1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2011 Joyent, Inc. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/callb.h> 30 #include <sys/sdt.h> 31 #include <sys/strsubr.h> 32 #include <sys/strsun.h> 33 #include <sys/vlan.h> 34 #include <sys/stack.h> 35 #include <sys/archsystm.h> 36 #include <inet/ipsec_impl.h> 37 #include <inet/ip_impl.h> 38 #include <inet/sadb.h> 39 #include <inet/ipsecesp.h> 40 #include <inet/ipsecah.h> 41 #include <inet/ip6.h> 42 43 #include <sys/mac_impl.h> 44 #include <sys/mac_client_impl.h> 45 #include <sys/mac_client_priv.h> 46 #include <sys/mac_soft_ring.h> 47 #include <sys/mac_flow_impl.h> 48 49 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *, 50 uintptr_t, uint16_t, mblk_t **); 51 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *, 52 uintptr_t, uint16_t, mblk_t **); 53 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *, 54 uintptr_t, uint16_t, mblk_t **); 55 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *, 56 uintptr_t, uint16_t, mblk_t **); 57 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *, 58 uintptr_t, uint16_t, mblk_t **); 59 60 typedef struct mac_tx_mode_s { 61 mac_tx_srs_mode_t mac_tx_mode; 62 mac_tx_func_t mac_tx_func; 63 } mac_tx_mode_t; 64 65 /* 66 * There are seven modes of operation on the Tx side. These modes get set 67 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode, 68 * none of the other modes are user configurable. They get selected by 69 * the system depending upon whether the link (or flow) has multiple Tx 70 * rings or a bandwidth configured, or if the link is an aggr, etc. 71 * 72 * When the Tx SRS is operating in aggr mode (st_mode) or if there are 73 * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or 74 * otherwise) will have a soft ring associated with it. These soft rings 75 * are stored in srs_tx_soft_rings[] array. 76 * 77 * Additionally in the case of aggr, there is the st_soft_rings[] array 78 * in the mac_srs_tx_t structure. This array is used to store the same 79 * set of soft rings that are present in srs_tx_soft_rings[] array but 80 * in a different manner. The soft ring associated with the pseudo Tx 81 * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[] 82 * array. This helps in quickly getting the soft ring associated with the 83 * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to 84 * be used for transmit. 85 */ 86 mac_tx_mode_t mac_tx_mode_list[] = { 87 {SRS_TX_DEFAULT, mac_tx_single_ring_mode}, 88 {SRS_TX_SERIALIZE, mac_tx_serializer_mode}, 89 {SRS_TX_FANOUT, mac_tx_fanout_mode}, 90 {SRS_TX_BW, mac_tx_bw_mode}, 91 {SRS_TX_BW_FANOUT, mac_tx_bw_mode}, 92 {SRS_TX_AGGR, mac_tx_aggr_mode}, 93 {SRS_TX_BW_AGGR, mac_tx_bw_mode} 94 }; 95 96 /* 97 * Soft Ring Set (SRS) - The Run time code that deals with 98 * dynamic polling from the hardware, bandwidth enforcement, 99 * fanout etc. 100 * 101 * We try to use H/W classification on NIC and assign traffic for 102 * a MAC address to a particular Rx ring or ring group. There is a 103 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically 104 * switches the underlying Rx ring between interrupt and 105 * polling mode and enforces any specified B/W control. 106 * 107 * There is always a SRS created and tied to each H/W and S/W rule. 108 * Whenever we create a H/W rule, we always add the the same rule to 109 * S/W classifier and tie a SRS to it. 110 * 111 * In case a B/W control is specified, it is broken into bytes 112 * per ticks and as soon as the quota for a tick is exhausted, 113 * the underlying Rx ring is forced into poll mode for remainder of 114 * the tick. The SRS poll thread only polls for bytes that are 115 * allowed to come in the SRS. We typically let 4x the configured 116 * B/W worth of packets to come in the SRS (to prevent unnecessary 117 * drops due to bursts) but only process the specified amount. 118 * 119 * A MAC client (e.g. a VNIC or aggr) can have 1 or more 120 * Rx rings (and corresponding SRSs) assigned to it. The SRS 121 * in turn can have softrings to do protocol level fanout or 122 * softrings to do S/W based fanout or both. In case the NIC 123 * has no Rx rings, we do S/W classification to respective SRS. 124 * The S/W classification rule is always setup and ready. This 125 * allows the MAC layer to reassign Rx rings whenever needed 126 * but packets still continue to flow via the default path and 127 * getting S/W classified to correct SRS. 128 * 129 * The SRS's are used on both Tx and Rx side. They use the same 130 * data structure but the processing routines have slightly different 131 * semantics due to the fact that Rx side needs to do dynamic 132 * polling etc. 133 * 134 * Dynamic Polling Notes 135 * ===================== 136 * 137 * Each Soft ring set is capable of switching its Rx ring between 138 * interrupt and poll mode and actively 'polls' for packets in 139 * poll mode. If the SRS is implementing a B/W limit, it makes 140 * sure that only Max allowed packets are pulled in poll mode 141 * and goes to poll mode as soon as B/W limit is exceeded. As 142 * such, there are no overheads to implement B/W limits. 143 * 144 * In poll mode, its better to keep the pipeline going where the 145 * SRS worker thread keeps processing packets and poll thread 146 * keeps bringing more packets (specially if they get to run 147 * on different CPUs). This also prevents the overheads associated 148 * by excessive signalling (on NUMA machines, this can be 149 * pretty devastating). The exception is latency optimized case 150 * where worker thread does no work and interrupt and poll thread 151 * are allowed to do their own drain. 152 * 153 * We use the following policy to control Dynamic Polling: 154 * 1) We switch to poll mode anytime the processing 155 * thread causes a backlog to build up in SRS and 156 * its associated Soft Rings (sr_poll_pkt_cnt > 0). 157 * 2) As long as the backlog stays under the low water 158 * mark (sr_lowat), we poll the H/W for more packets. 159 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low 160 * water mark, we stay in poll mode but don't poll 161 * the H/W for more packets. 162 * 4) Anytime in polling mode, if we poll the H/W for 163 * packets and find nothing plus we have an existing 164 * backlog (sr_poll_pkt_cnt > 0), we stay in polling 165 * mode but don't poll the H/W for packets anymore 166 * (let the polling thread go to sleep). 167 * 5) Once the backlog is relived (packets are processed) 168 * we reenable polling (by signalling the poll thread) 169 * only when the backlog dips below sr_poll_thres. 170 * 6) sr_hiwat is used exclusively when we are not 171 * polling capable and is used to decide when to 172 * drop packets so the SRS queue length doesn't grow 173 * infinitely. 174 * 175 * NOTE: Also see the block level comment on top of mac_soft_ring.c 176 */ 177 178 /* 179 * mac_latency_optimize 180 * 181 * Controls whether the poll thread can process the packets inline 182 * or let the SRS worker thread do the processing. This applies if 183 * the SRS was not being processed. For latency sensitive traffic, 184 * this needs to be true to allow inline processing. For throughput 185 * under load, this should be false. 186 * 187 * This (and other similar) tunable should be rolled into a link 188 * or flow specific workload hint that can be set using dladm 189 * linkprop (instead of multiple such tunables). 190 */ 191 boolean_t mac_latency_optimize = B_TRUE; 192 193 /* 194 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN 195 * 196 * queue a mp or chain in soft ring set and increment the 197 * local count (srs_count) for the SRS and the shared counter 198 * (srs_poll_pkt_cnt - shared between SRS and its soft rings 199 * to track the total unprocessed packets for polling to work 200 * correctly). 201 * 202 * The size (total bytes queued) counters are incremented only 203 * if we are doing B/W control. 204 */ 205 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 206 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 207 if ((mac_srs)->srs_last != NULL) \ 208 (mac_srs)->srs_last->b_next = (head); \ 209 else \ 210 (mac_srs)->srs_first = (head); \ 211 (mac_srs)->srs_last = (tail); \ 212 (mac_srs)->srs_count += count; \ 213 } 214 215 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 216 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ 217 \ 218 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ 219 srs_rx->sr_poll_pkt_cnt += count; \ 220 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \ 221 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ 222 (mac_srs)->srs_size += (sz); \ 223 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \ 224 (mac_srs)->srs_bw->mac_bw_sz += (sz); \ 225 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \ 226 } \ 227 } 228 229 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 230 mac_srs->srs_state |= SRS_ENQUEUED; \ 231 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ 232 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ 233 (mac_srs)->srs_size += (sz); \ 234 (mac_srs)->srs_bw->mac_bw_sz += (sz); \ 235 } \ 236 } 237 238 /* 239 * Turn polling on routines 240 */ 241 #define MAC_SRS_POLLING_ON(mac_srs) { \ 242 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 243 if (((mac_srs)->srs_state & \ 244 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \ 245 (mac_srs)->srs_state |= SRS_POLLING; \ 246 (void) mac_hwring_disable_intr((mac_ring_handle_t) \ 247 (mac_srs)->srs_ring); \ 248 (mac_srs)->srs_rx.sr_poll_on++; \ 249 } \ 250 } 251 252 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \ 253 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 254 if (((mac_srs)->srs_state & \ 255 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \ 256 (SRS_POLLING_CAPAB|SRS_WORKER)) { \ 257 (mac_srs)->srs_state |= SRS_POLLING; \ 258 (void) mac_hwring_disable_intr((mac_ring_handle_t) \ 259 (mac_srs)->srs_ring); \ 260 (mac_srs)->srs_rx.sr_worker_poll_on++; \ 261 } \ 262 } 263 264 /* 265 * MAC_SRS_POLL_RING 266 * 267 * Signal the SRS poll thread to poll the underlying H/W ring 268 * provided it wasn't already polling (SRS_GET_PKTS was set). 269 * 270 * Poll thread gets to run only from mac_rx_srs_drain() and only 271 * if the drain was being done by the worker thread. 272 */ 273 #define MAC_SRS_POLL_RING(mac_srs) { \ 274 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ 275 \ 276 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 277 srs_rx->sr_poll_thr_sig++; \ 278 if (((mac_srs)->srs_state & \ 279 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \ 280 (SRS_WORKER|SRS_POLLING_CAPAB)) { \ 281 (mac_srs)->srs_state |= SRS_GET_PKTS; \ 282 cv_signal(&(mac_srs)->srs_cv); \ 283 } else { \ 284 srs_rx->sr_poll_thr_busy++; \ 285 } \ 286 } 287 288 /* 289 * MAC_SRS_CHECK_BW_CONTROL 290 * 291 * Check to see if next tick has started so we can reset the 292 * SRS_BW_ENFORCED flag and allow more packets to come in the 293 * system. 294 */ 295 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \ 296 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 297 ASSERT(((mac_srs)->srs_type & SRST_TX) || \ 298 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \ 299 clock_t now = ddi_get_lbolt(); \ 300 if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \ 301 (mac_srs)->srs_bw->mac_bw_curr_time = now; \ 302 (mac_srs)->srs_bw->mac_bw_used = 0; \ 303 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \ 304 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \ 305 } \ 306 } 307 308 /* 309 * MAC_SRS_WORKER_WAKEUP 310 * 311 * Wake up the SRS worker thread to process the queue as long as 312 * no one else is processing the queue. If we are optimizing for 313 * latency, we wake up the worker thread immediately or else we 314 * wait mac_srs_worker_wakeup_ticks before worker thread gets 315 * woken up. 316 */ 317 int mac_srs_worker_wakeup_ticks = 0; 318 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \ 319 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 320 if (!((mac_srs)->srs_state & SRS_PROC) && \ 321 (mac_srs)->srs_tid == NULL) { \ 322 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \ 323 (mac_srs_worker_wakeup_ticks == 0)) \ 324 cv_signal(&(mac_srs)->srs_async); \ 325 else \ 326 (mac_srs)->srs_tid = \ 327 timeout(mac_srs_fire, (mac_srs), \ 328 mac_srs_worker_wakeup_ticks); \ 329 } \ 330 } 331 332 #define TX_BANDWIDTH_MODE(mac_srs) \ 333 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \ 334 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \ 335 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR) 336 337 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \ 338 if (tx_mode == SRS_TX_BW_FANOUT) \ 339 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\ 340 else \ 341 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL); \ 342 } 343 344 /* 345 * MAC_TX_SRS_BLOCK 346 * 347 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED 348 * will be set only if srs_tx_woken_up is FALSE. If 349 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived 350 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to 351 * attempt to transmit again and not setting SRS_TX_BLOCKED does 352 * that. 353 */ 354 #define MAC_TX_SRS_BLOCK(srs, mp) { \ 355 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \ 356 if ((srs)->srs_tx.st_woken_up) { \ 357 (srs)->srs_tx.st_woken_up = B_FALSE; \ 358 } else { \ 359 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \ 360 (srs)->srs_state |= SRS_TX_BLOCKED; \ 361 (srs)->srs_tx.st_stat.mts_blockcnt++; \ 362 } \ 363 } 364 365 /* 366 * MAC_TX_SRS_TEST_HIWAT 367 * 368 * Called before queueing a packet onto Tx SRS to test and set 369 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat. 370 */ 371 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \ 372 boolean_t enqueue = 1; \ 373 \ 374 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \ 375 /* \ 376 * flow-controlled. Store srs in cookie so that it \ 377 * can be returned as mac_tx_cookie_t to client \ 378 */ \ 379 (srs)->srs_state |= SRS_TX_HIWAT; \ 380 cookie = (mac_tx_cookie_t)srs; \ 381 (srs)->srs_tx.st_hiwat_cnt++; \ 382 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \ 383 /* increment freed stats */ \ 384 (srs)->srs_tx.st_stat.mts_sdrops += cnt; \ 385 /* \ 386 * b_prev may be set to the fanout hint \ 387 * hence can't use freemsg directly \ 388 */ \ 389 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \ 390 DTRACE_PROBE1(tx_queued_hiwat, \ 391 mac_soft_ring_set_t *, srs); \ 392 enqueue = 0; \ 393 } \ 394 } \ 395 if (enqueue) \ 396 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \ 397 } 398 399 /* Some utility macros */ 400 #define MAC_SRS_BW_LOCK(srs) \ 401 if (!(srs->srs_type & SRST_TX)) \ 402 mutex_enter(&srs->srs_bw->mac_bw_lock); 403 404 #define MAC_SRS_BW_UNLOCK(srs) \ 405 if (!(srs->srs_type & SRST_TX)) \ 406 mutex_exit(&srs->srs_bw->mac_bw_lock); 407 408 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \ 409 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \ 410 /* increment freed stats */ \ 411 mac_srs->srs_tx.st_stat.mts_sdrops++; \ 412 cookie = (mac_tx_cookie_t)srs; \ 413 } 414 415 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \ 416 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \ 417 cookie = (mac_tx_cookie_t)srs; \ 418 *ret_mp = mp_chain; \ 419 } 420 421 /* 422 * MAC_RX_SRS_TOODEEP 423 * 424 * Macro called as part of receive-side processing to determine if handling 425 * can occur in situ (in the interrupt thread) or if it should be left to a 426 * worker thread. Note that the constant used to make this determination is 427 * not entirely made-up, and is a result of some emprical validation. That 428 * said, the constant is left as a static variable to allow it to be 429 * dynamically tuned in the field if and as needed. 430 */ 431 static uintptr_t mac_rx_srs_stack_needed = 10240; 432 static uint_t mac_rx_srs_stack_toodeep; 433 434 #ifndef STACK_GROWTH_DOWN 435 #error Downward stack growth assumed. 436 #endif 437 438 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \ 439 (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \ 440 ++mac_rx_srs_stack_toodeep) 441 442 443 /* 444 * Drop the rx packet and advance to the next one in the chain. 