1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Memory special file 31 */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/user.h> 36 #include <sys/buf.h> 37 #include <sys/systm.h> 38 #include <sys/cred.h> 39 #include <sys/vm.h> 40 #include <sys/uio.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <vm/seg.h> 44 #include <vm/page.h> 45 #include <sys/stat.h> 46 #include <sys/vmem.h> 47 #include <sys/memlist.h> 48 #include <sys/bootconf.h> 49 50 #include <vm/seg_vn.h> 51 #include <vm/seg_dev.h> 52 #include <vm/seg_kmem.h> 53 #include <vm/seg_kp.h> 54 #include <vm/seg_kpm.h> 55 #include <vm/hat.h> 56 57 #include <sys/conf.h> 58 #include <sys/mem.h> 59 #include <sys/types.h> 60 #include <sys/conf.h> 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/errno.h> 64 #include <sys/modctl.h> 65 #include <sys/memlist.h> 66 #include <sys/ddi.h> 67 #include <sys/sunddi.h> 68 #include <sys/debug.h> 69 #include <sys/fm/protocol.h> 70 71 #if defined(__sparc) 72 extern int cpu_get_mem_name(uint64_t, uint64_t *, uint64_t, char *, int, int *); 73 extern int cpu_get_mem_info(uint64_t, uint64_t, uint64_t *, uint64_t *, 74 uint64_t *, int *, int *, int *); 75 extern size_t cpu_get_name_bufsize(void); 76 extern int cpu_get_mem_sid(char *, char *, int, int *); 77 extern int cpu_get_mem_addr(char *, char *, uint64_t, uint64_t *); 78 #elif defined(__i386) || defined(__amd64) 79 #include <sys/cpu_module.h> 80 #endif /* __sparc */ 81 82 /* 83 * Turn a byte length into a pagecount. The DDI btop takes a 84 * 32-bit size on 32-bit machines, this handles 64-bit sizes for 85 * large physical-memory 32-bit machines. 86 */ 87 #define BTOP(x) ((pgcnt_t)((x) >> _pageshift)) 88 89 static kmutex_t mm_lock; 90 static caddr_t mm_map; 91 92 static dev_info_t *mm_dip; /* private copy of devinfo pointer */ 93 94 static int mm_kmem_io_access; 95 96 static int mm_kstat_update(kstat_t *ksp, int rw); 97 static int mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 98 99 static int mm_read_mem_name(intptr_t data, mem_name_t *mem_name); 100 static int mm_read_mem_page(intptr_t data, mem_page_t *mpage); 101 static int mm_get_mem_fmri(mem_page_t *mpage, nvlist_t **nvl); 102 static int mm_get_paddr(nvlist_t *nvl, uint64_t *paddr); 103 104 /*ARGSUSED1*/ 105 static int 106 mm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 107 { 108 int i; 109 struct mem_minor { 110 char *name; 111 minor_t minor; 112 int privonly; 113 const char *rdpriv; 114 const char *wrpriv; 115 mode_t priv_mode; 116 } mm[] = { 117 { "mem", M_MEM, 0, NULL, "all", 0640 }, 118 { "kmem", M_KMEM, 0, NULL, "all", 0640 }, 119 { "allkmem", M_ALLKMEM, 0, "all", "all", 0600 }, 120 { "null", M_NULL, PRIVONLY_DEV, NULL, NULL, 0666 }, 121 { "zero", M_ZERO, PRIVONLY_DEV, NULL, NULL, 0666 }, 122 }; 123 kstat_t *ksp; 124 125 mutex_init(&mm_lock, NULL, MUTEX_DEFAULT, NULL); 126 mm_map = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 127 128 for (i = 0; i < (sizeof (mm) / sizeof (mm[0])); i++) { 129 if (ddi_create_priv_minor_node(devi, mm[i].name, S_IFCHR, 130 mm[i].minor, DDI_PSEUDO, mm[i].privonly, 131 mm[i].rdpriv, mm[i].wrpriv, mm[i].priv_mode) == 132 DDI_FAILURE) { 133 ddi_remove_minor_node(devi, NULL); 134 return (DDI_FAILURE); 135 } 136 } 137 138 mm_dip = devi; 139 140 ksp = kstat_create("mm", 0, "phys_installed", "misc", 141 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 142 if (ksp != NULL) { 143 ksp->ks_update = mm_kstat_update; 144 ksp->ks_snapshot = mm_kstat_snapshot; 145 ksp->ks_lock = &mm_lock; /* XXX - not really needed */ 146 kstat_install(ksp); 147 } 148 149 mm_kmem_io_access = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 150 "kmem_io_access", 0); 151 152 return (DDI_SUCCESS); 153 } 154 155 /*ARGSUSED*/ 156 static int 157 mm_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 158 { 159 register int error; 160 161 switch (infocmd) { 162 case DDI_INFO_DEVT2DEVINFO: 163 *result = (void *)mm_dip; 164 error = DDI_SUCCESS; 165 break; 166 case DDI_INFO_DEVT2INSTANCE: 167 *result = (void *)0; 168 error = DDI_SUCCESS; 169 break; 170 default: 171 error = DDI_FAILURE; 172 } 173 return (error); 174 } 175 176 /*ARGSUSED1*/ 177 static int 178 mmopen(dev_t *devp, int flag, int typ, struct cred *cred) 179 { 180 switch (getminor(*devp)) { 181 case M_NULL: 182 case M_ZERO: 183 case M_MEM: 184 case M_KMEM: 185 case M_ALLKMEM: 186 /* standard devices */ 187 break; 188 189 default: 190 /* Unsupported or unknown type */ 191 return (EINVAL); 192 } 193 return (0); 194 } 195 196 struct pollhead mm_pollhd; 197 198 /*ARGSUSED*/ 199 static int 200 mmchpoll(dev_t dev, short events, int anyyet, short *reventsp, 201 struct pollhead **phpp) 202 { 203 switch (getminor(dev)) { 204 case M_NULL: 205 case M_ZERO: 206 case M_MEM: 207 case M_KMEM: 208 case M_ALLKMEM: 209 *reventsp = events & (POLLIN | POLLOUT | POLLPRI | POLLRDNORM | 210 POLLWRNORM | POLLRDBAND | POLLWRBAND); 211 /* 212 * A non NULL pollhead pointer should be returned in case 213 * user polls for 0 events. 214 */ 215 *phpp = !anyyet && !*reventsp ? 216 &mm_pollhd : (struct pollhead *)NULL; 217 return (0); 218 default: 219 /* no other devices currently support polling */ 220 return (ENXIO); 221 } 222 } 223 224 static int 225 mmpropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, 226 char *name, caddr_t valuep, int *lengthp) 227 { 228 /* 229 * implement zero size to reduce overhead (avoid two failing 230 * property lookups per stat). 231 */ 232 return (ddi_prop_op_size(dev, dip, prop_op, 233 flags, name, valuep, lengthp, 0)); 234 } 235 236 static int 237 mmio(struct uio *uio, enum uio_rw rw, pfn_t pfn, off_t pageoff, int allowio) 238 { 239 int error = 0; 240 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 241 (size_t)uio->uio_iov->iov_len); 242 243 mutex_enter(&mm_lock); 244 hat_devload(kas.a_hat, mm_map, PAGESIZE, pfn, 245 (uint_t)(rw == UIO_READ ? PROT_READ : PROT_READ | PROT_WRITE), 246 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 247 248 if (!pf_is_memory(pfn)) { 249 if (allowio) { 250 size_t c = uio->uio_iov->iov_len; 251 252 if (ddi_peekpokeio(NULL, uio, rw, 253 (caddr_t)(uintptr_t)uio->uio_loffset, c, 254 sizeof (int32_t)) != DDI_SUCCESS) 255 error = EFAULT; 256 } else 257 error = EIO; 258 } else 259 error = uiomove(&mm_map[pageoff], nbytes, rw, uio); 260 261 hat_unload(kas.a_hat, mm_map, PAGESIZE, HAT_UNLOAD_UNLOCK); 262 mutex_exit(&mm_lock); 263 return (error); 264 } 265 266 #ifdef __sparc 267 268 static int 269 mmpagelock(struct as *as, caddr_t va) 270 { 271 struct seg *seg; 272 int i; 273 274 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 275 seg = as_segat(as, va); 276 i = (seg != NULL)? SEGOP_CAPABLE(seg, S_CAPABILITY_NOMINFLT) : 0; 277 AS_LOCK_EXIT(as, &as->a_lock); 278 279 return (i); 280 } 281 282 #define NEED_LOCK_KVADDR(kva) mmpagelock(&kas, kva) 283 284 #else /* __i386, __amd64 */ 285 286 #define NEED_LOCK_KVADDR(va) 0 287 288 #endif /* __sparc */ 289 290 /*ARGSUSED3*/ 291 static int 292 mmrw(dev_t dev, struct uio *uio, enum uio_rw rw, cred_t *cred) 293 { 294 pfn_t v; 295 struct iovec *iov; 296 int error = 0; 297 size_t c; 298 ssize_t oresid = uio->uio_resid; 299 minor_t minor = getminor(dev); 300 301 while (uio->uio_resid > 0 && error == 0) { 302 iov = uio->uio_iov; 