1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/callb.h> 28 #include <sys/sdt.h> 29 #include <sys/strsubr.h> 30 #include <sys/strsun.h> 31 #include <sys/vlan.h> 32 #include <inet/ipsec_impl.h> 33 #include <inet/ip_impl.h> 34 #include <inet/sadb.h> 35 #include <inet/ipsecesp.h> 36 #include <inet/ipsecah.h> 37 #include <inet/ip6.h> 38 39 #include <sys/mac_impl.h> 40 #include <sys/mac_client_impl.h> 41 #include <sys/mac_client_priv.h> 42 #include <sys/mac_soft_ring.h> 43 #include <sys/mac_flow_impl.h> 44 45 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *, 46 uintptr_t, uint16_t, mblk_t **); 47 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *, 48 uintptr_t, uint16_t, mblk_t **); 49 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *, 50 uintptr_t, uint16_t, mblk_t **); 51 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *, 52 uintptr_t, uint16_t, mblk_t **); 53 54 typedef struct mac_tx_mode_s { 55 mac_tx_srs_mode_t mac_tx_mode; 56 mac_tx_func_t mac_tx_func; 57 } mac_tx_mode_t; 58 59 /* 60 * There are five modes of operation on the Tx side. These modes get set 61 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode, 62 * none of the other modes are user configurable. They get selected by 63 * the system depending upon whether the link (or flow) has multiple Tx 64 * rings or a bandwidth configured, etc. 65 */ 66 mac_tx_mode_t mac_tx_mode_list[] = { 67 {SRS_TX_DEFAULT, mac_tx_single_ring_mode}, 68 {SRS_TX_SERIALIZE, mac_tx_serializer_mode}, 69 {SRS_TX_FANOUT, mac_tx_fanout_mode}, 70 {SRS_TX_BW, mac_tx_bw_mode}, 71 {SRS_TX_BW_FANOUT, mac_tx_bw_mode} 72 }; 73 74 /* 75 * Soft Ring Set (SRS) - The Run time code that deals with 76 * dynamic polling from the hardware, bandwidth enforcement, 77 * fanout etc. 78 * 79 * We try to use H/W classification on NIC and assign traffic for 80 * a MAC address to a particular Rx ring or ring group. There is a 81 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically 82 * switches the underlying Rx ring between interrupt and 83 * polling mode and enforces any specified B/W control. 84 * 85 * There is always a SRS created and tied to each H/W and S/W rule. 86 * Whenever we create a H/W rule, we always add the the same rule to 87 * S/W classifier and tie a SRS to it. 88 * 89 * In case a B/W control is specified, it is broken into bytes 90 * per ticks and as soon as the quota for a tick is exhausted, 91 * the underlying Rx ring is forced into poll mode for remainder of 92 * the tick. The SRS poll thread only polls for bytes that are 93 * allowed to come in the SRS. We typically let 4x the configured 94 * B/W worth of packets to come in the SRS (to prevent unnecessary 95 * drops due to bursts) but only process the specified amount. 96 * 97 * A MAC client (e.g. a VNIC or aggr) can have 1 or more 98 * Rx rings (and corresponding SRSs) assigned to it. The SRS 99 * in turn can have softrings to do protocol level fanout or 100 * softrings to do S/W based fanout or both. In case the NIC 101 * has no Rx rings, we do S/W classification to respective SRS. 102 * The S/W classification rule is always setup and ready. This 103 * allows the MAC layer to reassign Rx rings whenever needed 104 * but packets still continue to flow via the default path and 105 * getting S/W classified to correct SRS. 106 * 107 * The SRS's are used on both Tx and Rx side. They use the same 108 * data structure but the processing routines have slightly different 109 * semantics due to the fact that Rx side needs to do dynamic 110 * polling etc. 111 * 112 * Dynamic Polling Notes 113 * ===================== 114 * 115 * Each Soft ring set is capable of switching its Rx ring between 116 * interrupt and poll mode and actively 'polls' for packets in 117 * poll mode. If the SRS is implementing a B/W limit, it makes 118 * sure that only Max allowed packets are pulled in poll mode 119 * and goes to poll mode as soon as B/W limit is exceeded. As 120 * such, there are no overheads to implement B/W limits. 121 * 122 * In poll mode, its better to keep the pipeline going where the 123 * SRS worker thread keeps processing packets and poll thread 124 * keeps bringing more packets (specially if they get to run 125 * on different CPUs). This also prevents the overheads associated 126 * by excessive signalling (on NUMA machines, this can be 127 * pretty devastating). The exception is latency optimized case 128 * where worker thread does no work and interrupt and poll thread 129 * are allowed to do their own drain. 130 * 131 * We use the following policy to control Dynamic Polling: 132 * 1) We switch to poll mode anytime the processing 133 * thread causes a backlog to build up in SRS and 134 * its associated Soft Rings (sr_poll_pkt_cnt > 0). 135 * 2) As long as the backlog stays under the low water 136 * mark (sr_lowat), we poll the H/W for more packets. 137 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low 138 * water mark, we stay in poll mode but don't poll 139 * the H/W for more packets. 140 * 4) Anytime in polling mode, if we poll the H/W for 141 * packets and find nothing plus we have an existing 142 * backlog (sr_poll_pkt_cnt > 0), we stay in polling 143 * mode but don't poll the H/W for packets anymore 144 * (let the polling thread go to sleep). 145 * 5) Once the backlog is relived (packets are processed) 146 * we reenable polling (by signalling the poll thread) 147 * only when the backlog dips below sr_poll_thres. 148 * 6) sr_hiwat is used exclusively when we are not 149 * polling capable and is used to decide when to 150 * drop packets so the SRS queue length doesn't grow 151 * infinitely. 152 * 153 * NOTE: Also see the block level comment on top of mac_soft_ring.c 154 */ 155 156 /* 157 * mac_latency_optimize 158 * 159 * Controls whether the poll thread can process the packets inline 160 * or let the SRS worker thread do the processing. This applies if 161 * the SRS was not being processed. For latency sensitive traffic, 162 * this needs to be true to allow inline processing. For throughput 163 * under load, this should be false. 164 * 165 * This (and other similar) tunable should be rolled into a link 166 * or flow specific workload hint that can be set using dladm 167 * linkprop (instead of multiple such tunables). 168 */ 169 boolean_t mac_latency_optimize = B_TRUE; 170 171 /* 172 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN 173 * 174 * queue a mp or chain in soft ring set and increment the 175 * local count (srs_count) for the SRS and the shared counter 176 * (srs_poll_pkt_cnt - shared between SRS and its soft rings 177 * to track the total unprocessed packets for polling to work 178 * correctly). 179 * 180 * The size (total bytes queued) counters are incremented only 181 * if we are doing B/W control. 182 */ 183 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 184 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 185 if ((mac_srs)->srs_last != NULL) \ 186 (mac_srs)->srs_last->b_next = (head); \ 187 else \ 188 (mac_srs)->srs_first = (head); \ 189 (mac_srs)->srs_last = (tail); \ 190 (mac_srs)->srs_count += count; \ 191 } 192 193 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 194 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ 195 \ 196 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ 197 srs_rx->sr_poll_pkt_cnt += count; \ 198 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \ 199 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ 200 (mac_srs)->srs_size += (sz); \ 201 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \ 202 (mac_srs)->srs_bw->mac_bw_sz += (sz); \ 203 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \ 204 } \ 205 } 206 207 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 208 mac_srs->srs_state |= SRS_ENQUEUED; \ 209 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ 210 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ 211 (mac_srs)->srs_size += (sz); \ 212 (mac_srs)->srs_bw->mac_bw_sz += (sz); \ 213 } \ 214 } 215 216 /* 217 * Turn polling on routines 218 */ 219 #define MAC_SRS_POLLING_ON(mac_srs) { \ 220 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 221 if (((mac_srs)->srs_state & \ 222 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \ 223 (mac_srs)->srs_state |= SRS_POLLING; \ 224 (void) mac_hwring_disable_intr((mac_ring_handle_t) \ 225 (mac_srs)->srs_ring); \ 226 (mac_srs)->srs_rx.sr_poll_on++; \ 227 } \ 228 } 229 230 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \ 231 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 232 if (((mac_srs)->srs_state & \ 233 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \ 234 (SRS_POLLING_CAPAB|SRS_WORKER)) { \ 235 (mac_srs)->srs_state |= SRS_POLLING; \ 236 (void) mac_hwring_disable_intr((mac_ring_handle_t) \ 237 (mac_srs)->srs_ring); \ 238 (mac_srs)->srs_rx.sr_worker_poll_on++; \ 239 } \ 240 } 241 242 /* 243 * MAC_SRS_POLL_RING 244 * 245 * Signal the SRS poll thread to poll the underlying H/W ring 246 * provided it wasn't already polling (SRS_GET_PKTS was set). 247 * 248 * Poll thread gets to run only from mac_rx_srs_drain() and only 249 * if the drain was being done by the worker thread. 250 */ 251 #define MAC_SRS_POLL_RING(mac_srs) { \ 252 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ 253 \ 254 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 255 srs_rx->sr_poll_thr_sig++; \ 256 if (((mac_srs)->srs_state & \ 257 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \ 258 (SRS_WORKER|SRS_POLLING_CAPAB)) { \ 259 (mac_srs)->srs_state |= SRS_GET_PKTS; \ 260 cv_signal(&(mac_srs)->srs_cv); \ 261 } else { \ 262 srs_rx->sr_poll_thr_busy++; \ 263 } \ 264 } 265 266 /* 267 * MAC_SRS_CHECK_BW_CONTROL 268 * 269 * Check to see if next tick has started so we can reset the 270 * SRS_BW_ENFORCED flag and allow more packets to come in the 271 * system. 272 */ 273 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \ 274 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 275 ASSERT(((mac_srs)->srs_type & SRST_TX) || \ 276 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \ 277 if ((mac_srs)->srs_bw->mac_bw_curr_time != lbolt) { \ 278 (mac_srs)->srs_bw->mac_bw_curr_time = lbolt; \ 279 (mac_srs)->srs_bw->mac_bw_used = 0; \ 280 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \ 281 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \ 282 } \ 283 } 284 285 /* 286 * MAC_SRS_WORKER_WAKEUP 287 * 288 * Wake up the SRS worker thread to process the queue as long as 289 * no one else is processing the queue. If we are optimizing for 290 * latency, we wake up the worker thread immediately or else we 291 * wait mac_srs_worker_wakeup_ticks before worker thread gets 292 * woken up. 293 */ 294 int mac_srs_worker_wakeup_ticks = 0; 295 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \ 296 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 297 if (!((mac_srs)->srs_state & SRS_PROC) && \ 298 (mac_srs)->srs_tid == NULL) { \ 299 if (mac_latency_optimize || \ 300 (mac_srs_worker_wakeup_ticks == 0)) \ 301 cv_signal(&(mac_srs)->srs_async); \ 302 else \ 303 (mac_srs)->srs_tid = \ 304 timeout(mac_srs_fire, (mac_srs), \ 305 mac_srs_worker_wakeup_ticks); \ 306 } \ 307 } 308 309 #define TX_SINGLE_RING_MODE(mac_srs) \ 310 ((mac_srs)->srs_tx.st_mode == SRS_TX_DEFAULT || \ 311 (mac_srs)->srs_tx.st_mode == SRS_TX_SERIALIZE || \ 312 (mac_srs)->srs_tx.st_mode == SRS_TX_BW) 313 314 #define TX_BANDWIDTH_MODE(mac_srs) \ 315 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \ 316 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT) 317 318 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \ 319 uint_t hash, indx; \ 320 hash = HASH_HINT(hint); \ 321 indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); \ 322 softring = mac_srs->srs_oth_soft_rings[indx]; \ 323 (void) (mac_tx_soft_ring_process(softring, head, 0, NULL)); \ 324 } 325 326 /* 327 * MAC_TX_SRS_BLOCK 328 * 329 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED 330 * will be set only if srs_tx_woken_up is FALSE. If 331 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived 332 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to 333 * attempt to transmit again and not setting SRS_TX_BLOCKED does 334 * that. 335 */ 336 #define MAC_TX_SRS_BLOCK(srs, mp) { \ 337 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \ 338 if ((srs)->srs_tx.st_woken_up) { \ 339 (srs)->srs_tx.st_woken_up = B_FALSE; \ 340 } else { \ 341 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \ 342 (srs)->srs_state |= SRS_TX_BLOCKED; \ 343 (srs)->srs_tx.st_blocked_cnt++; \ 344 } \ 345 } 346 347 /* 348 * MAC_TX_SRS_TEST_HIWAT 349 * 350 * Called before queueing a packet onto Tx SRS to test and set 351 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat. 352 */ 353 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \ 354 boolean_t enqueue = 1; \ 355 \ 356 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \ 357 /* \ 358 * flow-controlled. Store srs in cookie so that it \ 359 * can be returned as mac_tx_cookie_t to client \ 360 */ \ 361 (srs)->srs_state |= SRS_TX_HIWAT; \ 362 cookie = (mac_tx_cookie_t)srs; \ 363 (srs)->srs_tx.st_hiwat_cnt++; \ 364 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \ 365 /* increment freed stats */ \ 366 (srs)->srs_tx.st_drop_count += cnt; \ 367 /* \ 368 * b_prev may be set to the fanout hint \ 369 * hence can't use freemsg directly \ 370 */ \ 371 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \ 372 DTRACE_PROBE1(tx_queued_hiwat, \ 373 mac_soft_ring_set_t *, srs); \ 374 enqueue = 0; \ 375 } \ 376 } \ 377 if (enqueue) \ 378 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \ 379 } 380 381 /* Some utility macros */ 382 #define MAC_SRS_BW_LOCK(srs) \ 383 if (!(srs->srs_type & SRST_TX)) \ 384 mutex_enter(&srs->srs_bw->mac_bw_lock); 385 386 #define MAC_SRS_BW_UNLOCK(srs) \ 387 if (!(srs->srs_type & SRST_TX)) \ 388 mutex_exit(&srs->srs_bw->mac_bw_lock); 389 390 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \ 391 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \ 392 /* increment freed stats */ \ 393 mac_srs->srs_tx.st_drop_count++; \ 394 cookie = (mac_tx_cookie_t)srs; \ 395 } 396 397 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \ 398 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \ 399 cookie = (mac_tx_cookie_t)srs; \ 400 *ret_mp = mp_chain; \ 401 } 402 403 /* 404 * Drop the rx packet and advance to the next one in the chain. 405 */ 406 static void 407 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp) 408 { 409 mac_srs_rx_t *srs_rx = &srs->srs_rx; 410 411 ASSERT(mp->b_next == NULL); 412 mutex_enter(&srs->srs_lock); 413 MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1); 414 MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp)); 415 mutex_exit(&srs->srs_lock); 416 417 srs_rx->sr_drop_count++; 418 freemsg(mp); 419 } 420 421 /* DATAPATH RUNTIME ROUTINES */ 422 423 /* 424 * mac_srs_fire 425 * 426 * Timer callback routine for waking up the SRS worker thread. 427 */ 428 static void 429 mac_srs_fire(void *arg) 430 { 431 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg; 432 433 mutex_enter(&mac_srs->srs_lock); 434 if (mac_srs->srs_tid == 0) { 435 mutex_exit(&mac_srs->srs_lock); 436 return; 437 } 438 439 mac_srs->srs_tid = 0; 440 if (!