445 */ 446 static void 447 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp) 448 { 449 mac_srs_rx_t *srs_rx = &srs->srs_rx; 450 451 ASSERT(mp->b_next == NULL); 452 mutex_enter(&srs->srs_lock); 453 MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1); 454 MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp)); 455 mutex_exit(&srs->srs_lock); 456 457 srs_rx->sr_stat.mrs_sdrops++; 458 freemsg(mp); 459 } 460 461 /* DATAPATH RUNTIME ROUTINES */ 462 463 /* 464 * mac_srs_fire 465 * 466 * Timer callback routine for waking up the SRS worker thread. 467 */ 468 static void 469 mac_srs_fire(void *arg) 470 { 471 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg; 472 473 mutex_enter(&mac_srs->srs_lock); 474 if (mac_srs->srs_tid == 0) { 475 mutex_exit(&mac_srs->srs_lock); 476 return; 477 } 478 479 mac_srs->srs_tid = 0; 480 if (!(mac_srs->srs_state & SRS_PROC)) 481 cv_signal(&mac_srs->srs_async); 482 483 mutex_exit(&mac_srs->srs_lock); 484 } 485 486 /* 487 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack, 488 * and it is used on the TX path. 489 */ 490 #define HASH_HINT(hint) \ 491 ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8)) 492 493 494 /* 495 * hash based on the src address, dst address and the port information. 496 */ 497 #define HASH_ADDR(src, dst, ports) \ 498 (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \ 499 ((ports) >> 8) ^ (ports)) 500 501 #define COMPUTE_INDEX(key, sz) (key % sz) 502 503 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \ 504 if ((tail) != NULL) { \ 505 ASSERT((tail)->b_next == NULL); \ 506 (tail)->b_next = (mp); \ 507 } else { \ 508 ASSERT((head) == NULL); \ 509 (head) = (mp); \ 510 } \ 511 (tail) = (mp); \ 512 (cnt)++; \ 513 if ((bw_ctl)) \ 514 (sz) += (sz0); \ 515 } 516 517 #define MAC_FANOUT_DEFAULT 0 518 #define MAC_FANOUT_RND_ROBIN 1 519 int mac_fanout_type = MAC_FANOUT_DEFAULT; 520 521 #define MAX_SR_TYPES 3 522 /* fanout types for port based hashing */ 523 enum pkt_type { 524 V4_TCP = 0, 525 V4_UDP, 526 OTH, 527 UNDEF 528 }; 529 530 /* 531 * Pair of local and remote ports in the transport header 532 */ 533 #define PORTS_SIZE 4 534 535 /* 536 * mac_rx_srs_proto_fanout 537 * 538 * This routine delivers packets destined to an SRS into one of the 539 * protocol soft rings. 540 * 541 * Given a chain of packets we need to split it up into multiple sub chains 542 * destined into TCP, UDP or OTH soft ring. Instead of entering 543 * the soft ring one packet at a time, we want to enter it in the form of a 544 * chain otherwise we get this start/stop behaviour where the worker thread 545 * goes to sleep and then next packets comes in forcing it to wake up etc. 546 */ 547 static void 548 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) 549 { 550 struct ether_header *ehp; 551 struct ether_vlan_header *evhp; 552 uint32_t sap; 553 ipha_t *ipha; 554 uint8_t *dstaddr; 555 size_t hdrsize; 556 mblk_t *mp; 557 mblk_t *headmp[MAX_SR_TYPES]; 558 mblk_t *tailmp[MAX_SR_TYPES]; 559 int cnt[MAX_SR_TYPES]; 560 size_t sz[MAX_SR_TYPES]; 561 size_t sz1; 562 boolean_t bw_ctl; 563 boolean_t hw_classified; 564 boolean_t dls_bypass; 565 boolean_t is_ether; 566 boolean_t is_unicast; 567 enum pkt_type type; 568 mac_client_impl_t *mcip = mac_srs->srs_mcip; 569 570 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); 571 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); 572 573 /* 574 * If we don't have a Rx ring, S/W classification would have done 575 * its job and its a packet meant for us. If we were polling on 576 * the default ring (i.e. there was a ring assigned to this SRS), 577 * then we need to make sure that the mac address really belongs 578 * to us. 579 */ 580 hw_classified = mac_srs->srs_ring != NULL && 581 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; 582 583 /* 584 * Special clients (eg. VLAN, non ether, etc) need DLS 585 * processing in the Rx path. SRST_DLS_BYPASS will be clear for 586 * such SRSs. Another way of disabling bypass is to set the 587 * MCIS_RX_BYPASS_DISABLE flag. 588 */ 589 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) && 590 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0); 591 592 bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *)); 593 bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *)); 594 bzero(cnt, MAX_SR_TYPES * sizeof (int)); 595 bzero(sz, MAX_SR_TYPES * sizeof (size_t)); 596 597 /* 598 * We got a chain from SRS that we need to send to the soft rings. 599 * Since squeues for TCP & IPv4 sap poll their soft rings (for 600 * performance reasons), we need to separate out v4_tcp, v4_udp 601 * and the rest goes in other. 602 */ 603 while (head != NULL) { 604 mp = head; 605 head = head->b_next; 606 mp->b_next = NULL; 607 608 type = OTH; 609 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 610 611 if (is_ether) { 612 /* 613 * At this point we can be sure the packet at least 614 * has an ether header. 615 */ 616 if (sz1 < sizeof (struct ether_header)) { 617 mac_rx_drop_pkt(mac_srs, mp); 618 continue; 619 } 620 ehp = (struct ether_header *)mp->b_rptr; 621 622 /* 623 * Determine if this is a VLAN or non-VLAN packet. 624 */ 625 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { 626 evhp = (struct ether_vlan_header *)mp->b_rptr; 627 sap = ntohs(evhp->ether_type); 628 hdrsize = sizeof (struct ether_vlan_header); 629 /* 630 * Check if the VID of the packet, if any, 631 * belongs to this client. 632 */ 633 if (!mac_client_check_flow_vid(mcip, 634 VLAN_ID(ntohs(evhp->ether_tci)))) { 635 mac_rx_drop_pkt(mac_srs, mp); 636 continue; 637 } 638 } else { 639 hdrsize = sizeof (struct ether_header); 640 } 641 is_unicast = 642 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); 643 dstaddr = (uint8_t *)&ehp->ether_dhost; 644 } else { 645 mac_header_info_t mhi; 646 647 if (mac_header_info((mac_handle_t)mcip->mci_mip, 648 mp, &mhi) != 0) { 649 mac_rx_drop_pkt(mac_srs, mp); 650 continue; 651 } 652 hdrsize = mhi.mhi_hdrsize; 653 sap = mhi.mhi_bindsap; 654 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); 655 dstaddr = (uint8_t *)mhi.mhi_daddr; 656 } 657 658 if (!dls_bypass) { 659 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], 660 cnt[type], bw_ctl, sz[type], sz1, mp); 661 continue; 662 } 663 664 if (sap == ETHERTYPE_IP) { 665 /* 666 * If we are H/W classified, but we have promisc 667 * on, then we need to check for the unicast address. 668 */ 669 if (hw_classified && mcip->mci_promisc_list != NULL) { 670 mac_address_t *map; 671 672 rw_enter(&mcip->mci_rw_lock, RW_READER); 673 map = mcip->mci_unicast; 674 if (bcmp(dstaddr, map->ma_addr, 675 map->ma_len) == 0) 676 type = UNDEF; 677 rw_exit(&mcip->mci_rw_lock); 678 } else if (is_unicast) { 679 type = UNDEF; 680 } 681 } 682 683 /* 684 * This needs to become a contract with the driver for 685 * the fast path. 686 * 687 * In the normal case the packet will have at least the L2 688 * header and the IP + Transport header in the same mblk. 689 * This is usually the case when the NIC driver sends up 690 * the packet. This is also true when the stack generates 691 * a packet that is looped back and when the stack uses the 692 * fastpath mechanism. The normal case is optimized for 693 * performance and may bypass DLS. All other cases go through 694 * the 'OTH' type path without DLS bypass. 695 */ 696 697 ipha = (ipha_t *)(mp->b_rptr + hdrsize); 698 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) 699 type = OTH; 700 701 if (type == OTH) { 702 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], 703 cnt[type], bw_ctl, sz[type], sz1, mp); 704 continue; 705 } 706 707 ASSERT(type == UNDEF); 708 /* 709 * We look for at least 4 bytes past the IP header to get 710 * the port information. If we get an IP fragment, we don't 711 * have the port information, and we use just the protocol 712 * information. 713 */ 714 switch (ipha->ipha_protocol) { 715 case IPPROTO_TCP: 716 type = V4_TCP; 717 mp->b_rptr += hdrsize; 718 break; 719 case IPPROTO_UDP: 720 type = V4_UDP; 721 mp->b_rptr += hdrsize; 722 break; 723 default: 724 type = OTH; 725 break; 726 } 727 728 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type], 729 bw_ctl, sz[type], sz1, mp); 730 } 731 732 for (type = V4_TCP; type < UNDEF; type++) { 733 if (headmp[type] != NULL) { 734 mac_soft_ring_t *softring; 735 736 ASSERT(tailmp[type]->b_next == NULL); 737 switch (type) { 738 case V4_TCP: 739 softring = mac_srs->srs_tcp_soft_rings[0]; 740 break; 741 case V4_UDP: 742 softring = mac_srs->srs_udp_soft_rings[0]; 743 break; 744 case OTH: 745 softring = mac_srs->srs_oth_soft_rings[0]; 746 } 747 mac_rx_soft_ring_process(mcip, softring, 748 headmp[type], tailmp[type], cnt[type], sz[type]); 749 } 750 } 751 } 752 753 int fanout_unaligned = 0; 754 755 /* 756 * mac_rx_srs_long_fanout 757 * 758 * The fanout routine for VLANs, and for anything else that isn't performing 759 * explicit dls bypass. Returns -1 on an error (drop the packet due to a 760 * malformed packet), 0 on success, with values written in *indx and *type. 761 */ 762 static int 763 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp, 764 uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx) 765 { 766 ip6_t *ip6h; 767 ipha_t *ipha; 768 uint8_t *whereptr; 769 uint_t hash; 770 uint16_t remlen; 771 uint8_t nexthdr; 772 uint16_t hdr_len; 773 uint32_t src_val, dst_val; 774 boolean_t modifiable = B_TRUE; 775 boolean_t v6; 776 777 ASSERT(MBLKL(mp) >= hdrsize); 778 779 if (sap == ETHERTYPE_IPV6) { 780 v6 = B_TRUE; 781 hdr_len = IPV6_HDR_LEN; 782 } else if (sap == ETHERTYPE_IP) { 783 v6 = B_FALSE; 784 hdr_len = IP_SIMPLE_HDR_LENGTH; 785 } else { 786 *indx = 0; 787 *type = OTH; 788 return (0); 789 } 790 791 ip6h = (ip6_t *)(mp->b_rptr + hdrsize); 792 ipha = (ipha_t *)ip6h; 793 794 if ((uint8_t *)ip6h == mp->b_wptr) { 795 /* 796 * The first mblk_t only includes the mac header. 797 * Note that it is safe to change the mp pointer here, 798 * as the subsequent operation does not assume mp 799 * points to the start of the mac header. 800 */ 801 mp = mp->b_cont; 802 803 /* 804 * Make sure the IP header points to an entire one. 805 */ 806 if (mp == NULL) 807 return (-1); 808 809 if (MBLKL(mp) < hdr_len) { 810 modifiable = (DB_REF(mp) == 1); 811 812 if (modifiable && !pullupmsg(mp, hdr_len)) 813 return (-1); 814 } 815 816 ip6h = (ip6_t *)mp->b_rptr; 817 ipha = (ipha_t *)ip6h; 818 } 819 820 if (!modifiable || !(OK_32PTR((char *)ip6h)) || 821 ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) { 822 /* 823 * If either the IP header is not aligned, or it does not hold 824 * the complete simple structure (a pullupmsg() is not an 825 * option since it would result in an unaligned IP header), 826 * fanout to the default ring. 827 * 828 * Note that this may cause packet reordering. 829 */ 830 *indx = 0; 831 *type = OTH; 832 fanout_unaligned++; 833 return (0); 834 } 835 836 /* 837 * Extract next-header, full header length, and source-hash value 838 * using v4/v6 specific fields. 839 */ 840 if (v6) { 841 remlen = ntohs(ip6h->ip6_plen); 842 nexthdr = ip6h->ip6_nxt; 843 src_val = V4_PART_OF_V6(ip6h->ip6_src); 844 dst_val = V4_PART_OF_V6(ip6h->ip6_dst); 845 /* 846 * Do src based fanout if below tunable is set to B_TRUE or 847 * when mac_ip_hdr_length_v6() fails because of malformed 848 * packets or because mblks need to be concatenated using 849 * pullupmsg(). 850 */ 851 if (!mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr, 852 NULL)) { 853 goto src_dst_based_fanout; 854 } 855 } else { 856 hdr_len = IPH_HDR_LENGTH(ipha); 857 remlen = ntohs(ipha->ipha_length) - hdr_len; 858 nexthdr = ipha->ipha_protocol; 859 src_val = (uint32_t)ipha->ipha_src; 860 dst_val = (uint32_t)ipha->ipha_dst; 861 /* 862 * Catch IPv4 fragment case here. IPv6 has nexthdr == FRAG 863 * for its equivalent case. 864 */ 865 if ((ntohs(ipha->ipha_fragment_offset_and_flags) & 866 (IPH_MF | IPH_OFFSET)) != 0) { 867 goto src_dst_based_fanout; 868 } 869 } 870 if (remlen < MIN_EHDR_LEN) 871 return (-1); 872 whereptr = (uint8_t *)ip6h + hdr_len; 873 874 /* If the transport is one of below, we do port/SPI based fanout */ 875 switch (nexthdr) { 876 case IPPROTO_TCP: 877 case IPPROTO_UDP: 878 case IPPROTO_SCTP: 879 case IPPROTO_ESP: 880 /* 881 * If the ports or SPI in the transport header is not part of 882 * the mblk, do src_based_fanout, instead of calling 883 * pullupmsg(). 884 */ 885 if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr) 886 break; /* out of switch... */ 887 /* FALLTHRU */ 888 default: 889 goto src_dst_based_fanout; 890 } 891 892 switch (nexthdr) { 893 case IPPROTO_TCP: 894 hash = HASH_ADDR(src_val, dst_val, *(uint32_t *)whereptr); 895 *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); 896 *type = OTH; 897 break; 898 case IPPROTO_UDP: 899 case IPPROTO_SCTP: 900 case IPPROTO_ESP: 901 if (mac_fanout_type == MAC_FANOUT_DEFAULT) { 902 hash = HASH_ADDR(src_val, dst_val, 903 *(uint32_t *)whereptr); 904 *indx = COMPUTE_INDEX(hash, 905 mac_srs->srs_udp_ring_count); 906 } else { 907 *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count; 908 mac_srs->srs_ind++; 909 } 910 *type = OTH; 911 break; 912 } 913 return (0); 914 915 src_dst_based_fanout: 916 hash = HASH_ADDR(src_val, dst_val, (uint32_t)0); 917 *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); 918 *type = OTH; 919 return (0); 920 } 921 922 /* 923 * mac_rx_srs_fanout 924 * 925 * This routine delivers packets destined to an SRS into a soft ring member 926 * of the set. 927 * 928 * Given a chain of packets we need to split it up into multiple sub chains 929 * destined for one of the TCP, UDP or OTH soft rings. Instead of entering 930 * the soft ring one packet at a time, we want to enter it in the form of a 931 * chain otherwise we get this start/stop behaviour where the worker thread 932 * goes to sleep and then next packets comes in forcing it to wake up etc. 933 * 934 * Note: 935 * Since we know what is the maximum fanout possible, we create a 2D array 936 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz 937 * variables so that we can enter the softrings with chain. We need the 938 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc 939 * for each packet would be expensive). If we ever want to have the 940 * ability to have unlimited fanout, we should probably declare a head, 941 * tail, cnt, sz with each soft ring (a data struct which contains a softring 942 * along with these members) and create an array of this uber struct so we 943 * don't have to do kmem_alloc. 944 */ 945 int fanout_oth1 = 0; 946 int fanout_oth2 = 0; 947 int fanout_oth3 = 0; 948 int fanout_oth4 = 0; 949 int fanout_oth5 = 0; 950 951 static void 952 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) 953 { 954 struct ether_header *ehp; 955 struct ether_vlan_header *evhp; 956 uint32_t sap; 957 ipha_t *ipha; 958 uint8_t *dstaddr; 959 uint_t indx; 960 size_t ports_offset; 961 size_t ipha_len; 962 size_t hdrsize; 963 uint_t hash; 964 mblk_t *mp; 965 mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT]; 966 mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT]; 967 int cnt[MAX_SR_TYPES][MAX_SR_FANOUT]; 968 size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT]; 969 size_t sz1; 970 boolean_t bw_ctl; 971 boolean_t hw_classified; 972 boolean_t dls_bypass; 973 boolean_t is_ether; 974 boolean_t is_unicast; 975 int fanout_cnt; 976 enum pkt_type type; 977 mac_client_impl_t *mcip = mac_srs->srs_mcip; 978 979 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); 980 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); 981 982 /* 983 * If we don't have a Rx ring, S/W classification would have done 984 * its job and its a packet meant for us. If we were polling on 985 * the default ring (i.e. there was a ring assigned to this SRS), 986 * then we need to make sure that the mac address really belongs 987 * to us. 988 */ 989 hw_classified = mac_srs->srs_ring != NULL && 990 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; 991 992 /* 993 * Special clients (eg. VLAN, non ether, etc) need DLS 994 * processing in the Rx path. SRST_DLS_BYPASS will be clear for 995 * such SRSs. Another way of disabling bypass is to set the 996 * MCIS_RX_BYPASS_DISABLE flag. 997 */ 998 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) && 999 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0); 1000 1001 /* 1002 * Since the softrings are never destroyed and we always 1003 * create equal number of softrings for TCP, UDP and rest, 1004 * its OK to check one of them for count and use it without 1005 * any lock. In future, if soft rings get destroyed because 1006 * of reduction in fanout, we will need to ensure that happens 1007 * behind the SRS_PROC. 1008 */ 1009 fanout_cnt = mac_srs->srs_tcp_ring_count; 1010 1011 bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); 1012 bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); 1013 bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int)); 1014 bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t)); 1015 1016 /* 1017 * We got a chain from SRS that we need to send to the soft rings. 