xref: /titanic_41/usr/src/uts/common/io/mac/mac_client.c (revision dab7de2d0395d3b5e8dc742f164561b3840dd8c6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * - General Introduction:
28  *
29  * This file contains the implementation of the MAC client kernel
30  * API and related code. The MAC client API allows a kernel module
31  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
32  * It allows a MAC client to associate itself with a MAC address,
33  * VLANs, callback functions for data traffic and for promiscuous mode.
34  * The MAC client API is also used to specify the properties associated
35  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
36  * These properties are further used to determine the hardware resources
37  * to allocate to the various MAC clients.
38  *
39  * - Primary MAC clients:
40  *
41  * The MAC client API refers to "primary MAC clients". A primary MAC
42  * client is a client which "owns" the primary MAC address of
43  * the underlying MAC instance. The primary MAC address is called out
44  * since it is associated with specific semantics: the primary MAC
45  * address is the MAC address which is assigned to the IP interface
46  * when it is plumbed, and the primary MAC address is assigned
47  * to VLAN data-links. The primary address of a MAC instance can
48  * also change dynamically from under the MAC client, for example
49  * as a result of a change of state of a link aggregation. In that
50  * case the MAC layer automatically updates all data-structures which
51  * refer to the current value of the primary MAC address. Typical
52  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
53  * MAC client is the vnic driver.
54  *
55  * - Virtual Switching:
56  *
57  * The MAC layer implements a virtual switch between the MAC clients
58  * (primary and non-primary) defined on top of the same underlying
59  * NIC (physical, link aggregation, etc). The virtual switch is
60  * VLAN-aware, i.e. it allows multiple MAC clients to be member
61  * of one or more VLANs, and the virtual switch will distribute
62  * multicast tagged packets only to the member of the corresponding
63  * VLANs.
64  *
65  * - Upper vs Lower MAC:
66  *
67  * Creating a VNIC on top of a MAC instance effectively causes
68  * two MAC instances to be layered on top of each other, one for
69  * the VNIC(s), one for the underlying MAC instance (physical NIC,
70  * link aggregation, etc). In the code below we refer to the
71  * underlying NIC as the "lower MAC", and we refer to VNICs as
72  * the "upper MAC".
73  *
74  * - Pass-through for VNICs:
75  *
76  * When VNICs are created on top of an underlying MAC, this causes
77  * a layering of two MAC instances. Since the lower MAC already
78  * does the switching and demultiplexing to its MAC clients, the
79  * upper MAC would simply have to pass packets to the layer below
80  * or above it, which would introduce overhead. In order to avoid
81  * this overhead, the MAC layer implements a pass-through mechanism
82  * for VNICs. When a VNIC opens the lower MAC instance, it saves
83  * the MAC client handle it optains from the MAC layer. When a MAC
84  * client opens a VNIC (upper MAC), the MAC layer detects that
85  * the MAC being opened is a VNIC, and gets the MAC client handle
86  * that the VNIC driver obtained from the lower MAC. This exchange
87  * is doing through a private capability between the MAC layer
88  * and the VNIC driver. The upper MAC then returns that handle
89  * directly to its MAC client. Any operation done by the upper
90  * MAC client is now done on the lower MAC client handle, which
91  * allows the VNIC driver to be completely bypassed for the
92  * performance sensitive data-path.
93  *
94  */
95 
96 #include <sys/types.h>
97 #include <sys/conf.h>
98 #include <sys/id_space.h>
99 #include <sys/esunddi.h>
100 #include <sys/stat.h>
101 #include <sys/mkdev.h>
102 #include <sys/stream.h>
103 #include <sys/strsun.h>
104 #include <sys/strsubr.h>
105 #include <sys/dlpi.h>
106 #include <sys/modhash.h>
107 #include <sys/mac_impl.h>
108 #include <sys/mac_client_impl.h>
109 #include <sys/mac_soft_ring.h>
110 #include <sys/mac_stat.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t,
148     uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *);
149 static void mac_client_datapath_teardown(mac_client_handle_t,
150     mac_unicast_impl_t *, flow_entry_t *);
151 
152 /* ARGSUSED */
153 static int
154 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
155 {
156 	int	i;
157 	mac_client_impl_t	*mcip = buf;
158 
159 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
160 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
161 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
162 
163 	ASSERT(mac_tx_percpu_cnt >= 0);
164 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
165 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
166 		    MUTEX_DRIVER, NULL);
167 	}
168 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
169 
170 	return (0);
171 }
172 
173 /* ARGSUSED */
174 static void
175 i_mac_client_impl_dtor(void *buf, void *arg)
176 {
177 	int	i;
178 	mac_client_impl_t *mcip = buf;
179 
180 	ASSERT(mcip->mci_promisc_list == NULL);
181 	ASSERT(mcip->mci_unicast_list == NULL);
182 	ASSERT(mcip->mci_state_flags == 0);
183 	ASSERT(mcip->mci_tx_flag == 0);
184 
185 	mutex_destroy(&mcip->mci_tx_cb_lock);
186 
187 	ASSERT(mac_tx_percpu_cnt >= 0);
188 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
189 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
190 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
191 	}
192 	cv_destroy(&mcip->mci_tx_cv);
193 }
194 
195 /* ARGSUSED */
196 static int
197 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
198 {
199 	mac_promisc_impl_t	*mpip = buf;
200 
201 	bzero(buf, sizeof (mac_promisc_impl_t));
202 	mpip->mpi_mci_link.mcb_objp = buf;
203 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
204 	mpip->mpi_mi_link.mcb_objp = buf;
205 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
206 	return (0);
207 }
208 
209 /* ARGSUSED */
210 static void
211 i_mac_promisc_impl_dtor(void *buf, void *arg)
212 {
213 	mac_promisc_impl_t	*mpip = buf;
214 
215 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
216 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
217 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
218 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
219 
220 	mpip->mpi_mci_link.mcb_objp = NULL;
221 	mpip->mpi_mci_link.mcb_objsize = 0;
222 	mpip->mpi_mi_link.mcb_objp = NULL;
223 	mpip->mpi_mi_link.mcb_objsize = 0;
224 
225 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
226 	mpip->mpi_mci_link.mcb_objsize = 0;
227 }
228 
229 void
230 mac_client_init(void)
231 {
232 	ASSERT(mac_tx_percpu_cnt >= 0);
233 
234 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
235 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
236 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
237 	ASSERT(mac_client_impl_cache != NULL);
238 
239 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
240 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
241 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
242 	ASSERT(mac_promisc_impl_cache != NULL);
243 }
244 
245 void
246 mac_client_fini(void)
247 {
248 	kmem_cache_destroy(mac_client_impl_cache);
249 	kmem_cache_destroy(mac_promisc_impl_cache);
250 }
251 
252 /*
253  * Return the lower MAC client handle from the VNIC driver for the
254  * specified VNIC MAC instance.
255  */
256 mac_client_impl_t *
257 mac_vnic_lower(mac_impl_t *mip)
258 {
259 	mac_capab_vnic_t cap;
260 	mac_client_impl_t *mcip;
261 
262 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
263 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
264 
265 	return (mcip);
266 }
267 
268 /*
269  * Return the MAC client handle of the primary MAC client for the
270  * specified MAC instance, or NULL otherwise.
271  */
272 mac_client_impl_t *
273 mac_primary_client_handle(mac_impl_t *mip)
274 {
275 	mac_client_impl_t *mcip;
276 
277 	if (mip->mi_state_flags & MIS_IS_VNIC)
278 		return (mac_vnic_lower(mip));
279 
280 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
281 
282 	for (mcip = mip->mi_clients_list; mcip != NULL;
283 	    mcip = mcip->mci_client_next) {
284 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
285 			return (mcip);
286 	}
287 	return (NULL);
288 }
289 
290 /*
291  * Open a MAC specified by its MAC name.
292  */
293 int
294 mac_open(const char *macname, mac_handle_t *mhp)
295 {
296 	mac_impl_t	*mip;
297 	int		err;
298 
299 	/*
300 	 * Look up its entry in the global hash table.
301 	 */
302 	if ((err = mac_hold(macname, &mip)) != 0)
303 		return (err);
304 
305 	/*
306 	 * Hold the dip associated to the MAC to prevent it from being
307 	 * detached. For a softmac, its underlying dip is held by the
308 	 * mi_open() callback.
309 	 *
310 	 * This is done to be more tolerant with some defective drivers,
311 	 * which incorrectly handle mac_unregister() failure in their
312 	 * xxx_detach() routine. For example, some drivers ignore the
313 	 * failure of mac_unregister() and free all resources that
314 	 * that are needed for data transmition.
315 	 */
316 	e_ddi_hold_devi(mip->mi_dip);
317 
318 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
319 		*mhp = (mac_handle_t)mip;
320 		return (0);
321 	}
322 
323 	/*
324 	 * The mac perimeter is used in both mac_open and mac_close by the
325 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
326 	 */
327 	i_mac_perim_enter(mip);
328 	mip->mi_oref++;
329 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
330 		*mhp = (mac_handle_t)mip;
331 		i_mac_perim_exit(mip);
332 		return (0);
333 	}
334 	mip->mi_oref--;
335 	ddi_release_devi(mip->mi_dip);
336 	mac_rele(mip);
337 	i_mac_perim_exit(mip);
338 	return (err);
339 }
340 
341 /*
342  * Open a MAC specified by its linkid.
343  */
344 int
345 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
346 {
347 	dls_dl_handle_t	dlh;
348 	int		err;
349 
350 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
351 		return (err);
352 
353 	dls_devnet_prop_task_wait(dlh);
354 
355 	err = mac_open(dls_devnet_mac(dlh), mhp);
356 
357 	dls_devnet_rele_tmp(dlh);
358 	return (err);
359 }
360 
361 /*
362  * Open a MAC specified by its link name.
363  */
364 int
365 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
366 {
367 	datalink_id_t	linkid;
368 	int		err;
369 
370 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
371 		return (err);
372 	return (mac_open_by_linkid(linkid, mhp));
373 }
374 
375 /*
376  * Close the specified MAC.
377  */
378 void
379 mac_close(mac_handle_t mh)
380 {
381 	mac_impl_t	*mip = (mac_impl_t *)mh;
382 
383 	i_mac_perim_enter(mip);
384 	/*
385 	 * The mac perimeter is used in both mac_open and mac_close by the
386 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
387 	 */
388 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
389 		ASSERT(mip->mi_oref != 0);
390 		if (--mip->mi_oref == 0) {
391 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
392 				mip->mi_close(mip->mi_driver);
393 		}
394 	}
395 	i_mac_perim_exit(mip);
396 	ddi_release_devi(mip->mi_dip);
397 	mac_rele(mip);
398 }
399 
400 /*
401  * Misc utility functions to retrieve various information about a MAC
402  * instance or a MAC client.
403  */
404 
405 const mac_info_t *
406 mac_info(mac_handle_t mh)
407 {
408 	return (&((mac_impl_t *)mh)->mi_info);
409 }
410 
411 dev_info_t *
412 mac_devinfo_get(mac_handle_t mh)
413 {
414 	return (((mac_impl_t *)mh)->mi_dip);
415 }
416 
417 void *
418 mac_driver(mac_handle_t mh)
419 {
420 	return (((mac_impl_t *)mh)->mi_driver);
421 }
422 
423 const char *
424 mac_name(mac_handle_t mh)
425 {
426 	return (((mac_impl_t *)mh)->mi_name);
427 }
428 
429 int
430 mac_type(mac_handle_t mh)
431 {
432 	return (((mac_impl_t *)mh)->mi_type->mt_type);
433 }
434 
435 int
436 mac_nativetype(mac_handle_t mh)
437 {
438 	return (((mac_impl_t *)mh)->mi_type->mt_nativetype);
439 }
440 
441 char *
442 mac_client_name(mac_client_handle_t mch)
443 {
444 	return (((mac_client_impl_t *)mch)->mci_name);
445 }
446 
447 minor_t
448 mac_minor(mac_handle_t mh)
449 {
450 	return (((mac_impl_t *)mh)->mi_minor);
451 }
452 
453 /*
454  * Return the VID associated with a MAC client. This function should
455  * be called for clients which are associated with only one VID.
456  */
457 uint16_t
458 mac_client_vid(mac_client_handle_t mch)
459 {
460 	uint16_t		vid = VLAN_ID_NONE;
461 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
462 	flow_desc_t		flow_desc;
463 
464 	if (mcip->mci_nflents == 0)
465 		return (vid);
466 
467 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
468 
469 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
470 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
471 		vid = flow_desc.fd_vid;
472 
473 	return (vid);
474 }
475 
476 /*
477  * Return whether the specified MAC client corresponds to a VLAN VNIC.
478  */
479 boolean_t
480 mac_client_is_vlan_vnic(mac_client_handle_t mch)
481 {
482 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
483 
484 	return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
485 	    ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
486 }
487 
488 /*
489  * Return the link speed associated with the specified MAC client.
490  *
491  * The link speed of a MAC client is equal to the smallest value of
492  * 1) the current link speed of the underlying NIC, or
493  * 2) the bandwidth limit set for the MAC client.
494  *
495  * Note that the bandwidth limit can be higher than the speed
496  * of the underlying NIC. This is allowed to avoid spurious
497  * administration action failures or artifically lowering the
498  * bandwidth limit of a link that may  have temporarily lowered
499  * its link speed due to hardware problem or administrator action.
500  */
501 static uint64_t
502 mac_client_ifspeed(mac_client_impl_t *mcip)
503 {
504 	mac_impl_t *mip = mcip->mci_mip;
505 	uint64_t nic_speed;
506 
507 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
508 
509 	if (nic_speed == 0) {
510 		return (0);
511 	} else {
512 		uint64_t policy_limit = (uint64_t)-1;
513 
514 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
515 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
516 
517 		return (MIN(policy_limit, nic_speed));
518 	}
519 }
520 
521 /*
522  * Return the link state of the specified client. If here are more
523  * than one clients of the underying mac_impl_t, the link state
524  * will always be UP regardless of the link state of the underlying
525  * mac_impl_t. This is needed to allow the MAC clients to continue
526  * to communicate with each other even when the physical link of
527  * their mac_impl_t is down.
528  */
529 static uint64_t
530 mac_client_link_state(mac_client_impl_t *mcip)
531 {
532 	mac_impl_t *mip = mcip->mci_mip;
533 	uint16_t vid;
534 	mac_client_impl_t *mci_list;
535 	mac_unicast_impl_t *mui_list, *oth_mui_list;
536 
537 	/*
538 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
539 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
540 	 * if 'mcip' has more than one VID's then we match ANY one of the
541 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
542 	 */
543 	rw_enter(&mcip->mci_rw_lock, RW_READER);
544 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
545 	    mui_list = mui_list->mui_next) {
546 		vid = mui_list->mui_vid;
547 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
548 		    mci_list = mci_list->mci_client_next) {
549 			if (mci_list == mcip)
550 				continue;
551 			for (oth_mui_list = mci_list->mci_unicast_list;
552 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
553 			    mui_next) {
554 				if (vid == oth_mui_list->mui_vid) {
555 					rw_exit(&mcip->mci_rw_lock);
556 					return (LINK_STATE_UP);
557 				}
558 			}
559 		}
560 	}
561 	rw_exit(&mcip->mci_rw_lock);
562 
563 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
564 }
565 
566 /*
567  * These statistics are consumed by dladm show-link -s <vnic>,
568  * dladm show-vnic -s and netstat. With the introduction of dlstat,
569  * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while
570  * netstat will consume from kstats introduced for dlstat. This code
571  * will be removed at that time.
572  */
573 
574 /*
575  * Return the statistics of a MAC client. These statistics are different
576  * then the statistics of the underlying MAC which are returned by
577  * mac_stat_get().
578  */
579 uint64_t
580 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
581 {
582 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
583 	mac_impl_t 		*mip = mcip->mci_mip;
584 	flow_entry_t 		*flent = mcip->mci_flent;
585 	mac_soft_ring_set_t 	*mac_srs;
586 	mac_rx_stats_t		*mac_rx_stat;
587 	mac_tx_stats_t		*mac_tx_stat;
588 	int i;
589 	uint64_t val = 0;
590 
591 	mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
592 	mac_tx_stat = &mac_srs->srs_tx.st_stat;
593 
594 	switch (stat) {
595 	case MAC_STAT_LINK_STATE:
596 		val = mac_client_link_state(mcip);
597 		break;
598 	case MAC_STAT_LINK_UP:
599 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
600 		break;
601 	case MAC_STAT_PROMISC:
602 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
603 		break;
604 	case MAC_STAT_LOWLINK_STATE:
605 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
606 		break;
607 	case MAC_STAT_IFSPEED:
608 		val = mac_client_ifspeed(mcip);
609 		break;
610 	case MAC_STAT_MULTIRCV:
611 		val = mcip->mci_misc_stat.mms_multircv;
612 		break;
613 	case MAC_STAT_BRDCSTRCV:
614 		val = mcip->mci_misc_stat.mms_brdcstrcv;
615 		break;
616 	case MAC_STAT_MULTIXMT:
617 		val = mcip->mci_misc_stat.mms_multixmt;
618 		break;
619 	case MAC_STAT_BRDCSTXMT:
620 		val = mcip->mci_misc_stat.mms_brdcstxmt;
621 		break;
622 	case MAC_STAT_OBYTES:
623 		val = mac_tx_stat->mts_obytes;
624 		break;
625 	case MAC_STAT_OPACKETS:
626 		val = mac_tx_stat->mts_opackets;
627 		break;
628 	case MAC_STAT_OERRORS:
629 		val = mac_tx_stat->mts_oerrors;
630 		break;
631 	case MAC_STAT_IPACKETS:
632 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
633 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
634 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
635 			val += mac_rx_stat->mrs_intrcnt +
636 			    mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
637 		}
638 		break;
639 	case MAC_STAT_RBYTES:
640 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
641 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
642 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
643 			val += mac_rx_stat->mrs_intrbytes +
644 			    mac_rx_stat->mrs_pollbytes +
645 			    mac_rx_stat->mrs_lclbytes;
646 		}
647 		break;
648 	case MAC_STAT_IERRORS:
649 		for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
650 			mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
651 			mac_rx_stat = &mac_srs->srs_rx.sr_stat;
652 			val += mac_rx_stat->mrs_ierrors;
653 		}
654 		break;
655 	default:
656 		val = mac_driver_stat_default(mip, stat);
657 		break;
658 	}
659 
660 	return (val);
661 }
662 
663 /*
664  * Return the statistics of the specified MAC instance.
665  */
666 uint64_t
667 mac_stat_get(mac_handle_t mh, uint_t stat)
668 {
669 	mac_impl_t	*mip = (mac_impl_t *)mh;
670 	uint64_t	val;
671 	int		ret;
672 
673 	/*
674 	 * The range of stat determines where it is maintained.  Stat
675 	 * values from 0 up to (but not including) MAC_STAT_MIN are
676 	 * mainteined by the mac module itself.  Everything else is
677 	 * maintained by the driver.
678 	 *
679 	 * If the mac_impl_t being queried corresponds to a VNIC,
680 	 * the stats need to be queried from the lower MAC client
681 	 * corresponding to the VNIC. (The mac_link_update()
682 	 * invoked by the driver to the lower MAC causes the *lower
683 	 * MAC* to update its mi_linkstate, and send a notification
684 	 * to its MAC clients. Due to the VNIC passthrough,
685 	 * these notifications are sent to the upper MAC clients
686 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
687 	 * does not have a valid mi_linkstate.
688 	 */
689 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
690 		/* these stats are maintained by the mac module itself */
691 		switch (stat) {
692 		case MAC_STAT_LINK_STATE:
693 			return (mip->mi_linkstate);
694 		case MAC_STAT_LINK_UP:
695 			return (mip->mi_linkstate == LINK_STATE_UP);
696 		case MAC_STAT_PROMISC:
697 			return (mip->mi_devpromisc != 0);
698 		case MAC_STAT_LOWLINK_STATE:
699 			return (mip->mi_lowlinkstate);
700 		default:
701 			ASSERT(B_FALSE);
702 		}
703 	}
704 
705 	/*
706 	 * Call the driver to get the given statistic.
707 	 */
708 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
709 	if (ret != 0) {
710 		/*
711 		 * The driver doesn't support this statistic.  Get the
712 		 * statistic's default value.
713 		 */
714 		val = mac_driver_stat_default(mip, stat);
715 	}
716 	return (val);
717 }
718 
719 /*
720  * Query hardware rx ring corresponding to the pseudo ring.
721  */
722 uint64_t
723 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
724 {
725 	return (mac_rx_ring_stat_get(handle, stat));
726 }
727 
728 /*
729  * Query hardware tx ring corresponding to the pseudo ring.
730  */
731 uint64_t
732 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
733 {
734 	return (mac_tx_ring_stat_get(handle, stat));
735 }
736 
737 /*
738  * Utility function which returns the VID associated with a flow entry.
739  */
740 uint16_t
741 i_mac_flow_vid(flow_entry_t *flent)
742 {
743 	flow_desc_t	flow_desc;
744 
745 	mac_flow_get_desc(flent, &flow_desc);
746 
747 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
748 		return (flow_desc.fd_vid);
749 	return (VLAN_ID_NONE);
750 }
751 
752 /*
753  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
754  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
755  * length.
756  */
757 boolean_t
758 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
759 {
760 	mac_impl_t	*mip = (mac_impl_t *)mh;
761 
762 	/*
763 	 * Verify the address. No lock is needed since mi_type and plugin
764 	 * details don't change after mac_register().