(mac_srs->srs_state & SRS_PROC)) 441 cv_signal(&mac_srs->srs_async); 442 443 mutex_exit(&mac_srs->srs_lock); 444 } 445 446 /* 447 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack, 448 * and it is used on the TX path. 449 */ 450 #define HASH_HINT(hint) (((hint) << 17) | ((hint) >> 16)) 451 452 /* 453 * hash based on the src address and the port information. 454 */ 455 #define HASH_ADDR(src, ports) \ 456 (ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \ 457 ((ports) >> 8) ^ (ports)) 458 459 #define COMPUTE_INDEX(key, sz) (key % sz) 460 461 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \ 462 if ((tail) != NULL) { \ 463 ASSERT((tail)->b_next == NULL); \ 464 (tail)->b_next = (mp); \ 465 } else { \ 466 ASSERT((head) == NULL); \ 467 (head) = (mp); \ 468 } \ 469 (tail) = (mp); \ 470 (cnt)++; \ 471 if ((bw_ctl)) \ 472 (sz) += (sz0); \ 473 } 474 475 #define MAC_FANOUT_DEFAULT 0 476 #define MAC_FANOUT_RND_ROBIN 1 477 int mac_fanout_type = MAC_FANOUT_DEFAULT; 478 479 #define MAX_SR_TYPES 3 480 /* fanout types for port based hashing */ 481 enum pkt_type { 482 V4_TCP = 0, 483 V4_UDP, 484 OTH, 485 UNDEF 486 }; 487 488 /* 489 * In general we do port based hashing to spread traffic over different 490 * softrings. The below tunable allows to override that behavior. Setting it 491 * to B_TRUE allows to do a fanout based on src ipv6 address. This behavior 492 * is also the applicable to ipv6 packets carrying multiple optional headers 493 * and other uncommon packet types. 494 */ 495 boolean_t mac_src_ipv6_fanout = B_FALSE; 496 497 /* 498 * Pair of local and remote ports in the transport header 499 */ 500 #define PORTS_SIZE 4 501 502 /* 503 * mac_rx_srs_proto_fanout 504 * 505 * This routine delivers packets destined to an SRS into one of the 506 * protocol soft rings. 507 * 508 * Given a chain of packets we need to split it up into multiple sub chains 509 * destined into TCP, UDP or OTH soft ring. Instead of entering 510 * the soft ring one packet at a time, we want to enter it in the form of a 511 * chain otherwise we get this start/stop behaviour where the worker thread 512 * goes to sleep and then next packets comes in forcing it to wake up etc. 513 */ 514 static void 515 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) 516 { 517 struct ether_header *ehp; 518 struct ether_vlan_header *evhp; 519 uint32_t sap; 520 ipha_t *ipha; 521 uint8_t *dstaddr; 522 size_t hdrsize; 523 mblk_t *mp; 524 mblk_t *headmp[MAX_SR_TYPES]; 525 mblk_t *tailmp[MAX_SR_TYPES]; 526 int cnt[MAX_SR_TYPES]; 527 size_t sz[MAX_SR_TYPES]; 528 size_t sz1; 529 boolean_t bw_ctl; 530 boolean_t hw_classified; 531 boolean_t dls_bypass; 532 boolean_t is_ether; 533 boolean_t is_unicast; 534 enum pkt_type type; 535 mac_client_impl_t *mcip = mac_srs->srs_mcip; 536 537 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); 538 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); 539 540 /* 541 * If we don't have a Rx ring, S/W classification would have done 542 * its job and its a packet meant for us. If we were polling on 543 * the default ring (i.e. there was a ring assigned to this SRS), 544 * then we need to make sure that the mac address really belongs 545 * to us. 546 */ 547 hw_classified = mac_srs->srs_ring != NULL && 548 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; 549 550 /* 551 * Special clients (eg. VLAN, non ether, etc) need DLS 552 * processing in the Rx path. SRST_DLS_BYPASS will be clear for 553 * such SRSs. 554 */ 555 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0); 556 557 bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *)); 558 bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *)); 559 bzero(cnt, MAX_SR_TYPES * sizeof (int)); 560 bzero(sz, MAX_SR_TYPES * sizeof (size_t)); 561 562 /* 563 * We got a chain from SRS that we need to send to the soft rings. 564 * Since squeues for TCP & IPv4 sap poll their soft rings (for 565 * performance reasons), we need to separate out v4_tcp, v4_udp 566 * and the rest goes in other. 567 */ 568 while (head != NULL) { 569 mp = head; 570 head = head->b_next; 571 mp->b_next = NULL; 572 573 type = OTH; 574 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 575 576 if (is_ether) { 577 /* 578 * At this point we can be sure the packet at least 579 * has an ether header. 580 */ 581 if (sz1 < sizeof (struct ether_header)) { 582 mac_rx_drop_pkt(mac_srs, mp); 583 continue; 584 } 585 ehp = (struct ether_header *)mp->b_rptr; 586 587 /* 588 * Determine if this is a VLAN or non-VLAN packet. 589 */ 590 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { 591 evhp = (struct ether_vlan_header *)mp->b_rptr; 592 sap = ntohs(evhp->ether_type); 593 hdrsize = sizeof (struct ether_vlan_header); 594 /* 595 * Check if the VID of the packet, if any, 596 * belongs to this client. 597 */ 598 if (!mac_client_check_flow_vid(mcip, 599 VLAN_ID(ntohs(evhp->ether_tci)))) { 600 mac_rx_drop_pkt(mac_srs, mp); 601 continue; 602 } 603 } else { 604 hdrsize = sizeof (struct ether_header); 605 } 606 is_unicast = 607 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); 608 dstaddr = (uint8_t *)&ehp->ether_dhost; 609 } else { 610 mac_header_info_t mhi; 611 612 if (mac_header_info((mac_handle_t)mcip->mci_mip, 613 mp, &mhi) != 0) { 614 mac_rx_drop_pkt(mac_srs, mp); 615 continue; 616 } 617 hdrsize = mhi.mhi_hdrsize; 618 sap = mhi.mhi_bindsap; 619 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); 620 dstaddr = (uint8_t *)mhi.mhi_daddr; 621 } 622 623 if (!dls_bypass) { 624 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], 625 cnt[type], bw_ctl, sz[type], sz1, mp); 626 continue; 627 } 628 629 if (sap == ETHERTYPE_IP) { 630 /* 631 * If we are H/W classified, but we have promisc 632 * on, then we need to check for the unicast address. 633 */ 634 if (hw_classified && mcip->mci_promisc_list != NULL) { 635 mac_address_t *map; 636 637 rw_enter(&mcip->mci_rw_lock, RW_READER); 638 map = mcip->mci_unicast; 639 if (bcmp(dstaddr, map->ma_addr, 640 map->ma_len) == 0) 641 type = UNDEF; 642 rw_exit(&mcip->mci_rw_lock); 643 } else if (is_unicast) { 644 type = UNDEF; 645 } 646 } 647 648 /* 649 * This needs to become a contract with the driver for 650 * the fast path. 651 * 652 * In the normal case the packet will have at least the L2 653 * header and the IP + Transport header in the same mblk. 654 * This is usually the case when the NIC driver sends up 655 * the packet. This is also true when the stack generates 656 * a packet that is looped back and when the stack uses the 657 * fastpath mechanism. The normal case is optimized for 658 * performance and may bypass DLS. All other cases go through 659 * the 'OTH' type path without DLS bypass. 660 */ 661 662 ipha = (ipha_t *)(mp->b_rptr + hdrsize); 663 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) 664 type = OTH; 665 666 if (type == OTH) { 667 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], 668 cnt[type], bw_ctl, sz[type], sz1, mp); 669 continue; 670 } 671 672 ASSERT(type == UNDEF); 673 /* 674 * We look for at least 4 bytes past the IP header to get 675 * the port information. If we get an IP fragment, we don't 676 * have the port information, and we use just the protocol 677 * information. 678 */ 679 switch (ipha->ipha_protocol) { 680 case IPPROTO_TCP: 681 type = V4_TCP; 682 mp->b_rptr += hdrsize; 683 break; 684 case IPPROTO_UDP: 685 type = V4_UDP; 686 mp->b_rptr += hdrsize; 687 break; 688 default: 689 type = OTH; 690 break; 691 } 692 693 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type], 694 bw_ctl, sz[type], sz1, mp); 695 } 696 697 for (type = V4_TCP; type < UNDEF; type++) { 698 if (headmp[type] != NULL) { 699 mac_soft_ring_t *softring; 700 701 ASSERT(tailmp[type]->b_next == NULL); 702 switch (type) { 703 case V4_TCP: 704 softring = mac_srs->srs_tcp_soft_rings[0]; 705 break; 706 case V4_UDP: 707 softring = mac_srs->srs_udp_soft_rings[0]; 708 break; 709 case OTH: 710 softring = mac_srs->srs_oth_soft_rings[0]; 711 } 712 mac_rx_soft_ring_process(mcip, softring, 713 headmp[type], tailmp[type], cnt[type], sz[type]); 714 } 715 } 716 } 717 718 int fanout_unalligned = 0; 719 720 /* 721 * mac_rx_srs_long_fanout 722 * 723 * The fanout routine for IPv6 724 */ 725 static int 726 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp, 727 uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx) 728 { 729 ip6_t *ip6h; 730 uint8_t *whereptr; 731 uint_t hash; 732 uint16_t remlen; 733 uint8_t nexthdr; 734 uint16_t hdr_len; 735 736 if (sap == ETHERTYPE_IPV6) { 737 boolean_t modifiable = B_TRUE; 738 739 ASSERT(MBLKL(mp) >= hdrsize); 740 741 ip6h = (ip6_t *)(mp->b_rptr + hdrsize); 742 if ((unsigned char *)ip6h == mp->b_wptr) { 743 /* 744 * The first mblk_t only includes the mac header. 745 * Note that it is safe to change the mp pointer here, 746 * as the subsequent operation does not assume mp 747 * points to the start of the mac header. 748 */ 749 mp = mp->b_cont; 750 751 /* 752 * Make sure ip6h holds the full ip6_t structure. 753 */ 754 if (mp == NULL) 755 return (-1); 756 757 if (MBLKL(mp) < IPV6_HDR_LEN) { 758 modifiable = (DB_REF(mp) == 1); 759 760 if (modifiable && 761 !pullupmsg(mp, IPV6_HDR_LEN)) { 762 return (-1); 763 } 764 } 765 766 ip6h = (ip6_t *)mp->b_rptr; 767 } 768 769 if (!modifiable || !(OK_32PTR((char *)ip6h)) || 770 ((unsigned char *)ip6h + IPV6_HDR_LEN > mp->b_wptr)) { 771 /* 772 * If either ip6h is not alligned, or ip6h does not 773 * hold the complete ip6_t structure (a pullupmsg() 774 * is not an option since it would result in an 775 * unalligned ip6h), fanout to the default ring. Note 776 * that this may cause packets reordering. 777 */ 778 *indx = 0; 779 *type = OTH; 780 fanout_unalligned++; 781 return (0); 782 } 783 784 remlen = ntohs(ip6h->ip6_plen); 785 nexthdr = ip6h->ip6_nxt; 786 787 if (remlen < MIN_EHDR_LEN) 788 return (-1); 789 /* 790 * Do src based fanout if below tunable is set to B_TRUE or 791 * when mac_ip_hdr_length_v6() fails because of malformed 792 * packets or because mblk's need to be concatenated using 793 * pullupmsg(). 794 */ 795 if (mac_src_ipv6_fanout || !mac_ip_hdr_length_v6(mp, ip6h, 796 &hdr_len, &nexthdr)) { 797 goto src_based_fanout; 798 } 799 whereptr = (uint8_t *)ip6h + hdr_len; 800 801 /* If the transport is one of below, we do port based fanout */ 802 switch (nexthdr) { 803 case IPPROTO_TCP: 804 case IPPROTO_UDP: 805 case IPPROTO_SCTP: 806 case IPPROTO_ESP: 807 /* 808 * If the ports in the transport header is not part of 809 * the mblk, do src_based_fanout, instead of calling 810 * pullupmsg(). 811 */ 812 if (mp->b_cont != NULL && 813 whereptr + PORTS_SIZE > mp->b_wptr) { 814 goto src_based_fanout; 815 } 816 break; 817 default: 818 break; 819 } 820 821 switch (nexthdr) { 822 case IPPROTO_TCP: 823 hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), 824 *(uint32_t *)whereptr); 825 *indx = COMPUTE_INDEX(hash, 826 mac_srs->srs_tcp_ring_count); 827 *type = OTH; 828 break; 829 830 case IPPROTO_UDP: 831 case IPPROTO_SCTP: 832 case IPPROTO_ESP: 833 if (mac_fanout_type == MAC_FANOUT_DEFAULT) { 834 hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), 835 *(uint32_t *)whereptr); 836 *indx = COMPUTE_INDEX(hash, 837 mac_srs->srs_udp_ring_count); 838 } else { 839 *indx = mac_srs->srs_ind % 840 mac_srs->srs_udp_ring_count; 841 mac_srs->srs_ind++; 842 } 843 *type = OTH; 844 break; 845 846 /* For all other protocol, do source based fanout */ 847 default: 848 goto src_based_fanout; 849 } 850 } else { 851 *indx = 0; 852 *type = OTH; 853 } 854 return (0); 855 856 src_based_fanout: 857 hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), (uint32_t)0); 858 *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); 859 *type = OTH; 860 return (0); 861 } 862 863 /* 864 * mac_rx_srs_fanout 865 * 866 * This routine delivers packets destined to an SRS into a soft ring member 867 * of the set. 868 * 869 * Given a chain of packets we need to split it up into multiple sub chains 870 * destined for one of the TCP, UDP or OTH soft rings. Instead of entering 871 * the soft ring one packet at a time, we want to enter it in the form of a 872 * chain otherwise we get this start/stop behaviour where the worker thread 873 * goes to sleep and then next packets comes in forcing it to wake up etc. 874 * 875 * Note: 876 * Since we know what is the maximum fanout possible, we create a 2D array 877 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz 878 * variables so that we can enter the softrings with chain. We need the 879 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc 880 * for each packet would be expensive). If we ever want to have the 881 * ability to have unlimited fanout, we should probably declare a head, 882 * tail, cnt, sz with each soft ring (a data struct which contains a softring 883 * along with these members) and create an array of this uber struct so we 884 * don't have to do kmem_alloc. 885 */ 886 int fanout_oth1 = 0; 887 int fanout_oth2 = 0; 888 int fanout_oth3 = 0; 889 int fanout_oth4 = 0; 890 int fanout_oth5 = 0; 891 892 static void 893 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) 894 { 895 struct ether_header *ehp; 896 struct ether_vlan_header *evhp; 897 uint32_t sap; 898 ipha_t *ipha; 899 uint8_t *dstaddr; 900 uint_t indx; 901 size_t ports_offset; 902 size_t ipha_len; 903 size_t hdrsize; 904 uint_t hash; 905 mblk_t *mp; 906 mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT]; 907 mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT]; 908 int cnt[MAX_SR_TYPES][MAX_SR_FANOUT]; 909 size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT]; 910 size_t sz1; 911 boolean_t bw_ctl; 912 boolean_t hw_classified; 913 boolean_t dls_bypass; 914 boolean_t is_ether; 915 boolean_t is_unicast; 916 int fanout_cnt; 917 enum pkt_type type; 918 mac_client_impl_t *mcip = mac_srs->srs_mcip; 919 920 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); 921 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); 922 923 /* 924 * If we don't have a Rx ring, S/W classification would have done 925 * its job and its a packet meant for us. If we were polling on 926 * the default ring (i.e. there was a ring assigned to this SRS), 927 * then we need to make sure that the mac address really belongs 928 * to us. 929 */ 930 hw_classified = mac_srs->srs_ring != NULL && 931 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; 932 933 /* 934 * Special clients (eg. VLAN, non ether, etc) need DLS 935 * processing in the Rx path. SRST_DLS_BYPASS will be clear for 936 * such SRSs. 937 */ 938 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0); 939 940 /* 941 * Since the softrings are never destroyed and we always 942 * create equal number of softrings for TCP, UDP and rest, 943 * its OK to check one of them for count and use it without 944 * any lock. In future, if soft rings get destroyed because 945 * of reduction in fanout, we will need to ensure that happens 946 * behind the SRS_PROC. 947 */ 948 fanout_cnt = mac_srs->srs_tcp_ring_count; 949 950 bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); 951 bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); 952 bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int)); 953 bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t)); 954 955 /* 956 * We got a chain from SRS that we need to send to the soft rings. 957 * Since squeues for TCP & IPv4 sap poll their soft rings (for 958 * performance reasons), we need to separate out v4_tcp, v4_udp 959 * and the rest goes in other. 