xref: /titanic_41/usr/src/uts/common/io/ptm.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Pseudo Terminal Master Driver.
34  *
35  * The pseudo-tty subsystem simulates a terminal connection, where the master
36  * side represents the terminal and the slave represents the user process's
37  * special device end point. The master device is set up as a cloned device
38  * where its major device number is the major for the clone device and its minor
39  * device number is the major for the ptm driver. There are no nodes in the file
40  * system for master devices. The master pseudo driver is opened using the
41  * open(2) system call with /dev/ptmx as the device parameter.  The clone open
42  * finds the next available minor device for the ptm major device.
43  *
44  * A master device is available only if it and its corresponding slave device
45  * are not already open. When the master device is opened, the corresponding
46  * slave device is automatically locked out. Only one open is allowed on a
47  * master device.  Multiple opens are allowed on the slave device.  After both
48  * the master and slave have been opened, the user has two file descriptors
49  * which are the end points of a full duplex connection composed of two streams
50  * which are automatically connected at the master and slave drivers. The user
51  * may then push modules onto either side of the stream pair.
52  *
53  * The master and slave drivers pass all messages to their adjacent queues.
54  * Only the M_FLUSH needs some processing.  Because the read queue of one side
55  * is connected to the write queue of the other, the FLUSHR flag is changed to
56  * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
57  * message is sent to the slave device which will render the device
58  * unusable. The process on the slave side gets the EIO when attempting to write
59  * on that stream but it will be able to read any data remaining on the stream
60  * head read queue.  When all the data has been read, read() returns 0
61  * indicating that the stream can no longer be used.  On the last close of the
62  * slave device, a 0-length message is sent to the master device. When the
63  * application on the master side issues a read() or getmsg() and 0 is returned,
64  * the user of the master device decides whether to issue a close() that
65  * dismantles the pseudo-terminal subsystem. If the master device is not closed,
66  * the pseudo-tty subsystem will be available to another user to open the slave
67  * device.
68  *
69  * If O_NONBLOCK or O_NDELAY is set, read on the master side returns -1 with
70  * errno set to EAGAIN if no data is available, and write returns -1 with errno
71  * set to EAGAIN if there is internal flow control.
72  *
73  * IOCTLS:
74  *
75  *  ISPTM: determines whether the file descriptor is that of an open master
76  *	   device. Return code of zero indicates that the file descriptor
77  *	   represents master device.
78  *
79  *  UNLKPT: unlocks the master and slave devices.  It returns 0 on success. On
80  *	    failure, the errno is set to EINVAL indicating that the master
81  *	    device is not open.
82  *
83  *  ZONEPT: sets the zone membership of ths associated pts device.
84  *
85  * Synchronization:
86  *
87  *   All global data synchronization between ptm/pts is done via global
88  *   ptms_lock mutex which is initialized at system boot time from
89  *   ptms_initspace (called from space.c).
90  *
91  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
92  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
93  *
94  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
95  *   which allow reader locks to be reacquired by the same thread (usual
96  *   reader/writer locks can't be used for that purpose since it is illegal for
97  *   a thread to acquire a lock it already holds, even as a reader). The sole
98  *   purpose of these macros is to guarantee that the peer queue will not
99  *   disappear (due to closing peer) while it is used. It is safe to use
100  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
101  *   they are not real locks but reference counts).
102  *
103  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
104  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
105  *   be set to appropriate queues *after* qprocson() is called during open (to
106  *   prevent peer from accessing the queue with incomplete plumbing) and set to
107  *   NULL before qprocsoff() is called during close.
108  *
109  *   The pt_nullmsg field is only used in open/close routines and it is also
110  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
111  *   holds.
112  *
113  * Lock Ordering:
114  *
115  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
116  *   be entered first, followed by per-pty lock.
117  *
118  * See ptms.h, pts.c and ptms_conf.c for more information.
