1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Memory special file 28 */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/user.h> 33 #include <sys/buf.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/vm.h> 37 #include <sys/uio.h> 38 #include <sys/mman.h> 39 #include <sys/kmem.h> 40 #include <vm/seg.h> 41 #include <vm/page.h> 42 #include <sys/stat.h> 43 #include <sys/vmem.h> 44 #include <sys/memlist.h> 45 #include <sys/bootconf.h> 46 47 #include <vm/seg_vn.h> 48 #include <vm/seg_dev.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <vm/seg_kpm.h> 52 #include <vm/hat.h> 53 54 #include <sys/conf.h> 55 #include <sys/mem.h> 56 #include <sys/types.h> 57 #include <sys/conf.h> 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/errno.h> 61 #include <sys/modctl.h> 62 #include <sys/memlist.h> 63 #include <sys/ddi.h> 64 #include <sys/sunddi.h> 65 #include <sys/debug.h> 66 #include <sys/fm/protocol.h> 67 68 #if defined(__sparc) 69 extern int cpu_get_mem_name(uint64_t, uint64_t *, uint64_t, char *, int, int *); 70 extern int cpu_get_mem_info(uint64_t, uint64_t, uint64_t *, uint64_t *, 71 uint64_t *, int *, int *, int *); 72 extern size_t cpu_get_name_bufsize(void); 73 extern int cpu_get_mem_sid(char *, char *, int, int *); 74 extern int cpu_get_mem_addr(char *, char *, uint64_t, uint64_t *); 75 #elif defined(__x86) 76 #include <sys/cpu_module.h> 77 #endif /* __sparc */ 78 79 /* 80 * Turn a byte length into a pagecount. The DDI btop takes a 81 * 32-bit size on 32-bit machines, this handles 64-bit sizes for 82 * large physical-memory 32-bit machines. 83 */ 84 #define BTOP(x) ((pgcnt_t)((x) >> _pageshift)) 85 86 static kmutex_t mm_lock; 87 static caddr_t mm_map; 88 89 static dev_info_t *mm_dip; /* private copy of devinfo pointer */ 90 91 static int mm_kmem_io_access; 92 93 static int mm_kstat_update(kstat_t *ksp, int rw); 94 static int mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 95 96 static int mm_read_mem_name(intptr_t data, mem_name_t *mem_name); 97 98 /*ARGSUSED1*/ 99 static int 100 mm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 101 { 102 int i; 103 struct mem_minor { 104 char *name; 105 minor_t minor; 106 int privonly; 107 const char *rdpriv; 108 const char *wrpriv; 109 mode_t priv_mode; 110 } mm[] = { 111 { "mem", M_MEM, 0, NULL, "all", 0640 }, 112 { "kmem", M_KMEM, 0, NULL, "all", 0640 }, 113 { "allkmem", M_ALLKMEM, 0, "all", "all", 0600 }, 114 { "null", M_NULL, PRIVONLY_DEV, NULL, NULL, 0666 }, 115 { "zero", M_ZERO, PRIVONLY_DEV, NULL, NULL, 0666 }, 116 }; 117 kstat_t *ksp; 118 119 mutex_init(&mm_lock, NULL, MUTEX_DEFAULT, NULL); 120 mm_map = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 121 122 for (i = 0; i < (sizeof (mm) / sizeof (mm[0])); i++) { 123 if (ddi_create_priv_minor_node(devi, mm[i].name, S_IFCHR, 124 mm[i].minor, DDI_PSEUDO, mm[i].privonly, 125 mm[i].rdpriv, mm[i].wrpriv, mm[i].priv_mode) == 126 DDI_FAILURE) { 127 ddi_remove_minor_node(devi, NULL); 128 return (DDI_FAILURE); 129 } 130 } 131 132 mm_dip = devi; 133 134 ksp = kstat_create("mm", 0, "phys_installed", "misc", 135 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 