1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/conf.h> 29 #include <sys/id_space.h> 30 #include <sys/esunddi.h> 31 #include <sys/stat.h> 32 #include <sys/mkdev.h> 33 #include <sys/stream.h> 34 #include <sys/strsubr.h> 35 #include <sys/dlpi.h> 36 #include <sys/modhash.h> 37 #include <sys/mac.h> 38 #include <sys/mac_provider.h> 39 #include <sys/mac_impl.h> 40 #include <sys/mac_client_impl.h> 41 #include <sys/mac_client_priv.h> 42 #include <sys/mac_soft_ring.h> 43 #include <sys/mac_stat.h> 44 #include <sys/dld.h> 45 #include <sys/modctl.h> 46 #include <sys/fs/dv_node.h> 47 #include <sys/thread.h> 48 #include <sys/proc.h> 49 #include <sys/callb.h> 50 #include <sys/cpuvar.h> 51 #include <sys/atomic.h> 52 #include <sys/sdt.h> 53 #include <sys/mac_flow.h> 54 #include <sys/ddi_intr_impl.h> 55 #include <sys/disp.h> 56 #include <sys/sdt.h> 57 #include <sys/pattr.h> 58 #include <sys/strsun.h> 59 60 /* 61 * MAC Provider Interface. 62 * 63 * Interface for GLDv3 compatible NIC drivers. 64 */ 65 66 static void i_mac_notify_thread(void *); 67 68 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 69 70 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 71 mac_fanout_recompute, /* MAC_NOTE_LINK */ 72 NULL, /* MAC_NOTE_UNICST */ 73 NULL, /* MAC_NOTE_TX */ 74 NULL, /* MAC_NOTE_DEVPROMISC */ 75 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 76 NULL, /* MAC_NOTE_SDU_SIZE */ 77 NULL, /* MAC_NOTE_MARGIN */ 78 NULL, /* MAC_NOTE_CAPAB_CHG */ 79 NULL /* MAC_NOTE_LOWLINK */ 80 }; 81 82 /* 83 * Driver support functions. 84 */ 85 86 /* REGISTRATION */ 87 88 mac_register_t * 89 mac_alloc(uint_t mac_version) 90 { 91 mac_register_t *mregp; 92 93 /* 94 * Make sure there isn't a version mismatch between the driver and 95 * the framework. In the future, if multiple versions are 96 * supported, this check could become more sophisticated. 97 */ 98 if (mac_version != MAC_VERSION) 99 return (NULL); 100 101 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 102 mregp->m_version = mac_version; 103 return (mregp); 104 } 105 106 void 107 mac_free(mac_register_t *mregp) 108 { 109 kmem_free(mregp, sizeof (mac_register_t)); 110 } 111 112 /* 113 * mac_register() is how drivers register new MACs with the GLDv3 114 * framework. The mregp argument is allocated by drivers using the 115 * mac_alloc() function, and can be freed using mac_free() immediately upon 116 * return from mac_register(). Upon success (0 return value), the mhp 117 * opaque pointer becomes the driver's handle to its MAC interface, and is 118 * the argument to all other mac module entry points. 119 */ 120 /* ARGSUSED */ 121 int 122 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 123 { 124 mac_impl_t *mip; 125 mactype_t *mtype; 126 int err = EINVAL; 127 struct devnames *dnp = NULL; 128 uint_t instance; 129 boolean_t style1_created = B_FALSE; 130 boolean_t style2_created = B_FALSE; 131 char *driver; 132 minor_t minor = 0; 133 134 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 135 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 136 return (EINVAL); 137 138 /* Find the required MAC-Type plugin. */ 139 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 140 return (EINVAL); 141 142 /* Create a mac_impl_t to represent this MAC. */ 143 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 144 145 /* 146 * The mac is not ready for open yet. 147 */ 148 mip->mi_state_flags |= MIS_DISABLED; 149 150 /* 151 * When a mac is registered, the m_instance field can be set to: 152 * 153 * 0: Get the mac's instance number from m_dip. 154 * This is usually used for physical device dips. 155 * 156 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 157 * For example, when an aggregation is created with the key option, 158 * "key" will be used as the instance number. 159 * 160 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 161 * This is often used when a MAC of a virtual link is registered 162 * (e.g., aggregation when "key" is not specified, or vnic). 163 * 164 * Note that the instance number is used to derive the mi_minor field 165 * of mac_impl_t, which will then be used to derive the name of kstats 166 * and the devfs nodes. The first 2 cases are needed to preserve 167 * backward compatibility. 168 */ 169 switch (mregp->m_instance) { 170 case 0: 171 instance = ddi_get_instance(mregp->m_dip); 172 break; 173 case ((uint_t)-1): 174 minor = mac_minor_hold(B_TRUE); 175 if (minor == 0) { 176 err = ENOSPC; 177 goto fail; 178 } 179 instance = minor - 1; 180 break; 181 default: 182 instance = mregp->m_instance; 183 if (instance >= MAC_MAX_MINOR) { 184 err = EINVAL; 185 goto fail; 186 } 187 break; 188 } 189 190 mip->mi_minor = (minor_t)(instance + 1); 191 mip->mi_dip = mregp->m_dip; 192 mip->mi_clients_list = NULL; 193 mip->mi_nclients = 0; 194 195 /* Set the default IEEE Port VLAN Identifier */ 196 mip->mi_pvid = 1; 197 198 /* Default bridge link learning protection values */ 199 mip->mi_llimit = 1000; 200 mip->mi_ldecay = 200; 201 202 driver = (char *)ddi_driver_name(mip->mi_dip); 203 204 /* Construct the MAC name as <drvname><instance> */ 