1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * - General Introduction: 29 * 30 * This file contains the implementation of the MAC client kernel 31 * API and related code. The MAC client API allows a kernel module 32 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 33 * It allows a MAC client to associate itself with a MAC address, 34 * VLANs, callback functions for data traffic and for promiscuous mode. 35 * The MAC client API is also used to specify the properties associated 36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 37 * These properties are further used to determine the hardware resources 38 * to allocate to the various MAC clients. 39 * 40 * - Primary MAC clients: 41 * 42 * The MAC client API refers to "primary MAC clients". A primary MAC 43 * client is a client which "owns" the primary MAC address of 44 * the underlying MAC instance. The primary MAC address is called out 45 * since it is associated with specific semantics: the primary MAC 46 * address is the MAC address which is assigned to the IP interface 47 * when it is plumbed, and the primary MAC address is assigned 48 * to VLAN data-links. The primary address of a MAC instance can 49 * also change dynamically from under the MAC client, for example 50 * as a result of a change of state of a link aggregation. In that 51 * case the MAC layer automatically updates all data-structures which 52 * refer to the current value of the primary MAC address. Typical 53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 54 * MAC client is the vnic driver. 55 * 56 * - Virtual Switching: 57 * 58 * The MAC layer implements a virtual switch between the MAC clients 59 * (primary and non-primary) defined on top of the same underlying 60 * NIC (physical, link aggregation, etc). The virtual switch is 61 * VLAN-aware, i.e. it allows multiple MAC clients to be member 62 * of one or more VLANs, and the virtual switch will distribute 63 * multicast tagged packets only to the member of the corresponding 64 * VLANs. 65 * 66 * - Upper vs Lower MAC: 67 * 68 * Creating a VNIC on top of a MAC instance effectively causes 69 * two MAC instances to be layered on top of each other, one for 70 * the VNIC(s), one for the underlying MAC instance (physical NIC, 71 * link aggregation, etc). In the code below we refer to the 72 * underlying NIC as the "lower MAC", and we refer to VNICs as 73 * the "upper MAC". 74 * 75 * - Pass-through for VNICs: 76 * 77 * When VNICs are created on top of an underlying MAC, this causes 78 * a layering of two MAC instances. Since the lower MAC already 79 * does the switching and demultiplexing to its MAC clients, the 80 * upper MAC would simply have to pass packets to the layer below 81 * or above it, which would introduce overhead. In order to avoid 82 * this overhead, the MAC layer implements a pass-through mechanism 83 * for VNICs. When a VNIC opens the lower MAC instance, it saves 84 * the MAC client handle it optains from the MAC layer. When a MAC 85 * client opens a VNIC (upper MAC), the MAC layer detects that 86 * the MAC being opened is a VNIC, and gets the MAC client handle 87 * that the VNIC driver obtained from the lower MAC. This exchange 88 * is doing through a private capability between the MAC layer 89 * and the VNIC driver. The upper MAC then returns that handle 90 * directly to its MAC client. Any operation done by the upper 91 * MAC client is now done on the lower MAC client handle, which 92 * allows the VNIC driver to be completely bypassed for the 93 * performance sensitive data-path. 94 * 95 */ 96 97 #include <sys/types.h> 98 #include <sys/conf.h> 99 #include <sys/id_space.h> 100 #include <sys/esunddi.h> 101 #include <sys/stat.h> 102 #include <sys/mkdev.h> 103 #include <sys/stream.h> 104 #include <sys/strsun.h> 105 #include <sys/strsubr.h> 106 #include <sys/dlpi.h> 107 #include <sys/modhash.h> 108 #include <sys/mac_impl.h> 109 #include <sys/mac_client_impl.h> 110 #include <sys/mac_soft_ring.h> 111 #include <sys/dls.h> 112 #include <sys/dld.h> 113 #include <sys/modctl.h> 114 #include <sys/fs/dv_node.h> 115 #include <sys/thread.h> 116 #include <sys/proc.h> 117 #include <sys/callb.h> 118 #include <sys/cpuvar.h> 119 #include <sys/atomic.h> 120 #include <sys/sdt.h> 121 #include <sys/mac_flow.h> 122 #include <sys/ddi_intr_impl.h> 123 #include <sys/disp.h> 124 #include <sys/sdt.h> 125 #include <sys/vnic.h> 126 #include <sys/vnic_impl.h> 127 #include <sys/vlan.h> 128 #include <inet/ip.h> 129 #include <inet/ip6.h> 130 #include <sys/exacct.h> 131 #include <sys/exacct_impl.h> 132 #include <inet/nd.h> 133 #include <sys/ethernet.h> 134 135 kmem_cache_t *mac_client_impl_cache; 136 kmem_cache_t *mac_promisc_impl_cache; 137 138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 141 mac_unicast_impl_t *); 142 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 143 flow_entry_t *); 144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 145 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 146 static void mac_virtual_link_update(mac_impl_t *); 147 148 /* ARGSUSED */ 149 static int 150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 151 { 152 int i; 153 mac_client_impl_t *mcip = buf; 154 155 bzero(buf, MAC_CLIENT_IMPL_SIZE); 156 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 157 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 158 159 ASSERT(mac_tx_percpu_cnt >= 0); 160 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 161 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 162 MUTEX_DRIVER, NULL); 163 } 164 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 165 166 return (0); 167 } 168 169 /* ARGSUSED */ 170 static void 171 i_mac_client_impl_dtor(void *buf, void *arg) 172 { 173 int i; 174 mac_client_impl_t *mcip = buf; 175 176 ASSERT(mcip->mci_promisc_list == NULL); 177 ASSERT(mcip->mci_unicast_list == NULL); 178 ASSERT(mcip->mci_state_flags == 0); 179 ASSERT(mcip->mci_tx_flag == 0); 180 181 mutex_destroy(&mcip->mci_tx_cb_lock); 182 183 ASSERT(mac_tx_percpu_cnt >= 0); 184 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 185 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 186 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 187 } 188 cv_destroy(&mcip->mci_tx_cv); 189 } 190 191 /* ARGSUSED */ 192 static int 193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 194 { 195 mac_promisc_impl_t *mpip = buf; 196 197 bzero(buf, sizeof (mac_promisc_impl_t)); 198 mpip->mpi_mci_link.mcb_objp = buf; 199 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 200 mpip->mpi_mi_link.mcb_objp = buf; 201 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static void 207 i_mac_promisc_impl_dtor(void *buf, void *arg) 208 { 209 mac_promisc_impl_t *mpip = buf; 210 211 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 212 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 213 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 214 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 215 216 mpip->mpi_mci_link.mcb_objp = NULL; 217 mpip->mpi_mci_link.mcb_objsize = 0; 218 mpip->mpi_mi_link.mcb_objp = NULL; 219 mpip->mpi_mi_link.mcb_objsize = 0; 220 221 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 222 mpip->mpi_mci_link.mcb_objsize = 0; 223 } 224 225 void 226 mac_client_init(void) 227 { 228 ASSERT(mac_tx_percpu_cnt >= 0); 229 230 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 231 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 232 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 233 ASSERT(mac_client_impl_cache != NULL); 234 235 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 236 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 237 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 238 ASSERT(mac_promisc_impl_cache != NULL); 239 } 240 241 void 242 mac_client_fini(void) 243 { 244 kmem_cache_destroy(mac_client_impl_cache); 245 kmem_cache_destroy(mac_promisc_impl_cache); 246 } 247 248 /* 249 * Return the lower MAC client handle from the VNIC driver for the 250 * specified VNIC MAC instance. 251 */ 252 mac_client_impl_t * 253 mac_vnic_lower(mac_impl_t *mip) 254 { 255 mac_capab_vnic_t cap; 256 mac_client_impl_t *mcip; 257 258 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 259 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 260 261 return (mcip); 262 } 263 264 /* 265 * Return the MAC client handle of the primary MAC client for the 266 * specified MAC instance, or NULL otherwise. 