303 if (iov->iov_len == 0) { 304 uio->uio_iov++; 305 uio->uio_iovcnt--; 306 if (uio->uio_iovcnt < 0) 307 panic("mmrw"); 308 continue; 309 } 310 switch (minor) { 311 312 case M_MEM: 313 memlist_read_lock(); 314 if (!address_in_memlist(phys_install, 315 (uint64_t)uio->uio_loffset, 1)) { 316 memlist_read_unlock(); 317 error = EFAULT; 318 break; 319 } 320 memlist_read_unlock(); 321 322 v = BTOP((u_offset_t)uio->uio_loffset); 323 error = mmio(uio, rw, v, 324 uio->uio_loffset & PAGEOFFSET, 0); 325 break; 326 327 case M_KMEM: 328 case M_ALLKMEM: 329 { 330 page_t **ppp; 331 caddr_t vaddr = (caddr_t)uio->uio_offset; 332 int try_lock = NEED_LOCK_KVADDR(vaddr); 333 int locked = 0; 334 335 /* 336 * If vaddr does not map a valid page, as_pagelock() 337 * will return failure. Hence we can't check the 338 * return value and return EFAULT here as we'd like. 339 * seg_kp and seg_kpm do not properly support 340 * as_pagelock() for this context so we avoid it 341 * using the try_lock set check above. Some day when 342 * the kernel page locking gets redesigned all this 343 * muck can be cleaned up. 344 */ 345 if (try_lock) 346 locked = (as_pagelock(&kas, &ppp, vaddr, 347 PAGESIZE, S_WRITE) == 0); 348 349 v = hat_getpfnum(kas.a_hat, 350 (caddr_t)(uintptr_t)uio->uio_loffset); 351 if (v == PFN_INVALID) { 352 if (locked) 353 as_pageunlock(&kas, ppp, vaddr, 354 PAGESIZE, S_WRITE); 355 error = EFAULT; 356 break; 357 } 358 359 error = mmio(uio, rw, v, uio->uio_loffset & PAGEOFFSET, 360 minor == M_ALLKMEM || mm_kmem_io_access); 361 if (locked) 362 as_pageunlock(&kas, ppp, vaddr, PAGESIZE, 363 S_WRITE); 364 } 365 366 break; 367 368 case M_ZERO: 369 if (rw == UIO_READ) { 370 label_t ljb; 371 372 if (on_fault(&ljb)) { 373 no_fault(); 374 error = EFAULT; 375 break; 376 } 377 uzero(iov->iov_base, iov->iov_len); 378 no_fault(); 379 uio->uio_resid -= iov->iov_len; 380 uio->uio_loffset += iov->iov_len; 381 break; 382 } 383 /* else it's a write, fall through to NULL case */ 384 /*FALLTHROUGH*/ 385 386 case M_NULL: 387 if (rw == UIO_READ) 388 return (0); 389 c = iov->iov_len; 390 iov->iov_base += c; 391 iov->iov_len -= c; 392 uio->uio_loffset += c; 393 uio->uio_resid -= c; 394 break; 395 396 } 397 } 398 return (uio->uio_resid == oresid ? error : 0); 399 } 400 401 static int 402 mmread(dev_t dev, struct uio *uio, cred_t *cred) 403 { 404 return (mmrw(dev, uio, UIO_READ, cred)); 405 } 406 407 static int 408 mmwrite(dev_t dev, struct uio *uio, cred_t *cred) 409 { 410 return (mmrw(dev, uio, UIO_WRITE, cred)); 411 } 412 413 /* 414 * Private ioctl for libkvm to support kvm_physaddr(). 415 * Given an address space and a VA, compute the PA. 416 */ 417 static int 418 mmioctl_vtop(intptr_t data) 419 { 420 #ifdef _SYSCALL32 421 mem_vtop32_t vtop32; 422 #endif 423 mem_vtop_t mem_vtop; 424 proc_t *p; 425 pfn_t pfn = (pfn_t)PFN_INVALID; 426 pid_t pid = 0; 427 struct as *as; 428 struct seg *seg; 429 430 if (get_udatamodel() == DATAMODEL_NATIVE) { 431 if (copyin((void *)data, &mem_vtop, sizeof (mem_vtop_t))) 432 return (EFAULT); 433 } 434 #ifdef _SYSCALL32 435 else { 436 if (copyin((void *)data, &vtop32, sizeof (mem_vtop32_t))) 437 return (EFAULT); 438 mem_vtop.m_as = (struct as *)vtop32.m_as; 439 mem_vtop.m_va = (void *)vtop32.m_va; 440 441 if (mem_vtop.m_as != NULL) 442 return (EINVAL); 443 } 444 #endif 445 446 if (mem_vtop.m_as == &kas) { 447 pfn = hat_getpfnum(kas.a_hat, mem_vtop.m_va); 448 } else { 449 if (mem_vtop.m_as == NULL) { 450 /* 451 * Assume the calling process's address space if the 452 * caller didn't specify one. 453 */ 454 p = curthread->t_procp; 455 if (p == NULL) 456 return (EIO); 