136 if (ksp != NULL) { 137 ksp->ks_update = mm_kstat_update; 138 ksp->ks_snapshot = mm_kstat_snapshot; 139 ksp->ks_lock = &mm_lock; /* XXX - not really needed */ 140 kstat_install(ksp); 141 } 142 143 mm_kmem_io_access = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 144 "kmem_io_access", 0); 145 146 return (DDI_SUCCESS); 147 } 148 149 /*ARGSUSED*/ 150 static int 151 mm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 152 { 153 register int error; 154 155 switch (infocmd) { 156 case DDI_INFO_DEVT2DEVINFO: 157 *result = (void *)mm_dip; 158 error = DDI_SUCCESS; 159 break; 160 case DDI_INFO_DEVT2INSTANCE: 161 *result = (void *)0; 162 error = DDI_SUCCESS; 163 break; 164 default: 165 error = DDI_FAILURE; 166 } 167 return (error); 168 } 169 170 /*ARGSUSED1*/ 171 static int 172 mmopen(dev_t *devp, int flag, int typ, struct cred *cred) 173 { 174 switch (getminor(*devp)) { 175 case M_NULL: 176 case M_ZERO: 177 case M_MEM: 178 case M_KMEM: 179 case M_ALLKMEM: 180 /* standard devices */ 181 break; 182 183 default: 184 /* Unsupported or unknown type */ 185 return (EINVAL); 186 } 187 /* must be character device */ 188 if (typ != OTYP_CHR) 189 return (EINVAL); 190 return (0); 191 } 192 193 struct pollhead mm_pollhd; 194 195 /*ARGSUSED*/ 196 static int 197 mmchpoll(dev_t dev, short events, int anyyet, short *reventsp, 198 struct pollhead **phpp) 199 { 200 switch (getminor(dev)) { 201 case M_NULL: 202 case M_ZERO: 203 case M_MEM: 204 case M_KMEM: 205 case M_ALLKMEM: 206 *reventsp = events & (POLLIN | POLLOUT | POLLPRI | POLLRDNORM | 207 POLLWRNORM | POLLRDBAND | POLLWRBAND); 208 /* 209 * A non NULL pollhead pointer should be returned in case 210 * user polls for 0 events. 211 */ 212 *phpp = !anyyet && !*reventsp ? 213 &mm_pollhd : (struct pollhead *)NULL; 214 return (0); 215 default: 216 /* no other devices currently support polling */ 217 return (ENXIO); 218 } 219 } 220 221 static int 222 mmpropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, 223 char *name, caddr_t valuep, int *lengthp) 224 { 225 /* 226 * implement zero size to reduce overhead (avoid two failing 227 * property lookups per stat). 228 */ 229 return (ddi_prop_op_size(dev, dip, prop_op, 230 flags, name, valuep, lengthp, 0)); 231 } 232 233 extern void mach_sync_icache_pa(caddr_t, size_t); 234 #pragma weak mach_sync_icache_pa 235 236 static int 237 mmio(struct uio *uio, enum uio_rw rw, pfn_t pfn, off_t pageoff, int allowio) 238 { 239 int error = 0; 240 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 241 (size_t)uio->uio_iov->iov_len); 242 243 mutex_enter(&mm_lock); 244 hat_devload(kas.a_hat, mm_map, PAGESIZE, pfn, 245 (uint_t)(rw == UIO_READ ? PROT_READ : PROT_READ | PROT_WRITE), 246 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 247 248 if (!pf_is_memory(pfn)) { 249 if (allowio) { 250 size_t c = uio->uio_iov->iov_len; 251 252 if (ddi_peekpokeio(NULL, uio, rw, 253 (caddr_t)(uintptr_t)uio->uio_loffset, c, 254 sizeof (int32_t)) != DDI_SUCCESS) 255 error = EFAULT; 256 } else 257 error = EIO; 258 } else { 259 error = uiomove(&mm_map[pageoff], nbytes, rw, uio); 260 261 /* 262 * In case this has changed executable code, 263 * non-coherent I-caches must be flushed. 