119  */
120 
121 #include <sys/types.h>
122 #include <sys/param.h>
123 #include <sys/file.h>
124 #include <sys/sysmacros.h>
125 #include <sys/stream.h>
126 #include <sys/stropts.h>
127 #include <sys/proc.h>
128 #include <sys/errno.h>
129 #include <sys/debug.h>
130 #include <sys/cmn_err.h>
131 #include <sys/ptms.h>
132 #include <sys/stat.h>
133 #include <sys/strsun.h>
134 #include <sys/systm.h>
135 #include <sys/modctl.h>
136 #include <sys/conf.h>
137 #include <sys/ddi.h>
138 #include <sys/sunddi.h>
139 #include <sys/zone.h>
140 
141 #ifdef DEBUG
142 int ptm_debug = 0;
143 #define	DBG(a)	 if (ptm_debug) cmn_err(CE_NOTE, a)
144 #else
145 #define	DBG(a)
146 #endif
147 
148 static int ptmopen(queue_t *, dev_t *, int, int, cred_t *);
149 static int ptmclose(queue_t *, int, cred_t *);
150 static void ptmwput(queue_t *, mblk_t *);
151 static void ptmrsrv(queue_t *);
152 static void ptmwsrv(queue_t *);
153 
154 /*
155  * Master Stream Pseudo Terminal Module: stream data structure definitions
156  */
157 
158 static struct module_info ptm_info = {
159 	0xdead,
160 	"ptm",
161 	0,
162 	512,
163 	512,
164 	128
165 };
166 
167 static struct qinit ptmrint = {
168 	NULL,
169 	(int (*)()) ptmrsrv,
170 	ptmopen,
171 	ptmclose,
172 	NULL,
173 	&ptm_info,
174 	NULL
175 };
176 
177 static struct qinit ptmwint = {
178 	(int (*)()) ptmwput,
179 	(int (*)()) ptmwsrv,
180 	NULL,
181 	NULL,
182 	NULL,
183 	&ptm_info,
184 	NULL
185 };
186 
187 static struct streamtab ptminfo = {
188 	&ptmrint,
189 	&ptmwint,
190 	NULL,
191 	NULL
192 };
193 
194 static int ptm_attach(dev_info_t *, ddi_attach_cmd_t);
195 static int ptm_detach(dev_info_t *, ddi_detach_cmd_t);
196 static int ptm_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
197 
198 static dev_info_t	*ptm_dip;		/* private devinfo pointer */
199 
200 /*
201  * this will define (struct cb_ops cb_ptm_ops) and (struct dev_ops ptm_ops)
202  */
203 DDI_DEFINE_STREAM_OPS(ptm_ops, nulldev, nulldev, ptm_attach, ptm_detach,
204     nodev, ptm_devinfo, D_MP, &ptminfo);
205 
206 /*
207  * Module linkage information for the kernel.