267 */ 268 mac_client_impl_t * 269 mac_primary_client_handle(mac_impl_t *mip) 270 { 271 mac_client_impl_t *mcip; 272 273 if (mip->mi_state_flags & MIS_IS_VNIC) 274 return (mac_vnic_lower(mip)); 275 276 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 277 278 for (mcip = mip->mi_clients_list; mcip != NULL; 279 mcip = mcip->mci_client_next) { 280 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 281 return (mcip); 282 } 283 return (NULL); 284 } 285 286 /* 287 * Open a MAC specified by its MAC name. 288 */ 289 int 290 mac_open(const char *macname, mac_handle_t *mhp) 291 { 292 mac_impl_t *mip; 293 int err; 294 295 /* 296 * Look up its entry in the global hash table. 297 */ 298 if ((err = mac_hold(macname, &mip)) != 0) 299 return (err); 300 301 /* 302 * Hold the dip associated to the MAC to prevent it from being 303 * detached. For a softmac, its underlying dip is held by the 304 * mi_open() callback. 305 * 306 * This is done to be more tolerant with some defective drivers, 307 * which incorrectly handle mac_unregister() failure in their 308 * xxx_detach() routine. For example, some drivers ignore the 309 * failure of mac_unregister() and free all resources that 310 * that are needed for data transmition. 311 */ 312 e_ddi_hold_devi(mip->mi_dip); 313 314 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 315 *mhp = (mac_handle_t)mip; 316 return (0); 317 } 318 319 /* 320 * The mac perimeter is used in both mac_open and mac_close by the 321 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 322 */ 323 i_mac_perim_enter(mip); 324 mip->mi_oref++; 325 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 326 *mhp = (mac_handle_t)mip; 327 i_mac_perim_exit(mip); 328 return (0); 329 } 330 mip->mi_oref--; 331 ddi_release_devi(mip->mi_dip); 332 mac_rele(mip); 333 i_mac_perim_exit(mip); 334 return (err); 335 } 336 337 /* 338 * Open a MAC specified by its linkid. 339 */ 340 int 341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 342 { 343 dls_dl_handle_t dlh; 344 int err; 345 346 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 347 return (err); 348 349 dls_devnet_prop_task_wait(dlh); 350 351 err = mac_open(dls_devnet_mac(dlh), mhp); 352 353 dls_devnet_rele_tmp(dlh); 354 return (err); 355 } 356 357 /* 358 * Open a MAC specified by its link name. 359 */ 360 int 361 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 362 { 363 datalink_id_t linkid; 364 int err; 365 366 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 367 return (err); 368 return (mac_open_by_linkid(linkid, mhp)); 369 } 370 371 /* 372 * Close the specified MAC. 373 */ 374 void 375 mac_close(mac_handle_t mh) 376 { 377 mac_impl_t *mip = (mac_impl_t *)mh; 378 379 i_mac_perim_enter(mip); 380 /* 381 * The mac perimeter is used in both mac_open and mac_close by the 382 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 383 */ 384 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 385 ASSERT(mip->mi_oref != 0); 386 if (--mip->mi_oref == 0) { 387 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 388 mip->mi_close(mip->mi_driver); 389 } 390 } 391 i_mac_perim_exit(mip); 392 ddi_release_devi(mip->mi_dip); 393 mac_rele(mip); 394 } 395 396 /* 397 * Misc utility functions to retrieve various information about a MAC 398 * instance or a MAC client. 399 */ 400 401 const mac_info_t * 402 mac_info(mac_handle_t mh) 403 { 404 return (&((mac_impl_t *)mh)->mi_info); 405 } 406 407 dev_info_t * 408 mac_devinfo_get(mac_handle_t mh) 409 { 410 return (((mac_impl_t *)mh)->mi_dip); 411 } 412 413 const char * 414 mac_name(mac_handle_t mh) 415 { 416 return (((mac_impl_t *)mh)->mi_name); 417 } 418 419 char * 420 mac_client_name(mac_client_handle_t mch) 421 { 422 return (((mac_client_impl_t *)mch)->mci_name); 423 } 424 425 minor_t 426 mac_minor(mac_handle_t mh) 427 { 428 return (((mac_impl_t *)mh)->mi_minor); 429 } 430 431 /* 432 * Return the VID associated with a MAC client. This function should 433 * be called for clients which are associated with only one VID. 434 */ 435 uint16_t 436 mac_client_vid(mac_client_handle_t mch) 437 { 438 uint16_t vid = VLAN_ID_NONE; 439 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 440 flow_desc_t flow_desc; 441 442 if (mcip->mci_nflents == 0) 443 return (vid); 444 445 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 446 447 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 448 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 449 vid = flow_desc.fd_vid; 450 451 return (vid); 452 } 453 454 /* 455 * Return the link speed associated with the specified MAC client. 456 * 457 * The link speed of a MAC client is equal to the smallest value of 458 * 1) the current link speed of the underlying NIC, or 459 * 2) the bandwidth limit set for the MAC client. 460 * 461 * Note that the bandwidth limit can be higher than the speed 462 * of the underlying NIC. This is allowed to avoid spurious 463 * administration action failures or artifically lowering the 464 * bandwidth limit of a link that may have temporarily lowered 465 * its link speed due to hardware problem or administrator action. 466 */ 467 static uint64_t 468 mac_client_ifspeed(mac_client_impl_t *mcip) 469 { 470 mac_impl_t *mip = mcip->mci_mip; 471 uint64_t nic_speed; 472 473 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 474 475 if (nic_speed == 0) { 476 return (0); 477 } else { 478 uint64_t policy_limit = (uint64_t)-1; 479 480 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 481 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 482 483 return (MIN(policy_limit, nic_speed)); 484 } 485 } 486 487 /* 488 * Return the link state of the specified client. If here are more 489 * than one clients of the underying mac_impl_t, the link state 490 * will always be UP regardless of the link state of the underlying 491 * mac_impl_t. This is needed to allow the MAC clients to continue 492 * to communicate with each other even when the physical link of 493 * their mac_impl_t is down. 494 */ 495 static uint64_t 496 mac_client_link_state(mac_client_impl_t *mcip) 497 { 498 mac_impl_t *mip = mcip->mci_mip; 499 uint16_t vid; 500 mac_client_impl_t *mci_list; 501 mac_unicast_impl_t *mui_list, *oth_mui_list; 502 503 /* 504 * Returns LINK_STATE_UP if there are other MAC clients defined on 505 * mac_impl_t which share same VLAN ID as that of mcip. Note that 506 * if 'mcip' has more than one VID's then we match ANY one of the 507 * VID's with other MAC client's VID's and return LINK_STATE_UP. 508 */ 509 rw_enter(&mcip->mci_rw_lock, RW_READER); 510 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 511 mui_list = mui_list->mui_next) { 512 vid = mui_list->mui_vid; 513 for (mci_list = mip->mi_clients_list; mci_list != NULL; 514 mci_list = mci_list->mci_client_next) { 515 if (mci_list == mcip) 516 continue; 517 for (oth_mui_list = mci_list->mci_unicast_list; 518 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 519 mui_next) { 520 if (vid == oth_mui_list->mui_vid) { 521 rw_exit(&mcip->mci_rw_lock); 522 return (LINK_STATE_UP); 523 } 524 } 525 } 526 } 527 rw_exit(&mcip->mci_rw_lock); 528 529 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 530 } 531 532 /* 533 * Return the statistics of a MAC client. These statistics are different 534 * then the statistics of the underlying MAC which are returned by 535 * mac_stat_get(). 536 */ 537 uint64_t 538 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 539 { 540 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 541 mac_impl_t *mip = mcip->mci_mip; 542 uint64_t val; 543 544 switch (stat) { 545 case MAC_STAT_LINK_STATE: 546 val = mac_client_link_state(mcip); 547 break; 548 case MAC_STAT_LINK_UP: 549 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 550 break; 551 case MAC_STAT_PROMISC: 552 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 553 break; 554 case MAC_STAT_IFSPEED: 555 val = mac_client_ifspeed(mcip); 556 break; 557 case MAC_STAT_MULTIRCV: 558 val = mcip->mci_stat_multircv; 559 break; 560 case MAC_STAT_BRDCSTRCV: 561 val = mcip->mci_stat_brdcstrcv; 562 break; 563 case MAC_STAT_MULTIXMT: 564 val = mcip->mci_stat_multixmt; 565 break; 566 case MAC_STAT_BRDCSTXMT: 567 val = mcip->mci_stat_brdcstxmt; 568 break; 569 case MAC_STAT_OBYTES: 570 val = mcip->mci_stat_obytes; 571 break; 572 case MAC_STAT_OPACKETS: 573 val = mcip->mci_stat_opackets; 574 break; 575 case MAC_STAT_OERRORS: 576 val = mcip->mci_stat_oerrors; 577 break; 578 case MAC_STAT_IPACKETS: 579 val = mcip->mci_stat_ipackets; 580 break; 581 case MAC_STAT_RBYTES: 582 val = mcip->mci_stat_ibytes; 583 break; 584 case MAC_STAT_IERRORS: 585 val = mcip->mci_stat_ierrors; 586 break; 587 default: 588 val = mac_stat_default(mip, stat); 589 break; 590 } 591 592 return (val); 593 } 594 595 /* 596 * Return the statistics of the specified MAC instance. 