960 */ 961 while (head != NULL) { 962 mp = head; 963 head = head->b_next; 964 mp->b_next = NULL; 965 966 type = OTH; 967 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 968 969 if (is_ether) { 970 /* 971 * At this point we can be sure the packet at least 972 * has an ether header. 973 */ 974 if (sz1 < sizeof (struct ether_header)) { 975 mac_rx_drop_pkt(mac_srs, mp); 976 continue; 977 } 978 ehp = (struct ether_header *)mp->b_rptr; 979 980 /* 981 * Determine if this is a VLAN or non-VLAN packet. 982 */ 983 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { 984 evhp = (struct ether_vlan_header *)mp->b_rptr; 985 sap = ntohs(evhp->ether_type); 986 hdrsize = sizeof (struct ether_vlan_header); 987 /* 988 * Check if the VID of the packet, if any, 989 * belongs to this client. 990 */ 991 if (!mac_client_check_flow_vid(mcip, 992 VLAN_ID(ntohs(evhp->ether_tci)))) { 993 mac_rx_drop_pkt(mac_srs, mp); 994 continue; 995 } 996 } else { 997 hdrsize = sizeof (struct ether_header); 998 } 999 is_unicast = 1000 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); 1001 dstaddr = (uint8_t *)&ehp->ether_dhost; 1002 } else { 1003 mac_header_info_t mhi; 1004 1005 if (mac_header_info((mac_handle_t)mcip->mci_mip, 1006 mp, &mhi) != 0) { 1007 mac_rx_drop_pkt(mac_srs, mp); 1008 continue; 1009 } 1010 hdrsize = mhi.mhi_hdrsize; 1011 sap = mhi.mhi_bindsap; 1012 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); 1013 dstaddr = (uint8_t *)mhi.mhi_daddr; 1014 } 1015 1016 if (!dls_bypass) { 1017 if (mac_rx_srs_long_fanout(mac_srs, mp, sap, 1018 hdrsize, &type, &indx) == -1) { 1019 mac_rx_drop_pkt(mac_srs, mp); 1020 continue; 1021 } 1022 1023 FANOUT_ENQUEUE_MP(headmp[type][indx], 1024 tailmp[type][indx], cnt[type][indx], bw_ctl, 1025 sz[type][indx], sz1, mp); 1026 continue; 1027 } 1028 1029 1030 /* 1031 * If we are using the default Rx ring where H/W or S/W 1032 * classification has not happened, we need to verify if 1033 * this unicast packet really belongs to us. 1034 */ 1035 if (sap == ETHERTYPE_IP) { 1036 /* 1037 * If we are H/W classified, but we have promisc 1038 * on, then we need to check for the unicast address. 1039 */ 1040 if (hw_classified && mcip->mci_promisc_list != NULL) { 1041 mac_address_t *map; 1042 1043 rw_enter(&mcip->mci_rw_lock, RW_READER); 1044 map = mcip->mci_unicast; 1045 if (bcmp(dstaddr, map->ma_addr, 1046 map->ma_len) == 0) 1047 type = UNDEF; 1048 rw_exit(&mcip->mci_rw_lock); 1049 } else if (is_unicast) { 1050 type = UNDEF; 1051 } 1052 } 1053 1054 /* 1055 * This needs to become a contract with the driver for 1056 * the fast path. 1057 */ 1058 1059 ipha = (ipha_t *)(mp->b_rptr + hdrsize); 1060 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) { 1061 type = OTH; 1062 fanout_oth1++; 1063 } 1064 1065 if (type != OTH) { 1066 uint16_t frag_offset_flags; 1067 1068 switch (ipha->ipha_protocol) { 1069 case IPPROTO_TCP: 1070 case IPPROTO_UDP: 1071 case IPPROTO_SCTP: 1072 case IPPROTO_ESP: 1073 ipha_len = IPH_HDR_LENGTH(ipha); 1074 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE > 1075 mp->b_wptr) { 1076 type = OTH; 1077 break; 1078 } 1079 frag_offset_flags = 1080 ntohs(ipha->ipha_fragment_offset_and_flags); 1081 if ((frag_offset_flags & 1082 (IPH_MF | IPH_OFFSET)) != 0) { 1083 type = OTH; 1084 fanout_oth3++; 1085 break; 1086 } 1087 ports_offset = hdrsize + ipha_len; 1088 break; 1089 default: 1090 type = OTH; 1091 fanout_oth4++; 1092 break; 1093 } 1094 } 1095 1096 if (type == OTH) { 1097 if (mac_rx_srs_long_fanout(mac_srs, mp, sap, 1098 hdrsize, &type, &indx) == -1) { 1099 mac_rx_drop_pkt(mac_srs, mp); 1100 continue; 1101 } 1102 1103 FANOUT_ENQUEUE_MP(headmp[type][indx], 1104 tailmp[type][indx], cnt[type][indx], bw_ctl, 1105 sz[type][indx], sz1, mp); 1106 continue; 1107 } 1108 1109 ASSERT(type == UNDEF); 1110 1111 /* 1112 * XXX-Sunay: We should hold srs_lock since ring_count 1113 * below can change. But if we are always called from 1114 * mac_rx_srs_drain and SRS_PROC is set, then we can 1115 * enforce that ring_count can't be changed i.e. 1116 * to change fanout type or ring count, the calling 1117 * thread needs to be behind SRS_PROC. 1118 */ 1119 switch (ipha->ipha_protocol) { 1120 case IPPROTO_TCP: 1121 /* 1122 * Note that for ESP, we fanout on SPI and it is at the 1123 * same offset as the 2x16-bit ports. So it is clumped 1124 * along with TCP, UDP and SCTP. 1125 */ 1126 hash = HASH_ADDR(ipha->ipha_src, 1127 *(uint32_t *)(mp->b_rptr + ports_offset)); 1128 indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); 1129 type = V4_TCP; 1130 mp->b_rptr += hdrsize; 1131 break; 1132 case IPPROTO_UDP: 1133 case IPPROTO_SCTP: 1134 case IPPROTO_ESP: 1135 if (mac_fanout_type == MAC_FANOUT_DEFAULT) { 1136 hash = HASH_ADDR(ipha->ipha_src, 1137 *(uint32_t *)(mp->b_rptr + ports_offset)); 1138 indx = COMPUTE_INDEX(hash, 1139 mac_srs->srs_udp_ring_count); 1140 } else { 1141 indx = mac_srs->srs_ind % 1142 mac_srs->srs_udp_ring_count; 1143 mac_srs->srs_ind++; 1144 } 1145 type = V4_UDP; 1146 mp->b_rptr += hdrsize; 1147 break; 1148 default: 1149 indx = 0; 1150 type = OTH; 1151 } 1152 1153 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx], 1154 cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp); 1155 } 1156 1157 for (type = V4_TCP; type < UNDEF; type++) { 1158 int i; 1159 1160 for (i = 0; i < fanout_cnt; i++) { 1161 if (headmp[type][i] != NULL) { 1162 mac_soft_ring_t *softring; 1163 1164 ASSERT(tailmp[type][i]->b_next == NULL); 1165 switch (type) { 1166 case V4_TCP: 1167 softring = 1168 mac_srs->srs_tcp_soft_rings[i]; 1169 break; 1170 case V4_UDP: 1171 softring = 1172 mac_srs->srs_udp_soft_rings[i]; 1173 break; 1174 case OTH: 1175 softring = 1176 mac_srs->srs_oth_soft_rings[i]; 1177 break; 1178 } 1179 mac_rx_soft_ring_process(mcip, 1180 softring, headmp[type][i], tailmp[type][i], 1181 cnt[type][i], sz[type][i]); 1182 } 1183 } 1184 } 1185 } 1186 1187 #define SRS_BYTES_TO_PICKUP 150000 1188 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP; 1189 1190 /* 1191 * mac_rx_srs_poll_ring 1192 * 1193 * This SRS Poll thread uses this routine to poll the underlying hardware 1194 * Rx ring to get a chain of packets. It can inline process that chain 1195 * if mac_latency_optimize is set (default) or signal the SRS worker thread 1196 * to do the remaining processing. 1197 * 1198 * Since packets come in the system via interrupt or poll path, we also 1199 * update the stats and deal with promiscous clients here. 1200 */ 1201 void 1202 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs) 1203 { 1204 kmutex_t *lock = &mac_srs->srs_lock; 1205 kcondvar_t *async = &mac_srs->srs_cv; 1206 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1207 mblk_t *head, *tail, *mp; 1208 callb_cpr_t cprinfo; 1209 ssize_t bytes_to_pickup; 1210 size_t sz; 1211 int count; 1212 mac_client_impl_t *smcip; 1213 1214 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll"); 1215 mutex_enter(lock); 1216 1217 start: 1218 for (;;) { 1219 if (mac_srs->srs_state & SRS_PAUSE) 1220 goto done; 1221 1222 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1223 cv_wait(async, lock); 1224 CALLB_CPR_SAFE_END(&cprinfo, lock); 1225 1226 if (mac_srs->srs_state & SRS_PAUSE) 1227 goto done; 1228 1229 check_again: 1230 if (mac_srs->srs_type & SRST_BW_CONTROL) { 1231 /* 1232 * We pick as many bytes as we are allowed to queue. 1233 * Its possible that we will exceed the total 1234 * packets queued in case this SRS is part of the 1235 * Rx ring group since > 1 poll thread can be pulling 1236 * upto the max allowed packets at the same time 1237 * but that should be OK. 1238 */ 1239 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1240 bytes_to_pickup = 1241 mac_srs->srs_bw->mac_bw_drop_threshold - 1242 mac_srs->srs_bw->mac_bw_sz; 1243 /* 1244 * We shouldn't have been signalled if we 1245 * have 0 or less bytes to pick but since 1246 * some of the bytes accounting is driver 1247 * dependant, we do the safety check. 1248 */ 1249 if (bytes_to_pickup < 0) 1250 bytes_to_pickup = 0; 1251 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1252 } else { 1253 /* 1254 * ToDO: Need to change the polling API 1255 * to add a packet count and a flag which 1256 * tells the driver whether we want packets 1257 * based on a count, or bytes, or all the 1258 * packets queued in the driver/HW. This 1259 * way, we never have to check the limits 1260 * on poll path. We truly let only as many 1261 * packets enter the system as we are willing 1262 * to process or queue. 1263 * 1264 * Something along the lines of 1265 * pkts_to_pickup = mac_soft_ring_max_q_cnt - 1266 * mac_srs->srs_poll_pkt_cnt 1267 */ 1268 1269 /* 1270 * Since we are not doing B/W control, pick 1271 * as many packets as allowed. 1272 */ 1273 bytes_to_pickup = max_bytes_to_pickup; 1274 } 1275 1276 /* Poll the underlying Hardware */ 1277 mutex_exit(lock); 1278 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup); 1279 mutex_enter(lock); 1280 1281 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) == 1282 SRS_POLL_THR_OWNER); 1283 1284 mp = tail = head; 1285 count = 0; 1286 sz = 0; 1287 while (mp != NULL) { 1288 tail = mp; 1289 sz += msgdsize(mp); 1290 mp = mp->b_next; 1291 count++; 1292 } 1293 1294 if (head != NULL) { 1295 tail->b_next = NULL; 1296 smcip = mac_srs->srs_mcip; 1297 1298 if ((mac_srs->srs_type & SRST_FLOW) || 1299 (smcip == NULL)) { 1300 FLOW_STAT_UPDATE(mac_srs->srs_flent, 1301 rbytes, sz); 1302 FLOW_STAT_UPDATE(mac_srs->srs_flent, 1303 ipackets, count); 1304 } 1305 1306 /* 1307 * If there are any promiscuous mode callbacks 1308 * defined for this MAC client, pass them a copy 1309 * if appropriate and also update the counters. 1310 */ 1311 if (smcip != NULL) { 1312 smcip->mci_stat_ibytes += sz; 1313 smcip->mci_stat_ipackets += count; 1314 1315 if (smcip->mci_mip->mi_promisc_list != NULL) { 1316 mutex_exit(lock); 1317 mac_promisc_dispatch(smcip->mci_mip, 1318 head, NULL); 1319 mutex_enter(lock); 1320 } 1321 } 1322 if (mac_srs->srs_type & SRST_BW_CONTROL) { 1323 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1324 mac_srs->srs_bw->mac_bw_polled += sz; 1325 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1326 } 1327 srs_rx->sr_poll_count += count; 1328 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, 1329 count, sz); 1330 if (count <= 10) 1331 srs_rx->sr_chain_cnt_undr10++; 1332 else if (count > 10 && count <= 50) 1333 srs_rx->sr_chain_cnt_10to50++; 1334 else 1335 srs_rx->sr_chain_cnt_over50++; 1336 } 1337 1338 /* 1339 * We are guaranteed that SRS_PROC will be set if we 1340 * are here. Also, poll thread gets to run only if 1341 * the drain was being done by a worker thread although 1342 * its possible that worker thread is still running 1343 * and poll thread was sent down to keep the pipeline 1344 * going instead of doing a complete drain and then 1345 * trying to poll the NIC. 1346 * 1347 * So we need to check SRS_WORKER flag to make sure 1348 * that the worker thread is not processing the queue 1349 * in parallel to us. The flags and conditions are 1350 * protected by the srs_lock to prevent any race. We 1351 * ensure that we don't drop the srs_lock from now 1352 * till the end and similarly we don't drop the srs_lock 1353 * in mac_rx_srs_drain() till similar condition check 1354 * are complete. The mac_rx_srs_drain() needs to ensure 1355 * that SRS_WORKER flag remains set as long as its 1356 * processing the queue. 1357 */ 1358 if (!(mac_srs->srs_state & SRS_WORKER) && 1359 (mac_srs->srs_first != NULL)) { 1360 /* 1361 * We have packets to process and worker thread 1362 * is not running. Check to see if poll thread is 1363 * allowed to process. 1364 */ 1365 if (mac_srs->srs_state & SRS_LATENCY_OPT) { 1366 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC); 1367 if (!(mac_srs->srs_state & SRS_PAUSE) && 1368 srs_rx->sr_poll_pkt_cnt <= 1369 srs_rx->sr_lowat) { 1370 srs_rx->sr_poll_again++; 1371 goto check_again; 1372 } 1373 /* 1374 * We are already above low water mark 1375 * so stay in the polling mode but no 1376 * need to poll. Once we dip below 1377 * the polling threshold, the processing 1378 * thread (soft ring) will signal us 1379 * to poll again (MAC_UPDATE_SRS_COUNT) 1380 */ 1381 srs_rx->sr_poll_drain_no_poll++; 1382 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); 1383 /* 1384 * In B/W control case, its possible 1385 * that the backlog built up due to 1386 * B/W limit being reached and packets 1387 * are queued only in SRS. In this case, 1388 * we should schedule worker thread 1389 * since no one else will wake us up. 1390 */ 1391 if ((mac_srs->srs_type & SRST_BW_CONTROL) && 1392 (mac_srs->srs_tid == NULL)) { 1393 mac_srs->srs_tid = 1394 timeout(mac_srs_fire, mac_srs, 1); 1395 srs_rx->sr_poll_worker_wakeup++; 1396 } 1397 } else { 1398 /* 1399 * Wakeup the worker thread for more processing. 1400 * We optimize for throughput in this case. 1401 */ 1402 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); 1403 MAC_SRS_WORKER_WAKEUP(mac_srs); 1404 srs_rx->sr_poll_sig_worker++; 1405 } 1406 } else if ((mac_srs->srs_first == NULL) && 1407 !(mac_srs->srs_state & SRS_WORKER)) { 1408 /* 1409 * There is nothing queued in SRS and 1410 * no worker thread running. Plus we 1411 * didn't get anything from the H/W 1412 * as well (head == NULL); 1413 */ 1414 ASSERT(head == NULL); 1415 mac_srs->srs_state &= 1416 ~(SRS_PROC|SRS_GET_PKTS); 1417 1418 /* 1419 * If we have a packets in soft ring, don't allow 1420 * more packets to come into this SRS by keeping the 1421 * interrupts off but not polling the H/W. The 1422 * poll thread will get signaled as soon as 1423 * srs_poll_pkt_cnt dips below poll threshold. 1424 */ 1425 if (srs_rx->sr_poll_pkt_cnt == 0) { 1426 srs_rx->sr_poll_intr_enable++; 1427 MAC_SRS_POLLING_OFF(mac_srs); 1428 } else { 1429 /* 1430 * We know nothing is queued in SRS 1431 * since we are here after checking 1432 * srs_first is NULL. The backlog 1433 * is entirely due to packets queued 1434 * in Soft ring which will wake us up 1435 * and get the interface out of polling 1436 * mode once the backlog dips below 1437 * sr_poll_thres. 1438 */ 1439 srs_rx->sr_poll_no_poll++; 1440 } 1441 } else { 1442 /* 1443 * Worker thread is already running. 1444 * Nothing much to do. If the polling 1445 * was enabled, worker thread will deal 1446 * with that. 1447 */ 1448 mac_srs->srs_state &= ~SRS_GET_PKTS; 1449 srs_rx->sr_poll_goto_sleep++; 1450 } 1451 } 1452 done: 1453 mac_srs->srs_state |= SRS_POLL_THR_QUIESCED; 1454 cv_signal(&mac_srs->srs_async); 1455 /* 1456 * If this is a temporary quiesce then wait for the restart signal 1457 * from the srs worker. Then clear the flags and signal the srs worker 1458 * to ensure a positive handshake and go back to start. 1459 */ 1460 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART))) 1461 cv_wait(async, lock); 1462 if (mac_srs->srs_state & SRS_POLL_THR_RESTART) { 1463 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); 1464 mac_srs->srs_state &= 1465 ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART); 1466 cv_signal(&mac_srs->srs_async); 1467 goto start; 1468 } else { 1469 mac_srs->srs_state |= SRS_POLL_THR_EXITED; 1470 cv_signal(&mac_srs->srs_async); 1471 CALLB_CPR_EXIT(&cprinfo); 1472 thread_exit(); 1473 } 1474 } 1475 1476 /* 1477 * mac_srs_pick_chain 1478 * 1479 * In Bandwidth control case, checks how many packets can be processed 1480 * and return them in a sub chain. 