264 */ 265 if (rw != UIO_READ && &mach_sync_icache_pa != NULL) { 266 mach_sync_icache_pa((caddr_t)ptob(pfn), PAGESIZE); 267 } 268 } 269 270 hat_unload(kas.a_hat, mm_map, PAGESIZE, HAT_UNLOAD_UNLOCK); 271 mutex_exit(&mm_lock); 272 return (error); 273 } 274 275 static int 276 mmpagelock(struct as *as, caddr_t va) 277 { 278 struct seg *seg; 279 int i; 280 281 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 282 seg = as_segat(as, va); 283 i = (seg != NULL)? SEGOP_CAPABLE(seg, S_CAPABILITY_NOMINFLT) : 0; 284 AS_LOCK_EXIT(as, &as->a_lock); 285 286 return (i); 287 } 288 289 #ifdef __sparc 290 291 #define NEED_LOCK_KVADDR(kva) mmpagelock(&kas, kva) 292 293 #else /* __i386, __amd64 */ 294 295 #define NEED_LOCK_KVADDR(va) 0 296 297 #endif /* __sparc */ 298 299 /*ARGSUSED3*/ 300 static int 301 mmrw(dev_t dev, struct uio *uio, enum uio_rw rw, cred_t *cred) 302 { 303 pfn_t v; 304 struct iovec *iov; 305 int error = 0; 306 size_t c; 307 ssize_t oresid = uio->uio_resid; 308 minor_t minor = getminor(dev); 309 310 while (uio->uio_resid > 0 && error == 0) { 311 iov = uio->uio_iov; 312 if (iov->iov_len == 0) { 313 uio->uio_iov++; 314 uio->uio_iovcnt--; 315 if (uio->uio_iovcnt < 0) 316 panic("mmrw"); 317 continue; 318 } 319 switch (minor) { 320 321 case M_MEM: 322 memlist_read_lock(); 323 if (!address_in_memlist(phys_install, 324 (uint64_t)uio->uio_loffset, 1)) { 325 memlist_read_unlock(); 326 error = EFAULT; 327 break; 328 } 329 memlist_read_unlock(); 330 331 v = BTOP((u_offset_t)uio->uio_loffset); 332 error = mmio(uio, rw, v, 333 uio->uio_loffset & PAGEOFFSET, 0); 334 break; 335 336 case M_KMEM: 337 case M_ALLKMEM: 338 { 339 page_t **ppp; 340 caddr_t vaddr = (caddr_t)uio->uio_offset; 341 int try_lock = NEED_LOCK_KVADDR(vaddr); 342 int locked = 0; 343 344 if ((error = plat_mem_do_mmio(uio, rw)) != ENOTSUP) 345 break; 346 347 /* 348 * If vaddr does not map a valid page, as_pagelock() 349 * will return failure. Hence we can't check the 350 * return value and return EFAULT here as we'd like. 351 * seg_kp and seg_kpm do not properly support 352 * as_pagelock() for this context so we avoid it 353 * using the try_lock set check above. Some day when 354 * the kernel page locking gets redesigned all this 355 * muck can be cleaned up. 356 */ 357 if (try_lock) 358 locked = (as_pagelock(&kas, &ppp, vaddr, 359 PAGESIZE, S_WRITE) == 0); 360 361 v = hat_getpfnum(kas.a_hat, 362 (caddr_t)(uintptr_t)uio->uio_loffset); 363 if (v == PFN_INVALID) { 364 if (locked) 365 as_pageunlock(&kas, ppp, vaddr, 366 PAGESIZE, S_WRITE); 367 error = EFAULT; 368 break; 369 } 370 371 error = mmio(uio, rw, v, uio->uio_loffset & PAGEOFFSET, 372 minor == M_ALLKMEM || mm_kmem_io_access); 373 if (locked) 374 as_pageunlock(&kas, ppp, vaddr, PAGESIZE, 375 S_WRITE); 376 } 377 378 break; 379 380 case M_ZERO: 381 if (rw == UIO_READ) { 382 label_t ljb; 383 384 if (on_fault(&ljb)) { 385 no_fault(); 386 error = EFAULT; 387 break; 388 } 389 uzero(iov->iov_base, iov->iov_len); 390 no_fault(); 391 uio->uio_resid -= iov->iov_len; 392 uio->uio_loffset += iov->iov_len; 393 break; 