208  */
209 
210 static struct modldrv modldrv = {
211 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
212 	"Master streams driver 'ptm' %I%",
213 	&ptm_ops,	/* driver ops */
214 };
215 
216 static struct modlinkage modlinkage = {
217 	MODREV_1,
218 	&modldrv,
219 	NULL
220 };
221 
222 int
223 _init(void)
224 {
225 	int rc;
226 
227 	if ((rc = mod_install(&modlinkage)) == 0)
228 		ptms_init();
229 	return (rc);
230 }
231 
232 int
233 _fini(void)
234 {
235 	return (mod_remove(&modlinkage));
236 }
237 
238 int
239 _info(struct modinfo *modinfop)
240 {
241 	return (mod_info(&modlinkage, modinfop));
242 }
243 
244 static int
245 ptm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
246 {
247 	if (cmd != DDI_ATTACH)
248 		return (DDI_FAILURE);
249 
250 	if (ddi_create_minor_node(devi, "ptmajor", S_IFCHR,
251 	    0, DDI_PSEUDO, NULL) == DDI_FAILURE) {
252 		ddi_remove_minor_node(devi, NULL);
253 		return (DDI_FAILURE);
254 	}
255 	if (ddi_create_minor_node(devi, "ptmx", S_IFCHR,
256 	    0, DDI_PSEUDO, CLONE_DEV) == DDI_FAILURE) {
257 		ddi_remove_minor_node(devi, NULL);
258 		return (DDI_FAILURE);
259 	}
260 	ptm_dip = devi;
261 
262 	return (DDI_SUCCESS);
263 }
264 
265 static int
266 ptm_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
267 {
268 	if (cmd != DDI_DETACH)
269 		return (DDI_FAILURE);
270 
271 	ddi_remove_minor_node(devi, NULL);
272 	return (DDI_SUCCESS);
273 }
274 
275 /*ARGSUSED*/
276 static int
277 ptm_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
278     void **result)
279 {
280 	int error;
281 
282 	switch (infocmd) {
283 	case DDI_INFO_DEVT2DEVINFO:
284 		if (ptm_dip == NULL) {
285 			error = DDI_FAILURE;
286 		} else {
287 			*result = (void *)ptm_dip;
288 			error = DDI_SUCCESS;
289 		}
290 		break;
291 	case DDI_INFO_DEVT2INSTANCE:
292 		*result = (void *)0;
293 		error = DDI_SUCCESS;
294 		break;
295 	default:
296 		error = DDI_FAILURE;
297 	}
298 	return (error);
299 }
300 
301 
302 /* ARGSUSED */
303 /*
304  * Open a minor of the master device. Store the write queue pointer and set the
305  * pt_state field to (PTMOPEN | PTLOCK).
306  * This code will work properly with both clone opens and direct opens of the
307  * master device.
308  */
309 static int
310 ptmopen(
311 	queue_t *rqp,		/* pointer to the read side queue */
312 	dev_t   *devp,		/* pointer to stream tail's dev */
313 	int	oflag,		/* the user open(2) supplied flags */
314 	int	sflag,		/* open state flag */
315 	cred_t  *credp)		/* credentials */
316 {
317 	extern dev_info_t *pts_dip;
318 
319 	struct pt_ttys	*ptmp;
320 	mblk_t		*mop;		/* ptr to a setopts message block */
321 	struct stroptions *sop;
322 	minor_t		dminor = getminor(*devp);
323 
324 	/* Allow reopen */
325 	if (rqp->q_ptr != NULL)
326 		return (0);
327 
328 	if (sflag & MODOPEN)
329 		return (ENXIO);
330 
331 	if (!(sflag & CLONEOPEN) && dminor != 0) {
332 		/*
333 		 * This is a direct open to specific master device through an
334 		 * artificially created entry with specific minor in
335 		 * /dev/directory. Such behavior is not supported.
336 		 */
337 		return (ENXIO);
338 	}
339 
340 	/*
341 	 * pts dependency: pt_ttys_alloc(), used below, really needs the pts
342 	 * driver (and pts_dip variable) to be initialized to successfully
343 	 * create device nodes.