1481 */ 1482 static mblk_t * 1483 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail, 1484 size_t *chain_sz, int *chain_cnt) 1485 { 1486 mblk_t *head = NULL; 1487 mblk_t *tail = NULL; 1488 size_t sz; 1489 size_t tsz = 0; 1490 int cnt = 0; 1491 mblk_t *mp; 1492 1493 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 1494 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1495 if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <= 1496 mac_srs->srs_bw->mac_bw_limit) || 1497 (mac_srs->srs_bw->mac_bw_limit == 0)) { 1498 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1499 head = mac_srs->srs_first; 1500 mac_srs->srs_first = NULL; 1501 *chain_tail = mac_srs->srs_last; 1502 mac_srs->srs_last = NULL; 1503 *chain_sz = mac_srs->srs_size; 1504 *chain_cnt = mac_srs->srs_count; 1505 mac_srs->srs_count = 0; 1506 mac_srs->srs_size = 0; 1507 return (head); 1508 } 1509 1510 /* 1511 * Can't clear the entire backlog. 1512 * Need to find how many packets to pick 1513 */ 1514 ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock)); 1515 while ((mp = mac_srs->srs_first) != NULL) { 1516 sz = msgdsize(mp); 1517 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) > 1518 mac_srs->srs_bw->mac_bw_limit) { 1519 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) 1520 mac_srs->srs_bw->mac_bw_state |= 1521 SRS_BW_ENFORCED; 1522 break; 1523 } 1524 1525 /* 1526 * The _size & cnt is decremented from the softrings 1527 * when they send up the packet for polling to work 1528 * properly. 1529 */ 1530 tsz += sz; 1531 cnt++; 1532 mac_srs->srs_count--; 1533 mac_srs->srs_size -= sz; 1534 if (tail != NULL) 1535 tail->b_next = mp; 1536 else 1537 head = mp; 1538 tail = mp; 1539 mac_srs->srs_first = mac_srs->srs_first->b_next; 1540 } 1541 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1542 if (mac_srs->srs_first == NULL) 1543 mac_srs->srs_last = NULL; 1544 1545 if (tail != NULL) 1546 tail->b_next = NULL; 1547 *chain_tail = tail; 1548 *chain_cnt = cnt; 1549 *chain_sz = tsz; 1550 1551 return (head); 1552 } 1553 1554 /* 1555 * mac_rx_srs_drain 1556 * 1557 * The SRS drain routine. Gets to run to clear the queue. Any thread 1558 * (worker, interrupt, poll) can call this based on processing model. 1559 * The first thing we do is disable interrupts if possible and then 1560 * drain the queue. we also try to poll the underlying hardware if 1561 * there is a dedicated hardware Rx ring assigned to this SRS. 1562 * 1563 * There is a equivalent drain routine in bandwidth control mode 1564 * mac_rx_srs_drain_bw. There is some code duplication between the two 1565 * routines but they are highly performance sensitive and are easier 1566 * to read/debug if they stay separate. Any code changes here might 1567 * also apply to mac_rx_srs_drain_bw as well. 1568 */ 1569 void 1570 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 1571 { 1572 mblk_t *head; 1573 mblk_t *tail; 1574 timeout_id_t tid; 1575 int cnt = 0; 1576 mac_client_impl_t *mcip = mac_srs->srs_mcip; 1577 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1578 1579 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 1580 ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL)); 1581 1582 /* If we are blanked i.e. can't do upcalls, then we are done */ 1583 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { 1584 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || 1585 (mac_srs->srs_state & SRS_PAUSE)); 1586 goto out; 1587 } 1588 1589 if (mac_srs->srs_first == NULL) 1590 goto out; 1591 1592 if (!(mac_srs->srs_state & SRS_LATENCY_OPT) && 1593 (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) { 1594 /* 1595 * In the normal case, the SRS worker thread does no 1596 * work and we wait for a backlog to build up before 1597 * we switch into polling mode. In case we are 1598 * optimizing for throughput, we use the worker thread 1599 * as well. The goal is to let worker thread process 1600 * the queue and poll thread to feed packets into 1601 * the queue. As such, we should signal the poll 1602 * thread to try and get more packets. 1603 * 1604 * We could have pulled this check in the POLL_RING 1605 * macro itself but keeping it explicit here makes 1606 * the architecture more human understandable. 1607 */ 1608 MAC_SRS_POLL_RING(mac_srs); 1609 } 1610 1611 again: 1612 head = mac_srs->srs_first; 1613 mac_srs->srs_first = NULL; 1614 tail = mac_srs->srs_last; 1615 mac_srs->srs_last = NULL; 1616 cnt = mac_srs->srs_count; 1617 mac_srs->srs_count = 0; 1618 1619 ASSERT(head != NULL); 1620 ASSERT(tail != NULL); 1621 1622 if ((tid = mac_srs->srs_tid) != 0) 1623 mac_srs->srs_tid = 0; 1624 1625 mac_srs->srs_state |= (SRS_PROC|proc_type); 1626 1627 1628 /* 1629 * mcip is NULL for broadcast and multicast flows. The promisc 1630 * callbacks for broadcast and multicast packets are delivered from 1631 * mac_rx() and we don't need to worry about that case in this path 1632 */ 1633 if (mcip != NULL && mcip->mci_promisc_list != NULL) { 1634 mutex_exit(&mac_srs->srs_lock); 1635 mac_promisc_client_dispatch(mcip, head); 1636 mutex_enter(&mac_srs->srs_lock); 1637 } 1638 1639 /* 1640 * Check if SRS itself is doing the processing 1641 * This direct path does not apply when subflows are present. In this 1642 * case, packets need to be dispatched to a soft ring according to the 1643 * flow's bandwidth and other resources contraints. 1644 */ 1645 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { 1646 mac_direct_rx_t proc; 1647 void *arg1; 1648 mac_resource_handle_t arg2; 1649 1650 /* 1651 * This is the case when a Rx is directly 1652 * assigned and we have a fully classified 1653 * protocol chain. We can deal with it in 1654 * one shot. 1655 */ 1656 proc = srs_rx->sr_func; 1657 arg1 = srs_rx->sr_arg1; 1658 arg2 = srs_rx->sr_arg2; 1659 1660 mac_srs->srs_state |= SRS_CLIENT_PROC; 1661 mutex_exit(&mac_srs->srs_lock); 1662 if (tid != 0) { 1663 (void) untimeout(tid); 1664 tid = 0; 1665 } 1666 1667 proc(arg1, arg2, head, NULL); 1668 /* 1669 * Decrement the size and count here itelf 1670 * since the packet has been processed. 1671 */ 1672 mutex_enter(&mac_srs->srs_lock); 1673 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 1674 if (mac_srs->srs_state & SRS_CLIENT_WAIT) 1675 cv_signal(&mac_srs->srs_client_cv); 1676 mac_srs->srs_state &= ~SRS_CLIENT_PROC; 1677 } else { 1678 /* Some kind of softrings based fanout is required */ 1679 mutex_exit(&mac_srs->srs_lock); 1680 if (tid != 0) { 1681 (void) untimeout(tid); 1682 tid = 0; 1683 } 1684 1685 /* 1686 * Since the fanout routines can deal with chains, 1687 * shoot the entire chain up. 1688 */ 1689 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) 1690 mac_rx_srs_fanout(mac_srs, head); 1691 else 1692 mac_rx_srs_proto_fanout(mac_srs, head); 1693 mutex_enter(&mac_srs->srs_lock); 1694 } 1695 1696 if (!(mac_srs->srs_state & (SRS_LATENCY_OPT|SRS_BLANK|SRS_PAUSE))) { 1697 /* 1698 * In case we are optimizing for throughput, we 1699 * should try and keep the worker thread running 1700 * as much as possible. Send the poll thread down 1701 * to check one more time if something else 1702 * arrived. In the meanwhile, if poll thread had 1703 * collected something due to earlier signal, 1704 * process it now. 1705 */ 1706 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) { 1707 srs_rx->sr_drain_poll_sig++; 1708 MAC_SRS_POLL_RING(mac_srs); 1709 } 1710 if (mac_srs->srs_first != NULL) { 1711 srs_rx->sr_drain_again++; 1712 goto again; 1713 } 1714 } 1715 1716 out: 1717 if (mac_srs->srs_state & SRS_GET_PKTS) { 1718 /* 1719 * Poll thread is already running. Leave the 1720 * SRS_RPOC set and hand over the control to 1721 * poll thread. 1722 */ 1723 mac_srs->srs_state &= ~proc_type; 1724 srs_rx->sr_drain_poll_running++; 1725 return; 1726 } 1727 1728 /* 1729 * Even if there are no packets queued in SRS, we 1730 * need to make sure that the shared counter is 1731 * clear and any associated softrings have cleared 1732 * all the backlog. Otherwise, leave the interface 1733 * in polling mode and the poll thread will get 1734 * signalled once the count goes down to zero. 1735 * 1736 * If someone is already draining the queue (SRS_PROC is 1737 * set) when the srs_poll_pkt_cnt goes down to zero, 1738 * then it means that drain is already running and we 1739 * will turn off polling at that time if there is 1740 * no backlog. 1741 * 1742 * As long as there are packets queued either 1743 * in soft ring set or its soft rings, we will leave 1744 * the interface in polling mode (even if the drain 1745 * was done being the interrupt thread). We signal 1746 * the poll thread as well if we have dipped below 1747 * low water mark. 1748 * 1749 * NOTE: We can't use the MAC_SRS_POLLING_ON macro 1750 * since that turn polling on only for worker thread. 1751 * Its not worth turning polling on for interrupt 1752 * thread (since NIC will not issue another interrupt) 1753 * unless a backlog builds up. 1754 */ 1755 if ((srs_rx->sr_poll_pkt_cnt > 0) && 1756 (mac_srs->srs_state & SRS_POLLING_CAPAB)) { 1757 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 1758 srs_rx->sr_drain_keep_polling++; 1759 MAC_SRS_POLLING_ON(mac_srs); 1760 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) 1761 MAC_SRS_POLL_RING(mac_srs); 1762 return; 1763 } 1764 1765 /* Nothing else to do. Get out of poll mode */ 1766 MAC_SRS_POLLING_OFF(mac_srs); 1767 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 1768 srs_rx->sr_drain_finish_intr++; 1769 } 1770 1771 /* 1772 * mac_rx_srs_drain_bw 1773 * 1774 * The SRS BW drain routine. Gets to run to clear the queue. Any thread 1775 * (worker, interrupt, poll) can call this based on processing model. 1776 * The first thing we do is disable interrupts if possible and then 1777 * drain the queue. we also try to poll the underlying hardware if 1778 * there is a dedicated hardware Rx ring assigned to this SRS. 1779 * 1780 * There is a equivalent drain routine in non bandwidth control mode 1781 * mac_rx_srs_drain. There is some code duplication between the two 1782 * routines but they are highly performance sensitive and are easier 1783 * to read/debug if they stay separate. Any code changes here might 1784 * also apply to mac_rx_srs_drain as well. 1785 */ 1786 void 1787 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 1788 { 1789 mblk_t *head; 1790 mblk_t *tail; 1791 timeout_id_t tid; 1792 size_t sz = 0; 1793 int cnt = 0; 1794 mac_client_impl_t *mcip = mac_srs->srs_mcip; 1795 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1796 1797 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 1798 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); 1799 again: 1800 /* Check if we are doing B/W control */ 1801 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1802 if (mac_srs->srs_bw->mac_bw_curr_time != lbolt) { 1803 mac_srs->srs_bw->mac_bw_curr_time = lbolt; 1804 mac_srs->srs_bw->mac_bw_used = 0; 1805 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) 1806 mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; 1807 } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) { 1808 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1809 goto done; 1810 } else if (mac_srs->srs_bw->mac_bw_used > 1811 mac_srs->srs_bw->mac_bw_limit) { 1812 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 1813 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1814 goto done; 1815 } 1816 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1817 1818 /* If we are blanked i.e. can't do upcalls, then we are done */ 1819 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { 1820 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || 1821 (mac_srs->srs_state & SRS_PAUSE)); 1822 goto done; 1823 } 1824 1825 sz = 0; 1826 cnt = 0; 1827 if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) { 1828 /* 1829 * We couldn't pick up a single packet. 1830 */ 1831 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1832 if ((mac_srs->srs_bw->mac_bw_used == 0) && 1833 (mac_srs->srs_size != 0) && 1834 !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 1835 /* 1836 * Seems like configured B/W doesn't 1837 * even allow processing of 1 packet 1838 * per tick. 1839 * 1840 * XXX: raise the limit to processing 1841 * at least 1 packet per tick. 1842 */ 1843 mac_srs->srs_bw->mac_bw_limit += 1844 mac_srs->srs_bw->mac_bw_limit; 1845 mac_srs->srs_bw->mac_bw_drop_threshold += 1846 mac_srs->srs_bw->mac_bw_drop_threshold; 1847 cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) " 1848 "raised B/W limit to %d since not even a " 1849 "single packet can be processed per " 1850 "tick %d\n", (void *)mac_srs, 1851 (int)mac_srs->srs_bw->mac_bw_limit, 1852 (int)msgdsize(mac_srs->srs_first)); 1853 } 1854 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1855 goto done; 1856 } 1857 1858 ASSERT(head != NULL); 1859 ASSERT(tail != NULL); 1860 1861 /* zero bandwidth: drop all and return to interrupt mode */ 1862 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1863 if (mac_srs->srs_bw->mac_bw_limit == 0) { 1864 srs_rx->sr_drop_count += cnt; 1865 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz); 1866 mac_srs->srs_bw->mac_bw_sz -= sz; 1867 mac_srs->srs_bw->mac_bw_drop_bytes += sz; 1868 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1869 mac_pkt_drop(NULL, NULL, head, B_FALSE); 1870 goto leave_poll; 1871 } else { 1872 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1873 } 1874 1875 if ((tid = mac_srs->srs_tid) != 0) 1876 mac_srs->srs_tid = 0; 1877 1878 mac_srs->srs_state |= (SRS_PROC|proc_type); 1879 MAC_SRS_WORKER_POLLING_ON(mac_srs); 1880 1881 /* 1882 * mcip is NULL for broadcast and multicast flows. The promisc 1883 * callbacks for broadcast and multicast packets are delivered from 1884 * mac_rx() and we don't need to worry about that case in this path 1885 */ 1886 if (mcip != NULL && mcip->mci_promisc_list != NULL) { 1887 mutex_exit(&mac_srs->srs_lock); 1888 mac_promisc_client_dispatch(mcip, head); 1889 mutex_enter(&mac_srs->srs_lock); 1890 } 1891 1892 /* 1893 * Check if SRS itself is doing the processing 1894 * This direct path does not apply when subflows are present. In this 1895 * case, packets need to be dispatched to a soft ring according to the 1896 * flow's bandwidth and other resources contraints. 1897 */ 1898 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { 1899 mac_direct_rx_t proc; 1900 void *arg1; 1901 mac_resource_handle_t arg2; 1902 1903 /* 1904 * This is the case when a Rx is directly 1905 * assigned and we have a fully classified 1906 * protocol chain. We can deal with it in 1907 * one shot. 1908 */ 1909 proc = srs_rx->sr_func; 1910 arg1 = srs_rx->sr_arg1; 1911 arg2 = srs_rx->sr_arg2; 1912 1913 mac_srs->srs_state |= SRS_CLIENT_PROC; 1914 mutex_exit(&mac_srs->srs_lock); 1915 if (tid != 0) { 1916 (void) untimeout(tid); 1917 tid = 0; 1918 } 1919 1920 proc(arg1, arg2, head, NULL); 1921 /* 1922 * Decrement the size and count here itelf 1923 * since the packet has been processed. 