1018 * Since squeues for TCP & IPv4 sap poll their soft rings (for 1019 * performance reasons), we need to separate out v4_tcp, v4_udp 1020 * and the rest goes in other. 1021 */ 1022 while (head != NULL) { 1023 mp = head; 1024 head = head->b_next; 1025 mp->b_next = NULL; 1026 1027 type = OTH; 1028 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 1029 1030 if (is_ether) { 1031 /* 1032 * At this point we can be sure the packet at least 1033 * has an ether header. 1034 */ 1035 if (sz1 < sizeof (struct ether_header)) { 1036 mac_rx_drop_pkt(mac_srs, mp); 1037 continue; 1038 } 1039 ehp = (struct ether_header *)mp->b_rptr; 1040 1041 /* 1042 * Determine if this is a VLAN or non-VLAN packet. 1043 */ 1044 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { 1045 evhp = (struct ether_vlan_header *)mp->b_rptr; 1046 sap = ntohs(evhp->ether_type); 1047 hdrsize = sizeof (struct ether_vlan_header); 1048 /* 1049 * Check if the VID of the packet, if any, 1050 * belongs to this client. 1051 */ 1052 if (!mac_client_check_flow_vid(mcip, 1053 VLAN_ID(ntohs(evhp->ether_tci)))) { 1054 mac_rx_drop_pkt(mac_srs, mp); 1055 continue; 1056 } 1057 } else { 1058 hdrsize = sizeof (struct ether_header); 1059 } 1060 is_unicast = 1061 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); 1062 dstaddr = (uint8_t *)&ehp->ether_dhost; 1063 } else { 1064 mac_header_info_t mhi; 1065 1066 if (mac_header_info((mac_handle_t)mcip->mci_mip, 1067 mp, &mhi) != 0) { 1068 mac_rx_drop_pkt(mac_srs, mp); 1069 continue; 1070 } 1071 hdrsize = mhi.mhi_hdrsize; 1072 sap = mhi.mhi_bindsap; 1073 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); 1074 dstaddr = (uint8_t *)mhi.mhi_daddr; 1075 } 1076 1077 if (!dls_bypass) { 1078 if (mac_rx_srs_long_fanout(mac_srs, mp, sap, 1079 hdrsize, &type, &indx) == -1) { 1080 mac_rx_drop_pkt(mac_srs, mp); 1081 continue; 1082 } 1083 1084 FANOUT_ENQUEUE_MP(headmp[type][indx], 1085 tailmp[type][indx], cnt[type][indx], bw_ctl, 1086 sz[type][indx], sz1, mp); 1087 continue; 1088 } 1089 1090 1091 /* 1092 * If we are using the default Rx ring where H/W or S/W 1093 * classification has not happened, we need to verify if 1094 * this unicast packet really belongs to us. 1095 */ 1096 if (sap == ETHERTYPE_IP) { 1097 /* 1098 * If we are H/W classified, but we have promisc 1099 * on, then we need to check for the unicast address. 1100 */ 1101 if (hw_classified && mcip->mci_promisc_list != NULL) { 1102 mac_address_t *map; 1103 1104 rw_enter(&mcip->mci_rw_lock, RW_READER); 1105 map = mcip->mci_unicast; 1106 if (bcmp(dstaddr, map->ma_addr, 1107 map->ma_len) == 0) 1108 type = UNDEF; 1109 rw_exit(&mcip->mci_rw_lock); 1110 } else if (is_unicast) { 1111 type = UNDEF; 1112 } 1113 } 1114 1115 /* 1116 * This needs to become a contract with the driver for 1117 * the fast path. 1118 */ 1119 1120 ipha = (ipha_t *)(mp->b_rptr + hdrsize); 1121 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) { 1122 type = OTH; 1123 fanout_oth1++; 1124 } 1125 1126 if (type != OTH) { 1127 uint16_t frag_offset_flags; 1128 1129 switch (ipha->ipha_protocol) { 1130 case IPPROTO_TCP: 1131 case IPPROTO_UDP: 1132 case IPPROTO_SCTP: 1133 case IPPROTO_ESP: 1134 ipha_len = IPH_HDR_LENGTH(ipha); 1135 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE > 1136 mp->b_wptr) { 1137 type = OTH; 1138 break; 1139 } 1140 frag_offset_flags = 1141 ntohs(ipha->ipha_fragment_offset_and_flags); 1142 if ((frag_offset_flags & 1143 (IPH_MF | IPH_OFFSET)) != 0) { 1144 type = OTH; 1145 fanout_oth3++; 1146 break; 1147 } 1148 ports_offset = hdrsize + ipha_len; 1149 break; 1150 default: 1151 type = OTH; 1152 fanout_oth4++; 1153 break; 1154 } 1155 } 1156 1157 if (type == OTH) { 1158 if (mac_rx_srs_long_fanout(mac_srs, mp, sap, 1159 hdrsize, &type, &indx) == -1) { 1160 mac_rx_drop_pkt(mac_srs, mp); 1161 continue; 1162 } 1163 1164 FANOUT_ENQUEUE_MP(headmp[type][indx], 1165 tailmp[type][indx], cnt[type][indx], bw_ctl, 1166 sz[type][indx], sz1, mp); 1167 continue; 1168 } 1169 1170 ASSERT(type == UNDEF); 1171 1172 /* 1173 * XXX-Sunay: We should hold srs_lock since ring_count 1174 * below can change. But if we are always called from 1175 * mac_rx_srs_drain and SRS_PROC is set, then we can 1176 * enforce that ring_count can't be changed i.e. 1177 * to change fanout type or ring count, the calling 1178 * thread needs to be behind SRS_PROC. 1179 */ 1180 switch (ipha->ipha_protocol) { 1181 case IPPROTO_TCP: 1182 /* 1183 * Note that for ESP, we fanout on SPI and it is at the 1184 * same offset as the 2x16-bit ports. So it is clumped 1185 * along with TCP, UDP and SCTP. 1186 */ 1187 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst, 1188 *(uint32_t *)(mp->b_rptr + ports_offset)); 1189 indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); 1190 type = V4_TCP; 1191 mp->b_rptr += hdrsize; 1192 break; 1193 case IPPROTO_UDP: 1194 case IPPROTO_SCTP: 1195 case IPPROTO_ESP: 1196 if (mac_fanout_type == MAC_FANOUT_DEFAULT) { 1197 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst, 1198 *(uint32_t *)(mp->b_rptr + ports_offset)); 1199 indx = COMPUTE_INDEX(hash, 1200 mac_srs->srs_udp_ring_count); 1201 } else { 1202 indx = mac_srs->srs_ind % 1203 mac_srs->srs_udp_ring_count; 1204 mac_srs->srs_ind++; 1205 } 1206 type = V4_UDP; 1207 mp->b_rptr += hdrsize; 1208 break; 1209 default: 1210 indx = 0; 1211 type = OTH; 1212 } 1213 1214 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx], 1215 cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp); 1216 } 1217 1218 for (type = V4_TCP; type < UNDEF; type++) { 1219 int i; 1220 1221 for (i = 0; i < fanout_cnt; i++) { 1222 if (headmp[type][i] != NULL) { 1223 mac_soft_ring_t *softring; 1224 1225 ASSERT(tailmp[type][i]->b_next == NULL); 1226 switch (type) { 1227 case V4_TCP: 1228 softring = 1229 mac_srs->srs_tcp_soft_rings[i]; 1230 break; 1231 case V4_UDP: 1232 softring = 1233 mac_srs->srs_udp_soft_rings[i]; 1234 break; 1235 case OTH: 1236 softring = 1237 mac_srs->srs_oth_soft_rings[i]; 1238 break; 1239 } 1240 mac_rx_soft_ring_process(mcip, 1241 softring, headmp[type][i], tailmp[type][i], 1242 cnt[type][i], sz[type][i]); 1243 } 1244 } 1245 } 1246 } 1247 1248 #define SRS_BYTES_TO_PICKUP 150000 1249 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP; 1250 1251 /* 1252 * mac_rx_srs_poll_ring 1253 * 1254 * This SRS Poll thread uses this routine to poll the underlying hardware 1255 * Rx ring to get a chain of packets. It can inline process that chain 1256 * if mac_latency_optimize is set (default) or signal the SRS worker thread 1257 * to do the remaining processing. 1258 * 1259 * Since packets come in the system via interrupt or poll path, we also 1260 * update the stats and deal with promiscous clients here. 1261 */ 1262 void 1263 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs) 1264 { 1265 kmutex_t *lock = &mac_srs->srs_lock; 1266 kcondvar_t *async = &mac_srs->srs_cv; 1267 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1268 mblk_t *head, *tail, *mp; 1269 callb_cpr_t cprinfo; 1270 ssize_t bytes_to_pickup; 1271 size_t sz; 1272 int count; 1273 mac_client_impl_t *smcip; 1274 1275 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll"); 1276 mutex_enter(lock); 1277 1278 start: 1279 for (;;) { 1280 if (mac_srs->srs_state & SRS_PAUSE) 1281 goto done; 1282 1283 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1284 cv_wait(async, lock); 1285 CALLB_CPR_SAFE_END(&cprinfo, lock); 1286 1287 if (mac_srs->srs_state & SRS_PAUSE) 1288 goto done; 1289 1290 check_again: 1291 if (mac_srs->srs_type & SRST_BW_CONTROL) { 1292 /* 1293 * We pick as many bytes as we are allowed to queue. 1294 * Its possible that we will exceed the total 1295 * packets queued in case this SRS is part of the 1296 * Rx ring group since > 1 poll thread can be pulling 1297 * upto the max allowed packets at the same time 1298 * but that should be OK. 1299 */ 1300 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1301 bytes_to_pickup = 1302 mac_srs->srs_bw->mac_bw_drop_threshold - 1303 mac_srs->srs_bw->mac_bw_sz; 1304 /* 1305 * We shouldn't have been signalled if we 1306 * have 0 or less bytes to pick but since 1307 * some of the bytes accounting is driver 1308 * dependant, we do the safety check. 1309 */ 1310 if (bytes_to_pickup < 0) 1311 bytes_to_pickup = 0; 1312 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1313 } else { 1314 /* 1315 * ToDO: Need to change the polling API 1316 * to add a packet count and a flag which 1317 * tells the driver whether we want packets 1318 * based on a count, or bytes, or all the 1319 * packets queued in the driver/HW. This 1320 * way, we never have to check the limits 1321 * on poll path. We truly let only as many 1322 * packets enter the system as we are willing 1323 * to process or queue. 1324 * 1325 * Something along the lines of 1326 * pkts_to_pickup = mac_soft_ring_max_q_cnt - 1327 * mac_srs->srs_poll_pkt_cnt 1328 */ 1329 1330 /* 1331 * Since we are not doing B/W control, pick 1332 * as many packets as allowed. 1333 */ 1334 bytes_to_pickup = max_bytes_to_pickup; 1335 } 1336 1337 /* Poll the underlying Hardware */ 1338 mutex_exit(lock); 1339 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup); 1340 mutex_enter(lock); 1341 1342 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) == 1343 SRS_POLL_THR_OWNER); 1344 1345 mp = tail = head; 1346 count = 0; 1347 sz = 0; 1348 while (mp != NULL) { 1349 tail = mp; 1350 sz += msgdsize(mp); 1351 mp = mp->b_next; 1352 count++; 1353 } 1354 1355 if (head != NULL) { 1356 tail->b_next = NULL; 1357 smcip = mac_srs->srs_mcip; 1358 1359 SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz); 1360 SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count); 1361 1362 /* 1363 * If there are any promiscuous mode callbacks 1364 * defined for this MAC client, pass them a copy 1365 * if appropriate and also update the counters. 1366 */ 1367 if (smcip != NULL) { 1368 if (smcip->mci_mip->mi_promisc_list != NULL) { 1369 mutex_exit(lock); 1370 mac_promisc_dispatch(smcip->mci_mip, 1371 head, NULL); 1372 mutex_enter(lock); 1373 } 1374 } 1375 if (mac_srs->srs_type & SRST_BW_CONTROL) { 1376 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1377 mac_srs->srs_bw->mac_bw_polled += sz; 1378 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1379 } 1380 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, 1381 count, sz); 1382 if (count <= 10) 1383 srs_rx->sr_stat.mrs_chaincntundr10++; 1384 else if (count > 10 && count <= 50) 1385 srs_rx->sr_stat.mrs_chaincnt10to50++; 1386 else 1387 srs_rx->sr_stat.mrs_chaincntover50++; 1388 } 1389 1390 /* 1391 * We are guaranteed that SRS_PROC will be set if we 1392 * are here. Also, poll thread gets to run only if 1393 * the drain was being done by a worker thread although 1394 * its possible that worker thread is still running 1395 * and poll thread was sent down to keep the pipeline 1396 * going instead of doing a complete drain and then 1397 * trying to poll the NIC. 1398 * 1399 * So we need to check SRS_WORKER flag to make sure 1400 * that the worker thread is not processing the queue 1401 * in parallel to us. The flags and conditions are 1402 * protected by the srs_lock to prevent any race. We 1403 * ensure that we don't drop the srs_lock from now 1404 * till the end and similarly we don't drop the srs_lock 1405 * in mac_rx_srs_drain() till similar condition check 1406 * are complete. The mac_rx_srs_drain() needs to ensure 1407 * that SRS_WORKER flag remains set as long as its 1408 * processing the queue. 1409 */ 1410 if (!(mac_srs->srs_state & SRS_WORKER) && 1411 (mac_srs->srs_first != NULL)) { 1412 /* 1413 * We have packets to process and worker thread 1414 * is not running. Check to see if poll thread is 1415 * allowed to process. 1416 */ 1417 if (mac_srs->srs_state & SRS_LATENCY_OPT) { 1418 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC); 1419 if (!(mac_srs->srs_state & SRS_PAUSE) && 1420 srs_rx->sr_poll_pkt_cnt <= 1421 srs_rx->sr_lowat) { 1422 srs_rx->sr_poll_again++; 1423 goto check_again; 1424 } 1425 /* 1426 * We are already above low water mark 1427 * so stay in the polling mode but no 1428 * need to poll. Once we dip below 1429 * the polling threshold, the processing 1430 * thread (soft ring) will signal us 1431 * to poll again (MAC_UPDATE_SRS_COUNT) 1432 */ 1433 srs_rx->sr_poll_drain_no_poll++; 1434 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); 1435 /* 1436 * In B/W control case, its possible 1437 * that the backlog built up due to 1438 * B/W limit being reached and packets 1439 * are queued only in SRS. In this case, 1440 * we should schedule worker thread 1441 * since no one else will wake us up. 1442 */ 1443 if ((mac_srs->srs_type & SRST_BW_CONTROL) && 1444 (mac_srs->srs_tid == NULL)) { 1445 mac_srs->srs_tid = 1446 timeout(mac_srs_fire, mac_srs, 1); 1447 srs_rx->sr_poll_worker_wakeup++; 1448 } 1449 } else { 1450 /* 1451 * Wakeup the worker thread for more processing. 1452 * We optimize for throughput in this case. 1453 */ 1454 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); 1455 MAC_SRS_WORKER_WAKEUP(mac_srs); 1456 srs_rx->sr_poll_sig_worker++; 1457 } 1458 } else if ((mac_srs->srs_first == NULL) && 1459 !(mac_srs->srs_state & SRS_WORKER)) { 1460 /* 1461 * There is nothing queued in SRS and 1462 * no worker thread running. Plus we 1463 * didn't get anything from the H/W 1464 * as well (head == NULL); 1465 */ 1466 ASSERT(head == NULL); 1467 mac_srs->srs_state &= 1468 ~(SRS_PROC|SRS_GET_PKTS); 1469 1470 /* 1471 * If we have a packets in soft ring, don't allow 1472 * more packets to come into this SRS by keeping the 1473 * interrupts off but not polling the H/W. The 1474 * poll thread will get signaled as soon as 1475 * srs_poll_pkt_cnt dips below poll threshold. 1476 */ 1477 if (srs_rx->sr_poll_pkt_cnt == 0) { 1478 srs_rx->sr_poll_intr_enable++; 1479 MAC_SRS_POLLING_OFF(mac_srs); 1480 } else { 1481 /* 1482 * We know nothing is queued in SRS 1483 * since we are here after checking 1484 * srs_first is NULL. The backlog 1485 * is entirely due to packets queued 1486 * in Soft ring which will wake us up 1487 * and get the interface out of polling 1488 * mode once the backlog dips below 1489 * sr_poll_thres. 1490 */ 1491 srs_rx->sr_poll_no_poll++; 1492 } 1493 } else { 1494 /* 1495 * Worker thread is already running. 1496 * Nothing much to do. If the polling 1497 * was enabled, worker thread will deal 1498 * with that. 1499 */ 1500 mac_srs->srs_state &= ~SRS_GET_PKTS; 1501 srs_rx->sr_poll_goto_sleep++; 1502 } 1503 } 1504 done: 1505 mac_srs->srs_state |= SRS_POLL_THR_QUIESCED; 1506 cv_signal(&mac_srs->srs_async); 1507 /* 1508 * If this is a temporary quiesce then wait for the restart signal 1509 * from the srs worker. Then clear the flags and signal the srs worker 1510 * to ensure a positive handshake and go back to start. 1511 */ 1512 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART))) 1513 cv_wait(async, lock); 1514 if (mac_srs->srs_state & SRS_POLL_THR_RESTART) { 1515 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); 1516 mac_srs->srs_state &= 1517 ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART); 1518 cv_signal(&mac_srs->srs_async); 1519 goto start; 1520 } else { 1521 mac_srs->srs_state |= SRS_POLL_THR_EXITED; 1522 cv_signal(&mac_srs->srs_async); 1523 CALLB_CPR_EXIT(&cprinfo); 1524 thread_exit(); 1525 } 1526 } 1527 1528 /* 1529 * mac_srs_pick_chain 1530 * 1531 * In Bandwidth control case, checks how many packets can be processed 1532 * and return them in a sub chain. 