765 	 */
766 	if ((len != mip->mi_type->mt_addr_length) ||
767 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
768 	    mip->mi_pdata)) != 0) {
769 		return (B_FALSE);
770 	} else {
771 		return (B_TRUE);
772 	}
773 }
774 
775 void
776 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
777 {
778 	mac_impl_t	*mip = (mac_impl_t *)mh;
779 
780 	if (min_sdu != NULL)
781 		*min_sdu = mip->mi_sdu_min;
782 	if (max_sdu != NULL)
783 		*max_sdu = mip->mi_sdu_max;
784 }
785 
786 void
787 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu,
788     uint_t *multicast_sdu)
789 {
790 	mac_impl_t	*mip = (mac_impl_t *)mh;
791 
792 	if (min_sdu != NULL)
793 		*min_sdu = mip->mi_sdu_min;
794 	if (max_sdu != NULL)
795 		*max_sdu = mip->mi_sdu_max;
796 	if (multicast_sdu != NULL)
797 		*multicast_sdu = mip->mi_sdu_multicast;
798 }
799 
800 /*
801  * Update the MAC unicast address of the specified client's flows. Currently
802  * only one unicast MAC unicast address is allowed per client.
803  */
804 static void
805 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
806 {
807 	mac_impl_t *mip = mcip->mci_mip;
808 	flow_entry_t *flent = mcip->mci_flent;
809 	mac_address_t *map = mcip->mci_unicast;
810 	flow_desc_t flow_desc;
811 
812 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
813 	ASSERT(flent != NULL);
814 
815 	mac_flow_get_desc(flent, &flow_desc);
816 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
817 
818 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
819 	mac_flow_set_desc(flent, &flow_desc);
820 
821 	/*
822 	 * The v6 local addr (used by mac protection) needs to be
823 	 * regenerated because our mac address has changed.
824 	 */
825 	mac_protect_update_v6_local_addr(mcip);
826 
827 	/*
828 	 * A MAC client could have one MAC address but multiple
829 	 * VLANs. In that case update the flow entries corresponding
830 	 * to all VLANs of the MAC client.
831 	 */
832 	for (flent = mcip->mci_flent_list; flent != NULL;
833 	    flent = flent->fe_client_next) {
834 		mac_flow_get_desc(flent, &flow_desc);
835 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
836 		    flent->fe_type & FLOW_VNIC_MAC))
837 			continue;
838 
839 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
840 		mac_flow_set_desc(flent, &flow_desc);
841 	}
842 }
843 
844 /*
845  * Update all clients that share the same unicast address.
846  */
847 void
848 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
849 {
850 	mac_client_impl_t *mcip;
851 
852 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
853 
854 	/*
855 	 * Find all clients that share the same unicast MAC address and update
856 	 * them appropriately.
857 	 */
858 	for (mcip = mip->mi_clients_list; mcip != NULL;
859 	    mcip = mcip->mci_client_next) {
860 		/*
861 		 * Ignore clients that don't share this MAC address.
862 		 */
863 		if (map != mcip->mci_unicast)
864 			continue;
865 
866 		/*
867 		 * Update those clients with same old unicast MAC address.
868 		 */
869 		mac_unicast_update_client_flow(mcip);
870 	}
871 }
872 
873 /*
874  * Update the unicast MAC address of the specified VNIC MAC client.
875  *
876  * Check whether the operation is valid. Any of following cases should fail:
877  *
878  * 1. It's a VLAN type of VNIC.
879  * 2. The new value is current "primary" MAC address.
880  * 3. The current MAC address is shared with other clients.
881  * 4. The new MAC address has been used. This case will be valid when
882  *    client migration is fully supported.
883  */
884 int
885 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
886 {
887 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
888 	mac_impl_t *mip = mcip->mci_mip;
889 	mac_address_t *map = mcip->mci_unicast;
890 	int err;
891 
892 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
893 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
894 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
895 
896 	i_mac_perim_enter(mip);
897 
898 	/*
899 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
900 	 * of the underlying interface. Must fail here. Refer to case 1 above.
901 	 */
902 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
903 		i_mac_perim_exit(mip);
904 		return (ENOTSUP);
905 	}
906 
907 	/*
908 	 * If the new address is the "primary" one, must fail. Refer to
909 	 * case 2 above.
910 	 */
911 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
912 		i_mac_perim_exit(mip);
913 		return (EACCES);
914 	}
915 
916 	/*
917 	 * If the address is shared by multiple clients, must fail. Refer
918 	 * to case 3 above.
919 	 */
920 	if (mac_check_macaddr_shared(map)) {
921 		i_mac_perim_exit(mip);
922 		return (EBUSY);
923 	}
924 
925 	/*
926 	 * If the new address has been used, must fail for now. Refer to
927 	 * case 4 above.
928 	 */
929 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
930 		i_mac_perim_exit(mip);
931 		return (ENOTSUP);
932 	}
933 
934 	/*
935 	 * Update the MAC address.
936 	 */
937 	err = mac_update_macaddr(map, (uint8_t *)addr);
938 
939 	if (err != 0) {
940 		i_mac_perim_exit(mip);
941 		return (err);
942 	}
943 
944 	/*
945 	 * Update all flows of this MAC client.
946 	 */
947 	mac_unicast_update_client_flow(mcip);
948 
949 	i_mac_perim_exit(mip);
950 	return (0);
951 }
952 
953 /*
954  * Program the new primary unicast address of the specified MAC.
955  *
956  * Function mac_update_macaddr() takes care different types of underlying
957  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
958  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
959  * which will take care of updating the MAC address of the corresponding
960  * MAC client.
961  *
962  * This is the only interface that allow the client to update the "primary"
963  * MAC address of the underlying MAC. The new value must have not been
964  * used by other clients.
965  */
966 int
967 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
968 {
969 	mac_impl_t *mip = (mac_impl_t *)mh;
970 	mac_address_t *map;
971 	int err;
972 
973 	/* verify the address validity */
974 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
975 		return (EINVAL);
976 
977 	i_mac_perim_enter(mip);
978 
979 	/*
980 	 * If the new value is the same as the current primary address value,
981 	 * there's nothing to do.
982 	 */
983 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
984 		i_mac_perim_exit(mip);
985 		return (0);
986 	}
987 
988 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
989 		i_mac_perim_exit(mip);
990 		return (EBUSY);
991 	}
992 
993 	map = mac_find_macaddr(mip, mip->mi_addr);
994 	ASSERT(map != NULL);
995 
996 	/*
997 	 * Update the MAC address.
998 	 */
999 	if (mip->mi_state_flags & MIS_IS_AGGR) {
1000 		mac_capab_aggr_t aggr_cap;
1001 
1002 		/*
1003 		 * If the mac is an aggregation, other than the unicast
1004 		 * addresses programming, aggr must be informed about this
1005 		 * primary unicst address change to change its mac address
1006 		 * policy to be user-specified.
1007 		 */
1008 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
1009 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
1010 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
1011 		if (err == 0)
1012 			bcopy(addr, map->ma_addr, map->ma_len);
1013 	} else {
1014 		err = mac_update_macaddr(map, (uint8_t *)addr);
1015 	}
1016 
1017 	if (err != 0) {
1018 		i_mac_perim_exit(mip);
1019 		return (err);
1020 	}
1021 
1022 	mac_unicast_update_clients(mip, map);
1023 
1024 	/*
1025 	 * Save the new primary MAC address in mac_impl_t.
1026 	 */
1027 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
1028 
1029 	i_mac_perim_exit(mip);
1030 
1031 	if (err == 0)
1032 		i_mac_notify(mip, MAC_NOTE_UNICST);
1033 
1034 	return (err);
1035 }
1036 
1037 /*
1038  * Return the current primary MAC address of the specified MAC.
1039  */
1040 void
1041 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
1042 {
1043 	mac_impl_t *mip = (mac_impl_t *)mh;
1044 
1045 	rw_enter(&mip->mi_rw_lock, RW_READER);
1046 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
1047 	rw_exit(&mip->mi_rw_lock);
1048 }
1049 
1050 /*
1051  * Return information about the use of the primary MAC address of the
1052  * specified MAC instance:
1053  *
1054  * - if client_name is non-NULL, it must point to a string of at
1055  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
1056  *   client which uses the primary MAC address.
1057  *
1058  * - if in_use is non-NULL, used to return whether the primary MAC
1059  *   address is currently in use.
1060  */
1061 void
1062 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
1063 {
1064 	mac_impl_t *mip = (mac_impl_t *)mh;
1065 	mac_client_impl_t *cur_client;
1066 
1067 	if (in_use != NULL)
1068 		*in_use = B_FALSE;
1069 	if (client_name != NULL)
1070 		bzero(client_name, MAXNAMELEN);
1071 
1072 	/*
1073 	 * The mi_rw_lock is used to protect threads that don't hold the
1074 	 * mac perimeter to get a consistent view of the mi_clients_list.
1075 	 * Threads that modify the list must hold both the mac perimeter and
1076 	 * mi_rw_lock(RW_WRITER)
1077 	 */
1078 	rw_enter(&mip->mi_rw_lock, RW_READER);
1079 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
1080 	    cur_client = cur_client->mci_client_next) {
1081 		if (mac_is_primary_client(cur_client) ||
1082 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
1083 			rw_exit(&mip->mi_rw_lock);
1084 			if (in_use != NULL)
1085 				*in_use = B_TRUE;
1086 			if (client_name != NULL) {
1087 				bcopy(cur_client->mci_name, client_name,
1088 				    MAXNAMELEN);
1089 			}
1090 			return;
1091 		}
1092 	}
1093 	rw_exit(&mip->mi_rw_lock);
1094 }
1095 
1096 /*
1097  * Return the current destination MAC address of the specified MAC.
1098  */
1099 boolean_t
1100 mac_dst_get(mac_handle_t mh, uint8_t *addr)
1101 {
1102 	mac_impl_t *mip = (mac_impl_t *)mh;
1103 
1104 	rw_enter(&mip->mi_rw_lock, RW_READER);
1105 	if (mip->mi_dstaddr_set)
1106 		bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length);
1107 	rw_exit(&mip->mi_rw_lock);
1108 	return (mip->mi_dstaddr_set);
1109 }
1110 
1111 /*
1112  * Add the specified MAC client to the list of clients which opened
1113  * the specified MAC.
1114  */
1115 static void
1116 mac_client_add(mac_client_impl_t *mcip)
1117 {
1118 	mac_impl_t *mip = mcip->mci_mip;
1119 
1120 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1121 
1122 	/* add VNIC to the front of the list */
1123 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1124 	mcip->mci_client_next = mip->mi_clients_list;
1125 	mip->mi_clients_list = mcip;
1126 	mip->mi_nclients++;
1127 	rw_exit(&mip->mi_rw_lock);
1128 }
1129 
1130 /*
1131  * Remove the specified MAC client from the list of clients which opened
1132  * the specified MAC.
1133  */
1134 static void
1135 mac_client_remove(mac_client_impl_t *mcip)
1136 {
1137 	mac_impl_t *mip = mcip->mci_mip;
1138 	mac_client_impl_t **prev, *cclient;
1139 
1140 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1141 
1142 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1143 	prev = &mip->mi_clients_list;
1144 	cclient = *prev;
1145 	while (cclient != NULL && cclient != mcip) {
1146 		prev = &cclient->mci_client_next;
1147 		cclient = *prev;
1148 	}
1149 	ASSERT(cclient != NULL);
1150 	*prev = cclient->mci_client_next;
1151 	mip->mi_nclients--;
1152 	rw_exit(&mip->mi_rw_lock);
1153 }
1154 
1155 static mac_unicast_impl_t *
1156 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1157 {
1158 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1159 
1160 	while ((muip != NULL) && (muip->mui_vid != vid))
1161 		muip = muip->mui_next;
1162 
1163 	return (muip);
1164 }
1165 
1166 /*
1167  * Return whether the specified (MAC address, VID) tuple is already used by
1168  * one of the MAC clients associated with the specified MAC.
1169  */
1170 static boolean_t
1171 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1172 {
1173 	mac_client_impl_t *client;
1174 	mac_address_t *map;
1175 
1176 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1177 
1178 	for (client = mip->mi_clients_list; client != NULL;
1179 	    client = client->mci_client_next) {
1180 
1181 		/*
1182 		 * Ignore clients that don't have unicast address.
1183 		 */
1184 		if (client->mci_unicast_list == NULL)
1185 			continue;
1186 
1187 		map = client->mci_unicast;
1188 
1189 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1190 		    (mac_client_find_vid(client, vid) != NULL)) {
1191 			return (B_TRUE);
1192 		}
1193 	}
1194 
1195 	return (B_FALSE);
1196 }
1197 
1198 /*
1199  * Generate a random MAC address. The MAC address prefix is
1200  * stored in the array pointed to by mac_addr, and its length, in bytes,
1201  * is specified by prefix_len. The least significant bits
1202  * after prefix_len bytes are generated, and stored after the prefix
1203  * in the mac_addr array.
1204  */
1205 int
1206 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1207     uint8_t *mac_addr, mac_diag_t *diag)
1208 {
1209 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1210 	mac_impl_t *mip = mcip->mci_mip;
1211 	size_t addr_len = mip->mi_type->mt_addr_length;
1212 
1213 	if (prefix_len >= addr_len) {
1214 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1215 		return (EINVAL);
1216 	}
1217 
1218 	/* check the prefix value */
1219 	if (prefix_len > 0) {
1220 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1221 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1222 		    addr_len)) {
1223 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1224 			return (EINVAL);
1225 		}
1226 	}
1227 
1228 	/* generate the MAC address */
1229 	if (prefix_len < addr_len) {
1230 		(void) random_get_pseudo_bytes(mac_addr +
1231 		    prefix_len, addr_len - prefix_len);
1232 	}
1233 
1234 	*diag = 0;
1235 	return (0);
1236 }
1237 
1238 /*
1239  * Set the priority range for this MAC client. This will be used to
1240  * determine the absolute priority for the threads created for this
1241  * MAC client using the specified "low", "medium" and "high" level.
1242  * This will also be used for any subflows on this MAC client.
1243  */
1244 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1245 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1246 	    MAXCLSYSPRI, (pri));					\
1247 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1248 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1249 	}
1250 
1251 /*
1252  * MAC client open entry point. Return a new MAC client handle. Each
1253  * MAC client is associated with a name, specified through the 'name'
1254  * argument.
1255  */
1256 int
1257 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1258     uint16_t flags)
1259 {
1260 	mac_impl_t		*mip = (mac_impl_t *)mh;
1261 	mac_client_impl_t	*mcip;
1262 	int			err = 0;
1263 	boolean_t		share_desired;
1264 	flow_entry_t		*flent = NULL;
1265 
1266 	share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0;
1267 	*mchp = NULL;
1268 
1269 	i_mac_perim_enter(mip);
1270 
1271 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1272 		/*
1273 		 * The underlying MAC is a VNIC. Return the MAC client
1274 		 * handle of the lower MAC which was obtained by
1275 		 * the VNIC driver when it did its mac_client_open().
1276 		 */
1277 
1278 		mcip = mac_vnic_lower(mip);
1279 
1280 		/*
1281 		 * Note that multiple mac clients share the same mcip in
1282 		 * this case.
1283 		 */
1284 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1285 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1286 
1287 		if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1288 			mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1289 
1290 		mip->mi_clients_list = mcip;
1291 		i_mac_perim_exit(mip);
1292 		*mchp = (mac_client_handle_t)mcip;
1293 		return (err);
1294 	}
1295 
1296 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1297 
1298 	mcip->mci_mip = mip;
1299 	mcip->mci_upper_mip = NULL;
1300 	mcip->mci_rx_fn = mac_pkt_drop;
1301 	mcip->mci_rx_arg = NULL;
1302 	mcip->mci_rx_p_fn = NULL;
1303 	mcip->mci_rx_p_arg = NULL;
1304 	mcip->mci_p_unicast_list = NULL;
1305 	mcip->mci_direct_rx_fn = NULL;
1306 	mcip->mci_direct_rx_arg = NULL;
1307 
1308 	mcip->mci_unicast_list = NULL;
1309 
1310 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1311 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1312 
1313 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1314 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1315 
1316 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1317 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1318 
1319 	if (mip->mi_state_flags & MIS_IS_AGGR)
1320 		mcip->mci_state_flags |= MCIS_IS_AGGR;
1321 
1322 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1323 		datalink_id_t	linkid;
1324 
1325 		ASSERT(name == NULL);
1326 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1327 		    &linkid)) != 0) {
1328 			goto done;
1329 		}
1330 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1331 		    NULL, NULL)) != 0) {
1332 			/*
1333 			 * Use mac name if dlmgmtd is not available.
1334 			 */
1335 			if (err == EBADF) {
1336 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1337 				    sizeof (mcip->mci_name));
1338 				err = 0;
1339 			} else {
1340 				goto done;
1341 			}
1342 		}
1343 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1344 	} else {
1345 		ASSERT(name != NULL);
1346 		if (strlen(name) > MAXNAMELEN) {
1347 			err = EINVAL;
1348 			goto done;
1349 		}
1350 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1351 	}
1352 
1353 	if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1354 		mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1355 
1356 	if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR)
1357 		mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR;
1358 
1359 	mac_protect_init(mcip);
1360 
1361 	/* the subflow table will be created dynamically */
1362 	mcip->mci_subflow_tab = NULL;
1363 
1364 	mcip->mci_misc_stat.mms_multircv = 0;
1365 	mcip->mci_misc_stat.mms_brdcstrcv = 0;
1366 	mcip->mci_misc_stat.mms_multixmt = 0;
1367 	mcip->mci_misc_stat.mms_brdcstxmt = 0;
1368 
1369 	/* Create an initial flow */
1370 
1371 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1372 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1373 	    FLOW_PRIMARY_MAC, &flent);
1374 	if (err != 0)
1375 		goto done;
1376 	mcip->mci_flent = flent;
1377 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1378 	flent->fe_mcip = mcip;
1379 	/*
1380 	 * Place initial creation reference on the flow. This reference
1381 	 * is released in the corresponding delete action viz.
1382 	 * mac_unicast_remove after waiting for all transient refs to
1383 	 * to go away. The wait happens in mac_flow_wait.
1384 	 */
1385 	FLOW_REFHOLD(flent);
1386 
1387 	/*
1388 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1389 	 * will have the right value for mac_rx_srs_setup().
1390 	 */
1391 	mac_client_add(mcip);
1392 
1393 	mcip->mci_share = NULL;
1394 	if (share_desired)
1395 		i_mac_share_alloc(mcip);
1396 
1397 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1398 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1399 	*mchp = (mac_client_handle_t)mcip;
1400 
1401 	/*
1402 	 * We will do mimimal datapath setup to allow a MAC client to
1403 	 * transmit or receive non-unicast packets without waiting
1404 	 * for mac_unicast_add.
1405 	 */
1406 	if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1407 		if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE,
1408 		    NULL, NULL, B_TRUE, NULL)) != 0) {
1409 			goto done;
1410 		}
1411 	}
1412 	i_mac_perim_exit(mip);
1413 	return (0);
1414 
1415 done:
1416 	i_mac_perim_exit(mip);
1417 	mcip->mci_state_flags = 0;
1418 	mcip->mci_tx_flag = 0;
1419 	kmem_cache_free(mac_client_impl_cache, mcip);
1420 	return (err);
1421 }
1422 
1423 /*
1424  * Close the specified MAC client handle.
1425  */
1426 void
1427 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1428 {
1429 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1430 	mac_impl_t		*mip = mcip->mci_mip;
1431 	flow_entry_t		*flent;
1432 
1433 	i_mac_perim_enter(mip);
1434 
1435 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1436 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1437 
1438 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1439 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1440 		/*
1441 		 * This is an upper VNIC client initiated operation.
1442 		 * The lower MAC client will be closed by the VNIC driver
1443 		 * when the VNIC is deleted.
1444 		 */
1445 
1446 		i_mac_perim_exit(mip);
1447 		return;
1448 	}
1449 
1450 	/* If we have only setup up minimal datapth setup, tear it down */
1451 	if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1452 		mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL,
1453 		    mcip->mci_flent);
1454 		mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR;
1455 	}
1456 
1457 	/*
1458 	 * Remove the flent associated with the MAC client
1459 	 */
1460 	flent = mcip->mci_flent;
1461 	mcip->mci_flent = NULL;
1462 	FLOW_FINAL_REFRELE(flent);
1463 
1464 	/*
1465 	 * MAC clients must remove the unicast addresses and promisc callbacks
1466 	 * they added before issuing a mac_client_close().
1467 	 */
1468 	ASSERT(mcip->mci_unicast_list == NULL);
1469 	ASSERT(mcip->mci_promisc_list == NULL);
1470 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1471 
1472 	i_mac_share_free(mcip);
1473 	mac_protect_fini(mcip);
1474 	mac_client_remove(mcip);
1475 
1476 	i_mac_perim_exit(mip);
1477 	mcip->mci_subflow_tab = NULL;
1478 	mcip->mci_state_flags = 0;
1479 	mcip->mci_tx_flag = 0;
1480 	kmem_cache_free(mac_client_impl_cache, mch);
1481 }
1482 
1483 /*
1484  * Set the rx bypass receive callback.
1485  */
1486 boolean_t
1487 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1488 {
1489 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1490 	mac_impl_t		*mip = mcip->mci_mip;
1491 
1492 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1493 
1494 	/*
1495 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1496 	 * instead let the packets come up via mac_rx_deliver so the vlan
1497 	 * header can be stripped.