1924 */ 1925 mutex_enter(&mac_srs->srs_lock); 1926 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 1927 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); 1928 1929 if (mac_srs->srs_state & SRS_CLIENT_WAIT) 1930 cv_signal(&mac_srs->srs_client_cv); 1931 mac_srs->srs_state &= ~SRS_CLIENT_PROC; 1932 } else { 1933 /* Some kind of softrings based fanout is required */ 1934 mutex_exit(&mac_srs->srs_lock); 1935 if (tid != 0) { 1936 (void) untimeout(tid); 1937 tid = 0; 1938 } 1939 1940 /* 1941 * Since the fanout routines can deal with chains, 1942 * shoot the entire chain up. 1943 */ 1944 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) 1945 mac_rx_srs_fanout(mac_srs, head); 1946 else 1947 mac_rx_srs_proto_fanout(mac_srs, head); 1948 mutex_enter(&mac_srs->srs_lock); 1949 } 1950 1951 /* 1952 * Send the poll thread to pick up any packets arrived 1953 * so far. This also serves as the last check in case 1954 * nothing else is queued in the SRS. The poll thread 1955 * is signalled only in the case the drain was done 1956 * by the worker thread and SRS_WORKER is set. The 1957 * worker thread can run in parallel as long as the 1958 * SRS_WORKER flag is set. We we have nothing else to 1959 * process, we can exit while leaving SRS_PROC set 1960 * which gives the poll thread control to process and 1961 * cleanup once it returns from the NIC. 1962 * 1963 * If we have nothing else to process, we need to 1964 * ensure that we keep holding the srs_lock till 1965 * all the checks below are done and control is 1966 * handed to the poll thread if it was running. 1967 */ 1968 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1969 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 1970 if (mac_srs->srs_first != NULL) { 1971 if (proc_type == SRS_WORKER) { 1972 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1973 if (srs_rx->sr_poll_pkt_cnt <= 1974 srs_rx->sr_lowat) 1975 MAC_SRS_POLL_RING(mac_srs); 1976 goto again; 1977 } else { 1978 cv_signal(&mac_srs->srs_async); 1979 } 1980 } 1981 } 1982 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1983 1984 done: 1985 1986 if (mac_srs->srs_state & SRS_GET_PKTS) { 1987 /* 1988 * Poll thread is already running. Leave the 1989 * SRS_RPOC set and hand over the control to 1990 * poll thread. 1991 */ 1992 mac_srs->srs_state &= ~proc_type; 1993 return; 1994 } 1995 1996 /* 1997 * If we can't process packets because we have exceeded 1998 * B/W limit for this tick, just set the timeout 1999 * and leave. 2000 * 2001 * Even if there are no packets queued in SRS, we 2002 * need to make sure that the shared counter is 2003 * clear and any associated softrings have cleared 2004 * all the backlog. Otherwise, leave the interface 2005 * in polling mode and the poll thread will get 2006 * signalled once the count goes down to zero. 2007 * 2008 * If someone is already draining the queue (SRS_PROC is 2009 * set) when the srs_poll_pkt_cnt goes down to zero, 2010 * then it means that drain is already running and we 2011 * will turn off polling at that time if there is 2012 * no backlog. As long as there are packets queued either 2013 * is soft ring set or its soft rings, we will leave 2014 * the interface in polling mode. 2015 */ 2016 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2017 if ((mac_srs->srs_state & SRS_POLLING_CAPAB) && 2018 ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) || 2019 (srs_rx->sr_poll_pkt_cnt > 0))) { 2020 MAC_SRS_POLLING_ON(mac_srs); 2021 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 2022 if ((mac_srs->srs_first != NULL) && 2023 (mac_srs->srs_tid == NULL)) 2024 mac_srs->srs_tid = timeout(mac_srs_fire, 2025 mac_srs, 1); 2026 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2027 return; 2028 } 2029 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2030 2031 leave_poll: 2032 2033 /* Nothing else to do. Get out of poll mode */ 2034 MAC_SRS_POLLING_OFF(mac_srs); 2035 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 2036 } 2037 2038 /* 2039 * mac_srs_worker 2040 * 2041 * The SRS worker routine. Drains the queue when no one else is 2042 * processing it. 2043 */ 2044 void 2045 mac_srs_worker(mac_soft_ring_set_t *mac_srs) 2046 { 2047 kmutex_t *lock = &mac_srs->srs_lock; 2048 kcondvar_t *async = &mac_srs->srs_async; 2049 callb_cpr_t cprinfo; 2050 boolean_t bw_ctl_flag; 2051 2052 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker"); 2053 mutex_enter(lock); 2054 2055 start: 2056 for (;;) { 2057 bw_ctl_flag = B_FALSE; 2058 if (mac_srs->srs_type & SRST_BW_CONTROL) { 2059 MAC_SRS_BW_LOCK(mac_srs); 2060 MAC_SRS_CHECK_BW_CONTROL(mac_srs); 2061 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) 2062 bw_ctl_flag = B_TRUE; 2063 MAC_SRS_BW_UNLOCK(mac_srs); 2064 } 2065 /* 2066 * The SRS_BW_ENFORCED flag may change since we have dropped 2067 * the mac_bw_lock. However the drain function can handle both 2068 * a drainable SRS or a bandwidth controlled SRS, and the 2069 * effect of scheduling a timeout is to wakeup the worker 2070 * thread which in turn will call the drain function. Since 2071 * we release the srs_lock atomically only in the cv_wait there 2072 * isn't a fear of waiting for ever. 2073 */ 2074 while (((mac_srs->srs_state & SRS_PROC) || 2075 (mac_srs->srs_first == NULL) || bw_ctl_flag || 2076 (mac_srs->srs_state & SRS_TX_BLOCKED)) && 2077 !(mac_srs->srs_state & SRS_PAUSE)) { 2078 /* 2079 * If we have packets queued and we are here 2080 * because B/W control is in place, we better 2081 * schedule the worker wakeup after 1 tick 2082 * to see if bandwidth control can be relaxed. 2083 */ 2084 if (bw_ctl_flag && mac_srs->srs_tid == NULL) { 2085 /* 2086 * We need to ensure that a timer is already 2087 * scheduled or we force schedule one for 2088 * later so that we can continue processing 2089 * after this quanta is over. 2090 */ 2091 mac_srs->srs_tid = timeout(mac_srs_fire, 2092 mac_srs, 1); 2093 } 2094 wait: 2095 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2096 cv_wait(async, lock); 2097 CALLB_CPR_SAFE_END(&cprinfo, lock); 2098 2099 if (mac_srs->srs_state & SRS_PAUSE) 2100 goto done; 2101 if (mac_srs->srs_state & SRS_PROC) 2102 goto wait; 2103 2104 if (mac_srs->srs_first != NULL && 2105 mac_srs->srs_type & SRST_BW_CONTROL) { 2106 MAC_SRS_BW_LOCK(mac_srs); 2107 if (mac_srs->srs_bw->mac_bw_state & 2108 SRS_BW_ENFORCED) { 2109 MAC_SRS_CHECK_BW_CONTROL(mac_srs); 2110 } 2111 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state & 2112 SRS_BW_ENFORCED; 2113 MAC_SRS_BW_UNLOCK(mac_srs); 2114 } 2115 } 2116 2117 if (mac_srs->srs_state & SRS_PAUSE) 2118 goto done; 2119 mac_srs->srs_drain_func(mac_srs, SRS_WORKER); 2120 } 2121 done: 2122 /* 2123 * The Rx SRS quiesce logic first cuts off packet supply to the SRS 2124 * from both hard and soft classifications and waits for such threads 2125 * to finish before signaling the worker. So at this point the only 2126 * thread left that could be competing with the worker is the poll 2127 * thread. In the case of Tx, there shouldn't be any thread holding 2128 * SRS_PROC at this point. 2129 */ 2130 if (!(mac_srs->srs_state & SRS_PROC)) { 2131 mac_srs->srs_state |= SRS_PROC; 2132 } else { 2133 ASSERT((mac_srs->srs_type & SRST_TX) == 0); 2134 /* 2135 * Poll thread still owns the SRS and is still running 2136 */ 2137 ASSERT((mac_srs->srs_poll_thr == NULL) || 2138 ((mac_srs->srs_state & SRS_POLL_THR_OWNER) == 2139 SRS_POLL_THR_OWNER)); 2140 } 2141 mac_srs_worker_quiesce(mac_srs); 2142 /* 2143 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator 2144 * of the quiesce operation 2145 */ 2146 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART))) 2147 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock); 2148 2149 if (mac_srs->srs_state & SRS_RESTART) { 2150 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); 2151 mac_srs_worker_restart(mac_srs); 2152 mac_srs->srs_state &= ~SRS_PROC; 2153 goto start; 2154 } 2155 2156 if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE)) 2157 mac_srs_worker_quiesce(mac_srs); 2158 2159 mac_srs->srs_state &= ~SRS_PROC; 2160 /* The macro drops the srs_lock */ 2161 CALLB_CPR_EXIT(&cprinfo); 2162 thread_exit(); 2163 } 2164 2165 /* 2166 * mac_rx_srs_subflow_process 2167 * 2168 * Receive side routine called from interrupt path when there are 2169 * sub flows present on this SRS. 2170 */ 2171 /* ARGSUSED */ 2172 void 2173 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs, 2174 mblk_t *mp_chain, boolean_t loopback) 2175 { 2176 flow_entry_t *flent = NULL; 2177 flow_entry_t *prev_flent = NULL; 2178 mblk_t *mp = NULL; 2179 mblk_t *tail = NULL; 2180 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 2181 mac_client_impl_t *mcip; 2182 2183 mcip = mac_srs->srs_mcip; 2184 ASSERT(mcip != NULL); 2185 2186 /* 2187 * We need to determine the SRS for every packet 2188 * by walking the flow table, if we don't get any, 2189 * then we proceed using the SRS we came with. 2190 */ 2191 mp = tail = mp_chain; 2192 while (mp != NULL) { 2193 2194 /* 2195 * We will increment the stats for the mactching subflow. 2196 * when we get the bytes/pkt count for the classified packets 2197 * later in mac_rx_srs_process. 2198 */ 2199 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp, 2200 FLOW_INBOUND, &flent); 2201 2202 if (mp == mp_chain || flent == prev_flent) { 2203 if (prev_flent != NULL) 2204 FLOW_REFRELE(prev_flent); 2205 prev_flent = flent; 2206 flent = NULL; 2207 tail = mp; 2208 mp = mp->b_next; 2209 continue; 2210 } 2211 tail->b_next = NULL; 2212 /* 2213 * A null indicates, this is for the mac_srs itself. 2214 * XXX-venu : probably assert for fe_rx_srs_cnt == 0. 2215 */ 2216 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { 2217 mac_rx_srs_process(arg, 2218 (mac_resource_handle_t)mac_srs, mp_chain, 2219 loopback); 2220 } else { 2221 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 2222 prev_flent->fe_cb_arg2, mp_chain, loopback); 2223 FLOW_REFRELE(prev_flent); 2224 } 2225 prev_flent = flent; 2226 flent = NULL; 2227 mp_chain = mp; 2228 tail = mp; 2229 mp = mp->b_next; 2230 } 2231 /* Last chain */ 2232 ASSERT(mp_chain != NULL); 2233 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { 2234 mac_rx_srs_process(arg, 2235 (mac_resource_handle_t)mac_srs, mp_chain, loopback); 2236 } else { 2237 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 2238 prev_flent->fe_cb_arg2, mp_chain, loopback); 2239 FLOW_REFRELE(prev_flent); 2240 } 2241 } 2242 2243 /* 2244 * mac_rx_srs_process 2245 * 2246 * Receive side routine called from the interrupt path. 2247 * 2248 * loopback is set to force a context switch on the loopback 2249 * path between MAC clients. 2250 */ 2251 /* ARGSUSED */ 2252 void 2253 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain, 2254 boolean_t loopback) 2255 { 2256 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 2257 mblk_t *mp, *tail, *head; 2258 int count = 0; 2259 int count1; 2260 size_t sz = 0; 2261 size_t chain_sz, sz1; 2262 mac_bw_ctl_t *mac_bw; 2263 mac_client_impl_t *smcip; 2264 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 2265 2266 /* 2267 * Set the tail, count and sz. We set the sz irrespective 2268 * of whether we are doing B/W control or not for the 2269 * purpose of updating the stats. 2270 */ 2271 mp = tail = mp_chain; 2272 while (mp != NULL) { 2273 tail = mp; 2274 count++; 2275 sz += msgdsize(mp); 2276 mp = mp->b_next; 2277 } 2278 2279 mutex_enter(&mac_srs->srs_lock); 2280 smcip = mac_srs->srs_mcip; 2281 2282 if (mac_srs->srs_type & SRST_FLOW || smcip == NULL) { 2283 FLOW_STAT_UPDATE(mac_srs->srs_flent, rbytes, sz); 2284 FLOW_STAT_UPDATE(mac_srs->srs_flent, ipackets, count); 2285 } 2286 if (smcip != NULL) { 2287 smcip->mci_stat_ibytes += sz; 2288 smcip->mci_stat_ipackets += count; 2289 } 2290 2291 /* 2292 * If the SRS in already being processed; has been blanked; 2293 * can be processed by worker thread only; or the B/W limit 2294 * has been reached, then queue the chain and check if 2295 * worker thread needs to be awakend. 2296 */ 2297 if (mac_srs->srs_type & SRST_BW_CONTROL) { 2298 mac_bw = mac_srs->srs_bw; 2299 ASSERT(mac_bw != NULL); 2300 mutex_enter(&mac_bw->mac_bw_lock); 2301 /* Count the packets and bytes via interrupt */ 2302 srs_rx->sr_intr_count += count; 2303 mac_bw->mac_bw_intr += sz; 2304 if (mac_bw->mac_bw_limit == 0) { 2305 /* zero bandwidth: drop all */ 2306 srs_rx->sr_drop_count += count; 2307 mac_bw->mac_bw_drop_bytes += sz; 2308 mutex_exit(&mac_bw->mac_bw_lock); 2309 mutex_exit(&mac_srs->srs_lock); 2310 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); 2311 return; 2312 } else { 2313 if ((mac_bw->mac_bw_sz + sz) <= 2314 mac_bw->mac_bw_drop_threshold) { 2315 mutex_exit(&mac_bw->mac_bw_lock); 2316 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, 2317 tail, count, sz); 2318 } else { 2319 mp = mp_chain; 2320 chain_sz = 0; 2321 count1 = 0; 2322 tail = NULL; 2323 head = NULL; 2324 while (mp != NULL) { 2325 sz1 = msgdsize(mp); 2326 if (mac_bw->mac_bw_sz + chain_sz + sz1 > 2327 mac_bw->mac_bw_drop_threshold) 2328 break; 2329 chain_sz += sz1; 2330 count1++; 2331 tail = mp; 2332 mp = mp->b_next; 2333 } 2334 mutex_exit(&mac_bw->mac_bw_lock); 2335 if (tail != NULL) { 2336 head = tail->b_next; 2337 tail->b_next = NULL; 2338 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, 2339 mp_chain, tail, count1, chain_sz); 2340 sz -= chain_sz; 2341 count -= count1; 2342 } else { 2343 /* Can't pick up any */ 2344 head = mp_chain; 2345 } 2346 if (head != NULL) { 2347 /* Drop any packet over the threshold */ 2348 srs_rx->sr_drop_count += count; 2349 mutex_enter(&mac_bw->mac_bw_lock); 2350 mac_bw->mac_bw_drop_bytes += sz; 2351 mutex_exit(&mac_bw->mac_bw_lock); 2352 freemsgchain(head); 2353 } 2354 } 2355 MAC_SRS_WORKER_WAKEUP(mac_srs); 2356 mutex_exit(&mac_srs->srs_lock); 2357 return; 2358 } 2359 } 2360 2361 /* 2362 * If the total number of packets queued in the SRS and 2363 * its associated soft rings exceeds the max allowed, 2364 * then drop the chain. If we are polling capable, this 2365 * shouldn't be happening. 2366 */ 2367 if (!(mac_srs->srs_type & SRST_BW_CONTROL) && 2368 (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) { 2369 mac_bw = mac_srs->srs_bw; 2370 srs_rx->sr_drop_count += count; 2371 mutex_enter(&mac_bw->mac_bw_lock); 2372 mac_bw->mac_bw_drop_bytes += sz; 2373 mutex_exit(&mac_bw->mac_bw_lock); 2374 freemsgchain(mp_chain); 2375 mutex_exit(&mac_srs->srs_lock); 2376 return; 2377 } 2378 2379 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz); 2380 /* Count the packets entering via interrupt path */ 2381 srs_rx->sr_intr_count += count; 2382 2383 if (!(mac_srs->srs_state & SRS_PROC)) { 2384 /* 2385 * If we are coming via loopback or if we are not 2386 * optimizing for latency, we should signal the 2387 * worker thread. 2388 */ 2389 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT)) { 2390 /* 2391 * For loopback, We need to let the worker take 2392 * over as we don't want to continue in the same 2393 * thread even if we can. This could lead to stack 2394 * overflows and may also end up using 2395 * resources (cpu) incorrectly. 2396 */ 2397 cv_signal(&mac_srs->srs_async); 2398 } else { 2399 /* 2400 * Seems like no one is processing the SRS and 2401 * there is no backlog. We also inline process 2402 * our packet if its a single packet in non 2403 * latency optimized case (in latency optimized 2404 * case, we inline process chains of any size). 2405 */ 2406 mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST); 2407 } 2408 } 2409 mutex_exit(&mac_srs->srs_lock); 2410 } 2411 2412 /* TX SIDE ROUTINES (RUNTIME) */ 2413 2414 /* 2415 * mac_tx_srs_no_desc 2416 * 2417 * This routine is called by Tx single ring default mode 2418 * when Tx ring runs out of descs. 