205 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 206 driver, instance); 207 208 mip->mi_driver = mregp->m_driver; 209 210 mip->mi_type = mtype; 211 mip->mi_margin = mregp->m_margin; 212 mip->mi_info.mi_media = mtype->mt_type; 213 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 214 if (mregp->m_max_sdu <= mregp->m_min_sdu) 215 goto fail; 216 mip->mi_sdu_min = mregp->m_min_sdu; 217 mip->mi_sdu_max = mregp->m_max_sdu; 218 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 219 /* 220 * If the media supports a broadcast address, cache a pointer to it 221 * in the mac_info_t so that upper layers can use it. 222 */ 223 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 224 225 mip->mi_v12n_level = mregp->m_v12n; 226 227 /* 228 * Copy the unicast source address into the mac_info_t, but only if 229 * the MAC-Type defines a non-zero address length. We need to 230 * handle MAC-Types that have an address length of 0 231 * (point-to-point protocol MACs for example). 232 */ 233 if (mip->mi_type->mt_addr_length > 0) { 234 if (mregp->m_src_addr == NULL) 235 goto fail; 236 mip->mi_info.mi_unicst_addr = 237 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 238 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 239 mip->mi_type->mt_addr_length); 240 241 /* 242 * Copy the fixed 'factory' MAC address from the immutable 243 * info. This is taken to be the MAC address currently in 244 * use. 245 */ 246 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 247 mip->mi_type->mt_addr_length); 248 249 /* 250 * At this point, we should set up the classification 251 * rules etc but we delay it till mac_open() so that 252 * the resource discovery has taken place and we 253 * know someone wants to use the device. Otherwise 254 * memory gets allocated for Rx ring structures even 255 * during probe. 256 */ 257 258 /* Copy the destination address if one is provided. */ 259 if (mregp->m_dst_addr != NULL) { 260 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 261 mip->mi_type->mt_addr_length); 262 mip->mi_dstaddr_set = B_TRUE; 263 } 264 } else if (mregp->m_src_addr != NULL) { 265 goto fail; 266 } 267 268 /* 269 * The format of the m_pdata is specific to the plugin. It is 270 * passed in as an argument to all of the plugin callbacks. The 271 * driver can update this information by calling 272 * mac_pdata_update(). 273 */ 274 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 275 /* 276 * Verify if the supplied plugin data is valid. Note that 277 * even if the caller passed in a NULL pointer as plugin data, 278 * we still need to verify if that's valid as the plugin may 279 * require plugin data to function. 280 */ 281 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 282 mregp->m_pdata_size)) { 283 goto fail; 284 } 285 if (mregp->m_pdata != NULL) { 286 mip->mi_pdata = 287 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 288 bcopy(mregp->m_pdata, mip->mi_pdata, 289 mregp->m_pdata_size); 290 mip->mi_pdata_size = mregp->m_pdata_size; 291 } 292 } else if (mregp->m_pdata != NULL) { 293 /* 294 * The caller supplied non-NULL plugin data, but the plugin 295 * does not recognize plugin data. 296 */ 297 err = EINVAL; 298 goto fail; 299 } 300 301 /* 302 * Register the private properties. 303 */ 304 mac_register_priv_prop(mip, mregp->m_priv_props); 305 306 /* 307 * Stash the driver callbacks into the mac_impl_t, but first sanity 308 * check to make sure all mandatory callbacks are set. 309 */ 310 if (mregp->m_callbacks->mc_getstat == NULL || 311 mregp->m_callbacks->mc_start == NULL || 312 mregp->m_callbacks->mc_stop == NULL || 313 mregp->m_callbacks->mc_setpromisc == NULL || 314 mregp->m_callbacks->mc_multicst == NULL) { 315 goto fail; 316 } 317 mip->mi_callbacks = mregp->m_callbacks; 318 319 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 320 &mip->mi_capab_legacy)) { 321 mip->mi_state_flags |= MIS_LEGACY; 322 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 323 } else { 324 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 325 mip->mi_minor); 326 } 327 328 /* 329 * Allocate a notification thread. thread_create blocks for memory 330 * if needed, it never fails. 331 */ 332 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 333 mip, 0, &p0, TS_RUN, minclsyspri); 334 335 /* 336 * Initialize the capabilities 337 */ 338 339 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 340 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 341 342 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 343 mip->mi_state_flags |= MIS_IS_VNIC; 344 345 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 346 mip->mi_state_flags |= MIS_IS_AGGR; 347 348 mac_addr_factory_init(mip); 349 350 /* 351 * Enforce the virtrualization level registered. 352 */ 353 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 354 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 355 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 356 goto fail; 357 358 /* 359 * The driver needs to register at least rx rings for this 360 * virtualization level. 