1533 */ 1534 static mblk_t * 1535 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail, 1536 size_t *chain_sz, int *chain_cnt) 1537 { 1538 mblk_t *head = NULL; 1539 mblk_t *tail = NULL; 1540 size_t sz; 1541 size_t tsz = 0; 1542 int cnt = 0; 1543 mblk_t *mp; 1544 1545 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 1546 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1547 if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <= 1548 mac_srs->srs_bw->mac_bw_limit) || 1549 (mac_srs->srs_bw->mac_bw_limit == 0)) { 1550 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1551 head = mac_srs->srs_first; 1552 mac_srs->srs_first = NULL; 1553 *chain_tail = mac_srs->srs_last; 1554 mac_srs->srs_last = NULL; 1555 *chain_sz = mac_srs->srs_size; 1556 *chain_cnt = mac_srs->srs_count; 1557 mac_srs->srs_count = 0; 1558 mac_srs->srs_size = 0; 1559 return (head); 1560 } 1561 1562 /* 1563 * Can't clear the entire backlog. 1564 * Need to find how many packets to pick 1565 */ 1566 ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock)); 1567 while ((mp = mac_srs->srs_first) != NULL) { 1568 sz = msgdsize(mp); 1569 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) > 1570 mac_srs->srs_bw->mac_bw_limit) { 1571 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) 1572 mac_srs->srs_bw->mac_bw_state |= 1573 SRS_BW_ENFORCED; 1574 break; 1575 } 1576 1577 /* 1578 * The _size & cnt is decremented from the softrings 1579 * when they send up the packet for polling to work 1580 * properly. 1581 */ 1582 tsz += sz; 1583 cnt++; 1584 mac_srs->srs_count--; 1585 mac_srs->srs_size -= sz; 1586 if (tail != NULL) 1587 tail->b_next = mp; 1588 else 1589 head = mp; 1590 tail = mp; 1591 mac_srs->srs_first = mac_srs->srs_first->b_next; 1592 } 1593 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1594 if (mac_srs->srs_first == NULL) 1595 mac_srs->srs_last = NULL; 1596 1597 if (tail != NULL) 1598 tail->b_next = NULL; 1599 *chain_tail = tail; 1600 *chain_cnt = cnt; 1601 *chain_sz = tsz; 1602 1603 return (head); 1604 } 1605 1606 /* 1607 * mac_rx_srs_drain 1608 * 1609 * The SRS drain routine. Gets to run to clear the queue. Any thread 1610 * (worker, interrupt, poll) can call this based on processing model. 1611 * The first thing we do is disable interrupts if possible and then 1612 * drain the queue. we also try to poll the underlying hardware if 1613 * there is a dedicated hardware Rx ring assigned to this SRS. 1614 * 1615 * There is a equivalent drain routine in bandwidth control mode 1616 * mac_rx_srs_drain_bw. There is some code duplication between the two 1617 * routines but they are highly performance sensitive and are easier 1618 * to read/debug if they stay separate. Any code changes here might 1619 * also apply to mac_rx_srs_drain_bw as well. 1620 */ 1621 void 1622 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 1623 { 1624 mblk_t *head; 1625 mblk_t *tail; 1626 timeout_id_t tid; 1627 int cnt = 0; 1628 mac_client_impl_t *mcip = mac_srs->srs_mcip; 1629 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1630 1631 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 1632 ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL)); 1633 1634 /* If we are blanked i.e. can't do upcalls, then we are done */ 1635 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { 1636 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || 1637 (mac_srs->srs_state & SRS_PAUSE)); 1638 goto out; 1639 } 1640 1641 if (mac_srs->srs_first == NULL) 1642 goto out; 1643 1644 if (!(mac_srs->srs_state & SRS_LATENCY_OPT) && 1645 (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) { 1646 /* 1647 * In the normal case, the SRS worker thread does no 1648 * work and we wait for a backlog to build up before 1649 * we switch into polling mode. In case we are 1650 * optimizing for throughput, we use the worker thread 1651 * as well. The goal is to let worker thread process 1652 * the queue and poll thread to feed packets into 1653 * the queue. As such, we should signal the poll 1654 * thread to try and get more packets. 1655 * 1656 * We could have pulled this check in the POLL_RING 1657 * macro itself but keeping it explicit here makes 1658 * the architecture more human understandable. 1659 */ 1660 MAC_SRS_POLL_RING(mac_srs); 1661 } 1662 1663 again: 1664 head = mac_srs->srs_first; 1665 mac_srs->srs_first = NULL; 1666 tail = mac_srs->srs_last; 1667 mac_srs->srs_last = NULL; 1668 cnt = mac_srs->srs_count; 1669 mac_srs->srs_count = 0; 1670 1671 ASSERT(head != NULL); 1672 ASSERT(tail != NULL); 1673 1674 if ((tid = mac_srs->srs_tid) != 0) 1675 mac_srs->srs_tid = 0; 1676 1677 mac_srs->srs_state |= (SRS_PROC|proc_type); 1678 1679 1680 /* 1681 * mcip is NULL for broadcast and multicast flows. The promisc 1682 * callbacks for broadcast and multicast packets are delivered from 1683 * mac_rx() and we don't need to worry about that case in this path 1684 */ 1685 if (mcip != NULL) { 1686 if (mcip->mci_promisc_list != NULL) { 1687 mutex_exit(&mac_srs->srs_lock); 1688 mac_promisc_client_dispatch(mcip, head); 1689 mutex_enter(&mac_srs->srs_lock); 1690 } 1691 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) { 1692 mutex_exit(&mac_srs->srs_lock); 1693 mac_protect_intercept_dhcp(mcip, head); 1694 mutex_enter(&mac_srs->srs_lock); 1695 } 1696 } 1697 1698 /* 1699 * Check if SRS itself is doing the processing 1700 * This direct path does not apply when subflows are present. In this 1701 * case, packets need to be dispatched to a soft ring according to the 1702 * flow's bandwidth and other resources contraints. 1703 */ 1704 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { 1705 mac_direct_rx_t proc; 1706 void *arg1; 1707 mac_resource_handle_t arg2; 1708 1709 /* 1710 * This is the case when a Rx is directly 1711 * assigned and we have a fully classified 1712 * protocol chain. We can deal with it in 1713 * one shot. 1714 */ 1715 proc = srs_rx->sr_func; 1716 arg1 = srs_rx->sr_arg1; 1717 arg2 = srs_rx->sr_arg2; 1718 1719 mac_srs->srs_state |= SRS_CLIENT_PROC; 1720 mutex_exit(&mac_srs->srs_lock); 1721 if (tid != 0) { 1722 (void) untimeout(tid); 1723 tid = 0; 1724 } 1725 1726 proc(arg1, arg2, head, NULL); 1727 /* 1728 * Decrement the size and count here itelf 1729 * since the packet has been processed. 1730 */ 1731 mutex_enter(&mac_srs->srs_lock); 1732 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 1733 if (mac_srs->srs_state & SRS_CLIENT_WAIT) 1734 cv_signal(&mac_srs->srs_client_cv); 1735 mac_srs->srs_state &= ~SRS_CLIENT_PROC; 1736 } else { 1737 /* Some kind of softrings based fanout is required */ 1738 mutex_exit(&mac_srs->srs_lock); 1739 if (tid != 0) { 1740 (void) untimeout(tid); 1741 tid = 0; 1742 } 1743 1744 /* 1745 * Since the fanout routines can deal with chains, 1746 * shoot the entire chain up. 1747 */ 1748 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) 1749 mac_rx_srs_fanout(mac_srs, head); 1750 else 1751 mac_rx_srs_proto_fanout(mac_srs, head); 1752 mutex_enter(&mac_srs->srs_lock); 1753 } 1754 1755 if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) && 1756 (mac_srs->srs_first != NULL)) { 1757 /* 1758 * More packets arrived while we were clearing the 1759 * SRS. This can be possible because of one of 1760 * three conditions below: 1761 * 1) The driver is using multiple worker threads 1762 * to send the packets to us. 1763 * 2) The driver has a race in switching 1764 * between interrupt and polling mode or 1765 * 3) Packets are arriving in this SRS via the 1766 * S/W classification as well. 1767 * 1768 * We should switch to polling mode and see if we 1769 * need to send the poll thread down. Also, signal 1770 * the worker thread to process whats just arrived. 1771 */ 1772 MAC_SRS_POLLING_ON(mac_srs); 1773 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) { 1774 srs_rx->sr_drain_poll_sig++; 1775 MAC_SRS_POLL_RING(mac_srs); 1776 } 1777 1778 /* 1779 * If we didn't signal the poll thread, we need 1780 * to deal with the pending packets ourselves. 1781 */ 1782 if (proc_type == SRS_WORKER) { 1783 srs_rx->sr_drain_again++; 1784 goto again; 1785 } else { 1786 srs_rx->sr_drain_worker_sig++; 1787 cv_signal(&mac_srs->srs_async); 1788 } 1789 } 1790 1791 out: 1792 if (mac_srs->srs_state & SRS_GET_PKTS) { 1793 /* 1794 * Poll thread is already running. Leave the 1795 * SRS_RPOC set and hand over the control to 1796 * poll thread. 1797 */ 1798 mac_srs->srs_state &= ~proc_type; 1799 srs_rx->sr_drain_poll_running++; 1800 return; 1801 } 1802 1803 /* 1804 * Even if there are no packets queued in SRS, we 1805 * need to make sure that the shared counter is 1806 * clear and any associated softrings have cleared 1807 * all the backlog. Otherwise, leave the interface 1808 * in polling mode and the poll thread will get 1809 * signalled once the count goes down to zero. 1810 * 1811 * If someone is already draining the queue (SRS_PROC is 1812 * set) when the srs_poll_pkt_cnt goes down to zero, 1813 * then it means that drain is already running and we 1814 * will turn off polling at that time if there is 1815 * no backlog. 1816 * 1817 * As long as there are packets queued either 1818 * in soft ring set or its soft rings, we will leave 1819 * the interface in polling mode (even if the drain 1820 * was done being the interrupt thread). We signal 1821 * the poll thread as well if we have dipped below 1822 * low water mark. 1823 * 1824 * NOTE: We can't use the MAC_SRS_POLLING_ON macro 1825 * since that turn polling on only for worker thread. 1826 * Its not worth turning polling on for interrupt 1827 * thread (since NIC will not issue another interrupt) 1828 * unless a backlog builds up. 1829 */ 1830 if ((srs_rx->sr_poll_pkt_cnt > 0) && 1831 (mac_srs->srs_state & SRS_POLLING_CAPAB)) { 1832 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 1833 srs_rx->sr_drain_keep_polling++; 1834 MAC_SRS_POLLING_ON(mac_srs); 1835 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) 1836 MAC_SRS_POLL_RING(mac_srs); 1837 return; 1838 } 1839 1840 /* Nothing else to do. Get out of poll mode */ 1841 MAC_SRS_POLLING_OFF(mac_srs); 1842 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 1843 srs_rx->sr_drain_finish_intr++; 1844 } 1845 1846 /* 1847 * mac_rx_srs_drain_bw 1848 * 1849 * The SRS BW drain routine. Gets to run to clear the queue. Any thread 1850 * (worker, interrupt, poll) can call this based on processing model. 1851 * The first thing we do is disable interrupts if possible and then 1852 * drain the queue. we also try to poll the underlying hardware if 1853 * there is a dedicated hardware Rx ring assigned to this SRS. 1854 * 1855 * There is a equivalent drain routine in non bandwidth control mode 1856 * mac_rx_srs_drain. There is some code duplication between the two 1857 * routines but they are highly performance sensitive and are easier 1858 * to read/debug if they stay separate. Any code changes here might 1859 * also apply to mac_rx_srs_drain as well. 1860 */ 1861 void 1862 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 1863 { 1864 mblk_t *head; 1865 mblk_t *tail; 1866 timeout_id_t tid; 1867 size_t sz = 0; 1868 int cnt = 0; 1869 mac_client_impl_t *mcip = mac_srs->srs_mcip; 1870 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1871 clock_t now; 1872 1873 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 1874 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); 1875 again: 1876 /* Check if we are doing B/W control */ 1877 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1878 now = ddi_get_lbolt(); 1879 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 1880 mac_srs->srs_bw->mac_bw_curr_time = now; 1881 mac_srs->srs_bw->mac_bw_used = 0; 1882 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) 1883 mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; 1884 } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) { 1885 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1886 goto done; 1887 } else if (mac_srs->srs_bw->mac_bw_used > 1888 mac_srs->srs_bw->mac_bw_limit) { 1889 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 1890 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1891 goto done; 1892 } 1893 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1894 1895 /* If we are blanked i.e. can't do upcalls, then we are done */ 1896 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { 1897 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || 1898 (mac_srs->srs_state & SRS_PAUSE)); 1899 goto done; 1900 } 1901 1902 sz = 0; 1903 cnt = 0; 1904 if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) { 1905 /* 1906 * We couldn't pick up a single packet. 1907 */ 1908 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1909 if ((mac_srs->srs_bw->mac_bw_used == 0) && 1910 (mac_srs->srs_size != 0) && 1911 !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 1912 /* 1913 * Seems like configured B/W doesn't 1914 * even allow processing of 1 packet 1915 * per tick. 1916 * 1917 * XXX: raise the limit to processing 1918 * at least 1 packet per tick. 1919 */ 1920 mac_srs->srs_bw->mac_bw_limit += 1921 mac_srs->srs_bw->mac_bw_limit; 1922 mac_srs->srs_bw->mac_bw_drop_threshold += 1923 mac_srs->srs_bw->mac_bw_drop_threshold; 1924 cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) " 1925 "raised B/W limit to %d since not even a " 1926 "single packet can be processed per " 1927 "tick %d\n", (void *)mac_srs, 1928 (int)mac_srs->srs_bw->mac_bw_limit, 1929 (int)msgdsize(mac_srs->srs_first)); 1930 } 1931 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1932 goto done; 1933 } 1934 1935 ASSERT(head != NULL); 1936 ASSERT(tail != NULL); 1937 1938 /* zero bandwidth: drop all and return to interrupt mode */ 1939 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 1940 if (mac_srs->srs_bw->mac_bw_limit == 0) { 1941 srs_rx->sr_stat.mrs_sdrops += cnt; 1942 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz); 1943 mac_srs->srs_bw->mac_bw_sz -= sz; 1944 mac_srs->srs_bw->mac_bw_drop_bytes += sz; 1945 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1946 mac_pkt_drop(NULL, NULL, head, B_FALSE); 1947 goto leave_poll; 1948 } else { 1949 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 1950 } 1951 1952 if ((tid = mac_srs->srs_tid) != 0) 1953 mac_srs->srs_tid = 0; 1954 1955 mac_srs->srs_state |= (SRS_PROC|proc_type); 1956 MAC_SRS_WORKER_POLLING_ON(mac_srs); 1957 1958 /* 1959 * mcip is NULL for broadcast and multicast flows. The promisc 1960 * callbacks for broadcast and multicast packets are delivered from 1961 * mac_rx() and we don't need to worry about that case in this path 1962 */ 1963 if (mcip != NULL) { 1964 if (mcip->mci_promisc_list != NULL) { 1965 mutex_exit(&mac_srs->srs_lock); 1966 mac_promisc_client_dispatch(mcip, head); 1967 mutex_enter(&mac_srs->srs_lock); 1968 } 1969 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) { 1970 mutex_exit(&mac_srs->srs_lock); 1971 mac_protect_intercept_dhcp(mcip, head); 1972 mutex_enter(&mac_srs->srs_lock); 1973 } 1974 } 1975 1976 /* 1977 * Check if SRS itself is doing the processing 1978 * This direct path does not apply when subflows are present. In this 1979 * case, packets need to be dispatched to a soft ring according to the 1980 * flow's bandwidth and other resources contraints. 1981 */ 1982 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { 1983 mac_direct_rx_t proc; 1984 void *arg1; 1985 mac_resource_handle_t arg2; 1986 1987 /* 1988 * This is the case when a Rx is directly 1989 * assigned and we have a fully classified 1990 * protocol chain. We can deal with it in 1991 * one shot. 1992 */ 1993 proc = srs_rx->sr_func; 1994 arg1 = srs_rx->sr_arg1; 1995 arg2 = srs_rx->sr_arg2; 1996 1997 mac_srs->srs_state |= SRS_CLIENT_PROC; 1998 mutex_exit(&mac_srs->srs_lock); 1999 if (tid != 0) { 2000 (void) untimeout(tid); 2001 tid = 0; 2002 } 2003 2004 proc(arg1, arg2, head, NULL); 2005 /* 2006 * Decrement the size and count here itelf 2007 * since the packet has been processed. 