2419 */ 2420 mac_tx_cookie_t 2421 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2422 uint16_t flag, mblk_t **ret_mp) 2423 { 2424 mac_tx_cookie_t cookie = NULL; 2425 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2426 boolean_t wakeup_worker = B_TRUE; 2427 uint32_t tx_mode = srs_tx->st_mode; 2428 int cnt, sz; 2429 mblk_t *tail; 2430 2431 ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW); 2432 if (flag & MAC_DROP_ON_NO_DESC) { 2433 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 2434 } else { 2435 if (mac_srs->srs_first != NULL) 2436 wakeup_worker = B_FALSE; 2437 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2438 if (flag & MAC_TX_NO_ENQUEUE) { 2439 /* 2440 * If TX_QUEUED is not set, queue the 2441 * packet and let mac_tx_srs_drain() 2442 * set the TX_BLOCKED bit for the 2443 * reasons explained above. Otherwise, 2444 * return the mblks. 2445 */ 2446 if (wakeup_worker) { 2447 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2448 mp_chain, tail, cnt, sz); 2449 } else { 2450 MAC_TX_SET_NO_ENQUEUE(mac_srs, 2451 mp_chain, ret_mp, cookie); 2452 } 2453 } else { 2454 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, 2455 tail, cnt, sz, cookie); 2456 } 2457 if (wakeup_worker) 2458 cv_signal(&mac_srs->srs_async); 2459 } 2460 return (cookie); 2461 } 2462 2463 /* 2464 * mac_tx_srs_enqueue 2465 * 2466 * This routine is called when Tx SRS is operating in either serializer 2467 * or bandwidth mode. In serializer mode, a packet will get enqueued 2468 * when a thread cannot enter SRS exclusively. In bandwidth mode, 2469 * packets gets queued if allowed byte-count limit for a tick is 2470 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and 2471 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either 2472 * the default mode or fanout mode. Here packets get dropped or 2473 * returned back to the caller only after hi-watermark worth of data 2474 * is queued. 2475 */ 2476 static mac_tx_cookie_t 2477 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2478 uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp) 2479 { 2480 mac_tx_cookie_t cookie = NULL; 2481 int cnt, sz; 2482 mblk_t *tail; 2483 boolean_t wakeup_worker = B_TRUE; 2484 2485 /* 2486 * Ignore fanout hint if we don't have multiple tx rings. 2487 */ 2488 if (!TX_MULTI_RING_MODE(mac_srs)) 2489 fanout_hint = 0; 2490 2491 if (mac_srs->srs_first != NULL) 2492 wakeup_worker = B_FALSE; 2493 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2494 if (flag & MAC_DROP_ON_NO_DESC) { 2495 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) { 2496 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 2497 } else { 2498 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2499 mp_chain, tail, cnt, sz); 2500 } 2501 } else if (flag & MAC_TX_NO_ENQUEUE) { 2502 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) || 2503 (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) { 2504 MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain, 2505 ret_mp, cookie); 2506 } else { 2507 mp_chain->b_prev = (mblk_t *)fanout_hint; 2508 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2509 mp_chain, tail, cnt, sz); 2510 } 2511 } else { 2512 /* 2513 * If you are BW_ENFORCED, just enqueue the 2514 * packet. srs_worker will drain it at the 2515 * prescribed rate. Before enqueueing, save 2516 * the fanout hint. 2517 */ 2518 mp_chain->b_prev = (mblk_t *)fanout_hint; 2519 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, 2520 tail, cnt, sz, cookie); 2521 } 2522 if (wakeup_worker) 2523 cv_signal(&mac_srs->srs_async); 2524 return (cookie); 2525 } 2526 2527 /* 2528 * There are five tx modes: 2529 * 2530 * 1) Default mode (SRS_TX_DEFAULT) 2531 * 2) Serialization mode (SRS_TX_SERIALIZE) 2532 * 3) Fanout mode (SRS_TX_FANOUT) 2533 * 4) Bandwdith mode (SRS_TX_BW) 2534 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT) 2535 * 2536 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup() 2537 * based on the number of Tx rings requested for an SRS and whether 2538 * bandwidth control is requested or not. 2539 * 2540 * In the default mode (i.e., no fanout/no bandwidth), the SRS acts as a 2541 * pass-thru. Packets will go directly to mac_tx_send(). When the underlying 2542 * Tx ring runs out of Tx descs, it starts queueing up packets in SRS. 2543 * When flow-control is relieved, the srs_worker drains the queued 2544 * packets and informs blocked clients to restart sending packets. 2545 * 2546 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. 2547 * 2548 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple 2549 * Tx rings. Each Tx ring will have a soft ring associated with it. 2550 * These soft rings will be hung off the Tx SRS. Queueing if it happens 2551 * due to lack of Tx desc will be in individual soft ring (and not srs) 2552 * associated with Tx ring. 2553 * 2554 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring 2555 * only if bw is available. Otherwise the packets will be queued in 2556 * SRS. If fanout to multiple Tx rings is configured, the packets will 2557 * be fanned out among the soft rings associated with the Tx rings. 2558 * 2559 * Four flags are used in srs_state for indicating flow control 2560 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT. 2561 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the 2562 * driver below. 2563 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat 2564 * and flow-control pressure is applied back to clients. The clients expect 2565 * wakeup when flow-control is relieved. 2566 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk 2567 * got returned back to client either due to lack of Tx descs or due to bw 2568 * control reasons. The clients expect a wakeup when condition is relieved. 2569 * 2570 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but 2571 * some clients set the following values too: MAC_DROP_ON_NO_DESC, 2572 * MAC_TX_NO_ENQUEUE 2573 * Mac clients that do not want packets to be enqueued in the mac layer set 2574 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or 2575 * Tx soft rings but instead get dropped when the NIC runs out of desc. The 2576 * behaviour of this flag is different when the Tx is running in serializer 2577 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet 2578 * get dropped when Tx high watermark is reached. 2579 * There are some mac clients like vsw, aggr that want the mblks to be 2580 * returned back to clients instead of being queued in Tx SRS (or Tx soft 2581 * rings) under flow-control (i.e., out of desc or exceeding bw limits) 2582 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set. 2583 * In the default and Tx fanout mode, the un-transmitted mblks will be 2584 * returned back to the clients when the driver runs out of Tx descs. 2585 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or 2586 * soft ring) so that the clients can be woken up when Tx desc become 2587 * available. When running in serializer or bandwidth mode mode, 2588 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached. 2589 */ 2590 2591 mac_tx_func_t 2592 mac_tx_get_func(uint32_t mode) 2593 { 2594 return (mac_tx_mode_list[mode].mac_tx_func); 2595 } 2596 2597 /* ARGSUSED */ 2598 static mac_tx_cookie_t 2599 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2600 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2601 { 2602 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2603 boolean_t is_subflow; 2604 mac_tx_stats_t stats; 2605 mac_tx_cookie_t cookie = NULL; 2606 2607 ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT); 2608 2609 /* Regular case with a single Tx ring */ 2610 /* 2611 * SRS_TX_BLOCKED is set when underlying NIC runs 2612 * out of Tx descs and messages start getting 2613 * queued. It won't get reset until 2614 * tx_srs_drain() completely drains out the 2615 * messages. 2616 */ 2617 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { 2618 /* Tx descs/resources not available */ 2619 mutex_enter(&mac_srs->srs_lock); 2620 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { 2621 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, 2622 flag, ret_mp); 2623 mutex_exit(&mac_srs->srs_lock); 2624 return (cookie); 2625 } 2626 /* 2627 * While we were computing mblk count, the 2628 * flow control condition got relieved. 2629 * Continue with the transmission. 2630 */ 2631 mutex_exit(&mac_srs->srs_lock); 2632 } 2633 2634 is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); 2635 2636 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 2637 mp_chain, (is_subflow ? &stats : NULL)); 2638 2639 /* 2640 * Multiple threads could be here sending packets. 2641 * Under such conditions, it is not possible to 2642 * automically set SRS_TX_BLOCKED bit to indicate 2643 * out of tx desc condition. To atomically set 2644 * this, we queue the returned packet and do 2645 * the setting of SRS_TX_BLOCKED in 2646 * mac_tx_srs_drain(). 2647 */ 2648 if (mp_chain != NULL) { 2649 mutex_enter(&mac_srs->srs_lock); 2650 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp); 2651 mutex_exit(&mac_srs->srs_lock); 2652 return (cookie); 2653 } 2654 2655 if (is_subflow) 2656 FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); 2657 2658 return (NULL); 2659 } 2660 2661 /* 2662 * mac_tx_serialize_mode 2663 * 2664 * This is an experimental mode implemented as per the request of PAE. 2665 * In this mode, all callers attempting to send a packet to the NIC 2666 * will get serialized. Only one thread at any time will access the 2667 * NIC to send the packet out. 2668 */ 2669 /* ARGSUSED */ 2670 static mac_tx_cookie_t 2671 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2672 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2673 { 2674 boolean_t is_subflow; 2675 mac_tx_stats_t stats; 2676 mac_tx_cookie_t cookie = NULL; 2677 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2678 2679 /* Single ring, serialize below */ 2680 ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE); 2681 mutex_enter(&mac_srs->srs_lock); 2682 if ((mac_srs->srs_first != NULL) || 2683 (mac_srs->srs_state & SRS_PROC)) { 2684 /* 2685 * In serialization mode, queue all packets until 2686 * TX_HIWAT is set. 2687 * If drop bit is set, drop if TX_HIWAT is set. 2688 * If no_enqueue is set, still enqueue until hiwat 2689 * is set and return mblks after TX_HIWAT is set. 2690 */ 2691 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, 2692 flag, NULL, ret_mp); 2693 mutex_exit(&mac_srs->srs_lock); 2694 return (cookie); 2695 } 2696 /* 2697 * No packets queued, nothing on proc and no flow 2698 * control condition. Fast-path, ok. Do inline 2699 * processing. 2700 */ 2701 mac_srs->srs_state |= SRS_PROC; 2702 mutex_exit(&mac_srs->srs_lock); 2703 2704 is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); 2705 2706 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 2707 mp_chain, (is_subflow ? &stats : NULL)); 2708 2709 mutex_enter(&mac_srs->srs_lock); 2710 mac_srs->srs_state &= ~SRS_PROC; 2711 if (mp_chain != NULL) { 2712 cookie = mac_tx_srs_enqueue(mac_srs, 2713 mp_chain, flag, NULL, ret_mp); 2714 } 2715 if (mac_srs->srs_first != NULL) { 2716 /* 2717 * We processed inline our packet and a new 2718 * packet/s got queued while we were 2719 * processing. Wakeup srs worker 2720 */ 2721 cv_signal(&mac_srs->srs_async); 2722 } 2723 mutex_exit(&mac_srs->srs_lock); 2724 2725 if (is_subflow && cookie == NULL) 2726 FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); 2727 2728 return (cookie); 2729 } 2730 2731 /* 2732 * mac_tx_fanout_mode 2733 * 2734 * In this mode, the SRS will have access to multiple Tx rings to send 2735 * the packet out. The fanout hint that is passed as an argument is 2736 * used to find an appropriate ring to fanout the traffic. Each Tx 2737 * ring, in turn, will have a soft ring associated with it. If a Tx 2738 * ring runs out of Tx desc's the returned packet will be queued in 2739 * the soft ring associated with that Tx ring. The srs itself will not 2740 * queue any packets. 2741 */ 2742 2743 #define MAC_TX_SOFT_RING_PROCESS(chain) { \ 2744 index = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count), \ 2745 softring = mac_srs->srs_oth_soft_rings[index]; \ 2746 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \ 2747 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \ 2748 } 2749 2750 static mac_tx_cookie_t 2751 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2752 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2753 { 2754 mac_soft_ring_t *softring; 2755 uint64_t hash; 2756 uint_t index; 2757 mac_tx_cookie_t cookie = NULL; 2758 2759 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT); 2760 if (fanout_hint != 0) { 2761 /* 2762 * The hint is specified by the caller, simply pass the 2763 * whole chain to the soft ring. 2764 */ 2765 hash = HASH_HINT(fanout_hint); 2766 MAC_TX_SOFT_RING_PROCESS(mp_chain); 2767 } else { 2768 mblk_t *last_mp, *cur_mp, *sub_chain; 2769 uint64_t last_hash = 0; 2770 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media; 2771 2772 /* 2773 * Compute the hash from the contents (headers) of the 2774 * packets of the mblk chain. Split the chains into 2775 * subchains of the same conversation. 2776 * 2777 * Since there may be more than one ring used for 2778 * sub-chains of the same call, and since the caller 2779 * does not maintain per conversation state since it 2780 * passed a zero hint, unsent subchains will be 2781 * dropped. 2782 */ 2783 2784 flag |= MAC_DROP_ON_NO_DESC; 2785 ret_mp = NULL; 2786 2787 ASSERT(ret_mp == NULL); 2788 2789 sub_chain = NULL; 2790 last_mp = NULL; 2791 2792 for (cur_mp = mp_chain; cur_mp != NULL; 2793 cur_mp = cur_mp->b_next) { 2794 hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4, 2795 B_TRUE); 2796 if (last_hash != 0 && hash != last_hash) { 2797 /* 2798 * Starting a different subchain, send current 2799 * chain out. 2800 */ 2801 ASSERT(last_mp != NULL); 2802 last_mp->b_next = NULL; 2803 MAC_TX_SOFT_RING_PROCESS(sub_chain); 2804 sub_chain = NULL; 2805 } 2806 2807 /* add packet to subchain */ 2808 if (sub_chain == NULL) 2809 sub_chain = cur_mp; 2810 last_mp = cur_mp; 2811 last_hash = hash; 2812 } 2813 2814 if (sub_chain != NULL) { 2815 /* send last subchain */ 2816 ASSERT(last_mp != NULL); 2817 last_mp->b_next = NULL; 2818 MAC_TX_SOFT_RING_PROCESS(sub_chain); 2819 } 2820 2821 cookie = NULL; 2822 } 2823 2824 return (cookie); 2825 } 2826 2827 /* 2828 * mac_tx_bw_mode 2829 * 2830 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring 2831 * only if bw is available. Otherwise the packets will be queued in 2832 * SRS. If the SRS has multiple Tx rings, then packets will get fanned 2833 * out to a Tx rings. 