597 */ 598 uint64_t 599 mac_stat_get(mac_handle_t mh, uint_t stat) 600 { 601 mac_impl_t *mip = (mac_impl_t *)mh; 602 uint64_t val; 603 int ret; 604 605 /* 606 * The range of stat determines where it is maintained. Stat 607 * values from 0 up to (but not including) MAC_STAT_MIN are 608 * mainteined by the mac module itself. Everything else is 609 * maintained by the driver. 610 * 611 * If the mac_impl_t being queried corresponds to a VNIC, 612 * the stats need to be queried from the lower MAC client 613 * corresponding to the VNIC. (The mac_link_update() 614 * invoked by the driver to the lower MAC causes the *lower 615 * MAC* to update its mi_linkstate, and send a notification 616 * to its MAC clients. Due to the VNIC passthrough, 617 * these notifications are sent to the upper MAC clients 618 * of the VNIC directly, and the upper mac_impl_t of the VNIC 619 * does not have a valid mi_linkstate. 620 */ 621 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 622 /* these stats are maintained by the mac module itself */ 623 switch (stat) { 624 case MAC_STAT_LINK_STATE: 625 return (mip->mi_linkstate); 626 case MAC_STAT_LINK_UP: 627 return (mip->mi_linkstate == LINK_STATE_UP); 628 case MAC_STAT_PROMISC: 629 return (mip->mi_devpromisc != 0); 630 default: 631 ASSERT(B_FALSE); 632 } 633 } 634 635 /* 636 * Call the driver to get the given statistic. 637 */ 638 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 639 if (ret != 0) { 640 /* 641 * The driver doesn't support this statistic. Get the 642 * statistic's default value. 643 */ 644 val = mac_stat_default(mip, stat); 645 } 646 return (val); 647 } 648 649 /* 650 * Utility function which returns the VID associated with a flow entry. 651 */ 652 uint16_t 653 i_mac_flow_vid(flow_entry_t *flent) 654 { 655 flow_desc_t flow_desc; 656 657 mac_flow_get_desc(flent, &flow_desc); 658 659 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 660 return (flow_desc.fd_vid); 661 return (VLAN_ID_NONE); 662 } 663 664 /* 665 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 666 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 667 * length. 668 */ 669 boolean_t 670 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 671 { 672 mac_impl_t *mip = (mac_impl_t *)mh; 673 674 /* 675 * Verify the address. No lock is needed since mi_type and plugin 676 * details don't change after mac_register(). 677 */ 678 if ((len != mip->mi_type->mt_addr_length) || 679 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 680 mip->mi_pdata)) != 0) { 681 return (B_FALSE); 682 } else { 683 return (B_TRUE); 684 } 685 } 686 687 void 688 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 689 { 690 mac_impl_t *mip = (mac_impl_t *)mh; 691 692 if (min_sdu != NULL) 693 *min_sdu = mip->mi_sdu_min; 694 if (max_sdu != NULL) 695 *max_sdu = mip->mi_sdu_max; 696 } 697 698 /* 699 * Update the MAC unicast address of the specified client's flows. Currently 700 * only one unicast MAC unicast address is allowed per client. 701 */ 702 static void 703 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 704 { 705 mac_impl_t *mip = mcip->mci_mip; 706 flow_entry_t *flent = mcip->mci_flent; 707 mac_address_t *map = mcip->mci_unicast; 708 flow_desc_t flow_desc; 709 710 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 711 ASSERT(flent != NULL); 712 713 mac_flow_get_desc(flent, &flow_desc); 714 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 715 716 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 717 mac_flow_set_desc(flent, &flow_desc); 718 719 /* 720 * A MAC client could have one MAC address but multiple 721 * VLANs. In that case update the flow entries corresponding 722 * to all VLANs of the MAC client. 723 */ 724 for (flent = mcip->mci_flent_list; flent != NULL; 725 flent = flent->fe_client_next) { 726 mac_flow_get_desc(flent, &flow_desc); 727 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 728 flent->fe_type & FLOW_VNIC_MAC)) 729 continue; 730 731 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 732 mac_flow_set_desc(flent, &flow_desc); 733 } 734 } 735 736 /* 737 * Update all clients that share the same unicast address. 738 */ 739 void 740 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 741 { 742 mac_client_impl_t *mcip; 743 744 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 745 746 /* 747 * Find all clients that share the same unicast MAC address and update 748 * them appropriately. 749 */ 750 for (mcip = mip->mi_clients_list; mcip != NULL; 751 mcip = mcip->mci_client_next) { 752 /* 753 * Ignore clients that don't share this MAC address. 754 */ 755 if (map != mcip->mci_unicast) 756 continue; 757 758 /* 759 * Update those clients with same old unicast MAC address. 760 */ 761 mac_unicast_update_client_flow(mcip); 762 } 763 } 764 765 /* 766 * Update the unicast MAC address of the specified VNIC MAC client. 767 * 768 * Check whether the operation is valid. Any of following cases should fail: 769 * 770 * 1. It's a VLAN type of VNIC. 771 * 2. The new value is current "primary" MAC address. 772 * 3. The current MAC address is shared with other clients. 773 * 4. The new MAC address has been used. This case will be valid when 774 * client migration is fully supported. 775 */ 776 int 777 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 778 { 779 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 780 mac_impl_t *mip = mcip->mci_mip; 781 mac_address_t *map = mcip->mci_unicast; 782 int err; 783 784 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 785 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 786 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 787 788 i_mac_perim_enter(mip); 789 790 /* 791 * If this is a VLAN type of VNIC, it's using "primary" MAC address 792 * of the underlying interface. Must fail here. Refer to case 1 above. 793 */ 794 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 795 i_mac_perim_exit(mip); 796 return (ENOTSUP); 797 } 798 799 /* 800 * If the new address is the "primary" one, must fail. Refer to 801 * case 2 above. 802 */ 803 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 804 i_mac_perim_exit(mip); 805 return (EACCES); 806 } 807 808 /* 809 * If the address is shared by multiple clients, must fail. Refer 810 * to case 3 above. 811 */ 812 if (mac_check_macaddr_shared(map)) { 813 i_mac_perim_exit(mip); 814 return (EBUSY); 815 } 816 817 /* 818 * If the new address has been used, must fail for now. Refer to 819 * case 4 above. 820 */ 821 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 822 i_mac_perim_exit(mip); 823 return (ENOTSUP); 824 } 825 826 /* 827 * Update the MAC address. 828 */ 829 err = mac_update_macaddr(map, (uint8_t *)addr); 830 831 if (err != 0) { 832 i_mac_perim_exit(mip); 833 return (err); 834 } 835 836 /* 837 * Update all flows of this MAC client. 838 */ 839 mac_unicast_update_client_flow(mcip); 840 841 i_mac_perim_exit(mip); 842 return (0); 843 } 844 845 /* 846 * Program the new primary unicast address of the specified MAC. 847 * 848 * Function mac_update_macaddr() takes care different types of underlying 849 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 850 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 851 * which will take care of updating the MAC address of the corresponding 852 * MAC client. 853 * 854 * This is the only interface that allow the client to update the "primary" 855 * MAC address of the underlying MAC. The new value must have not been 856 * used by other clients. 857 */ 858 int 859 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 860 { 861 mac_impl_t *mip = (mac_impl_t *)mh; 862 mac_address_t *map; 863 int err; 864 865 /* verify the address validity */ 866 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 867 return (EINVAL); 868 869 i_mac_perim_enter(mip); 870 871 /* 872 * If the new value is the same as the current primary address value, 873 * there's nothing to do. 874 */ 875 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 876 i_mac_perim_exit(mip); 877 return (0); 878 } 879 880 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) { 881 i_mac_perim_exit(mip); 882 return (EBUSY); 883 } 884 885 map = mac_find_macaddr(mip, mip->mi_addr); 886 ASSERT(map != NULL); 887 888 /* 889 * Update the MAC address. 890 */ 891 if (mip->mi_state_flags & MIS_IS_AGGR) { 892 mac_capab_aggr_t aggr_cap; 893 894 /* 895 * If the mac is an aggregation, other than the unicast 896 * addresses programming, aggr must be informed about this 897 * primary unicst address change to change its mac address 898 * policy to be user-specified. 