xref: /titanic_41/usr/src/uts/common/io/nge/nge_chip.c (revision dd49f125507979bb2ab505a8daf2a46d1be27051)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "nge.h"
28 static uint32_t	nge_watchdog_count	= 1 << 5;
29 static uint32_t	nge_watchdog_check	= 1 << 3;
30 extern boolean_t nge_enable_msi;
31 static void nge_sync_mac_modes(nge_t *);
32 
33 #undef NGE_DBG
34 #define	NGE_DBG		NGE_DBG_CHIP
35 
36 /*
37  * Operating register get/set access routines
38  */
39 uint8_t nge_reg_get8(nge_t *ngep, nge_regno_t regno);
40 #pragma	inline(nge_reg_get8)
41 
42 uint8_t
43 nge_reg_get8(nge_t *ngep, nge_regno_t regno)
44 {
45 	NGE_TRACE(("nge_reg_get8($%p, 0x%lx)", (void *)ngep, regno));
46 
47 	return (ddi_get8(ngep->io_handle, PIO_ADDR(ngep, regno)));
48 }
49 
50 void nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data);
51 #pragma	inline(nge_reg_put8)
52 
53 void
54 nge_reg_put8(nge_t *ngep, nge_regno_t regno, uint8_t data)
55 {
56 	NGE_TRACE(("nge_reg_put8($%p, 0x%lx, 0x%x)",
57 	    (void *)ngep, regno, data));
58 	ddi_put8(ngep->io_handle, PIO_ADDR(ngep, regno), data);
59 
60 }
61 
62 uint16_t nge_reg_get16(nge_t *ngep, nge_regno_t regno);
63 #pragma	inline(nge_reg_get16)
64 
65 uint16_t
66 nge_reg_get16(nge_t *ngep, nge_regno_t regno)
67 {
68 	NGE_TRACE(("nge_reg_get16($%p, 0x%lx)", (void *)ngep, regno));
69 	return (ddi_get16(ngep->io_handle, PIO_ADDR(ngep, regno)));
70 }
71 
72 void nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data);
73 #pragma	inline(nge_reg_put16)
74 
75 void
76 nge_reg_put16(nge_t *ngep, nge_regno_t regno, uint16_t data)
77 {
78 	NGE_TRACE(("nge_reg_put16($%p, 0x%lx, 0x%x)",
79 	    (void *)ngep, regno, data));
80 	ddi_put16(ngep->io_handle, PIO_ADDR(ngep, regno), data);
81 
82 }
83 
84 uint32_t nge_reg_get32(nge_t *ngep, nge_regno_t regno);
85 #pragma	inline(nge_reg_get32)
86 
87 uint32_t
88 nge_reg_get32(nge_t *ngep, nge_regno_t regno)
89 {
90 	NGE_TRACE(("nge_reg_get32($%p, 0x%lx)", (void *)ngep, regno));
91 	return (ddi_get32(ngep->io_handle, PIO_ADDR(ngep, regno)));
92 }
93 
94 void nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data);
95 #pragma	inline(nge_reg_put32)
96 
97 void
98 nge_reg_put32(nge_t *ngep, nge_regno_t regno, uint32_t data)
99 {
100 	NGE_TRACE(("nge_reg_put32($%p, 0x%lx, 0x%x)",
101 	    (void *)ngep, regno, data));
102 	ddi_put32(ngep->io_handle, PIO_ADDR(ngep, regno), data);
103 
104 }
105 
106 
107 static int nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
108 #pragma	no_inline(nge_chip_peek_cfg)
109 
110 static int
111 nge_chip_peek_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
112 {
113 	int err;
114 	uint64_t regval;
115 	uint64_t regno;
116 
117 	NGE_TRACE(("nge_chip_peek_cfg($%p, $%p)",
118 	    (void *)ngep, (void *)ppd));
119 
120 	err = DDI_SUCCESS;
121 	regno = ppd->pp_acc_offset;
122 
123 	switch (ppd->pp_acc_size) {
124 	case 1:
125 		regval = pci_config_get8(ngep->cfg_handle, regno);
126 		break;
127 
128 	case 2:
129 		regval = pci_config_get16(ngep->cfg_handle, regno);
130 		break;
131 
132 	case 4:
133 		regval = pci_config_get32(ngep->cfg_handle, regno);
134 		break;
135 
136 	case 8:
137 		regval = pci_config_get64(ngep->cfg_handle, regno);
138 		break;
139 	}
140 	ppd->pp_acc_data = regval;
141 	return (err);
142 }
143 
144 static int nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd);
145 
146 static int
147 nge_chip_poke_cfg(nge_t *ngep, nge_peekpoke_t *ppd)
148 {
149 	int err;
150 	uint64_t regval;
151 	uint64_t regno;
152 
153 	NGE_TRACE(("nge_chip_poke_cfg($%p, $%p)",
154 	    (void *)ngep, (void *)ppd));
155 
156 	err = DDI_SUCCESS;
157 	regno = ppd->pp_acc_offset;
158 	regval = ppd->pp_acc_data;
159 
160 	switch (ppd->pp_acc_size) {
161 	case 1:
162 		pci_config_put8(ngep->cfg_handle, regno, regval);
163 		break;
164 
165 	case 2:
166 		pci_config_put16(ngep->cfg_handle, regno, regval);
167 		break;
168 
169 	case 4:
170 		pci_config_put32(ngep->cfg_handle, regno, regval);
171 		break;
172 
173 	case 8:
174 		pci_config_put64(ngep->cfg_handle, regno, regval);
175 		break;
176 	}
177 
178 	return (err);
179 
180 }
181 
182 static int nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd);
183 
184 static int
185 nge_chip_peek_reg(nge_t *ngep, nge_peekpoke_t *ppd)
186 {
187 	int err;
188 	uint64_t regval;
189 	void *regaddr;
190 
191 	NGE_TRACE(("nge_chip_peek_reg($%p, $%p)",
192 	    (void *)ngep, (void *)ppd));
193 
194 	err = DDI_SUCCESS;
195 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
196 
197 	switch (ppd->pp_acc_size) {
198 	case 1:
199 		regval = ddi_get8(ngep->io_handle, regaddr);
200 	break;
201 
202 	case 2:
203 		regval = ddi_get16(ngep->io_handle, regaddr);
204 	break;
205 
206 	case 4:
207 		regval = ddi_get32(ngep->io_handle, regaddr);
208 	break;
209 
210 	case 8:
211 		regval = ddi_get64(ngep->io_handle, regaddr);
212 	break;
213 
214 	default:
215 		regval = 0x0ull;
216 	break;
217 	}
218 	ppd->pp_acc_data = regval;
219 	return (err);
220 }
221 
222 static int nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd);
223 
224 static int
225 nge_chip_poke_reg(nge_t *ngep, nge_peekpoke_t *ppd)
226 {
227 	int err;
228 	uint64_t regval;
229 	void *regaddr;
230 
231 	NGE_TRACE(("nge_chip_poke_reg($%p, $%p)",
232 	    (void *)ngep, (void *)ppd));
233 
234 	err = DDI_SUCCESS;
235 	regaddr = PIO_ADDR(ngep, ppd->pp_acc_offset);
236 	regval = ppd->pp_acc_data;
237 
238 	switch (ppd->pp_acc_size) {
239 	case 1:
240 		ddi_put8(ngep->io_handle, regaddr, regval);
241 		break;
242 
243 	case 2:
244 		ddi_put16(ngep->io_handle, regaddr, regval);
245 		break;
246 
247 	case 4:
248 		ddi_put32(ngep->io_handle, regaddr, regval);
249 		break;
250 
251 	case 8:
252 		ddi_put64(ngep->io_handle, regaddr, regval);
253 		break;
254 	}
255 	return (err);
256 }
257 
258 static int nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd);
259 #pragma	no_inline(nge_chip_peek_mii)
260 
261 static int
262 nge_chip_peek_mii(nge_t *ngep, nge_peekpoke_t *ppd)
263 {
264 	int err;
265 
266 	err = DDI_SUCCESS;
267 	ppd->pp_acc_data = nge_mii_get16(ngep, ppd->pp_acc_offset/2);
268 	return (err);
269 }
270 
271 static int nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd);
272 #pragma	no_inline(nge_chip_poke_mii)
273 
274 static int
275 nge_chip_poke_mii(nge_t *ngep, nge_peekpoke_t *ppd)
276 {
277 	int err;
278 	err = DDI_SUCCESS;
279 	nge_mii_put16(ngep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
280 	return (err);
281 }
282 
283 /*
284  * Basic SEEPROM get/set access routine
285  *
286  * This uses the chip's SEEPROM auto-access method, controlled by the
287  * Serial EEPROM Address/Data Registers at 0x504h, so the CPU
288  * doesn't have to fiddle with the individual bits.
289  *
290  * The caller should hold <genlock> and *also* have already acquired
291  * the right to access the SEEPROM.
292  *
293  * Return value:
294  *	0 on success,
295  *	ENODATA on access timeout (maybe retryable: device may just be busy)
296  *	EPROTO on other h/w or s/w errors.
297  *
298  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
299  * from a (successful) SEEPROM_ACCESS_READ.
300  */
301 
302 static int
303 nge_seeprom_access(nge_t *ngep, uint32_t cmd, nge_regno_t addr, uint16_t *dp)
304 {
305 	uint32_t tries;
306 	nge_ep_cmd cmd_reg;
307 	nge_ep_data data_reg;
308 
309 	NGE_TRACE(("nge_seeprom_access($%p, %d, %x, $%p)",
310 	    (void *)ngep, cmd, addr, (void *)dp));
311 
312 	ASSERT(mutex_owned(ngep->genlock));
313 
314 	/*
315 	 * Check there's no command in progress.
316 	 *
317 	 * Note: this *shouldn't* ever find that there is a command
318 	 * in progress, because we already hold the <genlock> mutex.
319 	 * Also, to ensure we don't have a conflict with the chip's
320 	 * internal firmware or a process accessing the same (shared)
321 	 * So this is just a final consistency check: we shouldn't
322 	 * see EITHER the START bit (command started but not complete)
323 	 * OR the COMPLETE bit (command completed but not cleared).
324 	 */
325 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
326 	for (tries = 0; tries < 30; tries++) {
327 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
328 			break;
329 		drv_usecwait(10);
330 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
331 	}
332 
333 	/*
334 	 * This should not happen. If so, we have to restart eeprom
335 	 *  state machine
336 	 */
337 	if (tries == 30) {
338 		cmd_reg.cmd_bits.sts = SEEPROM_READY;
339 		nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
340 		drv_usecwait(10);
341 		/*
342 		 * Polling the status bit to make assure the eeprom is ready
343 		 */
344 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
345 		for (tries = 0; tries < 30; tries++) {
346 			if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
347 				break;
348 			drv_usecwait(10);
349 			cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
350 		}
351 	}
352 
353 	/*
354 	 * Assemble the command ...