344 	 */
345 	if (pts_dip == NULL)
346 		(void) i_ddi_attach_pseudo_node("pts");
347 
348 	mop = allocb(sizeof (struct stroptions), BPRI_MED);
349 	if (mop == NULL) {
350 		DDBG("ptmopen(): mop allocation failed\n", 0);
351 		return (ENOMEM);
352 	}
353 
354 	if ((ptmp = pt_ttys_alloc()) == NULL) {
355 		DDBG("ptmopen(): pty allocation failed\n", 0);
356 		freemsg(mop);
357 		return (ENOMEM);
358 	}
359 
360 	dminor = ptmp->pt_minor;
361 
362 	DDBGP("ptmopen(): allocated ptmp %p\n", (uintptr_t)ptmp);
363 	DDBG("ptmopen(): allocated minor %d\n", dminor);
364 
365 	WR(rqp)->q_ptr = rqp->q_ptr = ptmp;
366 
367 	qprocson(rqp);
368 
369 	/* Allow slave to send messages to master */
370 	PT_ENTER_WRITE(ptmp);
371 	ptmp->ptm_rdq = rqp;
372 	PT_EXIT_WRITE(ptmp);
373 
374 	/*
375 	 * set up hi/lo water marks on stream head read queue
376 	 * and add controlling tty if not set
377 	 */
378 	mop->b_datap->db_type = M_SETOPTS;
379 	mop->b_wptr += sizeof (struct stroptions);
380 	sop = (struct stroptions *)mop->b_rptr;
381 	if (oflag & FNOCTTY)
382 		sop->so_flags = SO_HIWAT | SO_LOWAT;
383 	else
384 		sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
385 	sop->so_hiwat = 512;
386 	sop->so_lowat = 256;
387 	putnext(rqp, mop);
388 
389 	/*
390 	 * The input, devp, is a major device number, the output is put
391 	 * into the same parm as a major,minor pair.
392 	 */
393 	*devp = makedevice(getmajor(*devp), dminor);
394 
395 	return (0);
396 }
397 
398 
399 /*
400  * Find the address to private data identifying the slave's write queue.
401  * Send a hang-up message up the slave's read queue to designate the
402  * master/slave pair is tearing down. Uattach the master and slave by
403  * nulling out the write queue fields in the private data structure.
404  * Finally, unlock the master/slave pair and mark the master as closed.
405  */
406 /*ARGSUSED1*/
407 static int
408 ptmclose(queue_t *rqp, int flag, cred_t *credp)
409 {
410 	struct pt_ttys	*ptmp;
411 	queue_t *pts_rdq;
412 
413 	ASSERT(rqp->q_ptr);
414 
415 	ptmp = (struct pt_ttys *)rqp->q_ptr;
416 	PT_ENTER_READ(ptmp);
417 	if (ptmp->pts_rdq) {
418 		pts_rdq = ptmp->pts_rdq;
419 		if (pts_rdq->q_next) {
420 			DBG(("send hangup message to slave\n"));
421 			(void) putnextctl(pts_rdq, M_HANGUP);
422 		}
423 	}
424 	PT_EXIT_READ(ptmp);
425 	/*
426 	 * ptm_rdq should be cleared before call to qprocsoff() to prevent pts
427 	 * write procedure to attempt using ptm_rdq after qprocsoff.
428 	 */
429 	PT_ENTER_WRITE(ptmp);
430 	ptmp->ptm_rdq = NULL;
431 	freemsg(ptmp->pt_nullmsg);
432 	ptmp->pt_nullmsg = NULL;
433 	/*
434 	 * qenable slave side write queue so that it can flush
435 	 * its messages as master's read queue is going away
436 	 */
437 	if (ptmp->pts_rdq)
438 		qenable(WR(ptmp->pts_rdq));
439 	PT_EXIT_WRITE(ptmp);
440 
441 	qprocsoff(rqp);
442 
443 	/* Finish the close */
444 	rqp->q_ptr = NULL;
445 	WR(rqp)->q_ptr = NULL;
446 
447 	ptms_close(ptmp, PTMOPEN | PTLOCK);
448 
449 	return (0);
450 }
451 
452 /*
453  * The wput procedure will only handle ioctl and flush messages.
454  */
455 static void
456 ptmwput(queue_t *qp, mblk_t *mp)
457 {
458 	struct pt_ttys	*ptmp;
459 	struct iocblk	*iocp;
460 
461 	DBG(("entering ptmwput\n"));
462 	ASSERT(qp->q_ptr);
463 
464 	ptmp = (struct pt_ttys *)qp->q_ptr;
465 	PT_ENTER_READ(ptmp);
466 
467 	switch (mp->b_datap->db_type) {
468 	/*
469 	 * if write queue request, flush master's write
470 	 * queue and send FLUSHR up slave side. If read
471 	 * queue request, convert to FLUSHW and putnext().