1498 	 */
1499 	if (mcip->mci_nvids > 0)
1500 		return (B_FALSE);
1501 
1502 	/*
1503 	 * These are not accessed directly in the data path, and hence
1504 	 * don't need any protection
1505 	 */
1506 	mcip->mci_direct_rx_fn = rx_fn;
1507 	mcip->mci_direct_rx_arg = arg1;
1508 	return (B_TRUE);
1509 }
1510 
1511 /*
1512  * Enable/Disable rx bypass. By default, bypass is assumed to be enabled.
1513  */
1514 void
1515 mac_rx_bypass_enable(mac_client_handle_t mch)
1516 {
1517 	((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE;
1518 }
1519 
1520 void
1521 mac_rx_bypass_disable(mac_client_handle_t mch)
1522 {
1523 	((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE;
1524 }
1525 
1526 /*
1527  * Set the receive callback for the specified MAC client. There can be
1528  * at most one such callback per MAC client.
1529  */
1530 void
1531 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1532 {
1533 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1534 	mac_impl_t	*mip = mcip->mci_mip;
1535 
1536 	/*
1537 	 * Instead of adding an extra set of locks and refcnts in
1538 	 * the datapath at the mac client boundary, we temporarily quiesce
1539 	 * the SRS and related entities. We then change the receive function
1540 	 * without interference from any receive data thread and then reenable
1541 	 * the data flow subsequently.
1542 	 */
1543 	i_mac_perim_enter(mip);
1544 	mac_rx_client_quiesce(mch);
1545 
1546 	mcip->mci_rx_fn = rx_fn;
1547 	mcip->mci_rx_arg = arg;
1548 	mac_rx_client_restart(mch);
1549 	i_mac_perim_exit(mip);
1550 }
1551 
1552 /*
1553  * Reset the receive callback for the specified MAC client.
1554  */
1555 void
1556 mac_rx_clear(mac_client_handle_t mch)
1557 {
1558 	mac_rx_set(mch, mac_pkt_drop, NULL);
1559 }
1560 
1561 /*
1562  * Walk the MAC client subflow table and updates their priority values.
1563  */
1564 static int
1565 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1566 {
1567 	mac_flow_update_priority(arg, flent);
1568 	return (0);
1569 }
1570 
1571 void
1572 mac_update_subflow_priority(mac_client_impl_t *mcip)
1573 {
1574 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1575 	    mac_update_subflow_priority_cb, mcip);
1576 }
1577 
1578 /*
1579  * Modify the TX or RX ring properties. We could either just move around
1580  * rings, i.e add/remove rings given to a client. Or this might cause the
1581  * client to move from hardware based to software or the other way around.
1582  * If we want to reset this property, then we clear the mask, additionally
1583  * if the client was given a non-default group we remove all rings except
1584  * for 1 and give it back to the default group.
1585  */
1586 int
1587 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp,
1588     mac_resource_props_t *tmrp)
1589 {
1590 	mac_impl_t		*mip = mcip->mci_mip;
1591 	flow_entry_t		*flent = mcip->mci_flent;
1592 	uint8_t			*mac_addr;
1593 	int			err = 0;
1594 	mac_group_t		*defgrp;
1595 	mac_group_t		*group;
1596 	mac_group_t		*ngrp;
1597 	mac_resource_props_t	*cmrp = MCIP_RESOURCE_PROPS(mcip);
1598 	uint_t			ringcnt;
1599 	boolean_t		unspec;
1600 
1601 	if (mcip->mci_share != NULL)
1602 		return (EINVAL);
1603 
1604 	if (mrp->mrp_mask & MRP_RX_RINGS) {
1605 		unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
1606 		group = flent->fe_rx_ring_group;
1607 		defgrp = MAC_DEFAULT_RX_GROUP(mip);
1608 		mac_addr = flent->fe_flow_desc.fd_dst_mac;
1609 
1610 		/*
1611 		 * No resulting change. If we are resetting on a client on
1612 		 * which there was no rx rings property. For dynamic group
1613 		 * if we are setting the same number of rings already set.
1614 		 * For static group if we are requesting a group again.
1615 		 */
1616 		if (mrp->mrp_mask & MRP_RINGS_RESET) {
1617 			if (!(tmrp->mrp_mask & MRP_RX_RINGS))
1618 				return (0);
1619 		} else {
1620 			if (unspec) {
1621 				if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1622 					return (0);
1623 			} else if (mip->mi_rx_group_type ==
1624 			    MAC_GROUP_TYPE_DYNAMIC) {
1625 				if ((tmrp->mrp_mask & MRP_RX_RINGS) &&
1626 				    !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) &&
1627 				    mrp->mrp_nrxrings == tmrp->mrp_nrxrings) {
1628 					return (0);
1629 				}
1630 			}
1631 		}
1632 		/* Resetting the prop */
1633 		if (mrp->mrp_mask & MRP_RINGS_RESET) {
1634 			/*
1635 			 * We will just keep one ring and give others back if
1636 			 * we are not the primary. For the primary we give
1637 			 * all the rings in the default group except the
1638 			 * default ring. If it is a static group, then
1639 			 * we don't do anything, but clear the MRP_RX_RINGS
1640 			 * flag.
1641 			 */
1642 			if (group != defgrp) {
1643 				if (mip->mi_rx_group_type ==
1644 				    MAC_GROUP_TYPE_DYNAMIC) {
1645 					/*
1646 					 * This group has reserved rings
1647 					 * that need to be released now,
1648 					 * so does the group.
1649 					 */
1650 					MAC_RX_RING_RELEASED(mip,
1651 					    group->mrg_cur_count);
1652 					MAC_RX_GRP_RELEASED(mip);
1653 					if ((flent->fe_type &
1654 					    FLOW_PRIMARY_MAC) != 0) {
1655 						if (mip->mi_nactiveclients ==
1656 						    1) {
1657 							(void)
1658 							    mac_rx_switch_group(
1659 							    mcip, group,
1660 							    defgrp);
1661 							return (0);
1662 						} else {
1663 							cmrp->mrp_nrxrings =
1664 							    group->
1665 							    mrg_cur_count +
1666 							    defgrp->
1667 							    mrg_cur_count - 1;
1668 						}
1669 					} else {
1670 						cmrp->mrp_nrxrings = 1;
1671 					}
1672 					(void) mac_group_ring_modify(mcip,
1673 					    group, defgrp);
1674 				} else {
1675 					/*
1676 					 * If this is a static group, we
1677 					 * need to release the group. The
1678 					 * client will remain in the same
1679 					 * group till some other client
1680 					 * needs this group.
1681 					 */
1682 					MAC_RX_GRP_RELEASED(mip);
1683 				}
1684 			/* Let check if we can give this an excl group */
1685 			} else if (group == defgrp) {
1686 				ngrp = 	mac_reserve_rx_group(mcip, mac_addr,
1687 				    B_TRUE);
1688 				/* Couldn't give it a group, that's fine */
1689 				if (ngrp == NULL)
1690 					return (0);
1691 				/* Switch to H/W */
1692 				if (mac_rx_switch_group(mcip, defgrp, ngrp) !=
1693 				    0) {
1694 					mac_stop_group(ngrp);
1695 					return (0);
1696 				}
1697 			}
1698 			/*
1699 			 * If the client is in the default group, we will
1700 			 * just clear the MRP_RX_RINGS and leave it as
1701 			 * it rather than look for an exclusive group
1702 			 * for it.
1703 			 */
1704 			return (0);
1705 		}
1706 
1707 		if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) {
1708 			ngrp = 	mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
1709 			if (ngrp == NULL)
1710 				return (ENOSPC);
1711 
1712 			/* Switch to H/W */
1713 			if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
1714 				mac_release_rx_group(mcip, ngrp);
1715 				return (ENOSPC);
1716 			}
1717 			MAC_RX_GRP_RESERVED(mip);
1718 			if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1719 				MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1720 		} else if (group != defgrp && !unspec &&
1721 		    mrp->mrp_nrxrings == 0) {
1722 			/* Switch to S/W */
1723 			ringcnt = group->mrg_cur_count;
1724 			if (mac_rx_switch_group(mcip, group, defgrp) != 0)
1725 				return (ENOSPC);
1726 			if (tmrp->mrp_mask & MRP_RX_RINGS) {
1727 				MAC_RX_GRP_RELEASED(mip);
1728 				if (mip->mi_rx_group_type ==
1729 				    MAC_GROUP_TYPE_DYNAMIC) {
1730 					MAC_RX_RING_RELEASED(mip, ringcnt);
1731 				}
1732 			}
1733 		} else if (group != defgrp && mip->mi_rx_group_type ==
1734 		    MAC_GROUP_TYPE_DYNAMIC) {
1735 			ringcnt = group->mrg_cur_count;
1736 			err = mac_group_ring_modify(mcip, group, defgrp);
1737 			if (err != 0)
1738 				return (err);
1739 			/*
1740 			 * Update the accounting. If this group
1741 			 * already had explicitly reserved rings,
1742 			 * we need to update the rings based on
1743 			 * the new ring count. If this group
1744 			 * had not explicitly reserved rings,
1745 			 * then we just reserve the rings asked for
1746 			 * and reserve the group.
1747 			 */
1748 			if (tmrp->mrp_mask & MRP_RX_RINGS) {
1749 				if (ringcnt > group->mrg_cur_count) {
1750 					MAC_RX_RING_RELEASED(mip,
1751 					    ringcnt - group->mrg_cur_count);
1752 				} else {
1753 					MAC_RX_RING_RESERVED(mip,
1754 					    group->mrg_cur_count - ringcnt);
1755 				}
1756 			} else {
1757 				MAC_RX_RING_RESERVED(mip, group->mrg_cur_count);
1758 				MAC_RX_GRP_RESERVED(mip);
1759 			}
1760 		}
1761 	}
1762 	if (mrp->mrp_mask & MRP_TX_RINGS) {
1763 		unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
1764 		group = flent->fe_tx_ring_group;
1765 		defgrp = MAC_DEFAULT_TX_GROUP(mip);
1766 
1767 		/*
1768 		 * For static groups we only allow rings=0 or resetting the
1769 		 * rings property.
1770 		 */
1771 		if (mrp->mrp_ntxrings > 0 &&
1772 		    mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
1773 			return (ENOTSUP);
1774 		}
1775 		if (mrp->mrp_mask & MRP_RINGS_RESET) {
1776 			if (!(tmrp->mrp_mask & MRP_TX_RINGS))
1777 				return (0);
1778 		} else {
1779 			if (unspec) {
1780 				if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1781 					return (0);
1782 			} else if (mip->mi_tx_group_type ==
1783 			    MAC_GROUP_TYPE_DYNAMIC) {
1784 				if ((tmrp->mrp_mask & MRP_TX_RINGS) &&
1785 				    !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) &&
1786 				    mrp->mrp_ntxrings == tmrp->mrp_ntxrings) {
1787 					return (0);
1788 				}
1789 			}
1790 		}
1791 		/* Resetting the prop */
1792 		if (mrp->mrp_mask & MRP_RINGS_RESET) {
1793 			if (group != defgrp) {
1794 				if (mip->mi_tx_group_type ==
1795 				    MAC_GROUP_TYPE_DYNAMIC) {
1796 					ringcnt = group->mrg_cur_count;
1797 					if ((flent->fe_type &
1798 					    FLOW_PRIMARY_MAC) != 0) {
1799 						mac_tx_client_quiesce(
1800 						    (mac_client_handle_t)
1801 						    mcip);
1802 						mac_tx_switch_group(mcip,
1803 						    group, defgrp);
1804 						mac_tx_client_restart(
1805 						    (mac_client_handle_t)
1806 						    mcip);
1807 						MAC_TX_GRP_RELEASED(mip);
1808 						MAC_TX_RING_RELEASED(mip,
1809 						    ringcnt);
1810 						return (0);
1811 					}
1812 					cmrp->mrp_ntxrings = 1;
1813 					(void) mac_group_ring_modify(mcip,
1814 					    group, defgrp);
1815 					/*
1816 					 * This group has reserved rings
1817 					 * that need to be released now.
1818 					 */
1819 					MAC_TX_RING_RELEASED(mip, ringcnt);
1820 				}
1821 				/*
1822 				 * If this is a static group, we
1823 				 * need to release the group. The
1824 				 * client will remain in the same
1825 				 * group till some other client
1826 				 * needs this group.
1827 				 */
1828 				MAC_TX_GRP_RELEASED(mip);
1829 			} else if (group == defgrp &&
1830 			    (flent->fe_type & FLOW_PRIMARY_MAC) == 0) {
1831 				ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1832 				if (ngrp == NULL)
1833 					return (0);
1834 				mac_tx_client_quiesce(
1835 				    (mac_client_handle_t)mcip);
1836 				mac_tx_switch_group(mcip, defgrp, ngrp);
1837 				mac_tx_client_restart(
1838 				    (mac_client_handle_t)mcip);
1839 			}
1840 			/*
1841 			 * If the client is in the default group, we will
1842 			 * just clear the MRP_TX_RINGS and leave it as
1843 			 * it rather than look for an exclusive group
1844 			 * for it.
1845 			 */
1846 			return (0);
1847 		}
1848 
1849 		/* Switch to H/W */
1850 		if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) {
1851 			ngrp = 	mac_reserve_tx_group(mcip, B_TRUE);
1852 			if (ngrp == NULL)
1853 				return (ENOSPC);
1854 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
1855 			mac_tx_switch_group(mcip, defgrp, ngrp);
1856 			mac_tx_client_restart((mac_client_handle_t)mcip);
1857 			MAC_TX_GRP_RESERVED(mip);
1858 			if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1859 				MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1860 		/* Switch to S/W */
1861 		} else if (group != defgrp && !unspec &&
1862 		    mrp->mrp_ntxrings == 0) {
1863 			/* Switch to S/W */
1864 			ringcnt = group->mrg_cur_count;
1865 			mac_tx_client_quiesce((mac_client_handle_t)mcip);
1866 			mac_tx_switch_group(mcip, group, defgrp);
1867 			mac_tx_client_restart((mac_client_handle_t)mcip);
1868 			if (tmrp->mrp_mask & MRP_TX_RINGS) {
1869 				MAC_TX_GRP_RELEASED(mip);
1870 				if (mip->mi_tx_group_type ==
1871 				    MAC_GROUP_TYPE_DYNAMIC) {
1872 					MAC_TX_RING_RELEASED(mip, ringcnt);
1873 				}
1874 			}
1875 		} else if (group != defgrp && mip->mi_tx_group_type ==
1876 		    MAC_GROUP_TYPE_DYNAMIC) {
1877 			ringcnt = group->mrg_cur_count;
1878 			err = mac_group_ring_modify(mcip, group, defgrp);
1879 			if (err != 0)
1880 				return (err);
1881 			/*
1882 			 * Update the accounting. If this group
1883 			 * already had explicitly reserved rings,
1884 			 * we need to update the rings based on
1885 			 * the new ring count. If this group
1886 			 * had not explicitly reserved rings,
1887 			 * then we just reserve the rings asked for
1888 			 * and reserve the group.
1889 			 */
1890 			if (tmrp->mrp_mask & MRP_TX_RINGS) {
1891 				if (ringcnt > group->mrg_cur_count) {
1892 					MAC_TX_RING_RELEASED(mip,
1893 					    ringcnt - group->mrg_cur_count);
1894 				} else {
1895 					MAC_TX_RING_RESERVED(mip,
1896 					    group->mrg_cur_count - ringcnt);
1897 				}
1898 			} else {
1899 				MAC_TX_RING_RESERVED(mip, group->mrg_cur_count);
1900 				MAC_TX_GRP_RESERVED(mip);
1901 			}
1902 		}
1903 	}
1904 	return (0);
1905 }
1906 
1907 /*
1908  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1909  * to initialize the cpu and resource control structure in the
1910  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1911  * properties before the flow entry for the unicast address was created).
1912  */
1913 int
1914 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1915 {
1916 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1917 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1918 	int			err = 0;
1919 	flow_entry_t		*flent = mcip->mci_flent;
1920 	mac_resource_props_t	*omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip);
1921 
1922 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1923 
1924 	err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
1925 	    mcip->mci_upper_mip : mip, mrp);
1926 	if (err != 0)
1927 		return (err);
1928 
1929 	/*
1930 	 * Copy over the existing properties since mac_update_resources
1931 	 * will modify the client's mrp. Currently, the saved property
1932 	 * is used to determine the difference between existing and
1933 	 * modified rings property.
1934 	 */
1935 	omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
1936 	bcopy(nmrp, omrp, sizeof (*omrp));
1937 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1938 	if (MCIP_DATAPATH_SETUP(mcip)) {
1939 		/*
1940 		 * We support rings only for primary client when there are
1941 		 * multiple clients sharing the same MAC address (e.g. VLAN).
1942 		 */
1943 		if (mrp->mrp_mask & MRP_RX_RINGS ||
1944 		    mrp->mrp_mask & MRP_TX_RINGS) {
1945 
1946 			if ((err = mac_client_set_rings_prop(mcip, mrp,
1947 			    omrp)) != 0) {
1948 				if (omrp->mrp_mask & MRP_RX_RINGS) {
1949 					nmrp->mrp_mask |= MRP_RX_RINGS;
1950 					nmrp->mrp_nrxrings = omrp->mrp_nrxrings;
1951 				} else {
1952 					nmrp->mrp_mask &= ~MRP_RX_RINGS;
1953 					nmrp->mrp_nrxrings = 0;
1954 				}
1955 				if (omrp->mrp_mask & MRP_TX_RINGS) {
1956 					nmrp->mrp_mask |= MRP_TX_RINGS;
1957 					nmrp->mrp_ntxrings = omrp->mrp_ntxrings;
1958 				} else {
1959 					nmrp->mrp_mask &= ~MRP_TX_RINGS;
1960 					nmrp->mrp_ntxrings = 0;
1961 				}
1962 				if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1963 					omrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
1964 				else
1965 					omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
1966 
1967 				if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1968 					omrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
1969 				else
1970 					omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
1971 				kmem_free(omrp, sizeof (*omrp));
1972 				return (err);
1973 			}
1974 
1975 			/*
1976 			 * If we modified the rings property of the primary
1977 			 * we need to update the property fields of its
1978 			 * VLANs as they inherit the primary's properites.
1979 			 */
1980 			if (mac_is_primary_client(mcip)) {
1981 				mac_set_prim_vlan_rings(mip,
1982 				    MCIP_RESOURCE_PROPS(mcip));
1983 			}
1984 		}
1985 		/*
1986 		 * We have to set this prior to calling mac_flow_modify.
1987 		 */
1988 		if (mrp->mrp_mask & MRP_PRIORITY) {
1989 			if (mrp->mrp_priority == MPL_RESET) {
1990 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1991 				    MPL_LINK_DEFAULT);
1992 			} else {
1993 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1994 				    mrp->mrp_priority);
1995 			}
1996 		}
1997 
1998 		mac_flow_modify(mip->mi_flow_tab, flent, mrp);
1999 		if (mrp->mrp_mask & MRP_PRIORITY)
2000 			mac_update_subflow_priority(mcip);
2001 	}
2002 	kmem_free(omrp, sizeof (*omrp));
2003 	return (0);
2004 }
2005 
2006 void
2007 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
2008 {
2009 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2010 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
2011 
2012 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
2013 }
2014 
2015 static int
2016 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
2017     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
2018     flow_entry_t **flent, mac_resource_props_t *mrp)
2019 {
2020 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
2021 	flow_desc_t	flow_desc;
2022 	char		flowname[MAXFLOWNAMELEN];
2023 	int		err;
2024 	uint_t		flent_flags;
2025 
2026 	/*
2027 	 * First unicast address being added, create a new flow
2028 	 * for that MAC client.
2029 	 */
2030 	bzero(&flow_desc, sizeof (flow_desc));
2031 
2032 	ASSERT(mac_addr != NULL ||
2033 	    (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR));
2034 	if (mac_addr != NULL) {
2035 		flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
2036 		bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
2037 	}
2038 	flow_desc.fd_mask = FLOW_LINK_DST;
2039 	if (vid != 0) {
2040 		flow_desc.fd_vid = vid;
2041 		flow_desc.fd_mask |= FLOW_LINK_VID;
2042 	}
2043 
2044 	/*
2045 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
2046 	 * and FLOW_VNIC. Even though they're a hack inherited
2047 	 * from the SRS code, we'll keep them for now. They're currently
2048 	 * consumed by mac_datapath_setup() to create the SRS.
2049 	 * That code should be eventually moved out of
2050 	 * mac_datapath_setup() and moved to a mac_srs_create()
2051 	 * function of some sort to keep things clean.
2052 	 *
2053 	 * Also, there's no reason why the SRS for the primary MAC
2054 	 * client should be different than any other MAC client. Until
2055 	 * this is cleaned-up, we support only one MAC unicast address
2056 	 * per client.
2057 	 *
2058 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
2059 	 * FLOW_VNIC for everything else.
2060 	 */
2061 	if (is_primary)
2062 		flent_flags = FLOW_PRIMARY_MAC;
2063 	else
2064 		flent_flags = FLOW_VNIC_MAC;
2065 
2066 	/*
2067 	 * For the first flow we use the mac client's name - mci_name, for
2068 	 * subsequent ones we just create a name with the vid. This is
2069 	 * so that we can add these flows to the same flow table. This is
2070 	 * fine as the flow name (except for the one with the mac client's
2071 	 * name) is not visible. When the first flow is removed, we just replace
2072 	 * its fdesc with another from the list, so we will still retain the
2073 	 * flent with the MAC client's flow name.
2074 	 */
2075 	if (first_flow) {
2076 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
2077 	} else {
2078 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
2079 		flent_flags = FLOW_NO_STATS;
2080 	}
2081 
2082 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
2083 	    flent_flags, flent)) != 0)
2084 		return (err);
2085 
2086 	mac_misc_stat_create(*flent);
2087 	FLOW_MARK(*flent, FE_INCIPIENT);
2088 	(*flent)->fe_mcip = mcip;
2089 
2090 	/*
2091 	 * Place initial creation reference on the flow. This reference
2092 	 * is released in the corresponding delete action viz.