2834 */ 2835 static mac_tx_cookie_t 2836 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2837 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2838 { 2839 int cnt, sz; 2840 mblk_t *tail; 2841 mac_tx_cookie_t cookie = NULL; 2842 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2843 2844 ASSERT(TX_BANDWIDTH_MODE(mac_srs)); 2845 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); 2846 mutex_enter(&mac_srs->srs_lock); 2847 if (mac_srs->srs_bw->mac_bw_limit == 0) { 2848 /* 2849 * zero bandwidth, no traffic is sent: drop the packets, 2850 * or return the whole chain if the caller requests all 2851 * unsent packets back. 2852 */ 2853 if (flag & MAC_TX_NO_ENQUEUE) { 2854 cookie = (mac_tx_cookie_t)mac_srs; 2855 *ret_mp = mp_chain; 2856 } else { 2857 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 2858 } 2859 mutex_exit(&mac_srs->srs_lock); 2860 return (cookie); 2861 } else if ((mac_srs->srs_first != NULL) || 2862 (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 2863 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, 2864 fanout_hint, ret_mp); 2865 mutex_exit(&mac_srs->srs_lock); 2866 return (cookie); 2867 } 2868 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2869 if (mac_srs->srs_bw->mac_bw_curr_time != lbolt) { 2870 mac_srs->srs_bw->mac_bw_curr_time = lbolt; 2871 mac_srs->srs_bw->mac_bw_used = 0; 2872 } else if (mac_srs->srs_bw->mac_bw_used > 2873 mac_srs->srs_bw->mac_bw_limit) { 2874 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 2875 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2876 mp_chain, tail, cnt, sz); 2877 /* 2878 * Wakeup worker thread. Note that worker 2879 * thread has to be woken up so that it 2880 * can fire up the timer to be woken up 2881 * on the next tick. Also once 2882 * BW_ENFORCED is set, it can only be 2883 * reset by srs_worker thread. Until then 2884 * all packets will get queued up in SRS 2885 * and hence this this code path won't be 2886 * entered until BW_ENFORCED is reset. 2887 */ 2888 cv_signal(&mac_srs->srs_async); 2889 mutex_exit(&mac_srs->srs_lock); 2890 return (cookie); 2891 } 2892 2893 mac_srs->srs_bw->mac_bw_used += sz; 2894 mutex_exit(&mac_srs->srs_lock); 2895 2896 if (srs_tx->st_mode == SRS_TX_BW_FANOUT) { 2897 mac_soft_ring_t *softring; 2898 uint_t indx, hash; 2899 2900 hash = HASH_HINT(fanout_hint); 2901 indx = COMPUTE_INDEX(hash, 2902 mac_srs->srs_oth_ring_count); 2903 softring = mac_srs->srs_oth_soft_rings[indx]; 2904 return (mac_tx_soft_ring_process(softring, mp_chain, flag, 2905 ret_mp)); 2906 } else { 2907 boolean_t is_subflow; 2908 mac_tx_stats_t stats; 2909 2910 is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); 2911 2912 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 2913 mp_chain, (is_subflow ? &stats : NULL)); 2914 2915 if (mp_chain != NULL) { 2916 mutex_enter(&mac_srs->srs_lock); 2917 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2918 if (mac_srs->srs_bw->mac_bw_used > sz) 2919 mac_srs->srs_bw->mac_bw_used -= sz; 2920 else 2921 mac_srs->srs_bw->mac_bw_used = 0; 2922 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, 2923 fanout_hint, ret_mp); 2924 mutex_exit(&mac_srs->srs_lock); 2925 return (cookie); 2926 } 2927 if (is_subflow) 2928 FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); 2929 2930 return (NULL); 2931 } 2932 } 2933 2934 /* ARGSUSED */ 2935 void 2936 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 2937 { 2938 mblk_t *head, *tail; 2939 size_t sz; 2940 uint32_t tx_mode; 2941 uint_t saved_pkt_count; 2942 boolean_t is_subflow; 2943 mac_tx_stats_t stats; 2944 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2945 2946 saved_pkt_count = 0; 2947 ASSERT(mutex_owned(&mac_srs->srs_lock)); 2948 ASSERT(!(mac_srs->srs_state & SRS_PROC)); 2949 2950 mac_srs->srs_state |= SRS_PROC; 2951 2952 is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); 2953 tx_mode = srs_tx->st_mode; 2954 if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) { 2955 if (mac_srs->srs_first != NULL) { 2956 head = mac_srs->srs_first; 2957 tail = mac_srs->srs_last; 2958 saved_pkt_count = mac_srs->srs_count; 2959 mac_srs->srs_first = NULL; 2960 mac_srs->srs_last = NULL; 2961 mac_srs->srs_count = 0; 2962 mutex_exit(&mac_srs->srs_lock); 2963 2964 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 2965 head, &stats); 2966 2967 mutex_enter(&mac_srs->srs_lock); 2968 if (head != NULL) { 2969 /* Device out of tx desc, set block */ 2970 if (head->b_next == NULL) 2971 VERIFY(head == tail); 2972 tail->b_next = mac_srs->srs_first; 2973 mac_srs->srs_first = head; 2974 mac_srs->srs_count += 2975 (saved_pkt_count - stats.ts_opackets); 2976 if (mac_srs->srs_last == NULL) 2977 mac_srs->srs_last = tail; 2978 MAC_TX_SRS_BLOCK(mac_srs, head); 2979 } else { 2980 srs_tx->st_woken_up = B_FALSE; 2981 if (is_subflow) { 2982 FLOW_TX_STATS_UPDATE( 2983 mac_srs->srs_flent, &stats); 2984 } 2985 } 2986 } 2987 } else if (tx_mode == SRS_TX_BW) { 2988 /* 2989 * We are here because the timer fired and we have some data 2990 * to tranmit. Also mac_tx_srs_worker should have reset 2991 * SRS_BW_ENFORCED flag 2992 */ 2993 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)); 2994 head = tail = mac_srs->srs_first; 2995 while (mac_srs->srs_first != NULL) { 2996 tail = mac_srs->srs_first; 2997 tail->b_prev = NULL; 2998 mac_srs->srs_first = tail->b_next; 2999 if (mac_srs->srs_first == NULL) 3000 mac_srs->srs_last = NULL; 3001 mac_srs->srs_count--; 3002 sz = msgdsize(tail); 3003 mac_srs->srs_size -= sz; 3004 saved_pkt_count++; 3005 MAC_TX_UPDATE_BW_INFO(mac_srs, sz); 3006 3007 if (mac_srs->srs_bw->mac_bw_used < 3008 mac_srs->srs_bw->mac_bw_limit) 3009 continue; 3010 3011 if (mac_srs->srs_bw->mac_bw_curr_time != lbolt) { 3012 mac_srs->srs_bw->mac_bw_curr_time = lbolt; 3013 mac_srs->srs_bw->mac_bw_used = sz; 3014 continue; 3015 } 3016 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 3017 break; 3018 } 3019 3020 ASSERT((head == NULL && tail == NULL) || 3021 (head != NULL && tail != NULL)); 3022 if (tail != NULL) { 3023 tail->b_next = NULL; 3024 mutex_exit(&mac_srs->srs_lock); 3025 3026 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3027 head, &stats); 3028 3029 mutex_enter(&mac_srs->srs_lock); 3030 if (head != NULL) { 3031 uint_t size_sent; 3032 3033 /* Device out of tx desc, set block */ 3034 if (head->b_next == NULL) 3035 VERIFY(head == tail); 3036 tail->b_next = mac_srs->srs_first; 3037 mac_srs->srs_first = head; 3038 mac_srs->srs_count += 3039 (saved_pkt_count - stats.ts_opackets); 3040 if (mac_srs->srs_last == NULL) 3041 mac_srs->srs_last = tail; 3042 size_sent = sz - stats.ts_obytes; 3043 mac_srs->srs_size += size_sent; 3044 mac_srs->srs_bw->mac_bw_sz += size_sent; 3045 if (mac_srs->srs_bw->mac_bw_used > size_sent) { 3046 mac_srs->srs_bw->mac_bw_used -= 3047 size_sent; 3048 } else { 3049 mac_srs->srs_bw->mac_bw_used = 0; 3050 } 3051 MAC_TX_SRS_BLOCK(mac_srs, head); 3052 } else { 3053 srs_tx->st_woken_up = B_FALSE; 3054 if (is_subflow) { 3055 FLOW_TX_STATS_UPDATE( 3056 mac_srs->srs_flent, &stats); 3057 } 3058 } 3059 } 3060 } else if (tx_mode == SRS_TX_BW_FANOUT) { 3061 mblk_t *prev; 3062 mac_soft_ring_t *softring; 3063 uint64_t hint; 3064 3065 /* 3066 * We are here because the timer fired and we 3067 * have some quota to tranmit. 3068 */ 3069 prev = NULL; 3070 head = tail = mac_srs->srs_first; 3071 while (mac_srs->srs_first != NULL) { 3072 tail = mac_srs->srs_first; 3073 mac_srs->srs_first = tail->b_next; 3074 if (mac_srs->srs_first == NULL) 3075 mac_srs->srs_last = NULL; 3076 mac_srs->srs_count--; 3077 sz = msgdsize(tail); 3078 mac_srs->srs_size -= sz; 3079 mac_srs->srs_bw->mac_bw_used += sz; 3080 if (prev == NULL) 3081 hint = (ulong_t)tail->b_prev; 3082 if (hint != (ulong_t)tail->b_prev) { 3083 prev->b_next = NULL; 3084 mutex_exit(&mac_srs->srs_lock); 3085 TX_SRS_TO_SOFT_RING(mac_srs, head, hint); 3086 head = tail; 3087 hint = (ulong_t)tail->b_prev; 3088 mutex_enter(&mac_srs->srs_lock); 3089 } 3090 3091 prev = tail; 3092 tail->b_prev = NULL; 3093 if (mac_srs->srs_bw->mac_bw_used < 3094 mac_srs->srs_bw->mac_bw_limit) 3095 continue; 3096 3097 if (mac_srs->srs_bw->mac_bw_curr_time != lbolt) { 3098 mac_srs->srs_bw->mac_bw_curr_time = lbolt; 3099 mac_srs->srs_bw->mac_bw_used = 0; 3100 continue; 3101 } 3102 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 3103 break; 3104 } 3105 ASSERT((head == NULL && tail == NULL) || 3106 (head != NULL && tail != NULL)); 3107 if (tail != NULL) { 3108 tail->b_next = NULL; 3109 mutex_exit(&mac_srs->srs_lock); 3110 TX_SRS_TO_SOFT_RING(mac_srs, head, hint); 3111 mutex_enter(&mac_srs->srs_lock); 3112 } 3113 } 3114 /* 3115 * SRS_TX_FANOUT case not considered here because packets 3116 * won't be queued in the SRS for this case. Packets will 3117 * be sent directly to soft rings underneath and if there 3118 * is any queueing at all, it would be in Tx side soft 3119 * rings. 3120 */ 3121 3122 /* 3123 * When srs_count becomes 0, reset SRS_TX_HIWAT and 3124 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients. 3125 */ 3126 if (mac_srs->srs_count == 0 && (mac_srs->srs_state & 3127 (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) { 3128 mac_tx_notify_cb_t *mtnfp; 3129 mac_cb_t *mcb; 3130 mac_client_impl_t *mcip = mac_srs->srs_mcip; 3131 boolean_t wakeup_required = B_FALSE; 3132 3133 if (mac_srs->srs_state & 3134 (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) { 3135 wakeup_required = B_TRUE; 3136 } 3137 mac_srs->srs_state &= ~(SRS_TX_HIWAT | 3138 SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED); 3139 mutex_exit(&mac_srs->srs_lock); 3140 if (wakeup_required) { 3141 /* Wakeup callback registered clients */ 3142 MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info); 3143 for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL; 3144 mcb = mcb->mcb_nextp) { 3145 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp; 3146 mtnfp->mtnf_fn(mtnfp->mtnf_arg, 3147 (mac_tx_cookie_t)mac_srs); 3148 } 3149 MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info, 3150 &mcip->mci_tx_notify_cb_list); 3151 /* 3152 * If the client is not the primary MAC client, then we 3153 * need to send the notification to the clients upper 3154 * MAC, i.e. mci_upper_mip. 3155 */ 3156 mac_tx_notify(mcip->mci_upper_mip != NULL ? 3157 mcip->mci_upper_mip : mcip->mci_mip); 3158 } 3159 mutex_enter(&mac_srs->srs_lock); 3160 } 3161 mac_srs->srs_state &= ~SRS_PROC; 3162 } 3163 3164 /* 3165 * Given a packet, get the flow_entry that identifies the flow 3166 * to which that packet belongs. The flow_entry will contain 3167 * the transmit function to be used to send the packet. If the 3168 * function returns NULL, the packet should be sent using the 3169 * underlying NIC. 3170 */ 3171 static flow_entry_t * 3172 mac_tx_classify(mac_impl_t *mip, mblk_t *mp) 3173 { 3174 flow_entry_t *flent = NULL; 3175 mac_client_impl_t *mcip; 3176 int err; 3177 3178 /* 3179 * Do classification on the packet. 3180 */ 3181 err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent); 3182 if (err != 0) 3183 return (NULL); 3184 3185 /* 3186 * This flent might just be an additional one on the MAC client, 3187 * i.e. for classification purposes (different fdesc), however 3188 * the resources, SRS et. al., are in the mci_flent, so if 3189 * this isn't the mci_flent, we need to get it. 3190 */ 3191 if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) { 3192 FLOW_REFRELE(flent); 3193 flent = mcip->mci_flent; 3194 FLOW_TRY_REFHOLD(flent, err); 3195 if (err != 0) 3196 return (NULL); 3197 } 3198 3199 return (flent); 3200 } 3201 3202 /* 3203 * This macro is only meant to be used by mac_tx_send(). 3204 */ 3205 #define CHECK_VID_AND_ADD_TAG(mp) { \ 3206 if (vid_check) { \ 3207 int err = 0; \ 3208 \ 3209 MAC_VID_CHECK(src_mcip, (mp), err); \ 3210 if (err != 0) { \ 3211 freemsg((mp)); \ 3212 (mp) = next; \ 3213 oerrors++; \ 3214 continue; \ 3215 } \ 3216 } \ 3217 if (add_tag) { \ 3218 (mp) = mac_add_vlan_tag((mp), 0, vid); \ 3219 if ((mp) == NULL) { \ 3220 (mp) = next; \ 3221 oerrors++; \ 3222 continue; \ 3223 } \ 3224 } \ 3225 } 3226 3227 mblk_t * 3228 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain, 3229 mac_tx_stats_t *stats) 3230 { 3231 mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch; 3232 mac_impl_t *mip = src_mcip->mci_mip; 3233 uint_t obytes = 0, opackets = 0, oerrors = 0; 3234 mblk_t *mp = NULL, *next; 3235 boolean_t vid_check, add_tag; 3236 uint16_t vid = 0; 3237 3238 if (mip->mi_nclients > 1) { 3239 vid_check = MAC_VID_CHECK_NEEDED(src_mcip); 3240 add_tag = MAC_TAG_NEEDED(src_mcip); 3241 if (add_tag) 3242 vid = mac_client_vid(mch); 3243 } else { 3244 ASSERT(mip->mi_nclients == 1); 3245 vid_check = add_tag = B_FALSE; 3246 } 3247 3248 /* 3249 * Fastpath: if there's only one client, and there's no 3250 * multicast listeners, we simply send the packet down to the 3251 * underlying NIC. 3252 */ 3253 if (mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL) { 3254 DTRACE_PROBE2(fastpath, 3255 mac_client_impl_t *, src_mcip, mblk_t *, mp_chain); 3256 3257 mp = mp_chain; 3258 while (mp != NULL) { 3259 next = mp->b_next; 3260 mp->b_next = NULL; 3261 opackets++; 3262 obytes += (mp->b_cont == NULL ? MBLKL(mp) : 3263 msgdsize(mp)); 3264 3265 CHECK_VID_AND_ADD_TAG(mp); 3266 MAC_TX(mip, ring, mp, src_mcip); 3267 3268 /* 3269 * If the driver is out of descriptors and does a 3270 * partial send it will return a chain of unsent 3271 * mblks. Adjust the accounting stats. 3272 */ 3273 if (mp != NULL) { 3274 opackets--; 3275 obytes -= msgdsize(mp); 3276 mp->b_next = next; 3277 break; 3278 } 3279 mp = next; 3280 } 3281 goto done; 3282 } 3283 3284 /* 3285 * No fastpath, we either have more than one MAC client 3286 * defined on top of the same MAC, or one or more MAC 3287 * client promiscuous callbacks. 3288 */ 3289 DTRACE_PROBE3(slowpath, mac_client_impl_t *, 3290 src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain); 3291 3292 mp = mp_chain; 3293 while (mp != NULL) { 3294 flow_entry_t *dst_flow_ent; 3295 void *flow_cookie; 3296 size_t pkt_size; 3297 mblk_t *mp1; 3298 3299 next = mp->b_next; 3300 mp->b_next = NULL; 3301 opackets++; 3302 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp)); 3303 obytes += pkt_size; 3304 CHECK_VID_AND_ADD_TAG(mp); 3305 3306 /* 3307 * Check if there are promiscuous mode callbacks defined. 3308 */ 3309 if (mip->mi_promisc_list != NULL) 3310 mac_promisc_dispatch(mip, mp, src_mcip); 3311 3312 /* 3313 * Find the destination. 3314 */ 3315 dst_flow_ent = mac_tx_classify(mip, mp); 3316 3317 if (dst_flow_ent != NULL) { 3318 size_t hdrsize; 3319 int err = 0; 3320 3321 if (mip->mi_info.mi_nativemedia == DL_ETHER) { 3322 struct ether_vlan_header *evhp = 3323 (struct ether_vlan_header *)mp->b_rptr; 3324 3325 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) 3326 hdrsize = sizeof (*evhp); 3327 else 3328 hdrsize = sizeof (struct ether_header); 3329 } else { 3330 mac_header_info_t mhi; 3331 3332 err = mac_header_info((mac_handle_t)mip, 3333 mp, &mhi); 3334 if (err == 0) 3335 hdrsize = mhi.mhi_hdrsize; 3336 } 3337 3338 /* 3339 * Got a matching flow. It's either another 3340 * MAC client, or a broadcast/multicast flow. 3341 * Make sure the packet size is within the 3342 * allowed size. If not drop the packet and 3343 * move to next packet. 3344 */ 3345 if (err != 0 || 3346 (pkt_size - hdrsize) > mip->mi_sdu_max) { 3347 oerrors++; 3348 DTRACE_PROBE2(loopback__drop, size_t, pkt_size, 3349 mblk_t *, mp); 3350 freemsg(mp); 3351 mp = next; 3352 FLOW_REFRELE(dst_flow_ent); 3353 continue; 3354 } 3355 flow_cookie = mac_flow_get_client_cookie(dst_flow_ent); 3356 if (flow_cookie != NULL) { 3357 /* 3358 * The vnic_bcast_send function expects 3359 * to receive the sender MAC client 3360 * as value for arg2. 