355 	 */
356 	cmd_reg.cmd_bits.addr = (uint32_t)addr;
357 	cmd_reg.cmd_bits.cmd = cmd;
358 	cmd_reg.cmd_bits.sts = 0;
359 
360 	nge_reg_put32(ngep, NGE_EP_CMD, cmd_reg.cmd_val);
361 
362 	/*
363 	 * Polling whether the access is successful.
364 	 *
365 	 */
366 	cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
367 	for (tries = 0; tries < 30; tries++) {
368 		if (cmd_reg.cmd_bits.sts == SEEPROM_READY)
369 			break;
370 		drv_usecwait(10);
371 		cmd_reg.cmd_val = nge_reg_get32(ngep, NGE_EP_CMD);
372 	}
373 
374 	if (tries == 30) {
375 		nge_report(ngep, NGE_HW_ROM);
376 		return (DDI_FAILURE);
377 	}
378 	switch (cmd) {
379 	default:
380 	case SEEPROM_CMD_WRITE_ENABLE:
381 	case SEEPROM_CMD_ERASE:
382 	case SEEPROM_CMD_ERALSE_ALL:
383 	case SEEPROM_CMD_WRITE_DIS:
384 	break;
385 
386 	case SEEPROM_CMD_READ:
387 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
388 		*dp = data_reg.data_bits.data;
389 	break;
390 
391 	case SEEPROM_CMD_WRITE:
392 		data_reg.data_val = nge_reg_get32(ngep, NGE_EP_DATA);
393 		data_reg.data_bits.data = *dp;
394 		nge_reg_put32(ngep, NGE_EP_DATA, data_reg.data_val);
395 	break;
396 	}
397 
398 	return (DDI_SUCCESS);
399 }
400 
401 
402 static int
403 nge_chip_peek_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
404 {
405 	uint16_t data;
406 	int err;
407 
408 	err = nge_seeprom_access(ngep, SEEPROM_CMD_READ,
409 	    ppd->pp_acc_offset, &data);
410 	ppd->pp_acc_data =  data;
411 	return (err);
412 }
413 
414 static int
415 nge_chip_poke_seeprom(nge_t *ngep, nge_peekpoke_t *ppd)
416 {
417 	uint16_t data;
418 	int err;
419 
420 	data = ppd->pp_acc_data;
421 	err = nge_seeprom_access(ngep, SEEPROM_CMD_WRITE,
422 	    ppd->pp_acc_offset, &data);
423 	return (err);
424 }
425 
426 void
427 nge_init_dev_spec_param(nge_t *ngep)
428 {
429 	nge_dev_spec_param_t	*dev_param_p;
430 	chip_info_t	*infop;
431 
432 	dev_param_p = &ngep->dev_spec_param;
433 	infop = (chip_info_t *)&ngep->chipinfo;
434 
435 	switch (infop->device) {
436 	case DEVICE_ID_NF3_E6:
437 	case DEVICE_ID_NF3_DF:
438 	case DEVICE_ID_MCP04_37:
439 	case DEVICE_ID_MCP04_38:
440 		dev_param_p->msi = B_FALSE;
441 		dev_param_p->msi_x = B_FALSE;
442 		dev_param_p->vlan = B_FALSE;
443 		dev_param_p->advanced_pm = B_FALSE;
444 		dev_param_p->mac_addr_order = B_FALSE;
445 		dev_param_p->tx_pause_frame = B_FALSE;
446 		dev_param_p->rx_pause_frame = B_FALSE;
447 		dev_param_p->jumbo = B_FALSE;
448 		dev_param_p->tx_rx_64byte = B_FALSE;
449 		dev_param_p->rx_hw_checksum = B_FALSE;
450 		dev_param_p->tx_hw_checksum = 0;
451 		dev_param_p->desc_type = DESC_OFFLOAD;
452 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
453 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
454 		dev_param_p->nge_split = NGE_SPLIT_32;
455 		break;
456 
457 	case DEVICE_ID_CK804_56:
458 	case DEVICE_ID_CK804_57:
459 		dev_param_p->msi = B_TRUE;
460 		dev_param_p->msi_x = B_TRUE;
461 		dev_param_p->vlan = B_FALSE;
462 		dev_param_p->advanced_pm = B_FALSE;
463 		dev_param_p->mac_addr_order = B_FALSE;
464 		dev_param_p->tx_pause_frame = B_FALSE;
465 		dev_param_p->rx_pause_frame = B_TRUE;
466 		dev_param_p->jumbo = B_TRUE;
467 		dev_param_p->tx_rx_64byte = B_FALSE;
468 		dev_param_p->rx_hw_checksum = B_TRUE;
469 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
470 		dev_param_p->desc_type = DESC_HOT;
471 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
472 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
473 		dev_param_p->nge_split = NGE_SPLIT_96;
474 		break;
475 
476 	case DEVICE_ID_MCP51_268:
477 	case DEVICE_ID_MCP51_269:
478 		dev_param_p->msi = B_FALSE;
479 		dev_param_p->msi_x = B_FALSE;
480 		dev_param_p->vlan = B_FALSE;
481 		dev_param_p->advanced_pm = B_TRUE;
482 		dev_param_p->mac_addr_order = B_FALSE;
483 		dev_param_p->tx_pause_frame = B_FALSE;
484 		dev_param_p->rx_pause_frame = B_FALSE;
485 		dev_param_p->jumbo = B_FALSE;
486 		dev_param_p->tx_rx_64byte = B_TRUE;
487 		dev_param_p->rx_hw_checksum = B_FALSE;
488 		dev_param_p->tx_hw_checksum = 0;
489 		dev_param_p->desc_type = DESC_OFFLOAD;
490 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
491 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
492 		dev_param_p->nge_split = NGE_SPLIT_32;
493 		break;
494 
495 	case DEVICE_ID_MCP55_372:
496 	case DEVICE_ID_MCP55_373:
497 		dev_param_p->msi = B_TRUE;
498 		dev_param_p->msi_x = B_TRUE;
499 		dev_param_p->vlan = B_TRUE;
500 		dev_param_p->advanced_pm = B_TRUE;
501 		dev_param_p->mac_addr_order = B_FALSE;
502 		dev_param_p->tx_pause_frame = B_TRUE;
503 		dev_param_p->rx_pause_frame = B_TRUE;
504 		dev_param_p->jumbo = B_TRUE;
505 		dev_param_p->tx_rx_64byte = B_TRUE;
506 		dev_param_p->rx_hw_checksum = B_TRUE;
507 		dev_param_p->tx_hw_checksum = HCKSUM_IPHDRCKSUM;
508 		dev_param_p->desc_type = DESC_HOT;
509 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_3072;
510 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_3072;
511 		dev_param_p->nge_split = NGE_SPLIT_96;
512 		break;
513 
514 	case DEVICE_ID_MCP61_3EE:
515 	case DEVICE_ID_MCP61_3EF:
516 		dev_param_p->msi = B_FALSE;
517 		dev_param_p->msi_x = B_FALSE;
518 		dev_param_p->vlan = B_FALSE;
519 		dev_param_p->advanced_pm = B_TRUE;
520 		dev_param_p->mac_addr_order = B_TRUE;
521 		dev_param_p->tx_pause_frame = B_FALSE;
522 		dev_param_p->rx_pause_frame = B_FALSE;
523 		dev_param_p->jumbo = B_FALSE;
524 		dev_param_p->tx_rx_64byte = B_TRUE;
525 		dev_param_p->rx_hw_checksum = B_FALSE;
526 		dev_param_p->tx_hw_checksum = 0;
527 		dev_param_p->desc_type = DESC_OFFLOAD;
528 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
529 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
530 		dev_param_p->nge_split = NGE_SPLIT_32;
531 		break;
532 
533 	case DEVICE_ID_MCP77_760:
534 	case DEVICE_ID_MCP79_AB0:
535 		dev_param_p->msi = B_FALSE;
536 		dev_param_p->msi_x = B_FALSE;
537 		dev_param_p->vlan = B_FALSE;
538 		dev_param_p->advanced_pm = B_TRUE;
539 		dev_param_p->mac_addr_order = B_TRUE;
540 		dev_param_p->tx_pause_frame = B_FALSE;
541 		dev_param_p->rx_pause_frame = B_FALSE;
542 		dev_param_p->jumbo = B_FALSE;
543 		dev_param_p->tx_rx_64byte = B_TRUE;
544 		dev_param_p->rx_hw_checksum = B_FALSE;
545 		dev_param_p->tx_hw_checksum = 0;
546 		dev_param_p->desc_type = DESC_HOT;
547 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
548 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
549 		dev_param_p->nge_split = NGE_SPLIT_32;
550 		break;
551 
552 	default:
553 		dev_param_p->msi = B_FALSE;
554 		dev_param_p->msi_x = B_FALSE;
555 		dev_param_p->vlan = B_FALSE;
556 		dev_param_p->advanced_pm = B_FALSE;
557 		dev_param_p->mac_addr_order = B_FALSE;
558 		dev_param_p->tx_pause_frame = B_FALSE;
559 		dev_param_p->rx_pause_frame = B_FALSE;
560 		dev_param_p->jumbo = B_FALSE;
561 		dev_param_p->tx_rx_64byte = B_FALSE;
562 		dev_param_p->rx_hw_checksum = B_FALSE;
563 		dev_param_p->tx_hw_checksum = 0;
564 		dev_param_p->desc_type = DESC_OFFLOAD;
565 		dev_param_p->rx_desc_num = NGE_RECV_SLOTS_DESC_1024;
566 		dev_param_p->tx_desc_num = NGE_SEND_SLOTS_DESC_1024;
567 		dev_param_p->nge_split = NGE_SPLIT_32;
568 		return;
569 	}
570 }
571 /*
572  * Perform first-stage chip (re-)initialisation, using only config-space
573  * accesses:
574  *
575  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
576  *   returning the data in the structure pointed to by <infop>.
