xref: /titanic_41/usr/src/uts/common/io/mii/mii.c (revision a2383ac57dcb38468bc1c213ee2d102d1e9038b1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * mii - MII/PHY support for MAC drivers
28  *
29  * Utility module to provide a consistent interface to a MAC driver accross
30  * different implementations of PHY devices
31  */
32 
33 #include <sys/types.h>
34 #include <sys/debug.h>
35 #include <sys/errno.h>
36 #include <sys/param.h>
37 #include <sys/kmem.h>
38 #include <sys/conf.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/modctl.h>
42 #include <sys/cmn_err.h>
43 #include <sys/policy.h>
44 #include <sys/note.h>
45 #include <sys/strsun.h>
46 #include <sys/miiregs.h>
47 #include <sys/mac_provider.h>
48 #include <sys/mac_ether.h>
49 #include <sys/mii.h>
50 #include "miipriv.h"
51 
52 #define	MII_SECOND	1000000
53 
54 /* indices into error array */
55 enum {
56 	MII_EOK = 0,
57 	MII_ERESET,
58 	MII_ESTART,
59 	MII_ENOPHY,
60 	MII_ECHECK,
61 	MII_ELOOP,
62 };
63 
64 static const char *mii_errors[] = {
65 	"",
66 	"Failure resetting PHY.",
67 	"Failure starting PHY.",
68 	"No Ethernet PHY found.",
69 	"Failure reading PHY (removed?)",
70 	"Failure setting loopback."
71 };
72 
73 /* Indexed by XCVR_ type */
74 static const const char *mii_xcvr_types[] = {
75 	"Undefined",
76 	"Unknown",
77 	"10 Mbps",
78 	"100BASE-T4",
79 	"100BASE-X",
80 	"100BASE-T2",
81 	"1000BASE-X",
82 	"1000BASE-T"
83 };
84 
85 /* state machine */
86 typedef enum {
87 	MII_STATE_PROBE = 0,
88 	MII_STATE_RESET,
89 	MII_STATE_START,
90 	MII_STATE_RUN,
91 	MII_STATE_LOOPBACK,
92 } mii_tstate_t;
93 
94 struct mii_handle {
95 	dev_info_t	*m_dip;
96 	void		*m_private;
97 	mii_ops_t	m_ops;
98 
99 	kt_did_t	m_tq_id;
100 	kmutex_t	m_lock;
101 	kcondvar_t	m_cv;
102 	ddi_taskq_t	*m_tq;
103 	int		m_flags;
104 
105 	boolean_t	m_started;
106 	boolean_t	m_suspending;
107 	boolean_t	m_suspended;
108 	int		m_error;
109 	mii_tstate_t	m_tstate;
110 
111 #define	MII_FLAG_EXIT		0x1	/* exit the thread */
112 #define	MII_FLAG_STOP		0x2	/* shutdown MII monitoring */
113 #define	MII_FLAG_RESET		0x4	/* reset the MII */
114 #define	MII_FLAG_PROBE		0x8	/* probe for PHYs */
115 #define	MII_FLAG_NOTIFY		0x10	/* notify about a change */
116 #define	MII_FLAG_SUSPEND	0x20	/* monitoring suspended */
117 #define	MII_FLAG_MACRESET	0x40	/* send reset to MAC */
118 #define	MII_FLAG_PHYSTART	0x80	/* start up the PHY */
119 
120 	/* device name for printing, e.g. "hme0" */
121 	char		m_name[MODMAXNAMELEN + 16];
122 
123 	int		m_addr;
124 	phy_handle_t	m_phys[32];
125 	phy_handle_t	m_bogus_phy;
126 	phy_handle_t	*m_phy;
127 
128 	link_state_t	m_link;
129 
130 	/* these start out undefined, but get values due to mac_prop_set */
131 	int		m_en_aneg;
132 	int		m_en_10_hdx;
133 	int		m_en_10_fdx;
134 	int		m_en_100_t4;
135 	int		m_en_100_hdx;
136 	int		m_en_100_fdx;
137 	int		m_en_1000_hdx;
138 	int		m_en_1000_fdx;
139 	int		m_en_flowctrl;
140 
141 	boolean_t	m_cap_pause;
142 	boolean_t	m_cap_asmpause;
143 };
144 
145 
146 static void _mii_task(void *);
147 static void _mii_probe_phy(phy_handle_t *);
148 static void _mii_probe(mii_handle_t);
149 static int _mii_reset(mii_handle_t);
150 static int _mii_loopback(mii_handle_t);
151 static void _mii_notify(mii_handle_t);
152 static int _mii_check(mii_handle_t);
153 static int _mii_start(mii_handle_t);
154 
155 /*
156  * Loadable module structures/entrypoints
157  */
158 
159 extern struct mod_ops mod_misc_ops;
160 
161 static struct modlmisc modlmisc = {
162 	&mod_miscops,
163 	"802.3 MII support",
164 };
165 
166 static struct modlinkage modlinkage = {
167 	MODREV_1, &modlmisc, NULL
168 };
169 
170 int
171 _init(void)
172 {
173 	return (mod_install(&modlinkage));
174 }
175 
176 int
177 _fini(void)
178 {
179 	return (mod_remove(&modlinkage));
180 }
181 
182 int
183 _info(struct modinfo *modinfop)
184 {
185 	return (mod_info(&modlinkage, modinfop));
186 }
187 
188 void
189 _mii_error(mii_handle_t mh, int errno)
190 {
191 	/*
192 	 * This dumps an error message, but it avoids filling the log with
193 	 * repeated error messages.
194 	 */
195 	if (mh->m_error != errno) {
196 		cmn_err(CE_WARN, "%s: %s", mh->m_name, mii_errors[errno]);
197 		mh->m_error = errno;
198 	}
199 }
200 
201 /*
202  * Known list of specific PHY probes.
203  */
204 typedef boolean_t (*phy_probe_t)(phy_handle_t *);
205 phy_probe_t _phy_probes[] = {
206 	phy_natsemi_probe,
207 	phy_intel_probe,
208 	phy_qualsemi_probe,
209 	phy_cicada_probe,
210 	phy_marvell_probe,
211 	phy_realtek_probe,
212 	phy_other_probe,
213 	NULL
214 };
215 
216 /*
217  * MII Interface functions
218  */
219 
220 mii_handle_t
221 mii_alloc_instance(void *private, dev_info_t *dip, int inst, mii_ops_t *ops)
222 {
223 	mii_handle_t	mh;
224 	char		tqname[16];
225 
226 	if (ops->mii_version != MII_OPS_VERSION) {
227 		cmn_err(CE_WARN, "%s: incompatible MII version (%d)",
228 		    ddi_driver_name(dip), ops->mii_version);
229 		return (NULL);
230 	}
231 	mh = kmem_zalloc(sizeof (*mh), KM_SLEEP);
232 
233 	(void) snprintf(mh->m_name, sizeof (mh->m_name), "%s%d",
234 	    ddi_driver_name(dip), inst);
235 
236 	/* DDI will prepend the driver name */
237 	(void) snprintf(tqname, sizeof (tqname), "mii%d", inst);
238 
239 	mh->m_dip = dip;
240 	mh->m_ops = *ops;
241 	mh->m_private = private;
242 	mh->m_suspended = B_FALSE;
243 	mh->m_started = B_FALSE;
244 	mh->m_tstate = MII_STATE_PROBE;
245 	mh->m_link = LINK_STATE_UNKNOWN;
246 	mh->m_error = MII_EOK;
247 	mh->m_addr = -1;
248 	mutex_init(&mh->m_lock, NULL, MUTEX_DRIVER, NULL);
249 	cv_init(&mh->m_cv, NULL, CV_DRIVER, NULL);
250 
251 	mh->m_tq = ddi_taskq_create(dip, tqname, 1, TASKQ_DEFAULTPRI, 0);
252 	if (mh->m_tq == NULL) {
253 		cmn_err(CE_WARN, "%s: unable to create MII monitoring task",
254 		    ddi_driver_name(dip));
255 		cv_destroy(&mh->m_cv);
256 		mutex_destroy(&mh->m_lock);
257 		kmem_free(mh, sizeof (*mh));
258 		return (NULL);
259 	}
260 
261 	/*
262 	 * Initialize user prefs by loading properties.  Ultimately,
263 	 * Brussels interfaces would be superior here.