361 */ 362 if (mip->mi_rx_groups == NULL) 363 goto fail; 364 } 365 366 /* 367 * The driver must set mc_unicst entry point to NULL when it advertises 368 * CAP_RINGS for rx groups. 369 */ 370 if (mip->mi_rx_groups != NULL) { 371 if (mregp->m_callbacks->mc_unicst != NULL) 372 goto fail; 373 } else { 374 if (mregp->m_callbacks->mc_unicst == NULL) 375 goto fail; 376 } 377 378 /* 379 * Initialize MAC addresses. Must be called after mac_init_rings(). 380 */ 381 mac_init_macaddr(mip); 382 383 mip->mi_share_capab.ms_snum = 0; 384 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 385 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 386 &mip->mi_share_capab); 387 } 388 389 /* 390 * Initialize the kstats for this device. 391 */ 392 mac_driver_stat_create(mip); 393 394 /* Zero out any properties. */ 395 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 396 397 if (mip->mi_minor <= MAC_MAX_MINOR) { 398 /* Create a style-2 DLPI device */ 399 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 400 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 401 goto fail; 402 style2_created = B_TRUE; 403 404 /* Create a style-1 DLPI device */ 405 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 406 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 407 goto fail; 408 style1_created = B_TRUE; 409 } 410 411 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 412 413 rw_enter(&i_mac_impl_lock, RW_WRITER); 414 if (mod_hash_insert(i_mac_impl_hash, 415 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 416 rw_exit(&i_mac_impl_lock); 417 err = EEXIST; 418 goto fail; 419 } 420 421 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 422 (mac_impl_t *), mip); 423 424 /* 425 * Mark the MAC to be ready for open. 426 */ 427 mip->mi_state_flags &= ~MIS_DISABLED; 428 rw_exit(&i_mac_impl_lock); 429 430 atomic_inc_32(&i_mac_impl_count); 431 432 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 433 *mhp = (mac_handle_t)mip; 434 return (0); 435 436 fail: 437 if (style1_created) 438 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 439 440 if (style2_created) 441 ddi_remove_minor_node(mip->mi_dip, driver); 442 443 mac_addr_factory_fini(mip); 444 445 /* Clean up registered MAC addresses */ 446 mac_fini_macaddr(mip); 447 448 /* Clean up registered rings */ 449 mac_free_rings(mip, MAC_RING_TYPE_RX); 450 mac_free_rings(mip, MAC_RING_TYPE_TX); 451 452 /* Clean up notification thread */ 453 if (mip->mi_notify_thread != NULL) 454 i_mac_notify_exit(mip); 455 456 if (mip->mi_info.mi_unicst_addr != NULL) { 457 kmem_free(mip->mi_info.mi_unicst_addr, 458 mip->mi_type->mt_addr_length); 459 mip->mi_info.mi_unicst_addr = NULL; 460 } 461 462 mac_driver_stat_delete(mip); 463 464 if (mip->mi_type != NULL) { 465 atomic_dec_32(&mip->mi_type->mt_ref); 466 mip->mi_type = NULL; 467 } 468 469 if (mip->mi_pdata != NULL) { 470 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 471 mip->mi_pdata = NULL; 472 mip->mi_pdata_size = 0; 473 } 474 475 if (minor != 0) { 476 ASSERT(minor > MAC_MAX_MINOR); 477 mac_minor_rele(minor); 478 } 479 480 mip->mi_state_flags = 0; 481 mac_unregister_priv_prop(mip); 482 483 /* 484 * Clear the state before destroying the mac_impl_t 485 */ 486 mip->mi_state_flags = 0; 487 488 kmem_cache_free(i_mac_impl_cachep, mip); 489 return (err); 490 } 491 492 /* 493 * Unregister from the GLDv3 framework 494 */ 495 int 496 mac_unregister(mac_handle_t mh) 497 { 498 int err; 499 mac_impl_t *mip = (mac_impl_t *)mh; 500 mod_hash_val_t val; 501 mac_margin_req_t *mmr, *nextmmr; 502 503 /* Fail the unregister if there are any open references to this mac. */ 504 if ((err = mac_disable_nowait(mh)) != 0) 505 return (err); 506 507 /* 508 * Clean up notification thread and wait for it to exit. 509 */ 510 i_mac_notify_exit(mip); 511 512 i_mac_perim_enter(mip); 513 514 /* 515 * There is still resource properties configured over this mac. 516 */ 517 if (mip->mi_resource_props.mrp_mask != 0) 518 mac_fastpath_enable((mac_handle_t)mip); 519 520 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 521 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 522 ddi_remove_minor_node(mip->mi_dip, 523 (char *)ddi_driver_name(mip->mi_dip)); 524 } 525 526 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 527 MIS_EXCLUSIVE)); 528 529 mac_driver_stat_delete(mip); 530 531 (void) mod_hash_remove(i_mac_impl_hash, 532 (mod_hash_key_t)mip->mi_name, &val); 533 ASSERT(mip == (mac_impl_t *)val); 534 535 ASSERT(i_mac_impl_count > 0); 536 atomic_dec_32(&i_mac_impl_count); 537 538 if (mip->mi_pdata != NULL) 539 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 540 mip->mi_pdata = NULL; 541 mip->mi_pdata_size = 0; 542 543 /* 544 * Free the list of margin request. 545 */ 546 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 547 nextmmr = mmr->mmr_nextp; 548 kmem_free(mmr, sizeof (mac_margin_req_t)); 549 } 550 mip->mi_mmrp = NULL; 551 552 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 553 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 554 mip->mi_info.mi_unicst_addr = NULL; 555 556 atomic_dec_32(&mip->mi_type->mt_ref); 557 mip->mi_type = NULL; 558 559 /* 560 * Free the primary MAC address. 