577  */
578 void nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset);
579 #pragma	no_inline(nge_chip_cfg_init)
580 
581 void
582 nge_chip_cfg_init(nge_t *ngep, chip_info_t *infop, boolean_t reset)
583 {
584 	uint16_t command;
585 	ddi_acc_handle_t handle;
586 	nge_interbus_conf interbus_conf;
587 	nge_msi_mask_conf msi_mask_conf;
588 	nge_msi_map_cap_conf cap_conf;
589 
590 	NGE_TRACE(("nge_chip_cfg_init($%p, $%p, %d)",
591 	    (void *)ngep, (void *)infop, reset));
592 
593 	/*
594 	 * save PCI cache line size and subsystem vendor ID
595 	 *
596 	 * Read all the config-space registers that characterise the
597 	 * chip, specifically vendor/device/revision/subsystem vendor
598 	 * and subsystem device id.  We expect (but don't check) that
599 	 */
600 	handle = ngep->cfg_handle;
601 	/* reading the vendor information once */
602 	if (reset == B_FALSE) {
603 		infop->command = pci_config_get16(handle,
604 		    PCI_CONF_COMM);
605 		infop->vendor = pci_config_get16(handle,
606 		    PCI_CONF_VENID);
607 		infop->device = pci_config_get16(handle,
608 		    PCI_CONF_DEVID);
609 		infop->subven = pci_config_get16(handle,
610 		    PCI_CONF_SUBVENID);
611 		infop->subdev = pci_config_get16(handle,
612 		    PCI_CONF_SUBSYSID);
613 		infop->class_code = pci_config_get8(handle,
614 		    PCI_CONF_BASCLASS);
615 		infop->revision = pci_config_get8(handle,
616 		    PCI_CONF_REVID);
617 		infop->clsize = pci_config_get8(handle,
618 		    PCI_CONF_CACHE_LINESZ);
619 		infop->latency = pci_config_get8(handle,
620 		    PCI_CONF_LATENCY_TIMER);
621 	}
622 	if (nge_enable_msi) {
623 		/* Disable the hidden for MSI support */
624 		interbus_conf.conf_val = pci_config_get32(handle,
625 		    PCI_CONF_HT_INTERNAL);
626 		if ((infop->device == DEVICE_ID_MCP55_373) ||
627 		    (infop->device == DEVICE_ID_MCP55_372))
628 			interbus_conf.conf_bits.msix_off = NGE_SET;
629 		interbus_conf.conf_bits.msi_off = NGE_CLEAR;
630 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
631 		    interbus_conf.conf_val);
632 
633 		if ((infop->device == DEVICE_ID_MCP55_373) ||
634 		    (infop->device == DEVICE_ID_MCP55_372)) {
635 
636 			/* Disable the vector off for mcp55 */
637 			msi_mask_conf.msi_mask_conf_val =
638 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MASK);
639 			msi_mask_conf.msi_mask_bits.vec0_off = NGE_CLEAR;
640 			msi_mask_conf.msi_mask_bits.vec1_off = NGE_CLEAR;
641 			msi_mask_conf.msi_mask_bits.vec2_off = NGE_CLEAR;
642 			msi_mask_conf.msi_mask_bits.vec3_off = NGE_CLEAR;
643 			msi_mask_conf.msi_mask_bits.vec4_off = NGE_CLEAR;
644 			msi_mask_conf.msi_mask_bits.vec5_off = NGE_CLEAR;
645 			msi_mask_conf.msi_mask_bits.vec6_off = NGE_CLEAR;
646 			msi_mask_conf.msi_mask_bits.vec7_off = NGE_CLEAR;
647 			pci_config_put32(handle, PCI_CONF_HT_MSI_MASK,
648 			    msi_mask_conf.msi_mask_conf_val);
649 
650 			/* Enable the MSI mapping */
651 			cap_conf.msi_map_cap_conf_val =
652 			    pci_config_get32(handle, PCI_CONF_HT_MSI_MAP_CAP);
653 			cap_conf.map_cap_conf_bits.map_en = NGE_SET;
654 			pci_config_put32(handle, PCI_CONF_HT_MSI_MAP_CAP,
655 			    cap_conf.msi_map_cap_conf_val);
656 		}
657 	} else {
658 		interbus_conf.conf_val = pci_config_get32(handle,
659 		    PCI_CONF_HT_INTERNAL);
660 		interbus_conf.conf_bits.msi_off = NGE_SET;
661 		pci_config_put32(handle, PCI_CONF_HT_INTERNAL,
662 		    interbus_conf.conf_val);
663 	}
664 	command = infop->command | PCI_COMM_MAE;
665 	command &= ~PCI_COMM_MEMWR_INVAL;
666 	command |= PCI_COMM_ME;
667 	pci_config_put16(handle, PCI_CONF_COMM, command);
668 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
669 
670 }
671 
672 int
673 nge_chip_stop(nge_t *ngep, boolean_t fault)
674 {
675 	int err;
676 	uint32_t reg_val;
677 	uint32_t	tries;
678 	nge_mintr_src mintr_src;
679 	nge_mii_cs mii_cs;
680 	nge_rx_poll rx_poll;
681 	nge_tx_poll tx_poll;
682 	nge_rx_en rx_en;
683 	nge_tx_en tx_en;
684 	nge_tx_sta tx_sta;
685 	nge_rx_sta rx_sta;
686 	nge_mode_cntl mode;
687 	nge_pmu_cntl2 pmu_cntl2;
688 
689 	NGE_TRACE(("nge_chip_stop($%p, %d)", (void *)ngep, fault));
690 
691 	err = DDI_SUCCESS;
692 
693 	/* Clear any pending PHY interrupt */
694 	mintr_src.src_val = nge_reg_get8(ngep, NGE_MINTR_SRC);
695 	nge_reg_put8(ngep, NGE_MINTR_SRC, mintr_src.src_val);
696 
697 	/* Mask all interrupts */
698 	reg_val = nge_reg_get32(ngep, NGE_INTR_MASK);
699 	reg_val &= ~NGE_INTR_ALL_EN;
700 	nge_reg_put32(ngep, NGE_INTR_MASK, reg_val);
701 
702 	/* Disable auto-polling of phy */
703 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
704 	mii_cs.cs_bits.ap_en = NGE_CLEAR;
705 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
706 
707 	/* Reset buffer management & DMA */
708 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
709 	mode.mode_bits.dma_dis = NGE_SET;
710 	mode.mode_bits.desc_type = ngep->desc_mode;
711 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
712 
713 	for (tries = 0; tries < 10000; tries++) {
714 		drv_usecwait(10);
715 		mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
716 		if (mode.mode_bits.dma_status == NGE_SET)
717 			break;
718 	}
719 	if (tries == 10000) {
720 		ngep->nge_chip_state = NGE_CHIP_ERROR;
721 		return (DDI_FAILURE);
722 	}
723 
724 	/* Disable rx's machine */
725 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
726 	rx_en.bits.rx_en = NGE_CLEAR;
727 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
728 
729 	/* Disable tx's machine */
730 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
731 	tx_en.bits.tx_en = NGE_CLEAR;
732 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
733 
734 	/*
735 	 * Clean the status of tx's state machine
736 	 * and Make assure the tx's channel is idle
737 	 */
738 	tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
739 	for (tries = 0; tries < 1000; tries++) {
740 		if (tx_sta.sta_bits.tx_chan_sta == NGE_CLEAR)
741 			break;
742 		drv_usecwait(10);
743 		tx_sta.sta_val = nge_reg_get32(ngep, NGE_TX_STA);
744 	}
745 	if (tries == 1000) {
746 		ngep->nge_chip_state = NGE_CHIP_ERROR;
747 		return (DDI_FAILURE);
748 	}
749 	nge_reg_put32(ngep, NGE_TX_STA,  tx_sta.sta_val);
750 
751 	/*
752 	 * Clean the status of rx's state machine
753 	 * and Make assure the tx's channel is idle
754 	 */
755 	rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
756 	for (tries = 0; tries < 1000; tries++) {
757 		if (rx_sta.sta_bits.rx_chan_sta == NGE_CLEAR)
758 			break;
759 		drv_usecwait(10);
760 		rx_sta.sta_val = nge_reg_get32(ngep, NGE_RX_STA);
761 	}
762 	if (tries == 1000) {
763 		ngep->nge_chip_state = NGE_CHIP_ERROR;
764 		return (DDI_FAILURE);
765 	}
766 	nge_reg_put32(ngep, NGE_RX_STA, rx_sta.sta_val);
767 
768 	/* Disable auto-poll of rx's state machine */
769 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
770 	rx_poll.poll_bits.rpen = NGE_CLEAR;
771 	rx_poll.poll_bits.rpi = NGE_CLEAR;
772 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
773 
774 	/* Disable auto-polling of tx's  state machine */
775 	tx_poll.poll_val = nge_reg_get32(ngep, NGE_TX_POLL);
776 	tx_poll.poll_bits.tpen = NGE_CLEAR;
777 	tx_poll.poll_bits.tpi = NGE_CLEAR;
778 	nge_reg_put32(ngep, NGE_TX_POLL, tx_poll.poll_val);
779 
780 	/* Restore buffer management */
781 	mode.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
782 	mode.mode_bits.bm_reset = NGE_SET;
783 	mode.mode_bits.tx_rcom_en = NGE_SET;
784 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode.mode_val);
785 
786 	if (ngep->dev_spec_param.advanced_pm) {
787 
788 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT, 0);
789 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT, 0);
790 
791 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
792 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_CLEAR;
793 		pmu_cntl2.cntl2_bits.didle_timer = NGE_CLEAR;
794 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
795 	}
796 	if (fault)
797 		ngep->nge_chip_state = NGE_CHIP_FAULT;
798 	else
799 		ngep->nge_chip_state = NGE_CHIP_STOPPED;
800 
801 	return (err);
802 }
803 
804 static void
805 nge_rx_setup(nge_t *ngep)
806 {
807 	uint64_t desc_addr;
808 	nge_rxtx_dlen dlen;
809 	nge_rx_poll rx_poll;
810 
811 	/*
812 	 * Filling the address and length of rx's descriptors
813 	 */
814 	desc_addr = ngep->recv->desc.cookie.dmac_laddress;
815 	nge_reg_put32(ngep, NGE_RX_DADR, desc_addr);
816 	nge_reg_put32(ngep, NGE_RX_DADR_HI, desc_addr >> 32);
817 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
818 	dlen.dlen_bits.rdlen = ngep->recv->desc.nslots - 1;
819 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
820 
821 	rx_poll.poll_val = nge_reg_get32(ngep, NGE_RX_POLL);
822 	rx_poll.poll_bits.rpi = RX_POLL_INTV_1G;
823 	rx_poll.poll_bits.rpen = NGE_SET;
824 	nge_reg_put32(ngep, NGE_RX_POLL, rx_poll.poll_val);
825 }
826 
827 static void
828 nge_tx_setup(nge_t *ngep)
829 {
830 	uint64_t desc_addr;
831 	nge_rxtx_dlen dlen;
832 
833 	/*
834 	 * Filling the address and length of tx's descriptors
835 	 */
836 	desc_addr = ngep->send->desc.cookie.dmac_laddress;
837 	nge_reg_put32(ngep, NGE_TX_DADR, desc_addr);
838 	nge_reg_put32(ngep, NGE_TX_DADR_HI, desc_addr >> 32);
839 	dlen.dlen_val = nge_reg_get32(ngep, NGE_RXTX_DLEN);
840 	dlen.dlen_bits.tdlen = ngep->send->desc.nslots - 1;
841 	nge_reg_put32(ngep, NGE_RXTX_DLEN, dlen.dlen_val);
842 }
843 
844 static int
845 nge_buff_setup(nge_t *ngep)
846 {
847 	nge_mode_cntl mode_cntl;
848 	nge_dev_spec_param_t	*dev_param_p;
849 
850 	dev_param_p = &ngep->dev_spec_param;
851 
852 	/*
853 	 * Configure Rx&Tx's buffer
854 	 */
855 	nge_rx_setup(ngep);
856 	nge_tx_setup(ngep);
857 
858 	/*
859 	 * Configure buffer attribute
860 	 */
861 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
862 
863 	/*
864 	 * Enable Dma access request
865 	 */
866 	mode_cntl.mode_bits.dma_dis = NGE_CLEAR;
867 
868 	/*
869 	 * Enbale Buffer management
870 	 */
871 	mode_cntl.mode_bits.bm_reset = NGE_CLEAR;
872 
873 	/*
874 	 * Support Standoffload Descriptor
875 	 */
876 	mode_cntl.mode_bits.desc_type = ngep->desc_mode;
877 
878 	/*
879 	 * Support receive hardware checksum
880 	 */
881 	if (dev_param_p->rx_hw_checksum) {
882 		mode_cntl.mode_bits.rx_sum_en = NGE_SET;
883 	} else
884 		mode_cntl.mode_bits.rx_sum_en = NGE_CLEAR;
885 
886 	/*
887 	 * Disable Tx PRD coarse update
888 	 */
889 	mode_cntl.mode_bits.tx_prd_cu_en = NGE_CLEAR;
890 
891 	/*
892 	 * Disable 64-byte access
893 	 */
894 	mode_cntl.mode_bits.w64_dis = NGE_SET;
895 
896 	/*
897 	 * Skip Rx Error Frame is not supported and if
898 	 * enable it, jumbo frame does not work any more.