264 	 */
265 #define	GETPROP(name)	ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, name, -1)
266 	mh->m_en_aneg = GETPROP("adv_autoneg_cap");
267 	mh->m_en_10_hdx = GETPROP("adv_10hdx_cap");
268 	mh->m_en_10_fdx = GETPROP("adv_10fdx_cap");
269 	mh->m_en_100_hdx = GETPROP("adv_100hdx_cap");
270 	mh->m_en_100_fdx = GETPROP("adv_100fdx_cap");
271 	mh->m_en_100_t4 = GETPROP("adv_100T4_cap");
272 	mh->m_en_1000_hdx = GETPROP("adv_1000hdx_cap");
273 	mh->m_en_1000_fdx = GETPROP("adv_1000fdx_cap");
274 
275 	mh->m_cap_pause = B_FALSE;
276 	mh->m_cap_asmpause = B_FALSE;
277 
278 	bzero(&mh->m_bogus_phy, sizeof (mh->m_bogus_phy));
279 	mh->m_bogus_phy.phy_link = LINK_STATE_UNKNOWN;
280 	mh->m_bogus_phy.phy_duplex = LINK_DUPLEX_UNKNOWN;
281 	mh->m_bogus_phy.phy_addr = 0xff;
282 	mh->m_bogus_phy.phy_type = XCVR_NONE;
283 	mh->m_bogus_phy.phy_id = (uint32_t)-1;
284 	mh->m_bogus_phy.phy_loopback = PHY_LB_NONE;
285 	mh->m_bogus_phy.phy_flowctrl = LINK_FLOWCTRL_NONE;
286 	mh->m_phy = &mh->m_bogus_phy;
287 
288 	for (int i = 0; i < 32; i++) {
289 		mh->m_phys[i].phy_mii = mh;
290 	}
291 	mh->m_bogus_phy.phy_mii = mh;
292 
293 	return (mh);
294 }
295 
296 mii_handle_t
297 mii_alloc(void *private, dev_info_t *dip, mii_ops_t *ops)
298 {
299 	return (mii_alloc_instance(private, dip, ddi_get_instance(dip), ops));
300 }
301 
302 void
303 mii_set_pauseable(mii_handle_t mh, boolean_t pauseable, boolean_t asymetric)
304 {
305 	phy_handle_t	*ph;
306 
307 	mutex_enter(&mh->m_lock);
308 	ph = mh->m_phy;
309 	ph->phy_cap_pause = mh->m_cap_pause = pauseable;
310 	ph->phy_cap_asmpause = mh->m_cap_asmpause = asymetric;
311 	if (pauseable) {
312 		mh->m_en_flowctrl = LINK_FLOWCTRL_BI;
313 	} else {
314 		mh->m_en_flowctrl = LINK_FLOWCTRL_NONE;
315 	}
316 	mutex_exit(&mh->m_lock);
317 }
318 
319 void
320 mii_free(mii_handle_t mh)
321 {
322 	mutex_enter(&mh->m_lock);
323 	mh->m_started = B_FALSE;
324 	cv_broadcast(&mh->m_cv);
325 	mutex_exit(&mh->m_lock);
326 
327 	ddi_taskq_destroy(mh->m_tq);
328 	mutex_destroy(&mh->m_lock);
329 	cv_destroy(&mh->m_cv);
330 	kmem_free(mh, sizeof (*mh));
331 }
332 
333 void
334 mii_reset(mii_handle_t mh)
335 {
336 	mutex_enter(&mh->m_lock);
337 	if (mh->m_tstate > MII_STATE_RESET)
338 		mh->m_tstate = MII_STATE_RESET;
339 	cv_broadcast(&mh->m_cv);
340 	mutex_exit(&mh->m_lock);
341 }
342 
343 void
344 mii_suspend(mii_handle_t mh)
345 {
346 	mutex_enter(&mh->m_lock);
347 	while ((!mh->m_suspended) && (mh->m_started)) {
348 		mh->m_suspending = B_TRUE;
349 		cv_broadcast(&mh->m_cv);
350 		cv_wait(&mh->m_cv, &mh->m_lock);
351 	}
352 	mutex_exit(&mh->m_lock);
353 }
354 
355 void
356 mii_resume(mii_handle_t mh)
357 {
358 	mutex_enter(&mh->m_lock);
359 
360 	switch (mh->m_tstate) {
361 	case MII_STATE_PROBE:
362 		break;
363 	case MII_STATE_RESET:
364 	case MII_STATE_START:
365 	case MII_STATE_RUN:
366 		/* let monitor thread deal with this */
367 		mh->m_tstate = MII_STATE_RESET;
368 		break;
369 
370 	case MII_STATE_LOOPBACK:
371 		/* loopback is handled synchronously */
372 		(void) _mii_loopback(mh);
373 		break;
374 	}
375 
376 	mh->m_suspended = B_FALSE;
377 	cv_broadcast(&mh->m_cv);
378 	mutex_exit(&mh->m_lock);
379 }
380 
381 void
382 mii_start(mii_handle_t mh)
383 {
384 	mutex_enter(&mh->m_lock);
385 	if (!mh->m_started) {
386 		mh->m_tstate = MII_STATE_PROBE;
387 		mh->m_started = B_TRUE;
388 		if (ddi_taskq_dispatch(mh->m_tq, _mii_task, mh, DDI_NOSLEEP) !=
389 		    DDI_SUCCESS) {
390 			cmn_err(CE_WARN,
391 			    "%s: unable to start MII monitoring task",
392 			    mh->m_name);
393 			mh->m_started = B_FALSE;
394 		}
395 	}
396 	cv_broadcast(&mh->m_cv);
397 	mutex_exit(&mh->m_lock);
398 }
399 
400 void
401 mii_stop(mii_handle_t mh)
402 {
403 	mutex_enter(&mh->m_lock);
404 	mh->m_started = B_FALSE;
405 	/*
406 	 * Reset link state to unknown defaults, since we're not
407 	 * monitoring it anymore.  We'll reprobe all link state later.
408 	 */
409 	mh->m_link = LINK_STATE_UNKNOWN;
410 	mh->m_phy = &mh->m_bogus_phy;
411 	cv_broadcast(&mh->m_cv);
412 	mutex_exit(&mh->m_lock);
413 	/*
414 	 * Notify the MAC driver.  This will allow it to call back
415 	 * into the MAC framework to clear any previous link state.
416 	 */
417 	_mii_notify(mh);
418 }
419 
420 void
421 mii_probe(mii_handle_t mh)
422 {
423 	mutex_enter(&mh->m_lock);
424 	_mii_probe(mh);
425 	mutex_exit(&mh->m_lock);
426 }
427 
428 void
429 mii_check(mii_handle_t mh)
430 {
431 	mutex_enter(&mh->m_lock);
432 	cv_broadcast(&mh->m_cv);
433 	mutex_exit(&mh->m_lock);
434 }
435 
436 int
437 mii_get_speed(mii_handle_t mh)
438 {
439 	phy_handle_t	*ph = mh->m_phy;
440 
441 	return (ph->phy_speed);
442 }
443 
444 link_duplex_t
445 mii_get_duplex(mii_handle_t mh)
446 {
447 	phy_handle_t	*ph = mh->m_phy;
448 
449 	return (ph->phy_duplex);
450 }
451 
452 link_state_t
453 mii_get_state(mii_handle_t mh)
454 {
455 	phy_handle_t	*ph = mh->m_phy;
456 
457 	return (ph->phy_link);
458 }
459 
460 link_flowctrl_t
461 mii_get_flowctrl(mii_handle_t mh)
462 {
463 	phy_handle_t	*ph = mh->m_phy;
464 
465 	return (ph->phy_flowctrl);
466 }
467 
468 int
469 mii_get_loopmodes(mii_handle_t mh, lb_property_t *modes)
470 {
471 	phy_handle_t	*ph = mh->m_phy;
472 	int		cnt = 0;
473 	lb_property_t	lmodes[MII_LOOPBACK_MAX];
474 
475 	lmodes[cnt].lb_type = normal;
476 	(void) strlcpy(lmodes[cnt].key, "normal", sizeof (lmodes[cnt].key));
477 	lmodes[cnt].value = PHY_LB_NONE;
478 	cnt++;
479 
480 	if (ph->phy_cap_1000_fdx ||
481 	    ph->phy_cap_100_fdx ||
482 	    ph->phy_cap_10_fdx) {
483 		/* we only support full duplex internal phy testing */
484 		lmodes[cnt].lb_type = internal;
485 		(void) strlcpy(lmodes[cnt].key, "PHY",
486 		    sizeof (lmodes[cnt].key));
487 		lmodes[cnt].value = PHY_LB_INT_PHY;
488 		cnt++;
489 	}
490 
491 	if (ph->phy_cap_1000_fdx) {
492 		lmodes[cnt].lb_type = external;
493 		(void) strlcpy(lmodes[cnt].key, "1000Mbps",
494 		    sizeof (lmodes[cnt].key));
495 		lmodes[cnt].value = PHY_LB_EXT_1000;
496 		cnt++;
497 	}
498 
499 	if (ph->phy_cap_100_fdx) {
500 		lmodes[cnt].lb_type = external;
501 		(void) strlcpy(lmodes[cnt].key, "100Mbps",
502 		    sizeof (lmodes[cnt].key));
503 		lmodes[cnt].value = PHY_LB_EXT_100;
504 		cnt++;
505 	}
506 
507 	if (ph->phy_cap_10_fdx) {
508 		lmodes[cnt].lb_type = external;
509 		(void) strlcpy(lmodes[cnt].key, "10Mbps",
510 		    sizeof (lmodes[cnt].key));
511 		lmodes[cnt].value = PHY_LB_EXT_10;
512 		cnt++;
513 	}
514 
515 	if (modes) {
516 		bcopy(lmodes, modes, sizeof (lb_property_t) * cnt);
517 	}
518 
519 	return (cnt);
520 }
521 
522 uint32_t
523 mii_get_loopback(mii_handle_t mh)
524 {
525 	phy_handle_t	*ph = mh->m_phy;
526 
527 	return (ph->phy_loopback);
528 }
529 
530 int
531 mii_set_loopback(mii_handle_t mh, uint32_t loop)
532 {
533 	phy_handle_t	*ph;
534 	int		rv;
535 
536 	mutex_enter(&mh->m_lock);
537 	ph = mh->m_phy;
538 
539 	if ((!mh->m_started) || (!ph->phy_present) ||
540 	    (loop >= mii_get_loopmodes(mh, NULL))) {
541 		return (EINVAL);
542 	}
543 
544 	ph->phy_loopback = loop;
545 	rv = _mii_loopback(mh);
546 	if (rv == DDI_SUCCESS) {
547 		mh->m_tstate = MII_STATE_LOOPBACK;
548 	}
549 	cv_broadcast(&mh->m_cv);
550 	mutex_exit(&mh->m_lock);
551 
552 	return (rv == DDI_SUCCESS ? 0 : EIO);
553 }
554 
555 uint32_t
556 mii_get_id(mii_handle_t mh)
557 {
558 	phy_handle_t	*ph = mh->m_phy;
559 
560 	return (ph->phy_id);