472 	 */
473 	case M_FLUSH:
474 		{
475 			unsigned char flush_flg = 0;
476 
477 			DBG(("ptm got flush request\n"));
478 			if (*mp->b_rptr & FLUSHW) {
479 				DBG(("got FLUSHW, flush ptm write Q\n"));
480 				if (*mp->b_rptr & FLUSHBAND)
481 					/*
482 					 * if it is a FLUSHBAND, do flushband.
483 					 */
484 					flushband(qp, *(mp->b_rptr + 1),
485 					    FLUSHDATA);
486 				else
487 					flushq(qp, FLUSHDATA);
488 				flush_flg = (*mp->b_rptr & ~FLUSHW) | FLUSHR;
489 			}
490 			if (*mp->b_rptr & FLUSHR) {
491 				DBG(("got FLUSHR, set FLUSHW\n"));
492 				flush_flg |= (*mp->b_rptr & ~FLUSHR) | FLUSHW;
493 			}
494 			if (flush_flg != 0 && ptmp->pts_rdq &&
495 			    !(ptmp->pt_state & PTLOCK)) {
496 				DBG(("putnext to pts\n"));
497 				*mp->b_rptr = flush_flg;
498 				putnext(ptmp->pts_rdq, mp);
499 			} else
500 				freemsg(mp);
501 			break;
502 		}
503 
504 	case M_IOCTL:
505 		iocp = (struct iocblk *)mp->b_rptr;
506 		switch (iocp->ioc_cmd) {
507 		default:
508 			if ((ptmp->pt_state & PTLOCK) ||
509 			    (ptmp->pts_rdq == NULL)) {
510 				DBG(("got M_IOCTL but no slave\n"));
511 				miocnak(qp, mp, 0, EINVAL);
512 				PT_EXIT_READ(ptmp);
513 				return;
514 			}
515 			(void) putq(qp, mp);
516 			break;
517 		case UNLKPT:
518 			mutex_enter(&ptmp->pt_lock);
519 			ptmp->pt_state &= ~PTLOCK;
520 			mutex_exit(&ptmp->pt_lock);
521 			/*FALLTHROUGH*/
522 		case ISPTM:
523 			DBG(("ack the UNLKPT/ISPTM\n"));
524 			miocack(qp, mp, 0, 0);
525 			break;
526 		case ZONEPT:
527 		{
528 			zoneid_t z;
529 			int error;
530 
531 			if ((error = drv_priv(iocp->ioc_cr)) != 0) {
532 				miocnak(qp, mp, 0, error);
533 				break;
534 			}
535 			if ((error = miocpullup(mp, sizeof (zoneid_t))) != 0) {
536 				miocnak(qp, mp, 0, error);
537 				break;
538 			}
539 			z = *((zoneid_t *)mp->b_cont->b_rptr);
540 			if (z < MIN_ZONEID || z > MAX_ZONEID) {
541 				miocnak(qp, mp, 0, EINVAL);
542 				break;
543 			}
544 
545 			mutex_enter(&ptmp->pt_lock);
546 			ptmp->pt_zoneid = z;
547 			mutex_exit(&ptmp->pt_lock);
548 			miocack(qp, mp, 0, 0);
549 			break;
550 		}
551 		}
552 		break;
553 
554 	case M_READ:
555 		/* Caused by ldterm - can not pass to slave */
556 		freemsg(mp);
557 		break;
558 
559 	/*
560 	 * send other messages to slave
561 	 */
562 	default:
563 		if ((ptmp->pt_state  & PTLOCK) || (ptmp->pts_rdq == NULL)) {
564 			DBG(("got msg. but no slave\n"));
565 			mp = mexchange(NULL, mp, 2, M_ERROR, -1);
566 			if (mp != NULL) {
567 				mp->b_rptr[0] = NOERROR;
568 				mp->b_rptr[1] = EINVAL;
569 				qreply(qp, mp);
570 			}
571 			PT_EXIT_READ(ptmp);
572 			return;
573 		}
574 		DBG(("put msg on master's write queue\n"));
575 		(void) putq(qp, mp);
576 		break;
577 	}
578 	DBG(("return from ptmwput()\n"));
579 	PT_EXIT_READ(ptmp);
580 }
581 
582 
583 /*
584  * enable the write side of the slave. This triggers the
585  * slave to send any messages queued on its write side to
586  * the read side of this master.