561 */ 562 mac_fini_macaddr(mip); 563 564 /* 565 * free all rings 566 */ 567 mac_free_rings(mip, MAC_RING_TYPE_RX); 568 mac_free_rings(mip, MAC_RING_TYPE_TX); 569 570 mac_addr_factory_fini(mip); 571 572 bzero(mip->mi_addr, MAXMACADDRLEN); 573 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 574 575 /* and the flows */ 576 mac_flow_tab_destroy(mip->mi_flow_tab); 577 mip->mi_flow_tab = NULL; 578 579 if (mip->mi_minor > MAC_MAX_MINOR) 580 mac_minor_rele(mip->mi_minor); 581 582 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 583 584 /* 585 * Reset the perim related fields to default values before 586 * kmem_cache_free 587 */ 588 i_mac_perim_exit(mip); 589 mip->mi_state_flags = 0; 590 591 mac_unregister_priv_prop(mip); 592 593 ASSERT(mip->mi_bridge_link == NULL); 594 kmem_cache_free(i_mac_impl_cachep, mip); 595 596 return (0); 597 } 598 599 /* DATA RECEPTION */ 600 601 /* 602 * This function is invoked for packets received by the MAC driver in 603 * interrupt context. The ring generation number provided by the driver 604 * is matched with the ring generation number held in MAC. If they do not 605 * match, received packets are considered stale packets coming from an older 606 * assignment of the ring. Drop them. 607 */ 608 void 609 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 610 uint64_t mr_gen_num) 611 { 612 mac_ring_t *mr = (mac_ring_t *)mrh; 613 614 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 615 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 616 mr->mr_gen_num, uint64_t, mr_gen_num); 617 freemsgchain(mp_chain); 618 return; 619 } 620 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 621 } 622 623 /* 624 * This function is invoked for each packet received by the underlying driver. 625 */ 626 void 627 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 628 { 629 mac_impl_t *mip = (mac_impl_t *)mh; 630 631 /* 632 * Check if the link is part of a bridge. If not, then we don't need 633 * to take the lock to remain consistent. Make this common case 634 * lock-free and tail-call optimized. 635 */ 636 if (mip->mi_bridge_link == NULL) { 637 mac_rx_common(mh, mrh, mp_chain); 638 } else { 639 /* 640 * Once we take a reference on the bridge link, the bridge 641 * module itself can't unload, so the callback pointers are 642 * stable. 643 */ 644 mutex_enter(&mip->mi_bridge_lock); 645 if ((mh = mip->mi_bridge_link) != NULL) 646 mac_bridge_ref_cb(mh, B_TRUE); 647 mutex_exit(&mip->mi_bridge_lock); 648 if (mh == NULL) { 649 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 650 } else { 651 mac_bridge_rx_cb(mh, mrh, mp_chain); 652 mac_bridge_ref_cb(mh, B_FALSE); 653 } 654 } 655 } 656 657 /* 658 * Special case function: this allows snooping of packets transmitted and 659 * received by TRILL. By design, they go directly into the TRILL module. 660 */ 661 void 662 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 663 { 664 mac_impl_t *mip = (mac_impl_t *)mh; 665 666 if (mip->mi_promisc_list != NULL) 667 mac_promisc_dispatch(mip, mp, NULL); 668 } 669 670 /* 671 * This is the upward reentry point for packets arriving from the bridging 672 * module and from mac_rx for links not part of a bridge. 673 */ 674 void 675 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 676 { 677 mac_impl_t *mip = (mac_impl_t *)mh; 678 mac_ring_t *mr = (mac_ring_t *)mrh; 679 mac_soft_ring_set_t *mac_srs; 680 mblk_t *bp = mp_chain; 681 boolean_t hw_classified = B_FALSE; 682 683 /* 684 * If there are any promiscuous mode callbacks defined for 685 * this MAC, pass them a copy if appropriate. 686 */ 687 if (mip->mi_promisc_list != NULL) 688 mac_promisc_dispatch(mip, mp_chain, NULL); 689 690 if (mr != NULL) { 691 /* 692 * If the SRS teardown has started, just return. The 'mr' 693 * continues to be valid until the driver unregisters the mac. 694 * Hardware classified packets will not make their way up 695 * beyond this point once the teardown has started. The driver 696 * is never passed a pointer to a flow entry or SRS or any 697 * structure that can be freed much before mac_unregister. 698 */ 699 mutex_enter(&mr->mr_lock); 700 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 701 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 702 mutex_exit(&mr->mr_lock); 703 freemsgchain(mp_chain); 704 return; 705 } 706 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 707 hw_classified = B_TRUE; 708 MR_REFHOLD_LOCKED(mr); 709 } 710 mutex_exit(&mr->mr_lock); 711 712 /* 713 * We check if an SRS is controlling this ring. 714 * If so, we can directly call the srs_lower_proc 715 * routine otherwise we need to go through mac_rx_classify 716 * to reach the right place. 