561 }
562 
563 int
564 mii_get_addr(mii_handle_t mh)
565 {
566 	return (mh->m_addr);
567 }
568 
569 /* GLDv3 helpers */
570 
571 boolean_t
572 mii_m_loop_ioctl(mii_handle_t mh, queue_t *wq, mblk_t *mp)
573 {
574 	struct iocblk	*iocp;
575 	int		rv = 0;
576 	int		cnt;
577 	lb_property_t	modes[MII_LOOPBACK_MAX];
578 	lb_info_sz_t	sz;
579 	int		cmd;
580 	uint32_t	mode;
581 
582 	iocp = (void *)mp->b_rptr;
583 	cmd = iocp->ioc_cmd;
584 
585 	switch (cmd) {
586 	case LB_SET_MODE:
587 	case LB_GET_INFO_SIZE:
588 	case LB_GET_INFO:
589 	case LB_GET_MODE:
590 		break;
591 
592 	default:
593 		return (B_FALSE);
594 	}
595 
596 	if (mp->b_cont == NULL) {
597 		miocnak(wq, mp, 0, EINVAL);
598 		return (B_TRUE);
599 	}
600 
601 	switch (cmd) {
602 	case LB_GET_INFO_SIZE:
603 		cnt = mii_get_loopmodes(mh, modes);
604 		if (iocp->ioc_count != sizeof (sz)) {
605 			rv = EINVAL;
606 		} else {
607 			sz = cnt * sizeof (lb_property_t);
608 			bcopy(&sz, mp->b_cont->b_rptr, sizeof (sz));
609 		}
610 		break;
611 
612 	case LB_GET_INFO:
613 		cnt = mii_get_loopmodes(mh, modes);
614 		if (iocp->ioc_count != (cnt * sizeof (lb_property_t))) {
615 			rv = EINVAL;
616 		} else {
617 			bcopy(modes, mp->b_cont->b_rptr, iocp->ioc_count);
618 		}
619 		break;
620 
621 	case LB_GET_MODE:
622 		if (iocp->ioc_count != sizeof (mode)) {
623 			rv = EINVAL;
624 		} else {
625 			mode = mii_get_loopback(mh);
626 			bcopy(&mode, mp->b_cont->b_rptr, sizeof (mode));
627 		}
628 		break;
629 
630 	case LB_SET_MODE:
631 		rv = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
632 		if (rv != 0)
633 			break;
634 		if (iocp->ioc_count != sizeof (mode)) {
635 			rv = EINVAL;
636 			break;
637 		}
638 		bcopy(mp->b_cont->b_rptr, &mode, sizeof (mode));
639 		rv = mii_set_loopback(mh, mode);
640 		break;
641 	}
642 
643 	if (rv == 0) {
644 		miocack(wq, mp, iocp->ioc_count, 0);
645 	} else {
646 		miocnak(wq, mp, 0, rv);
647 	}
648 	return (B_TRUE);
649 }
650 
651 int
652 mii_m_getprop(mii_handle_t mh, const char *name, mac_prop_id_t num,
653     uint_t flags, uint_t sz, void *val, uint_t *permp)
654 {
655 	phy_handle_t	*ph;
656 	int		err = 0;
657 	uint_t		perm;
658 	boolean_t	dfl = flags & MAC_PROP_DEFAULT;
659 
660 	_NOTE(ARGUNUSED(name));
661 
662 	if (sz < 1)
663 		return (EINVAL);
664 
665 	mutex_enter(&mh->m_lock);
666 
667 	ph = mh->m_phy;
668 	perm = MAC_PROP_PERM_RW;
669 
670 #define	CASE_PROP_ABILITY(PROP, VAR)					\
671 	case MAC_PROP_ADV_##PROP:					\
672 		perm = MAC_PROP_PERM_READ;				\
673 		*(uint8_t *)val =					\
674 		    dfl ? ph->phy_cap_##VAR : ph->phy_adv_##VAR;	\
675 		break;							\
676 									\
677 	case MAC_PROP_EN_##PROP:					\
678 		if (!ph->phy_cap_##VAR)					\
679 			perm = MAC_PROP_PERM_READ;			\
680 		*(uint8_t *)val =					\
681 		    dfl ? ph->phy_cap_##VAR : ph->phy_en_##VAR;		\
682 		break;
683 
684 	switch (num) {
685 	case MAC_PROP_DUPLEX:
686 		perm = MAC_PROP_PERM_READ;
687 		if (sz >= sizeof (link_duplex_t)) {
688 			bcopy(&ph->phy_duplex, val, sizeof (link_duplex_t));
689 		} else {
690 			err = EINVAL;
691 		}
692 		break;
693 
694 	case MAC_PROP_SPEED:
695 		perm = MAC_PROP_PERM_READ;
696 		if (sz >= sizeof (uint64_t)) {
697 			uint64_t speed = ph->phy_speed * 1000000ull;
698 			bcopy(&speed, val, sizeof (speed));
699 		} else {
700 			err = EINVAL;
701 		}
702 		break;
703 
704 	case MAC_PROP_AUTONEG:
705 		*(uint8_t *)val =
706 		    dfl ? ph->phy_cap_aneg : ph->phy_adv_aneg;
707 		break;
708 
709 	case MAC_PROP_FLOWCTRL:
710 		if (sz >= sizeof (link_flowctrl_t)) {
711 			bcopy(&ph->phy_flowctrl, val,
712 			    sizeof (link_flowctrl_t));
713 		} else {
714 			err = EINVAL;
715 		}
716 		break;
717 
718 	CASE_PROP_ABILITY(1000FDX_CAP, 1000_fdx)
719 	CASE_PROP_ABILITY(1000HDX_CAP, 1000_hdx)
720 	CASE_PROP_ABILITY(100T4_CAP, 100_t4)
721 	CASE_PROP_ABILITY(100FDX_CAP, 100_fdx)
722 	CASE_PROP_ABILITY(100HDX_CAP, 100_hdx)
723 	CASE_PROP_ABILITY(10FDX_CAP, 10_fdx)
724 	CASE_PROP_ABILITY(10HDX_CAP, 10_hdx)
725 
726 	default:
727 		err = ENOTSUP;
728 		break;
729 	}
730 
731 	if (err == 0) {
732 		*permp = perm;
733 	}
734 
735 	mutex_exit(&mh->m_lock);
736 
737 	return (err);
738 }
739 
740 int
741 mii_m_setprop(mii_handle_t mh, const char *name, mac_prop_id_t num,
742     uint_t sz, const void *valp)
743 {
744 	phy_handle_t	*ph;
745 	boolean_t	*advp = NULL;
746 	boolean_t	*capp = NULL;
747 	int		*macpp = NULL;
748 	int		rv = ENOTSUP;
749 
750 	_NOTE(ARGUNUSED(name));
751 
752 	if (sz < 1)
753 		return (EINVAL);
754 
755 	mutex_enter(&mh->m_lock);
756 
757 	ph = mh->m_phy;
758 
759 	/* we don't support changing parameters while in loopback mode */
760 	if (ph->phy_loopback != PHY_LB_NONE) {
761 		switch (num) {
762 		case MAC_PROP_EN_1000FDX_CAP:
763 		case MAC_PROP_EN_1000HDX_CAP:
764 		case MAC_PROP_EN_100FDX_CAP:
765 		case MAC_PROP_EN_100HDX_CAP:
766 		case MAC_PROP_EN_100T4_CAP:
767 		case MAC_PROP_EN_10FDX_CAP:
768 		case MAC_PROP_EN_10HDX_CAP:
769 		case MAC_PROP_AUTONEG:
770 		case MAC_PROP_FLOWCTRL:
771 			return (EBUSY);
772 		}
773 	}
774 
775 	switch (num) {
776 	case MAC_PROP_EN_1000FDX_CAP:
777 		capp = &ph->phy_cap_1000_fdx;
778 		advp = &ph->phy_en_1000_fdx;
779 		macpp = &mh->m_en_1000_fdx;
780 		break;
781 	case MAC_PROP_EN_1000HDX_CAP:
782 		capp = &ph->phy_cap_1000_hdx;
783 		advp = &ph->phy_en_1000_hdx;
784 		macpp = &mh->m_en_1000_hdx;
785 		break;
786 	case MAC_PROP_EN_100FDX_CAP:
787 		capp = &ph->phy_cap_100_fdx;
788 		advp = &ph->phy_en_100_fdx;
789 		macpp = &mh->m_en_100_fdx;
790 		break;
791 	case MAC_PROP_EN_100HDX_CAP:
792 		capp = &ph->phy_cap_100_hdx;
793 		advp = &ph->phy_en_100_hdx;
794 		macpp = &mh->m_en_100_hdx;
795 		break;
796 	case MAC_PROP_EN_100T4_CAP:
797 		capp = &ph->phy_cap_100_t4;
798 		advp = &ph->phy_en_100_t4;
799 		macpp = &mh->m_en_100_t4;
800 		break;
801 	case MAC_PROP_EN_10FDX_CAP:
802 		capp = &ph->phy_cap_10_fdx;
803 		advp = &ph->phy_en_10_fdx;
804 		macpp = &mh->m_en_10_fdx;
805 		break;
806 	case MAC_PROP_EN_10HDX_CAP:
807 		capp = &ph->phy_cap_10_hdx;
808 		advp = &ph->phy_en_10_hdx;
809 		macpp = &mh->m_en_10_hdx;
810 		break;
811 	case MAC_PROP_AUTONEG:
812 		capp = &ph->phy_cap_aneg;
813 		advp = &ph->phy_en_aneg;
814 		macpp = &mh->m_en_aneg;
815 		break;
816 	case MAC_PROP_FLOWCTRL:
817 		if (sz < sizeof (link_flowctrl_t)) {
818 			rv = EINVAL;
819 		} else {
820 			link_flowctrl_t	fc;
821 			boolean_t chg;
822 
823 			bcopy(valp, &fc, sizeof (fc));
824 
825 			chg = fc == ph->phy_en_flowctrl ? B_FALSE : B_TRUE;
826 			switch (fc) {
827 			case LINK_FLOWCTRL_NONE:
828 				ph->phy_en_pause = B_FALSE;
829 				ph->phy_en_asmpause = B_FALSE;
830 				ph->phy_en_flowctrl = fc;
831 				break;
832 			/*
833 			 * Note that while we don't have a way to
834 			 * advertise that we can RX pause (we just
835 			 * won't send pause frames), we advertise full
836 			 * support.  The MAC driver will learn of the
837 			 * configuration via the saved value of the
838 			 * tunable.
839 			 */
840 			case LINK_FLOWCTRL_BI:
841 			case LINK_FLOWCTRL_RX:
842 				if (ph->phy_cap_pause) {
843 					ph->phy_en_pause = B_TRUE;
844 					ph->phy_en_asmpause = B_TRUE;
845 					ph->phy_en_flowctrl = fc;
846 				} else {
847 					rv = EINVAL;
848 				}
849 				break;
850 
851 			/*
852 			 * Tell the other side that we can assert
853 			 * pause, but we cannot resend.