2008 */ 2009 mutex_enter(&mac_srs->srs_lock); 2010 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 2011 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); 2012 2013 if (mac_srs->srs_state & SRS_CLIENT_WAIT) 2014 cv_signal(&mac_srs->srs_client_cv); 2015 mac_srs->srs_state &= ~SRS_CLIENT_PROC; 2016 } else { 2017 /* Some kind of softrings based fanout is required */ 2018 mutex_exit(&mac_srs->srs_lock); 2019 if (tid != 0) { 2020 (void) untimeout(tid); 2021 tid = 0; 2022 } 2023 2024 /* 2025 * Since the fanout routines can deal with chains, 2026 * shoot the entire chain up. 2027 */ 2028 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) 2029 mac_rx_srs_fanout(mac_srs, head); 2030 else 2031 mac_rx_srs_proto_fanout(mac_srs, head); 2032 mutex_enter(&mac_srs->srs_lock); 2033 } 2034 2035 /* 2036 * Send the poll thread to pick up any packets arrived 2037 * so far. This also serves as the last check in case 2038 * nothing else is queued in the SRS. The poll thread 2039 * is signalled only in the case the drain was done 2040 * by the worker thread and SRS_WORKER is set. The 2041 * worker thread can run in parallel as long as the 2042 * SRS_WORKER flag is set. We we have nothing else to 2043 * process, we can exit while leaving SRS_PROC set 2044 * which gives the poll thread control to process and 2045 * cleanup once it returns from the NIC. 2046 * 2047 * If we have nothing else to process, we need to 2048 * ensure that we keep holding the srs_lock till 2049 * all the checks below are done and control is 2050 * handed to the poll thread if it was running. 2051 */ 2052 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2053 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 2054 if (mac_srs->srs_first != NULL) { 2055 if (proc_type == SRS_WORKER) { 2056 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2057 if (srs_rx->sr_poll_pkt_cnt <= 2058 srs_rx->sr_lowat) 2059 MAC_SRS_POLL_RING(mac_srs); 2060 goto again; 2061 } else { 2062 cv_signal(&mac_srs->srs_async); 2063 } 2064 } 2065 } 2066 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2067 2068 done: 2069 2070 if (mac_srs->srs_state & SRS_GET_PKTS) { 2071 /* 2072 * Poll thread is already running. Leave the 2073 * SRS_RPOC set and hand over the control to 2074 * poll thread. 2075 */ 2076 mac_srs->srs_state &= ~proc_type; 2077 return; 2078 } 2079 2080 /* 2081 * If we can't process packets because we have exceeded 2082 * B/W limit for this tick, just set the timeout 2083 * and leave. 2084 * 2085 * Even if there are no packets queued in SRS, we 2086 * need to make sure that the shared counter is 2087 * clear and any associated softrings have cleared 2088 * all the backlog. Otherwise, leave the interface 2089 * in polling mode and the poll thread will get 2090 * signalled once the count goes down to zero. 2091 * 2092 * If someone is already draining the queue (SRS_PROC is 2093 * set) when the srs_poll_pkt_cnt goes down to zero, 2094 * then it means that drain is already running and we 2095 * will turn off polling at that time if there is 2096 * no backlog. As long as there are packets queued either 2097 * is soft ring set or its soft rings, we will leave 2098 * the interface in polling mode. 2099 */ 2100 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2101 if ((mac_srs->srs_state & SRS_POLLING_CAPAB) && 2102 ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) || 2103 (srs_rx->sr_poll_pkt_cnt > 0))) { 2104 MAC_SRS_POLLING_ON(mac_srs); 2105 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 2106 if ((mac_srs->srs_first != NULL) && 2107 (mac_srs->srs_tid == NULL)) 2108 mac_srs->srs_tid = timeout(mac_srs_fire, 2109 mac_srs, 1); 2110 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2111 return; 2112 } 2113 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2114 2115 leave_poll: 2116 2117 /* Nothing else to do. Get out of poll mode */ 2118 MAC_SRS_POLLING_OFF(mac_srs); 2119 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 2120 } 2121 2122 /* 2123 * mac_srs_worker 2124 * 2125 * The SRS worker routine. Drains the queue when no one else is 2126 * processing it. 2127 */ 2128 void 2129 mac_srs_worker(mac_soft_ring_set_t *mac_srs) 2130 { 2131 kmutex_t *lock = &mac_srs->srs_lock; 2132 kcondvar_t *async = &mac_srs->srs_async; 2133 callb_cpr_t cprinfo; 2134 boolean_t bw_ctl_flag; 2135 2136 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker"); 2137 mutex_enter(lock); 2138 2139 start: 2140 for (;;) { 2141 bw_ctl_flag = B_FALSE; 2142 if (mac_srs->srs_type & SRST_BW_CONTROL) { 2143 MAC_SRS_BW_LOCK(mac_srs); 2144 MAC_SRS_CHECK_BW_CONTROL(mac_srs); 2145 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) 2146 bw_ctl_flag = B_TRUE; 2147 MAC_SRS_BW_UNLOCK(mac_srs); 2148 } 2149 /* 2150 * The SRS_BW_ENFORCED flag may change since we have dropped 2151 * the mac_bw_lock. However the drain function can handle both 2152 * a drainable SRS or a bandwidth controlled SRS, and the 2153 * effect of scheduling a timeout is to wakeup the worker 2154 * thread which in turn will call the drain function. Since 2155 * we release the srs_lock atomically only in the cv_wait there 2156 * isn't a fear of waiting for ever. 2157 */ 2158 while (((mac_srs->srs_state & SRS_PROC) || 2159 (mac_srs->srs_first == NULL) || bw_ctl_flag || 2160 (mac_srs->srs_state & SRS_TX_BLOCKED)) && 2161 !(mac_srs->srs_state & SRS_PAUSE)) { 2162 /* 2163 * If we have packets queued and we are here 2164 * because B/W control is in place, we better 2165 * schedule the worker wakeup after 1 tick 2166 * to see if bandwidth control can be relaxed. 2167 */ 2168 if (bw_ctl_flag && mac_srs->srs_tid == NULL) { 2169 /* 2170 * We need to ensure that a timer is already 2171 * scheduled or we force schedule one for 2172 * later so that we can continue processing 2173 * after this quanta is over. 2174 */ 2175 mac_srs->srs_tid = timeout(mac_srs_fire, 2176 mac_srs, 1); 2177 } 2178 wait: 2179 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2180 cv_wait(async, lock); 2181 CALLB_CPR_SAFE_END(&cprinfo, lock); 2182 2183 if (mac_srs->srs_state & SRS_PAUSE) 2184 goto done; 2185 if (mac_srs->srs_state & SRS_PROC) 2186 goto wait; 2187 2188 if (mac_srs->srs_first != NULL && 2189 mac_srs->srs_type & SRST_BW_CONTROL) { 2190 MAC_SRS_BW_LOCK(mac_srs); 2191 if (mac_srs->srs_bw->mac_bw_state & 2192 SRS_BW_ENFORCED) { 2193 MAC_SRS_CHECK_BW_CONTROL(mac_srs); 2194 } 2195 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state & 2196 SRS_BW_ENFORCED; 2197 MAC_SRS_BW_UNLOCK(mac_srs); 2198 } 2199 } 2200 2201 if (mac_srs->srs_state & SRS_PAUSE) 2202 goto done; 2203 mac_srs->srs_drain_func(mac_srs, SRS_WORKER); 2204 } 2205 done: 2206 /* 2207 * The Rx SRS quiesce logic first cuts off packet supply to the SRS 2208 * from both hard and soft classifications and waits for such threads 2209 * to finish before signaling the worker. So at this point the only 2210 * thread left that could be competing with the worker is the poll 2211 * thread. In the case of Tx, there shouldn't be any thread holding 2212 * SRS_PROC at this point. 2213 */ 2214 if (!(mac_srs->srs_state & SRS_PROC)) { 2215 mac_srs->srs_state |= SRS_PROC; 2216 } else { 2217 ASSERT((mac_srs->srs_type & SRST_TX) == 0); 2218 /* 2219 * Poll thread still owns the SRS and is still running 2220 */ 2221 ASSERT((mac_srs->srs_poll_thr == NULL) || 2222 ((mac_srs->srs_state & SRS_POLL_THR_OWNER) == 2223 SRS_POLL_THR_OWNER)); 2224 } 2225 mac_srs_worker_quiesce(mac_srs); 2226 /* 2227 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator 2228 * of the quiesce operation 2229 */ 2230 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART))) 2231 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock); 2232 2233 if (mac_srs->srs_state & SRS_RESTART) { 2234 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); 2235 mac_srs_worker_restart(mac_srs); 2236 mac_srs->srs_state &= ~SRS_PROC; 2237 goto start; 2238 } 2239 2240 if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE)) 2241 mac_srs_worker_quiesce(mac_srs); 2242 2243 mac_srs->srs_state &= ~SRS_PROC; 2244 /* The macro drops the srs_lock */ 2245 CALLB_CPR_EXIT(&cprinfo); 2246 thread_exit(); 2247 } 2248 2249 /* 2250 * mac_rx_srs_subflow_process 2251 * 2252 * Receive side routine called from interrupt path when there are 2253 * sub flows present on this SRS. 2254 */ 2255 /* ARGSUSED */ 2256 void 2257 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs, 2258 mblk_t *mp_chain, boolean_t loopback) 2259 { 2260 flow_entry_t *flent = NULL; 2261 flow_entry_t *prev_flent = NULL; 2262 mblk_t *mp = NULL; 2263 mblk_t *tail = NULL; 2264 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 2265 mac_client_impl_t *mcip; 2266 2267 mcip = mac_srs->srs_mcip; 2268 ASSERT(mcip != NULL); 2269 2270 /* 2271 * We need to determine the SRS for every packet 2272 * by walking the flow table, if we don't get any, 2273 * then we proceed using the SRS we came with. 2274 */ 2275 mp = tail = mp_chain; 2276 while (mp != NULL) { 2277 2278 /* 2279 * We will increment the stats for the mactching subflow. 2280 * when we get the bytes/pkt count for the classified packets 2281 * later in mac_rx_srs_process. 2282 */ 2283 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp, 2284 FLOW_INBOUND, &flent); 2285 2286 if (mp == mp_chain || flent == prev_flent) { 2287 if (prev_flent != NULL) 2288 FLOW_REFRELE(prev_flent); 2289 prev_flent = flent; 2290 flent = NULL; 2291 tail = mp; 2292 mp = mp->b_next; 2293 continue; 2294 } 2295 tail->b_next = NULL; 2296 /* 2297 * A null indicates, this is for the mac_srs itself. 2298 * XXX-venu : probably assert for fe_rx_srs_cnt == 0. 2299 */ 2300 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { 2301 mac_rx_srs_process(arg, 2302 (mac_resource_handle_t)mac_srs, mp_chain, 2303 loopback); 2304 } else { 2305 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 2306 prev_flent->fe_cb_arg2, mp_chain, loopback); 2307 FLOW_REFRELE(prev_flent); 2308 } 2309 prev_flent = flent; 2310 flent = NULL; 2311 mp_chain = mp; 2312 tail = mp; 2313 mp = mp->b_next; 2314 } 2315 /* Last chain */ 2316 ASSERT(mp_chain != NULL); 2317 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { 2318 mac_rx_srs_process(arg, 2319 (mac_resource_handle_t)mac_srs, mp_chain, loopback); 2320 } else { 2321 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 2322 prev_flent->fe_cb_arg2, mp_chain, loopback); 2323 FLOW_REFRELE(prev_flent); 2324 } 2325 } 2326 2327 /* 2328 * mac_rx_srs_process 2329 * 2330 * Receive side routine called from the interrupt path. 2331 * 2332 * loopback is set to force a context switch on the loopback 2333 * path between MAC clients. 2334 */ 2335 /* ARGSUSED */ 2336 void 2337 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain, 2338 boolean_t loopback) 2339 { 2340 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 2341 mblk_t *mp, *tail, *head; 2342 int count = 0; 2343 int count1; 2344 size_t sz = 0; 2345 size_t chain_sz, sz1; 2346 mac_bw_ctl_t *mac_bw; 2347 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 2348 2349 /* 2350 * Set the tail, count and sz. We set the sz irrespective 2351 * of whether we are doing B/W control or not for the 2352 * purpose of updating the stats. 2353 */ 2354 mp = tail = mp_chain; 2355 while (mp != NULL) { 2356 tail = mp; 2357 count++; 2358 sz += msgdsize(mp); 2359 mp = mp->b_next; 2360 } 2361 2362 mutex_enter(&mac_srs->srs_lock); 2363 2364 if (loopback) { 2365 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz); 2366 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count); 2367 2368 } else { 2369 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz); 2370 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count); 2371 } 2372 2373 /* 2374 * If the SRS in already being processed; has been blanked; 2375 * can be processed by worker thread only; or the B/W limit 2376 * has been reached, then queue the chain and check if 2377 * worker thread needs to be awakend. 2378 */ 2379 if (mac_srs->srs_type & SRST_BW_CONTROL) { 2380 mac_bw = mac_srs->srs_bw; 2381 ASSERT(mac_bw != NULL); 2382 mutex_enter(&mac_bw->mac_bw_lock); 2383 mac_bw->mac_bw_intr += sz; 2384 if (mac_bw->mac_bw_limit == 0) { 2385 /* zero bandwidth: drop all */ 2386 srs_rx->sr_stat.mrs_sdrops += count; 2387 mac_bw->mac_bw_drop_bytes += sz; 2388 mutex_exit(&mac_bw->mac_bw_lock); 2389 mutex_exit(&mac_srs->srs_lock); 2390 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); 2391 return; 2392 } else { 2393 if ((mac_bw->mac_bw_sz + sz) <= 2394 mac_bw->mac_bw_drop_threshold) { 2395 mutex_exit(&mac_bw->mac_bw_lock); 2396 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, 2397 tail, count, sz); 2398 } else { 2399 mp = mp_chain; 2400 chain_sz = 0; 2401 count1 = 0; 2402 tail = NULL; 2403 head = NULL; 2404 while (mp != NULL) { 2405 sz1 = msgdsize(mp); 2406 if (mac_bw->mac_bw_sz + chain_sz + sz1 > 2407 mac_bw->mac_bw_drop_threshold) 2408 break; 2409 chain_sz += sz1; 2410 count1++; 2411 tail = mp; 2412 mp = mp->b_next; 2413 } 2414 mutex_exit(&mac_bw->mac_bw_lock); 2415 if (tail != NULL) { 2416 head = tail->b_next; 2417 tail->b_next = NULL; 2418 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, 2419 mp_chain, tail, count1, chain_sz); 2420 sz -= chain_sz; 2421 count -= count1; 2422 } else { 2423 /* Can't pick up any */ 2424 head = mp_chain; 2425 } 2426 if (head != NULL) { 2427 /* Drop any packet over the threshold */ 2428 srs_rx->sr_stat.mrs_sdrops += count; 2429 mutex_enter(&mac_bw->mac_bw_lock); 2430 mac_bw->mac_bw_drop_bytes += sz; 2431 mutex_exit(&mac_bw->mac_bw_lock); 2432 freemsgchain(head); 2433 } 2434 } 2435 MAC_SRS_WORKER_WAKEUP(mac_srs); 2436 mutex_exit(&mac_srs->srs_lock); 2437 return; 2438 } 2439 } 2440 2441 /* 2442 * If the total number of packets queued in the SRS and 2443 * its associated soft rings exceeds the max allowed, 2444 * then drop the chain. If we are polling capable, this 2445 * shouldn't be happening. 2446 */ 2447 if (!(mac_srs->srs_type & SRST_BW_CONTROL) && 2448 (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) { 2449 mac_bw = mac_srs->srs_bw; 2450 srs_rx->sr_stat.mrs_sdrops += count; 2451 mutex_enter(&mac_bw->mac_bw_lock); 2452 mac_bw->mac_bw_drop_bytes += sz; 2453 mutex_exit(&mac_bw->mac_bw_lock); 2454 freemsgchain(mp_chain); 2455 mutex_exit(&mac_srs->srs_lock); 2456 return; 2457 } 2458 2459 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz); 2460 2461 if (!(mac_srs->srs_state & SRS_PROC)) { 2462 /* 2463 * If we are coming via loopback, if we are not optimizing for 2464 * latency, or if our stack is running deep, we should signal 2465 * the worker thread. 2466 */ 2467 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) || 2468 MAC_RX_SRS_TOODEEP()) { 2469 /* 2470 * For loopback, We need to let the worker take 2471 * over as we don't want to continue in the same 2472 * thread even if we can. This could lead to stack 2473 * overflows and may also end up using 2474 * resources (cpu) incorrectly. 2475 */ 2476 cv_signal(&mac_srs->srs_async); 2477 } else { 2478 /* 2479 * Seems like no one is processing the SRS and 2480 * there is no backlog. We also inline process 2481 * our packet if its a single packet in non 2482 * latency optimized case (in latency optimized 2483 * case, we inline process chains of any size). 2484 */ 2485 mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST); 2486 } 2487 } 2488 mutex_exit(&mac_srs->srs_lock); 2489 } 2490 2491 /* TX SIDE ROUTINES (RUNTIME) */ 2492 2493 /* 2494 * mac_tx_srs_no_desc 2495 * 2496 * This routine is called by Tx single ring default mode 2497 * when Tx ring runs out of descs. 2498 */ 2499 mac_tx_cookie_t 2500 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2501 uint16_t flag, mblk_t **ret_mp) 2502 { 2503 mac_tx_cookie_t cookie = NULL; 2504 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2505 boolean_t wakeup_worker = B_TRUE; 2506 uint32_t tx_mode = srs_tx->st_mode; 2507 int cnt, sz; 2508 mblk_t *tail; 2509 2510 ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW); 2511 if (flag & MAC_DROP_ON_NO_DESC) { 2512 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 2513 } else { 2514 if (mac_srs->srs_first != NULL) 2515 wakeup_worker = B_FALSE; 2516 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2517 if (flag & MAC_TX_NO_ENQUEUE) { 2518 /* 2519 * If TX_QUEUED is not set, queue the 2520 * packet and let mac_tx_srs_drain() 2521 * set the TX_BLOCKED bit for the 2522 * reasons explained above. Otherwise, 2523 * return the mblks. 