899 	 */
900 	mode_cntl.mode_bits.rx_filter_en = NGE_CLEAR;
901 
902 	/*
903 	 * Can not support hot mode now
904 	 */
905 	mode_cntl.mode_bits.resv15 = NGE_CLEAR;
906 
907 	if (dev_param_p->vlan) {
908 		/* Disable the vlan strip for devices which support vlan */
909 		mode_cntl.mode_bits.vlan_strip = NGE_CLEAR;
910 
911 		/* Disable the vlan insert for devices which supprot vlan */
912 		mode_cntl.mode_bits.vlan_ins = NGE_CLEAR;
913 	}
914 
915 	if (dev_param_p->tx_rx_64byte) {
916 
917 		/* Set the maximum TX PRD fetch size to 64 bytes */
918 		mode_cntl.mode_bits.tx_fetch_prd = NGE_SET;
919 
920 		/* Set the maximum RX PRD fetch size to 64 bytes */
921 		mode_cntl.mode_bits.rx_fetch_prd = NGE_SET;
922 	}
923 	/*
924 	 * Upload Rx data as it arrives, rather than waiting for full frame
925 	 */
926 	mode_cntl.mode_bits.resv16 = NGE_CLEAR;
927 
928 	/*
929 	 * Normal HOT table accesses
930 	 */
931 	mode_cntl.mode_bits.resv17 = NGE_CLEAR;
932 
933 	/*
934 	 * Normal HOT buffer requesting
935 	 */
936 	mode_cntl.mode_bits.resv18 = NGE_CLEAR;
937 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
938 
939 	/*
940 	 * Signal controller to check for new Rx descriptors
941 	 */
942 	mode_cntl.mode_val = nge_reg_get32(ngep, NGE_MODE_CNTL);
943 	mode_cntl.mode_bits.rxdm = NGE_SET;
944 	mode_cntl.mode_bits.tx_rcom_en = NGE_SET;
945 	nge_reg_put32(ngep, NGE_MODE_CNTL, mode_cntl.mode_val);
946 
947 
948 	return (DDI_SUCCESS);
949 }
950 
951 /*
952  * When chipset resets, the chipset can not restore  the orignial
953  * mac address to the mac address registers.
954  *
955  * When the driver is dettached, the function will write the orignial
956  * mac address to the mac address registers.
957  */
958 
959 void
960 nge_restore_mac_addr(nge_t *ngep)
961 {
962 	uint32_t mac_addr;
963 
964 	mac_addr = (uint32_t)ngep->chipinfo.hw_mac_addr;
965 	nge_reg_put32(ngep, NGE_UNI_ADDR0, mac_addr);
966 	mac_addr = (uint32_t)(ngep->chipinfo.hw_mac_addr >> 32);
967 	nge_reg_put32(ngep, NGE_UNI_ADDR1, mac_addr);
968 }
969 
970 int
971 nge_chip_reset(nge_t *ngep)
972 {
973 	int err;
974 	uint8_t i;
975 	uint32_t regno;
976 	uint64_t mac = 0;
977 	nge_uni_addr1 uaddr1;
978 	nge_cp_cntl ee_cntl;
979 	nge_soft_misc soft_misc;
980 	nge_pmu_cntl0 pmu_cntl0;
981 	nge_pmu_cntl2 pmu_cntl2;
982 	nge_pm_cntl2 pm_cntl2;
983 	const nge_ksindex_t *ksip;
984 
985 	NGE_TRACE(("nge_chip_reset($%p)", (void *)ngep));
986 
987 	/*
988 	 * Clear the statistics by reading the statistics register
989 	 */
990 	for (ksip = nge_statistics; ksip->name != NULL; ++ksip) {
991 		regno = KS_BASE + ksip->index * sizeof (uint32_t);
992 		(void) nge_reg_get32(ngep, regno);
993 	}
994 
995 	/*
996 	 * Setup seeprom control
997 	 */
998 	ee_cntl.cntl_val = nge_reg_get32(ngep, NGE_EP_CNTL);
999 	ee_cntl.cntl_bits.clkdiv = EEPROM_CLKDIV;
1000 	ee_cntl.cntl_bits.rom_size = EEPROM_32K;
1001 	ee_cntl.cntl_bits.word_wid = ACCESS_16BIT;
1002 	ee_cntl.cntl_bits.wait_slots = EEPROM_WAITCLK;
1003 	nge_reg_put32(ngep, NGE_EP_CNTL, ee_cntl.cntl_val);
1004 
1005 	/*
1006 	 * Reading the unicast mac address table
1007 	 */
1008 	if (ngep->nge_chip_state == NGE_CHIP_INITIAL) {
1009 		uaddr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1010 		mac = uaddr1.addr_bits.addr;
1011 		mac <<= 32;
1012 		mac |= nge_reg_get32(ngep, NGE_UNI_ADDR0);
1013 			ngep->chipinfo.hw_mac_addr = mac;
1014 			if (ngep->dev_spec_param.mac_addr_order) {
1015 				for (i = 0; i < ETHERADDRL; i++) {
1016 					ngep->chipinfo.vendor_addr.addr[i] =
1017 					    (uchar_t)mac;
1018 					ngep->cur_uni_addr.addr[i] =
1019 					    (uchar_t)mac;
1020 					mac >>= 8;
1021 				}
1022 			} else {
1023 				for (i = ETHERADDRL; i-- != 0; ) {
1024 					ngep->chipinfo.vendor_addr.addr[i] =
1025 					    (uchar_t)mac;
1026 					ngep->cur_uni_addr.addr[i] =
1027 					    (uchar_t)mac;
1028 					mac >>= 8;
1029 				}
1030 			}
1031 			ngep->chipinfo.vendor_addr.set = 1;
1032 	}
1033 	pci_config_put8(ngep->cfg_handle, PCI_CONF_CACHE_LINESZ,
1034 	    ngep->chipinfo.clsize);
1035 	pci_config_put8(ngep->cfg_handle, PCI_CONF_LATENCY_TIMER,
1036 	    ngep->chipinfo.latency);
1037 
1038 
1039 	if (ngep->dev_spec_param.advanced_pm) {
1040 
1041 		/* Program software misc register */
1042 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1043 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_SET;
1044 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_SET;
1045 		soft_misc.misc_bits.clk12m_vx_rst = NGE_SET;
1046 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_SET;
1047 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_SET;
1048 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_SET;
1049 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_SET;
1050 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_SET;
1051 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1052 
1053 		/* wait for 32 us */
1054 		drv_usecwait(32);
1055 
1056 		soft_misc.misc_val = nge_reg_get32(ngep, NGE_SOFT_MISC);
1057 		soft_misc.misc_bits.rx_clk_vx_rst = NGE_CLEAR;
1058 		soft_misc.misc_bits.tx_clk_vx_rst = NGE_CLEAR;
1059 		soft_misc.misc_bits.clk12m_vx_rst = NGE_CLEAR;
1060 		soft_misc.misc_bits.fpci_clk_vx_rst = NGE_CLEAR;
1061 		soft_misc.misc_bits.rx_clk_vc_rst = NGE_CLEAR;
1062 		soft_misc.misc_bits.tx_clk_vc_rst = NGE_CLEAR;
1063 		soft_misc.misc_bits.fs_clk_vc_rst = NGE_CLEAR;
1064 		soft_misc.misc_bits.rst_ex_m2pintf = NGE_CLEAR;
1065 		nge_reg_put32(ngep, NGE_SOFT_MISC, soft_misc.misc_val);
1066 
1067 		/* Program PMU registers */
1068 		pmu_cntl0.cntl0_val = nge_reg_get32(ngep, NGE_PMU_CNTL0);
1069 		pmu_cntl0.cntl0_bits.core_spd10_fp =
1070 		    NGE_PMU_CORE_SPD10_BUSY;
1071 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1072 		    NGE_PMU_CORE_SPD10_IDLE;
1073 		pmu_cntl0.cntl0_bits.core_spd100_fp =
1074 		    NGE_PMU_CORE_SPD100_BUSY;
1075 		pmu_cntl0.cntl0_bits.core_spd100_idle =
1076 		    NGE_PMU_CORE_SPD100_IDLE;
1077 		pmu_cntl0.cntl0_bits.core_spd1000_fp =
1078 		    NGE_PMU_CORE_SPD1000_BUSY;
1079 		pmu_cntl0.cntl0_bits.core_spd1000_idle =
1080 		    NGE_PMU_CORE_SPD100_IDLE;
1081 		pmu_cntl0.cntl0_bits.core_spd10_idle =
1082 		    NGE_PMU_CORE_SPD10_IDLE;
1083 		nge_reg_put32(ngep, NGE_PMU_CNTL0, pmu_cntl0.cntl0_val);
1084 
1085 		/* Set the core idle limit value */
1086 		nge_reg_put32(ngep, NGE_PMU_CIDLE_LIMIT,
1087 		    NGE_PMU_CIDLE_LIMIT_DEF);
1088 
1089 		/* Set the device idle limit value */
1090 		nge_reg_put32(ngep, NGE_PMU_DIDLE_LIMIT,
1091 		    NGE_PMU_DIDLE_LIMIT_DEF);
1092 
1093 		/* Enable the core/device idle timer in PMU control 2 */
1094 		pmu_cntl2.cntl2_val = nge_reg_get32(ngep, NGE_PMU_CNTL2);
1095 		pmu_cntl2.cntl2_bits.cidle_timer = NGE_SET;
1096 		pmu_cntl2.cntl2_bits.didle_timer = NGE_SET;
1097 		pmu_cntl2.cntl2_bits.core_enable = NGE_SET;
1098 		pmu_cntl2.cntl2_bits.dev_enable = NGE_SET;
1099 		nge_reg_put32(ngep, NGE_PMU_CNTL2, pmu_cntl2.cntl2_val);
1100 	}
1101 	/*
1102 	 * Stop the chipset and clear buffer management
1103 	 */
1104 	err = nge_chip_stop(ngep, B_FALSE);
1105 	if (err == DDI_FAILURE)
1106 		return (err);
1107 	/*
1108 	 * Clear the power state bits for phy since interface no longer
1109 	 * works after rebooting from Windows on a multi-boot machine
1110 	 */
1111 	if (ngep->chipinfo.device == DEVICE_ID_MCP51_268 ||
1112 	    ngep->chipinfo.device == DEVICE_ID_MCP51_269 ||
1113 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372 ||