854 			 */
855 			case LINK_FLOWCTRL_TX:
856 				if (ph->phy_cap_asmpause) {
857 					ph->phy_en_pause = B_FALSE;
858 					ph->phy_en_flowctrl = fc;
859 					ph->phy_en_asmpause = B_TRUE;
860 				} else {
861 					rv = EINVAL;
862 				}
863 				break;
864 			default:
865 				rv = EINVAL;
866 				break;
867 			}
868 			if ((rv == 0) && chg) {
869 				mh->m_en_flowctrl = fc;
870 				mh->m_tstate = MII_STATE_RESET;
871 				cv_broadcast(&mh->m_cv);
872 			}
873 		}
874 		break;
875 
876 	default:
877 		rv = ENOTSUP;
878 		break;
879 	}
880 
881 	if (capp && advp && macpp) {
882 		if (sz < sizeof (uint8_t)) {
883 			rv = EINVAL;
884 
885 		} else if (*capp) {
886 			if (*advp != *(uint8_t *)valp) {
887 				*advp = *(uint8_t *)valp;
888 				*macpp = *(uint8_t *)valp;
889 				mh->m_tstate = MII_STATE_RESET;
890 				cv_broadcast(&mh->m_cv);
891 			}
892 			rv = 0;
893 		}
894 	}
895 
896 	mutex_exit(&mh->m_lock);
897 	return (rv);
898 }
899 
900 int
901 mii_m_getstat(mii_handle_t mh, uint_t stat, uint64_t *val)
902 {
903 	phy_handle_t	*ph;
904 	int		rv = 0;
905 
906 	mutex_enter(&mh->m_lock);
907 
908 	ph = mh->m_phy;
909 
910 	switch (stat) {
911 	case MAC_STAT_IFSPEED:
912 		*val = ph->phy_speed * 1000000ull;
913 		break;
914 	case ETHER_STAT_LINK_DUPLEX:
915 		*val = ph->phy_duplex;
916 		break;
917 	case ETHER_STAT_LINK_AUTONEG:
918 		*val = !!(ph->phy_adv_aneg && ph->phy_lp_aneg);
919 		break;
920 	case ETHER_STAT_XCVR_ID:
921 		*val = ph->phy_id;
922 		break;
923 	case ETHER_STAT_XCVR_INUSE:
924 		*val = ph->phy_type;
925 		break;
926 	case ETHER_STAT_XCVR_ADDR:
927 		*val = ph->phy_addr;
928 		break;
929 	case ETHER_STAT_LINK_ASMPAUSE:
930 		*val = ph->phy_adv_asmpause && ph->phy_lp_asmpause &&
931 		    ph->phy_adv_pause != ph->phy_lp_pause;
932 		break;
933 	case ETHER_STAT_LINK_PAUSE:
934 		*val = (ph->phy_flowctrl == LINK_FLOWCTRL_BI) ||
935 		    (ph->phy_flowctrl == LINK_FLOWCTRL_RX);
936 		break;
937 	case ETHER_STAT_CAP_1000FDX:
938 		*val = ph->phy_cap_1000_fdx;
939 		break;
940 	case ETHER_STAT_CAP_1000HDX:
941 		*val = ph->phy_cap_1000_hdx;
942 		break;
943 	case ETHER_STAT_CAP_100FDX:
944 		*val = ph->phy_cap_100_fdx;
945 		break;
946 	case ETHER_STAT_CAP_100HDX:
947 		*val = ph->phy_cap_100_hdx;
948 		break;
949 	case ETHER_STAT_CAP_10FDX:
950 		*val = ph->phy_cap_10_fdx;
951 		break;
952 	case ETHER_STAT_CAP_10HDX:
953 		*val = ph->phy_cap_10_hdx;
954 		break;
955 	case ETHER_STAT_CAP_100T4:
956 		*val = ph->phy_cap_100_t4;
957 		break;
958 	case ETHER_STAT_CAP_AUTONEG:
959 		*val = ph->phy_cap_aneg;
960 		break;
961 	case ETHER_STAT_CAP_PAUSE:
962 		*val = ph->phy_cap_pause;
963 		break;
964 	case ETHER_STAT_CAP_ASMPAUSE:
965 		*val = ph->phy_cap_asmpause;
966 		break;
967 
968 	case ETHER_STAT_LP_CAP_1000FDX:
969 		*val = ph->phy_lp_1000_fdx;
970 		break;
971 	case ETHER_STAT_LP_CAP_1000HDX:
972 		*val = ph->phy_lp_1000_hdx;
973 		break;
974 	case ETHER_STAT_LP_CAP_100FDX:
975 		*val = ph->phy_lp_100_fdx;
976 		break;
977 	case ETHER_STAT_LP_CAP_100HDX:
978 		*val = ph->phy_lp_100_hdx;
979 		break;
980 	case ETHER_STAT_LP_CAP_10FDX:
981 		*val = ph->phy_lp_10_fdx;
982 		break;
983 	case ETHER_STAT_LP_CAP_10HDX:
984 		*val = ph->phy_lp_10_hdx;
985 		break;
986 	case ETHER_STAT_LP_CAP_100T4:
987 		*val = ph->phy_lp_100_t4;
988 		break;
989 	case ETHER_STAT_LP_CAP_AUTONEG:
990 		*val = ph->phy_lp_aneg;
991 		break;
992 	case ETHER_STAT_LP_CAP_PAUSE:
993 		*val = ph->phy_lp_pause;
994 		break;
995 	case ETHER_STAT_LP_CAP_ASMPAUSE:
996 		*val = ph->phy_lp_asmpause;
997 		break;
998 
999 	case ETHER_STAT_ADV_CAP_1000FDX:
1000 		*val = ph->phy_adv_1000_fdx;
1001 		break;
1002 	case ETHER_STAT_ADV_CAP_1000HDX:
1003 		*val = ph->phy_adv_1000_hdx;
1004 		break;
1005 	case ETHER_STAT_ADV_CAP_100FDX:
1006 		*val = ph->phy_adv_100_fdx;
1007 		break;
1008 	case ETHER_STAT_ADV_CAP_100HDX:
1009 		*val = ph->phy_adv_100_hdx;
1010 		break;
1011 	case ETHER_STAT_ADV_CAP_10FDX:
1012 		*val = ph->phy_adv_10_fdx;
1013 		break;
1014 	case ETHER_STAT_ADV_CAP_10HDX:
1015 		*val = ph->phy_adv_10_hdx;
1016 		break;
1017 	case ETHER_STAT_ADV_CAP_100T4:
1018 		*val = ph->phy_adv_100_t4;
1019 		break;
1020 	case ETHER_STAT_ADV_CAP_AUTONEG:
1021 		*val = ph->phy_adv_aneg;
1022 		break;
1023 	case ETHER_STAT_ADV_CAP_PAUSE:
1024 		*val = ph->phy_adv_pause;
1025 		break;
1026 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
1027 		*val = ph->phy_adv_asmpause;
1028 		break;
1029 
1030 	default:
1031 		rv = ENOTSUP;
1032 		break;
1033 	}
1034 	mutex_exit(&mh->m_lock);
1035 
1036 	return (rv);
1037 }
1038 
1039 /*
1040  * PHY support routines.  Private to the MII module and the vendor
1041  * specific PHY implementation code.
1042  */
1043 uint16_t
1044 phy_read(phy_handle_t *ph, uint8_t reg)
1045 {
1046 	mii_handle_t	mh = ph->phy_mii;
1047 
1048 	return ((*mh->m_ops.mii_read)(mh->m_private, ph->phy_addr, reg));
1049 }
1050 
1051 void
1052 phy_write(phy_handle_t *ph, uint8_t reg, uint16_t val)
1053 {
1054 	mii_handle_t	mh = ph->phy_mii;
1055 
1056 	(*mh->m_ops.mii_write)(mh->m_private, ph->phy_addr, reg, val);
1057 }
1058 
1059 int
1060 phy_reset(phy_handle_t *ph)
1061 {
1062 	ASSERT(mutex_owned(&ph->phy_mii->m_lock));
1063 
1064 	/*
1065 	 * For our device, make sure its powered up and unisolated.
1066 	 */
1067 	PHY_CLR(ph, MII_CONTROL,
1068 	    MII_CONTROL_PWRDN | MII_CONTROL_ISOLATE);
1069 
1070 	/*
1071 	 * Finally reset it.
1072 	 */
1073 	PHY_SET(ph, MII_CONTROL, MII_CONTROL_RESET);
1074 
1075 	/*
1076 	 * Apparently some devices (DP83840A) like to have a little
1077 	 * bit of a wait before we start accessing anything else on
1078 	 * the PHY.
1079 	 */
1080 	drv_usecwait(500);
1081 
1082 	/*
1083 	 * Wait for reset to complete - probably very fast, but no
1084 	 * more than 0.5 sec according to spec.  It would be nice if
1085 	 * we could use delay() here, but MAC drivers may call
1086 	 * functions which hold this lock in interrupt context, so
1087 	 * sleeping would be a definite no-no.  The good news here is
1088 	 * that it seems to be the case that most devices come back
1089 	 * within only a few hundred usec.
1090 	 */
1091 	for (int i = 500000; i; i -= 100) {
1092 		if ((phy_read(ph, MII_CONTROL) & MII_CONTROL_RESET) == 0) {
1093 			/* reset completed */
1094 			return (DDI_SUCCESS);
1095 		}
1096 		drv_usecwait(100);
1097 	}
1098 
1099 	return (DDI_FAILURE);
1100 }
1101 
1102 int
1103 phy_stop(phy_handle_t *ph)
1104 {
1105 	phy_write(ph, MII_CONTROL, MII_CONTROL_ISOLATE);
1106 
1107 	return (DDI_SUCCESS);
1108 }
1109 
1110 int
1111 phy_loop(phy_handle_t *ph)
1112 {
1113 	uint16_t	bmcr, gtcr;
1114 
1115 	ASSERT(mutex_owned(&ph->phy_mii->m_lock));
1116 
1117 	/*
1118 	 * Disable everything to start... we'll add in modes as we go.
1119 	 */
1120 	ph->phy_adv_aneg = B_FALSE;
1121 	ph->phy_adv_1000_fdx = B_FALSE;
1122 	ph->phy_adv_1000_hdx = B_FALSE;
1123 	ph->phy_adv_100_fdx = B_FALSE;
1124 	ph->phy_adv_100_t4 = B_FALSE;
1125 	ph->phy_adv_100_hdx = B_FALSE;
1126 	ph->phy_adv_10_fdx = B_FALSE;
1127 	ph->phy_adv_10_hdx = B_FALSE;
1128 	ph->phy_adv_pause = B_FALSE;
1129 	ph->phy_adv_asmpause = B_FALSE;
1130 
1131 	bmcr = 0;
1132 	gtcr = MII_MSCONTROL_MANUAL | MII_MSCONTROL_MASTER;
1133 
1134 	switch (ph->phy_loopback) {
1135 	case PHY_LB_NONE:
1136 		/* We shouldn't be here */
1137 		ASSERT(0);
1138 		break;
1139 
1140 	case PHY_LB_INT_PHY:
1141 		bmcr |= MII_CONTROL_LOOPBACK;
1142 		ph->phy_duplex = LINK_DUPLEX_FULL;
1143 		if (ph->phy_cap_1000_fdx) {
1144 			bmcr |= MII_CONTROL_1GB | MII_CONTROL_FDUPLEX;
1145 			ph->phy_speed = 1000;
1146 		} else if (ph->phy_cap_100_fdx) {
1147 			bmcr |= MII_CONTROL_100MB | MII_CONTROL_FDUPLEX;
1148 			ph->phy_speed = 100;
1149 		} else if (ph->phy_cap_10_fdx) {
1150 			bmcr |= MII_CONTROL_FDUPLEX;
1151 			ph->phy_speed = 10;
1152 		}
1153 		break;
1154 
1155 	case PHY_LB_EXT_10:
1156 		bmcr = MII_CONTROL_FDUPLEX;
1157 		ph->phy_speed = 10;
1158 		ph->phy_duplex = LINK_DUPLEX_FULL;
1159 		break;
1160 
1161 	case PHY_LB_EXT_100:
1162 		bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX;
1163 		ph->phy_speed = 100;
1164 		ph->phy_duplex = LINK_DUPLEX_FULL;
1165 		break;
1166 
1167 	case PHY_LB_EXT_1000:
1168 		bmcr = MII_CONTROL_1GB | MII_CONTROL_FDUPLEX;
1169 		ph->phy_speed = 1000;
1170 		ph->phy_duplex = LINK_DUPLEX_FULL;
1171 		break;
1172 	}
1173 
1174 	ph->phy_link = LINK_STATE_UP;	/* force up for loopback */
1175 	ph->phy_flowctrl = LINK_FLOWCTRL_NONE;
1176 
1177 	switch (ph->phy_type) {
1178 	case XCVR_1000T:
1179 	case XCVR_1000X:
1180 	case XCVR_100T2:
1181 		phy_write(ph, MII_MSCONTROL, gtcr);
1182 		break;
1183 	}
1184 
1185 	phy_write(ph, MII_CONTROL, bmcr);
1186 
1187 	return (DDI_SUCCESS);
1188 }
1189 
1190 int
1191 phy_start(phy_handle_t *ph)
1192 {
1193 	uint16_t	bmcr, anar, gtcr;
1194 	ASSERT(mutex_owned(&ph->phy_mii->m_lock));
1195 
1196 	ASSERT(ph->phy_loopback == PHY_LB_NONE);
1197 
1198 	/*
1199 	 * No loopback overrides, so try to advertise everything
1200 	 * that is administratively enabled.