899 */ 900 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 901 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 902 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 903 if (err == 0) 904 bcopy(addr, map->ma_addr, map->ma_len); 905 } else { 906 err = mac_update_macaddr(map, (uint8_t *)addr); 907 } 908 909 if (err != 0) { 910 i_mac_perim_exit(mip); 911 return (err); 912 } 913 914 mac_unicast_update_clients(mip, map); 915 916 /* 917 * Save the new primary MAC address in mac_impl_t. 918 */ 919 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 920 921 i_mac_perim_exit(mip); 922 923 if (err == 0) 924 i_mac_notify(mip, MAC_NOTE_UNICST); 925 926 return (err); 927 } 928 929 /* 930 * Return the current primary MAC address of the specified MAC. 931 */ 932 void 933 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 934 { 935 mac_impl_t *mip = (mac_impl_t *)mh; 936 937 rw_enter(&mip->mi_rw_lock, RW_READER); 938 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 939 rw_exit(&mip->mi_rw_lock); 940 } 941 942 /* 943 * Return information about the use of the primary MAC address of the 944 * specified MAC instance: 945 * 946 * - if client_name is non-NULL, it must point to a string of at 947 * least MAXNAMELEN bytes, and will be set to the name of the MAC 948 * client which uses the primary MAC address. 949 * 950 * - if in_use is non-NULL, used to return whether the primary MAC 951 * address is currently in use. 952 */ 953 void 954 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 955 { 956 mac_impl_t *mip = (mac_impl_t *)mh; 957 mac_client_impl_t *cur_client; 958 959 if (in_use != NULL) 960 *in_use = B_FALSE; 961 if (client_name != NULL) 962 bzero(client_name, MAXNAMELEN); 963 964 /* 965 * The mi_rw_lock is used to protect threads that don't hold the 966 * mac perimeter to get a consistent view of the mi_clients_list. 967 * Threads that modify the list must hold both the mac perimeter and 968 * mi_rw_lock(RW_WRITER) 969 */ 970 rw_enter(&mip->mi_rw_lock, RW_READER); 971 for (cur_client = mip->mi_clients_list; cur_client != NULL; 972 cur_client = cur_client->mci_client_next) { 973 if (mac_is_primary_client(cur_client) || 974 (mip->mi_state_flags & MIS_IS_VNIC)) { 975 rw_exit(&mip->mi_rw_lock); 976 if (in_use != NULL) 977 *in_use = B_TRUE; 978 if (client_name != NULL) { 979 bcopy(cur_client->mci_name, client_name, 980 MAXNAMELEN); 981 } 982 return; 983 } 984 } 985 rw_exit(&mip->mi_rw_lock); 986 } 987 988 /* 989 * Add the specified MAC client to the list of clients which opened 990 * the specified MAC. 991 */ 992 static void 993 mac_client_add(mac_client_impl_t *mcip) 994 { 995 mac_impl_t *mip = mcip->mci_mip; 996 997 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 998 999 /* add VNIC to the front of the list */ 1000 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1001 mcip->mci_client_next = mip->mi_clients_list; 1002 mip->mi_clients_list = mcip; 1003 mip->mi_nclients++; 1004 rw_exit(&mip->mi_rw_lock); 1005 } 1006 1007 /* 1008 * Remove the specified MAC client from the list of clients which opened 1009 * the specified MAC. 1010 */ 1011 static void 1012 mac_client_remove(mac_client_impl_t *mcip) 1013 { 1014 mac_impl_t *mip = mcip->mci_mip; 1015 mac_client_impl_t **prev, *cclient; 1016 1017 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1018 1019 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1020 prev = &mip->mi_clients_list; 1021 cclient = *prev; 1022 while (cclient != NULL && cclient != mcip) { 1023 prev = &cclient->mci_client_next; 1024 cclient = *prev; 1025 } 1026 ASSERT(cclient != NULL); 1027 *prev = cclient->mci_client_next; 1028 mip->mi_nclients--; 1029 rw_exit(&mip->mi_rw_lock); 1030 } 1031 1032 static mac_unicast_impl_t * 1033 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1034 { 1035 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1036 1037 while ((muip != NULL) && (muip->mui_vid != vid)) 1038 muip = muip->mui_next; 1039 1040 return (muip); 1041 } 1042 1043 /* 1044 * Return whether the specified (MAC address, VID) tuple is already used by 1045 * one of the MAC clients associated with the specified MAC. 1046 */ 1047 static boolean_t 1048 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1049 { 1050 mac_client_impl_t *client; 1051 mac_address_t *map; 1052 1053 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1054 1055 for (client = mip->mi_clients_list; client != NULL; 1056 client = client->mci_client_next) { 1057 1058 /* 1059 * Ignore clients that don't have unicast address. 1060 */ 1061 if (client->mci_unicast_list == NULL) 1062 continue; 1063 1064 map = client->mci_unicast; 1065 1066 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1067 (mac_client_find_vid(client, vid) != NULL)) { 1068 return (B_TRUE); 1069 } 1070 } 1071 1072 return (B_FALSE); 1073 } 1074 1075 /* 1076 * Generate a random MAC address. The MAC address prefix is 1077 * stored in the array pointed to by mac_addr, and its length, in bytes, 1078 * is specified by prefix_len. The least significant bits 1079 * after prefix_len bytes are generated, and stored after the prefix 1080 * in the mac_addr array. 1081 */ 1082 int 1083 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1084 uint8_t *mac_addr, mac_diag_t *diag) 1085 { 1086 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1087 mac_impl_t *mip = mcip->mci_mip; 1088 size_t addr_len = mip->mi_type->mt_addr_length; 1089 1090 if (prefix_len >= addr_len) { 1091 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1092 return (EINVAL); 1093 } 1094 1095 /* check the prefix value */ 1096 if (prefix_len > 0) { 1097 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1098 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1099 addr_len)) { 1100 *diag = MAC_DIAG_MACPREFIX_INVALID; 1101 return (EINVAL); 1102 } 1103 } 1104 1105 /* generate the MAC address */ 1106 if (prefix_len < addr_len) { 1107 (void) random_get_pseudo_bytes(mac_addr + 1108 prefix_len, addr_len - prefix_len); 1109 } 1110 1111 *diag = 0; 1112 return (0); 1113 } 1114 1115 /* 1116 * Set the priority range for this MAC client. This will be used to 1117 * determine the absolute priority for the threads created for this 1118 * MAC client using the specified "low", "medium" and "high" level. 1119 * This will also be used for any subflows on this MAC client. 1120 */ 1121 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1122 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1123 MAXCLSYSPRI, (pri)); \ 1124 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1125 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1126 } 1127 1128 /* 1129 * MAC client open entry point. Return a new MAC client handle. Each 1130 * MAC client is associated with a name, specified through the 'name' 1131 * argument. 1132 */ 1133 int 1134 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1135 uint16_t flags) 1136 { 1137 mac_impl_t *mip = (mac_impl_t *)mh; 1138 mac_client_impl_t *mcip; 1139 int err = 0; 1140 boolean_t share_desired = 1141 ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0); 1142 boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0); 1143 boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0); 1144 flow_entry_t *flent = NULL; 1145 1146 *mchp = NULL; 1147 if (share_desired && no_hwrings) { 1148 /* can't have shares but no hardware rings */ 1149 return (EINVAL); 1150 } 1151 1152 i_mac_perim_enter(mip); 1153 1154 if (mip->mi_state_flags & MIS_IS_VNIC) { 1155 /* 1156 * The underlying MAC is a VNIC. Return the MAC client 1157 * handle of the lower MAC which was obtained by 1158 * the VNIC driver when it did its mac_client_open(). 1159 */ 1160 1161 mcip = mac_vnic_lower(mip); 1162 /* 1163 * If there are multiple MAC clients of the VNIC, they 1164 * all share the same underlying MAC client handle. 