717 */ 718 if (hw_classified) { 719 mac_srs = mr->mr_srs; 720 /* 721 * This is supposed to be the fast path. 722 * All packets received though here were steered by 723 * the hardware classifier, and share the same 724 * MAC header info. 725 */ 726 mac_srs->srs_rx.sr_lower_proc(mh, 727 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 728 MR_REFRELE(mr); 729 return; 730 } 731 /* We'll fall through to software classification */ 732 } else { 733 flow_entry_t *flent; 734 int err; 735 736 rw_enter(&mip->mi_rw_lock, RW_READER); 737 if (mip->mi_single_active_client != NULL) { 738 flent = mip->mi_single_active_client->mci_flent_list; 739 FLOW_TRY_REFHOLD(flent, err); 740 rw_exit(&mip->mi_rw_lock); 741 if (err == 0) { 742 (flent->fe_cb_fn)(flent->fe_cb_arg1, 743 flent->fe_cb_arg2, mp_chain, B_FALSE); 744 FLOW_REFRELE(flent); 745 return; 746 } 747 } else { 748 rw_exit(&mip->mi_rw_lock); 749 } 750 } 751 752 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 753 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 754 return; 755 } 756 757 freemsgchain(bp); 758 } 759 760 /* DATA TRANSMISSION */ 761 762 /* 763 * A driver's notification to resume transmission, in case of a provider 764 * without TX rings. 765 */ 766 void 767 mac_tx_update(mac_handle_t mh) 768 { 769 mac_tx_ring_update(mh, NULL); 770 } 771 772 /* 773 * A driver's notification to resume transmission on the specified TX ring. 774 */ 775 void 776 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 777 { 778 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 779 } 780 781 /* LINK STATE */ 782 /* 783 * Notify the MAC layer about a link state change 784 */ 785 void 786 mac_link_update(mac_handle_t mh, link_state_t link) 787 { 788 mac_impl_t *mip = (mac_impl_t *)mh; 789 790 /* 791 * Save the link state. 792 */ 793 mip->mi_lowlinkstate = link; 794 795 /* 796 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 797 * thread to deliver both lower and upper notifications. 798 */ 799 i_mac_notify(mip, MAC_NOTE_LOWLINK); 800 } 801 802 /* 803 * Notify the MAC layer about a link state change due to bridging. 804 */ 805 void 806 mac_link_redo(mac_handle_t mh, link_state_t link) 807 { 808 mac_impl_t *mip = (mac_impl_t *)mh; 809 810 /* 811 * Save the link state. 812 */ 813 mip->mi_linkstate = link; 814 815 /* 816 * Send a MAC_NOTE_LINK notification. Only upper notifications are 817 * made. 818 */ 819 i_mac_notify(mip, MAC_NOTE_LINK); 820 } 821 822 /* MINOR NODE HANDLING */ 823 824 /* 825 * Given a dev_t, return the instance number (PPA) associated with it. 826 * Drivers can use this in their getinfo(9e) implementation to lookup 827 * the instance number (i.e. PPA) of the device, to use as an index to 828 * their own array of soft state structures. 829 * 830 * Returns -1 on error. 831 */ 832 int 833 mac_devt_to_instance(dev_t devt) 834 { 835 return (dld_devt_to_instance(devt)); 836 } 837 838 /* 839 * This function returns the first minor number that is available for 840 * driver private use. All minor numbers smaller than this are 841 * reserved for GLDv3 use. 842 */ 843 minor_t 844 mac_private_minor(void) 845 { 846 return (MAC_PRIVATE_MINOR); 847 } 848 849 /* OTHER CONTROL INFORMATION */ 850 851 /* 852 * A driver notified us that its primary MAC address has changed. 853 */ 854 void 855 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 856 { 857 mac_impl_t *mip = (mac_impl_t *)mh; 858 859 if (mip->mi_type->mt_addr_length == 0) 860 return; 861 862 i_mac_perim_enter(mip); 863 864 /* 865 * If address changes, freshen the MAC address value and update 866 * all MAC clients that share this MAC address. 867 */ 868 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 869 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 870 (uint8_t *)addr); 871 } 872 873 i_mac_perim_exit(mip); 874 875 /* 876 * Send a MAC_NOTE_UNICST notification. 877 */ 878 i_mac_notify(mip, MAC_NOTE_UNICST); 879 } 880 881 void 882 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 883 { 884 mac_impl_t *mip = (mac_impl_t *)mh; 885 886 if (mip->mi_type->mt_addr_length == 0) 887 return; 888 889 i_mac_perim_enter(mip); 890 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 891 i_mac_perim_exit(mip); 892 i_mac_notify(mip, MAC_NOTE_DEST); 893 } 894 895 /* 896 * MAC plugin information changed. 897 */ 898 int 899 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 900 { 901 mac_impl_t *mip = (mac_impl_t *)mh; 902 903 /* 904 * Verify that the plugin supports MAC plugin data and that the 905 * supplied data is valid. 906 */ 907 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 908 return (EINVAL); 909 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 910 return (EINVAL); 911 912 if (mip->mi_pdata != NULL) 913 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 914 915 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 916 bcopy(mac_pdata, mip->mi_pdata, dsize); 917 mip->mi_pdata_size = dsize; 918 919 /* 920 * Since the MAC plugin data is used to construct MAC headers that 921 * were cached in fast-path headers, we need to flush fast-path 922 * information for links associated with this mac. 923 */ 924 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 925 return (0); 926 } 927 928 /* 929 * Invoked by driver as well as the framework to notify its capability change. 