1201 	 */
1202 	ph->phy_adv_aneg = ph->phy_en_aneg;
1203 	ph->phy_adv_1000_fdx = ph->phy_en_1000_fdx;
1204 	ph->phy_adv_1000_hdx = ph->phy_en_1000_hdx;
1205 	ph->phy_adv_100_fdx = ph->phy_en_100_fdx;
1206 	ph->phy_adv_100_t4 = ph->phy_en_100_t4;
1207 	ph->phy_adv_100_hdx = ph->phy_en_100_hdx;
1208 	ph->phy_adv_10_fdx = ph->phy_en_10_fdx;
1209 	ph->phy_adv_10_hdx = ph->phy_en_10_hdx;
1210 	ph->phy_adv_pause = ph->phy_en_pause;
1211 	ph->phy_adv_asmpause = ph->phy_en_asmpause;
1212 
1213 	/*
1214 	 * Limit properties to what the hardware can actually support.
1215 	 */
1216 #define	FILTER_ADV(CAP)		\
1217 	if (!ph->phy_cap_##CAP)	\
1218 	    ph->phy_adv_##CAP = 0
1219 
1220 	FILTER_ADV(aneg);
1221 	FILTER_ADV(1000_fdx);
1222 	FILTER_ADV(1000_hdx);
1223 	FILTER_ADV(100_fdx);
1224 	FILTER_ADV(100_t4);
1225 	FILTER_ADV(100_hdx);
1226 	FILTER_ADV(10_fdx);
1227 	FILTER_ADV(10_hdx);
1228 	FILTER_ADV(pause);
1229 	FILTER_ADV(asmpause);
1230 
1231 #undef	FILTER_ADV
1232 
1233 	/*
1234 	 * We need at least one valid mode.
1235 	 */
1236 	if ((!ph->phy_adv_1000_fdx) &&
1237 	    (!ph->phy_adv_1000_hdx) &&
1238 	    (!ph->phy_adv_100_t4) &&
1239 	    (!ph->phy_adv_100_fdx) &&
1240 	    (!ph->phy_adv_100_hdx) &&
1241 	    (!ph->phy_adv_10_fdx) &&
1242 	    (!ph->phy_adv_10_hdx)) {
1243 
1244 		phy_warn(ph,
1245 		    "No valid link mode selected.  Powering down PHY.");
1246 
1247 		PHY_SET(ph, MII_CONTROL, MII_CONTROL_PWRDN);
1248 
1249 		ph->phy_link = LINK_STATE_DOWN;
1250 		return (DDI_SUCCESS);
1251 	}
1252 
1253 	bmcr = 0;
1254 	gtcr = 0;
1255 
1256 	if (ph->phy_adv_aneg) {
1257 		bmcr |= MII_CONTROL_ANE | MII_CONTROL_RSAN;
1258 	}
1259 
1260 	if ((ph->phy_adv_1000_fdx) || (ph->phy_adv_1000_hdx)) {
1261 		bmcr |= MII_CONTROL_1GB;
1262 
1263 	} else if (ph->phy_adv_100_fdx || ph->phy_adv_100_hdx ||
1264 	    ph->phy_adv_100_t4) {
1265 		bmcr |= MII_CONTROL_100MB;
1266 	}
1267 
1268 	if (ph->phy_adv_1000_fdx || ph->phy_adv_100_fdx || ph->phy_adv_10_fdx) {
1269 		bmcr |= MII_CONTROL_FDUPLEX;
1270 	}
1271 
1272 	if (ph->phy_type == XCVR_1000X) {
1273 		/* 1000BASE-X (usually fiber) */
1274 		anar = 0;
1275 		if (ph->phy_adv_1000_fdx) {
1276 			anar |= MII_ABILITY_X_FD;
1277 		}
1278 		if (ph->phy_adv_1000_hdx) {
1279 			anar |= MII_ABILITY_X_HD;
1280 		}
1281 		if (ph->phy_adv_pause) {
1282 			anar |= MII_ABILITY_X_PAUSE;
1283 		}
1284 		if (ph->phy_adv_asmpause) {
1285 			anar |= MII_ABILITY_X_ASMPAUSE;
1286 		}
1287 
1288 	} else if (ph->phy_type == XCVR_100T2) {
1289 		/* 100BASE-T2 */
1290 		anar = 0;
1291 		if (ph->phy_adv_100_fdx) {
1292 			anar |= MII_ABILITY_T2_FD;
1293 		}
1294 		if (ph->phy_adv_100_hdx) {
1295 			anar |= MII_ABILITY_T2_HD;
1296 		}
1297 
1298 	} else {
1299 		anar = MII_AN_SELECTOR_8023;
1300 
1301 		/* 1000BASE-T or 100BASE-X probably  */
1302 		if (ph->phy_adv_1000_fdx) {
1303 			gtcr |= MII_MSCONTROL_1000T_FD;
1304 		}
1305 		if (ph->phy_adv_1000_hdx) {
1306 			gtcr |= MII_MSCONTROL_1000T;
1307 		}
1308 		if (ph->phy_adv_100_fdx) {
1309 			anar |= MII_ABILITY_100BASE_TX_FD;
1310 		}
1311 		if (ph->phy_adv_100_hdx) {
1312 			anar |= MII_ABILITY_100BASE_TX;
1313 		}
1314 		if (ph->phy_adv_100_t4) {
1315 			anar |= MII_ABILITY_100BASE_T4;
1316 		}
1317 		if (ph->phy_adv_10_fdx) {
1318 			anar |= MII_ABILITY_10BASE_T_FD;
1319 		}
1320 		if (ph->phy_adv_10_hdx) {
1321 			anar |= MII_ABILITY_10BASE_T;
1322 		}
1323 		if (ph->phy_adv_pause) {
1324 			anar |= MII_ABILITY_PAUSE;
1325 		}
1326 		if (ph->phy_adv_asmpause) {
1327 			anar |= MII_ABILITY_ASMPAUSE;
1328 		}
1329 	}
1330 
1331 	ph->phy_link = LINK_STATE_DOWN;
1332 	ph->phy_duplex = LINK_DUPLEX_UNKNOWN;
1333 	ph->phy_speed = 0;
1334 
1335 	phy_write(ph, MII_AN_ADVERT, anar);
1336 	phy_write(ph, MII_CONTROL, bmcr & ~(MII_CONTROL_RSAN));
1337 
1338 	switch (ph->phy_type) {
1339 	case XCVR_1000T:
1340 	case XCVR_1000X:
1341 	case XCVR_100T2:
1342 		phy_write(ph, MII_MSCONTROL, gtcr);
1343 	}
1344 
1345 	/*
1346 	 * Finally, this will start up autoneg if it is enabled, or
1347 	 * force link settings otherwise.
1348 	 */
1349 	phy_write(ph, MII_CONTROL, bmcr);
1350 
1351 	return (DDI_SUCCESS);
1352 }
1353 
1354 
1355 int
1356 phy_check(phy_handle_t *ph)
1357 {
1358 	uint16_t control, status, lpar, msstat, anexp;
1359 	int debounces = 100;
1360 
1361 	ASSERT(mutex_owned(&ph->phy_mii->m_lock));
1362 
1363 debounce:
1364 	status = phy_read(ph, MII_STATUS);
1365 	control = phy_read(ph, MII_CONTROL);
1366 
1367 	if (status & MII_STATUS_EXTENDED) {
1368 		lpar = phy_read(ph, MII_AN_LPABLE);
1369 		anexp = phy_read(ph, MII_AN_EXPANSION);
1370 	} else {
1371 		lpar = 0;
1372 		anexp = 0;
1373 	}
1374 
1375 	/*
1376 	 * We reread to clear any latched bits.  This also debounces
1377 	 * any state that might be in transition.
1378 	 */
1379 	drv_usecwait(10);
1380 	if ((status != phy_read(ph, MII_STATUS)) && debounces) {
1381 		debounces--;
1382 		goto debounce;
1383 	}
1384 
1385 	/*
1386 	 * Detect the situation where the PHY is removed or has died.
1387 	 * According to spec, at least one bit of status must be set,
1388 	 * and at least one bit must be clear.