2093 	 * mac_unicast_remove after waiting for all transient refs to
2094 	 * to go away. The wait happens in mac_flow_wait.
2095 	 * We have already held the reference in mac_client_open().
2096 	 */
2097 	if (!first_flow)
2098 		FLOW_REFHOLD(*flent);
2099 	return (0);
2100 }
2101 
2102 /* Refresh the multicast grouping for this VID. */
2103 int
2104 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
2105 {
2106 	flow_entry_t		*flent = arg;
2107 	mac_client_impl_t	*mcip = flent->fe_mcip;
2108 	uint16_t		vid;
2109 	flow_desc_t		flow_desc;
2110 
2111 	mac_flow_get_desc(flent, &flow_desc);
2112 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
2113 	    flow_desc.fd_vid : VLAN_ID_NONE;
2114 
2115 	/*
2116 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
2117 	 * we want to add/remove for this specific vid.
2118 	 */
2119 	if (add) {
2120 		return (mac_bcast_add(mcip, addrp, vid,
2121 		    MAC_ADDRTYPE_MULTICAST));
2122 	} else {
2123 		mac_bcast_delete(mcip, addrp, vid);
2124 		return (0);
2125 	}
2126 }
2127 
2128 static void
2129 mac_update_single_active_client(mac_impl_t *mip)
2130 {
2131 	mac_client_impl_t *client = NULL;
2132 
2133 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2134 
2135 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2136 	if (mip->mi_nactiveclients == 1) {
2137 		/*
2138 		 * Find the one active MAC client from the list of MAC
2139 		 * clients. The active MAC client has at least one
2140 		 * unicast address.
2141 		 */
2142 		for (client = mip->mi_clients_list; client != NULL;
2143 		    client = client->mci_client_next) {
2144 			if (client->mci_unicast_list != NULL)
2145 				break;
2146 		}
2147 		ASSERT(client != NULL);
2148 	}
2149 
2150 	/*
2151 	 * mi_single_active_client is protected by the MAC impl's read/writer
2152 	 * lock, which allows mac_rx() to check the value of that pointer
2153 	 * as a reader.
2154 	 */
2155 	mip->mi_single_active_client = client;
2156 	rw_exit(&mip->mi_rw_lock);
2157 }
2158 
2159 /*
2160  * Set up the data path. Called from i_mac_unicast_add after having
2161  * done all the validations including making sure this is an active
2162  * client (i.e that is ready to process packets.)
2163  */
2164 static int
2165 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
2166     uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
2167     mac_unicast_impl_t *muip)
2168 {
2169 	mac_impl_t	*mip = mcip->mci_mip;
2170 	boolean_t	mac_started = B_FALSE;
2171 	boolean_t	bcast_added = B_FALSE;
2172 	boolean_t	nactiveclients_added = B_FALSE;
2173 	flow_entry_t	*flent;
2174 	int		err = 0;
2175 	boolean_t	no_unicast;
2176 
2177 	no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2178 
2179 	if ((err = mac_start((mac_handle_t)mip)) != 0)
2180 		goto bail;
2181 
2182 	mac_started = B_TRUE;
2183 
2184 	/* add the MAC client to the broadcast address group by default */
2185 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2186 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
2187 		    MAC_ADDRTYPE_BROADCAST);
2188 		if (err != 0)
2189 			goto bail;
2190 		bcast_added = B_TRUE;
2191 	}
2192 
2193 	/*
2194 	 * If this is the first unicast address addition for this
2195 	 * client, reuse the pre-allocated larval flow entry associated with
2196 	 * the MAC client.
2197 	 */
2198 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
2199 
2200 	/* We are configuring the unicast flow now */
2201 	if (!MCIP_DATAPATH_SETUP(mcip)) {
2202 
2203 		if (mrp != NULL) {
2204 			MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2205 			    (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
2206 			    MPL_LINK_DEFAULT);
2207 		}
2208 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2209 		    isprimary, B_TRUE, &flent, mrp)) != 0)
2210 			goto bail;
2211 
2212 		mip->mi_nactiveclients++;
2213 		nactiveclients_added = B_TRUE;
2214 
2215 		/*
2216 		 * This will allocate the RX ring group if possible for the
2217 		 * flow and program the software classifier as needed.
2218 		 */
2219 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
2220 			goto bail;
2221 
2222 		if (no_unicast)
2223 			goto done_setup;
2224 		/*
2225 		 * The unicast MAC address must have been added successfully.
2226 		 */
2227 		ASSERT(mcip->mci_unicast != NULL);
2228 		/*
2229 		 * Push down the sub-flows that were defined on this link
2230 		 * hitherto. The flows are added to the active flow table
2231 		 * and SRS, softrings etc. are created as needed.
2232 		 */
2233 		mac_link_init_flows((mac_client_handle_t)mcip);
2234 	} else {
2235 		mac_address_t *map = mcip->mci_unicast;
2236 
2237 		ASSERT(!no_unicast);
2238 		/*
2239 		 * A unicast flow already exists for that MAC client,
2240 		 * this flow must be the same mac address but with
2241 		 * different VID. It has been checked by mac_addr_in_use().
2242 		 *
2243 		 * We will use the SRS etc. from the mci_flent. Note that
2244 		 * We don't need to create kstat for this as except for
2245 		 * the fdesc, everything will be used from in the 1st flent.
2246 		 */
2247 
2248 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
2249 			err = EINVAL;
2250 			goto bail;
2251 		}
2252 
2253 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2254 		    isprimary, B_FALSE, &flent, NULL)) != 0) {
2255 			goto bail;
2256 		}
2257 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
2258 			FLOW_FINAL_REFRELE(flent);
2259 			goto bail;
2260 		}
2261 
2262 		/* update the multicast group for this vid */
2263 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2264 		    (void *)flent, B_TRUE);
2265 
2266 	}
2267 
2268 	/* populate the shared MAC address */
2269 	muip->mui_map = mcip->mci_unicast;
2270 
2271 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2272 	muip->mui_next = mcip->mci_unicast_list;
2273 	mcip->mci_unicast_list = muip;
2274 	rw_exit(&mcip->mci_rw_lock);
2275 
2276 done_setup:
2277 	/*
2278 	 * First add the flent to the flow list of this mcip. Then set
2279 	 * the mip's mi_single_active_client if needed. The Rx path assumes
2280 	 * that mip->mi_single_active_client will always have an associated
2281 	 * flent.
2282 	 */
2283 	mac_client_add_to_flow_list(mcip, flent);
2284 	if (nactiveclients_added)
2285 		mac_update_single_active_client(mip);
2286 	/*
2287 	 * Trigger a renegotiation of the capabilities when the number of
2288 	 * active clients changes from 1 to 2, since some of the capabilities
2289 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
2290 	 * to all the MAC clients whenever physical link is DOWN.
2291 	 */
2292 	if (mip->mi_nactiveclients == 2) {
2293 		mac_capab_update((mac_handle_t)mip);
2294 		mac_virtual_link_update(mip);
2295 	}
2296 	/*
2297 	 * Now that the setup is complete, clear the INCIPIENT flag.
2298 	 * The flag was set to avoid incoming packets seeing inconsistent
2299 	 * structures while the setup was in progress. Clear the mci_tx_flag
2300 	 * by calling mac_tx_client_block. It is possible that
2301 	 * mac_unicast_remove was called prior to this mac_unicast_add which
2302 	 * could have set the MCI_TX_QUIESCE flag.
2303 	 */
2304 	if (flent->fe_rx_ring_group != NULL)
2305 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
2306 	FLOW_UNMARK(flent, FE_INCIPIENT);
2307 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
2308 	mac_tx_client_unblock(mcip);
2309 	return (0);
2310 bail:
2311 	if (bcast_added)
2312 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
2313 
2314 	if (nactiveclients_added)
2315 		mip->mi_nactiveclients--;
2316 
2317 	if (mac_started)
2318 		mac_stop((mac_handle_t)mip);
2319 
2320 	return (err);
2321 }
2322 
2323 /*
2324  * Return the passive primary MAC client, if present. The passive client is
2325  * a stand-by client that has the same unicast address as another that is
2326  * currenly active. Once the active client goes away, the passive client
2327  * becomes active.
2328  */
2329 static mac_client_impl_t *
2330 mac_get_passive_primary_client(mac_impl_t *mip)
2331 {
2332 	mac_client_impl_t	*mcip;
2333 
2334 	for (mcip = mip->mi_clients_list; mcip != NULL;
2335 	    mcip = mcip->mci_client_next) {
2336 		if (mac_is_primary_client(mcip) &&
2337 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2338 			return (mcip);
2339 		}
2340 	}
2341 	return (NULL);
2342 }
2343 
2344 /*
2345  * Add a new unicast address to the MAC client.
2346  *
2347  * The MAC address can be specified either by value, or the MAC client
2348  * can specify that it wants to use the primary MAC address of the
2349  * underlying MAC. See the introductory comments at the beginning
2350  * of this file for more more information on primary MAC addresses.
2351  *
2352  * Note also the tuple (MAC address, VID) must be unique
2353  * for the MAC clients defined on top of the same underlying MAC
2354  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
2355  *
2356  * In no case can a client use the PVID for the MAC, if the MAC has one set.
2357  */
2358 int
2359 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2360     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2361 {
2362 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2363 	mac_impl_t		*mip = mcip->mci_mip;
2364 	int			err;
2365 	uint_t			mac_len = mip->mi_type->mt_addr_length;
2366 	boolean_t		check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
2367 	boolean_t		fastpath_disabled = B_FALSE;
2368 	boolean_t		is_primary = (flags & MAC_UNICAST_PRIMARY);
2369 	boolean_t		is_unicast_hw = (flags & MAC_UNICAST_HW);
2370 	mac_resource_props_t	*mrp;
2371 	boolean_t		passive_client = B_FALSE;
2372 	mac_unicast_impl_t	*muip;
2373 	boolean_t		is_vnic_primary =
2374 	    (flags & MAC_UNICAST_VNIC_PRIMARY);
2375 
2376 	/* when VID is non-zero, the underlying MAC can not be VNIC */
2377 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
2378 
2379 	/*
2380 	 * Can't unicast add if the client asked only for minimal datapath
2381 	 * setup.
2382 	 */
2383 	if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)
2384 		return (ENOTSUP);
2385 
2386 	/*
2387 	 * Check for an attempted use of the current Port VLAN ID, if enabled.
2388 	 * No client may use it.
2389 	 */
2390 	if (mip->mi_pvid != 0 && vid == mip->mi_pvid)
2391 		return (EBUSY);
2392 
2393 	/*
2394 	 * Check whether it's the primary client and flag it.
2395 	 */
2396 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
2397 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
2398 
2399 	/*
2400 	 * is_vnic_primary is true when we come here as a VLAN VNIC
2401 	 * which uses the primary mac client's address but with a non-zero
2402 	 * VID. In this case the MAC address is not specified by an upper
2403 	 * MAC client.
2404 	 */
2405 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2406 	    !is_vnic_primary) {
2407 		/*
2408 		 * The address is being set by the upper MAC client
2409 		 * of a VNIC. The MAC address was already set by the
2410 		 * VNIC driver during VNIC creation.
2411 		 *
2412 		 * Note: a VNIC has only one MAC address. We return
2413 		 * the MAC unicast address handle of the lower MAC client
2414 		 * corresponding to the VNIC. We allocate a new entry
2415 		 * which is flagged appropriately, so that mac_unicast_remove()
2416 		 * doesn't attempt to free the original entry that
2417 		 * was allocated by the VNIC driver.
2418 		 */
2419 		ASSERT(mcip->mci_unicast != NULL);
2420 
2421 		/* Check for VLAN flags, if present */
2422 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2423 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2424 
2425 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2426 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2427 
2428 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2429 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2430 
2431 		/*
2432 		 * Ensure that the primary unicast address of the VNIC
2433 		 * is added only once unless we have the
2434 		 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
2435 		 * a passive MAC client).
2436 		 */
2437 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
2438 			if ((mcip->mci_flags &
2439 			    MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2440 			    (mcip->mci_flags &
2441 			    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2442 				return (EBUSY);
2443 			}
2444 			mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2445 			passive_client = B_TRUE;
2446 		}
2447 
2448 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2449 
2450 		/*
2451 		 * Create a handle for vid 0.
2452 		 */
2453 		ASSERT(vid == 0);
2454 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2455 		muip->mui_vid = vid;
2456 		*mah = (mac_unicast_handle_t)muip;
2457 		/*
2458 		 * This will be used by the caller to defer setting the
2459 		 * rx functions.
2460 		 */
2461 		if (passive_client)
2462 			return (EAGAIN);
2463 		return (0);
2464 	}
2465 
2466 	/* primary MAC clients cannot be opened on top of anchor VNICs */
2467 	if ((is_vnic_primary || is_primary) &&
2468 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
2469 		return (ENXIO);
2470 	}
2471 
2472 	/*
2473 	 * If this is a VNIC/VLAN, disable softmac fast-path.
2474 	 */
2475 	if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2476 		err = mac_fastpath_disable((mac_handle_t)mip);
2477 		if (err != 0)
2478 			return (err);
2479 		fastpath_disabled = B_TRUE;
2480 	}
2481 
2482 	/*
2483 	 * Return EBUSY if:
2484 	 *  - there is an exclusively active mac client exists.
2485 	 *  - this is an exclusive active mac client but
2486 	 *	a. there is already active mac clients exist, or
2487 	 *	b. fastpath streams are already plumbed on this legacy device
2488 	 *  - the mac creator has disallowed active mac clients.
2489 	 */
2490 	if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
2491 		if (fastpath_disabled)
2492 			mac_fastpath_enable((mac_handle_t)mip);
2493 		return (EBUSY);
2494 	}
2495 
2496 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2497 		ASSERT(!fastpath_disabled);
2498 		if (mip->mi_nactiveclients != 0)
2499 			return (EBUSY);
2500 
2501 		if ((mip->mi_state_flags & MIS_LEGACY) &&
2502 		    !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
2503 			return (EBUSY);
2504 		}
2505 		mip->mi_state_flags |= MIS_EXCLUSIVE;
2506 	}
2507 
2508 	mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
2509 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
2510 	    MCIS_IS_AGGR_PORT))) {
2511 		/*
2512 		 * Apply the property cached in the mac_impl_t to the primary
2513 		 * mac client. If the mac client is a VNIC or an aggregation
2514 		 * port, its property should be set in the mcip when the
2515 		 * VNIC/aggr was created.
2516 		 */
2517 		mac_get_resources((mac_handle_t)mip, mrp);
2518 		(void) mac_client_set_resources(mch, mrp);
2519 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2520 		/*
2521 		 * This is a primary VLAN client, we don't support
2522 		 * specifying rings property for this as it inherits the
2523 		 * rings property from its MAC.
2524 		 */
2525 		if (is_vnic_primary) {
2526 			mac_resource_props_t	*vmrp;
2527 
2528 			vmrp = MCIP_RESOURCE_PROPS(mcip);
2529 			if (vmrp->mrp_mask & MRP_RX_RINGS ||
2530 			    vmrp->mrp_mask & MRP_TX_RINGS) {
2531 				if (fastpath_disabled)
2532 					mac_fastpath_enable((mac_handle_t)mip);
2533 				kmem_free(mrp, sizeof (*mrp));
2534 				return (ENOTSUP);
2535 			}
2536 			/*
2537 			 * Additionally we also need to inherit any
2538 			 * rings property from the MAC.
2539 			 */
2540 			mac_get_resources((mac_handle_t)mip, mrp);
2541 			if (mrp->mrp_mask & MRP_RX_RINGS) {
2542 				vmrp->mrp_mask |= MRP_RX_RINGS;
2543 				vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
2544 			}
2545 			if (mrp->mrp_mask & MRP_TX_RINGS) {
2546 				vmrp->mrp_mask |= MRP_TX_RINGS;
2547 				vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
2548 			}
2549 		}
2550 		bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp));
2551 	}
2552 
2553 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2554 	muip->mui_vid = vid;
2555 
2556 	if (is_primary || is_vnic_primary) {
2557 		mac_addr = mip->mi_addr;
2558 	} else {
2559 
2560 		/*
2561 		 * Verify the validity of the specified MAC addresses value.
2562 		 */
2563 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2564 			*diag = MAC_DIAG_MACADDR_INVALID;
2565 			err = EINVAL;
2566 			goto bail_out;
2567 		}
2568 
2569 		/*
2570 		 * Make sure that the specified MAC address is different
2571 		 * than the unicast MAC address of the underlying NIC.
2572 		 */
2573 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2574 			*diag = MAC_DIAG_MACADDR_NIC;
2575 			err = EINVAL;
2576 			goto bail_out;
2577 		}
2578 	}
2579 
2580 	/*
2581 	 * Set the flags here so that if this is a passive client, we
2582 	 * can return  and set it when we call mac_client_datapath_setup
2583 	 * when this becomes the active client. If we defer to using these
2584 	 * flags to mac_client_datapath_setup, then for a passive client,
2585 	 * we'd have to store the flags somewhere (probably fe_flags)
2586 	 * and then use it.
2587 	 */
2588 	if (!MCIP_DATAPATH_SETUP(mcip)) {
2589 		if (is_unicast_hw) {
2590 			/*
2591 			 * The client requires a hardware MAC address slot
2592 			 * for that unicast address. Since we support only
2593 			 * one unicast MAC address per client, flag the
2594 			 * MAC client itself.
2595 			 */
2596 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
2597 		}
2598 
2599 		/* Check for VLAN flags, if present */
2600 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2601 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2602 
2603 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2604 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2605 
2606 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2607 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2608 	} else {
2609 		/*
2610 		 * Assert that the specified flags are consistent with the
2611 		 * flags specified by previous calls to mac_unicast_add().
2612 		 */
2613 		ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2614 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2615 		    ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2616 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2617 
2618 		ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2619 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2620 		    ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2621 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2622 
2623 		ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2624 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2625 		    ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2626 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2627 
2628 		/*
2629 		 * Make sure the client is consistent about its requests
2630 		 * for MAC addresses. I.e. all requests from the clients
2631 		 * must have the MAC_UNICAST_HW flag set or clear.
2632 		 */
2633 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2634 		    !is_unicast_hw ||
2635 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2636 		    is_unicast_hw) {
2637 			err = EINVAL;
2638 			goto bail_out;
2639 		}
2640 	}
2641 	/*
2642 	 * Make sure the MAC address is not already used by
2643 	 * another MAC client defined on top of the same
2644 	 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2645 	 * set when we allow a passive client to be present which will
2646 	 * be activated when the currently active client goes away - this
2647 	 * works only with primary addresses.
2648 	 */
2649 	if ((check_dups || is_primary || is_vnic_primary) &&
2650 	    mac_addr_in_use(mip, mac_addr, vid)) {
2651 		/*
2652 		 * Must have set the multiple primary address flag when
2653 		 * we did a mac_client_open AND this should be a primary
2654 		 * MAC client AND there should not already be a passive
2655 		 * primary. If all is true then we let this succeed
2656 		 * even if the address is a dup.
2657 		 */
2658 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2659 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2660 		    mac_get_passive_primary_client(mip) != NULL) {
2661 			*diag = MAC_DIAG_MACADDR_INUSE;
2662 			err = EEXIST;
2663 			goto bail_out;
2664 		}
2665 		ASSERT((mcip->mci_flags &
2666 		    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2667 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2668 		kmem_free(mrp, sizeof (*mrp));
2669 
2670 		/*
2671 		 * Stash the unicast address handle, we will use it when
2672 		 * we set up the passive client.
2673 		 */
2674 		mcip->mci_p_unicast_list = muip;
2675 		*mah = (mac_unicast_handle_t)muip;
2676 		return (0);
2677 	}
2678 
2679 	err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp,
2680 	    is_primary || is_vnic_primary, muip);
2681 	if (err != 0)
2682 		goto bail_out;
2683 
2684 	kmem_free(mrp, sizeof (*mrp));
2685 	*mah = (mac_unicast_handle_t)muip;
2686 	return (0);
2687 
2688 bail_out:
2689 	if (fastpath_disabled)
2690 		mac_fastpath_enable((mac_handle_t)mip);
2691 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2692 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2693 		if (mip->mi_state_flags & MIS_LEGACY) {
2694 			mip->mi_capab_legacy.ml_active_clear(
2695 			    mip->mi_driver);
2696 		}
2697 	}
2698 	kmem_free(mrp, sizeof (*mrp));
2699 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2700 	return (err);
2701 }
2702 
2703 /*
2704  * Wrapper function to mac_unicast_add when we want to have the same mac
2705  * client open for two instances, one that is currently active and another
2706  * that will become active when the current one is removed. In this case
2707  * mac_unicast_add will return EGAIN and we will save the rx function and
2708  * arg which will be used when we activate the passive client in
2709  * mac_unicast_remove.