394 } 395 /* else it's a write, fall through to NULL case */ 396 /*FALLTHROUGH*/ 397 398 case M_NULL: 399 if (rw == UIO_READ) 400 return (0); 401 c = iov->iov_len; 402 iov->iov_base += c; 403 iov->iov_len -= c; 404 uio->uio_loffset += c; 405 uio->uio_resid -= c; 406 break; 407 408 } 409 } 410 return (uio->uio_resid == oresid ? error : 0); 411 } 412 413 static int 414 mmread(dev_t dev, struct uio *uio, cred_t *cred) 415 { 416 return (mmrw(dev, uio, UIO_READ, cred)); 417 } 418 419 static int 420 mmwrite(dev_t dev, struct uio *uio, cred_t *cred) 421 { 422 return (mmrw(dev, uio, UIO_WRITE, cred)); 423 } 424 425 /* 426 * Private ioctl for libkvm to support kvm_physaddr(). 427 * Given an address space and a VA, compute the PA. 428 */ 429 static int 430 mmioctl_vtop(intptr_t data) 431 { 432 #ifdef _SYSCALL32 433 mem_vtop32_t vtop32; 434 #endif 435 mem_vtop_t mem_vtop; 436 proc_t *p; 437 pfn_t pfn = (pfn_t)PFN_INVALID; 438 pid_t pid = 0; 439 struct as *as; 440 struct seg *seg; 441 442 if (get_udatamodel() == DATAMODEL_NATIVE) { 443 if (copyin((void *)data, &mem_vtop, sizeof (mem_vtop_t))) 444 return (EFAULT); 445 } 446 #ifdef _SYSCALL32 447 else { 448 if (copyin((void *)data, &vtop32, sizeof (mem_vtop32_t))) 449 return (EFAULT); 450 mem_vtop.m_as = (struct as *)(uintptr_t)vtop32.m_as; 451 mem_vtop.m_va = (void *)(uintptr_t)vtop32.m_va; 452 453 if (mem_vtop.m_as != NULL) 454 return (EINVAL); 455 } 456 #endif 457 458 if (mem_vtop.m_as == &kas) { 459 pfn = hat_getpfnum(kas.a_hat, mem_vtop.m_va); 460 } else { 461 if (mem_vtop.m_as == NULL) { 462 /* 463 * Assume the calling process's address space if the 464 * caller didn't specify one. 465 */ 466 p = curthread->t_procp; 467 if (p == NULL) 468 return (EIO); 469 mem_vtop.m_as = p->p_as; 470 } 471 472 mutex_enter(&pidlock); 473 for (p = practive; p != NULL; p = p->p_next) { 474 if (p->p_as == mem_vtop.m_as) { 475 pid = p->p_pid; 476 break; 477 } 478 } 479 mutex_exit(&pidlock); 480 if (p == NULL) 481 return (EIO); 482 p = sprlock(pid); 483 if (p == NULL) 484 return (EIO); 485 as = p->p_as; 486 if (as == mem_vtop.m_as) { 487 mutex_exit(&p->p_lock); 488 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 489 for (seg = AS_SEGFIRST(as); seg != NULL; 490 seg = AS_SEGNEXT(as, seg)) 491 if ((uintptr_t)mem_vtop.m_va - 492 (uintptr_t)seg->s_base < seg->s_size) 493 break; 494 if (seg != NULL) 495 pfn = hat_getpfnum(as->a_hat, mem_vtop.m_va); 496 AS_LOCK_EXIT(as, &as->a_lock); 497 mutex_enter(&p->p_lock); 498 } 499 sprunlock(p); 500 } 501 mem_vtop.m_pfn = pfn; 502 if (pfn == PFN_INVALID) 503 return (EIO); 504 505 if (get_udatamodel() == DATAMODEL_NATIVE) { 506 if (copyout(&mem_vtop, (void *)data, sizeof (mem_vtop_t))) 507 return (EFAULT); 508 } 509 #ifdef _SYSCALL32 510 else { 511 vtop32.m_pfn = mem_vtop.m_pfn; 512 if (copyout(&vtop32, (void *)data, sizeof (mem_vtop32_t))) 513 return (EFAULT); 514 } 515 #endif 516 517 return (0); 518 } 519 520 /* 521 * Given a PA, execute the given page retire command on it. 522 */ 523 static int 524 mmioctl_page_retire(int cmd, intptr_t data) 525 { 526 extern int page_retire_test(void); 527 uint64_t pa; 528 529 if (copyin((void *)data, &pa, sizeof (uint64_t))) { 530 return (EFAULT); 531 } 532 533 switch (cmd) { 534 case MEM_PAGE_ISRETIRED: 535 return (page_retire_check(pa, NULL)); 536 537 case MEM_PAGE_UNRETIRE: 538 return (page_unretire(pa)); 539 540 case MEM_PAGE_RETIRE: 541 return (page_retire(pa, PR_FMA)); 542 543 case MEM_PAGE_RETIRE_MCE: 544 return (page_retire(pa, PR_MCE)); 545 546 case MEM_PAGE_RETIRE_UE: 547 return (page_retire(pa, PR_UE)); 548 549 case MEM_PAGE_GETERRORS: 550 { 551 uint64_t page_errors; 552 int rc = page_retire_check(pa, &page_errors); 553 if (copyout(&page_errors, (void *)data, 554 sizeof (uint64_t))) { 555 return (EFAULT); 556 } 557 return (rc); 558 } 559 560 case MEM_PAGE_RETIRE_TEST: 561 return (page_retire_test()); 562 563 } 564 565 return (EINVAL); 566 } 567 568 #ifdef __sparc 569 /* 570 * Given a syndrome, syndrome type, and address return the 571 * associated memory name in the provided data buffer. 572 */ 573 static int 574 mmioctl_get_mem_name(intptr_t data) 575 { 576 mem_name_t mem_name; 577 void *buf; 578 size_t bufsize; 579 int len, err; 580 581 if ((bufsize = cpu_get_name_bufsize()) == 0) 582 return (ENOTSUP); 583 584 if ((err = mm_read_mem_name(data, &mem_name)) < 0) 585 return (err); 586 587 buf = kmem_alloc(bufsize, KM_SLEEP); 588 589 /* 590 * Call into cpu specific code to do the lookup. 591 */ 592 if ((err = cpu_get_mem_name(mem_name.m_synd, mem_name.m_type, 593 mem_name.m_addr, buf, bufsize, &len)) != 0) { 594 kmem_free(buf, bufsize); 595 return (err); 596 } 597 598 if (len >= mem_name.m_namelen) { 599 kmem_free(buf, bufsize); 600 return (ENOSPC); 601 } 602 603 if (copyoutstr(buf, (char *)mem_name.m_name, 604 mem_name.m_namelen, NULL) != 0) { 605 kmem_free(buf, bufsize); 606 return (EFAULT); 607 } 608 609 kmem_free(buf, bufsize); 610 return (0); 611 } 612 613 /* 614 * Given a syndrome and address return information about the associated memory. 615 */ 616 static int 617 mmioctl_get_mem_info(intptr_t data) 618 { 619 mem_info_t mem_info; 620 int err; 621 622 if (copyin((void *)data, &mem_info, sizeof (mem_info_t))) 623 return (EFAULT); 624 625 if ((err = cpu_get_mem_info(mem_info.m_synd, mem_info.m_addr, 626 &mem_info.m_mem_size, &mem_info.m_seg_size, &mem_info.m_bank_size, 627 &mem_info.m_segments, &mem_info.m_banks, &mem_info.m_mcid)) != 0) 628 return (err); 629 630 if (copyout(&mem_info, (void *)data, sizeof (mem_info_t)) != 0) 631 return (EFAULT); 632 633 return (0); 634 } 635 636 /* 637 * Given a memory name, return its associated serial id 638 */ 639 static int 640 mmioctl_get_mem_sid(intptr_t data) 641 { 642 mem_name_t mem_name; 643 void *buf; 644 void *name; 645 size_t name_len; 646 size_t bufsize; 647 int len, err; 648 649 if ((bufsize = cpu_get_name_bufsize()) == 0) 650 return (ENOTSUP); 651 652 if ((err = mm_read_mem_name(data, &mem_name)) < 0) 653 return (err); 654 655 buf = kmem_alloc(bufsize, KM_SLEEP); 656 657 if (mem_name.m_namelen > 1024) 658 mem_name.m_namelen = 1024; /* cap at 1024 bytes */ 659 660 name = kmem_alloc(mem_name.m_namelen, KM_SLEEP); 661 662 if ((err = copyinstr((char *)mem_name.m_name, (char *)name, 663 mem_name.m_namelen, &name_len)) != 0) { 664 kmem_free(buf, bufsize); 665 kmem_free(name, mem_name.m_namelen); 666 return (err); 667 } 668 669 /* 670 * Call into cpu specific code to do the lookup. 