1114 	    ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1115 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EE ||
1116 	    ngep->chipinfo.device == DEVICE_ID_MCP61_3EF ||
1117 	    ngep->chipinfo.device == DEVICE_ID_MCP77_760 ||
1118 	    ngep->chipinfo.device == DEVICE_ID_MCP79_AB0) {
1119 
1120 		pm_cntl2.cntl_val = nge_reg_get32(ngep, NGE_PM_CNTL2);
1121 		/* bring phy out of coma mode */
1122 		pm_cntl2.cntl_bits.phy_coma_set = NGE_CLEAR;
1123 		/* disable auto reset coma bits */
1124 		pm_cntl2.cntl_bits.resv4 = NGE_CLEAR;
1125 		/* restore power to gated clocks */
1126 		pm_cntl2.cntl_bits.resv8_11 = NGE_CLEAR;
1127 		nge_reg_put32(ngep, NGE_PM_CNTL2, pm_cntl2.cntl_val);
1128 	}
1129 
1130 	ngep->nge_chip_state = NGE_CHIP_RESET;
1131 	return (DDI_SUCCESS);
1132 }
1133 
1134 int
1135 nge_chip_start(nge_t *ngep)
1136 {
1137 	int err;
1138 	nge_itc itc;
1139 	nge_tx_cntl tx_cntl;
1140 	nge_rx_cntrl0 rx_cntl0;
1141 	nge_rx_cntl1 rx_cntl1;
1142 	nge_tx_en tx_en;
1143 	nge_rx_en rx_en;
1144 	nge_mii_cs mii_cs;
1145 	nge_swtr_cntl swtr_cntl;
1146 	nge_rx_fifo_wm rx_fifo;
1147 	nge_intr_mask intr_mask;
1148 	nge_mintr_mask mintr_mask;
1149 	nge_dev_spec_param_t	*dev_param_p;
1150 
1151 	NGE_TRACE(("nge_chip_start($%p)", (void *)ngep));
1152 
1153 	/*
1154 	 * Setup buffer management
1155 	 */
1156 	err = nge_buff_setup(ngep);
1157 	if (err == DDI_FAILURE)
1158 		return (err);
1159 
1160 	dev_param_p = &ngep->dev_spec_param;
1161 
1162 	/*
1163 	 * Enable polling attribute
1164 	 */
1165 	mii_cs.cs_val = nge_reg_get32(ngep, NGE_MII_CS);
1166 	mii_cs.cs_bits.ap_paddr = ngep->phy_xmii_addr;
1167 	mii_cs.cs_bits.ap_en = NGE_SET;
1168 	mii_cs.cs_bits.ap_intv = MII_POLL_INTV;
1169 	nge_reg_put32(ngep, NGE_MII_CS, mii_cs.cs_val);
1170 
1171 	/*
1172 	 * Setup link
1173 	 */
1174 	(*ngep->physops->phys_update)(ngep);
1175 
1176 	/*
1177 	 * Configure the tx's parameters
1178 	 */
1179 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1180 	if (dev_param_p->tx_pause_frame)
1181 		tx_cntl.cntl_bits.paen = NGE_SET;
1182 	else
1183 		tx_cntl.cntl_bits.paen = NGE_CLEAR;
1184 	tx_cntl.cntl_bits.retry_en = NGE_SET;
1185 	tx_cntl.cntl_bits.pad_en = NGE_SET;
1186 	tx_cntl.cntl_bits.fappend_en = NGE_SET;
1187 	tx_cntl.cntl_bits.two_def_en = NGE_SET;
1188 	tx_cntl.cntl_bits.max_retry = 15;
1189 	tx_cntl.cntl_bits.burst_en = NGE_CLEAR;
1190 	tx_cntl.cntl_bits.uflo_err_mask = NGE_CLEAR;
1191 	tx_cntl.cntl_bits.tlcol_mask = NGE_CLEAR;
1192 	tx_cntl.cntl_bits.lcar_mask = NGE_CLEAR;
1193 	tx_cntl.cntl_bits.def_mask = NGE_CLEAR;
1194 	tx_cntl.cntl_bits.exdef_mask = NGE_SET;
1195 	tx_cntl.cntl_bits.lcar_mask = NGE_SET;
1196 	tx_cntl.cntl_bits.tlcol_mask = NGE_SET;
1197 	tx_cntl.cntl_bits.uflo_err_mask = NGE_SET;
1198 	tx_cntl.cntl_bits.jam_seq_en = NGE_CLEAR;
1199 	nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1200 
1201 
1202 	/*
1203 	 * Configure the parameters of Rx's state machine
1204 	 * Enabe the parameters:
1205 	 * 1). Pad Strip
1206 	 * 2). FCS Relay
1207 	 * 3). Pause
1208 	 * 4). Address filter
1209 	 * 5). Runt Packet receive
1210 	 * 6). Broadcast
1211 	 * 7). Receive Deferral
1212 	 *
1213 	 * Disable the following parameters for decreasing
1214 	 * the number of interrupts:
1215 	 * 1). Runt Inerrupt.
1216 	 * 2). Rx's Late Collision interrupt.
1217 	 * 3). Rx's Max length Error Interrupt.
1218 	 * 4). Rx's Length Field error Interrupt.
1219 	 * 5). Rx's FCS error interrupt.
1220 	 * 6). Rx's overflow error interrupt.
1221 	 * 7). Rx's Frame alignment error interrupt.
1222 	 */
1223 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1224 	rx_cntl0.cntl_bits.padsen = NGE_CLEAR;
1225 	rx_cntl0.cntl_bits.fcsren = NGE_CLEAR;
1226 	if (dev_param_p->rx_pause_frame)
1227 		rx_cntl0.cntl_bits.paen = NGE_SET;
1228 	else
1229 		rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1230 	rx_cntl0.cntl_bits.lben = NGE_CLEAR;
1231 	rx_cntl0.cntl_bits.afen = NGE_SET;
1232 	rx_cntl0.cntl_bits.runten = NGE_CLEAR;
1233 	rx_cntl0.cntl_bits.brdis = NGE_CLEAR;
1234 	rx_cntl0.cntl_bits.rdfen = NGE_CLEAR;
1235 	rx_cntl0.cntl_bits.runtm = NGE_CLEAR;
1236 	rx_cntl0.cntl_bits.slfb = NGE_CLEAR;
1237 	rx_cntl0.cntl_bits.rlcolm = NGE_CLEAR;
1238 	rx_cntl0.cntl_bits.maxerm = NGE_CLEAR;
1239 	rx_cntl0.cntl_bits.lferm = NGE_CLEAR;
1240 	rx_cntl0.cntl_bits.crcm = NGE_CLEAR;
1241 	rx_cntl0.cntl_bits.ofolm = NGE_CLEAR;
1242 	rx_cntl0.cntl_bits.framerm = NGE_CLEAR;
1243 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1244 
1245 	/*
1246 	 * Configure the watermark for the rx's statemachine
1247 	 */
1248 	rx_fifo.wm_val = nge_reg_get32(ngep, NGE_RX_FIFO_WM);
1249 	rx_fifo.wm_bits.data_hwm = ngep->rx_datahwm;
1250 	rx_fifo.wm_bits.prd_lwm = ngep->rx_prdlwm;
1251 	rx_fifo.wm_bits.prd_hwm = ngep->rx_prdhwm;
1252 	nge_reg_put32(ngep, NGE_RX_FIFO_WM, rx_fifo.wm_val);
1253 
1254 	/*
1255 	 * Configure the deffer time slot for rx's state machine
1256 	 */
1257 	nge_reg_put8(ngep, NGE_RX_DEf, ngep->rx_def);
1258 
1259 	/*
1260 	 * Configure the length of rx's packet
1261 	 */
1262 	rx_cntl1.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL1);
1263 	rx_cntl1.cntl_bits.length = ngep->max_sdu;
1264 	nge_reg_put32(ngep, NGE_RX_CNTL1, rx_cntl1.cntl_val);
1265 	/*
1266 	 * Enable Tx's state machine
1267 	 */
1268 	tx_en.val = nge_reg_get8(ngep, NGE_TX_EN);
1269 	tx_en.bits.tx_en = NGE_SET;
1270 	nge_reg_put8(ngep, NGE_TX_EN, tx_en.val);
1271 
1272 	/*
1273 	 * Enable Rx's state machine
1274 	 */
1275 	rx_en.val = nge_reg_get8(ngep, NGE_RX_EN);
1276 	rx_en.bits.rx_en = NGE_SET;
1277 	nge_reg_put8(ngep, NGE_RX_EN, rx_en.val);
1278 
1279 	itc.itc_val = nge_reg_get32(ngep, NGE_SWTR_ITC);
1280 	itc.itc_bits.sw_intv = ngep->sw_intr_intv;
1281 	nge_reg_put32(ngep, NGE_SWTR_ITC, itc.itc_val);
1282 
1283 	swtr_cntl.ctrl_val = nge_reg_get8(ngep, NGE_SWTR_CNTL);
1284 	swtr_cntl.cntl_bits.sten = NGE_SET;
1285 	swtr_cntl.cntl_bits.stren = NGE_SET;
1286 	nge_reg_put32(ngep, NGE_SWTR_CNTL, swtr_cntl.ctrl_val);
1287 
1288 	/*
1289 	 * Disable all mii read/write operation Interrupt
1290 	 */
1291 	mintr_mask.mask_val = nge_reg_get8(ngep, NGE_MINTR_MASK);
1292 	mintr_mask.mask_bits.mrei = NGE_CLEAR;
1293 	mintr_mask.mask_bits.mcc2 = NGE_CLEAR;
1294 	mintr_mask.mask_bits.mcc1 = NGE_CLEAR;
1295 	mintr_mask.mask_bits.mapi = NGE_SET;
1296 	mintr_mask.mask_bits.mpdi = NGE_SET;
1297 	nge_reg_put8(ngep, NGE_MINTR_MASK, mintr_mask.mask_val);
1298 
1299 	/*
1300 	 * Enable all interrupt event
1301 	 */
1302 	intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1303 	intr_mask.mask_bits.reint = NGE_SET;
1304 	intr_mask.mask_bits.rcint = NGE_SET;
1305 	intr_mask.mask_bits.miss = NGE_SET;
1306 	intr_mask.mask_bits.teint = NGE_SET;
1307 	intr_mask.mask_bits.tcint = NGE_CLEAR;
1308 	intr_mask.mask_bits.stint = NGE_CLEAR;
1309 	intr_mask.mask_bits.mint = NGE_CLEAR;
1310 	intr_mask.mask_bits.rfint = NGE_CLEAR;
1311 	intr_mask.mask_bits.tfint = NGE_SET;
1312 	intr_mask.mask_bits.feint = NGE_SET;
1313 	intr_mask.mask_bits.resv10 = NGE_CLEAR;
1314 	intr_mask.mask_bits.resv11 = NGE_CLEAR;
1315 	intr_mask.mask_bits.resv12 = NGE_CLEAR;
1316 	intr_mask.mask_bits.resv13 = NGE_CLEAR;
1317 	intr_mask.mask_bits.phyint = NGE_CLEAR;
1318 	ngep->intr_masks = intr_mask.mask_val;
1319 	nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1320 	ngep->nge_chip_state = NGE_CHIP_RUNNING;
1321 	return (DDI_SUCCESS);
1322 }
1323 
1324 /*
1325  * nge_chip_sync() -- program the chip with the unicast MAC address,
1326  * the multicast hash table, the required level of promiscuity.