2524 */ 2525 if (wakeup_worker) { 2526 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2527 mp_chain, tail, cnt, sz); 2528 } else { 2529 MAC_TX_SET_NO_ENQUEUE(mac_srs, 2530 mp_chain, ret_mp, cookie); 2531 } 2532 } else { 2533 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, 2534 tail, cnt, sz, cookie); 2535 } 2536 if (wakeup_worker) 2537 cv_signal(&mac_srs->srs_async); 2538 } 2539 return (cookie); 2540 } 2541 2542 /* 2543 * mac_tx_srs_enqueue 2544 * 2545 * This routine is called when Tx SRS is operating in either serializer 2546 * or bandwidth mode. In serializer mode, a packet will get enqueued 2547 * when a thread cannot enter SRS exclusively. In bandwidth mode, 2548 * packets gets queued if allowed byte-count limit for a tick is 2549 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and 2550 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either 2551 * the default mode or fanout mode. Here packets get dropped or 2552 * returned back to the caller only after hi-watermark worth of data 2553 * is queued. 2554 */ 2555 static mac_tx_cookie_t 2556 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2557 uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp) 2558 { 2559 mac_tx_cookie_t cookie = NULL; 2560 int cnt, sz; 2561 mblk_t *tail; 2562 boolean_t wakeup_worker = B_TRUE; 2563 2564 /* 2565 * Ignore fanout hint if we don't have multiple tx rings. 2566 */ 2567 if (!MAC_TX_SOFT_RINGS(mac_srs)) 2568 fanout_hint = 0; 2569 2570 if (mac_srs->srs_first != NULL) 2571 wakeup_worker = B_FALSE; 2572 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2573 if (flag & MAC_DROP_ON_NO_DESC) { 2574 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) { 2575 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 2576 } else { 2577 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2578 mp_chain, tail, cnt, sz); 2579 } 2580 } else if (flag & MAC_TX_NO_ENQUEUE) { 2581 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) || 2582 (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) { 2583 MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain, 2584 ret_mp, cookie); 2585 } else { 2586 mp_chain->b_prev = (mblk_t *)fanout_hint; 2587 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2588 mp_chain, tail, cnt, sz); 2589 } 2590 } else { 2591 /* 2592 * If you are BW_ENFORCED, just enqueue the 2593 * packet. srs_worker will drain it at the 2594 * prescribed rate. Before enqueueing, save 2595 * the fanout hint. 2596 */ 2597 mp_chain->b_prev = (mblk_t *)fanout_hint; 2598 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, 2599 tail, cnt, sz, cookie); 2600 } 2601 if (wakeup_worker) 2602 cv_signal(&mac_srs->srs_async); 2603 return (cookie); 2604 } 2605 2606 /* 2607 * There are seven tx modes: 2608 * 2609 * 1) Default mode (SRS_TX_DEFAULT) 2610 * 2) Serialization mode (SRS_TX_SERIALIZE) 2611 * 3) Fanout mode (SRS_TX_FANOUT) 2612 * 4) Bandwdith mode (SRS_TX_BW) 2613 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT) 2614 * 6) aggr Tx mode (SRS_TX_AGGR) 2615 * 7) aggr Tx bw mode (SRS_TX_BW_AGGR) 2616 * 2617 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup() 2618 * based on the number of Tx rings requested for an SRS and whether 2619 * bandwidth control is requested or not. 2620 * 2621 * The default mode (i.e., no fanout/no bandwidth) is used when the 2622 * underlying NIC does not have Tx rings or just one Tx ring. In this mode, 2623 * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send(). 2624 * When the underlying Tx ring runs out of Tx descs, it starts queueing up 2625 * packets in SRS. When flow-control is relieved, the srs_worker drains 2626 * the queued packets and informs blocked clients to restart sending 2627 * packets. 2628 * 2629 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This 2630 * mode is used when the link has no Tx rings or only one Tx ring. 2631 * 2632 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple 2633 * Tx rings. Each Tx ring will have a soft ring associated with it. 2634 * These soft rings will be hung off the Tx SRS. Queueing if it happens 2635 * due to lack of Tx desc will be in individual soft ring (and not srs) 2636 * associated with Tx ring. 2637 * 2638 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring 2639 * only if bw is available. Otherwise the packets will be queued in 2640 * SRS. If fanout to multiple Tx rings is configured, the packets will 2641 * be fanned out among the soft rings associated with the Tx rings. 2642 * 2643 * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine 2644 * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring 2645 * belonging to a port on which the packet has to be sent. Aggr will 2646 * always have a pseudo Tx ring associated with it even when it is an 2647 * aggregation over a single NIC that has no Tx rings. Even in such a 2648 * case, the single pseudo Tx ring will have a soft ring associated with 2649 * it and the soft ring will hang off the SRS. 2650 * 2651 * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used. 2652 * In this mode, the bandwidth is first applied on the outgoing packets 2653 * and later mac_tx_addr_mode() function is called to send the packet out 2654 * of one of the pseudo Tx rings. 2655 * 2656 * Four flags are used in srs_state for indicating flow control 2657 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT. 2658 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the 2659 * driver below. 2660 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat 2661 * and flow-control pressure is applied back to clients. The clients expect 2662 * wakeup when flow-control is relieved. 2663 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk 2664 * got returned back to client either due to lack of Tx descs or due to bw 2665 * control reasons. The clients expect a wakeup when condition is relieved. 2666 * 2667 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but 2668 * some clients set the following values too: MAC_DROP_ON_NO_DESC, 2669 * MAC_TX_NO_ENQUEUE 2670 * Mac clients that do not want packets to be enqueued in the mac layer set 2671 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or 2672 * Tx soft rings but instead get dropped when the NIC runs out of desc. The 2673 * behaviour of this flag is different when the Tx is running in serializer 2674 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet 2675 * get dropped when Tx high watermark is reached. 2676 * There are some mac clients like vsw, aggr that want the mblks to be 2677 * returned back to clients instead of being queued in Tx SRS (or Tx soft 2678 * rings) under flow-control (i.e., out of desc or exceeding bw limits) 2679 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set. 2680 * In the default and Tx fanout mode, the un-transmitted mblks will be 2681 * returned back to the clients when the driver runs out of Tx descs. 2682 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or 2683 * soft ring) so that the clients can be woken up when Tx desc become 2684 * available. When running in serializer or bandwidth mode mode, 2685 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached. 2686 */ 2687 2688 mac_tx_func_t 2689 mac_tx_get_func(uint32_t mode) 2690 { 2691 return (mac_tx_mode_list[mode].mac_tx_func); 2692 } 2693 2694 /* ARGSUSED */ 2695 static mac_tx_cookie_t 2696 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2697 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2698 { 2699 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2700 mac_tx_stats_t stats; 2701 mac_tx_cookie_t cookie = NULL; 2702 2703 ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT); 2704 2705 /* Regular case with a single Tx ring */ 2706 /* 2707 * SRS_TX_BLOCKED is set when underlying NIC runs 2708 * out of Tx descs and messages start getting 2709 * queued. It won't get reset until 2710 * tx_srs_drain() completely drains out the 2711 * messages. 2712 */ 2713 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { 2714 /* Tx descs/resources not available */ 2715 mutex_enter(&mac_srs->srs_lock); 2716 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { 2717 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, 2718 flag, ret_mp); 2719 mutex_exit(&mac_srs->srs_lock); 2720 return (cookie); 2721 } 2722 /* 2723 * While we were computing mblk count, the 2724 * flow control condition got relieved. 2725 * Continue with the transmission. 2726 */ 2727 mutex_exit(&mac_srs->srs_lock); 2728 } 2729 2730 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 2731 mp_chain, &stats); 2732 2733 /* 2734 * Multiple threads could be here sending packets. 2735 * Under such conditions, it is not possible to 2736 * automically set SRS_TX_BLOCKED bit to indicate 2737 * out of tx desc condition. To atomically set 2738 * this, we queue the returned packet and do 2739 * the setting of SRS_TX_BLOCKED in 2740 * mac_tx_srs_drain(). 2741 */ 2742 if (mp_chain != NULL) { 2743 mutex_enter(&mac_srs->srs_lock); 2744 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp); 2745 mutex_exit(&mac_srs->srs_lock); 2746 return (cookie); 2747 } 2748 SRS_TX_STATS_UPDATE(mac_srs, &stats); 2749 2750 return (NULL); 2751 } 2752 2753 /* 2754 * mac_tx_serialize_mode 2755 * 2756 * This is an experimental mode implemented as per the request of PAE. 2757 * In this mode, all callers attempting to send a packet to the NIC 2758 * will get serialized. Only one thread at any time will access the 2759 * NIC to send the packet out. 2760 */ 2761 /* ARGSUSED */ 2762 static mac_tx_cookie_t 2763 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2764 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2765 { 2766 mac_tx_stats_t stats; 2767 mac_tx_cookie_t cookie = NULL; 2768 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2769 2770 /* Single ring, serialize below */ 2771 ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE); 2772 mutex_enter(&mac_srs->srs_lock); 2773 if ((mac_srs->srs_first != NULL) || 2774 (mac_srs->srs_state & SRS_PROC)) { 2775 /* 2776 * In serialization mode, queue all packets until 2777 * TX_HIWAT is set. 2778 * If drop bit is set, drop if TX_HIWAT is set. 2779 * If no_enqueue is set, still enqueue until hiwat 2780 * is set and return mblks after TX_HIWAT is set. 2781 */ 2782 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, 2783 flag, NULL, ret_mp); 2784 mutex_exit(&mac_srs->srs_lock); 2785 return (cookie); 2786 } 2787 /* 2788 * No packets queued, nothing on proc and no flow 2789 * control condition. Fast-path, ok. Do inline 2790 * processing. 2791 */ 2792 mac_srs->srs_state |= SRS_PROC; 2793 mutex_exit(&mac_srs->srs_lock); 2794 2795 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 2796 mp_chain, &stats); 2797 2798 mutex_enter(&mac_srs->srs_lock); 2799 mac_srs->srs_state &= ~SRS_PROC; 2800 if (mp_chain != NULL) { 2801 cookie = mac_tx_srs_enqueue(mac_srs, 2802 mp_chain, flag, NULL, ret_mp); 2803 } 2804 if (mac_srs->srs_first != NULL) { 2805 /* 2806 * We processed inline our packet and a new 2807 * packet/s got queued while we were 2808 * processing. Wakeup srs worker 2809 */ 2810 cv_signal(&mac_srs->srs_async); 2811 } 2812 mutex_exit(&mac_srs->srs_lock); 2813 2814 if (cookie == NULL) 2815 SRS_TX_STATS_UPDATE(mac_srs, &stats); 2816 2817 return (cookie); 2818 } 2819 2820 /* 2821 * mac_tx_fanout_mode 2822 * 2823 * In this mode, the SRS will have access to multiple Tx rings to send 2824 * the packet out. The fanout hint that is passed as an argument is 2825 * used to find an appropriate ring to fanout the traffic. Each Tx 2826 * ring, in turn, will have a soft ring associated with it. If a Tx 2827 * ring runs out of Tx desc's the returned packet will be queued in 2828 * the soft ring associated with that Tx ring. The srs itself will not 2829 * queue any packets. 2830 */ 2831 2832 #define MAC_TX_SOFT_RING_PROCESS(chain) { \ 2833 index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count), \ 2834 softring = mac_srs->srs_tx_soft_rings[index]; \ 2835 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \ 2836 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \ 2837 } 2838 2839 static mac_tx_cookie_t 2840 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2841 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2842 { 2843 mac_soft_ring_t *softring; 2844 uint64_t hash; 2845 uint_t index; 2846 mac_tx_cookie_t cookie = NULL; 2847 2848 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 2849 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT); 2850 if (fanout_hint != 0) { 2851 /* 2852 * The hint is specified by the caller, simply pass the 2853 * whole chain to the soft ring. 2854 */ 2855 hash = HASH_HINT(fanout_hint); 2856 MAC_TX_SOFT_RING_PROCESS(mp_chain); 2857 } else { 2858 mblk_t *last_mp, *cur_mp, *sub_chain; 2859 uint64_t last_hash = 0; 2860 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media; 2861 2862 /* 2863 * Compute the hash from the contents (headers) of the 2864 * packets of the mblk chain. Split the chains into 2865 * subchains of the same conversation. 2866 * 2867 * Since there may be more than one ring used for 2868 * sub-chains of the same call, and since the caller 2869 * does not maintain per conversation state since it 2870 * passed a zero hint, unsent subchains will be 2871 * dropped. 2872 */ 2873 2874 flag |= MAC_DROP_ON_NO_DESC; 2875 ret_mp = NULL; 2876 2877 ASSERT(ret_mp == NULL); 2878 2879 sub_chain = NULL; 2880 last_mp = NULL; 2881 2882 for (cur_mp = mp_chain; cur_mp != NULL; 2883 cur_mp = cur_mp->b_next) { 2884 hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4, 2885 B_TRUE); 2886 if (last_hash != 0 && hash != last_hash) { 2887 /* 2888 * Starting a different subchain, send current 2889 * chain out. 2890 */ 2891 ASSERT(last_mp != NULL); 2892 last_mp->b_next = NULL; 2893 MAC_TX_SOFT_RING_PROCESS(sub_chain); 2894 sub_chain = NULL; 2895 } 2896 2897 /* add packet to subchain */ 2898 if (sub_chain == NULL) 2899 sub_chain = cur_mp; 2900 last_mp = cur_mp; 2901 last_hash = hash; 2902 } 2903 2904 if (sub_chain != NULL) { 2905 /* send last subchain */ 2906 ASSERT(last_mp != NULL); 2907 last_mp->b_next = NULL; 2908 MAC_TX_SOFT_RING_PROCESS(sub_chain); 2909 } 2910 2911 cookie = NULL; 2912 } 2913 2914 return (cookie); 2915 } 2916 2917 /* 2918 * mac_tx_bw_mode 2919 * 2920 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring 2921 * only if bw is available. Otherwise the packets will be queued in 2922 * SRS. If the SRS has multiple Tx rings, then packets will get fanned 2923 * out to a Tx rings. 2924 */ 2925 static mac_tx_cookie_t 2926 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 2927 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 2928 { 2929 int cnt, sz; 2930 mblk_t *tail; 2931 mac_tx_cookie_t cookie = NULL; 2932 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 2933 clock_t now; 2934 2935 ASSERT(TX_BANDWIDTH_MODE(mac_srs)); 2936 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); 2937 mutex_enter(&mac_srs->srs_lock); 2938 if (mac_srs->srs_bw->mac_bw_limit == 0) { 2939 /* 2940 * zero bandwidth, no traffic is sent: drop the packets, 2941 * or return the whole chain if the caller requests all 2942 * unsent packets back. 2943 */ 2944 if (flag & MAC_TX_NO_ENQUEUE) { 2945 cookie = (mac_tx_cookie_t)mac_srs; 2946 *ret_mp = mp_chain; 2947 } else { 2948 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 2949 } 2950 mutex_exit(&mac_srs->srs_lock); 2951 return (cookie); 2952 } else if ((mac_srs->srs_first != NULL) || 2953 (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 2954 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, 2955 fanout_hint, ret_mp); 2956 mutex_exit(&mac_srs->srs_lock); 2957 return (cookie); 2958 } 2959 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 2960 now = ddi_get_lbolt(); 2961 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 2962 mac_srs->srs_bw->mac_bw_curr_time = now; 2963 mac_srs->srs_bw->mac_bw_used = 0; 2964 } else if (mac_srs->srs_bw->mac_bw_used > 2965 mac_srs->srs_bw->mac_bw_limit) { 2966 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 2967 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 2968 mp_chain, tail, cnt, sz); 2969 /* 2970 * Wakeup worker thread. Note that worker 2971 * thread has to be woken up so that it 2972 * can fire up the timer to be woken up 2973 * on the next tick. Also once 2974 * BW_ENFORCED is set, it can only be 2975 * reset by srs_worker thread. Until then 2976 * all packets will get queued up in SRS 2977 * and hence this this code path won't be 2978 * entered until BW_ENFORCED is reset. 