457 mem_vtop.m_as = p->p_as; 458 } 459 460 mutex_enter(&pidlock); 461 for (p = practive; p != NULL; p = p->p_next) { 462 if (p->p_as == mem_vtop.m_as) { 463 pid = p->p_pid; 464 break; 465 } 466 } 467 mutex_exit(&pidlock); 468 if (p == NULL) 469 return (EIO); 470 p = sprlock(pid); 471 if (p == NULL) 472 return (EIO); 473 as = p->p_as; 474 if (as == mem_vtop.m_as) { 475 mutex_exit(&p->p_lock); 476 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 477 for (seg = AS_SEGFIRST(as); seg != NULL; 478 seg = AS_SEGNEXT(as, seg)) 479 if ((uintptr_t)mem_vtop.m_va - 480 (uintptr_t)seg->s_base < seg->s_size) 481 break; 482 if (seg != NULL) 483 pfn = hat_getpfnum(as->a_hat, mem_vtop.m_va); 484 AS_LOCK_EXIT(as, &as->a_lock); 485 mutex_enter(&p->p_lock); 486 } 487 sprunlock(p); 488 } 489 mem_vtop.m_pfn = pfn; 490 if (pfn == PFN_INVALID) 491 return (EIO); 492 493 if (get_udatamodel() == DATAMODEL_NATIVE) { 494 if (copyout(&mem_vtop, (void *)data, sizeof (mem_vtop_t))) 495 return (EFAULT); 496 } 497 #ifdef _SYSCALL32 498 else { 499 vtop32.m_pfn = mem_vtop.m_pfn; 500 if (copyout(&vtop32, (void *)data, sizeof (mem_vtop32_t))) 501 return (EFAULT); 502 } 503 #endif 504 505 return (0); 506 } 507 508 /* 509 * Given a PA, execute the given page retire command on it. 510 */ 511 static int 512 mmioctl_page_retire(int cmd, intptr_t data) 513 { 514 extern int page_retire_test(void); 515 uint64_t pa; 516 517 if (copyin((void *)data, &pa, sizeof (uint64_t))) { 518 return (EFAULT); 519 } 520 521 switch (cmd) { 522 case MEM_PAGE_ISRETIRED: 523 return (page_retire_check(pa, NULL)); 524 525 case MEM_PAGE_UNRETIRE: 526 return (page_unretire(pa)); 527 528 case MEM_PAGE_RETIRE: 529 return (page_retire(pa, PR_FMA)); 530 531 case MEM_PAGE_RETIRE_MCE: 532 return (page_retire(pa, PR_MCE)); 533 534 case MEM_PAGE_RETIRE_UE: 535 return (page_retire(pa, PR_UE)); 536 537 case MEM_PAGE_GETERRORS: 538 { 539 uint64_t page_errors; 540 int rc = page_retire_check(pa, &page_errors); 541 if (copyout(&page_errors, (void *)data, 542 sizeof (uint64_t))) { 543 return (EFAULT); 544 } 545 return (rc); 546 } 547 548 case MEM_PAGE_RETIRE_TEST: 549 return (page_retire_test()); 550 551 } 552 553 return (EINVAL); 554 } 555 556 /* 557 * Given a mem-scheme FMRI for a page, execute the given page retire 558 * command on it. 559 */ 560 static int 561 mmioctl_page_fmri_retire(int cmd, intptr_t data) 562 { 563 mem_page_t mpage; 564 uint64_t pa; 565 nvlist_t *nvl; 566 int err; 567 568 if ((err = mm_read_mem_page(data, &mpage)) < 0) 569 return (err); 570 571 if ((err = mm_get_mem_fmri(&mpage, &nvl)) < 0) 572 return (err); 573 574 if ((err = mm_get_paddr(nvl, &pa)) != 0) { 575 nvlist_free(nvl); 576 return (err); 577 } 578 579 nvlist_free(nvl); 580 581 switch (cmd) { 582 case MEM_PAGE_FMRI_ISRETIRED: 583 return (page_retire_check(pa, NULL)); 584 585 case MEM_PAGE_FMRI_RETIRE: 586 return (page_retire(pa, PR_FMA)); 587 } 588 589 return (EINVAL); 590 } 591 592 #ifdef __sparc 593 /* 594 * Given a syndrome, syndrome type, and address return the 595 * associated memory name in the provided data buffer. 596 */ 597 static int 598 mmioctl_get_mem_name(intptr_t data) 599 { 600 mem_name_t mem_name; 601 void *buf; 602 size_t bufsize; 603 int len, err; 604 605 if ((bufsize = cpu_get_name_bufsize()) == 0) 606 return (ENOTSUP); 607 608 if ((err = mm_read_mem_name(data, &mem_name)) < 0) 609 return (err); 610 611 buf = kmem_alloc(bufsize, KM_SLEEP); 612 613 /* 614 * Call into cpu specific code to do the lookup. 