2710  */
2711 int
2712 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2713     uint16_t flags, mac_unicast_handle_t *mah,  uint16_t vid, mac_diag_t *diag,
2714     mac_rx_t rx_fn, void *arg)
2715 {
2716 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2717 	uint_t			err;
2718 
2719 	err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2720 	if (err != 0 && err != EAGAIN)
2721 		return (err);
2722 	if (err == EAGAIN) {
2723 		if (rx_fn != NULL) {
2724 			mcip->mci_rx_p_fn = rx_fn;
2725 			mcip->mci_rx_p_arg = arg;
2726 		}
2727 		return (0);
2728 	}
2729 	if (rx_fn != NULL)
2730 		mac_rx_set(mch, rx_fn, arg);
2731 	return (err);
2732 }
2733 
2734 int
2735 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2736     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2737 {
2738 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2739 	uint_t err;
2740 
2741 	i_mac_perim_enter(mip);
2742 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2743 	i_mac_perim_exit(mip);
2744 
2745 	return (err);
2746 }
2747 
2748 static void
2749 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2750     flow_entry_t *flent)
2751 {
2752 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2753 	mac_impl_t		*mip = mcip->mci_mip;
2754 	boolean_t		no_unicast;
2755 
2756 	/*
2757 	 * If we have not added a unicast address for this MAC client, just
2758 	 * teardown the datapath.
2759 	 */
2760 	no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2761 
2762 	if (!no_unicast) {
2763 		/*
2764 		 * We would have initialized subflows etc. only if we brought
2765 		 * up the primary client and set the unicast unicast address
2766 		 * etc. Deactivate the flows. The flow entry will be removed
2767 		 * from the active flow tables, and the associated SRS,
2768 		 * softrings etc will be deleted. But the flow entry itself
2769 		 * won't be destroyed, instead it will continue to be archived
2770 		 * off the  the global flow hash list, for a possible future
2771 		 * activation when say IP is plumbed again.
2772 		 */
2773 		mac_link_release_flows(mch);
2774 	}
2775 	mip->mi_nactiveclients--;
2776 	mac_update_single_active_client(mip);
2777 
2778 	/* Tear down the data path */
2779 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2780 
2781 	/*
2782 	 * Prevent any future access to the flow entry through the mci_flent
2783 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2784 	 * mac_bcast_send is also under mi_rw_lock.
2785 	 */
2786 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2787 	flent = mcip->mci_flent;
2788 	mac_client_remove_flow_from_list(mcip, flent);
2789 
2790 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2791 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2792 
2793 	/*
2794 	 * This is the last unicast address being removed and there shouldn't
2795 	 * be any outbound data threads at this point coming down from mac
2796 	 * clients. We have waited for the data threads to finish before
2797 	 * starting dld_str_detach. Non-data threads must access TX SRS
2798 	 * under mi_rw_lock.
2799 	 */
2800 	rw_exit(&mip->mi_rw_lock);
2801 
2802 	/*
2803 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2804 	 * contain other flags, such as FE_CONDEMNED, which we need to
2805 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2806 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2807 	 * path). We just clear the stats and reset the initial callback
2808 	 * function, the rest will be set when we call mac_flow_create,
2809 	 * if at all.
2810 	 */
2811 	mutex_enter(&flent->fe_lock);
2812 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2813 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2814 	flent->fe_flags = FE_MC_NO_DATAPATH;
2815 	flow_stat_destroy(flent);
2816 	mac_misc_stat_delete(flent);
2817 
2818 	/* Initialize the receiver function to a safe routine */
2819 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2820 	flent->fe_cb_arg1 = NULL;
2821 	flent->fe_cb_arg2 = NULL;
2822 
2823 	flent->fe_index = -1;
2824 	mutex_exit(&flent->fe_lock);
2825 
2826 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2827 		ASSERT(muip != NULL || no_unicast);
2828 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2829 		    muip != NULL ? muip->mui_vid : VLAN_ID_NONE);
2830 	}
2831 
2832 	if (mip->mi_nactiveclients == 1) {
2833 		mac_capab_update((mac_handle_t)mip);
2834 		mac_virtual_link_update(mip);
2835 	}
2836 
2837 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2838 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2839 
2840 		if (mip->mi_state_flags & MIS_LEGACY)
2841 			mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2842 	}
2843 
2844 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2845 
2846 	if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2847 		mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2848 
2849 	if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2850 		mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2851 
2852 	if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2853 		mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2854 
2855 	if (muip != NULL)
2856 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2857 	mac_protect_cancel_timer(mcip);
2858 	mac_protect_flush_dhcp(mcip);
2859 
2860 	bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat));
2861 	/*
2862 	 * Disable fastpath if this is a VNIC or a VLAN.
2863 	 */
2864 	if (mcip->mci_state_flags & MCIS_IS_VNIC)
2865 		mac_fastpath_enable((mac_handle_t)mip);
2866 	mac_stop((mac_handle_t)mip);
2867 }
2868 
2869 /*
2870  * Remove a MAC address which was previously added by mac_unicast_add().
2871  */
2872 int
2873 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2874 {
2875 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2876 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2877 	mac_unicast_impl_t *pre;
2878 	mac_impl_t *mip = mcip->mci_mip;
2879 	flow_entry_t		*flent;
2880 	uint16_t mui_vid;
2881 
2882 	i_mac_perim_enter(mip);
2883 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2884 		/*
2885 		 * Called made by the upper MAC client of a VNIC.
2886 		 * There's nothing much to do, the unicast address will
2887 		 * be removed by the VNIC driver when the VNIC is deleted,
2888 		 * but let's ensure that all our transmit is done before
2889 		 * the client does a mac_client_stop lest it trigger an
2890 		 * assert in the driver.
2891 		 */
2892 		ASSERT(muip->mui_vid == 0);
2893 
2894 		mac_tx_client_flush(mcip);
2895 
2896 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2897 			mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2898 			if (mcip->mci_rx_p_fn != NULL) {
2899 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2900 				    mcip->mci_rx_p_arg);
2901 				mcip->mci_rx_p_fn = NULL;
2902 				mcip->mci_rx_p_arg = NULL;
2903 			}
2904 			kmem_free(muip, sizeof (mac_unicast_impl_t));
2905 			i_mac_perim_exit(mip);
2906 			return (0);
2907 		}
2908 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2909 
2910 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2911 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2912 
2913 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2914 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2915 
2916 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2917 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2918 
2919 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2920 		i_mac_perim_exit(mip);
2921 		return (0);
2922 	}
2923 
2924 	ASSERT(muip != NULL);
2925 
2926 	/*
2927 	 * We are removing a passive client, we haven't setup the datapath
2928 	 * for this yet, so nothing much to do.
2929 	 */
2930 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2931 
2932 		ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
2933 		ASSERT(mcip->mci_p_unicast_list == muip);
2934 
2935 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2936 
2937 		mcip->mci_p_unicast_list = NULL;
2938 		mcip->mci_rx_p_fn = NULL;
2939 		mcip->mci_rx_p_arg = NULL;
2940 
2941 		mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2942 
2943 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2944 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2945 
2946 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2947 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2948 
2949 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2950 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2951 
2952 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2953 		i_mac_perim_exit(mip);
2954 		return (0);
2955 	}
2956 	/*
2957 	 * Remove the VID from the list of client's VIDs.
2958 	 */
2959 	pre = mcip->mci_unicast_list;
2960 	if (muip == pre) {
2961 		mcip->mci_unicast_list = muip->mui_next;
2962 	} else {
2963 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2964 			pre = pre->mui_next;
2965 		ASSERT(pre->mui_next == muip);
2966 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2967 		pre->mui_next = muip->mui_next;
2968 		rw_exit(&mcip->mci_rw_lock);
2969 	}
2970 
2971 	if (!mac_client_single_rcvr(mcip)) {
2972 		/*
2973 		 * This MAC client is shared by more than one unicast
2974 		 * addresses, so we will just remove the flent
2975 		 * corresponding to the address being removed. We don't invoke
2976 		 * mac_rx_classify_flow_rem() since the additional flow is
2977 		 * not associated with its own separate set of SRS and rings,
2978 		 * and these constructs are still needed for the remaining
2979 		 * flows.
2980 		 */
2981 		flent = mac_client_get_flow(mcip, muip);
2982 		ASSERT(flent != NULL);
2983 
2984 		/*
2985 		 * The first one is disappearing, need to make sure
2986 		 * we replace it with another from the list of
2987 		 * shared clients.
2988 		 */
2989 		if (flent == mcip->mci_flent)
2990 			flent = mac_client_swap_mciflent(mcip);
2991 		mac_client_remove_flow_from_list(mcip, flent);
2992 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2993 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2994 
2995 		/*
2996 		 * The multicast groups that were added by the client so
2997 		 * far must be removed from the brodcast domain corresponding
2998 		 * to the VID being removed.
2999 		 */
3000 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
3001 		    (void *)flent, B_FALSE);
3002 
3003 		if (mip->mi_type->mt_brdcst_addr != NULL) {
3004 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3005 			    muip->mui_vid);
3006 		}
3007 
3008 		FLOW_FINAL_REFRELE(flent);
3009 		ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
3010 		/*
3011 		 * Enable fastpath if this is a VNIC or a VLAN.
3012 		 */
3013 		if (mcip->mci_state_flags & MCIS_IS_VNIC)
3014 			mac_fastpath_enable((mac_handle_t)mip);
3015 		mac_stop((mac_handle_t)mip);
3016 		i_mac_perim_exit(mip);
3017 		return (0);
3018 	}
3019 
3020 	mui_vid = muip->mui_vid;
3021 	mac_client_datapath_teardown(mch, muip, flent);
3022 
3023 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && mui_vid == 0) {
3024 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
3025 	} else {
3026 		i_mac_perim_exit(mip);
3027 		return (0);
3028 	}
3029 
3030 	/*
3031 	 * If we are removing the primary, check if we have a passive primary
3032 	 * client that we need to activate now.
3033 	 */
3034 	mcip = mac_get_passive_primary_client(mip);
3035 	if (mcip != NULL) {
3036 		mac_resource_props_t	*mrp;
3037 		mac_unicast_impl_t	*muip;
3038 
3039 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3040 		mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3041 
3042 		/*
3043 		 * Apply the property cached in the mac_impl_t to the
3044 		 * primary mac client.
3045 		 */
3046 		mac_get_resources((mac_handle_t)mip, mrp);
3047 		(void) mac_client_set_resources(mch, mrp);
3048 		ASSERT(mcip->mci_p_unicast_list != NULL);
3049 		muip = mcip->mci_p_unicast_list;
3050 		mcip->mci_p_unicast_list = NULL;
3051 		if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
3052 		    mip->mi_addr, mrp, B_TRUE, muip) == 0) {
3053 			if (mcip->mci_rx_p_fn != NULL) {
3054 				mac_rx_set(mch, mcip->mci_rx_p_fn,
3055 				    mcip->mci_rx_p_arg);
3056 				mcip->mci_rx_p_fn = NULL;
3057 				mcip->mci_rx_p_arg = NULL;
3058 			}
3059 		} else {
3060 			kmem_free(muip, sizeof (mac_unicast_impl_t));
3061 		}
3062 		kmem_free(mrp, sizeof (*mrp));
3063 	}
3064 	i_mac_perim_exit(mip);
3065 	return (0);
3066 }
3067 
3068 /*
3069  * Multicast add function invoked by MAC clients.
3070  */
3071 int
3072 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
3073 {
3074 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3075 	mac_impl_t		*mip = mcip->mci_mip;
3076 	flow_entry_t		*flent = mcip->mci_flent_list;
3077 	flow_entry_t		*prev_fe = NULL;
3078 	uint16_t		vid;
3079 	int			err = 0;
3080 
3081 	/* Verify the address is a valid multicast address */
3082 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
3083 	    mip->mi_pdata)) != 0)
3084 		return (err);
3085 
3086 	i_mac_perim_enter(mip);
3087 	while (flent != NULL) {
3088 		vid = i_mac_flow_vid(flent);
3089 
3090 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
3091 		    MAC_ADDRTYPE_MULTICAST);
3092 		if (err != 0)
3093 			break;
3094 		prev_fe = flent;
3095 		flent = flent->fe_client_next;
3096 	}
3097 
3098 	/*
3099 	 * If we failed adding, then undo all, rather than partial
3100 	 * success.
3101 	 */
3102 	if (flent != NULL && prev_fe != NULL) {
3103 		flent = mcip->mci_flent_list;
3104 		while (flent != prev_fe->fe_client_next) {
3105 			vid = i_mac_flow_vid(flent);
3106 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3107 			flent = flent->fe_client_next;
3108 		}
3109 	}
3110 	i_mac_perim_exit(mip);
3111 	return (err);
3112 }
3113 
3114 /*
3115  * Multicast delete function invoked by MAC clients.
3116  */
3117 void
3118 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
3119 {
3120 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3121 	mac_impl_t		*mip = mcip->mci_mip;
3122 	flow_entry_t		*flent;
3123 	uint16_t		vid;
3124 
3125 	i_mac_perim_enter(mip);
3126 	for (flent = mcip->mci_flent_list; flent != NULL;
3127 	    flent = flent->fe_client_next) {
3128 		vid = i_mac_flow_vid(flent);
3129 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3130 	}
3131 	i_mac_perim_exit(mip);
3132 }
3133 
3134 /*
3135  * When a MAC client desires to capture packets on an interface,
3136  * it registers a promiscuous call back with mac_promisc_add().
3137  * There are three types of promiscuous callbacks:
3138  *
3139  * * MAC_CLIENT_PROMISC_ALL
3140  *   Captures all packets sent and received by the MAC client,
3141  *   the physical interface, as well as all other MAC clients
3142  *   defined on top of the same MAC.
3143  *
3144  * * MAC_CLIENT_PROMISC_FILTERED
3145  *   Captures all packets sent and received by the MAC client,
3146  *   plus all multicast traffic sent and received by the phyisical
3147  *   interface and the other MAC clients.
3148  *
3149  * * MAC_CLIENT_PROMISC_MULTI
3150  *   Captures all broadcast and multicast packets sent and
3151  *   received by the MAC clients as well as the physical interface.
3152  *
3153  * In all cases, the underlying MAC is put in promiscuous mode.
3154  */
3155 int
3156 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
3157     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
3158 {
3159 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3160 	mac_impl_t *mip = mcip->mci_mip;
3161 	mac_promisc_impl_t *mpip;
3162 	mac_cb_info_t	*mcbi;
3163 	int rc;
3164 
3165 	i_mac_perim_enter(mip);
3166 
3167 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
3168 		i_mac_perim_exit(mip);
3169 		return (rc);
3170 	}
3171 
3172 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
3173 	    type == MAC_CLIENT_PROMISC_ALL) {
3174 		/*
3175 		 * The function is being invoked by the upper MAC client
3176 		 * of a VNIC. The VNIC should only see the traffic
3177 		 * it is entitled to.
3178 		 */
3179 		type = MAC_CLIENT_PROMISC_FILTERED;
3180 	}
3181 
3182 
3183 	/*
3184 	 * Turn on promiscuous mode for the underlying NIC.
3185 	 * This is needed even for filtered callbacks which
3186 	 * expect to receive all multicast traffic on the wire.
3187 	 *
3188 	 * Physical promiscuous mode should not be turned on if
3189 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
3190 	 */
3191 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
3192 		if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
3193 			mac_stop((mac_handle_t)mip);
3194 			i_mac_perim_exit(mip);
3195 			return (rc);
3196 		}
3197 	}
3198 
3199 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
3200 
3201 	mpip->mpi_type = type;
3202 	mpip->mpi_fn = fn;
3203 	mpip->mpi_arg = arg;
3204 	mpip->mpi_mcip = mcip;
3205 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
3206 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
3207 	mpip->mpi_strip_vlan_tag =
3208 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
3209 	mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0);
3210 
3211 	mcbi = &mip->mi_promisc_cb_info;
3212 	mutex_enter(mcbi->mcbi_lockp);
3213 
3214 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
3215 	    &mpip->mpi_mci_link);
3216 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
3217 	    &mpip->mpi_mi_link);
3218 
3219 	mutex_exit(mcbi->mcbi_lockp);
3220 
3221 	*mphp = (mac_promisc_handle_t)mpip;
3222 	i_mac_perim_exit(mip);
3223 	return (0);
3224 }
3225 
3226 /*
3227  * Remove a multicast address previously aded through mac_promisc_add().
3228  */
3229 void
3230 mac_promisc_remove(mac_promisc_handle_t mph)
3231 {
3232 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
3233 	mac_client_impl_t *mcip = mpip->mpi_mcip;
3234 	mac_impl_t *mip = mcip->mci_mip;
3235 	mac_cb_info_t *mcbi;
3236 	int rv;
3237 
3238 	i_mac_perim_enter(mip);
3239 
3240 	/*
3241 	 * Even if the device can't be reset into normal mode, we still
3242 	 * need to clear the client promisc callbacks. The client may want
3243 	 * to close the mac end point and we can't have stale callbacks.
3244 	 */
3245 	if (!(mpip->mpi_no_phys)) {
3246 		if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
3247 			cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
3248 			    " mode because of error 0x%x", mip->mi_name, rv);
3249 		}
3250 	}
3251 	mcbi = &mip->mi_promisc_cb_info;
3252 	mutex_enter(mcbi->mcbi_lockp);
3253 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
3254 	    &mpip->mpi_mi_link)) {
3255 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
3256 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
3257 		kmem_cache_free(mac_promisc_impl_cache, mpip);
3258 	} else {
3259 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
3260 	}
3261 	mutex_exit(mcbi->mcbi_lockp);
3262 	mac_stop((mac_handle_t)mip);
3263 
3264 	i_mac_perim_exit(mip);
3265 }
3266 
3267 /*
3268  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
3269  * that a control operation wants to quiesce the Tx data flow in which case
3270  * we return an error. Holding any of the per cpu locks ensures that the
3271  * mci_tx_flag won't change.
3272  *
3273  * 'CPU' must be accessed just once and used to compute the index into the
3274  * percpu array, and that index must be used for the entire duration of the
3275  * packet send operation. Note that the thread may be preempted and run on
3276  * another cpu any time and so we can't use 'CPU' more than once for the
3277  * operation.
3278  */
3279 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
3280 {									\
3281 	(error) = 0;							\
3282 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
3283 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
3284 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
3285 		(mytx)->pcpu_tx_refcnt++;				\
3286 	} else {							\
3287 		(error) = -1;						\
3288 	}								\
3289 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
3290 }
3291 
3292 /*
3293  * Release the reference. If needed, signal any control operation waiting
3294  * for Tx quiescence. The wait and signal are always done using the
3295  * mci_tx_pcpu[0]'s lock
3296  */
3297 #define	MAC_TX_RELE(mcip, mytx) {					\
3298 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
3299 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
3300 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
3301 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
3302 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
3303 		cv_signal(&(mcip)->mci_tx_cv);				\
3304 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
3305 	} else {							\
3306 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
3307 	}								\
3308 }
3309 
3310 /*
3311  * Send function invoked by MAC clients.
3312  */
3313 mac_tx_cookie_t
3314 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
3315     uint16_t flag, mblk_t **ret_mp)
3316 {
3317 	mac_tx_cookie_t		cookie = NULL;
3318 	int			error;
3319 	mac_tx_percpu_t		*mytx;
3320 	mac_soft_ring_set_t	*srs;
3321 	flow_entry_t		*flent;
3322 	boolean_t		is_subflow = B_FALSE;
3323 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3324 	mac_impl_t		*mip = mcip->mci_mip;
3325 	mac_srs_tx_t		*srs_tx;
3326 
3327 	/*
3328 	 * Check whether the active Tx threads count is bumped already.
3329 	 */
3330 	if (!(flag & MAC_TX_NO_HOLD)) {
3331 		MAC_TX_TRY_HOLD(mcip, mytx, error);
3332 		if (error != 0) {
3333 			freemsgchain(mp_chain);
3334 			return (NULL);
3335 		}
3336 	}
3337 
3338 	/*
3339 	 * If mac protection is enabled, only the permissible packets will be
3340 	 * returned by mac_protect_check().
3341 	 */
3342 	if ((mcip->mci_flent->
3343 	    fe_resource_props.mrp_mask & MRP_PROTECT) != 0 &&
3344 	    (mp_chain = mac_protect_check(mch, mp_chain)) == NULL)
3345 		goto done;
3346 
3347 	if (mcip->mci_subflow_tab != NULL &&
3348 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
3349 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
3350 	    FLOW_OUTBOUND, &flent) == 0) {
3351 		/*
3352 		 * The main assumption here is that if in the event
3353 		 * we get a chain, all the packets will be classified
3354 		 * to the same Flow/SRS. If this changes for any
3355 		 * reason, the following logic should change as well.
3356 		 * I suppose the fanout_hint also assumes this .
3357 		 */
3358 		ASSERT(flent != NULL);
3359 		is_subflow = B_TRUE;
3360 	} else {
3361 		flent = mcip->mci_flent;
3362 	}
3363 
3364 	srs = flent->fe_tx_srs;
3365 	/*
3366 	 * This is to avoid panics with PF_PACKET that can call mac_tx()
3367 	 * against an interface that is not capable of sending. A rewrite
3368 	 * of the mac datapath is required to remove this limitation.
3369 	 */
3370 	if (srs == NULL) {
3371 		freemsgchain(mp_chain);
3372 		goto done;
3373 	}
3374 
3375 	srs_tx = &srs->srs_tx;
3376 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
3377 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
3378 	    mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) {
3379 		uint64_t	obytes;
3380 
3381 		/*
3382 		 * Since dls always opens the underlying MAC, nclients equals
3383 		 * to 1 means that the only active client is dls itself acting
3384 		 * as a primary client of the MAC instance. Since dls will not
3385 		 * send tagged packets in that case, and dls is trusted to send
3386 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
3387 		 * check is required only if nclients is greater than 1.