1165 */ 1166 if ((flags & MAC_OPEN_FLAGS_TAG_DISABLE) != 0) 1167 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1168 1169 if ((flags & MAC_OPEN_FLAGS_STRIP_DISABLE) != 0) 1170 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1171 1172 if ((flags & MAC_OPEN_FLAGS_DISABLE_TX_VID_CHECK) != 0) 1173 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1174 1175 /* 1176 * Note that multiple mac clients share the same mcip in 1177 * this case. 1178 */ 1179 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1180 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1181 1182 mip->mi_clients_list = mcip; 1183 i_mac_perim_exit(mip); 1184 *mchp = (mac_client_handle_t)mcip; 1185 return (err); 1186 } 1187 1188 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1189 1190 mcip->mci_mip = mip; 1191 mcip->mci_upper_mip = NULL; 1192 mcip->mci_rx_fn = mac_pkt_drop; 1193 mcip->mci_rx_arg = NULL; 1194 mcip->mci_direct_rx_fn = NULL; 1195 mcip->mci_direct_rx_arg = NULL; 1196 1197 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1198 mcip->mci_state_flags |= MCIS_IS_VNIC; 1199 1200 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1201 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1202 1203 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1204 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1205 1206 if ((flags & MAC_OPEN_FLAGS_TAG_DISABLE) != 0) 1207 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1208 1209 if ((flags & MAC_OPEN_FLAGS_STRIP_DISABLE) != 0) 1210 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1211 1212 if ((flags & MAC_OPEN_FLAGS_DISABLE_TX_VID_CHECK) != 0) 1213 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1214 1215 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1216 datalink_id_t linkid; 1217 1218 ASSERT(name == NULL); 1219 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1220 &linkid)) != 0) { 1221 goto done; 1222 } 1223 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1224 NULL, NULL)) != 0) { 1225 /* 1226 * Use mac name if dlmgmtd is not available. 1227 */ 1228 if (err == EBADF) { 1229 (void) strlcpy(mcip->mci_name, mip->mi_name, 1230 sizeof (mcip->mci_name)); 1231 err = 0; 1232 } else { 1233 goto done; 1234 } 1235 } 1236 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1237 } else { 1238 ASSERT(name != NULL); 1239 if (strlen(name) > MAXNAMELEN) { 1240 err = EINVAL; 1241 goto done; 1242 } 1243 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1244 } 1245 /* the subflow table will be created dynamically */ 1246 mcip->mci_subflow_tab = NULL; 1247 mcip->mci_stat_multircv = 0; 1248 mcip->mci_stat_brdcstrcv = 0; 1249 mcip->mci_stat_multixmt = 0; 1250 mcip->mci_stat_brdcstxmt = 0; 1251 1252 mcip->mci_stat_obytes = 0; 1253 mcip->mci_stat_opackets = 0; 1254 mcip->mci_stat_oerrors = 0; 1255 mcip->mci_stat_ibytes = 0; 1256 mcip->mci_stat_ipackets = 0; 1257 mcip->mci_stat_ierrors = 0; 1258 1259 /* Create an initial flow */ 1260 1261 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1262 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1263 FLOW_PRIMARY_MAC, &flent); 1264 if (err != 0) 1265 goto done; 1266 mcip->mci_flent = flent; 1267 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1268 flent->fe_mcip = mcip; 1269 /* 1270 * Place initial creation reference on the flow. This reference 1271 * is released in the corresponding delete action viz. 1272 * mac_unicast_remove after waiting for all transient refs to 1273 * to go away. The wait happens in mac_flow_wait. 1274 */ 1275 FLOW_REFHOLD(flent); 1276 1277 /* 1278 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1279 * will have the right value for mac_rx_srs_setup(). 1280 */ 1281 mac_client_add(mcip); 1282 1283 mcip->mci_no_hwrings = no_hwrings; 1284 mcip->mci_req_hwrings = req_hwrings; 1285 mcip->mci_share = NULL; 1286 if (share_desired) { 1287 ASSERT(!no_hwrings); 1288 i_mac_share_alloc(mcip); 1289 } 1290 1291 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1292 mcip->mci_mip, mac_client_impl_t *, mcip); 1293 *mchp = (mac_client_handle_t)mcip; 1294 1295 i_mac_perim_exit(mip); 1296 return (0); 1297 1298 done: 1299 i_mac_perim_exit(mip); 1300 mcip->mci_state_flags = 0; 1301 mcip->mci_tx_flag = 0; 1302 kmem_cache_free(mac_client_impl_cache, mcip); 1303 return (err); 1304 } 1305 1306 /* 1307 * Close the specified MAC client handle. 1308 */ 1309 void 1310 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1311 { 1312 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1313 mac_impl_t *mip = mcip->mci_mip; 1314 flow_entry_t *flent; 1315 1316 i_mac_perim_enter(mip); 1317 1318 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1319 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1320 1321 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1322 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1323 /* 1324 * This is an upper VNIC client initiated operation. 1325 * The lower MAC client will be closed by the VNIC driver 1326 * when the VNIC is deleted. 1327 */ 1328 1329 /* 1330 * Clear the flags set when the upper client initiated 1331 * open. 1332 */ 1333 mcip->mci_state_flags &= ~(MCIS_TAG_DISABLE | 1334 MCIS_STRIP_DISABLE | MCIS_DISABLE_TX_VID_CHECK); 1335 1336 i_mac_perim_exit(mip); 1337 return; 1338 } 1339 1340 /* 1341 * Remove the flent associated with the MAC client 1342 */ 1343 flent = mcip->mci_flent; 1344 mcip->mci_flent = NULL; 1345 FLOW_FINAL_REFRELE(flent); 1346 1347 /* 1348 * MAC clients must remove the unicast addresses and promisc callbacks 1349 * they added before issuing a mac_client_close(). 1350 */ 1351 ASSERT(mcip->mci_unicast_list == NULL); 1352 ASSERT(mcip->mci_promisc_list == NULL); 1353 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1354 1355 i_mac_share_free(mcip); 1356 1357 mac_client_remove(mcip); 1358 1359 i_mac_perim_exit(mip); 1360 mcip->mci_subflow_tab = NULL; 1361 mcip->mci_state_flags = 0; 1362 mcip->mci_tx_flag = 0; 1363 kmem_cache_free(mac_client_impl_cache, mch); 1364 } 1365 1366 /* 1367 * Enable bypass for the specified MAC client. 1368 */ 1369 boolean_t 1370 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1371 { 1372 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1373 mac_impl_t *mip = mcip->mci_mip; 1374 1375 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1376 1377 /* 1378 * If the mac_client is a VLAN or native media is non ethernet, we 1379 * should not do DLS bypass and instead let the packets go via the 1380 * default mac_rx_deliver route so vlan header can be stripped etc. 1381 */ 1382 if (mcip->mci_nvids > 0 || 1383 mip->mi_info.mi_nativemedia != DL_ETHER) 1384 return (B_FALSE); 1385 1386 /* 1387 * These are not accessed directly in the data path, and hence 1388 * don't need any protection 1389 */ 1390 mcip->mci_direct_rx_fn = rx_fn; 1391 mcip->mci_direct_rx_arg = arg1; 1392 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 1393 return (B_TRUE); 1394 } 1395 1396 /* 1397 * Set the receive callback for the specified MAC client. There can be 1398 * at most one such callback per MAC client. 1399 */ 1400 void 1401 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1402 { 1403 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1404 mac_impl_t *mip = mcip->mci_mip; 1405 1406 /* 1407 * Instead of adding an extra set of locks and refcnts in 1408 * the datapath at the mac client boundary, we temporarily quiesce 1409 * the SRS and related entities. We then change the receive function 1410 * without interference from any receive data thread and then reenable 1411 * the data flow subsequently. 1412 */ 1413 i_mac_perim_enter(mip); 1414 mac_rx_client_quiesce(mch); 1415 1416 mcip->mci_rx_fn = rx_fn; 1417 mcip->mci_rx_arg = arg; 1418 mac_rx_client_restart(mch); 1419 i_mac_perim_exit(mip); 1420 } 1421 1422 /* 1423 * Reset the receive callback for the specified MAC client. 1424 */ 1425 void 1426 mac_rx_clear(mac_client_handle_t mch) 1427 { 1428 mac_rx_set(mch, mac_pkt_drop, NULL); 1429 } 1430 1431 /* 1432 * Walk the MAC client subflow table and updates their priority values. 1433 */ 1434 static int 1435 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1436 { 1437 mac_flow_update_priority(arg, flent); 1438 return (0); 1439 } 1440 1441 void 1442 mac_update_subflow_priority(mac_client_impl_t *mcip) 1443 { 1444 (void) mac_flow_walk(mcip->mci_subflow_tab, 1445 mac_update_subflow_priority_cb, mcip); 1446 } 1447 1448 /* 1449 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 1450 * to initialize the cpu and resource control structure in the 1451 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 1452 * properties before the flow entry for the unicast address was created). 1453 */ 1454 int 1455 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 1456 { 1457 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1458 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1459 int err = 0; 1460 1461 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1462 1463 err = mac_validate_props(mrp); 1464 if (err != 0) 1465 return (err); 1466 1467 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 1468 if (MCIP_DATAPATH_SETUP(mcip)) { 1469 /* 1470 * We have to set this prior to calling mac_flow_modify. 