615 */ 616 if ((err = cpu_get_mem_name(mem_name.m_synd, mem_name.m_type, 617 mem_name.m_addr, buf, bufsize, &len)) != 0) { 618 kmem_free(buf, bufsize); 619 return (err); 620 } 621 622 if (len >= mem_name.m_namelen) { 623 kmem_free(buf, bufsize); 624 return (ENAMETOOLONG); 625 } 626 627 if (copyoutstr(buf, (char *)mem_name.m_name, 628 mem_name.m_namelen, NULL) != 0) { 629 kmem_free(buf, bufsize); 630 return (EFAULT); 631 } 632 633 kmem_free(buf, bufsize); 634 return (0); 635 } 636 637 /* 638 * Given a syndrome and address return information about the associated memory. 639 */ 640 static int 641 mmioctl_get_mem_info(intptr_t data) 642 { 643 mem_info_t mem_info; 644 int err; 645 646 if (copyin((void *)data, &mem_info, sizeof (mem_info_t))) 647 return (EFAULT); 648 649 if ((err = cpu_get_mem_info(mem_info.m_synd, mem_info.m_addr, 650 &mem_info.m_mem_size, &mem_info.m_seg_size, &mem_info.m_bank_size, 651 &mem_info.m_segments, &mem_info.m_banks, &mem_info.m_mcid)) != 0) 652 return (err); 653 654 if (copyout(&mem_info, (void *)data, sizeof (mem_info_t)) != 0) 655 return (EFAULT); 656 657 return (0); 658 } 659 660 /* 661 * Given a memory name, return its associated serial id 662 */ 663 static int 664 mmioctl_get_mem_sid(intptr_t data) 665 { 666 mem_name_t mem_name; 667 void *buf; 668 void *name; 669 size_t name_len; 670 size_t bufsize; 671 int len, err; 672 673 if ((bufsize = cpu_get_name_bufsize()) == 0) 674 return (ENOTSUP); 675 676 if ((err = mm_read_mem_name(data, &mem_name)) < 0) 677 return (err); 678 679 buf = kmem_alloc(bufsize, KM_SLEEP); 680 681 if (mem_name.m_namelen > 1024) 682 mem_name.m_namelen = 1024; /* cap at 1024 bytes */ 683 684 name = kmem_alloc(mem_name.m_namelen, KM_SLEEP); 685 686 if ((err = copyinstr((char *)mem_name.m_name, (char *)name, 687 mem_name.m_namelen, &name_len)) != 0) { 688 kmem_free(buf, bufsize); 689 kmem_free(name, mem_name.m_namelen); 690 return (err); 691 } 692 693 /* 694 * Call into cpu specific code to do the lookup. 695 */ 696 if ((err = cpu_get_mem_sid(name, buf, bufsize, &len)) != 0) { 697 kmem_free(buf, bufsize); 698 kmem_free(name, mem_name.m_namelen); 699 return (err); 700 } 701 702 if (len > mem_name.m_sidlen) { 703 kmem_free(buf, bufsize); 704 kmem_free(name, mem_name.m_namelen); 705 return (ENAMETOOLONG); 706 } 707 708 if (copyoutstr(buf, (char *)mem_name.m_sid, 709 mem_name.m_sidlen, NULL) != 0) { 710 kmem_free(buf, bufsize); 711 kmem_free(name, mem_name.m_namelen); 712 return (EFAULT); 713 } 714 715 kmem_free(buf, bufsize); 716 kmem_free(name, mem_name.m_namelen); 717 return (0); 718 } 719 #endif /* __sparc */ 720 721 /* 722 * Private ioctls for 723 * libkvm to support kvm_physaddr(). 724 * FMA support for page_retire() and memory attribute information. 725 */ 726 /*ARGSUSED*/ 727 static int 728 mmioctl(dev_t dev, int cmd, intptr_t data, int flag, cred_t *cred, int *rvalp) 729 { 730 if ((cmd == MEM_VTOP && getminor(dev) != M_KMEM) || 731 (cmd != MEM_VTOP && getminor(dev) != M_MEM)) 732 return (ENXIO); 733 734 switch (cmd) { 735 case MEM_VTOP: 736 return (mmioctl_vtop(data)); 737 738 case MEM_PAGE_RETIRE: 739 case MEM_PAGE_ISRETIRED: 740 case MEM_PAGE_UNRETIRE: 741 case MEM_PAGE_RETIRE_MCE: 742 case MEM_PAGE_RETIRE_UE: 743 case MEM_PAGE_GETERRORS: 744 case MEM_PAGE_RETIRE_TEST: 745 return (mmioctl_page_retire(cmd, data)); 746 747 case MEM_PAGE_FMRI_RETIRE: 748 case MEM_PAGE_FMRI_ISRETIRED: 749 return (mmioctl_page_fmri_retire(cmd, data)); 750 751 #ifdef __sparc 752 case MEM_NAME: 753 return (mmioctl_get_mem_name(data)); 754 755 case MEM_INFO: 756 return (mmioctl_get_mem_info(data)); 757 758 case MEM_SID: 759 return (mmioctl_get_mem_sid(data)); 760 #else 761 case MEM_NAME: 762 case MEM_INFO: 763 case MEM_SID: 764 return (ENOTSUP); 765 #endif /* __sparc */ 766 } 767 return (ENXIO); 768 } 769 770 /*ARGSUSED2*/ 771 static int 772 mmmmap(dev_t dev, off_t off, int prot) 773 { 774 pfn_t pf; 775 struct memlist *pmem; 776 minor_t minor = getminor(dev); 777 778 switch (minor) { 779 case M_MEM: 780 pf = btop(off); 781 memlist_read_lock(); 782 for (pmem = phys_install; pmem != NULL; pmem = pmem->next) { 783 if (pf >= BTOP(pmem->address) && 784 pf < BTOP(pmem->address + pmem->size)) { 785 memlist_read_unlock(); 786 return (impl_obmem_pfnum(pf)); 787 } 788 } 789 memlist_read_unlock(); 790 break; 791 792 case M_KMEM: 793 case M_ALLKMEM: 794 /* no longer supported with KPR */ 795 return (-1); 796 797 case M_ZERO: 798 /* 799 * We shouldn't be mmap'ing to /dev/zero here as 800 * mmsegmap() should have already converted 801 * a mapping request for this device to a mapping 802 * using seg_vn for anonymous memory. 803 */ 804 break; 805 806 } 807 return (-1); 808 } 809 810 /* 811 * This function is called when a memory device is mmap'ed. 812 * Set up the mapping to the correct device driver. 813 */ 814 static int 815 mmsegmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len, 816 uint_t prot, uint_t maxprot, uint_t flags, struct cred *cred) 817 { 818 struct segvn_crargs vn_a; 819 struct segdev_crargs dev_a; 820 int error; 821 minor_t minor; 822 off_t i; 823 824 minor = getminor(dev); 825 826 as_rangelock(as); 827 if ((flags & MAP_FIXED) == 0) { 828 /* 829 * No need to worry about vac alignment on /dev/zero 830 * since this is a "clone" object that doesn't yet exist. 831 */ 832 map_addr(addrp, len, (offset_t)off, 833 (minor == M_MEM) || (minor == M_KMEM), flags); 834 835 if (*addrp == NULL) { 836 as_rangeunlock(as); 837 return (ENOMEM); 838 } 839 } else { 840 /* 841 * User specified address - 842 * Blow away any previous mappings. 843 */ 844 (void) as_unmap(as, *addrp, len); 845 } 846 847 switch (minor) { 848 case M_MEM: 849 /* /dev/mem cannot be mmap'ed with MAP_PRIVATE */ 850 if ((flags & MAP_TYPE) != MAP_SHARED) { 851 as_rangeunlock(as); 852 return (EINVAL); 853 } 854 855 /* 856 * Check to ensure that the entire range is 857 * legal and we are not trying to map in 858 * more than the device will let us. 859 */ 860 for (i = 0; i < len; i += PAGESIZE) { 861 if (mmmmap(dev, off + i, maxprot) == -1) { 862 as_rangeunlock(as); 863 return (ENXIO); 864 } 865 } 866 867 /* 868 * Use seg_dev segment driver for /dev/mem mapping. 869 */ 870 dev_a.mapfunc = mmmmap; 871 dev_a.dev = dev; 872 dev_a.offset = off; 873 dev_a.type = (flags & MAP_TYPE); 874 dev_a.prot = (uchar_t)prot; 875 dev_a.maxprot = (uchar_t)maxprot; 876 dev_a.hat_attr = 0; 877 878 /* 879 * Make /dev/mem mappings non-consistent since we can't 880 * alias pages that don't have page structs behind them, 881 * such as kernel stack pages. If someone mmap()s a kernel 882 * stack page and if we give him a tte with cv, a line from 883 * that page can get into both pages of the spitfire d$. 884 * But snoop from another processor will only invalidate 885 * the first page. This later caused kernel (xc_attention) 886 * to go into an infinite loop at pil 13 and no interrupts 887 * could come in. See 1203630. 888 * 889 */ 890 dev_a.hat_flags = HAT_LOAD_NOCONSIST; 891 dev_a.devmap_data = NULL; 892 893 error = as_map(as, *addrp, len, segdev_create, &dev_a); 894 break; 895 896 case M_ZERO: 897 /* 898 * Use seg_vn segment driver for /dev/zero mapping. 899 * Passing in a NULL amp gives us the "cloning" effect. 