1389 	 */
1390 	if ((status == 0xffff) || (status == 0)) {
1391 		ph->phy_speed = 0;
1392 		ph->phy_duplex = LINK_DUPLEX_UNKNOWN;
1393 		ph->phy_link = LINK_STATE_UNKNOWN;
1394 		ph->phy_present = B_FALSE;
1395 		return (DDI_FAILURE);
1396 	}
1397 
1398 	/* We only respect the link flag if we are not in loopback. */
1399 	if ((ph->phy_loopback != PHY_LB_INT_PHY) &&
1400 	    ((status & MII_STATUS_LINKUP) == 0)) {
1401 		ph->phy_speed = 0;
1402 		ph->phy_duplex = LINK_DUPLEX_UNKNOWN;
1403 		ph->phy_link = LINK_STATE_DOWN;
1404 		return (DDI_SUCCESS);
1405 	}
1406 
1407 	ph->phy_link = LINK_STATE_UP;
1408 
1409 	if ((control & MII_CONTROL_ANE) == 0) {
1410 
1411 		ph->phy_lp_aneg = B_FALSE;
1412 		ph->phy_lp_10_hdx = B_FALSE;
1413 		ph->phy_lp_10_fdx = B_FALSE;
1414 		ph->phy_lp_100_t4 = B_FALSE;
1415 		ph->phy_lp_100_hdx = B_FALSE;
1416 		ph->phy_lp_100_fdx = B_FALSE;
1417 		ph->phy_lp_1000_hdx = B_FALSE;
1418 		ph->phy_lp_1000_fdx = B_FALSE;
1419 
1420 		/*
1421 		 * We have no idea what our link partner might or might
1422 		 * not be able to support, except that it appears to
1423 		 * support the same mode that we have forced.
1424 		 */
1425 		if (control & MII_CONTROL_1GB) {
1426 			ph->phy_speed = 1000;
1427 		} else if (control & MII_CONTROL_100MB) {
1428 			ph->phy_speed = 100;
1429 		} else {
1430 			ph->phy_speed = 10;
1431 		}
1432 		ph->phy_duplex = control & MII_CONTROL_FDUPLEX ?
1433 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1434 
1435 		return (DDI_SUCCESS);
1436 	}
1437 
1438 	if (ph->phy_type == XCVR_1000X) {
1439 
1440 		ph->phy_lp_10_hdx = B_FALSE;
1441 		ph->phy_lp_10_fdx = B_FALSE;
1442 		ph->phy_lp_100_t4 = B_FALSE;
1443 		ph->phy_lp_100_hdx = B_FALSE;
1444 		ph->phy_lp_100_fdx = B_FALSE;
1445 
1446 		/* 1000BASE-X requires autonegotiation */
1447 		ph->phy_lp_aneg = B_TRUE;
1448 		ph->phy_lp_1000_fdx = !!(lpar & MII_ABILITY_X_FD);
1449 		ph->phy_lp_1000_hdx = !!(lpar & MII_ABILITY_X_HD);
1450 		ph->phy_lp_pause = !!(lpar & MII_ABILITY_X_PAUSE);
1451 		ph->phy_lp_asmpause = !!(lpar & MII_ABILITY_X_ASMPAUSE);
1452 
1453 	} else if (ph->phy_type == XCVR_100T2) {
1454 		ph->phy_lp_10_hdx = B_FALSE;
1455 		ph->phy_lp_10_fdx = B_FALSE;
1456 		ph->phy_lp_100_t4 = B_FALSE;
1457 		ph->phy_lp_1000_hdx = B_FALSE;
1458 		ph->phy_lp_1000_fdx = B_FALSE;
1459 		ph->phy_lp_pause = B_FALSE;
1460 		ph->phy_lp_asmpause = B_FALSE;
1461 
1462 		/* 100BASE-T2 requires autonegotiation */
1463 		ph->phy_lp_aneg = B_TRUE;
1464 		ph->phy_lp_100_fdx = !!(lpar & MII_ABILITY_T2_FD);
1465 		ph->phy_lp_100_hdx = !!(lpar & MII_ABILITY_T2_HD);
1466 
1467 	} else if (anexp & MII_AN_EXP_PARFAULT) {
1468 		/*
1469 		 * Parallel detection fault!  This happens when the
1470 		 * peer does not use autonegotiation, and the
1471 		 * detection logic reports more than one type of legal
1472 		 * link is available.  Note that parallel detection
1473 		 * can only happen with half duplex 10, 100, and
1474 		 * 100TX4.  We also should not have got here, because
1475 		 * the link state bit should have failed.
1476 		 */
1477 #ifdef	DEBUG
1478 		phy_warn(ph, "Parallel detection fault!");
1479 #endif
1480 		ph->phy_lp_10_hdx = B_FALSE;
1481 		ph->phy_lp_10_fdx = B_FALSE;
1482 		ph->phy_lp_100_t4 = B_FALSE;
1483 		ph->phy_lp_100_hdx = B_FALSE;
1484 		ph->phy_lp_100_fdx = B_FALSE;
1485 		ph->phy_lp_1000_hdx = B_FALSE;
1486 		ph->phy_lp_1000_fdx = B_FALSE;
1487 		ph->phy_lp_pause = B_FALSE;
1488 		ph->phy_lp_asmpause = B_FALSE;
1489 		ph->phy_speed = 0;
1490 		ph->phy_duplex = LINK_DUPLEX_UNKNOWN;
1491 		return (DDI_SUCCESS);
1492 
1493 	} else {
1494 		ph->phy_lp_aneg = !!(anexp & MII_AN_EXP_LPCANAN);
1495 
1496 		/*
1497 		 * Note: If the peer doesn't support autonegotiation, then
1498 		 * according to clause 28.5.4.5, the link partner ability
1499 		 * register will still have the right bits set.  However,
1500 		 * gigabit modes cannot use legacy parallel detection.
1501 		 */
1502 
1503 		if ((ph->phy_type == XCVR_1000T) &
1504 		    (anexp & MII_AN_EXP_LPCANAN)) {
1505 
1506 			/* check for gige */
1507 			msstat = phy_read(ph, MII_MSSTATUS);
1508 
1509 			ph->phy_lp_1000_hdx =
1510 			    !!(msstat & MII_MSSTATUS_LP1000T);
1511 
1512 			ph->phy_lp_1000_fdx =
1513 			    !!(msstat & MII_MSSTATUS_LP1000T_FD);
1514 		}
1515 
1516 		ph->phy_lp_100_fdx = !!(lpar & MII_ABILITY_100BASE_TX_FD);
1517 		ph->phy_lp_100_hdx = !!(lpar & MII_ABILITY_100BASE_TX);
1518 		ph->phy_lp_100_t4 = !!(lpar & MII_ABILITY_100BASE_T4);
1519 		ph->phy_lp_10_fdx = !!(lpar & MII_ABILITY_10BASE_T_FD);
1520 		ph->phy_lp_10_hdx = !!(lpar & MII_ABILITY_10BASE_T);
1521 		ph->phy_lp_pause = !!(lpar & MII_ABILITY_PAUSE);
1522 		ph->phy_lp_asmpause = !!(lpar & MII_ABILITY_ASMPAUSE);
1523 	}
1524 
1525 	/* resolve link pause */
1526 	if ((ph->phy_en_flowctrl == LINK_FLOWCTRL_BI) &&
1527 	    (ph->phy_lp_pause)) {
1528 		ph->phy_flowctrl = LINK_FLOWCTRL_BI;
1529 	} else if ((ph->phy_en_flowctrl == LINK_FLOWCTRL_RX) &&
1530 	    (ph->phy_lp_pause || ph->phy_lp_asmpause)) {
1531 		ph->phy_flowctrl = LINK_FLOWCTRL_RX;
1532 	} else if ((ph->phy_en_flowctrl == LINK_FLOWCTRL_TX) &&
1533 	    (ph->phy_lp_pause)) {
1534 		ph->phy_flowctrl = LINK_FLOWCTRL_TX;
1535 	} else {
1536 		ph->phy_flowctrl = LINK_FLOWCTRL_NONE;
1537 	}
1538 
1539 	if (ph->phy_adv_1000_fdx && ph->phy_lp_1000_fdx) {
1540 		ph->phy_speed = 1000;
1541 		ph->phy_duplex = LINK_DUPLEX_FULL;
1542 
1543 	} else if (ph->phy_adv_1000_hdx && ph->phy_lp_1000_hdx) {
1544 		ph->phy_speed = 1000;
1545 		ph->phy_duplex = LINK_DUPLEX_HALF;
1546 
1547 	} else if (ph->phy_adv_100_fdx && ph->phy_lp_100_fdx) {
1548 		ph->phy_speed = 100;
1549 		ph->phy_duplex = LINK_DUPLEX_FULL;
1550 
1551 	} else if (ph->phy_adv_100_t4 && ph->phy_lp_100_t4) {
1552 		ph->phy_speed = 100;
1553 		ph->phy_duplex = LINK_DUPLEX_HALF;
1554 
1555 	} else if (ph->phy_adv_100_hdx && ph->phy_lp_100_hdx) {
1556 		ph->phy_speed = 100;
1557 		ph->phy_duplex = LINK_DUPLEX_HALF;
1558 
1559 	} else if (ph->phy_adv_10_fdx && ph->phy_lp_10_fdx) {
1560 		ph->phy_speed = 10;
1561 		ph->phy_duplex = LINK_DUPLEX_FULL;
1562 
1563 	} else if (ph->phy_adv_10_hdx && ph->phy_lp_10_hdx) {
1564 		ph->phy_speed = 10;
1565 		ph->phy_duplex = LINK_DUPLEX_HALF;
1566 
1567 	} else {
1568 #ifdef	DEBUG
1569 		phy_warn(ph, "No common abilities.");
1570 #endif
1571 		ph->phy_speed = 0;
1572 		ph->phy_duplex = LINK_DUPLEX_UNKNOWN;
1573 	}
1574 
1575 	return (DDI_SUCCESS);
1576 }
1577 
1578 int
1579 phy_get_prop(phy_handle_t *ph, char *prop, int dflt)
1580 {
1581 	mii_handle_t	mh = ph->phy_mii;
1582 
1583 	return (ddi_prop_get_int(DDI_DEV_T_ANY, mh->m_dip, 0, prop, dflt));
1584 }
1585 
1586 const char *
1587 phy_get_name(phy_handle_t *ph)
1588 {
1589 	mii_handle_t	mh = ph->phy_mii;
1590 
1591 	return (mh->m_name);
1592 }
1593 
1594 const char *
1595 phy_get_driver(phy_handle_t *ph)
1596 {
1597 	mii_handle_t	mh = ph->phy_mii;
1598 
1599 	return (ddi_driver_name(mh->m_dip));
1600 }
1601 
1602 void
1603 phy_warn(phy_handle_t *ph, const char *fmt, ...)
1604 {
1605 	va_list	va;
1606 	char buf[256];
1607 
1608 	(void) snprintf(buf, sizeof (buf), "%s: %s", phy_get_name(ph), fmt);
1609 
1610 	va_start(va, fmt);
1611 	vcmn_err(CE_WARN, buf, va);
1612 	va_end(va);
1613 }
1614 
1615 /*
1616  * Internal support routines.