1327  */
1328 void
1329 nge_chip_sync(nge_t *ngep)
1330 {
1331 	uint8_t i;
1332 	uint64_t macaddr;
1333 	uint64_t mul_addr;
1334 	uint64_t mul_mask;
1335 	nge_rx_cntrl0 rx_cntl;
1336 	nge_uni_addr1 uni_adr1;
1337 
1338 	NGE_TRACE(("nge_chip_sync($%p)", (void *)ngep));
1339 
1340 	macaddr = 0x0ull;
1341 	mul_addr = 0x0ull;
1342 	mul_mask = 0x0ull;
1343 	rx_cntl.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1344 
1345 	if (ngep->promisc) {
1346 		rx_cntl.cntl_bits.afen = NGE_CLEAR;
1347 		rx_cntl.cntl_bits.brdis = NGE_SET;
1348 	} else {
1349 		rx_cntl.cntl_bits.afen = NGE_SET;
1350 		rx_cntl.cntl_bits.brdis = NGE_CLEAR;
1351 	}
1352 
1353 	/*
1354 	 * Transform the MAC address from host to chip format, the unicast
1355 	 * MAC address(es) ...
1356 	 */
1357 	for (i = ETHERADDRL, macaddr = 0ull; i != 0; --i) {
1358 		macaddr |= ngep->cur_uni_addr.addr[i-1];
1359 		macaddr <<= (i > 1) ? 8 : 0;
1360 	}
1361 
1362 	nge_reg_put32(ngep, NGE_UNI_ADDR0, (uint32_t)macaddr);
1363 	macaddr = macaddr >>32;
1364 	uni_adr1.addr_val = nge_reg_get32(ngep, NGE_UNI_ADDR1);
1365 	uni_adr1.addr_bits.addr = (uint16_t)macaddr;
1366 	uni_adr1.addr_bits.resv16_31 = (uint16_t)0;
1367 	nge_reg_put32(ngep, NGE_UNI_ADDR1, uni_adr1.addr_val);
1368 
1369 	/*
1370 	 * Reprogram the  multicast address table ...
1371 	 */
1372 	for (i = ETHERADDRL, mul_addr = 0ull; i != 0; --i) {
1373 		mul_addr |= ngep->cur_mul_addr.addr[i-1];
1374 		mul_addr <<= (i > 1) ? 8 : 0;
1375 		mul_mask |= ngep->cur_mul_mask.addr[i-1];
1376 		mul_mask <<= (i > 1) ? 8 : 0;
1377 	}
1378 	nge_reg_put32(ngep, NGE_MUL_ADDR0, (uint32_t)mul_addr);
1379 	mul_addr >>= 32;
1380 	nge_reg_put32(ngep, NGE_MUL_ADDR1, mul_addr);
1381 	nge_reg_put32(ngep, NGE_MUL_MASK, (uint32_t)mul_mask);
1382 	mul_mask >>= 32;
1383 	nge_reg_put32(ngep, NGE_MUL_MASK1, mul_mask);
1384 	/*
1385 	 * Set or clear the PROMISCUOUS mode bit
1386 	 */
1387 	nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl.cntl_val);
1388 	/*
1389 	 * For internal PHY loopback, the link will
1390 	 * not be up, so it need to sync mac modes directly.
1391 	 */
1392 	if (ngep->param_loop_mode == NGE_LOOP_INTERNAL_PHY)
1393 		nge_sync_mac_modes(ngep);
1394 }
1395 
1396 static void
1397 nge_chip_err(nge_t *ngep)
1398 {
1399 	nge_reg010 reg010_ins;
1400 	nge_sw_statistics_t *psw_stat;
1401 	nge_intr_mask intr_mask;
1402 
1403 	NGE_TRACE(("nge_chip_err($%p)", (void *)ngep));
1404 
1405 	psw_stat = (nge_sw_statistics_t *)&ngep->statistics.sw_statistics;
1406 	reg010_ins.reg010_val = nge_reg_get32(ngep, NGE_REG010);
1407 	if (reg010_ins.reg010_bits.resv0)
1408 		psw_stat->fe_err.tso_err_mss ++;
1409 
1410 	if (reg010_ins.reg010_bits.resv1)
1411 		psw_stat->fe_err.tso_dis ++;
1412 
1413 	if (reg010_ins.reg010_bits.resv2)
1414 		psw_stat->fe_err.tso_err_nosum ++;
1415 
1416 	if (reg010_ins.reg010_bits.resv3)
1417 		psw_stat->fe_err.tso_err_hov ++;
1418 
1419 	if (reg010_ins.reg010_bits.resv4)
1420 		psw_stat->fe_err.tso_err_huf ++;
1421 
1422 	if (reg010_ins.reg010_bits.resv5)
1423 		psw_stat->fe_err.tso_err_l2 ++;
1424 
1425 	if (reg010_ins.reg010_bits.resv6)
1426 		psw_stat->fe_err.tso_err_ip ++;
1427 
1428 	if (reg010_ins.reg010_bits.resv7)
1429 		psw_stat->fe_err.tso_err_l4 ++;
1430 
1431 	if (reg010_ins.reg010_bits.resv8)
1432 		psw_stat->fe_err.tso_err_tcp ++;
1433 
1434 	if (reg010_ins.reg010_bits.resv9)
1435 		psw_stat->fe_err.hsum_err_ip ++;
1436 
1437 	if (reg010_ins.reg010_bits.resv10)
1438 		psw_stat->fe_err.hsum_err_l4 ++;
1439 
1440 	if (reg010_ins.reg010_val != 0) {
1441 
1442 		/*
1443 		 * Fatal error is triggered by malformed driver commands.
1444 		 * Disable unless debugging.