3388 		 */
3389 		if (mip->mi_nclients > 1) {
3390 			if (MAC_VID_CHECK_NEEDED(mcip)) {
3391 				int	err = 0;
3392 
3393 				MAC_VID_CHECK(mcip, mp_chain, err);
3394 				if (err != 0) {
3395 					freemsg(mp_chain);
3396 					mcip->mci_misc_stat.mms_txerrors++;
3397 					goto done;
3398 				}
3399 			}
3400 			if (MAC_TAG_NEEDED(mcip)) {
3401 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
3402 				    mac_client_vid(mch));
3403 				if (mp_chain == NULL) {
3404 					mcip->mci_misc_stat.mms_txerrors++;
3405 					goto done;
3406 				}
3407 			}
3408 		}
3409 
3410 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
3411 		    msgdsize(mp_chain));
3412 
3413 		MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
3414 		if (mp_chain == NULL) {
3415 			cookie = NULL;
3416 			SRS_TX_STAT_UPDATE(srs, opackets, 1);
3417 			SRS_TX_STAT_UPDATE(srs, obytes, obytes);
3418 		} else {
3419 			mutex_enter(&srs->srs_lock);
3420 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
3421 			    flag, ret_mp);
3422 			mutex_exit(&srs->srs_lock);
3423 		}
3424 	} else {
3425 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
3426 	}
3427 
3428 done:
3429 	if (is_subflow)
3430 		FLOW_REFRELE(flent);
3431 
3432 	if (!(flag & MAC_TX_NO_HOLD))
3433 		MAC_TX_RELE(mcip, mytx);
3434 
3435 	return (cookie);
3436 }
3437 
3438 /*
3439  * mac_tx_is_blocked
3440  *
3441  * Given a cookie, it returns if the ring identified by the cookie is
3442  * flow-controlled or not. If NULL is passed in place of a cookie,
3443  * then it finds out if any of the underlying rings belonging to the
3444  * SRS is flow controlled or not and returns that status.
3445  */
3446 /* ARGSUSED */
3447 boolean_t
3448 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
3449 {
3450 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3451 	mac_soft_ring_set_t *mac_srs;
3452 	mac_soft_ring_t *sringp;
3453 	boolean_t blocked = B_FALSE;
3454 	mac_tx_percpu_t *mytx;
3455 	int err;
3456 	int i;
3457 
3458 	/*
3459 	 * Bump the reference count so that mac_srs won't be deleted.
3460 	 * If the client is currently quiesced and we failed to bump
3461 	 * the reference, return B_TRUE so that flow control stays
3462 	 * as enabled.
3463 	 *
3464 	 * Flow control will then be disabled once the client is no
3465 	 * longer quiesced.
3466 	 */
3467 	MAC_TX_TRY_HOLD(mcip, mytx, err);
3468 	if (err != 0)
3469 		return (B_TRUE);
3470 
3471 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
3472 		MAC_TX_RELE(mcip, mytx);
3473 		return (B_FALSE);
3474 	}
3475 
3476 	mutex_enter(&mac_srs->srs_lock);
3477 	/*
3478 	 * Only in the case of TX_FANOUT and TX_AGGR, the underlying
3479 	 * softring (s_ring_state) will have the HIWAT set. This is
3480 	 * the multiple Tx ring flow control case. For all other
3481 	 * case, SRS (srs_state) will store the condition.
3482 	 */
3483 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3484 	    mac_srs->srs_tx.st_mode == SRS_TX_AGGR) {
3485 		if (cookie != NULL) {
3486 			sringp = (mac_soft_ring_t *)cookie;
3487 			mutex_enter(&sringp->s_ring_lock);
3488 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
3489 				blocked = B_TRUE;
3490 			mutex_exit(&sringp->s_ring_lock);
3491 		} else {
3492 			for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3493 				sringp = mac_srs->srs_tx_soft_rings[i];
3494 				mutex_enter(&sringp->s_ring_lock);
3495 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
3496 					blocked = B_TRUE;
3497 					mutex_exit(&sringp->s_ring_lock);
3498 					break;
3499 				}
3500 				mutex_exit(&sringp->s_ring_lock);
3501 			}
3502 		}
3503 	} else {
3504 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
3505 	}
3506 	mutex_exit(&mac_srs->srs_lock);
3507 	MAC_TX_RELE(mcip, mytx);
3508 	return (blocked);
3509 }
3510 
3511 /*
3512  * Check if the MAC client is the primary MAC client.
3513  */
3514 boolean_t
3515 mac_is_primary_client(mac_client_impl_t *mcip)
3516 {
3517 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
3518 }
3519 
3520 void
3521 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
3522 {
3523 	mac_impl_t	*mip = (mac_impl_t *)mh;
3524 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
3525 
3526 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
3527 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
3528 		/*
3529 		 * If ndd props were registered, call them.
3530 		 * Note that ndd ioctls are Obsolete
3531 		 */
3532 		mac_ndd_ioctl(mip, wq, bp);
3533 		return;
3534 	}
3535 
3536 	/*
3537 	 * Call the driver to handle the ioctl.  The driver may not support
3538 	 * any ioctls, in which case we reply with a NAK on its behalf.
3539 	 */
3540 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
3541 		mip->mi_ioctl(mip->mi_driver, wq, bp);
3542 	else
3543 		miocnak(wq, bp, 0, EINVAL);
3544 }
3545 
3546 /*
3547  * Return the link state of the specified MAC instance.
3548  */
3549 link_state_t
3550 mac_link_get(mac_handle_t mh)
3551 {
3552 	return (((mac_impl_t *)mh)->mi_linkstate);
3553 }
3554 
3555 /*
3556  * Add a mac client specified notification callback. Please see the comments
3557  * above mac_callback_add() for general information about mac callback
3558  * addition/deletion in the presence of mac callback list walkers
3559  */
3560 mac_notify_handle_t
3561 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
3562 {
3563 	mac_impl_t		*mip = (mac_impl_t *)mh;
3564 	mac_notify_cb_t		*mncb;
3565 	mac_cb_info_t		*mcbi;
3566 
3567 	/*
3568 	 * Allocate a notify callback structure, fill in the details and
3569 	 * use the mac callback list manipulation functions to chain into
3570 	 * the list of callbacks.
3571 	 */
3572 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3573 	mncb->mncb_fn = notify_fn;
3574 	mncb->mncb_arg = arg;
3575 	mncb->mncb_mip = mip;
3576 	mncb->mncb_link.mcb_objp = mncb;
3577 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3578 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3579 
3580 	mcbi = &mip->mi_notify_cb_info;
3581 
3582 	i_mac_perim_enter(mip);
3583 	mutex_enter(mcbi->mcbi_lockp);
3584 
3585 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3586 	    &mncb->mncb_link);
3587 
3588 	mutex_exit(mcbi->mcbi_lockp);
3589 	i_mac_perim_exit(mip);
3590 	return ((mac_notify_handle_t)mncb);
3591 }
3592 
3593 void
3594 mac_notify_remove_wait(mac_handle_t mh)
3595 {
3596 	mac_impl_t	*mip = (mac_impl_t *)mh;
3597 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
3598 
3599 	mutex_enter(mcbi->mcbi_lockp);
3600 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
3601 	mutex_exit(mcbi->mcbi_lockp);
3602 }
3603 
3604 /*
3605  * Remove a mac client specified notification callback
3606  */
3607 int
3608 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3609 {
3610 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
3611 	mac_impl_t	*mip = mncb->mncb_mip;
3612 	mac_cb_info_t	*mcbi;
3613 	int		err = 0;
3614 
3615 	mcbi = &mip->mi_notify_cb_info;
3616 
3617 	i_mac_perim_enter(mip);
3618 	mutex_enter(mcbi->mcbi_lockp);
3619 
3620 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
3621 	/*
3622 	 * If there aren't any list walkers, the remove would succeed
3623 	 * inline, else we wait for the deferred remove to complete
3624 	 */
3625 	if (mac_callback_remove(&mip->mi_notify_cb_info,
3626 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3627 		kmem_free(mncb, sizeof (mac_notify_cb_t));
3628 	} else {
3629 		err = EBUSY;
3630 	}
3631 
3632 	mutex_exit(mcbi->mcbi_lockp);
3633 	i_mac_perim_exit(mip);
3634 
3635 	/*
3636 	 * If we failed to remove the notification callback and "wait" is set
3637 	 * to be B_TRUE, wait for the callback to finish after we exit the
3638 	 * mac perimeter.
3639 	 */
3640 	if (err != 0 && wait) {
3641 		mac_notify_remove_wait((mac_handle_t)mip);
3642 		return (0);
3643 	}
3644 
3645 	return (err);
3646 }
3647 
3648 /*
3649  * Associate resource management callbacks with the specified MAC
3650  * clients.
3651  */
3652 
3653 void
3654 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3655     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3656     mac_resource_restart_t restart, mac_resource_bind_t bind,
3657     void *arg)
3658 {
3659 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3660 
3661 	mcip->mci_resource_add = add;
3662 	mcip->mci_resource_remove = remove;
3663 	mcip->mci_resource_quiesce = quiesce;
3664 	mcip->mci_resource_restart = restart;
3665 	mcip->mci_resource_bind = bind;
3666 	mcip->mci_resource_arg = arg;
3667 }
3668 
3669 void
3670 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3671 {
3672 	/* update the 'resource_add' callback */
3673 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3674 }
3675 
3676 /*
3677  * Sets up the client resources and enable the polling interface over all the
3678  * SRS's and the soft rings of the client
3679  */
3680 void
3681 mac_client_poll_enable(mac_client_handle_t mch)
3682 {
3683 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3684 	mac_soft_ring_set_t	*mac_srs;
3685 	flow_entry_t		*flent;
3686 	int			i;
3687 
3688 	flent = mcip->mci_flent;
3689 	ASSERT(flent != NULL);
3690 
3691 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
3692 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3693 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3694 		ASSERT(mac_srs->srs_mcip == mcip);
3695 		mac_srs_client_poll_enable(mcip, mac_srs);
3696 	}
3697 }
3698 
3699 /*
3700  * Tears down the client resources and disable the polling interface over all
3701  * the SRS's and the soft rings of the client
3702  */
3703 void
3704 mac_client_poll_disable(mac_client_handle_t mch)
3705 {
3706 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3707 	mac_soft_ring_set_t	*mac_srs;
3708 	flow_entry_t		*flent;
3709 	int			i;
3710 
3711 	flent = mcip->mci_flent;
3712 	ASSERT(flent != NULL);
3713 
3714 	mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3715 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3716 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3717 		ASSERT(mac_srs->srs_mcip == mcip);
3718 		mac_srs_client_poll_disable(mcip, mac_srs);
3719 	}
3720 }
3721 
3722 /*
3723  * Associate the CPUs specified by the given property with a MAC client.
3724  */
3725 int
3726 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3727 {
3728 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3729 	mac_impl_t *mip = mcip->mci_mip;
3730 	int err = 0;
3731 
3732 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3733 
3734 	if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
3735 	    mcip->mci_upper_mip : mip, mrp)) != 0) {
3736 		return (err);
3737 	}
3738 	if (MCIP_DATAPATH_SETUP(mcip))
3739 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3740 
3741 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3742 	return (0);
3743 }
3744 
3745 /*
3746  * Apply the specified properties to the specified MAC client.
3747  */
3748 int
3749 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3750 {
3751 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3752 	mac_impl_t *mip = mcip->mci_mip;
3753 	int err = 0;
3754 
3755 	i_mac_perim_enter(mip);
3756 
3757 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3758 		err = mac_resource_ctl_set(mch, mrp);
3759 		if (err != 0)
3760 			goto done;
3761 	}
3762 
3763 	if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) {
3764 		err = mac_cpu_set(mch, mrp);
3765 		if (err != 0)
3766 			goto done;
3767 	}
3768 
3769 	if (mrp->mrp_mask & MRP_PROTECT) {
3770 		err = mac_protect_set(mch, mrp);
3771 		if (err != 0)
3772 			goto done;
3773 	}
3774 
3775 	if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS))
3776 		err = mac_resource_ctl_set(mch, mrp);
3777 
3778 done:
3779 	i_mac_perim_exit(mip);
3780 	return (err);
3781 }
3782 
3783 /*
3784  * Return the properties currently associated with the specified MAC client.
3785  */
3786 void
3787 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3788 {
3789 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3790 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3791 
3792 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3793 }
3794 
3795 /*
3796  * Return the effective properties currently associated with the specified
3797  * MAC client.
3798  */
3799 void
3800 mac_client_get_effective_resources(mac_client_handle_t mch,
3801     mac_resource_props_t *mrp)
3802 {
3803 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3804 	mac_resource_props_t	*mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip);
3805 
3806 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3807 }
3808 
3809 /*
3810  * Pass a copy of the specified packet to the promiscuous callbacks
3811  * of the specified MAC.
3812  *
3813  * If sender is NULL, the function is being invoked for a packet chain
3814  * received from the wire. If sender is non-NULL, it points to
3815  * the MAC client from which the packet is being sent.
3816  *
3817  * The packets are distributed to the promiscuous callbacks as follows:
3818  *
3819  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3820  * - all broadcast and multicast packets are sent to the
3821  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3822  *
3823  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3824  * after classification by mac_rx_deliver().
3825  */
3826 
3827 static void
3828 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3829     boolean_t loopback)
3830 {
3831 	mblk_t *mp_copy, *mp_next;
3832 
3833 	if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) {
3834 		mp_copy = copymsg(mp);
3835 		if (mp_copy == NULL)
3836 			return;
3837 
3838 		if (mpip->mpi_strip_vlan_tag) {
3839 			mp_copy = mac_strip_vlan_tag_chain(mp_copy);
3840 			if (mp_copy == NULL)
3841 				return;
3842 		}
3843 		mp_next = NULL;
3844 	} else {
3845 		mp_copy = mp;
3846 		mp_next = mp->b_next;
3847 	}
3848 	mp_copy->b_next = NULL;
3849 
3850 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
3851 	if (mp_copy == mp)
3852 		mp->b_next = mp_next;
3853 }
3854 
3855 /*
3856  * Return the VID of a packet. Zero if the packet is not tagged.
3857  */
3858 static uint16_t
3859 mac_ether_vid(mblk_t *mp)
3860 {
3861 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3862 
3863 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3864 		struct ether_vlan_header *t_evhp =
3865 		    (struct ether_vlan_header *)mp->b_rptr;
3866 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3867 	}
3868 
3869 	return (0);
3870 }
3871 
3872 /*
3873  * Return whether the specified packet contains a multicast or broadcast
3874  * destination MAC address.
3875  */
3876 static boolean_t
3877 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3878 {
3879 	mac_header_info_t hdr_info;
3880 
3881 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
3882 		return (B_FALSE);
3883 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
3884 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
3885 }
3886 
3887 /*
3888  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
3889  * "sender" points to the sender MAC client for outbound packets, and
3890  * is set to NULL for inbound packets.
3891  */
3892 void
3893 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
3894     mac_client_impl_t *sender)
3895 {
3896 	mac_promisc_impl_t *mpip;
3897 	mac_cb_t *mcb;
3898 	mblk_t *mp;
3899 	boolean_t is_mcast, is_sender;
3900 
3901 	MAC_PROMISC_WALKER_INC(mip);
3902 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3903 		is_mcast = mac_is_mcast(mip, mp);
3904 		/* send packet to interested callbacks */
3905 		for (mcb = mip->mi_promisc_list; mcb != NULL;
3906 		    mcb = mcb->mcb_nextp) {
3907 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3908 			is_sender = (mpip->mpi_mcip == sender);
3909 
3910 			if (is_sender && mpip->mpi_no_tx_loop)
3911 				/*
3912 				 * The sender doesn't want to receive
3913 				 * copies of the packets it sends.
3914 				 */
3915 				continue;
3916 
3917 			/* this client doesn't need any packets (bridge) */
3918 			if (mpip->mpi_fn == NULL)
3919 				continue;
3920 
3921 			/*
3922 			 * For an ethernet MAC, don't displatch a multicast
3923 			 * packet to a non-PROMISC_ALL callbacks unless the VID
3924 			 * of the packet matches the VID of the client.
3925 			 */
3926 			if (is_mcast &&
3927 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
3928 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
3929 			    mac_ether_vid(mp)))
3930 				continue;
3931 
3932 			if (is_sender ||
3933 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3934 			    is_mcast)
3935 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3936 		}
3937 	}
3938 	MAC_PROMISC_WALKER_DCR(mip);
3939 }
3940 
3941 void
3942 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3943 {
3944 	mac_impl_t		*mip = mcip->mci_mip;
3945 	mac_promisc_impl_t	*mpip;
3946 	boolean_t		is_mcast;
3947 	mblk_t			*mp;
3948 	mac_cb_t		*mcb;
3949 
3950 	/*
3951 	 * The unicast packets for the MAC client still
3952 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3953 	 * promiscuous callbacks. The broadcast and multicast
3954 	 * packets were delivered from mac_rx().
3955 	 */
3956 	MAC_PROMISC_WALKER_INC(mip);
3957 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3958 		is_mcast = mac_is_mcast(mip, mp);
3959 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3960 		    mcb = mcb->mcb_nextp) {
3961 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3962 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3963 			    !is_mcast) {
3964 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3965 			}
3966 		}
3967 	}
3968 	MAC_PROMISC_WALKER_DCR(mip);
3969 }
3970 
3971 /*
3972  * Return the margin value currently assigned to the specified MAC instance.
3973  */
3974 void
3975 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3976 {
3977 	mac_impl_t *mip = (mac_impl_t *)mh;
3978 
3979 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3980 	*marginp = mip->mi_margin;
3981 	rw_exit(&(mip->mi_rw_lock));
3982 }
3983 
3984 /*
3985  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3986  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3987  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3988  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3989  * cannot disappear while we are accessing it.
3990  */
3991 typedef struct i_mac_info_state_s {
3992 	const char	*mi_name;
3993 	mac_info_t	*mi_infop;
3994 } i_mac_info_state_t;
3995 
3996 /*ARGSUSED*/
3997 static uint_t
3998 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3999 {
4000 	i_mac_info_state_t *statep = arg;
4001 	mac_impl_t *mip = (mac_impl_t *)val;
4002 
4003 	if (mip->mi_state_flags & MIS_DISABLED)
4004 		return (MH_WALK_CONTINUE);
4005 
4006 	if (strcmp(statep->mi_name,
4007 	    ddi_driver_name(mip->mi_dip)) != 0)
4008 		return (MH_WALK_CONTINUE);
4009 
4010 	statep->mi_infop = &mip->mi_info;
4011 	return (MH_WALK_TERMINATE);
4012 }
4013 
4014 boolean_t
4015 mac_info_get(const char *name, mac_info_t *minfop)
4016 {
4017 	i_mac_info_state_t state;
4018 
4019 	rw_enter(&i_mac_impl_lock, RW_READER);
4020 	state.mi_name = name;
4021 	state.mi_infop = NULL;
4022 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
4023 	if (state.mi_infop == NULL) {
4024 		rw_exit(&i_mac_impl_lock);
4025 		return (B_FALSE);
4026 	}
4027 	*minfop = *state.mi_infop;
4028 	rw_exit(&i_mac_impl_lock);
4029 	return (B_TRUE);
4030 }
4031 
4032 /*
4033  * To get the capabilities that MAC layer cares about, such as rings, factory
4034  * mac address, vnic or not, it should directly invoke this function.  If the
4035  * link is part of a bridge, then the only "capability" it has is the inability
4036  * to do zero copy.
4037  */
4038 boolean_t
4039 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4040 {
4041 	mac_impl_t *mip = (mac_impl_t *)mh;
4042 
4043 	if (mip->mi_bridge_link != NULL)
4044 		return (cap == MAC_CAPAB_NO_ZCOPY);
4045 	else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
4046 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
4047 	else
4048 		return (B_FALSE);
4049 }
4050 
4051 /*
4052  * Capability query function. If number of active mac clients is greater than
4053  * 1, only limited capabilities can be advertised to the caller no matter the
4054  * driver has certain capability or not. Else, we query the driver to get the
4055  * capability.
4056  */
4057 boolean_t
4058 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4059 {
4060 	mac_impl_t *mip = (mac_impl_t *)mh;
4061 
4062 	/*
4063 	 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
4064 	 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
4065 	 */
4066 	if (mip->mi_nactiveclients > 1) {
4067 		switch (cap) {
4068 		case MAC_CAPAB_NO_ZCOPY:
4069 			return (B_TRUE);
4070 		case MAC_CAPAB_LEGACY:
4071 		case MAC_CAPAB_HCKSUM:
4072 		case MAC_CAPAB_NO_NATIVEVLAN:
4073 			break;
4074 		default:
4075 			return (B_FALSE);
4076 		}
4077 	}
4078 
4079 	/* else get capab from driver */
4080 	return (i_mac_capab_get(mh, cap, cap_data));
4081 }
4082 
4083 boolean_t
4084 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
4085 {
4086 	mac_impl_t *mip = (mac_impl_t *)mh;
4087 
4088 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
4089 	    mip->mi_pdata));
4090 }
4091 
4092 mblk_t *
4093 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
4094     size_t extra_len)
4095 {
4096 	mac_impl_t	*mip = (mac_impl_t *)mh;
4097 	const uint8_t	*hdr_daddr;
4098 
4099 	/*
4100 	 * If the MAC is point-to-point with a fixed destination address, then
4101 	 * we must always use that destination in the MAC header.
4102 	 */
4103 	hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr);
4104 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap,
4105 	    mip->mi_pdata, payload, extra_len));
4106 }
4107 
4108 int
4109 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4110 {
4111 	mac_impl_t *mip = (mac_impl_t *)mh;
4112 
4113 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
4114 	    mhip));
4115 }
4116 
4117 int
4118 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4119 {
4120 	mac_impl_t	*mip = (mac_impl_t *)mh;
4121 	boolean_t	is_ethernet = (mip->mi_info.mi_media == DL_ETHER);
4122 	int		err = 0;
4123 
4124 	/*
4125 	 * Packets should always be at least 16 bit aligned.