1471 */ 1472 if (mrp->mrp_mask & MRP_PRIORITY) { 1473 if (mrp->mrp_priority == MPL_RESET) { 1474 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1475 MPL_LINK_DEFAULT); 1476 } else { 1477 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1478 mrp->mrp_priority); 1479 } 1480 } 1481 1482 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 1483 if (mrp->mrp_mask & MRP_PRIORITY) 1484 mac_update_subflow_priority(mcip); 1485 return (0); 1486 } 1487 return (0); 1488 } 1489 1490 void 1491 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp) 1492 { 1493 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1494 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 1495 1496 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 1497 } 1498 1499 static int 1500 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 1501 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 1502 flow_entry_t **flent, mac_resource_props_t *mrp) 1503 { 1504 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1505 flow_desc_t flow_desc; 1506 char flowname[MAXFLOWNAME]; 1507 int err; 1508 uint_t flent_flags; 1509 1510 /* 1511 * First unicast address being added, create a new flow 1512 * for that MAC client. 1513 */ 1514 bzero(&flow_desc, sizeof (flow_desc)); 1515 1516 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 1517 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 1518 flow_desc.fd_mask = FLOW_LINK_DST; 1519 if (vid != 0) { 1520 flow_desc.fd_vid = vid; 1521 flow_desc.fd_mask |= FLOW_LINK_VID; 1522 } 1523 1524 /* 1525 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 1526 * and FLOW_VNIC. Even though they're a hack inherited 1527 * from the SRS code, we'll keep them for now. They're currently 1528 * consumed by mac_datapath_setup() to create the SRS. 1529 * That code should be eventually moved out of 1530 * mac_datapath_setup() and moved to a mac_srs_create() 1531 * function of some sort to keep things clean. 1532 * 1533 * Also, there's no reason why the SRS for the primary MAC 1534 * client should be different than any other MAC client. Until 1535 * this is cleaned-up, we support only one MAC unicast address 1536 * per client. 1537 * 1538 * We set FLOW_PRIMARY_MAC for the primary MAC address, 1539 * FLOW_VNIC for everything else. 1540 */ 1541 if (is_primary) 1542 flent_flags = FLOW_PRIMARY_MAC; 1543 else 1544 flent_flags = FLOW_VNIC_MAC; 1545 1546 /* 1547 * For the first flow we use the mac client's name - mci_name, for 1548 * subsequent ones we just create a name with the vid. This is 1549 * so that we can add these flows to the same flow table. This is 1550 * fine as the flow name (except for the one with the mac client's 1551 * name) is not visible. When the first flow is removed, we just replace 1552 * its fdesc with another from the list, so we will still retain the 1553 * flent with the MAC client's flow name. 1554 */ 1555 if (first_flow) { 1556 bcopy(mcip->mci_name, flowname, MAXFLOWNAME); 1557 } else { 1558 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 1559 flent_flags = FLOW_NO_STATS; 1560 } 1561 1562 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 1563 flent_flags, flent)) != 0) 1564 return (err); 1565 1566 FLOW_MARK(*flent, FE_INCIPIENT); 1567 (*flent)->fe_mcip = mcip; 1568 1569 /* 1570 * Place initial creation reference on the flow. This reference 1571 * is released in the corresponding delete action viz. 1572 * mac_unicast_remove after waiting for all transient refs to 1573 * to go away. The wait happens in mac_flow_wait. 1574 * We have already held the reference in mac_client_open(). 1575 */ 1576 if (!first_flow) 1577 FLOW_REFHOLD(*flent); 1578 return (0); 1579 } 1580 1581 /* Refresh the multicast grouping for this VID. */ 1582 int 1583 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 1584 { 1585 flow_entry_t *flent = arg; 1586 mac_client_impl_t *mcip = flent->fe_mcip; 1587 uint16_t vid; 1588 flow_desc_t flow_desc; 1589 1590 mac_flow_get_desc(flent, &flow_desc); 1591 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 1592 flow_desc.fd_vid : VLAN_ID_NONE; 1593 1594 /* 1595 * We don't call mac_multicast_add()/mac_multicast_remove() as 1596 * we want to add/remove for this specific vid. 1597 */ 1598 if (add) { 1599 return (mac_bcast_add(mcip, addrp, vid, 1600 MAC_ADDRTYPE_MULTICAST)); 1601 } else { 1602 mac_bcast_delete(mcip, addrp, vid); 1603 return (0); 1604 } 1605 } 1606 1607 /* 1608 * Add a new unicast address to the MAC client. 1609 * 1610 * The MAC address can be specified either by value, or the MAC client 1611 * can specify that it wants to use the primary MAC address of the 1612 * underlying MAC. See the introductory comments at the beginning 1613 * of this file for more more information on primary MAC addresses. 1614 * 1615 * Note also the tuple (MAC address, VID) must be unique 1616 * for the MAC clients defined on top of the same underlying MAC 1617 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 1618 */ 1619 1620 int 1621 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1622 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1623 { 1624 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1625 mac_impl_t *mip = mcip->mci_mip; 1626 mac_unicast_impl_t *muip; 1627 flow_entry_t *flent; 1628 int err; 1629 uint_t mac_len = mip->mi_type->mt_addr_length; 1630 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 1631 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 1632 boolean_t is_vnic_primary = flags & MAC_UNICAST_VNIC_PRIMARY; 1633 boolean_t bcast_added = B_FALSE; 1634 boolean_t nactiveclients_added = B_FALSE; 1635 boolean_t mac_started = B_FALSE; 1636 mac_resource_props_t mrp; 1637 1638 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1639 1640 /* when VID is non-zero, the underlying MAC can not be VNIC */ 1641 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0))); 1642 1643 /* 1644 * Check whether it's the primary client and flag it. 1645 */ 1646 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0) 1647 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 1648 1649 /* 1650 * is_vnic_primary is true when we come here as a VLAN VNIC 1651 * which uses the primary mac client's address but with a non-zero 1652 * VID. In this case the MAC address is not specified by an upper 1653 * MAC client. 1654 */ 1655 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 1656 !is_vnic_primary) { 1657 /* 1658 * The address is being set by the upper MAC client 1659 * of a VNIC. The MAC address was already set by the 1660 * VNIC driver during VNIC creation. 1661 * 1662 * Note: a VNIC has only one MAC address. We return 1663 * the MAC unicast address handle of the lower MAC client 1664 * corresponding to the VNIC. We allocate a new entry 1665 * which is flagged appropriately, so that mac_unicast_remove() 1666 * doesn't attempt to free the original entry that 1667 * was allocated by the VNIC driver. 1668 */ 1669 ASSERT(mcip->mci_unicast != NULL); 1670 1671 /* 1672 * Ensure that the primary unicast address of the VNIC 1673 * is added only once. 1674 */ 1675 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) 1676 return (EBUSY); 1677 1678 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1679 1680 /* 1681 * Create a handle for vid 0. 1682 */ 1683 ASSERT(vid == 0); 1684 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1685 muip->mui_vid = vid; 1686 *mah = (mac_unicast_handle_t)muip; 1687 return (0); 1688 } 1689 1690 /* primary MAC clients cannot be opened on top of anchor VNICs */ 1691 if ((is_vnic_primary || is_primary) && 1692 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 1693 return (ENXIO); 1694 } 1695 1696 /* 1697 * Return EBUSY if: 1698 * - this is an exclusive active mac client and there already exist 1699 * active mac clients, or 1700 * - there already exist an exclusively active mac client. 1701 */ 1702 if ((mcip->mci_state_flags & MCIS_EXCLUSIVE) && 1703 (mip->mi_nactiveclients != 0) || (mip->mi_state_flags & 1704 MIS_EXCLUSIVE)) { 1705 return (EBUSY); 1706 } 1707 1708 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 1709 mip->mi_state_flags |= MIS_EXCLUSIVE; 1710 1711 bzero(&mrp, sizeof (mac_resource_props_t)); 1712 if (is_primary && !(mcip->mci_state_flags & MCIS_IS_VNIC)) { 1713 /* 1714 * Apply the property cached in the mac_impl_t to the primary 1715 * mac client. If the mac client is a VNIC, its property were 1716 * already set in the mcip when the VNIC was created. 1717 */ 1718 mac_get_resources((mac_handle_t)mip, &mrp); 1719 (void) mac_client_set_resources(mch, &mrp); 1720 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 1721 bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp, 1722 sizeof (mac_resource_props_t)); 1723 } 1724 1725 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1726 muip->mui_vid = vid; 1727 1728 if (is_primary || is_vnic_primary) { 1729 mac_addr = mip->mi_addr; 1730 check_dups = B_TRUE; 1731 } else { 1732 1733 /* 1734 * Verify the validity of the specified MAC addresses value. 