2979 */ 2980 cv_signal(&mac_srs->srs_async); 2981 mutex_exit(&mac_srs->srs_lock); 2982 return (cookie); 2983 } 2984 2985 mac_srs->srs_bw->mac_bw_used += sz; 2986 mutex_exit(&mac_srs->srs_lock); 2987 2988 if (srs_tx->st_mode == SRS_TX_BW_FANOUT) { 2989 mac_soft_ring_t *softring; 2990 uint_t indx, hash; 2991 2992 hash = HASH_HINT(fanout_hint); 2993 indx = COMPUTE_INDEX(hash, 2994 mac_srs->srs_tx_ring_count); 2995 softring = mac_srs->srs_tx_soft_rings[indx]; 2996 return (mac_tx_soft_ring_process(softring, mp_chain, flag, 2997 ret_mp)); 2998 } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) { 2999 return (mac_tx_aggr_mode(mac_srs, mp_chain, 3000 fanout_hint, flag, ret_mp)); 3001 } else { 3002 mac_tx_stats_t stats; 3003 3004 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3005 mp_chain, &stats); 3006 3007 if (mp_chain != NULL) { 3008 mutex_enter(&mac_srs->srs_lock); 3009 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3010 if (mac_srs->srs_bw->mac_bw_used > sz) 3011 mac_srs->srs_bw->mac_bw_used -= sz; 3012 else 3013 mac_srs->srs_bw->mac_bw_used = 0; 3014 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, 3015 fanout_hint, ret_mp); 3016 mutex_exit(&mac_srs->srs_lock); 3017 return (cookie); 3018 } 3019 SRS_TX_STATS_UPDATE(mac_srs, &stats); 3020 3021 return (NULL); 3022 } 3023 } 3024 3025 /* 3026 * mac_tx_aggr_mode 3027 * 3028 * This routine invokes an aggr function, aggr_find_tx_ring(), to find 3029 * a (pseudo) Tx ring belonging to a port on which the packet has to 3030 * be sent. aggr_find_tx_ring() first finds the outgoing port based on 3031 * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick 3032 * a Tx ring from the selected port. 3033 * 3034 * Note that a port can be deleted from the aggregation. In such a case, 3035 * the aggregation layer first separates the port from the rest of the 3036 * ports making sure that port (and thus any Tx rings associated with 3037 * it) won't get selected in the call to aggr_find_tx_ring() function. 3038 * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring 3039 * handles one by one which in turn will quiesce the Tx SRS and remove 3040 * the soft ring associated with the pseudo Tx ring. Unlike Rx side 3041 * where a cookie is used to protect against mac_rx_ring() calls on 3042 * rings that have been removed, no such cookie is needed on the Tx 3043 * side as the pseudo Tx ring won't be available anymore to 3044 * aggr_find_tx_ring() once the port has been removed. 3045 */ 3046 static mac_tx_cookie_t 3047 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3048 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 3049 { 3050 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3051 mac_tx_ring_fn_t find_tx_ring_fn; 3052 mac_ring_handle_t ring = NULL; 3053 void *arg; 3054 mac_soft_ring_t *sringp; 3055 3056 find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn; 3057 arg = srs_tx->st_capab_aggr.mca_arg; 3058 if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL) 3059 return (NULL); 3060 sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index]; 3061 return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp)); 3062 } 3063 3064 void 3065 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie) 3066 { 3067 mac_cb_t *mcb; 3068 mac_tx_notify_cb_t *mtnfp; 3069 3070 /* Wakeup callback registered clients */ 3071 MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info); 3072 for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL; 3073 mcb = mcb->mcb_nextp) { 3074 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp; 3075 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie); 3076 } 3077 MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info, 3078 &mcip->mci_tx_notify_cb_list); 3079 } 3080 3081 /* ARGSUSED */ 3082 void 3083 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 3084 { 3085 mblk_t *head, *tail; 3086 size_t sz; 3087 uint32_t tx_mode; 3088 uint_t saved_pkt_count; 3089 mac_tx_stats_t stats; 3090 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3091 clock_t now; 3092 3093 saved_pkt_count = 0; 3094 ASSERT(mutex_owned(&mac_srs->srs_lock)); 3095 ASSERT(!(mac_srs->srs_state & SRS_PROC)); 3096 3097 mac_srs->srs_state |= SRS_PROC; 3098 3099 tx_mode = srs_tx->st_mode; 3100 if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) { 3101 if (mac_srs->srs_first != NULL) { 3102 head = mac_srs->srs_first; 3103 tail = mac_srs->srs_last; 3104 saved_pkt_count = mac_srs->srs_count; 3105 mac_srs->srs_first = NULL; 3106 mac_srs->srs_last = NULL; 3107 mac_srs->srs_count = 0; 3108 mutex_exit(&mac_srs->srs_lock); 3109 3110 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3111 head, &stats); 3112 3113 mutex_enter(&mac_srs->srs_lock); 3114 if (head != NULL) { 3115 /* Device out of tx desc, set block */ 3116 if (head->b_next == NULL) 3117 VERIFY(head == tail); 3118 tail->b_next = mac_srs->srs_first; 3119 mac_srs->srs_first = head; 3120 mac_srs->srs_count += 3121 (saved_pkt_count - stats.mts_opackets); 3122 if (mac_srs->srs_last == NULL) 3123 mac_srs->srs_last = tail; 3124 MAC_TX_SRS_BLOCK(mac_srs, head); 3125 } else { 3126 srs_tx->st_woken_up = B_FALSE; 3127 SRS_TX_STATS_UPDATE(mac_srs, &stats); 3128 } 3129 } 3130 } else if (tx_mode == SRS_TX_BW) { 3131 /* 3132 * We are here because the timer fired and we have some data 3133 * to tranmit. Also mac_tx_srs_worker should have reset 3134 * SRS_BW_ENFORCED flag 3135 */ 3136 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)); 3137 head = tail = mac_srs->srs_first; 3138 while (mac_srs->srs_first != NULL) { 3139 tail = mac_srs->srs_first; 3140 tail->b_prev = NULL; 3141 mac_srs->srs_first = tail->b_next; 3142 if (mac_srs->srs_first == NULL) 3143 mac_srs->srs_last = NULL; 3144 mac_srs->srs_count--; 3145 sz = msgdsize(tail); 3146 mac_srs->srs_size -= sz; 3147 saved_pkt_count++; 3148 MAC_TX_UPDATE_BW_INFO(mac_srs, sz); 3149 3150 if (mac_srs->srs_bw->mac_bw_used < 3151 mac_srs->srs_bw->mac_bw_limit) 3152 continue; 3153 3154 now = ddi_get_lbolt(); 3155 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 3156 mac_srs->srs_bw->mac_bw_curr_time = now; 3157 mac_srs->srs_bw->mac_bw_used = sz; 3158 continue; 3159 } 3160 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 3161 break; 3162 } 3163 3164 ASSERT((head == NULL && tail == NULL) || 3165 (head != NULL && tail != NULL)); 3166 if (tail != NULL) { 3167 tail->b_next = NULL; 3168 mutex_exit(&mac_srs->srs_lock); 3169 3170 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3171 head, &stats); 3172 3173 mutex_enter(&mac_srs->srs_lock); 3174 if (head != NULL) { 3175 uint_t size_sent; 3176 3177 /* Device out of tx desc, set block */ 3178 if (head->b_next == NULL) 3179 VERIFY(head == tail); 3180 tail->b_next = mac_srs->srs_first; 3181 mac_srs->srs_first = head; 3182 mac_srs->srs_count += 3183 (saved_pkt_count - stats.mts_opackets); 3184 if (mac_srs->srs_last == NULL) 3185 mac_srs->srs_last = tail; 3186 size_sent = sz - stats.mts_obytes; 3187 mac_srs->srs_size += size_sent; 3188 mac_srs->srs_bw->mac_bw_sz += size_sent; 3189 if (mac_srs->srs_bw->mac_bw_used > size_sent) { 3190 mac_srs->srs_bw->mac_bw_used -= 3191 size_sent; 3192 } else { 3193 mac_srs->srs_bw->mac_bw_used = 0; 3194 } 3195 MAC_TX_SRS_BLOCK(mac_srs, head); 3196 } else { 3197 srs_tx->st_woken_up = B_FALSE; 3198 SRS_TX_STATS_UPDATE(mac_srs, &stats); 3199 } 3200 } 3201 } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) { 3202 mblk_t *prev; 3203 uint64_t hint; 3204 3205 /* 3206 * We are here because the timer fired and we 3207 * have some quota to tranmit. 3208 */ 3209 prev = NULL; 3210 head = tail = mac_srs->srs_first; 3211 while (mac_srs->srs_first != NULL) { 3212 tail = mac_srs->srs_first; 3213 mac_srs->srs_first = tail->b_next; 3214 if (mac_srs->srs_first == NULL) 3215 mac_srs->srs_last = NULL; 3216 mac_srs->srs_count--; 3217 sz = msgdsize(tail); 3218 mac_srs->srs_size -= sz; 3219 mac_srs->srs_bw->mac_bw_used += sz; 3220 if (prev == NULL) 3221 hint = (ulong_t)tail->b_prev; 3222 if (hint != (ulong_t)tail->b_prev) { 3223 prev->b_next = NULL; 3224 mutex_exit(&mac_srs->srs_lock); 3225 TX_SRS_TO_SOFT_RING(mac_srs, head, hint); 3226 head = tail; 3227 hint = (ulong_t)tail->b_prev; 3228 mutex_enter(&mac_srs->srs_lock); 3229 } 3230 3231 prev = tail; 3232 tail->b_prev = NULL; 3233 if (mac_srs->srs_bw->mac_bw_used < 3234 mac_srs->srs_bw->mac_bw_limit) 3235 continue; 3236 3237 now = ddi_get_lbolt(); 3238 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 3239 mac_srs->srs_bw->mac_bw_curr_time = now; 3240 mac_srs->srs_bw->mac_bw_used = 0; 3241 continue; 3242 } 3243 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 3244 break; 3245 } 3246 ASSERT((head == NULL && tail == NULL) || 3247 (head != NULL && tail != NULL)); 3248 if (tail != NULL) { 3249 tail->b_next = NULL; 3250 mutex_exit(&mac_srs->srs_lock); 3251 TX_SRS_TO_SOFT_RING(mac_srs, head, hint); 3252 mutex_enter(&mac_srs->srs_lock); 3253 } 3254 } 3255 /* 3256 * SRS_TX_FANOUT case not considered here because packets 3257 * won't be queued in the SRS for this case. Packets will 3258 * be sent directly to soft rings underneath and if there 3259 * is any queueing at all, it would be in Tx side soft 3260 * rings. 3261 */ 3262 3263 /* 3264 * When srs_count becomes 0, reset SRS_TX_HIWAT and 3265 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients. 3266 */ 3267 if (mac_srs->srs_count == 0 && (mac_srs->srs_state & 3268 (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) { 3269 mac_client_impl_t *mcip = mac_srs->srs_mcip; 3270 boolean_t wakeup_required = B_FALSE; 3271 3272 if (mac_srs->srs_state & 3273 (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) { 3274 wakeup_required = B_TRUE; 3275 } 3276 mac_srs->srs_state &= ~(SRS_TX_HIWAT | 3277 SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED); 3278 mutex_exit(&mac_srs->srs_lock); 3279 if (wakeup_required) { 3280 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs); 3281 /* 3282 * If the client is not the primary MAC client, then we 3283 * need to send the notification to the clients upper 3284 * MAC, i.e. mci_upper_mip. 3285 */ 3286 mac_tx_notify(mcip->mci_upper_mip != NULL ? 3287 mcip->mci_upper_mip : mcip->mci_mip); 3288 } 3289 mutex_enter(&mac_srs->srs_lock); 3290 } 3291 mac_srs->srs_state &= ~SRS_PROC; 3292 } 3293 3294 /* 3295 * Given a packet, get the flow_entry that identifies the flow 3296 * to which that packet belongs. The flow_entry will contain 3297 * the transmit function to be used to send the packet. If the 3298 * function returns NULL, the packet should be sent using the 3299 * underlying NIC. 3300 */ 3301 static flow_entry_t * 3302 mac_tx_classify(mac_impl_t *mip, mblk_t *mp) 3303 { 3304 flow_entry_t *flent = NULL; 3305 mac_client_impl_t *mcip; 3306 int err; 3307 3308 /* 3309 * Do classification on the packet. 3310 */ 3311 err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent); 3312 if (err != 0) 3313 return (NULL); 3314 3315 /* 3316 * This flent might just be an additional one on the MAC client, 3317 * i.e. for classification purposes (different fdesc), however 3318 * the resources, SRS et. al., are in the mci_flent, so if 3319 * this isn't the mci_flent, we need to get it. 3320 */ 3321 if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) { 3322 FLOW_REFRELE(flent); 3323 flent = mcip->mci_flent; 3324 FLOW_TRY_REFHOLD(flent, err); 3325 if (err != 0) 3326 return (NULL); 3327 } 3328 3329 return (flent); 3330 } 3331 3332 /* 3333 * This macro is only meant to be used by mac_tx_send(). 3334 */ 3335 #define CHECK_VID_AND_ADD_TAG(mp) { \ 3336 if (vid_check) { \ 3337 int err = 0; \ 3338 \ 3339 MAC_VID_CHECK(src_mcip, (mp), err); \ 3340 if (err != 0) { \ 3341 freemsg((mp)); \ 3342 (mp) = next; \ 3343 oerrors++; \ 3344 continue; \ 3345 } \ 3346 } \ 3347 if (add_tag) { \ 3348 (mp) = mac_add_vlan_tag((mp), 0, vid); \ 3349 if ((mp) == NULL) { \ 3350 (mp) = next; \ 3351 oerrors++; \ 3352 continue; \ 3353 } \ 3354 } \ 3355 } 3356 3357 mblk_t * 3358 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain, 3359 mac_tx_stats_t *stats) 3360 { 3361 mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch; 3362 mac_impl_t *mip = src_mcip->mci_mip; 3363 uint_t obytes = 0, opackets = 0, oerrors = 0; 3364 mblk_t *mp = NULL, *next; 3365 boolean_t vid_check, add_tag; 3366 uint16_t vid = 0; 3367 3368 if (mip->mi_nclients > 1) { 3369 vid_check = MAC_VID_CHECK_NEEDED(src_mcip); 3370 add_tag = MAC_TAG_NEEDED(src_mcip); 3371 if (add_tag) 3372 vid = mac_client_vid(mch); 3373 } else { 3374 ASSERT(mip->mi_nclients == 1); 3375 vid_check = add_tag = B_FALSE; 3376 } 3377 3378 /* 3379 * Fastpath: if there's only one client, we simply send 3380 * the packet down to the underlying NIC. 3381 */ 3382 if (mip->mi_nactiveclients == 1) { 3383 DTRACE_PROBE2(fastpath, 3384 mac_client_impl_t *, src_mcip, mblk_t *, mp_chain); 3385 3386 mp = mp_chain; 3387 while (mp != NULL) { 3388 next = mp->b_next; 3389 mp->b_next = NULL; 3390 opackets++; 3391 obytes += (mp->b_cont == NULL ? MBLKL(mp) : 3392 msgdsize(mp)); 3393 3394 CHECK_VID_AND_ADD_TAG(mp); 3395 MAC_TX(mip, ring, mp, src_mcip); 3396 3397 /* 3398 * If the driver is out of descriptors and does a 3399 * partial send it will return a chain of unsent 3400 * mblks. Adjust the accounting stats. 3401 */ 3402 if (mp != NULL) { 3403 opackets--; 3404 obytes -= msgdsize(mp); 3405 mp->b_next = next; 3406 break; 3407 } 3408 mp = next; 3409 } 3410 goto done; 3411 } 3412 3413 /* 3414 * No fastpath, we either have more than one MAC client 3415 * defined on top of the same MAC, or one or more MAC 3416 * client promiscuous callbacks. 3417 */ 3418 DTRACE_PROBE3(slowpath, mac_client_impl_t *, 3419 src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain); 3420 3421 mp = mp_chain; 3422 while (mp != NULL) { 3423 flow_entry_t *dst_flow_ent; 3424 void *flow_cookie; 3425 size_t pkt_size; 3426 mblk_t *mp1; 3427 3428 next = mp->b_next; 3429 mp->b_next = NULL; 3430 opackets++; 3431 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp)); 3432 obytes += pkt_size; 3433 CHECK_VID_AND_ADD_TAG(mp); 3434 3435 /* 3436 * Find the destination. 3437 */ 3438 dst_flow_ent = mac_tx_classify(mip, mp); 3439 3440 if (dst_flow_ent != NULL) { 3441 size_t hdrsize; 3442 int err = 0; 3443 3444 if (mip->mi_info.mi_nativemedia == DL_ETHER) { 3445 struct ether_vlan_header *evhp = 3446 (struct ether_vlan_header *)mp->b_rptr; 3447 3448 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) 3449 hdrsize = sizeof (*evhp); 3450 else 3451 hdrsize = sizeof (struct ether_header); 3452 } else { 3453 mac_header_info_t mhi; 3454 3455 err = mac_header_info((mac_handle_t)mip, 3456 mp, &mhi); 3457 if (err == 0) 3458 hdrsize = mhi.mhi_hdrsize; 3459 } 3460 3461 /* 3462 * Got a matching flow. It's either another 3463 * MAC client, or a broadcast/multicast flow. 3464 * Make sure the packet size is within the 3465 * allowed size. If not drop the packet and 3466 * move to next packet. 3467 */ 3468 if (err != 0 || 3469 (pkt_size - hdrsize) > mip->mi_sdu_max) { 3470 oerrors++; 3471 DTRACE_PROBE2(loopback__drop, size_t, pkt_size, 3472 mblk_t *, mp); 3473 freemsg(mp); 3474 mp = next; 3475 FLOW_REFRELE(dst_flow_ent); 3476 continue; 3477 } 3478 flow_cookie = mac_flow_get_client_cookie(dst_flow_ent); 3479 if (flow_cookie != NULL) { 3480 /* 3481 * The vnic_bcast_send function expects 3482 * to receive the sender MAC client 3483 * as value for arg2. 3484 */ 3485 mac_bcast_send(flow_cookie, src_mcip, mp, 3486 B_TRUE); 3487 } else { 3488 /* 3489 * loopback the packet to a local MAC 3490 * client. We force a context switch 3491 * if both source and destination MAC 3492 * clients are used by IP, i.e. 3493 * bypass is set. 3494 */ 3495 boolean_t do_switch; 3496 mac_client_impl_t *dst_mcip = 3497 dst_flow_ent->fe_mcip; 3498 3499 /* 3500 * Check if there are promiscuous mode 3501 * callbacks defined. This check is 3502 * done here in the 'else' case and 3503 * not in other cases because this 3504 * path is for local loopback 3505 * communication which does not go 3506 * through MAC_TX(). For paths that go 3507 * through MAC_TX(), the promisc_list 3508 * check is done inside the MAC_TX() 3509 * macro. 