1617  */
1618 
1619 void
1620 _mii_notify(mii_handle_t mh)
1621 {
1622 	if (mh->m_ops.mii_notify != NULL) {
1623 		mh->m_ops.mii_notify(mh->m_private, mh->m_link);
1624 	}
1625 }
1626 
1627 void
1628 _mii_probe_phy(phy_handle_t *ph)
1629 {
1630 	uint16_t	bmsr;
1631 	uint16_t	extsr;
1632 	mii_handle_t	mh = ph->phy_mii;
1633 
1634 
1635 	/*
1636 	 * Apparently, PHY 0 is less likely to be physically
1637 	 * connected, and should always be the last one tried.  Most
1638 	 * single solution NICs use PHY1 for their built-in
1639 	 * transceiver.  NICs with an external MII will often place
1640 	 * the external PHY at address 1, and use address 0 for the
1641 	 * internal PHY.
1642 	 */
1643 
1644 	ph->phy_id = 0;
1645 	ph->phy_model = "PHY";
1646 	ph->phy_vendor = "Unknown Vendor";
1647 
1648 	/* done twice to clear any latched bits */
1649 	bmsr = phy_read(ph, MII_STATUS);
1650 	bmsr = phy_read(ph, MII_STATUS);
1651 	if ((bmsr == 0) || (bmsr == 0xffff)) {
1652 		ph->phy_present = B_FALSE;
1653 		return;
1654 	}
1655 
1656 	if (bmsr & MII_STATUS_EXTSTAT) {
1657 		extsr = phy_read(ph, MII_EXTSTATUS);
1658 	} else {
1659 		extsr = 0;
1660 	}
1661 
1662 	ph->phy_present = B_TRUE;
1663 	ph->phy_id = ((uint32_t)phy_read(ph, MII_PHYIDH) << 16) |
1664 	    phy_read(ph, MII_PHYIDL);
1665 
1666 	/* setup default handlers */
1667 	ph->phy_reset = phy_reset;
1668 	ph->phy_start = phy_start;
1669 	ph->phy_stop = phy_stop;
1670 	ph->phy_check = phy_check;
1671 	ph->phy_loop = phy_loop;
1672 
1673 	/*
1674 	 * We ignore the non-existent 100baseT2 stuff -- no
1675 	 * known products for it exist.
1676 	 */
1677 	ph->phy_cap_aneg =	!!(bmsr & MII_STATUS_CANAUTONEG);
1678 	ph->phy_cap_100_t4 =	!!(bmsr & MII_STATUS_100_BASE_T4);
1679 	ph->phy_cap_100_fdx =	!!(bmsr & MII_STATUS_100_BASEX_FD);
1680 	ph->phy_cap_100_hdx =	!!(bmsr & MII_STATUS_100_BASEX);
1681 	ph->phy_cap_10_fdx =	!!(bmsr & MII_STATUS_10_FD);
1682 	ph->phy_cap_10_hdx =	!!(bmsr & MII_STATUS_10);
1683 	ph->phy_cap_1000_fdx =
1684 	    !!(extsr & (MII_EXTSTATUS_1000X_FD|MII_EXTSTATUS_1000T_FD));
1685 	ph->phy_cap_1000_hdx =
1686 	    !!(extsr & (MII_EXTSTATUS_1000X | MII_EXTSTATUS_1000T));
1687 	ph->phy_cap_pause =	mh->m_cap_pause;
1688 	ph->phy_cap_asmpause =	mh->m_cap_asmpause;
1689 
1690 	if (bmsr & MII_STATUS_10) {
1691 		ph->phy_cap_10_hdx = B_TRUE;
1692 		ph->phy_type = XCVR_10;
1693 	}
1694 	if (bmsr & MII_STATUS_10_FD) {
1695 		ph->phy_cap_10_fdx = B_TRUE;
1696 		ph->phy_type = XCVR_10;
1697 	}
1698 	if (bmsr & MII_STATUS_100T2) {
1699 		ph->phy_cap_100_hdx = B_TRUE;
1700 		ph->phy_type = XCVR_100T2;
1701 	}
1702 	if (bmsr & MII_STATUS_100T2_FD) {
1703 		ph->phy_cap_100_fdx = B_TRUE;
1704 		ph->phy_type = XCVR_100T2;
1705 	}
1706 	if (bmsr & MII_STATUS_100_BASE_T4) {
1707 		ph->phy_cap_100_hdx = B_TRUE;
1708 		ph->phy_type = XCVR_100T4;
1709 	}
1710 	if (bmsr & MII_STATUS_100_BASEX) {
1711 		ph->phy_cap_100_hdx = B_TRUE;
1712 		ph->phy_type = XCVR_100X;
1713 	}
1714 	if (bmsr & MII_STATUS_100_BASEX_FD) {
1715 		ph->phy_cap_100_fdx = B_TRUE;
1716 		ph->phy_type = XCVR_100X;
1717 	}
1718 	if (extsr & MII_EXTSTATUS_1000X) {
1719 		ph->phy_cap_1000_hdx = B_TRUE;
1720 		ph->phy_type = XCVR_1000X;
1721 	}
1722 	if (extsr & MII_EXTSTATUS_1000X_FD) {
1723 		ph->phy_cap_1000_fdx = B_TRUE;
1724 		ph->phy_type = XCVR_1000X;
1725 	}
1726 	if (extsr & MII_EXTSTATUS_1000T) {
1727 		ph->phy_cap_1000_hdx = B_TRUE;
1728 		ph->phy_type = XCVR_1000T;
1729 	}
1730 	if (extsr & MII_EXTSTATUS_1000T_FD) {
1731 		ph->phy_cap_1000_fdx = B_TRUE;
1732 		ph->phy_type = XCVR_1000T;
1733 	}
1734 
1735 	for (int j = 0; _phy_probes[j] != NULL; j++) {
1736 		if ((*_phy_probes[j])(ph)) {
1737 			break;
1738 		}
1739 	}
1740 
1741 #define	INIT_ENABLE(CAP)	\
1742 	ph->phy_en_##CAP = (mh->m_en_##CAP > 0) ? \
1743 	    mh->m_en_##CAP : ph->phy_cap_##CAP
1744 
1745 	INIT_ENABLE(aneg);
1746 	INIT_ENABLE(1000_fdx);
1747 	INIT_ENABLE(1000_hdx);
1748 	INIT_ENABLE(100_fdx);
1749 	INIT_ENABLE(100_t4);
1750 	INIT_ENABLE(100_hdx);
1751 	INIT_ENABLE(10_fdx);
1752 	INIT_ENABLE(10_hdx);
1753 
1754 #undef	INIT_ENABLE
1755 	ph->phy_en_flowctrl = mh->m_en_flowctrl;
1756 	switch (ph->phy_en_flowctrl) {
1757 	case LINK_FLOWCTRL_BI:
1758 	case LINK_FLOWCTRL_RX:
1759 		ph->phy_en_pause = B_TRUE;
1760 		ph->phy_en_asmpause = B_TRUE;
1761 		break;
1762 	case LINK_FLOWCTRL_TX:
1763 		ph->phy_en_pause = B_FALSE;
1764 		ph->phy_en_asmpause = B_TRUE;
1765 		break;
1766 	default:
1767 		ph->phy_en_pause = B_FALSE;
1768 		ph->phy_en_asmpause = B_FALSE;
1769 		break;
1770 	}
1771 }
1772 
1773 void
1774 _mii_probe(mii_handle_t mh)
1775 {
1776 	uint8_t		new_addr;
1777 	uint8_t		old_addr;
1778 	uint8_t		user_addr;
1779 	uint8_t		curr_addr;
1780 	phy_handle_t	*ph;
1781 	int		pri = 0;
1782 	int		first;
1783 
1784 	user_addr = ddi_prop_get_int(DDI_DEV_T_ANY, mh->m_dip, 0,
1785 	    "phy-addr", -1);
1786 	old_addr = mh->m_addr;
1787 	new_addr = 0xff;
1788 
1789 	/*
1790 	 * Apparently, PHY 0 is less likely to be physically
1791 	 * connected, and should always be the last one tried.  Most
1792 	 * single solution NICs use PHY1 for their built-in
1793 	 * transceiver.  NICs with an external MII will often place
1794 	 * the external PHY at address 1, and use address 0 for the
1795 	 * internal PHY.
1796 	 *
1797 	 * Some devices have a different preference however.  They can
1798 	 * override the default starting point of the search by
1799 	 * exporting a "first-phy" property.
1800 	 */
1801 
1802 	first = ddi_prop_get_int(DDI_DEV_T_ANY, mh->m_dip, 0, "first-phy", 1);
1803 	if ((first < 0) || (first > 31)) {
1804 		first = 1;
1805 	}
1806 	for (int i = first; i < (first + 32); i++) {
1807 
1808 		/*
1809 		 * This is tricky: it lets us start searching at an
1810 		 * arbitrary address instead of 0, dealing with the
1811 		 * wrap-around at address 31 properly.
1812 		 */
1813 		curr_addr = i % 32;
1814 
1815 		ph = &mh->m_phys[curr_addr];
1816 
1817 		bzero(ph, sizeof (*ph));
1818 		ph->phy_addr = curr_addr;
1819 		ph->phy_mii = mh;
1820 
1821 		_mii_probe_phy(ph);
1822 
1823 		if (!ph->phy_present)
1824 			continue;
1825 
1826 		if (curr_addr == user_addr) {
1827 			/*
1828 			 * We always try to honor the user configured phy.
1829 			 */
1830 			new_addr = curr_addr;
1831 			pri = 4;
1832 
1833 		}
1834 
1835 		/* two reads to clear latched bits */
1836 		if ((phy_read(ph, MII_STATUS) & MII_STATUS_LINKUP) &&
1837 		    (phy_read(ph, MII_STATUS) & MII_STATUS_LINKUP) &&
1838 		    (pri < 3)) {
1839 			/*
1840 			 * Link present is good.  We prefer this over
1841 			 * a possibly disconnected link.
1842 			 */
1843 			new_addr = curr_addr;
1844 			pri = 3;
1845 		}
1846 		if ((curr_addr == old_addr) && (pri < 2)) {
1847 			/*
1848 			 * All else being equal, minimize change.
1849 			 */
1850 			new_addr = curr_addr;
1851 			pri = 2;
1852 
1853 		}
1854 		if (pri < 1) {
1855 			/*
1856 			 * But make sure we at least select a present PHY.