671 */ 672 if ((err = cpu_get_mem_sid(name, buf, bufsize, &len)) != 0) { 673 kmem_free(buf, bufsize); 674 kmem_free(name, mem_name.m_namelen); 675 return (err); 676 } 677 678 if (len > mem_name.m_sidlen) { 679 kmem_free(buf, bufsize); 680 kmem_free(name, mem_name.m_namelen); 681 return (ENAMETOOLONG); 682 } 683 684 if (copyoutstr(buf, (char *)mem_name.m_sid, 685 mem_name.m_sidlen, NULL) != 0) { 686 kmem_free(buf, bufsize); 687 kmem_free(name, mem_name.m_namelen); 688 return (EFAULT); 689 } 690 691 kmem_free(buf, bufsize); 692 kmem_free(name, mem_name.m_namelen); 693 return (0); 694 } 695 #endif /* __sparc */ 696 697 /* 698 * Private ioctls for 699 * libkvm to support kvm_physaddr(). 700 * FMA support for page_retire() and memory attribute information. 701 */ 702 /*ARGSUSED*/ 703 static int 704 mmioctl(dev_t dev, int cmd, intptr_t data, int flag, cred_t *cred, int *rvalp) 705 { 706 if ((cmd == MEM_VTOP && getminor(dev) != M_KMEM) || 707 (cmd != MEM_VTOP && getminor(dev) != M_MEM)) 708 return (ENXIO); 709 710 switch (cmd) { 711 case MEM_VTOP: 712 return (mmioctl_vtop(data)); 713 714 case MEM_PAGE_RETIRE: 715 case MEM_PAGE_ISRETIRED: 716 case MEM_PAGE_UNRETIRE: 717 case MEM_PAGE_RETIRE_MCE: 718 case MEM_PAGE_RETIRE_UE: 719 case MEM_PAGE_GETERRORS: 720 case MEM_PAGE_RETIRE_TEST: 721 return (mmioctl_page_retire(cmd, data)); 722 723 #ifdef __sparc 724 case MEM_NAME: 725 return (mmioctl_get_mem_name(data)); 726 727 case MEM_INFO: 728 return (mmioctl_get_mem_info(data)); 729 730 case MEM_SID: 731 return (mmioctl_get_mem_sid(data)); 732 #else 733 case MEM_NAME: 734 case MEM_INFO: 735 case MEM_SID: 736 return (ENOTSUP); 737 #endif /* __sparc */ 738 } 739 return (ENXIO); 740 } 741 742 /*ARGSUSED2*/ 743 static int 744 mmmmap(dev_t dev, off_t off, int prot) 745 { 746 pfn_t pf; 747 struct memlist *pmem; 748 minor_t minor = getminor(dev); 749 750 switch (minor) { 751 case M_MEM: 752 pf = btop(off); 753 memlist_read_lock(); 754 for (pmem = phys_install; pmem != NULL; pmem = pmem->next) { 755 if (pf >= BTOP(pmem->address) && 756 pf < BTOP(pmem->address + pmem->size)) { 757 memlist_read_unlock(); 758 return (impl_obmem_pfnum(pf)); 759 } 760 } 761 memlist_read_unlock(); 762 break; 763 764 case M_KMEM: 765 case M_ALLKMEM: 766 /* no longer supported with KPR */ 767 return (-1); 768 769 case M_ZERO: 770 /* 771 * We shouldn't be mmap'ing to /dev/zero here as 772 * mmsegmap() should have already converted 773 * a mapping request for this device to a mapping 774 * using seg_vn for anonymous memory. 775 */ 776 break; 777 778 } 779 return (-1); 780 } 781 782 /* 783 * This function is called when a memory device is mmap'ed. 784 * Set up the mapping to the correct device driver. 785 */ 786 static int 787 mmsegmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len, 788 uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred) 789 { 790 struct segvn_crargs vn_a; 791 struct segdev_crargs dev_a; 792 int error; 793 minor_t minor; 794 off_t i; 795 796 minor = getminor(dev); 797 798 as_rangelock(as); 799 /* 800 * No need to worry about vac alignment on /dev/zero 801 * since this is a "clone" object that doesn't yet exist. 