900 */ 901 vn_a.vp = NULL; 902 vn_a.offset = 0; 903 vn_a.type = (flags & MAP_TYPE); 904 vn_a.prot = prot; 905 vn_a.maxprot = maxprot; 906 vn_a.flags = flags & ~MAP_TYPE; 907 vn_a.cred = cred; 908 vn_a.amp = NULL; 909 vn_a.szc = 0; 910 vn_a.lgrp_mem_policy_flags = 0; 911 error = as_map(as, *addrp, len, segvn_create, &vn_a); 912 break; 913 914 case M_KMEM: 915 case M_ALLKMEM: 916 /* No longer supported with KPR. */ 917 error = ENXIO; 918 break; 919 920 case M_NULL: 921 /* 922 * Use seg_dev segment driver for /dev/null mapping. 923 */ 924 dev_a.mapfunc = mmmmap; 925 dev_a.dev = dev; 926 dev_a.offset = off; 927 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 928 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 929 dev_a.hat_attr = 0; 930 dev_a.hat_flags = 0; 931 error = as_map(as, *addrp, len, segdev_create, &dev_a); 932 break; 933 934 default: 935 error = ENXIO; 936 } 937 938 as_rangeunlock(as); 939 return (error); 940 } 941 942 static struct cb_ops mm_cb_ops = { 943 mmopen, /* open */ 944 nulldev, /* close */ 945 nodev, /* strategy */ 946 nodev, /* print */ 947 nodev, /* dump */ 948 mmread, /* read */ 949 mmwrite, /* write */ 950 mmioctl, /* ioctl */ 951 nodev, /* devmap */ 952 mmmmap, /* mmap */ 953 mmsegmap, /* segmap */ 954 mmchpoll, /* poll */ 955 mmpropop, /* prop_op */ 956 0, /* streamtab */ 957 D_NEW | D_MP | D_64BIT | D_U64BIT 958 }; 959 960 static struct dev_ops mm_ops = { 961 DEVO_REV, /* devo_rev, */ 962 0, /* refcnt */ 963 mm_info, /* get_dev_info */ 964 nulldev, /* identify */ 965 nulldev, /* probe */ 966 mm_attach, /* attach */ 967 nodev, /* detach */ 968 nodev, /* reset */ 969 &mm_cb_ops, /* driver operations */ 970 (struct bus_ops *)0 /* bus operations */ 971 }; 972 973 static struct modldrv modldrv = { 974 &mod_driverops, "memory driver %I%", &mm_ops, 975 }; 976 977 static struct modlinkage modlinkage = { 978 MODREV_1, &modldrv, NULL 979 }; 980 981 int 982 _init(void) 983 { 984 return (mod_install(&modlinkage)); 985 } 986 987 int 988 _info(struct modinfo *modinfop) 989 { 990 return (mod_info(&modlinkage, modinfop)); 991 } 992 993 int 994 _fini(void) 995 { 996 return (mod_remove(&modlinkage)); 997 } 998 999 static int 1000 mm_kstat_update(kstat_t *ksp, int rw) 1001 { 1002 struct memlist *pmem; 1003 uint_t count; 1004 1005 if (rw == KSTAT_WRITE) 1006 return (EACCES); 1007 1008 count = 0; 1009 memlist_read_lock(); 1010 for (pmem = phys_install; pmem != NULL; pmem = pmem->next) { 1011 count++; 1012 } 1013 memlist_read_unlock(); 1014 1015 ksp->ks_ndata = count; 1016 ksp->ks_data_size = count * 2 * sizeof (uint64_t); 1017 1018 return (0); 1019 } 1020 1021 static int 1022 mm_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 1023 { 1024 struct memlist *pmem; 1025 struct memunit { 1026 uint64_t address; 1027 uint64_t size; 1028 } *kspmem; 1029 1030 if (rw == KSTAT_WRITE) 1031 return (EACCES); 1032 1033 ksp->ks_snaptime = gethrtime(); 1034 1035 kspmem = (struct memunit *)buf; 1036 memlist_read_lock(); 1037 for (pmem = phys_install; pmem != NULL; pmem = pmem->next, kspmem++) { 1038 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 1039 break; 1040 kspmem->address = pmem->address; 1041 kspmem->size = pmem->size; 1042 } 1043 memlist_read_unlock(); 1044 1045 return (0); 1046 } 1047 1048 /* 1049 * Read a mem_name_t from user-space and store it in the mem_name_t 1050 * pointed to by the mem_name argument. 