1445 		 */
1446 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1447 		intr_mask.mask_bits.feint = NGE_CLEAR;
1448 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1449 		ngep->intr_masks = intr_mask.mask_val;
1450 
1451 	}
1452 }
1453 
1454 static void
1455 nge_sync_mac_modes(nge_t *ngep)
1456 {
1457 	nge_tx_def tx_def;
1458 	nge_tx_fifo_wm tx_fifo;
1459 	nge_bkoff_cntl bk_cntl;
1460 	nge_mac2phy m2p;
1461 	nge_rx_cntrl0 rx_cntl0;
1462 	nge_tx_cntl tx_cntl;
1463 	nge_dev_spec_param_t	*dev_param_p;
1464 
1465 	dev_param_p = &ngep->dev_spec_param;
1466 
1467 	tx_def.def_val = nge_reg_get32(ngep, NGE_TX_DEF);
1468 	m2p.m2p_val = nge_reg_get32(ngep, NGE_MAC2PHY);
1469 	tx_fifo.wm_val = nge_reg_get32(ngep, NGE_TX_FIFO_WM);
1470 	bk_cntl.cntl_val = nge_reg_get32(ngep, NGE_BKOFF_CNTL);
1471 	bk_cntl.bkoff_bits.rseed = BKOFF_RSEED;
1472 	switch (ngep->param_link_speed) {
1473 	case 10:
1474 		m2p.m2p_bits.speed = low_speed;
1475 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1476 		if (ngep->phy_mode == RGMII_IN) {
1477 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1478 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1479 		} else {
1480 			tx_def.def_bits.if_def = TX_TIFG_MII;
1481 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1482 		}
1483 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1484 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1485 		break;
1486 
1487 	case 100:
1488 		m2p.m2p_bits.speed = fast_speed;
1489 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1490 		if (ngep->phy_mode == RGMII_IN) {
1491 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_10_100;
1492 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1493 		} else {
1494 			tx_def.def_bits.if_def = TX_TIFG_MII;
1495 			tx_def.def_bits.ifg2_def = TX_IFG2_MII;
1496 		}
1497 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_MII;
1498 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_MII;
1499 		break;
1500 
1501 	case 1000:
1502 		m2p.m2p_bits.speed = giga_speed;
1503 		tx_def.def_bits.ifg1_def = TX_IFG1_DEFAULT;
1504 		if (ngep->param_link_duplex == LINK_DUPLEX_FULL) {
1505 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1506 			tx_def.def_bits.if_def = TX_IFG_RGMII_1000_FD;
1507 		} else {
1508 			tx_def.def_bits.ifg2_def = TX_IFG2_RGMII_1000;
1509 			tx_def.def_bits.if_def = TX_IFG_RGMII_OTHER;
1510 		}
1511 
1512 		tx_fifo.wm_bits.nbfb_wm = TX_FIFO_NOB_WM_GMII;
1513 		bk_cntl.bkoff_bits.sltm = BKOFF_SLIM_GMII;
1514 		break;
1515 	}
1516 
1517 	if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
1518 	    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
1519 		m2p.m2p_bits.phyintr = NGE_CLEAR;
1520 		m2p.m2p_bits.phyintrlvl = NGE_CLEAR;
1521 	}
1522 	if (ngep->param_link_duplex == LINK_DUPLEX_HALF) {
1523 		m2p.m2p_bits.hdup_en = NGE_SET;
1524 	}
1525 	else
1526 		m2p.m2p_bits.hdup_en = NGE_CLEAR;
1527 	nge_reg_put32(ngep, NGE_MAC2PHY, m2p.m2p_val);
1528 	nge_reg_put32(ngep, NGE_TX_DEF, tx_def.def_val);
1529 
1530 	tx_fifo.wm_bits.data_lwm = TX_FIFO_DATA_LWM;
1531 	tx_fifo.wm_bits.prd_lwm = TX_FIFO_PRD_LWM;
1532 	tx_fifo.wm_bits.uprd_hwm = TX_FIFO_PRD_HWM;
1533 	tx_fifo.wm_bits.fb_wm = TX_FIFO_TBFW;
1534 	nge_reg_put32(ngep, NGE_TX_FIFO_WM, tx_fifo.wm_val);
1535 
1536 	nge_reg_put32(ngep, NGE_BKOFF_CNTL, bk_cntl.cntl_val);
1537 
1538 	rx_cntl0.cntl_val = nge_reg_get32(ngep, NGE_RX_CNTL0);
1539 	if (ngep->param_link_rx_pause && dev_param_p->rx_pause_frame) {
1540 		if (rx_cntl0.cntl_bits.paen == NGE_CLEAR) {
1541 			rx_cntl0.cntl_bits.paen = NGE_SET;
1542 			nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1543 	}
1544 	} else {
1545 		if (rx_cntl0.cntl_bits.paen == NGE_SET) {
1546 			rx_cntl0.cntl_bits.paen = NGE_CLEAR;
1547 			nge_reg_put32(ngep, NGE_RX_CNTL0, rx_cntl0.cntl_val);
1548 		}
1549 	}
1550 
1551 	tx_cntl.cntl_val = nge_reg_get32(ngep, NGE_TX_CNTL);
1552 	if (ngep->param_link_tx_pause && dev_param_p->tx_pause_frame) {
1553 		if (tx_cntl.cntl_bits.paen == NGE_CLEAR) {
1554 			tx_cntl.cntl_bits.paen = NGE_SET;
1555 			nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1556 		}
1557 	} else {
1558 		if (tx_cntl.cntl_bits.paen == NGE_SET) {
1559 			tx_cntl.cntl_bits.paen = NGE_CLEAR;
1560 			nge_reg_put32(ngep, NGE_TX_CNTL, tx_cntl.cntl_val);
1561 		}
1562 	}
1563 }
1564 
1565 /*
1566  * Handler for hardware link state change.
1567  *
1568  * When this routine is called, the hardware link state has changed
1569  * and the new state is reflected in the param_* variables.  Here
1570  * we must update the softstate, reprogram the MAC to match, and
1571  * record the change in the log and/or on the console.
1572  */
1573 static void
1574 nge_factotum_link_handler(nge_t *ngep)
1575 {
1576 	/*
1577 	 * Update the s/w link_state
1578 	 */
1579 	if (ngep->param_link_up)
1580 		ngep->link_state = LINK_STATE_UP;
1581 	else
1582 		ngep->link_state = LINK_STATE_DOWN;
1583 
1584 	/*
1585 	 * Reprogram the MAC modes to match
1586 	 */
1587 	nge_sync_mac_modes(ngep);
1588 }
1589 
1590 static boolean_t
1591 nge_factotum_link_check(nge_t *ngep)
1592 {
1593 	boolean_t lchg;
1594 	boolean_t check;
1595 
1596 	ASSERT(mutex_owned(ngep->genlock));
1597 
1598 	(*ngep->physops->phys_check)(ngep);
1599 	switch (ngep->link_state) {
1600 	case LINK_STATE_UP:
1601 		lchg = (ngep->param_link_up == B_FALSE);
1602 		check = (ngep->param_link_up == B_FALSE);
1603 		break;
1604 
1605 	case LINK_STATE_DOWN:
1606 		lchg = (ngep->param_link_up == B_TRUE);
1607 		check = (ngep->param_link_up == B_TRUE);
1608 		break;
1609 
1610 	default:
1611 		check = B_TRUE;
1612 		break;
1613 	}
1614 
1615 	/*
1616 	 * If <check> is false, we're sure the link hasn't changed.
1617 	 * If true, however, it's not yet definitive; we have to call
1618 	 * nge_phys_check() to determine whether the link has settled
1619 	 * into a new state yet ... and if it has, then call the link
1620 	 * state change handler.But when the chip is 5700 in Dell 6650
1621 	 * ,even if check is false, the link may have changed.So we
1622 	 * have to call nge_phys_check() to determine the link state.
1623 	 */
1624 	if (check)
1625 		nge_factotum_link_handler(ngep);
1626 
1627 	return (lchg);
1628 }
1629 
1630 /*
1631  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1632  */
1633 static boolean_t nge_factotum_stall_check(nge_t *ngep);
1634 
1635 static boolean_t
1636 nge_factotum_stall_check(nge_t *ngep)
1637 {
1638 	uint32_t dogval;
1639 	send_ring_t *srp;
1640 	srp = ngep->send;
1641 	/*
1642 	 * Specific check for Tx stall ...
1643 	 *
1644 	 * The 'watchdog' counter is incremented whenever a packet
1645 	 * is queued, reset to 1 when some (but not all) buffers
1646 	 * are reclaimed, reset to 0 (disabled) when all buffers
1647 	 * are reclaimed, and shifted left here.  If it exceeds the
1648 	 * threshold value, the chip is assumed to have stalled and
1649 	 * is put into the ERROR state.  The factotum will then reset
1650 	 * it on the next pass.
1651 	 *
1652 	 * All of which should ensure that we don't get into a state
1653 	 * where packets are left pending indefinitely!
1654 	 */
1655 	if (ngep->watchdog == 0 &&
1656 	    srp->tx_free < srp->desc.nslots)
1657 		ngep->watchdog = 1;
1658 	dogval = nge_atomic_shl32(&ngep->watchdog, 1);
1659 	if (dogval >= nge_watchdog_check)
1660 		nge_tx_recycle(ngep, B_FALSE);
1661 	if (dogval < nge_watchdog_count)
1662 		return (B_FALSE);
1663 	else {
1664 		ngep->statistics.sw_statistics.tx_stall++;
1665 		return (B_TRUE);
1666 	}
1667 }
1668 
1669 
1670 /*
1671  * The factotum is woken up when there's something to do that we'd rather
1672  * not do from inside a hardware interrupt handler or high-level cyclic.
1673  * Its two main tasks are:
1674  *	reset & restart the chip after an error
1675  *	check the link status whenever necessary
1676  */
1677 /* ARGSUSED */
1678 uint_t
1679 nge_chip_factotum(caddr_t args1, caddr_t args2)
1680 {
1681 	uint_t result;
1682 	nge_t *ngep;
1683 	boolean_t err;
1684 	boolean_t linkchg;
1685 
1686 	ngep = (nge_t *)args1;
1687 
1688 	NGE_TRACE(("nge_chip_factotum($%p)", (void *)ngep));
1689 
1690 	mutex_enter(ngep->softlock);
1691 	if (ngep->factotum_flag == 0) {
1692 		mutex_exit(ngep->softlock);
1693 		return (DDI_INTR_UNCLAIMED);
1694 	}
1695 	ngep->factotum_flag = 0;
1696 	mutex_exit(ngep->softlock);
1697 	err = B_FALSE;
1698 	linkchg = B_FALSE;
1699 	result = DDI_INTR_CLAIMED;
1700 
1701 	mutex_enter(ngep->genlock);
1702 	switch (ngep->nge_chip_state) {
1703 	default:
1704 		break;
1705 
1706 	case NGE_CHIP_RUNNING:
1707 		linkchg = nge_factotum_link_check(ngep);
1708 		err = nge_factotum_stall_check(ngep);
1709 		break;
1710 
1711 	case NGE_CHIP_FAULT:
1712 		(void) nge_restart(ngep);
1713 		NGE_REPORT((ngep, "automatic recovery activated"));
1714 		break;
1715 	}
1716 
1717 	if (err)
1718 		(void) nge_chip_stop(ngep, B_TRUE);
1719 	mutex_exit(ngep->genlock);
1720 
1721 	/*
1722 	 * If the link state changed, tell the world about it (if
1723 	 * this version of MAC supports link state notification).
1724 	 * Note: can't do this while still holding the mutex.