1735 */ 1736 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 1737 *diag = MAC_DIAG_MACADDR_INVALID; 1738 err = EINVAL; 1739 goto bail; 1740 } 1741 1742 /* 1743 * Make sure that the specified MAC address is different 1744 * than the unicast MAC address of the underlying NIC. 1745 */ 1746 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 1747 *diag = MAC_DIAG_MACADDR_NIC; 1748 err = EINVAL; 1749 goto bail; 1750 } 1751 } 1752 1753 /* 1754 * Make sure the MAC address is not already used by 1755 * another MAC client defined on top of the same 1756 * underlying NIC. 1757 * xxx-venu mac_unicast_add doesnt' seem to be called 1758 * with MAC_UNICAST_NODUPCHECK currently, if it does 1759 * get called we need to do mac_addr_in_use() just 1760 * to check for addr_in_use till 6697876 is fixed. 1761 */ 1762 if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) { 1763 *diag = MAC_DIAG_MACADDR_INUSE; 1764 err = EEXIST; 1765 goto bail; 1766 } 1767 1768 if ((err = mac_start(mip)) != 0) 1769 goto bail; 1770 1771 mac_started = B_TRUE; 1772 1773 /* add the MAC client to the broadcast address group by default */ 1774 if (mip->mi_type->mt_brdcst_addr != NULL) { 1775 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 1776 MAC_ADDRTYPE_BROADCAST); 1777 if (err != 0) 1778 goto bail; 1779 bcast_added = B_TRUE; 1780 } 1781 flent = mcip->mci_flent; 1782 ASSERT(flent != NULL); 1783 /* We are configuring the unicast flow now */ 1784 if (!MCIP_DATAPATH_SETUP(mcip)) { 1785 1786 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1787 (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority : 1788 MPL_LINK_DEFAULT); 1789 1790 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1791 is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0) 1792 goto bail; 1793 1794 mip->mi_nactiveclients++; 1795 nactiveclients_added = B_TRUE; 1796 /* 1797 * This will allocate the RX ring group if possible for the 1798 * flow and program the software classifier as needed. 1799 */ 1800 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 1801 goto bail; 1802 1803 /* 1804 * The unicast MAC address must have been added successfully. 1805 */ 1806 ASSERT(mcip->mci_unicast != NULL); 1807 } else { 1808 mac_address_t *map = mcip->mci_unicast; 1809 1810 /* 1811 * A unicast flow already exists for that MAC client, 1812 * this flow must be the same mac address but with 1813 * different VID. It has been checked by mac_addr_in_use(). 1814 * 1815 * We will use the SRS etc. from the mci_flent. Note that 1816 * We don't need to create kstat for this as except for 1817 * the fdesc, everything will be used from in the 1st flent. 1818 */ 1819 1820 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 1821 err = EINVAL; 1822 goto bail; 1823 } 1824 1825 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1826 is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0) 1827 goto bail; 1828 1829 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 1830 FLOW_FINAL_REFRELE(flent); 1831 goto bail; 1832 } 1833 1834 /* update the multicast group for this vid */ 1835 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 1836 (void *)flent, B_TRUE); 1837 1838 } 1839 1840 /* populate the shared MAC address */ 1841 muip->mui_map = mcip->mci_unicast; 1842 1843 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1844 muip->mui_next = mcip->mci_unicast_list; 1845 mcip->mci_unicast_list = muip; 1846 rw_exit(&mcip->mci_rw_lock); 1847 1848 *mah = (mac_unicast_handle_t)muip; 1849 1850 /* add it to the flow list of this mcip */ 1851 mac_client_add_to_flow_list(mcip, flent); 1852 1853 /* 1854 * Trigger a renegotiation of the capabilities when the number of 1855 * active clients changes from 1 to 2, since some of the capabilities 1856 * might have to be disabled. Also send a MAC_NOTE_LINK notification 1857 * to all the MAC clients whenever physical link is DOWN. 1858 */ 1859 if (mip->mi_nactiveclients == 2) { 1860 mac_capab_update((mac_handle_t)mip); 1861 mac_virtual_link_update(mip); 1862 } 1863 /* 1864 * Now that the setup is complete, clear the INCIPIENT flag. 1865 * The flag was set to avoid incoming packets seeing inconsistent 1866 * structures while the setup was in progress. Clear the mci_tx_flag 1867 * by calling mac_tx_client_block. It is possible that 1868 * mac_unicast_remove was called prior to this mac_unicast_add which 1869 * could have set the MCI_TX_QUIESCE flag. 1870 */ 1871 if (flent->fe_rx_ring_group != NULL) 1872 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 1873 FLOW_UNMARK(flent, FE_INCIPIENT); 1874 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 1875 mac_tx_client_unblock(mcip); 1876 return (0); 1877 bail: 1878 if (bcast_added) 1879 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 1880 if (mac_started) 1881 mac_stop(mip); 1882 1883 if (nactiveclients_added) 1884 mip->mi_nactiveclients--; 1885 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 1886 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 1887 kmem_free(muip, sizeof (mac_unicast_impl_t)); 1888 return (err); 1889 } 1890 1891 int 1892 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1893 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1894 { 1895 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 1896 uint_t err; 1897 1898 i_mac_perim_enter(mip); 1899 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 1900 i_mac_perim_exit(mip); 1901 1902 return (err); 1903 } 1904 1905 /* 1906 * Add the primary MAC address to the MAC client. This is a convenience 1907 * function which can be called by primary MAC clients which do not 1908 * need to specify any other additional flags. 1909 * 1910 * It's called in one of following situations: 1911 * * dls as the primary MAC client 1912 * * aggr as an exclusive client 1913 * * by VNIC's client 1914 */ 1915 int 1916 mac_unicast_primary_add(mac_client_handle_t mch, mac_unicast_handle_t *mah, 1917 mac_diag_t *diag) 1918 { 1919 return (mac_unicast_add(mch, NULL, MAC_UNICAST_PRIMARY, mah, 0, diag)); 1920 } 1921 1922 /* 1923 * Remove a MAC address which was previously added by mac_unicast_add(). 1924 */ 1925 int 1926 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 1927 { 1928 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1929 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 1930 mac_unicast_impl_t *pre; 1931 mac_impl_t *mip = mcip->mci_mip; 1932 flow_entry_t *flent; 1933 1934 i_mac_perim_enter(mip); 1935 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 1936 /* 1937 * Called made by the upper MAC client of a VNIC. 1938 * There's nothing much to do, the unicast address will 1939 * be removed by the VNIC driver when the VNIC is deleted, 1940 * but let's ensure that all our transmit is done before 1941 * the client does a mac_client_stop lest it trigger an 1942 * assert in the driver. 1943 */ 1944 ASSERT(muip->mui_vid == 0); 1945 1946 mac_tx_client_flush(mcip); 1947 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1948 1949 kmem_free(muip, sizeof (mac_unicast_impl_t)); 1950 i_mac_perim_exit(mip); 1951 return (0); 1952 } 1953 1954 ASSERT(muip != NULL); 1955 1956 /* 1957 * Remove the VID from the list of client's VIDs. 1958 */ 1959 pre = mcip->mci_unicast_list; 1960 if (muip == pre) 1961 mcip->mci_unicast_list = muip->mui_next; 1962 else { 1963 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 1964 pre = pre->mui_next; 1965 ASSERT(pre->mui_next == muip); 1966 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1967 pre->mui_next = muip->mui_next; 1968 rw_exit(&mcip->mci_rw_lock); 1969 } 1970 1971 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0) 1972 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 1973 1974 /* 1975 * This MAC client is shared, so we will just remove the flent 1976 * corresponding to the address being removed. We don't invoke 1977 * mac_rx_classify_flow_rem() since the additional flow is 1978 * not associated with its own separate set of SRS and rings, 1979 * and these constructs are still needed for the remaining flows. 1980 */ 1981 if (!mac_client_single_rcvr(mcip)) { 1982 flent = mac_client_get_flow(mcip, muip); 1983 ASSERT(flent != NULL); 1984 1985 /* 1986 * The first one is disappearing, need to make sure 1987 * we replace it with another from the list of 1988 * shared clients. 