930 */ 931 void 932 mac_capab_update(mac_handle_t mh) 933 { 934 /* Send MAC_NOTE_CAPAB_CHG notification */ 935 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 936 } 937 938 int 939 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 940 { 941 mac_impl_t *mip = (mac_impl_t *)mh; 942 943 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 944 return (EINVAL); 945 mip->mi_sdu_max = sdu_max; 946 947 /* Send a MAC_NOTE_SDU_SIZE notification. */ 948 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 949 return (0); 950 } 951 952 static void 953 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 954 { 955 mac_client_impl_t *mcip; 956 flow_entry_t *flent; 957 mac_soft_ring_set_t *mac_rx_srs; 958 mac_cpus_t *srs_cpu; 959 int i; 960 961 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 962 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 963 /* interrupt can be re-targeted */ 964 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 965 flent = mcip->mci_flent; 966 if (ring->mr_type == MAC_RING_TYPE_RX) { 967 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 968 mac_rx_srs = flent->fe_rx_srs[i]; 969 if (mac_rx_srs->srs_ring != ring) 970 continue; 971 srs_cpu = &mac_rx_srs->srs_cpu; 972 mutex_enter(&cpu_lock); 973 mac_rx_srs_retarget_intr(mac_rx_srs, 974 srs_cpu->mc_rx_intr_cpu); 975 mutex_exit(&cpu_lock); 976 break; 977 } 978 } else { 979 if (flent->fe_tx_srs != NULL) { 980 mutex_enter(&cpu_lock); 981 mac_tx_srs_retarget_intr( 982 flent->fe_tx_srs); 983 mutex_exit(&cpu_lock); 984 } 985 } 986 } 987 } 988 989 /* 990 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 991 * their clients. There is a 1-1 mapping pseudo ring and the hardware 992 * ring. ddi interrupt handles are exported from the hardware ring to 993 * the pseudo ring. Thus when the interrupt handle changes, clients of 994 * aggr that are using the handle need to use the new handle and 995 * re-target their interrupts. 996 */ 997 static void 998 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 999 ddi_intr_handle_t ddh) 1000 { 1001 mac_ring_t *pring; 1002 mac_group_t *pgroup; 1003 mac_impl_t *pmip; 1004 char macname[MAXNAMELEN]; 1005 mac_perim_handle_t p_mph; 1006 uint64_t saved_gen_num; 1007 1008 again: 1009 pring = (mac_ring_t *)ring->mr_prh; 1010 pgroup = (mac_group_t *)pring->mr_gh; 1011 pmip = (mac_impl_t *)pgroup->mrg_mh; 1012 saved_gen_num = ring->mr_gen_num; 1013 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1014 /* 1015 * We need to enter aggr's perimeter. The locking hierarchy 1016 * dictates that aggr's perimeter should be entered first 1017 * and then the port's perimeter. So drop the port's 1018 * perimeter, enter aggr's and then re-enter port's 1019 * perimeter. 1020 */ 1021 i_mac_perim_exit(mip); 1022 /* 1023 * While we know pmip is the aggr's mip, there is a 1024 * possibility that aggr could have unregistered by 1025 * the time we exit port's perimeter (mip) and 1026 * enter aggr's perimeter (pmip). To avoid that 1027 * scenario, enter aggr's perimeter using its name. 1028 */ 1029 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1030 return; 1031 i_mac_perim_enter(mip); 1032 /* 1033 * Check if the ring got assigned to another aggregation before 1034 * be could enter aggr's and the port's perimeter. When a ring 1035 * gets deleted from an aggregation, it calls mac_stop_ring() 1036 * which increments the generation number. So checking 1037 * generation number will be enough. 1038 */ 1039 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1040 i_mac_perim_exit(mip); 1041 mac_perim_exit(p_mph); 1042 i_mac_perim_enter(mip); 1043 goto again; 1044 } 1045 1046 /* Check if pseudo ring is still present */ 1047 if (ring->mr_prh != NULL) { 1048 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1049 pring->mr_info.mri_intr.mi_ddi_shared = 1050 ring->mr_info.mri_intr.mi_ddi_shared; 1051 if (ddh != NULL) 1052 mac_ring_intr_retarget(pgroup, pring); 1053 } 1054 i_mac_perim_exit(mip); 1055 mac_perim_exit(p_mph); 1056 } 1057 /* 1058 * API called by driver to provide new interrupt handle for TX/RX rings. 1059 * This usually happens when IRM (Interrupt Resource Manangement) 1060 * framework either gives the driver more MSI-x interrupts or takes 1061 * away MSI-x interrupts from the driver. 1062 */ 1063 void 1064 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1065 { 1066 mac_ring_t *ring = (mac_ring_t *)mrh; 1067 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1068 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1069 1070 i_mac_perim_enter(mip); 1071 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1072 if (ddh == NULL) { 1073 /* Interrupts being reset */ 1074 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1075 if (ring->mr_prh != NULL) { 1076 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1077 return; 1078 } 1079 } else { 1080 /* New interrupt handle */ 1081 mac_compare_ddi_handle(mip->mi_rx_groups, 1082 mip->mi_rx_group_count, ring); 1083 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1084 mac_compare_ddi_handle(mip->mi_tx_groups, 1085 mip->mi_tx_group_count, ring); 1086 } 1087 if (ring->mr_prh != NULL) { 1088 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1089 return; 1090 } else { 1091 mac_ring_intr_retarget(group, ring); 1092 } 1093 } 1094 i_mac_perim_exit(mip); 1095 } 1096 1097 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1098 1099 /* 1100 * Updates the mac_impl structure with the current state of the link 1101 */ 1102 static void 1103 i_mac_log_link_state(mac_impl_t *mip) 1104 { 1105 /* 1106 * If no change, then it is not interesting. 