1725 	 */
1726 	if (linkchg)
1727 		mac_link_update(ngep->mh, ngep->link_state);
1728 
1729 	return (result);
1730 
1731 }
1732 
1733 static void
1734 nge_intr_handle(nge_t *ngep, nge_intr_src *pintr_src)
1735 {
1736 	boolean_t brx;
1737 	boolean_t btx;
1738 	nge_mintr_src mintr_src;
1739 
1740 	brx = B_FALSE;
1741 	btx = B_FALSE;
1742 	ngep->statistics.sw_statistics.intr_count++;
1743 	ngep->statistics.sw_statistics.intr_lval = pintr_src->intr_val;
1744 	brx = (pintr_src->int_bits.reint | pintr_src->int_bits.miss
1745 	    | pintr_src->int_bits.rcint | pintr_src->int_bits.stint)
1746 	    != 0 ? B_TRUE : B_FALSE;
1747 	if (pintr_src->int_bits.reint)
1748 		ngep->statistics.sw_statistics.rx_err++;
1749 	if (pintr_src->int_bits.miss)
1750 		ngep->statistics.sw_statistics.rx_nobuffer++;
1751 
1752 	btx = (pintr_src->int_bits.teint | pintr_src->int_bits.tfint)
1753 	    != 0 ? B_TRUE : B_FALSE;
1754 	if (btx)
1755 		nge_tx_recycle(ngep, B_TRUE);
1756 	if (brx)
1757 		nge_receive(ngep);
1758 	if (pintr_src->int_bits.teint)
1759 		ngep->statistics.sw_statistics.tx_stop_err++;
1760 	if (ngep->intr_moderation && brx) {
1761 		if (ngep->poll) {
1762 			if (ngep->recv_count < ngep->param_rx_intr_hwater) {
1763 				ngep->quiet_time++;
1764 				if (ngep->quiet_time ==
1765 				    ngep->param_poll_quiet_time) {
1766 					ngep->poll = B_FALSE;
1767 					ngep->quiet_time = 0;
1768 				}
1769 			} else
1770 				ngep->quiet_time = 0;
1771 		} else {
1772 			if (ngep->recv_count > ngep->param_rx_intr_lwater) {
1773 				ngep->busy_time++;
1774 				if (ngep->busy_time ==
1775 				    ngep->param_poll_busy_time) {
1776 					ngep->poll = B_TRUE;
1777 					ngep->busy_time = 0;
1778 				}
1779 			} else
1780 				ngep->busy_time = 0;
1781 		}
1782 	}
1783 	ngep->recv_count = 0;
1784 	if (pintr_src->int_bits.feint)
1785 		nge_chip_err(ngep);
1786 	/* link interrupt, check the link state */
1787 	if (pintr_src->int_bits.mint) {
1788 		mintr_src.src_val = nge_reg_get32(ngep, NGE_MINTR_SRC);
1789 		nge_reg_put32(ngep, NGE_MINTR_SRC, mintr_src.src_val);
1790 		nge_wake_factotum(ngep);
1791 	}
1792 }
1793 
1794 /*
1795  *	nge_chip_intr() -- handle chip interrupts
1796  */
1797 /* ARGSUSED */
1798 uint_t
1799 nge_chip_intr(caddr_t arg1, caddr_t arg2)
1800 {
1801 	nge_t *ngep = (nge_t *)arg1;
1802 	nge_intr_src intr_src;
1803 	nge_intr_mask intr_mask;
1804 
1805 	mutex_enter(ngep->genlock);
1806 
1807 	if (ngep->suspended) {
1808 		mutex_exit(ngep->genlock);
1809 		return (DDI_INTR_UNCLAIMED);
1810 	}
1811 
1812 	/*
1813 	 * Check whether chip's says it's asserting #INTA;
1814 	 * if not, don't process or claim the interrupt.
1815 	 */
1816 	intr_src.intr_val = nge_reg_get32(ngep, NGE_INTR_SRC);
1817 	if (intr_src.intr_val == 0) {
1818 		mutex_exit(ngep->genlock);
1819 		return (DDI_INTR_UNCLAIMED);
1820 	}
1821 	/*
1822 	 * Ack the interrupt
1823 	 */
1824 	nge_reg_put32(ngep, NGE_INTR_SRC, intr_src.intr_val);
1825 
1826 	if (ngep->nge_chip_state != NGE_CHIP_RUNNING) {
1827 		mutex_exit(ngep->genlock);
1828 		return (DDI_INTR_CLAIMED);
1829 	}
1830 	nge_intr_handle(ngep, &intr_src);
1831 	if (ngep->poll && !ngep->ch_intr_mode) {
1832 		intr_mask.mask_val = nge_reg_get32(ngep, NGE_INTR_MASK);
1833 		intr_mask.mask_bits.stint = NGE_SET;
1834 		intr_mask.mask_bits.rcint = NGE_CLEAR;
1835 		nge_reg_put32(ngep, NGE_INTR_MASK, intr_mask.mask_val);
1836 		ngep->ch_intr_mode = B_TRUE;
1837 	} else if ((ngep->ch_intr_mode) && (!ngep->poll)) {
1838 		nge_reg_put32(ngep, NGE_INTR_MASK, ngep->intr_masks);
1839 		ngep->ch_intr_mode = B_FALSE;
1840 	}
1841 	mutex_exit(ngep->genlock);
1842 	return (DDI_INTR_CLAIMED);
1843 }
1844 
1845 static enum ioc_reply
1846 nge_pp_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1847 {
1848 	int err;
1849 	uint64_t sizemask;
1850 	uint64_t mem_va;
1851 	uint64_t maxoff;
1852 	boolean_t peek;
1853 	nge_peekpoke_t *ppd;
1854 	int (*ppfn)(nge_t *ngep, nge_peekpoke_t *ppd);
1855 
1856 	switch (cmd) {
1857 	default:
1858 		return (IOC_INVAL);
1859 
1860 	case NGE_PEEK:
1861 		peek = B_TRUE;
1862 		break;
1863 
1864 	case NGE_POKE:
1865 		peek = B_FALSE;
1866 		break;
1867 	}
1868 
1869 	/*
1870 	 * Validate format of ioctl
1871 	 */
1872 	if (iocp->ioc_count != sizeof (nge_peekpoke_t))
1873 		return (IOC_INVAL);
1874 	if (mp->b_cont == NULL)
1875 		return (IOC_INVAL);
1876 	ppd = (nge_peekpoke_t *)mp->b_cont->b_rptr;
1877 
1878 	/*
1879 	 * Validate request parameters
1880 	 */
1881 	switch (ppd->pp_acc_space) {
1882 	default:
1883 		return (IOC_INVAL);
1884 
1885 	case NGE_PP_SPACE_CFG:
1886 		/*
1887 		 * Config space
1888 		 */
1889 		sizemask = 8|4|2|1;
1890 		mem_va = 0;
1891 		maxoff = PCI_CONF_HDR_SIZE;
1892 		ppfn = peek ? nge_chip_peek_cfg : nge_chip_poke_cfg;
1893 		break;
1894 
1895 	case NGE_PP_SPACE_REG:
1896 		/*
1897 		 * Memory-mapped I/O space
1898 		 */
1899 		sizemask = 8|4|2|1;
1900 		mem_va = 0;
1901 		maxoff = NGE_REG_SIZE;
1902 		ppfn = peek ? nge_chip_peek_reg : nge_chip_poke_reg;
1903 		break;
1904 
1905 	case NGE_PP_SPACE_MII:
1906 		sizemask = 4|2|1;
1907 		mem_va = 0;
1908 		maxoff = NGE_MII_SIZE;
1909 		ppfn = peek ? nge_chip_peek_mii : nge_chip_poke_mii;
1910 		break;
1911 
1912 	case NGE_PP_SPACE_SEEPROM:
1913 		sizemask = 4|2|1;
1914 		mem_va = 0;
1915 		maxoff = NGE_SEEROM_SIZE;
1916 		ppfn = peek ? nge_chip_peek_seeprom : nge_chip_poke_seeprom;
1917 		break;
1918 	}
1919 
1920 	switch (ppd->pp_acc_size) {
1921 	default:
1922 		return (IOC_INVAL);
1923 
1924 	case 8:
1925 	case 4:
1926 	case 2:
1927 	case 1:
1928 		if ((ppd->pp_acc_size & sizemask) == 0)
1929 			return (IOC_INVAL);
1930 		break;
1931 	}
1932 
1933 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1934 		return (IOC_INVAL);
1935 
1936 	if (ppd->pp_acc_offset >= maxoff)
1937 		return (IOC_INVAL);
1938 
1939 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1940 		return (IOC_INVAL);
1941 
1942 	/*
1943 	 * All OK - go do it!
1944 	 */
1945 	ppd->pp_acc_offset += mem_va;
1946 	if (ppfn)
1947 		err = (*ppfn)(ngep, ppd);
1948 	if (err != DDI_SUCCESS)
1949 		return (IOC_INVAL);
1950 	return (peek ? IOC_REPLY : IOC_ACK);
1951 }
1952 
1953 static enum ioc_reply nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp,
1954 					struct iocblk *iocp);
1955 #pragma	no_inline(nge_diag_ioctl)
1956 
1957 static enum ioc_reply
1958 nge_diag_ioctl(nge_t *ngep, int cmd, mblk_t *mp, struct iocblk *iocp)
1959 {
1960 	ASSERT(mutex_owned(ngep->genlock));
1961 
1962 	switch (cmd) {
1963 	default:
1964 		nge_error(ngep, "nge_diag_ioctl: invalid cmd 0x%x", cmd);
1965 		return (IOC_INVAL);
1966 
1967 	case NGE_DIAG:
1968 		return (IOC_ACK);
1969 
1970 	case NGE_PEEK:
1971 	case NGE_POKE:
1972 		return (nge_pp_ioctl(ngep, cmd, mp, iocp));
1973 
1974 	case NGE_PHY_RESET:
1975 		return (IOC_RESTART_ACK);
1976 
1977 	case NGE_SOFT_RESET:
1978 	case NGE_HARD_RESET:
1979 		return (IOC_ACK);
1980 	}
1981 
1982 	/* NOTREACHED */
1983 }
1984 
1985 enum ioc_reply
1986 nge_chip_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
1987 {
1988 	int cmd;
1989 
1990 	ASSERT(mutex_owned(ngep->genlock));
1991 
1992 	cmd = iocp->ioc_cmd;
1993 
1994 	switch (cmd) {
1995 	default:
1996 		return (IOC_INVAL);
1997 
1998 	case NGE_DIAG:
1999 	case NGE_PEEK:
2000 	case NGE_POKE:
2001 	case NGE_PHY_RESET:
2002 	case NGE_SOFT_RESET:
2003 	case NGE_HARD_RESET:
2004 #if	NGE_DEBUGGING
2005 		return (nge_diag_ioctl(ngep, cmd, mp, iocp));
2006 #else
2007 		return (IOC_INVAL);
2008 #endif
2009 
2010 	case NGE_MII_READ:
2011 	case NGE_MII_WRITE:
2012 		return (IOC_INVAL);
2013 
2014 #if	NGE_SEE_IO32
2015 	case NGE_SEE_READ:
2016 	case NGE_SEE_WRITE:
2017 		return (IOC_INVAL);
2018 #endif
2019 
2020 #if	NGE_FLASH_IO32
2021 	case NGE_FLASH_READ:
2022 	case NGE_FLASH_WRITE:
2023 		return (IOC_INVAL);
2024 #endif
2025 	}
2026 }
2027