4126 	 */
4127 	ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
4128 
4129 	if ((err = mac_header_info(mh, mp, mhip)) != 0)
4130 		return (err);
4131 
4132 	/*
4133 	 * If this is a VLAN-tagged Ethernet packet, then the SAP in the
4134 	 * mac_header_info_t as returned by mac_header_info() is
4135 	 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header.
4136 	 */
4137 	if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) {
4138 		struct ether_vlan_header *evhp;
4139 		uint16_t sap;
4140 		mblk_t *tmp = NULL;
4141 		size_t size;
4142 
4143 		size = sizeof (struct ether_vlan_header);
4144 		if (MBLKL(mp) < size) {
4145 			/*
4146 			 * Pullup the message in order to get the MAC header
4147 			 * infomation. Note that this is a read-only function,
4148 			 * we keep the input packet intact.
4149 			 */
4150 			if ((tmp = msgpullup(mp, size)) == NULL)
4151 				return (EINVAL);
4152 
4153 			mp = tmp;
4154 		}
4155 		evhp = (struct ether_vlan_header *)mp->b_rptr;
4156 		sap = ntohs(evhp->ether_type);
4157 		(void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap);
4158 		mhip->mhi_hdrsize = sizeof (struct ether_vlan_header);
4159 		mhip->mhi_tci = ntohs(evhp->ether_tci);
4160 		mhip->mhi_istagged = B_TRUE;
4161 		freemsg(tmp);
4162 
4163 		if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI)
4164 			return (EINVAL);
4165 	} else {
4166 		mhip->mhi_istagged = B_FALSE;
4167 		mhip->mhi_tci = 0;
4168 	}
4169 
4170 	return (0);
4171 }
4172 
4173 mblk_t *
4174 mac_header_cook(mac_handle_t mh, mblk_t *mp)
4175 {
4176 	mac_impl_t *mip = (mac_impl_t *)mh;
4177 
4178 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
4179 		if (DB_REF(mp) > 1) {
4180 			mblk_t *newmp = copymsg(mp);
4181 			if (newmp == NULL)
4182 				return (NULL);
4183 			freemsg(mp);
4184 			mp = newmp;
4185 		}
4186 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
4187 		    mip->mi_pdata));
4188 	}
4189 	return (mp);
4190 }
4191 
4192 mblk_t *
4193 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
4194 {
4195 	mac_impl_t *mip = (mac_impl_t *)mh;
4196 
4197 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
4198 		if (DB_REF(mp) > 1) {
4199 			mblk_t *newmp = copymsg(mp);
4200 			if (newmp == NULL)
4201 				return (NULL);
4202 			freemsg(mp);
4203 			mp = newmp;
4204 		}
4205 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
4206 		    mip->mi_pdata));
4207 	}
4208 	return (mp);
4209 }
4210 
4211 uint_t
4212 mac_addr_len(mac_handle_t mh)
4213 {
4214 	mac_impl_t *mip = (mac_impl_t *)mh;
4215 
4216 	return (mip->mi_type->mt_addr_length);
4217 }
4218 
4219 /* True if a MAC is a VNIC */
4220 boolean_t
4221 mac_is_vnic(mac_handle_t mh)
4222 {
4223 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
4224 }
4225 
4226 mac_handle_t
4227 mac_get_lower_mac_handle(mac_handle_t mh)
4228 {
4229 	mac_impl_t *mip = (mac_impl_t *)mh;
4230 
4231 	ASSERT(mac_is_vnic(mh));
4232 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
4233 }
4234 
4235 boolean_t
4236 mac_is_vnic_primary(mac_handle_t mh)
4237 {
4238 	mac_impl_t *mip = (mac_impl_t *)mh;
4239 
4240 	ASSERT(mac_is_vnic(mh));
4241 	return (((vnic_t *)mip->mi_driver)->vn_addr_type ==
4242 	    VNIC_MAC_ADDR_TYPE_PRIMARY);
4243 }
4244 
4245 void
4246 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
4247     boolean_t is_user_flow)
4248 {
4249 	if (nmrp != NULL && cmrp != NULL) {
4250 		if (nmrp->mrp_mask & MRP_PRIORITY) {
4251 			if (nmrp->mrp_priority == MPL_RESET) {
4252 				cmrp->mrp_mask &= ~MRP_PRIORITY;
4253 				if (is_user_flow) {
4254 					cmrp->mrp_priority =
4255 					    MPL_SUBFLOW_DEFAULT;
4256 				} else {
4257 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
4258 				}
4259 			} else {
4260 				cmrp->mrp_mask |= MRP_PRIORITY;
4261 				cmrp->mrp_priority = nmrp->mrp_priority;
4262 			}
4263 		}
4264 		if (nmrp->mrp_mask & MRP_MAXBW) {
4265 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) {
4266 				cmrp->mrp_mask &= ~MRP_MAXBW;
4267 				cmrp->mrp_maxbw = 0;
4268 			} else {
4269 				cmrp->mrp_mask |= MRP_MAXBW;
4270 				cmrp->mrp_maxbw = nmrp->mrp_maxbw;
4271 			}
4272 		}
4273 		if (nmrp->mrp_mask & MRP_CPUS)
4274 			MAC_COPY_CPUS(nmrp, cmrp);
4275 
4276 		if (nmrp->mrp_mask & MRP_POOL) {
4277 			if (strlen(nmrp->mrp_pool) == 0) {
4278 				cmrp->mrp_mask &= ~MRP_POOL;
4279 				bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool));
4280 			} else {
4281 				cmrp->mrp_mask |= MRP_POOL;
4282 				(void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool,
4283 				    sizeof (cmrp->mrp_pool));
4284 			}
4285 
4286 		}
4287 
4288 		if (nmrp->mrp_mask & MRP_PROTECT)
4289 			mac_protect_update(nmrp, cmrp);
4290 
4291 		/*
4292 		 * Update the rings specified.
4293 		 */
4294 		if (nmrp->mrp_mask & MRP_RX_RINGS) {
4295 			if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4296 				cmrp->mrp_mask &= ~MRP_RX_RINGS;
4297 				if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4298 					cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4299 				cmrp->mrp_nrxrings = 0;
4300 			} else {
4301 				cmrp->mrp_mask |= MRP_RX_RINGS;
4302 				cmrp->mrp_nrxrings = nmrp->mrp_nrxrings;
4303 			}
4304 		}
4305 		if (nmrp->mrp_mask & MRP_TX_RINGS) {
4306 			if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4307 				cmrp->mrp_mask &= ~MRP_TX_RINGS;
4308 				if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4309 					cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4310 				cmrp->mrp_ntxrings = 0;
4311 			} else {
4312 				cmrp->mrp_mask |= MRP_TX_RINGS;
4313 				cmrp->mrp_ntxrings = nmrp->mrp_ntxrings;
4314 			}
4315 		}
4316 		if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4317 			cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4318 		else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4319 			cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4320 
4321 		if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4322 			cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4323 		else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4324 			cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4325 	}
4326 }
4327 
4328 /*
4329  * i_mac_set_resources:
4330  *
4331  * This routine associates properties with the primary MAC client of
4332  * the specified MAC instance.
4333  * - Cache the properties in mac_impl_t
4334  * - Apply the properties to the primary MAC client if exists
4335  */
4336 int
4337 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4338 {
4339 	mac_impl_t		*mip = (mac_impl_t *)mh;
4340 	mac_client_impl_t	*mcip;
4341 	int			err = 0;
4342 	uint32_t		resmask, newresmask;
4343 	mac_resource_props_t	*tmrp, *umrp;
4344 
4345 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4346 
4347 	err = mac_validate_props(mip, mrp);
4348 	if (err != 0)
4349 		return (err);
4350 
4351 	umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP);
4352 	bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp));
4353 	resmask = umrp->mrp_mask;
4354 	mac_update_resources(mrp, umrp, B_FALSE);
4355 	newresmask = umrp->mrp_mask;
4356 
4357 	if (resmask == 0 && newresmask != 0) {
4358 		/*
4359 		 * Bandwidth, priority, cpu or pool link properties configured,
4360 		 * must disable fastpath.
4361 		 */
4362 		if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) {
4363 			kmem_free(umrp, sizeof (*umrp));
4364 			return (err);
4365 		}
4366 	}
4367 
4368 	/*
4369 	 * Since bind_cpu may be modified by mac_client_set_resources()
4370 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
4371 	 * This allows us to cache only user edits in mip.
4372 	 */
4373 	tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP);
4374 	bcopy(mrp, tmrp, sizeof (*tmrp));
4375 	mcip = mac_primary_client_handle(mip);
4376 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
4377 		err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp);
4378 	} else if ((mrp->mrp_mask & MRP_RX_RINGS ||
4379 	    mrp->mrp_mask & MRP_TX_RINGS)) {
4380 		mac_client_impl_t	*vmcip;
4381 
4382 		/*
4383 		 * If the primary is not up, we need to check if there
4384 		 * are any VLANs on this primary. If there are then
4385 		 * we need to set this property on the VLANs since
4386 		 * VLANs follow the primary they are based on. Just
4387 		 * look for the first VLAN and change its properties,
4388 		 * all the other VLANs should be in the same group.
4389 		 */
4390 		for (vmcip = mip->mi_clients_list; vmcip != NULL;
4391 		    vmcip = vmcip->mci_client_next) {
4392 			if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) &&
4393 			    mac_client_vid((mac_client_handle_t)vmcip) !=
4394 			    VLAN_ID_NONE) {
4395 				break;
4396 			}
4397 		}
4398 		if (vmcip != NULL) {
4399 			mac_resource_props_t	*omrp;
4400 			mac_resource_props_t	*vmrp;
4401 
4402 			omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
4403 			bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp));
4404 			/*
4405 			 * We dont' call mac_update_resources since we
4406 			 * want to take only the ring properties and
4407 			 * not all the properties that may have changed.
4408 			 */
4409 			vmrp = MCIP_RESOURCE_PROPS(vmcip);
4410 			if (mrp->mrp_mask & MRP_RX_RINGS) {
4411 				if (mrp->mrp_mask & MRP_RINGS_RESET) {
4412 					vmrp->mrp_mask &= ~MRP_RX_RINGS;
4413 					if (vmrp->mrp_mask &
4414 					    MRP_RXRINGS_UNSPEC) {
4415 						vmrp->mrp_mask &=
4416 						    ~MRP_RXRINGS_UNSPEC;
4417 					}
4418 					vmrp->mrp_nrxrings = 0;
4419 				} else {
4420 					vmrp->mrp_mask |= MRP_RX_RINGS;
4421 					vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
4422 				}
4423 			}
4424 			if (mrp->mrp_mask & MRP_TX_RINGS) {
4425 				if (mrp->mrp_mask & MRP_RINGS_RESET) {
4426 					vmrp->mrp_mask &= ~MRP_TX_RINGS;
4427 					if (vmrp->mrp_mask &
4428 					    MRP_TXRINGS_UNSPEC) {
4429 						vmrp->mrp_mask &=
4430 						    ~MRP_TXRINGS_UNSPEC;
4431 					}
4432 					vmrp->mrp_ntxrings = 0;
4433 				} else {
4434 					vmrp->mrp_mask |= MRP_TX_RINGS;
4435 					vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
4436 				}
4437 			}
4438 			if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4439 				vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4440 
4441 			if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4442 				vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4443 
4444 			if ((err = mac_client_set_rings_prop(vmcip, mrp,
4445 			    omrp)) != 0) {
4446 				bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip),
4447 				    sizeof (*omrp));
4448 			} else {
4449 				mac_set_prim_vlan_rings(mip, vmrp);
4450 			}
4451 			kmem_free(omrp, sizeof (*omrp));
4452 		}
4453 	}
4454 
4455 	/* Only update the values if mac_client_set_resources succeeded */
4456 	if (err == 0) {
4457 		bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp));
4458 		/*
4459 		 * If bandwidth, priority or cpu link properties cleared,
4460 		 * renable fastpath.
4461 		 */
4462 		if (resmask != 0 && newresmask == 0)
4463 			mac_fastpath_enable((mac_handle_t)mip);
4464 	} else if (resmask == 0 && newresmask != 0) {
4465 		mac_fastpath_enable((mac_handle_t)mip);
4466 	}
4467 	kmem_free(tmrp, sizeof (*tmrp));
4468 	kmem_free(umrp, sizeof (*umrp));
4469 	return (err);
4470 }
4471 
4472 int
4473 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4474 {
4475 	int err;
4476 
4477 	i_mac_perim_enter((mac_impl_t *)mh);
4478 	err = i_mac_set_resources(mh, mrp);
4479 	i_mac_perim_exit((mac_impl_t *)mh);
4480 	return (err);
4481 }
4482 
4483 /*
4484  * Get the properties cached for the specified MAC instance.
4485  */
4486 void
4487 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4488 {
4489 	mac_impl_t 		*mip = (mac_impl_t *)mh;
4490 	mac_client_impl_t	*mcip;
4491 
4492 	mcip = mac_primary_client_handle(mip);
4493 	if (mcip != NULL) {
4494 		mac_client_get_resources((mac_client_handle_t)mcip, mrp);
4495 		return;
4496 	}
4497 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
4498 }
4499 
4500 /*
4501  * Get the effective properties from the primary client of the
4502  * specified MAC instance.
4503  */
4504 void
4505 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4506 {
4507 	mac_impl_t 		*mip = (mac_impl_t *)mh;
4508 	mac_client_impl_t	*mcip;
4509 
4510 	mcip = mac_primary_client_handle(mip);
4511 	if (mcip != NULL) {
4512 		mac_client_get_effective_resources((mac_client_handle_t)mcip,
4513 		    mrp);
4514 		return;
4515 	}
4516 	bzero(mrp, sizeof (mac_resource_props_t));
4517 }
4518 
4519 int
4520 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
4521 {
4522 	mac_impl_t *mip = (mac_impl_t *)mh;
4523 	mac_client_impl_t *mcip;
4524 	mac_unicast_impl_t *muip;
4525 
4526 	i_mac_perim_enter(mip);
4527 	if (pvid != 0) {
4528 		for (mcip = mip->mi_clients_list; mcip != NULL;
4529 		    mcip = mcip->mci_client_next) {
4530 			for (muip = mcip->mci_unicast_list; muip != NULL;
4531 			    muip = muip->mui_next) {
4532 				if (muip->mui_vid == pvid) {
4533 					i_mac_perim_exit(mip);
4534 					return (EBUSY);
4535 				}
4536 			}
4537 		}
4538 	}
4539 	mip->mi_pvid = pvid;
4540 	i_mac_perim_exit(mip);
4541 	return (0);
4542 }
4543 
4544 uint16_t
4545 mac_get_pvid(mac_handle_t mh)
4546 {
4547 	mac_impl_t *mip = (mac_impl_t *)mh;
4548 
4549 	return (mip->mi_pvid);
4550 }
4551 
4552 uint32_t
4553 mac_get_llimit(mac_handle_t mh)
4554 {
4555 	mac_impl_t *mip = (mac_impl_t *)mh;
4556 
4557 	return (mip->mi_llimit);
4558 }
4559 
4560 uint32_t
4561 mac_get_ldecay(mac_handle_t mh)
4562 {
4563 	mac_impl_t *mip = (mac_impl_t *)mh;
4564 
4565 	return (mip->mi_ldecay);
4566 }
4567 
4568 /*
4569  * Rename a mac client, its flow, and the kstat.
4570  */
4571 int
4572 mac_rename_primary(mac_handle_t mh, const char *new_name)
4573 {
4574 	mac_impl_t		*mip = (mac_impl_t *)mh;
4575 	mac_client_impl_t	*cur_clnt = NULL;
4576 	flow_entry_t		*fep;
4577 
4578 	i_mac_perim_enter(mip);
4579 
4580 	/*
4581 	 * VNICs: we need to change the sys flow name and
4582 	 * the associated flow kstat.
4583 	 */
4584 	if (mip->mi_state_flags & MIS_IS_VNIC) {
4585 		mac_client_impl_t *mcip = mac_vnic_lower(mip);
4586 		ASSERT(new_name != NULL);
4587 		mac_rename_flow_names(mcip, new_name);
4588 		mac_stat_rename(mcip);
4589 		goto done;
4590 	}
4591 	/*
4592 	 * This mac may itself be an aggr link, or it may have some client
4593 	 * which is an aggr port. For both cases, we need to change the
4594 	 * aggr port's mac client name, its flow name and the associated flow
4595 	 * kstat.
4596 	 */
4597 	if (mip->mi_state_flags & MIS_IS_AGGR) {
4598 		mac_capab_aggr_t aggr_cap;
4599 		mac_rename_fn_t rename_fn;
4600 		boolean_t ret;
4601 
4602 		ASSERT(new_name != NULL);
4603 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
4604 		    (void *)(&aggr_cap));
4605 		ASSERT(ret == B_TRUE);
4606 		rename_fn = aggr_cap.mca_rename_fn;
4607 		rename_fn(new_name, mip->mi_driver);
4608 		/*
4609 		 * The aggr's client name and kstat flow name will be
4610 		 * updated below, i.e. via mac_rename_flow_names.
4611 		 */
4612 	}
4613 
4614 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
4615 	    cur_clnt = cur_clnt->mci_client_next) {
4616 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
4617 			if (new_name != NULL) {
4618 				char *str_st = cur_clnt->mci_name;
4619 				char *str_del = strchr(str_st, '-');
4620 
4621 				ASSERT(str_del != NULL);
4622 				bzero(str_del + 1, MAXNAMELEN -
4623 				    (str_del - str_st + 1));
4624 				bcopy(new_name, str_del + 1,
4625 				    strlen(new_name));
4626 			}
4627 			fep = cur_clnt->mci_flent;
4628 			mac_rename_flow(fep, cur_clnt->mci_name);
4629 			break;
4630 		} else if (new_name != NULL &&
4631 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
4632 			mac_rename_flow_names(cur_clnt, new_name);
4633 			break;
4634 		}
4635 	}
4636 
4637 	/* Recreate kstats associated with aggr pseudo rings */
4638 	if (mip->mi_state_flags & MIS_IS_AGGR)
4639 		mac_pseudo_ring_stat_rename(mip);
4640 
4641 done:
4642 	i_mac_perim_exit(mip);
4643 	return (0);
4644 }
4645 
4646 /*
4647  * Rename the MAC client's flow names
4648  */
4649 static void
4650 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
4651 {
4652 	flow_entry_t	*flent;
4653 	uint16_t	vid;
4654 	char		flowname[MAXFLOWNAMELEN];
4655 	mac_impl_t	*mip = mcip->mci_mip;
4656 
4657 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4658 
4659 	/*
4660 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
4661 	 * see a self-consistent value for mci_name
4662 	 */
4663 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
4664 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
4665 	rw_exit(&mip->mi_rw_lock);
4666 
4667 	mac_rename_flow(mcip->mci_flent, new_name);
4668 
4669 	if (mcip->mci_nflents == 1)
4670 		return;
4671 
4672 	/*
4673 	 * We have to rename all the others too, no stats to destroy for
4674 	 * these.
4675 	 */
4676 	for (flent = mcip->mci_flent_list; flent != NULL;
4677 	    flent = flent->fe_client_next) {
4678 		if (flent != mcip->mci_flent) {
4679 			vid = i_mac_flow_vid(flent);
4680 			(void) sprintf(flowname, "%s%u", new_name, vid);
4681 			mac_flow_set_name(flent, flowname);
4682 		}
4683 	}
4684 }
4685 
4686 
4687 /*
4688  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
4689  * defined for the specified MAC client.
4690  */
4691 static void
4692 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4693 {
4694 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4695 	/*
4696 	 * The promisc Rx data path walks the mci_flent_list. Protect by
4697 	 * using mi_rw_lock
4698 	 */
4699 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4700 
4701 	/* Add it to the head */
4702 	flent->fe_client_next = mcip->mci_flent_list;
4703 	mcip->mci_flent_list = flent;
4704 	mcip->mci_nflents++;
4705 
4706 	/*
4707 	 * Keep track of the number of non-zero VIDs addresses per MAC
4708 	 * client to avoid figuring it out in the data-path.
4709 	 */
4710 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4711 		mcip->mci_nvids++;
4712 
4713 	rw_exit(&mcip->mci_rw_lock);
4714 }
4715 
4716 /*
4717  * Remove a flow entry from the MAC client's list.
4718  */
4719 static void
4720 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4721 {
4722 	flow_entry_t	*fe = mcip->mci_flent_list;
4723 	flow_entry_t	*prev_fe = NULL;
4724 
4725 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4726 	/*
4727 	 * The promisc Rx data path walks the mci_flent_list. Protect by
4728 	 * using mci_rw_lock
4729 	 */
4730 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4731 	while ((fe != NULL) && (fe != flent)) {
4732 		prev_fe = fe;
4733 		fe = fe->fe_client_next;
4734 	}
4735 
4736 	ASSERT(fe != NULL);
4737 	if (prev_fe == NULL) {
4738 		/* Deleting the first node */
4739 		mcip->mci_flent_list = fe->fe_client_next;
4740 	} else {
4741 		prev_fe->fe_client_next = fe->fe_client_next;
4742 	}
4743 	mcip->mci_nflents--;
4744 
4745 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4746 		mcip->mci_nvids--;
4747 
4748 	rw_exit(&mcip->mci_rw_lock);
4749 }
4750 
4751 /*
4752  * Check if the given VID belongs to this MAC client.