1107 */ 1108 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1109 return; 1110 1111 switch (mip->mi_lowlinkstate) { 1112 case LINK_STATE_UP: 1113 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1114 char det[200]; 1115 1116 mip->mi_type->mt_ops.mtops_link_details(det, 1117 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1118 1119 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1120 } else { 1121 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1122 } 1123 break; 1124 1125 case LINK_STATE_DOWN: 1126 /* 1127 * Only transitions from UP to DOWN are interesting 1128 */ 1129 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1130 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1131 break; 1132 1133 case LINK_STATE_UNKNOWN: 1134 /* 1135 * This case is normally not interesting. 1136 */ 1137 break; 1138 } 1139 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1140 } 1141 1142 /* 1143 * Main routine for the callbacks notifications thread 1144 */ 1145 static void 1146 i_mac_notify_thread(void *arg) 1147 { 1148 mac_impl_t *mip = arg; 1149 callb_cpr_t cprinfo; 1150 mac_cb_t *mcb; 1151 mac_cb_info_t *mcbi; 1152 mac_notify_cb_t *mncb; 1153 1154 mcbi = &mip->mi_notify_cb_info; 1155 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1156 "i_mac_notify_thread"); 1157 1158 mutex_enter(mcbi->mcbi_lockp); 1159 1160 for (;;) { 1161 uint32_t bits; 1162 uint32_t type; 1163 1164 bits = mip->mi_notify_bits; 1165 if (bits == 0) { 1166 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1167 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1168 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1169 continue; 1170 } 1171 mip->mi_notify_bits = 0; 1172 if ((bits & (1 << MAC_NNOTE)) != 0) { 1173 /* request to quit */ 1174 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1175 break; 1176 } 1177 1178 mutex_exit(mcbi->mcbi_lockp); 1179 1180 /* 1181 * Log link changes on the actual link, but then do reports on 1182 * synthetic state (if part of a bridge). 1183 */ 1184 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1185 link_state_t newstate; 1186 mac_handle_t mh; 1187 1188 i_mac_log_link_state(mip); 1189 newstate = mip->mi_lowlinkstate; 1190 if (mip->mi_bridge_link != NULL) { 1191 mutex_enter(&mip->mi_bridge_lock); 1192 if ((mh = mip->mi_bridge_link) != NULL) { 1193 newstate = mac_bridge_ls_cb(mh, 1194 newstate); 1195 } 1196 mutex_exit(&mip->mi_bridge_lock); 1197 } 1198 if (newstate != mip->mi_linkstate) { 1199 mip->mi_linkstate = newstate; 1200 bits |= 1 << MAC_NOTE_LINK; 1201 } 1202 } 1203 1204 /* 1205 * Do notification callbacks for each notification type. 1206 */ 1207 for (type = 0; type < MAC_NNOTE; type++) { 1208 if ((bits & (1 << type)) == 0) { 1209 continue; 1210 } 1211 1212 if (mac_notify_cb_list[type] != NULL) 1213 (*mac_notify_cb_list[type])(mip); 1214 1215 /* 1216 * Walk the list of notifications. 1217 */ 1218 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1219 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1220 mcb = mcb->mcb_nextp) { 1221 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1222 mncb->mncb_fn(mncb->mncb_arg, type); 1223 } 1224 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1225 &mip->mi_notify_cb_list); 1226 } 1227 1228 mutex_enter(mcbi->mcbi_lockp); 1229 } 1230 1231 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1232 cv_broadcast(&mcbi->mcbi_cv); 1233 1234 /* CALLB_CPR_EXIT drops the lock */ 1235 CALLB_CPR_EXIT(&cprinfo); 1236 thread_exit(); 1237 } 1238 1239 /* 1240 * Signal the i_mac_notify_thread asking it to quit. 1241 * Then wait till it is done. 1242 */ 1243 void 1244 i_mac_notify_exit(mac_impl_t *mip) 1245 { 1246 mac_cb_info_t *mcbi; 1247 1248 mcbi = &mip->mi_notify_cb_info; 1249 1250 mutex_enter(mcbi->mcbi_lockp); 1251 mip->mi_notify_bits = (1 << MAC_NNOTE); 1252 cv_broadcast(&mcbi->mcbi_cv); 1253 1254 1255 while ((mip->mi_notify_thread != NULL) && 1256 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1257 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1258 } 1259 1260 /* Necessary clean up before doing kmem_cache_free */ 1261 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1262 mip->mi_notify_bits = 0; 1263 mip->mi_notify_thread = NULL; 1264 mutex_exit(mcbi->mcbi_lockp); 1265 } 1266 1267 /* 1268 * Entry point invoked by drivers to dynamically add a ring to an 1269 * existing group. 1270 */ 1271 int 1272 mac_group_add_ring(mac_group_handle_t gh, int index) 1273 { 1274 mac_group_t *group = (mac_group_t *)gh; 1275 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1276 int ret; 1277 1278 i_mac_perim_enter(mip); 1279 ret = i_mac_group_add_ring(group, NULL, index); 1280 i_mac_perim_exit(mip); 1281 return (ret); 1282 } 1283 1284 /* 1285 * Entry point invoked by drivers to dynamically remove a ring 1286 * from an existing group. The specified ring handle must no longer 1287 * be used by the driver after a call to this function. 