3510 */ 3511 if (mip->mi_promisc_list != NULL) 3512 mac_promisc_dispatch(mip, mp, src_mcip); 3513 3514 do_switch = ((src_mcip->mci_state_flags & 3515 dst_mcip->mci_state_flags & 3516 MCIS_CLIENT_POLL_CAPABLE) != 0); 3517 3518 if ((mp1 = mac_fix_cksum(mp)) != NULL) { 3519 (dst_flow_ent->fe_cb_fn)( 3520 dst_flow_ent->fe_cb_arg1, 3521 dst_flow_ent->fe_cb_arg2, 3522 mp1, do_switch); 3523 } 3524 } 3525 FLOW_REFRELE(dst_flow_ent); 3526 } else { 3527 /* 3528 * Unknown destination, send via the underlying 3529 * NIC. 3530 */ 3531 MAC_TX(mip, ring, mp, src_mcip); 3532 if (mp != NULL) { 3533 /* 3534 * Adjust for the last packet that 3535 * could not be transmitted 3536 */ 3537 opackets--; 3538 obytes -= pkt_size; 3539 mp->b_next = next; 3540 break; 3541 } 3542 } 3543 mp = next; 3544 } 3545 3546 done: 3547 stats->mts_obytes = obytes; 3548 stats->mts_opackets = opackets; 3549 stats->mts_oerrors = oerrors; 3550 return (mp); 3551 } 3552 3553 /* 3554 * mac_tx_srs_ring_present 3555 * 3556 * Returns whether the specified ring is part of the specified SRS. 3557 */ 3558 boolean_t 3559 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring) 3560 { 3561 int i; 3562 mac_soft_ring_t *soft_ring; 3563 3564 if (srs->srs_tx.st_arg2 == tx_ring) 3565 return (B_TRUE); 3566 3567 for (i = 0; i < srs->srs_tx_ring_count; i++) { 3568 soft_ring = srs->srs_tx_soft_rings[i]; 3569 if (soft_ring->s_ring_tx_arg2 == tx_ring) 3570 return (B_TRUE); 3571 } 3572 3573 return (B_FALSE); 3574 } 3575 3576 /* 3577 * mac_tx_srs_get_soft_ring 3578 * 3579 * Returns the TX soft ring associated with the given ring, if present. 3580 */ 3581 mac_soft_ring_t * 3582 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring) 3583 { 3584 int i; 3585 mac_soft_ring_t *soft_ring; 3586 3587 if (srs->srs_tx.st_arg2 == tx_ring) 3588 return (NULL); 3589 3590 for (i = 0; i < srs->srs_tx_ring_count; i++) { 3591 soft_ring = srs->srs_tx_soft_rings[i]; 3592 if (soft_ring->s_ring_tx_arg2 == tx_ring) 3593 return (soft_ring); 3594 } 3595 3596 return (NULL); 3597 } 3598 3599 /* 3600 * mac_tx_srs_wakeup 3601 * 3602 * Called when Tx desc become available. Wakeup the appropriate worker 3603 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the 3604 * state field. 3605 */ 3606 void 3607 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring) 3608 { 3609 int i; 3610 mac_soft_ring_t *sringp; 3611 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3612 3613 mutex_enter(&mac_srs->srs_lock); 3614 /* 3615 * srs_tx_ring_count == 0 is the single ring mode case. In 3616 * this mode, there will not be Tx soft rings associated 3617 * with the SRS. 3618 */ 3619 if (!MAC_TX_SOFT_RINGS(mac_srs)) { 3620 if (srs_tx->st_arg2 == ring && 3621 mac_srs->srs_state & SRS_TX_BLOCKED) { 3622 mac_srs->srs_state &= ~SRS_TX_BLOCKED; 3623 srs_tx->st_stat.mts_unblockcnt++; 3624 cv_signal(&mac_srs->srs_async); 3625 } 3626 /* 3627 * A wakeup can come before tx_srs_drain() could 3628 * grab srs lock and set SRS_TX_BLOCKED. So 3629 * always set woken_up flag when we come here. 3630 */ 3631 srs_tx->st_woken_up = B_TRUE; 3632 mutex_exit(&mac_srs->srs_lock); 3633 return; 3634 } 3635 3636 /* 3637 * If you are here, it is for FANOUT, BW_FANOUT, 3638 * AGGR_MODE or AGGR_BW_MODE case 3639 */ 3640 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) { 3641 sringp = mac_srs->srs_tx_soft_rings[i]; 3642 mutex_enter(&sringp->s_ring_lock); 3643 if (sringp->s_ring_tx_arg2 == ring) { 3644 if (sringp->s_ring_state & S_RING_BLOCK) { 3645 sringp->s_ring_state &= ~S_RING_BLOCK; 3646 sringp->s_st_stat.mts_unblockcnt++; 3647 cv_signal(&sringp->s_ring_async); 3648 } 3649 sringp->s_ring_tx_woken_up = B_TRUE; 3650 } 3651 mutex_exit(&sringp->s_ring_lock); 3652 } 3653 mutex_exit(&mac_srs->srs_lock); 3654 } 3655 3656 /* 3657 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash 3658 * the blocked clients again. 3659 */ 3660 void 3661 mac_tx_notify(mac_impl_t *mip) 3662 { 3663 i_mac_notify(mip, MAC_NOTE_TX); 3664 } 3665 3666 /* 3667 * RX SOFTRING RELATED FUNCTIONS 3668 * 3669 * These functions really belong in mac_soft_ring.c and here for 3670 * a short period. 3671 */ 3672 3673 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ 3674 /* \ 3675 * Enqueue our mblk chain. \ 3676 */ \ 3677 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \ 3678 \ 3679 if ((ringp)->s_ring_last != NULL) \ 3680 (ringp)->s_ring_last->b_next = (mp); \ 3681 else \ 3682 (ringp)->s_ring_first = (mp); \ 3683 (ringp)->s_ring_last = (tail); \ 3684 (ringp)->s_ring_count += (cnt); \ 3685 ASSERT((ringp)->s_ring_count > 0); \ 3686 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \ 3687 (ringp)->s_ring_size += sz; \ 3688 } \ 3689 } 3690 3691 /* 3692 * Default entry point to deliver a packet chain to a MAC client. 3693 * If the MAC client has flows, do the classification with these 3694 * flows as well. 3695 */ 3696 /* ARGSUSED */ 3697 void 3698 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain, 3699 mac_header_info_t *arg3) 3700 { 3701 mac_client_impl_t *mcip = arg1; 3702 3703 if (mcip->mci_nvids == 1 && 3704 !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) { 3705 /* 3706 * If the client has exactly one VID associated with it 3707 * and striping of VLAN header is not disabled, 3708 * remove the VLAN tag from the packet before 3709 * passing it on to the client's receive callback. 3710 * Note that this needs to be done after we dispatch 3711 * the packet to the promiscuous listeners of the 3712 * client, since they expect to see the whole 3713 * frame including the VLAN headers. 3714 */ 3715 mp_chain = mac_strip_vlan_tag_chain(mp_chain); 3716 } 3717 3718 mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE); 3719 } 3720 3721 /* 3722 * mac_rx_soft_ring_process 3723 * 3724 * process a chain for a given soft ring. The number of packets queued 3725 * in the SRS and its associated soft rings (including this one) is 3726 * very small (tracked by srs_poll_pkt_cnt), then allow the entering 3727 * thread (interrupt or poll thread) to do inline processing. This 3728 * helps keep the latency down under low load. 3729 * 3730 * The proc and arg for each mblk is already stored in the mblk in 3731 * appropriate places. 3732 */ 3733 /* ARGSUSED */ 3734 void 3735 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp, 3736 mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz) 3737 { 3738 mac_direct_rx_t proc; 3739 void *arg1; 3740 mac_resource_handle_t arg2; 3741 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 3742 3743 ASSERT(ringp != NULL); 3744 ASSERT(mp_chain != NULL); 3745 ASSERT(tail != NULL); 3746 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 3747 3748 mutex_enter(&ringp->s_ring_lock); 3749 ringp->s_ring_total_inpkt += cnt; 3750 ringp->s_ring_total_rbytes += sz; 3751 if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) && 3752 !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) { 3753 /* If on processor or blanking on, then enqueue and return */ 3754 if (ringp->s_ring_state & S_RING_BLANK || 3755 ringp->s_ring_state & S_RING_PROC) { 3756 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 3757 mutex_exit(&ringp->s_ring_lock); 3758 return; 3759 } 3760 proc = ringp->s_ring_rx_func; 3761 arg1 = ringp->s_ring_rx_arg1; 3762 arg2 = ringp->s_ring_rx_arg2; 3763 /* 3764 * See if anything is already queued. If we are the 3765 * first packet, do inline processing else queue the 3766 * packet and do the drain. 3767 */ 3768 if (ringp->s_ring_first == NULL) { 3769 /* 3770 * Fast-path, ok to process and nothing queued. 3771 */ 3772 ringp->s_ring_run = curthread; 3773 ringp->s_ring_state |= (S_RING_PROC); 3774 3775 mutex_exit(&ringp->s_ring_lock); 3776 3777 /* 3778 * We are the chain of 1 packet so 3779 * go through this fast path. 3780 */ 3781 ASSERT(mp_chain->b_next == NULL); 3782 3783 (*proc)(arg1, arg2, mp_chain, NULL); 3784 3785 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 3786 /* 3787 * If we have a soft ring set which is doing 3788 * bandwidth control, we need to decrement 3789 * srs_size and count so it the SRS can have a 3790 * accurate idea of what is the real data 3791 * queued between SRS and its soft rings. We 3792 * decrement the counters only when the packet 3793 * gets processed by both SRS and the soft ring. 3794 */ 3795 mutex_enter(&mac_srs->srs_lock); 3796 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 3797 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); 3798 mutex_exit(&mac_srs->srs_lock); 3799 3800 mutex_enter(&ringp->s_ring_lock); 3801 ringp->s_ring_run = NULL; 3802 ringp->s_ring_state &= ~S_RING_PROC; 3803 if (ringp->s_ring_state & S_RING_CLIENT_WAIT) 3804 cv_signal(&ringp->s_ring_client_cv); 3805 3806 if ((ringp->s_ring_first == NULL) || 3807 (ringp->s_ring_state & S_RING_BLANK)) { 3808 /* 3809 * We processed inline our packet and 3810 * nothing new has arrived or our 3811 * receiver doesn't want to receive 3812 * any packets. We are done. 3813 */ 3814 mutex_exit(&ringp->s_ring_lock); 3815 return; 3816 } 3817 } else { 3818 SOFT_RING_ENQUEUE_CHAIN(ringp, 3819 mp_chain, tail, cnt, sz); 3820 } 3821 3822 /* 3823 * We are here because either we couldn't do inline 3824 * processing (because something was already 3825 * queued), or we had a chain of more than one 3826 * packet, or something else arrived after we were 3827 * done with inline processing. 3828 */ 3829 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); 3830 ASSERT(ringp->s_ring_first != NULL); 3831 3832 ringp->s_ring_drain_func(ringp); 3833 mutex_exit(&ringp->s_ring_lock); 3834 return; 3835 } else { 3836 /* ST_RING_WORKER_ONLY case */ 3837 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 3838 mac_soft_ring_worker_wakeup(ringp); 3839 mutex_exit(&ringp->s_ring_lock); 3840 } 3841 } 3842 3843 /* 3844 * TX SOFTRING RELATED FUNCTIONS 3845 * 3846 * These functions really belong in mac_soft_ring.c and here for 3847 * a short period. 3848 */ 3849 3850 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ 3851 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \ 3852 ringp->s_ring_state |= S_RING_ENQUEUED; \ 3853 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \ 3854 } 3855 3856 /* 3857 * mac_tx_sring_queued 3858 * 3859 * When we are out of transmit descriptors and we already have a 3860 * queue that exceeds hiwat (or the client called us with 3861 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the 3862 * soft ring pointer as the opaque cookie for the client enable 3863 * flow control. 3864 */ 3865 static mac_tx_cookie_t 3866 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag, 3867 mblk_t **ret_mp) 3868 { 3869 int cnt; 3870 size_t sz; 3871 mblk_t *tail; 3872 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 3873 mac_tx_cookie_t cookie = NULL; 3874 boolean_t wakeup_worker = B_TRUE; 3875 3876 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); 3877 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3878 if (flag & MAC_DROP_ON_NO_DESC) { 3879 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); 3880 /* increment freed stats */ 3881 ringp->s_ring_drops += cnt; 3882 cookie = (mac_tx_cookie_t)ringp; 3883 } else { 3884 if (ringp->s_ring_first != NULL) 3885 wakeup_worker = B_FALSE; 3886 3887 if (flag & MAC_TX_NO_ENQUEUE) { 3888 /* 3889 * If QUEUED is not set, queue the packet 3890 * and let mac_tx_soft_ring_drain() set 3891 * the TX_BLOCKED bit for the reasons 3892 * explained above. Otherwise, return the 3893 * mblks. 3894 */ 3895 if (wakeup_worker) { 3896 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, 3897 mp_chain, tail, cnt, sz); 3898 } else { 3899 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT; 3900 cookie = (mac_tx_cookie_t)ringp; 3901 *ret_mp = mp_chain; 3902 } 3903 } else { 3904 boolean_t enqueue = B_TRUE; 3905 3906 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { 3907 /* 3908 * flow-controlled. Store ringp in cookie 3909 * so that it can be returned as 3910 * mac_tx_cookie_t to client 3911 */ 3912 ringp->s_ring_state |= S_RING_TX_HIWAT; 3913 cookie = (mac_tx_cookie_t)ringp; 3914 ringp->s_ring_hiwat_cnt++; 3915 if (ringp->s_ring_count > 3916 ringp->s_ring_tx_max_q_cnt) { 3917 /* increment freed stats */ 3918 ringp->s_ring_drops += cnt; 3919 /* 3920 * b_prev may be set to the fanout hint 3921 * hence can't use freemsg directly 3922 */ 3923 mac_pkt_drop(NULL, NULL, 3924 mp_chain, B_FALSE); 3925 DTRACE_PROBE1(tx_queued_hiwat, 3926 mac_soft_ring_t *, ringp); 3927 enqueue = B_FALSE; 3928 } 3929 } 3930 if (enqueue) { 3931 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, 3932 tail, cnt, sz); 3933 } 3934 } 3935 if (wakeup_worker) 3936 cv_signal(&ringp->s_ring_async); 3937 } 3938 return (cookie); 3939 } 3940 3941 3942 /* 3943 * mac_tx_soft_ring_process 3944 * 3945 * This routine is called when fanning out outgoing traffic among 3946 * multipe Tx rings. 3947 * Note that a soft ring is associated with a h/w Tx ring. 3948 */ 3949 mac_tx_cookie_t 3950 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain, 3951 uint16_t flag, mblk_t **ret_mp) 3952 { 3953 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 3954 int cnt; 3955 size_t sz; 3956 mblk_t *tail; 3957 mac_tx_cookie_t cookie = NULL; 3958 3959 ASSERT(ringp != NULL); 3960 ASSERT(mp_chain != NULL); 3961 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 3962 /* 3963 * The following modes can come here: SRS_TX_BW_FANOUT, 3964 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR. 3965 */ 3966 ASSERT(MAC_TX_SOFT_RINGS(mac_srs)); 3967 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3968 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT || 3969 mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 3970 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 3971 3972 if (ringp->s_ring_type & ST_RING_WORKER_ONLY) { 3973 /* Serialization mode */ 3974 3975 mutex_enter(&ringp->s_ring_lock); 3976 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { 3977 cookie = mac_tx_sring_enqueue(ringp, mp_chain, 3978 flag, ret_mp); 3979 mutex_exit(&ringp->s_ring_lock); 3980 return (cookie); 3981 } 3982 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3983 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 3984 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) { 3985 /* 3986 * If ring is blocked due to lack of Tx 3987 * descs, just return. Worker thread 3988 * will get scheduled when Tx desc's 3989 * become available. 3990 */ 3991 mutex_exit(&ringp->s_ring_lock); 3992 return (cookie); 3993 } 3994 mac_soft_ring_worker_wakeup(ringp); 3995 mutex_exit(&ringp->s_ring_lock); 3996 return (cookie); 3997 } else { 3998 /* Default fanout mode */ 3999 /* 4000 * S_RING_BLOCKED is set when underlying NIC runs 4001 * out of Tx descs and messages start getting 4002 * queued. It won't get reset until 4003 * tx_srs_drain() completely drains out the 4004 * messages. 4005 */ 4006 mac_tx_stats_t stats; 4007 4008 if (ringp->s_ring_state & S_RING_ENQUEUED) { 4009 /* Tx descs/resources not available */ 4010 mutex_enter(&ringp->s_ring_lock); 4011 if (ringp->s_ring_state & S_RING_ENQUEUED) { 4012 cookie = mac_tx_sring_enqueue(ringp, mp_chain, 4013 flag, ret_mp); 4014 mutex_exit(&ringp->s_ring_lock); 4015 return (cookie); 4016 } 4017 /* 4018 * While we were computing mblk count, the 4019 * flow control condition got relieved. 4020 * Continue with the transmission. 4021 */ 4022 mutex_exit(&ringp->s_ring_lock); 4023 } 4024 4025 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1, 4026 ringp->s_ring_tx_arg2, mp_chain, &stats); 4027 4028 /* 4029 * Multiple threads could be here sending packets. 4030 * Under such conditions, it is not possible to 4031 * automically set S_RING_BLOCKED bit to indicate 4032 * out of tx desc condition. To atomically set 4033 * this, we queue the returned packet and do 4034 * the setting of S_RING_BLOCKED in 4035 * mac_tx_soft_ring_drain(). 4036 */ 4037 if (mp_chain != NULL) { 4038 mutex_enter(&ringp->s_ring_lock); 4039 cookie = 4040 mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp); 4041 mutex_exit(&ringp->s_ring_lock); 4042 return (cookie); 4043 } 4044 SRS_TX_STATS_UPDATE(mac_srs, &stats); 4045 SOFTRING_TX_STATS_UPDATE(ringp, &stats); 4046 4047 return (NULL); 4048 } 4049 } 4050