4753  */
4754 boolean_t
4755 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
4756 {
4757 	flow_entry_t	*flent;
4758 	uint16_t	mci_vid;
4759 
4760 	/* The mci_flent_list is protected by mci_rw_lock */
4761 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4762 	for (flent = mcip->mci_flent_list; flent != NULL;
4763 	    flent = flent->fe_client_next) {
4764 		mci_vid = i_mac_flow_vid(flent);
4765 		if (vid == mci_vid) {
4766 			rw_exit(&mcip->mci_rw_lock);
4767 			return (B_TRUE);
4768 		}
4769 	}
4770 	rw_exit(&mcip->mci_rw_lock);
4771 	return (B_FALSE);
4772 }
4773 
4774 /*
4775  * Get the flow entry for the specified <MAC addr, VID> tuple.
4776  */
4777 static flow_entry_t *
4778 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
4779 {
4780 	mac_address_t *map = mcip->mci_unicast;
4781 	flow_entry_t *flent;
4782 	uint16_t vid;
4783 	flow_desc_t flow_desc;
4784 
4785 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4786 
4787 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
4788 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
4789 		return (NULL);
4790 
4791 	for (flent = mcip->mci_flent_list; flent != NULL;
4792 	    flent = flent->fe_client_next) {
4793 		vid = i_mac_flow_vid(flent);
4794 		if (vid == muip->mui_vid) {
4795 			return (flent);
4796 		}
4797 	}
4798 
4799 	return (NULL);
4800 }
4801 
4802 /*
4803  * Since mci_flent has the SRSs, when we want to remove it, we replace
4804  * the flow_desc_t in mci_flent with that of an existing flent and then
4805  * remove that flent instead of mci_flent.
4806  */
4807 static flow_entry_t *
4808 mac_client_swap_mciflent(mac_client_impl_t *mcip)
4809 {
4810 	flow_entry_t	*flent = mcip->mci_flent;
4811 	flow_tab_t	*ft = flent->fe_flow_tab;
4812 	flow_entry_t	*flent1;
4813 	flow_desc_t	fl_desc;
4814 	char		fl_name[MAXFLOWNAMELEN];
4815 	int		err;
4816 
4817 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4818 	ASSERT(mcip->mci_nflents > 1);
4819 
4820 	/* get the next flent following the primary flent  */
4821 	flent1 = mcip->mci_flent_list->fe_client_next;
4822 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
4823 
4824 	/*
4825 	 * Remove the flent from the flow table before updating the
4826 	 * flow descriptor as the hash depends on the flow descriptor.
4827 	 * This also helps incoming packet classification avoid having
4828 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
4829 	 * flow table is done under the fe_lock so that log or stat functions
4830 	 * see a self-consistent fe_flow_desc. The name and desc are specific
4831 	 * to a flow, the rest are shared by all the clients, including
4832 	 * resource control etc.
4833 	 */
4834 	mac_flow_remove(ft, flent, B_TRUE);
4835 	mac_flow_remove(ft, flent1, B_TRUE);
4836 
4837 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
4838 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
4839 
4840 	/* update the primary flow entry */
4841 	mutex_enter(&flent->fe_lock);
4842 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
4843 	    sizeof (flow_desc_t));
4844 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
4845 	mutex_exit(&flent->fe_lock);
4846 
4847 	/* update the flow entry that is to be freed */
4848 	mutex_enter(&flent1->fe_lock);
4849 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
4850 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
4851 	mutex_exit(&flent1->fe_lock);
4852 
4853 	/* now reinsert the flow entries in the table */
4854 	err = mac_flow_add(ft, flent);
4855 	ASSERT(err == 0);
4856 
4857 	err = mac_flow_add(ft, flent1);
4858 	ASSERT(err == 0);
4859 
4860 	return (flent1);
4861 }
4862 
4863 /*
4864  * Return whether there is only one flow entry associated with this
4865  * MAC client.
4866  */
4867 static boolean_t
4868 mac_client_single_rcvr(mac_client_impl_t *mcip)
4869 {
4870 	return (mcip->mci_nflents == 1);
4871 }
4872 
4873 int
4874 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp)
4875 {
4876 	boolean_t		reset;
4877 	uint32_t		rings_needed;
4878 	uint32_t		rings_avail;
4879 	mac_group_type_t	gtype;
4880 	mac_resource_props_t	*mip_mrp;
4881 
4882 	if (mrp == NULL)
4883 		return (0);
4884 
4885 	if (mrp->mrp_mask & MRP_PRIORITY) {
4886 		mac_priority_level_t	pri = mrp->mrp_priority;
4887 
4888 		if (pri < MPL_LOW || pri > MPL_RESET)
4889 			return (EINVAL);
4890 	}
4891 
4892 	if (mrp->mrp_mask & MRP_MAXBW) {
4893 		uint64_t maxbw = mrp->mrp_maxbw;
4894 
4895 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
4896 			return (EINVAL);
4897 	}
4898 	if (mrp->mrp_mask & MRP_CPUS) {
4899 		int i, j;
4900 		mac_cpu_mode_t	fanout;
4901 
4902 		if (mrp->mrp_ncpus > ncpus)
4903 			return (EINVAL);
4904 
4905 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4906 			for (j = 0; j < mrp->mrp_ncpus; j++) {
4907 				if (i != j &&
4908 				    mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
4909 					return (EINVAL);
4910 				}
4911 			}
4912 		}
4913 
4914 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4915 			cpu_t *cp;
4916 			int rv;
4917 
4918 			mutex_enter(&cpu_lock);
4919 			cp = cpu_get(mrp->mrp_cpu[i]);
4920 			if (cp != NULL)
4921 				rv = cpu_is_online(cp);
4922 			else
4923 				rv = 0;
4924 			mutex_exit(&cpu_lock);
4925 			if (rv == 0)
4926 				return (EINVAL);
4927 		}
4928 
4929 		fanout = mrp->mrp_fanout_mode;
4930 		if (fanout < 0 || fanout > MCM_CPUS)
4931 			return (EINVAL);
4932 	}
4933 
4934 	if (mrp->mrp_mask & MRP_PROTECT) {
4935 		int err = mac_protect_validate(mrp);
4936 		if (err != 0)
4937 			return (err);
4938 	}
4939 
4940 	if (!(mrp->mrp_mask & MRP_RX_RINGS) &&
4941 	    !(mrp->mrp_mask & MRP_TX_RINGS)) {
4942 		return (0);
4943 	}
4944 
4945 	/*
4946 	 * mip will be null when we come from mac_flow_create or
4947 	 * mac_link_flow_modify. In the latter case it is a user flow,
4948 	 * for which we don't support rings. In the former we would
4949 	 * have validated the props beforehand (i_mac_unicast_add ->
4950 	 * mac_client_set_resources -> validate for the primary and
4951 	 * vnic_dev_create -> mac_client_set_resources -> validate for
4952 	 * a vnic.
4953 	 */
4954 	if (mip == NULL)
4955 		return (0);
4956 
4957 	/*
4958 	 * We don't support setting rings property for a VNIC that is using a
4959 	 * primary address (VLAN)
4960 	 */
4961 	if ((mip->mi_state_flags & MIS_IS_VNIC) &&
4962 	    mac_is_vnic_primary((mac_handle_t)mip)) {
4963 		return (ENOTSUP);
4964 	}
4965 
4966 	mip_mrp = &mip->mi_resource_props;
4967 	/*
4968 	 * The rings property should be validated against the NICs
4969 	 * resources
4970 	 */
4971 	if (mip->mi_state_flags & MIS_IS_VNIC)
4972 		mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip);
4973 
4974 	reset = mrp->mrp_mask & MRP_RINGS_RESET;
4975 	/*
4976 	 * If groups are not supported, return error.
4977 	 */
4978 	if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) ||
4979 	    ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) {
4980 		return (EINVAL);
4981 	}
4982 	/*
4983 	 * If we are just resetting, there is no validation needed.
4984 	 */
4985 	if (reset)
4986 		return (0);
4987 
4988 	if (mrp->mrp_mask & MRP_RX_RINGS) {
4989 		rings_needed = mrp->mrp_nrxrings;
4990 		/*
4991 		 * We just want to check if the number of additional
4992 		 * rings requested is available.
4993 		 */
4994 		if (mip_mrp->mrp_mask & MRP_RX_RINGS) {
4995 			if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings)
4996 				/* Just check for the additional rings */
4997 				rings_needed -= mip_mrp->mrp_nrxrings;
4998 			else
4999 				/* We are not asking for additional rings */
5000 				rings_needed = 0;
5001 		}
5002 		rings_avail = mip->mi_rxrings_avail;
5003 		gtype = mip->mi_rx_group_type;
5004 	} else {
5005 		rings_needed = mrp->mrp_ntxrings;
5006 		/* Similarly for the TX rings */
5007 		if (mip_mrp->mrp_mask & MRP_TX_RINGS) {
5008 			if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings)
5009 				/* Just check for the additional rings */
5010 				rings_needed -= mip_mrp->mrp_ntxrings;
5011 			else
5012 				/* We are not asking for additional rings */
5013 				rings_needed = 0;
5014 		}
5015 		rings_avail = mip->mi_txrings_avail;
5016 		gtype = mip->mi_tx_group_type;
5017 	}
5018 
5019 	/* Error if the group is dynamic .. */
5020 	if (gtype == MAC_GROUP_TYPE_DYNAMIC) {
5021 		/*
5022 		 * .. and rings specified are more than available.
5023 		 */
5024 		if (rings_needed > rings_avail)
5025 			return (EINVAL);
5026 	} else {
5027 		/*
5028 		 * OR group is static and we have specified some rings.
5029 		 */
5030 		if (rings_needed > 0)
5031 			return (EINVAL);
5032 	}
5033 	return (0);
5034 }
5035 
5036 /*
5037  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
5038  * underlying physical link is down. This is to allow MAC clients to
5039  * communicate with other clients.
5040  */
5041 void
5042 mac_virtual_link_update(mac_impl_t *mip)
5043 {
5044 	if (mip->mi_linkstate != LINK_STATE_UP)
5045 		i_mac_notify(mip, MAC_NOTE_LINK);
5046 }
5047 
5048 /*
5049  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
5050  * mac handle in the client.
5051  */
5052 void
5053 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh,
5054     mac_resource_props_t *mrp)
5055 {
5056 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
5057 	mac_impl_t		*mip = (mac_impl_t *)mh;
5058 
5059 	mcip->mci_upper_mip = mip;
5060 	/* If there are any properties, copy it over too */
5061 	if (mrp != NULL) {
5062 		bcopy(mrp, &mip->mi_resource_props,
5063 		    sizeof (mac_resource_props_t));
5064 	}
5065 }
5066 
5067 /*
5068  * Mark the mac as being used exclusively by the single mac client that is
5069  * doing some control operation on this mac. No further opens of this mac
5070  * will be allowed until this client calls mac_unmark_exclusive. The mac
5071  * client calling this function must already be in the mac perimeter
5072  */
5073 int
5074 mac_mark_exclusive(mac_handle_t mh)
5075 {
5076 	mac_impl_t	*mip = (mac_impl_t *)mh;
5077 
5078 	ASSERT(MAC_PERIM_HELD(mh));
5079 	/*
5080 	 * Look up its entry in the global hash table.
5081 	 */
5082 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5083 	if (mip->mi_state_flags & MIS_DISABLED) {
5084 		rw_exit(&i_mac_impl_lock);
5085 		return (ENOENT);
5086 	}
5087 
5088 	/*
5089 	 * A reference to mac is held even if the link is not plumbed.
5090 	 * In i_dls_link_create() we open the MAC interface and hold the
5091 	 * reference. There is an additional reference for the mac_open
5092 	 * done in acquiring the mac perimeter
5093 	 */
5094 	if (mip->mi_ref != 2) {
5095 		rw_exit(&i_mac_impl_lock);
5096 		return (EBUSY);
5097 	}
5098 
5099 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5100 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
5101 	rw_exit(&i_mac_impl_lock);
5102 	return (0);
5103 }
5104 
5105 void
5106 mac_unmark_exclusive(mac_handle_t mh)
5107 {
5108 	mac_impl_t	*mip = (mac_impl_t *)mh;
5109 
5110 	ASSERT(MAC_PERIM_HELD(mh));
5111 
5112 	rw_enter(&i_mac_impl_lock, RW_WRITER);
5113 	/* 1 for the creation and another for the perimeter */
5114 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5115 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
5116 	rw_exit(&i_mac_impl_lock);
5117 }
5118 
5119 /*
5120  * Set the MTU for the specified MAC.
5121  */
5122 int
5123 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
5124 {
5125 	mac_impl_t *mip = (mac_impl_t *)mh;
5126 	uint_t old_mtu;
5127 	int rv = 0;
5128 
5129 	i_mac_perim_enter(mip);
5130 
5131 	if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) {
5132 		rv = ENOTSUP;
5133 		goto bail;
5134 	}
5135 
5136 	old_mtu = mip->mi_sdu_max;
5137 
5138 	if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) {
5139 		rv = EINVAL;
5140 		goto bail;
5141 	}
5142 
5143 	if (old_mtu != new_mtu) {
5144 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
5145 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
5146 		if (rv != 0)
5147 			goto bail;
5148 		rv = mac_maxsdu_update(mh, new_mtu);
5149 		ASSERT(rv == 0);
5150 	}
5151 
5152 bail:
5153 	i_mac_perim_exit(mip);
5154 
5155 	if (rv == 0 && old_mtu_arg != NULL)
5156 		*old_mtu_arg = old_mtu;
5157 	return (rv);
5158 }
5159 
5160 /*
5161  * Return the RX h/w information for the group indexed by grp_num.
5162  */
5163 void
5164 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5165     uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5166     char *clnts_name)
5167 {
5168 	mac_impl_t *mip = (mac_impl_t *)mh;
5169 	mac_grp_client_t *mcip;
5170 	uint_t i = 0, index = 0;
5171 	mac_ring_t	*ring;
5172 
5173 	/* Revisit when we implement fully dynamic group allocation */
5174 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
5175 
5176 	rw_enter(&mip->mi_rw_lock, RW_READER);
5177 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
5178 	*type = mip->mi_rx_groups[grp_index].mrg_type;
5179 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
5180 	ring = mip->mi_rx_groups[grp_index].mrg_rings;
5181 	for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count;
5182 	    index++) {
5183 		rings[index] = ring->mr_index;
5184 		ring = ring->mr_next;
5185 	}
5186 	/* Assuming the 1st is the default group */
5187 	index = 0;
5188 	if (grp_index == 0) {
5189 		(void) strlcpy(clnts_name, "<default,mcast>,",
5190 		    MAXCLIENTNAMELEN);
5191 		index += strlen("<default,mcast>,");
5192 	}
5193 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
5194 	    mcip = mcip->mgc_next) {
5195 		int name_len = strlen(mcip->mgc_client->mci_name);
5196 
5197 		/*
5198 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
5199 		 * names.
5200 		 * XXXX Formating the client name string needs to be moved
5201 		 * to user land when fixing the size of dhi_clnts in
5202 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5203 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
5204 		 */
5205 		if (index + name_len >= MAXCLIENTNAMELEN) {
5206 			index = MAXCLIENTNAMELEN;
5207 			break;
5208 		}
5209 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5210 		    name_len);
5211 		index += name_len;
5212 		clnts_name[index++] = ',';
5213 		i++;
5214 	}
5215 
5216 	/* Get rid of the last , */
5217 	if (index > 0)
5218 		clnts_name[index - 1] = '\0';
5219 	*n_clnts = i;
5220 	rw_exit(&mip->mi_rw_lock);
5221 }
5222 
5223 /*
5224  * Return the TX h/w information for the group indexed by grp_num.
5225  */
5226 void
5227 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5228     uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5229     char *clnts_name)
5230 {
5231 	mac_impl_t *mip = (mac_impl_t *)mh;
5232 	mac_grp_client_t *mcip;
5233 	uint_t i = 0, index = 0;
5234 	mac_ring_t	*ring;
5235 
5236 	/* Revisit when we implement fully dynamic group allocation */
5237 	ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count);
5238 
5239 	rw_enter(&mip->mi_rw_lock, RW_READER);
5240 	*grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ?
5241 	    mip->mi_tx_groups[grp_index].mrg_index : grp_index;
5242 	*type = mip->mi_tx_groups[grp_index].mrg_type;
5243 	*n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count;
5244 	ring = mip->mi_tx_groups[grp_index].mrg_rings;
5245 	for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count;
5246 	    index++) {
5247 		rings[index] = ring->mr_index;
5248 		ring = ring->mr_next;
5249 	}
5250 	index = 0;
5251 	/* Default group has an index of -1 */
5252 	if (mip->mi_tx_groups[grp_index].mrg_index < 0) {
5253 		(void) strlcpy(clnts_name, "<default>,",
5254 		    MAXCLIENTNAMELEN);
5255 		index += strlen("<default>,");
5256 	}
5257 	for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL;
5258 	    mcip = mcip->mgc_next) {
5259 		int name_len = strlen(mcip->mgc_client->mci_name);
5260 
5261 		/*
5262 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
5263 		 * names.
5264 		 * XXXX Formating the client name string needs to be moved
5265 		 * to user land when fixing the size of dhi_clnts in
5266 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5267 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
5268 		 */
5269 		if (index + name_len >= MAXCLIENTNAMELEN) {
5270 			index = MAXCLIENTNAMELEN;
5271 			break;
5272 		}
5273 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5274 		    name_len);
5275 		index += name_len;
5276 		clnts_name[index++] = ',';
5277 		i++;
5278 	}
5279 
5280 	/* Get rid of the last , */
5281 	if (index > 0)
5282 		clnts_name[index - 1] = '\0';
5283 	*n_clnts = i;
5284 	rw_exit(&mip->mi_rw_lock);
5285 }
5286 
5287 /*
5288  * Return the group count for RX or TX.
5289  */
5290 uint_t
5291 mac_hwgrp_num(mac_handle_t mh, int type)
5292 {
5293 	mac_impl_t *mip = (mac_impl_t *)mh;
5294 
5295 	/*
5296 	 * Return the Rx and Tx group count; for the Tx we need to
5297 	 * include the default too.
5298 	 */
5299 	return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count :
5300 	    mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0);
5301 }
5302 
5303 /*
5304  * The total number of free TX rings for this MAC.
5305  */
5306 uint_t
5307 mac_txavail_get(mac_handle_t mh)
5308 {
5309 	mac_impl_t	*mip = (mac_impl_t *)mh;
5310 
5311 	return (mip->mi_txrings_avail);
5312 }
5313 
5314 /*
5315  * The total number of free RX rings for this MAC.
5316  */
5317 uint_t
5318 mac_rxavail_get(mac_handle_t mh)
5319 {
5320 	mac_impl_t	*mip = (mac_impl_t *)mh;
5321 
5322 	return (mip->mi_rxrings_avail);
5323 }
5324 
5325 /*
5326  * The total number of reserved RX rings on this MAC.
5327  */
5328 uint_t
5329 mac_rxrsvd_get(mac_handle_t mh)
5330 {
5331 	mac_impl_t	*mip = (mac_impl_t *)mh;
5332 
5333 	return (mip->mi_rxrings_rsvd);
5334 }
5335 
5336 /*
5337  * The total number of reserved TX rings on this MAC.
5338  */
5339 uint_t
5340 mac_txrsvd_get(mac_handle_t mh)
5341 {
5342 	mac_impl_t	*mip = (mac_impl_t *)mh;
5343 
5344 	return (mip->mi_txrings_rsvd);
5345 }
5346 
5347 /*
5348  * Total number of free RX groups on this MAC.
5349  */
5350 uint_t
5351 mac_rxhwlnksavail_get(mac_handle_t mh)
5352 {
5353 	mac_impl_t	*mip = (mac_impl_t *)mh;
5354 
5355 	return (mip->mi_rxhwclnt_avail);
5356 }
5357 
5358 /*
5359  * Total number of RX groups reserved on this MAC.
5360  */
5361 uint_t
5362 mac_rxhwlnksrsvd_get(mac_handle_t mh)
5363 {
5364 	mac_impl_t	*mip = (mac_impl_t *)mh;
5365 
5366 	return (mip->mi_rxhwclnt_used);
5367 }
5368 
5369 /*
5370  * Total number of free TX groups on this MAC.
5371  */
5372 uint_t
5373 mac_txhwlnksavail_get(mac_handle_t mh)
5374 {
5375 	mac_impl_t	*mip = (mac_impl_t *)mh;
5376 
5377 	return (mip->mi_txhwclnt_avail);
5378 }
5379 
5380 /*
5381  * Total number of TX groups reserved on this MAC.
5382  */
5383 uint_t
5384 mac_txhwlnksrsvd_get(mac_handle_t mh)
5385 {
5386 	mac_impl_t	*mip = (mac_impl_t *)mh;
5387 
5388 	return (mip->mi_txhwclnt_used);
5389 }
5390 
5391 /*
5392  * Initialize the rings property for a mac client. A non-0 value for
5393  * rxring or txring specifies the number of rings required, a value
5394  * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need
5395  * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE
5396  * means the system can decide whether it can give any rings or not.
5397  */
5398 void
5399 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings)
5400 {
5401 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
5402 	mac_resource_props_t	*mrp = MCIP_RESOURCE_PROPS(mcip);
5403 
5404 	if (rxrings != MAC_RXRINGS_DONTCARE) {
5405 		mrp->mrp_mask |= MRP_RX_RINGS;
5406 		mrp->mrp_nrxrings = rxrings;
5407 	}
5408 
5409 	if (txrings != MAC_TXRINGS_DONTCARE) {
5410 		mrp->mrp_mask |= MRP_TX_RINGS;
5411 		mrp->mrp_ntxrings = txrings;
5412 	}
5413 }
5414