802 */ 803 error = choose_addr(as, addrp, len, off, 804 (minor == M_MEM) || (minor == M_KMEM), flags); 805 if (error != 0) { 806 as_rangeunlock(as); 807 return (error); 808 } 809 810 switch (minor) { 811 case M_MEM: 812 /* /dev/mem cannot be mmap'ed with MAP_PRIVATE */ 813 if ((flags & MAP_TYPE) != MAP_SHARED) { 814 as_rangeunlock(as); 815 return (EINVAL); 816 } 817 818 /* 819 * Check to ensure that the entire range is 820 * legal and we are not trying to map in 821 * more than the device will let us. 822 */ 823 for (i = 0; i < len; i += PAGESIZE) { 824 if (mmmmap(dev, off + i, maxprot) == -1) { 825 as_rangeunlock(as); 826 return (ENXIO); 827 } 828 } 829 830 /* 831 * Use seg_dev segment driver for /dev/mem mapping. 832 */ 833 dev_a.mapfunc = mmmmap; 834 dev_a.dev = dev; 835 dev_a.offset = off; 836 dev_a.type = (flags & MAP_TYPE); 837 dev_a.prot = (uchar_t)prot; 838 dev_a.maxprot = (uchar_t)maxprot; 839 dev_a.hat_attr = 0; 840 841 /* 842 * Make /dev/mem mappings non-consistent since we can't 843 * alias pages that don't have page structs behind them, 844 * such as kernel stack pages. If someone mmap()s a kernel 845 * stack page and if we give him a tte with cv, a line from 846 * that page can get into both pages of the spitfire d$. 847 * But snoop from another processor will only invalidate 848 * the first page. This later caused kernel (xc_attention) 849 * to go into an infinite loop at pil 13 and no interrupts 850 * could come in. See 1203630. 851 * 852 */ 853 dev_a.hat_flags = HAT_LOAD_NOCONSIST; 854 dev_a.devmap_data = NULL; 855 856 error = as_map(as, *addrp, len, segdev_create, &dev_a); 857 break; 858 859 case M_ZERO: 860 /* 861 * Use seg_vn segment driver for /dev/zero mapping. 862 * Passing in a NULL amp gives us the "cloning" effect. 863 */ 864 vn_a.vp = NULL; 865 vn_a.offset = 0; 866 vn_a.type = (flags & MAP_TYPE); 867 vn_a.prot = prot; 868 vn_a.maxprot = maxprot; 869 vn_a.flags = flags & ~MAP_TYPE; 870 vn_a.cred = cred; 871 vn_a.amp = NULL; 872 vn_a.szc = 0; 873 vn_a.lgrp_mem_policy_flags = 0; 874 error = as_map(as, *addrp, len, segvn_create, &vn_a); 875 break; 876 877 case M_KMEM: 878 case M_ALLKMEM: 879 /* No longer supported with KPR. */ 880 error = ENXIO; 881 break; 882 883 case M_NULL: 884 /* 885 * Use seg_dev segment driver for /dev/null mapping. 886 */ 887 dev_a.mapfunc = mmmmap; 888 dev_a.dev = dev; 889 dev_a.offset = off; 890 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 891 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 892 dev_a.hat_attr = 0; 893 dev_a.hat_flags = 0; 894 error = as_map(as, *addrp, len, segdev_create, &dev_a); 895 break; 896 897 default: 898 error = ENXIO; 899 } 900 901 as_rangeunlock(as); 902 return (error); 903 } 904 905 static struct cb_ops mm_cb_ops = { 906 mmopen, /* open */ 907 nulldev, /* close */ 908 nodev, /* strategy */ 909 nodev, /* print */ 910 nodev, /* dump */ 911 mmread, /* read */ 912 mmwrite, /* write */ 913 