587  */
588 static void
589 ptmrsrv(queue_t *qp)
590 {
591 	struct pt_ttys	*ptmp;
592 
593 	DBG(("entering ptmrsrv\n"));
594 	ASSERT(qp->q_ptr);
595 
596 	ptmp = (struct pt_ttys *)qp->q_ptr;
597 	PT_ENTER_READ(ptmp);
598 	if (ptmp->pts_rdq) {
599 		qenable(WR(ptmp->pts_rdq));
600 	}
601 	PT_EXIT_READ(ptmp);
602 	DBG(("leaving ptmrsrv\n"));
603 }
604 
605 
606 /*
607  * If there are messages on this queue that can be sent to
608  * slave, send them via putnext(). Else, if queued messages
609  * cannot be sent, leave them on this queue. If priority
610  * messages on this queue, send them to slave no matter what.
611  */
612 static void
613 ptmwsrv(queue_t *qp)
614 {
615 	struct pt_ttys	*ptmp;
616 	mblk_t 		*mp;
617 
618 	DBG(("entering ptmwsrv\n"));
619 	ASSERT(qp->q_ptr);
620 
621 	ptmp = (struct pt_ttys *)qp->q_ptr;
622 	PT_ENTER_READ(ptmp);
623 	if ((ptmp->pt_state  & PTLOCK) || (ptmp->pts_rdq == NULL)) {
624 		DBG(("in master write srv proc but no slave\n"));
625 		/*
626 		 * Free messages on the write queue and send
627 		 * NAK for any M_IOCTL type messages to wakeup
628 		 * the user process waiting for ACK/NAK from
629 		 * the ioctl invocation
630 		 */
631 		while ((mp = getq(qp)) != NULL) {
632 			if (mp->b_datap->db_type == M_IOCTL)
633 				miocnak(qp, mp, 0, EINVAL);
634 			else
635 				freemsg(mp);
636 		}
637 		flushq(qp, FLUSHALL);
638 
639 		mp = mexchange(NULL, NULL, 2, M_ERROR, -1);
640 		if (mp != NULL) {
641 			mp->b_rptr[0] = NOERROR;
642 			mp->b_rptr[1] = EINVAL;
643 			qreply(qp, mp);
644 		}
645 		PT_EXIT_READ(ptmp);
646 		return;
647 	}
648 	/*
649 	 * while there are messages on this write queue...
650 	 */
651 	while ((mp = getq(qp)) != NULL) {
652 		/*
653 		 * if don't have control message and cannot put
654 		 * msg. on slave's read queue, put it back on
655 		 * this queue.
656 		 */
657 		if (mp->b_datap->db_type <= QPCTL &&
658 		    !bcanputnext(ptmp->pts_rdq, mp->b_band)) {
659 			DBG(("put msg. back on queue\n"));
660 			(void) putbq(qp, mp);
661 			break;
662 		}
663 		/*
664 		 * else send the message up slave's stream
665 		 */
666 		DBG(("send message to slave\n"));
667 		putnext(ptmp->pts_rdq, mp);
668 	}
669 	DBG(("leaving ptmwsrv\n"));
670 	PT_EXIT_READ(ptmp);
671 }
672