1857 			 */
1858 			new_addr = curr_addr;
1859 			pri = 1;
1860 		}
1861 	}
1862 
1863 	if (new_addr == 0xff) {
1864 		mh->m_addr = -1;
1865 		mh->m_phy = &mh->m_bogus_phy;
1866 		_mii_error(mh, MII_ENOPHY);
1867 	} else {
1868 		mh->m_addr = new_addr;
1869 		mh->m_phy = &mh->m_phys[new_addr];
1870 		mh->m_tstate = MII_STATE_RESET;
1871 		if (new_addr != old_addr) {
1872 			cmn_err(CE_CONT,
1873 			    "?%s: Using %s Ethernet PHY at %d: %s %s\n",
1874 			    mh->m_name, mii_xcvr_types[mh->m_phy->phy_type],
1875 			    mh->m_addr, mh->m_phy->phy_vendor,
1876 			    mh->m_phy->phy_model);
1877 			mh->m_link = LINK_STATE_UNKNOWN;
1878 		}
1879 	}
1880 }
1881 
1882 int
1883 _mii_reset(mii_handle_t mh)
1884 {
1885 	phy_handle_t	*ph;
1886 	boolean_t	notify;
1887 
1888 	ASSERT(mutex_owned(&mh->m_lock));
1889 
1890 	/*
1891 	 * Reset logic.  We want to isolate all the other
1892 	 * phys that are not in use.
1893 	 */
1894 	for (int i = 0; i < 32; i++) {
1895 		ph = &mh->m_phys[i];
1896 
1897 		if (!ph->phy_present)
1898 			continue;
1899 
1900 		/* Don't touch our own phy, yet. */
1901 		if (ph == mh->m_phy)
1902 			continue;
1903 
1904 		ph->phy_stop(ph);
1905 	}
1906 
1907 	ph = mh->m_phy;
1908 
1909 	ASSERT(ph->phy_present);
1910 
1911 	/* If we're resetting the PHY, then we want to notify loss of link */
1912 	notify = (mh->m_link != LINK_STATE_DOWN);
1913 	mh->m_link = LINK_STATE_DOWN;
1914 	ph->phy_link = LINK_STATE_DOWN;
1915 	ph->phy_speed = 0;
1916 	ph->phy_duplex = LINK_DUPLEX_UNKNOWN;
1917 
1918 	if (ph->phy_reset(ph) != DDI_SUCCESS) {
1919 		_mii_error(mh, MII_ERESET);
1920 		return (DDI_FAILURE);
1921 	}
1922 
1923 	/* Perform optional mac layer reset. */
1924 	if (mh->m_ops.mii_reset != NULL) {
1925 		mh->m_ops.mii_reset(mh->m_private);
1926 	}
1927 
1928 	/* Perform optional mac layer notification. */
1929 	if (notify) {
1930 		_mii_notify(mh);
1931 	}
1932 	return (DDI_SUCCESS);
1933 }
1934 
1935 int
1936 _mii_loopback(mii_handle_t mh)
1937 {
1938 	phy_handle_t	*ph;
1939 
1940 	ASSERT(mutex_owned(&mh->m_lock));
1941 
1942 	ph = mh->m_phy;
1943 
1944 	if (_mii_reset(mh) != DDI_SUCCESS) {
1945 		return (DDI_FAILURE);
1946 	}
1947 	if (ph->phy_loopback == PHY_LB_NONE) {
1948 		mh->m_tstate = MII_STATE_START;
1949 		return (DDI_SUCCESS);
1950 	}
1951 	if (ph->phy_loop(ph) != DDI_SUCCESS) {
1952 		_mii_error(mh, MII_ELOOP);
1953 		return (DDI_FAILURE);
1954 	}
1955 
1956 	/* Just force loopback to link up. */
1957 	mh->m_link = ph->phy_link = LINK_STATE_UP;
1958 	_mii_notify(mh);
1959 
1960 	return (DDI_SUCCESS);
1961 }
1962 
1963 int
1964 _mii_start(mii_handle_t mh)
1965 {
1966 	phy_handle_t		*ph;
1967 
1968 	ph = mh->m_phy;
1969 
1970 	ASSERT(mutex_owned(&mh->m_lock));
1971 	ASSERT(ph->phy_present);
1972 	ASSERT(ph->phy_loopback == PHY_LB_NONE);
1973 
1974 	if (ph->phy_start(ph) != DDI_SUCCESS) {
1975 		_mii_error(mh, MII_ESTART);
1976 		return (DDI_FAILURE);
1977 	}
1978 	/* clear the error state since we got a good startup! */
1979 	mh->m_error = MII_EOK;
1980 	return (DDI_SUCCESS);
1981 }
1982 
1983 int
1984 _mii_check(mii_handle_t mh)
1985 {
1986 	link_state_t	olink;
1987 	int		ospeed;
1988 	link_duplex_t	oduplex;
1989 	link_flowctrl_t	ofctrl;
1990 	phy_handle_t	*ph;
1991 
1992 	ph = mh->m_phy;
1993 
1994 	olink = mh->m_link;
1995 	ospeed = ph->phy_speed;
1996 	oduplex = ph->phy_duplex;
1997 	ofctrl = ph->phy_flowctrl;
1998 
1999 	ASSERT(ph->phy_present);
2000 
2001 	if (ph->phy_check(ph) == DDI_FAILURE) {
2002 		_mii_error(mh, MII_ECHECK);
2003 		mh->m_link = LINK_STATE_UNKNOWN;
2004 		_mii_notify(mh);
2005 		return (DDI_FAILURE);
2006 	}
2007 
2008 	mh->m_link = ph->phy_link;
2009 
2010 	/* if anything changed, notify! */
2011 	if ((mh->m_link != olink) ||
2012 	    (ph->phy_speed != ospeed) ||
2013 	    (ph->phy_duplex != oduplex) ||
2014 	    (ph->phy_flowctrl != ofctrl)) {
2015 		_mii_notify(mh);
2016 	}
2017 
2018 	return (DDI_SUCCESS);
2019 }
2020 
2021 void
2022 _mii_task(void *_mh)
2023 {
2024 	mii_handle_t	mh = _mh;
2025 	phy_handle_t	*ph;
2026 	clock_t		wait;
2027 	clock_t		downtime;
2028 
2029 	mutex_enter(&mh->m_lock);
2030 
2031 	for (;;) {
2032 
2033 		/* If detaching, exit the thread. */
2034 		if (!mh->m_started) {
2035 			break;
2036 		}
2037 
2038 		ph = mh->m_phy;
2039 
2040 		/*
2041 		 * If we're suspended or otherwise not supposed to be
2042 		 * monitoring the link, just go back to sleep.
2043 		 *
2044 		 * Theoretically we could power down the PHY, but we
2045 		 * don't bother.  (The link might be used for
2046 		 * wake-on-lan!)  Another option would be to reduce
2047 		 * power on the PHY if both it and the link partner
2048 		 * support 10 Mbps mode.
2049 		 */
2050 		if (mh->m_suspending) {
2051 			mh->m_suspended = B_TRUE;
2052 			cv_broadcast(&mh->m_cv);
2053 		}
2054 		if (mh->m_suspended) {
2055 			mh->m_suspending = B_FALSE;
2056 			cv_wait(&mh->m_cv, &mh->m_lock);
2057 			continue;
2058 		}
2059 
2060 		switch (mh->m_tstate) {
2061 		case MII_STATE_PROBE:
2062 			_mii_probe(mh);
2063 			ph = mh->m_phy;
2064 			if (!ph->phy_present) {
2065 				/*
2066 				 * If no PHY is found, wait a bit before
2067 				 * trying the probe again.  10 seconds ought
2068 				 * to be enough.
2069 				 */
2070 				wait = 10 * MII_SECOND;
2071 			} else {
2072 				wait = 0;
2073 			}
2074 			break;
2075 
2076 		case MII_STATE_RESET:
2077 			if (_mii_reset(mh) == DDI_SUCCESS) {
2078 				mh->m_tstate = MII_STATE_START;
2079 				wait = 0;
2080 			} else {
2081 				/*
2082 				 * If an error occurred, wait a bit and
2083 				 * try again later.
2084 				 */
2085 				wait = 10 * MII_SECOND;
2086 			}
2087 			break;
2088 
2089 		case MII_STATE_START:
2090 			/*
2091 			 * If an error occurs, we're going to go back to
2092 			 * probe or reset state.  Otherwise we go to run
2093 			 * state.  In all cases we want to wait 1 second
2094 			 * before doing anything else - either for link to
2095 			 * settle, or to give other code a chance to run
2096 			 * while we reset.
2097 			 */
2098 			if (_mii_start(mh) == DDI_SUCCESS) {
2099 				/* reset watchdog to latest */
2100 				downtime = ddi_get_lbolt();
2101 				mh->m_tstate = MII_STATE_RUN;
2102 			} else {
2103 				mh->m_tstate = MII_STATE_PROBE;
2104 			}
2105 			wait = 0;
2106 			break;
2107 
2108 		case MII_STATE_LOOPBACK:
2109 			/*
2110 			 * In loopback mode we don't check anything,
2111 			 * and just wait for some condition to change.
2112 			 */
2113 			wait = (clock_t)-1;
2114 			break;
2115 
2116 		case MII_STATE_RUN:
2117 		default:
2118 			if (_mii_check(mh) == DDI_FAILURE) {
2119 				/*
2120 				 * On error (PHY removed?), wait a
2121 				 * short bit before reprobing or
2122 				 * resetting.
2123 				 */
2124 				wait = MII_SECOND;
2125 				mh->m_tstate = MII_STATE_PROBE;
2126 
2127 			} else if (mh->m_link == LINK_STATE_UP) {
2128 				/* got goood link, so reset the watchdog */
2129 				downtime = ddi_get_lbolt();
2130 				/* rescan again in a second */
2131 				wait = MII_SECOND;
2132 
2133 			} else if ((ddi_get_lbolt() - downtime) >
2134 			    (drv_usectohz(MII_SECOND * 10))) {
2135 
2136 				/*
2137 				 * If we were down for 10 seconds,
2138 				 * hard reset the PHY.
2139 				 */
2140 				mh->m_tstate = MII_STATE_RESET;
2141 				wait = 0;
2142 
2143 			} else {
2144 				/*
2145 				 * Otherwise, if we are still down,
2146 				 * rescan the link much more
2147 				 * frequently.  We might be trying to
2148 				 * autonegotiate.
2149 				 */
2150 				wait = MII_SECOND / 4;
2151 			}
2152 			break;
2153 		}
2154 
2155 		switch (wait) {
2156 		case 0:
2157 			break;
2158 
2159 		case (clock_t)-1:
2160 			cv_wait(&mh->m_cv, &mh->m_lock);
2161 			break;
2162 
2163 		default:
2164 			(void) cv_reltimedwait(&mh->m_cv, &mh->m_lock,
2165 			    drv_usectohz(wait), TR_CLOCK_TICK);
2166 		}
2167 	}
2168 
2169 	mutex_exit(&mh->m_lock);
2170 }
2171