mmioctl, /* ioctl */ 914 nodev, /* devmap */ 915 mmmmap, /* mmap */ 916 mmsegmap, /* segmap */ 917 mmchpoll, /* poll */ 918 mmpropop, /* prop_op */ 919 0, /* streamtab */ 920 D_NEW | D_MP | D_64BIT | D_U64BIT 921 }; 922 923 static struct dev_ops mm_ops = { 924 DEVO_REV, /* devo_rev, */ 925 0, /* refcnt */ 926 mm_info, /* get_dev_info */ 927 nulldev, /* identify */ 928 nulldev, /* probe */ 929 mm_attach, /* attach */ 930 nodev, /* detach */ 931 nodev, /* reset */ 932 &mm_cb_ops, /* driver operations */ 933 (struct bus_ops *)0, /* bus operations */ 934 NULL, /* power */ 935 ddi_quiesce_not_needed, /* quiesce */ 936 }; 937 938 static struct modldrv modldrv = { 939 &mod_driverops, "memory driver", &mm_ops, 940 }; 941 942 static struct modlinkage modlinkage = { 943 MODREV_1, &modldrv, NULL 944 }; 945 946 int 947 _init(void) 948 { 949 return (mod_install(&modlinkage)); 950 } 951 952 int 953 _info(struct modinfo *modinfop) 954 { 955 return (mod_info(&modlinkage, modinfop)); 956 } 957 958 int 959 _fini(void) 960 { 961 return (mod_remove(&modlinkage)); 962 } 963 964 static int 965 mm_kstat_update(kstat_t *ksp, int rw) 966 { 967 struct memlist *pmem; 968 uint_t count; 969 970 if (rw == KSTAT_WRITE) 971 return (EACCES); 972 973 count = 0; 974 memlist_read_lock(); 975 for (pmem = phys_install; pmem != NULL; pmem = pmem->next) { 976 count++; 977 } 978 memlist_read_unlock(); 979 980 ksp->ks_ndata = count; 981 ksp->ks_data_size = count * 2 * sizeof (uint64_t); 982 983 return (0); 984 } 985 986 static int 987 mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 988 { 989 struct memlist *pmem; 990 struct memunit { 991 uint64_t address; 992 uint64_t size; 993 } *kspmem; 994 995 if (rw == KSTAT_WRITE) 996 return (EACCES); 997 998 ksp->ks_snaptime = gethrtime(); 999 1000 kspmem = (struct memunit *)buf; 1001 memlist_read_lock(); 1002 for (pmem = phys_install; pmem != NULL; pmem = pmem->next, kspmem++) { 1003 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 1004 break; 1005 kspmem->address = pmem->address; 1006 kspmem->size = pmem->size; 1007 } 1008 memlist_read_unlock(); 1009 1010 return (0); 1011 } 1012 1013 /* 1014 * Read a mem_name_t from user-space and store it in the mem_name_t 1015 * pointed to by the mem_name argument. 1016 */ 1017 static int 1018 mm_read_mem_name(intptr_t data, mem_name_t *mem_name) 1019 { 1020 if (get_udatamodel() == DATAMODEL_NATIVE) { 1021 if (copyin((void *)data, mem_name, sizeof (mem_name_t))) 1022 return (EFAULT); 1023 } 1024 #ifdef _SYSCALL32 1025 else { 1026 mem_name32_t mem_name32; 1027 1028 if (copyin((void *)data, &mem_name32, sizeof (mem_name32_t))) 1029 return (EFAULT); 1030 mem_name->m_addr = mem_name32.m_addr; 1031 mem_name->m_synd = mem_name32.m_synd; 1032 mem_name->m_type[0] = mem_name32.m_type[0]; 1033 mem_name->m_type[1] = mem_name32.m_type[1]; 1034 mem_name->m_name = (caddr_t)(uintptr_t)mem_name32.m_name; 1035 mem_name->m_namelen = (size_t)mem_name32.m_namelen; 1036 mem_name->m_sid = (caddr_t)(uintptr_t)mem_name32.m_sid; 1037 mem_name->m_sidlen = (size_t)mem_name32.m_sidlen; 1038 } 1039 #endif /* _SYSCALL32 */ 1040 1041 return (0); 1042 } 1043