given a ptm/pts minor number 498 * returns: 499 * 0 if the pty is not allocated 500 * 1 if the pty is allocated 501 */ 502 int 503 ptms_minor_exists(minor_t dminor) 504 { 505 int ret; 506 507 mutex_enter(&ptms_lock); 508 ret = ptms_minor2ptty(dminor) ? 1 : 0; 509 mutex_exit(&ptms_lock); 510 511 return (ret); 512 } 513 514 /* 515 * Close the pt and clear flags_to_clear. 516 * If pt device is not opened by someone else, free it and clear its slot. 517 */ 518 void 519 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear) 520 { 521 uint_t flags; 522 523 ASSERT(MUTEX_NOT_HELD(&ptms_lock)); 524 ASSERT(pt != NULL); 525 526 mutex_enter(&ptms_lock); 527 528 mutex_enter(&pt->pt_lock); 529 pt->pt_state &= ~flags_to_clear; 530 flags = pt->pt_state; 531 mutex_exit(&pt->pt_lock); 532 533 if (! (flags & (PTMOPEN | PTSOPEN))) { 534 /* No one owns the entry - free it */ 535 536 ASSERT(pt->ptm_rdq == NULL); 537 ASSERT(pt->pts_rdq == NULL); 538 ASSERT(pt->pt_nullmsg == NULL); 539 ASSERT(pt->pt_refcnt == 0); 540 ASSERT(pt->pt_minor <= ptms_nslots); 541 ASSERT(ptms_slots[pt->pt_minor - 1] == pt); 542 ASSERT(ptms_inuse > 0); 543 544 ptms_inuse--; 545 546 pt->pt_pid = 0; 547 548 ptms_slots[pt->pt_minor - 1] = NULL; 549 /* Return minor number to the pool of minors */ 550 vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1); 551 /* Return pt to the cache */ 552 kmem_cache_free(ptms_cache, pt); 553 } 554 mutex_exit(&ptms_lock); 555 } 556 557 /* 558 * Allocate another slot table twice as large as the original one (limited to 559 * global maximum). Migrate all pt to the new slot table and free the original 560 * one. Create more /devices entries for new devices. 561 */ 562 static minor_t 563 ptms_grow() 564 { 565 minor_t old_size = ptms_nslots; 566 minor_t delta = MIN(pt_maxdelta, old_size); 567 minor_t new_size = old_size + delta; 568 struct pt_ttys **ptms_old = ptms_slots; 569 struct pt_ttys **ptms_new; 570 void *vaddr; /* vmem_add return value */ 571 572 ASSERT(MUTEX_HELD(&ptms_lock)); 573 574 DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse); 575 576 /* Allocate new ptms array */ 577 ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *), 578 KM_NOSLEEP); 579 if (ptms_new == NULL) 580 return ((minor_t)0); 581 582 /* Increase clone index space */ 583 vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1), 584 new_size - old_size, VM_NOSLEEP); 585 586 if (vaddr == NULL) { 587 kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *)); 588 return ((minor_t)0); 589 } 590 591 /* Migrate pt entries to a new location */ 592 ptms_nslots = new_size; 593 bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *)); 594 ptms_slots = ptms_new; 595 kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *)); 596 597 /* Allocate minor number and return it */ 598 return ((minor_t)(uintptr_t) 599 vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP)); 600 } 601 602 /*ARGSUSED*/ 603 static int 604 ptms_constructor(void *maddr, void *arg, int kmflags) 605 { 606 struct pt_ttys *pt = maddr; 607 608 pt->pts_rdq = NULL; 609 pt->ptm_rdq = NULL; 610 pt->pt_nullmsg = NULL; 611 pt->pt_pid = NULL; 612 pt->pt_minor = NULL; 613 pt->pt_refcnt = 0; 614 pt->pt_state = 0; 615 pt->pt_zoneid = GLOBAL_ZONEID; 616 617 cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL); 618 mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL); 619 return (0); 620 } 621 622 /*ARGSUSED*/ 623 static void 624 ptms_destructor(void *maddr, void *arg) 625 { 626 struct pt_ttys *pt = maddr; 627 628 ASSERT(pt->pt_refcnt == 0); 629 ASSERT(pt->pt_state == 0); 630 ASSERT(pt->ptm_rdq == NULL); 631 ASSERT(pt->pts_rdq == NULL); 632 633 mutex_destroy(&pt->pt_lock); 634 cv_destroy(&pt->pt_cv); 635 } 636 637 #ifdef DEBUG 638 void 639 ptms_log(char *str, uint_t arg) 640 { 641 if (ptms_debug) { 642 if (ptms_debug & 2) 643 cmn_err(CE_CONT, str, arg); 644 if (ptms_debug & 4) 645 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR, 646 str, arg); 647 else 648 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg); 649 } 650 } 651 652 void 653 ptms_logp(char *str, uintptr_t arg) 654 { 655 if (ptms_debug) { 656 if (ptms_debug & 2) 657 cmn_err(CE_CONT, str, arg); 658 if (ptms_debug & 4) 659 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR, 660 str, arg); 661 else 662 (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg); 663 } 664 } 665 #endif 666