1288 */ 1289 void 1290 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1291 { 1292 mac_group_t *group = (mac_group_t *)gh; 1293 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1294 1295 i_mac_perim_enter(mip); 1296 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1297 i_mac_perim_exit(mip); 1298 } 1299 1300 /* 1301 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1302 * entry points. 1303 */ 1304 1305 void 1306 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1307 { 1308 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1309 1310 /* nothing to do if the caller doesn't want the default value */ 1311 if (pr->pr_default == NULL) 1312 return; 1313 1314 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1315 1316 *(uint8_t *)(pr->pr_default) = val; 1317 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1318 } 1319 1320 void 1321 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1322 { 1323 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1324 1325 /* nothing to do if the caller doesn't want the default value */ 1326 if (pr->pr_default == NULL) 1327 return; 1328 1329 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1330 1331 bcopy(&val, pr->pr_default, sizeof (val)); 1332 1333 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1334 } 1335 1336 void 1337 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1338 { 1339 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1340 1341 /* nothing to do if the caller doesn't want the default value */ 1342 if (pr->pr_default == NULL) 1343 return; 1344 1345 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1346 1347 bcopy(&val, pr->pr_default, sizeof (val)); 1348 1349 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1350 } 1351 1352 void 1353 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1354 { 1355 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1356 1357 /* nothing to do if the caller doesn't want the default value */ 1358 if (pr->pr_default == NULL) 1359 return; 1360 1361 if (strlen(str) > pr->pr_default_size) 1362 pr->pr_default_status = ENOBUFS; 1363 else 1364 (void) strlcpy(pr->pr_default, str, strlen(str)); 1365 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1366 } 1367 1368 void 1369 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1370 link_flowctrl_t val) 1371 { 1372 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1373 1374 /* nothing to do if the caller doesn't want the default value */ 1375 if (pr->pr_default == NULL) 1376 return; 1377 1378 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1379 1380 bcopy(&val, pr->pr_default, sizeof (val)); 1381 1382 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1383 } 1384 1385 void 1386 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1387 uint32_t max) 1388 { 1389 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1390 mac_propval_range_t *range = pr->pr_range; 1391 1392 /* nothing to do if the caller doesn't want the range info */ 1393 if (range == NULL) 1394 return; 1395 1396 range->mpr_count = 1; 1397 range->mpr_type = MAC_PROPVAL_UINT32; 1398 range->mpr_range_uint32[0].mpur_min = min; 1399 range->mpr_range_uint32[0].mpur_max = max; 1400 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1401 } 1402 1403 void 1404 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1405 { 1406 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1407 1408 pr->pr_perm = perm; 1409 pr->pr_flags |= MAC_PROP_INFO_PERM; 1410 } 1411 1412 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1413 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1414 { 1415 uint32_t flags; 1416 1417 ASSERT(DB_TYPE(mp) == M_DATA); 1418 1419 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1420 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1421 if (value != NULL) 1422 *value = (uint32_t)DB_CKSUM16(mp); 1423 if ((flags & HCK_PARTIALCKSUM) != 0) { 1424 if (start != NULL) 1425 *start = (uint32_t)DB_CKSUMSTART(mp); 1426 if (stuff != NULL) 1427 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1428 if (end != NULL) 1429 *end = (uint32_t)DB_CKSUMEND(mp); 1430 } 1431 } 1432 1433 if (flags_ptr != NULL) 1434 *flags_ptr = flags; 1435 } 1436 1437 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1438 uint32_t end, uint32_t value, uint32_t flags) 1439 { 1440 ASSERT(DB_TYPE(mp) == M_DATA); 1441 1442 DB_CKSUMSTART(mp) = (intptr_t)start; 1443 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1444 DB_CKSUMEND(mp) = (intptr_t)end; 1445 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1446 DB_CKSUM16(mp) = (uint16_t)value; 1447 } 1448 1449 void 1450 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1451 { 1452 ASSERT(DB_TYPE(mp) == M_DATA); 1453 1454 if (flags != NULL) { 1455 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1456 if ((*flags != 0) && (mss != NULL)) 1457 *mss = (uint32_t)DB_LSOMSS(mp); 1458 } 1459 } 1460