1051 */ 1052 static int 1053 mm_read_mem_name(intptr_t data, mem_name_t *mem_name) 1054 { 1055 if (get_udatamodel() == DATAMODEL_NATIVE) { 1056 if (copyin((void *)data, mem_name, sizeof (mem_name_t))) 1057 return (EFAULT); 1058 } 1059 #ifdef _SYSCALL32 1060 else { 1061 mem_name32_t mem_name32; 1062 1063 if (copyin((void *)data, &mem_name32, sizeof (mem_name32_t))) 1064 return (EFAULT); 1065 mem_name->m_addr = mem_name32.m_addr; 1066 mem_name->m_synd = mem_name32.m_synd; 1067 mem_name->m_type[0] = mem_name32.m_type[0]; 1068 mem_name->m_type[1] = mem_name32.m_type[1]; 1069 mem_name->m_name = (caddr_t)(uintptr_t)mem_name32.m_name; 1070 mem_name->m_namelen = (size_t)mem_name32.m_namelen; 1071 mem_name->m_sid = (caddr_t)(uintptr_t)mem_name32.m_sid; 1072 mem_name->m_sidlen = (size_t)mem_name32.m_sidlen; 1073 } 1074 #endif /* _SYSCALL32 */ 1075 1076 return (0); 1077 } 1078 1079 /* 1080 * Read a mem_page_t from user-space and store it in the mem_page_t 1081 * pointed to by the mpage argument. 1082 */ 1083 static int 1084 mm_read_mem_page(intptr_t data, mem_page_t *mpage) 1085 { 1086 if (get_udatamodel() == DATAMODEL_NATIVE) { 1087 if (copyin((void *)data, mpage, sizeof (mem_page_t)) != 0) 1088 return (EFAULT); 1089 } 1090 #ifdef _SYSCALL32 1091 else { 1092 mem_page32_t mpage32; 1093 1094 if (copyin((void *)data, &mpage32, sizeof (mem_page32_t)) != 0) 1095 return (EFAULT); 1096 1097 mpage->m_fmri = (caddr_t)(uintptr_t)mpage32.m_fmri; 1098 mpage->m_fmrisz = mpage32.m_fmrisz; 1099 } 1100 #endif /* _SYSCALL32 */ 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Expand an FMRI from a mem_page_t. 1107 */ 1108 static int 1109 mm_get_mem_fmri(mem_page_t *mpage, nvlist_t **nvl) 1110 { 1111 char *buf; 1112 int err; 1113 1114 if (mpage->m_fmri == NULL || mpage->m_fmrisz > MEM_FMRI_MAX_BUFSIZE) 1115 return (EINVAL); 1116 1117 buf = kmem_alloc(mpage->m_fmrisz, KM_SLEEP); 1118 if (copyin(mpage->m_fmri, buf, mpage->m_fmrisz) != 0) { 1119 kmem_free(buf, mpage->m_fmrisz); 1120 return (EFAULT); 1121 } 1122 1123 err = nvlist_unpack(buf, mpage->m_fmrisz, nvl, KM_SLEEP); 1124 kmem_free(buf, mpage->m_fmrisz); 1125 1126 return (err); 1127 } 1128 1129 static int 1130 mm_get_paddr(nvlist_t *nvl, uint64_t *paddr) 1131 { 1132 uint8_t version; 1133 uint64_t pa; 1134 char *scheme; 1135 #ifdef __sparc 1136 uint64_t offset; 1137 char *unum; 1138 char **serids; 1139 uint_t nserids; 1140 int err; 1141 #endif 1142 1143 /* Verify FMRI scheme name and version number */ 1144 if ((nvlist_lookup_string(nvl, FM_FMRI_SCHEME, &scheme) != 0) || 1145 (strcmp(scheme, FM_FMRI_SCHEME_MEM) != 0) || 1146 (nvlist_lookup_uint8(nvl, FM_VERSION, &version) != 0) || 1147 version > FM_MEM_SCHEME_VERSION) { 1148 return (EINVAL); 1149 } 1150 1151 /* 1152 * There are two ways a physical address can be obtained from a mem 1153 * scheme FMRI. One way is to use the "offset" and "serial" 1154 * members, if they are present, together with the "unum" member to 1155 * calculate a physical address. This is the preferred way since 1156 * it is independent of possible changes to the programming of 1157 * underlying hardware registers that may change the physical address. 1158 * If the "offset" member is not present, then the address is 1159 * retrieved from the "physaddr" member. 1160 */ 1161 #if defined(__sparc) 1162 if (nvlist_lookup_uint64(nvl, FM_FMRI_MEM_OFFSET, &offset) != 0) { 1163 if (nvlist_lookup_uint64(nvl, FM_FMRI_MEM_PHYSADDR, &pa) != 1164 0) { 1165 return (EINVAL); 1166 } 1167 } else if (nvlist_lookup_string(nvl, FM_FMRI_MEM_UNUM, &unum) != 0 || 1168 nvlist_lookup_string_array(nvl, FM_FMRI_MEM_SERIAL_ID, &serids, 1169 &nserids) != 0) { 1170 return (EINVAL); 1171 } else { 1172 if ((err = cpu_get_mem_addr(unum, serids[0], offset, &pa)) != 0) 1173 return (err); 1174 } 1175 #elif defined(__i386) || defined(__amd64) 1176 if (cmi_mc_unumtopa(NULL, nvl, &pa) == 0) 1177 return (EINVAL); 1178 #else 1179 #error "port me" 1180 #endif /* __sparc */ 1181 1182 *paddr = pa; 1183 return (0); 1184 } 1185