3361 */ 3362 mac_bcast_send(flow_cookie, src_mcip, mp, 3363 B_TRUE); 3364 } else { 3365 /* 3366 * loopback the packet to a 3367 * local MAC client. We force a context 3368 * switch if both source and destination 3369 * MAC clients are used by IP, i.e. bypass 3370 * is set. 3371 */ 3372 boolean_t do_switch; 3373 mac_client_impl_t *dst_mcip = 3374 dst_flow_ent->fe_mcip; 3375 3376 do_switch = ((src_mcip->mci_state_flags & 3377 dst_mcip->mci_state_flags & 3378 MCIS_CLIENT_POLL_CAPABLE) != 0); 3379 3380 if ((mp1 = mac_fix_cksum(mp)) != NULL) { 3381 (dst_flow_ent->fe_cb_fn)( 3382 dst_flow_ent->fe_cb_arg1, 3383 dst_flow_ent->fe_cb_arg2, 3384 mp1, do_switch); 3385 } 3386 } 3387 FLOW_REFRELE(dst_flow_ent); 3388 } else { 3389 /* 3390 * Unknown destination, send via the underlying 3391 * NIC. 3392 */ 3393 MAC_TX(mip, ring, mp, src_mcip); 3394 if (mp != NULL) { 3395 /* 3396 * Adjust for the last packet that 3397 * could not be transmitted 3398 */ 3399 opackets--; 3400 obytes -= pkt_size; 3401 mp->b_next = next; 3402 break; 3403 } 3404 } 3405 mp = next; 3406 } 3407 3408 done: 3409 src_mcip->mci_stat_obytes += obytes; 3410 src_mcip->mci_stat_opackets += opackets; 3411 src_mcip->mci_stat_oerrors += oerrors; 3412 3413 if (stats != NULL) { 3414 stats->ts_opackets = opackets; 3415 stats->ts_obytes = obytes; 3416 stats->ts_oerrors = oerrors; 3417 } 3418 return (mp); 3419 } 3420 3421 /* 3422 * mac_tx_srs_ring_present 3423 * 3424 * Returns whether the specified ring is part of the specified SRS. 3425 */ 3426 boolean_t 3427 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring) 3428 { 3429 int i; 3430 mac_soft_ring_t *soft_ring; 3431 3432 if (srs->srs_tx.st_arg2 == tx_ring) 3433 return (B_TRUE); 3434 3435 for (i = 0; i < srs->srs_oth_ring_count; i++) { 3436 soft_ring = srs->srs_oth_soft_rings[i]; 3437 if (soft_ring->s_ring_tx_arg2 == tx_ring) 3438 return (B_TRUE); 3439 } 3440 3441 return (B_FALSE); 3442 } 3443 3444 /* 3445 * mac_tx_srs_wakeup 3446 * 3447 * Called when Tx desc become available. Wakeup the appropriate worker 3448 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the 3449 * state field. 3450 */ 3451 void 3452 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring) 3453 { 3454 int i; 3455 mac_soft_ring_t *sringp; 3456 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3457 3458 mutex_enter(&mac_srs->srs_lock); 3459 if (TX_SINGLE_RING_MODE(mac_srs)) { 3460 if (srs_tx->st_arg2 == ring && 3461 mac_srs->srs_state & SRS_TX_BLOCKED) { 3462 mac_srs->srs_state &= ~SRS_TX_BLOCKED; 3463 srs_tx->st_unblocked_cnt++; 3464 cv_signal(&mac_srs->srs_async); 3465 } 3466 /* 3467 * A wakeup can come before tx_srs_drain() could 3468 * grab srs lock and set SRS_TX_BLOCKED. So 3469 * always set woken_up flag when we come here. 3470 */ 3471 srs_tx->st_woken_up = B_TRUE; 3472 mutex_exit(&mac_srs->srs_lock); 3473 return; 3474 } 3475 3476 /* If you are here, it is for FANOUT or BW_FANOUT case */ 3477 ASSERT(TX_MULTI_RING_MODE(mac_srs)); 3478 for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { 3479 sringp = mac_srs->srs_oth_soft_rings[i]; 3480 mutex_enter(&sringp->s_ring_lock); 3481 if (sringp->s_ring_tx_arg2 == ring) { 3482 if (sringp->s_ring_state & S_RING_BLOCK) { 3483 sringp->s_ring_state &= ~S_RING_BLOCK; 3484 sringp->s_ring_unblocked_cnt++; 3485 cv_signal(&sringp->s_ring_async); 3486 } 3487 sringp->s_ring_tx_woken_up = B_TRUE; 3488 } 3489 mutex_exit(&sringp->s_ring_lock); 3490 } 3491 mutex_exit(&mac_srs->srs_lock); 3492 } 3493 3494 /* 3495 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash 3496 * the blocked clients again. 3497 */ 3498 void 3499 mac_tx_notify(mac_impl_t *mip) 3500 { 3501 i_mac_notify(mip, MAC_NOTE_TX); 3502 } 3503 3504 /* 3505 * RX SOFTRING RELATED FUNCTIONS 3506 * 3507 * These functions really belong in mac_soft_ring.c and here for 3508 * a short period. 3509 */ 3510 3511 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ 3512 /* \ 3513 * Enqueue our mblk chain. \ 3514 */ \ 3515 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \ 3516 \ 3517 if ((ringp)->s_ring_last != NULL) \ 3518 (ringp)->s_ring_last->b_next = (mp); \ 3519 else \ 3520 (ringp)->s_ring_first = (mp); \ 3521 (ringp)->s_ring_last = (tail); \ 3522 (ringp)->s_ring_count += (cnt); \ 3523 ASSERT((ringp)->s_ring_count > 0); \ 3524 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \ 3525 (ringp)->s_ring_size += sz; \ 3526 } \ 3527 } 3528 3529 /* 3530 * Default entry point to deliver a packet chain to a MAC client. 3531 * If the MAC client has flows, do the classification with these 3532 * flows as well. 3533 */ 3534 /* ARGSUSED */ 3535 void 3536 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain, 3537 mac_header_info_t *arg3) 3538 { 3539 mac_client_impl_t *mcip = arg1; 3540 3541 if (mcip->mci_nvids == 1 && 3542 !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) { 3543 /* 3544 * If the client has exactly one VID associated with it 3545 * and striping of VLAN header is not disabled, 3546 * remove the VLAN tag from the packet before 3547 * passing it on to the client's receive callback. 3548 * Note that this needs to be done after we dispatch 3549 * the packet to the promiscuous listeners of the 3550 * client, since they expect to see the whole 3551 * frame including the VLAN headers. 3552 */ 3553 mp_chain = mac_strip_vlan_tag_chain(mp_chain); 3554 } 3555 3556 mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE); 3557 } 3558 3559 /* 3560 * mac_rx_soft_ring_process 3561 * 3562 * process a chain for a given soft ring. The number of packets queued 3563 * in the SRS and its associated soft rings (including this one) is 3564 * very small (tracked by srs_poll_pkt_cnt), then allow the entering 3565 * thread (interrupt or poll thread) to do inline processing. This 3566 * helps keep the latency down under low load. 3567 * 3568 * The proc and arg for each mblk is already stored in the mblk in 3569 * appropriate places. 3570 */ 3571 /* ARGSUSED */ 3572 void 3573 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp, 3574 mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz) 3575 { 3576 mac_direct_rx_t proc; 3577 void *arg1; 3578 mac_resource_handle_t arg2; 3579 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 3580 3581 ASSERT(ringp != NULL); 3582 ASSERT(mp_chain != NULL); 3583 ASSERT(tail != NULL); 3584 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 3585 3586 mutex_enter(&ringp->s_ring_lock); 3587 ringp->s_ring_total_inpkt += cnt; 3588 if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) && 3589 !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) { 3590 /* If on processor or blanking on, then enqueue and return */ 3591 if (ringp->s_ring_state & S_RING_BLANK || 3592 ringp->s_ring_state & S_RING_PROC) { 3593 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 3594 mutex_exit(&ringp->s_ring_lock); 3595 return; 3596 } 3597 proc = ringp->s_ring_rx_func; 3598 arg1 = ringp->s_ring_rx_arg1; 3599 arg2 = ringp->s_ring_rx_arg2; 3600 /* 3601 * See if anything is already queued. If we are the 3602 * first packet, do inline processing else queue the 3603 * packet and do the drain. 3604 */ 3605 if (ringp->s_ring_first == NULL) { 3606 /* 3607 * Fast-path, ok to process and nothing queued. 3608 */ 3609 ringp->s_ring_run = curthread; 3610 ringp->s_ring_state |= (S_RING_PROC); 3611 3612 mutex_exit(&ringp->s_ring_lock); 3613 3614 /* 3615 * We are the chain of 1 packet so 3616 * go through this fast path. 3617 */ 3618 ASSERT(mp_chain->b_next == NULL); 3619 3620 (*proc)(arg1, arg2, mp_chain, NULL); 3621 3622 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 3623 /* 3624 * If we have a soft ring set which is doing 3625 * bandwidth control, we need to decrement 3626 * srs_size and count so it the SRS can have a 3627 * accurate idea of what is the real data 3628 * queued between SRS and its soft rings. We 3629 * decrement the counters only when the packet 3630 * gets processed by both SRS and the soft ring. 3631 */ 3632 mutex_enter(&mac_srs->srs_lock); 3633 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 3634 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); 3635 mutex_exit(&mac_srs->srs_lock); 3636 3637 mutex_enter(&ringp->s_ring_lock); 3638 ringp->s_ring_run = NULL; 3639 ringp->s_ring_state &= ~S_RING_PROC; 3640 if (ringp->s_ring_state & S_RING_CLIENT_WAIT) 3641 cv_signal(&ringp->s_ring_client_cv); 3642 3643 if ((ringp->s_ring_first == NULL) || 3644 (ringp->s_ring_state & S_RING_BLANK)) { 3645 /* 3646 * We processed inline our packet and 3647 * nothing new has arrived or our 3648 * receiver doesn't want to receive 3649 * any packets. We are done. 3650 */ 3651 mutex_exit(&ringp->s_ring_lock); 3652 return; 3653 } 3654 } else { 3655 SOFT_RING_ENQUEUE_CHAIN(ringp, 3656 mp_chain, tail, cnt, sz); 3657 } 3658 3659 /* 3660 * We are here because either we couldn't do inline 3661 * processing (because something was already 3662 * queued), or we had a chain of more than one 3663 * packet, or something else arrived after we were 3664 * done with inline processing. 3665 */ 3666 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); 3667 ASSERT(ringp->s_ring_first != NULL); 3668 3669 ringp->s_ring_drain_func(ringp); 3670 mutex_exit(&ringp->s_ring_lock); 3671 return; 3672 } else { 3673 /* ST_RING_WORKER_ONLY case */ 3674 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 3675 mac_soft_ring_worker_wakeup(ringp); 3676 mutex_exit(&ringp->s_ring_lock); 3677 } 3678 } 3679 3680 /* 3681 * TX SOFTRING RELATED FUNCTIONS 3682 * 3683 * These functions really belong in mac_soft_ring.c and here for 3684 * a short period. 3685 */ 3686 3687 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ 3688 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \ 3689 ringp->s_ring_state |= S_RING_ENQUEUED; \ 3690 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \ 3691 } 3692 3693 /* 3694 * mac_tx_sring_queued 3695 * 3696 * When we are out of transmit descriptors and we already have a 3697 * queue that exceeds hiwat (or the client called us with 3698 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the 3699 * soft ring pointer as the opaque cookie for the client enable 3700 * flow control. 3701 */ 3702 static mac_tx_cookie_t 3703 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag, 3704 mblk_t **ret_mp) 3705 { 3706 int cnt; 3707 size_t sz; 3708 mblk_t *tail; 3709 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 3710 mac_tx_cookie_t cookie = NULL; 3711 boolean_t wakeup_worker = B_TRUE; 3712 3713 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); 3714 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3715 if (flag & MAC_DROP_ON_NO_DESC) { 3716 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); 3717 /* increment freed stats */ 3718 ringp->s_ring_drops += cnt; 3719 cookie = (mac_tx_cookie_t)ringp; 3720 } else { 3721 if (ringp->s_ring_first != NULL) 3722 wakeup_worker = B_FALSE; 3723 3724 if (flag & MAC_TX_NO_ENQUEUE) { 3725 /* 3726 * If QUEUED is not set, queue the packet 3727 * and let mac_tx_soft_ring_drain() set 3728 * the TX_BLOCKED bit for the reasons 3729 * explained above. Otherwise, return the 3730 * mblks. 3731 */ 3732 if (wakeup_worker) { 3733 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, 3734 mp_chain, tail, cnt, sz); 3735 } else { 3736 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT; 3737 cookie = (mac_tx_cookie_t)ringp; 3738 *ret_mp = mp_chain; 3739 } 3740 } else { 3741 boolean_t enqueue = B_TRUE; 3742 3743 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { 3744 /* 3745 * flow-controlled. Store ringp in cookie 3746 * so that it can be returned as 3747 * mac_tx_cookie_t to client 3748 */ 3749 ringp->s_ring_state |= S_RING_TX_HIWAT; 3750 cookie = (mac_tx_cookie_t)ringp; 3751 ringp->s_ring_hiwat_cnt++; 3752 if (ringp->s_ring_count > 3753 ringp->s_ring_tx_max_q_cnt) { 3754 /* increment freed stats */ 3755 ringp->s_ring_drops += cnt; 3756 /* 3757 * b_prev may be set to the fanout hint 3758 * hence can't use freemsg directly 3759 */ 3760 mac_pkt_drop(NULL, NULL, 3761 mp_chain, B_FALSE); 3762 DTRACE_PROBE1(tx_queued_hiwat, 3763 mac_soft_ring_t *, ringp); 3764 enqueue = B_FALSE; 3765 } 3766 } 3767 if (enqueue) { 3768 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, 3769 tail, cnt, sz); 3770 } 3771 } 3772 if (wakeup_worker) 3773 cv_signal(&ringp->s_ring_async); 3774 } 3775 return (cookie); 3776 } 3777 3778 3779 /* 3780 * mac_tx_soft_ring_process 3781 * 3782 * This routine is called when fanning out outgoing traffic among 3783 * multipe Tx rings. 3784 * Note that a soft ring is associated with a h/w Tx ring. 3785 */ 3786 mac_tx_cookie_t 3787 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain, 3788 uint16_t flag, mblk_t **ret_mp) 3789 { 3790 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 3791 int cnt; 3792 size_t sz; 3793 mblk_t *tail; 3794 mac_tx_cookie_t cookie = NULL; 3795 3796 ASSERT(ringp != NULL); 3797 ASSERT(mp_chain != NULL); 3798 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 3799 /* 3800 * Only two modes can come here; either it can be 3801 * SRS_TX_BW_FANOUT or SRS_TX_FANOUT 3802 */ 3803 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3804 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT); 3805 3806 if (ringp->s_ring_type & ST_RING_WORKER_ONLY) { 3807 /* Serialization mode */ 3808 3809 mutex_enter(&ringp->s_ring_lock); 3810 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { 3811 cookie = mac_tx_sring_enqueue(ringp, mp_chain, 3812 flag, ret_mp); 3813 mutex_exit(&ringp->s_ring_lock); 3814 return (cookie); 3815 } 3816 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3817 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 3818 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) { 3819 /* 3820 * If ring is blocked due to lack of Tx 3821 * descs, just return. Worker thread 3822 * will get scheduled when Tx desc's 3823 * become available. 3824 */ 3825 mutex_exit(&ringp->s_ring_lock); 3826 return (cookie); 3827 } 3828 mac_soft_ring_worker_wakeup(ringp); 3829 mutex_exit(&ringp->s_ring_lock); 3830 return (cookie); 3831 } else { 3832 /* Default fanout mode */ 3833 /* 3834 * S_RING_BLOCKED is set when underlying NIC runs 3835 * out of Tx descs and messages start getting 3836 * queued. It won't get reset until 3837 * tx_srs_drain() completely drains out the 3838 * messages. 3839 */ 3840 boolean_t is_subflow; 3841 mac_tx_stats_t stats; 3842 3843 if (ringp->s_ring_state & S_RING_ENQUEUED) { 3844 /* Tx descs/resources not available */ 3845 mutex_enter(&ringp->s_ring_lock); 3846 if (ringp->s_ring_state & S_RING_ENQUEUED) { 3847 cookie = mac_tx_sring_enqueue(ringp, mp_chain, 3848 flag, ret_mp); 3849 mutex_exit(&ringp->s_ring_lock); 3850 return (cookie); 3851 } 3852 /* 3853 * While we were computing mblk count, the 3854 * flow control condition got relieved. 3855 * Continue with the transmission. 3856 */ 3857 mutex_exit(&ringp->s_ring_lock); 3858 } 3859 is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); 3860 3861 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1, 3862 ringp->s_ring_tx_arg2, mp_chain, 3863 (is_subflow ? &stats : NULL)); 3864 3865 /* 3866 * Multiple threads could be here sending packets. 3867 * Under such conditions, it is not possible to 3868 * automically set S_RING_BLOCKED bit to indicate 3869 * out of tx desc condition. To atomically set 3870 * this, we queue the returned packet and do 3871 * the setting of S_RING_BLOCKED in 3872 * mac_tx_soft_ring_drain(). 3873 */ 3874 if (mp_chain != NULL) { 3875 mutex_enter(&ringp->s_ring_lock); 3876 cookie = 3877 mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp); 3878 mutex_exit(&ringp->s_ring_lock); 3879 return (cookie); 3880 } 3881 if (is_subflow) { 3882 FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); 3883 } 3884 return (NULL); 3885 } 3886 } 3887