1989 */ 1990 if (flent == mcip->mci_flent) 1991 flent = mac_client_swap_mciflent(mcip); 1992 mac_client_remove_flow_from_list(mcip, flent); 1993 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 1994 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1995 1996 /* 1997 * The multicast groups that were added by the client so 1998 * far must be removed from the brodcast domain corresponding 1999 * to the VID being removed. 2000 */ 2001 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2002 (void *)flent, B_FALSE); 2003 2004 if (mip->mi_type->mt_brdcst_addr != NULL) { 2005 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2006 muip->mui_vid); 2007 } 2008 mac_stop(mip); 2009 FLOW_FINAL_REFRELE(flent); 2010 i_mac_perim_exit(mip); 2011 return (0); 2012 } 2013 2014 mip->mi_nactiveclients--; 2015 2016 /* Tear down the Data path */ 2017 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2018 2019 /* 2020 * Prevent any future access to the flow entry through the mci_flent 2021 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2022 * mac_bcast_send is also under mi_rw_lock. 2023 */ 2024 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2025 flent = mcip->mci_flent; 2026 mac_client_remove_flow_from_list(mcip, flent); 2027 2028 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2029 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2030 2031 /* 2032 * This is the last unicast address being removed and there shouldn't 2033 * be any outbound data threads at this point coming down from mac 2034 * clients. We have waited for the data threads to finish before 2035 * starting dld_str_detach. Non-data threads must access TX SRS 2036 * under mi_rw_lock. 2037 */ 2038 rw_exit(&mip->mi_rw_lock); 2039 2040 /* 2041 * Update the multicast group for this vid. 2042 */ 2043 mac_client_bcast_refresh(mcip, mac_client_update_mcast, (void *)flent, 2044 B_FALSE); 2045 2046 /* 2047 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2048 * contain other flags, such as FE_CONDEMNED, which we need to 2049 * cleared. We don't call mac_flow_cleanup() for this unicast 2050 * flow as we have a already cleaned up SRSs etc. (via the teadown 2051 * path). We just clear the stats and reset the initial callback 2052 * function, the rest will be set when we call mac_flow_create, 2053 * if at all. 2054 */ 2055 mutex_enter(&flent->fe_lock); 2056 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2057 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2058 flent->fe_flags = FE_MC_NO_DATAPATH; 2059 flow_stat_destroy(flent); 2060 2061 /* Initialize the receiver function to a safe routine */ 2062 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2063 flent->fe_cb_arg1 = NULL; 2064 flent->fe_cb_arg2 = NULL; 2065 2066 flent->fe_index = -1; 2067 mutex_exit(&flent->fe_lock); 2068 2069 if (mip->mi_type->mt_brdcst_addr != NULL) { 2070 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2071 muip->mui_vid); 2072 } 2073 2074 if (mip->mi_nactiveclients == 1) { 2075 mac_capab_update((mac_handle_t)mip); 2076 mac_virtual_link_update(mip); 2077 } 2078 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 2079 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2080 2081 mac_stop(mip); 2082 2083 i_mac_perim_exit(mip); 2084 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2085 return (0); 2086 } 2087 2088 /* 2089 * Multicast add function invoked by MAC clients. 2090 */ 2091 int 2092 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 2093 { 2094 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2095 mac_impl_t *mip = mcip->mci_mip; 2096 flow_entry_t *flent = mcip->mci_flent_list; 2097 flow_entry_t *prev_fe = NULL; 2098 uint16_t vid; 2099 int err = 0; 2100 2101 /* Verify the address is a valid multicast address */ 2102 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 2103 mip->mi_pdata)) != 0) 2104 return (err); 2105 2106 i_mac_perim_enter(mip); 2107 while (flent != NULL) { 2108 vid = i_mac_flow_vid(flent); 2109 2110 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 2111 MAC_ADDRTYPE_MULTICAST); 2112 if (err != 0) 2113 break; 2114 prev_fe = flent; 2115 flent = flent->fe_client_next; 2116 } 2117 2118 /* 2119 * If we failed adding, then undo all, rather than partial 2120 * success. 2121 */ 2122 if (flent != NULL && prev_fe != NULL) { 2123 flent = mcip->mci_flent_list; 2124 while (flent != prev_fe->fe_client_next) { 2125 vid = i_mac_flow_vid(flent); 2126 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2127 flent = flent->fe_client_next; 2128 } 2129 } 2130 i_mac_perim_exit(mip); 2131 return (err); 2132 } 2133 2134 /* 2135 * Multicast delete function invoked by MAC clients. 2136 */ 2137 void 2138 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 2139 { 2140 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2141 mac_impl_t *mip = mcip->mci_mip; 2142 flow_entry_t *flent; 2143 uint16_t vid; 2144 2145 i_mac_perim_enter(mip); 2146 for (flent = mcip->mci_flent_list; flent != NULL; 2147 flent = flent->fe_client_next) { 2148 vid = i_mac_flow_vid(flent); 2149 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2150 } 2151 i_mac_perim_exit(mip); 2152 } 2153 2154 /* 2155 * When a MAC client desires to capture packets on an interface, 2156 * it registers a promiscuous call back with mac_promisc_add(). 2157 * There are three types of promiscuous callbacks: 2158 * 2159 * * MAC_CLIENT_PROMISC_ALL 2160 * Captures all packets sent and received by the MAC client, 2161 * the physical interface, as well as all other MAC clients 2162 * defined on top of the same MAC. 2163 * 2164 * * MAC_CLIENT_PROMISC_FILTERED 2165 * Captures all packets sent and received by the MAC client, 2166 * plus all multicast traffic sent and received by the phyisical 2167 * interface and the other MAC clients. 2168 * 2169 * * MAC_CLIENT_PROMISC_MULTI 2170 * Captures all broadcast and multicast packets sent and 2171 * received by the MAC clients as well as the physical interface. 2172 * 2173 * In all cases, the underlying MAC is put in promiscuous mode. 2174 */ 2175 int 2176 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 2177 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 2178 { 2179 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2180 mac_impl_t *mip = mcip->mci_mip; 2181 mac_promisc_impl_t *mpip; 2182 mac_cb_info_t *mcbi; 2183 int rc; 2184 2185 i_mac_perim_enter(mip); 2186 2187 if ((rc = mac_start(mip)) != 0) { 2188 i_mac_perim_exit(mip); 2189 return (rc); 2190 } 2191 2192 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 2193 type == MAC_CLIENT_PROMISC_ALL) { 2194 /* 2195 * The function is being invoked by the upper MAC client 2196 * of a VNIC. The VNIC should only see the traffic 2197 * it is entitled to. 2198 */ 2199 type = MAC_CLIENT_PROMISC_FILTERED; 2200 } 2201 2202 2203 /* 2204 * Turn on promiscuous mode for the underlying NIC. 2205 * This is needed even for filtered callbacks which 2206 * expect to receive all multicast traffic on the wire. 2207 * 2208 * Physical promiscuous mode should not be turned on if 2209 * MAC_PROMISC_FLAGS_NO_PHYS is set. 2210 */ 2211 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 2212 if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) 2213 != 0) { 2214 mac_stop(mip); 2215 i_mac_perim_exit(mip); 2216 return (rc); 2217 } 2218 } 2219 2220 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 2221 2222 mpip->mpi_type = type; 2223 mpip->mpi_fn = fn; 2224 mpip->mpi_arg = arg; 2225 mpip->mpi_mcip = mcip; 2226 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 2227 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 2228 2229 mcbi = &mip->mi_promisc_cb_info; 2230 mutex_enter(mcbi->mcbi_lockp); 2231 2232 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 2233 &mpip->mpi_mci_link); 2234 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 2235 &mpip->mpi_mi_link); 2236 2237 mutex_exit(mcbi->mcbi_lockp); 2238 2239 *mphp = (mac_promisc_handle_t)mpip; 2240 i_mac_perim_exit(mip); 2241 return (0); 2242 } 2243 2244 /* 2245 * Remove a multicast address previously aded through mac_promisc_add(). 2246 */ 2247 int 2248 mac_promisc_remove(mac_promisc_handle_t mph) 2249 { 2250 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 2251 mac_client_impl_t *mcip = mpip->mpi_mcip; 2252 mac_impl_t *mip = mcip->mci_mip; 2253 mac_cb_info_t *mcbi; 2254 int rc = 0; 2255 2256 i_mac_perim_enter(mip); 2257 2258 /* 2259 * Even if the device can't be reset into normal mode, we still 2260 * need to clear the client promisc callbacks. The client may want 2261 * to close the mac end point and we can't have stale callbacks. 2262 */ 2263 if (!(mpip->mpi_no_phys)) { 2264 rc = mac_promisc_set((mac_handle_t)mip, B_FALSE, 2265 MAC_DEVPROMISC); 2266 if (rc != 0) 2267 goto done; 2268 } 2269 mcbi = &mip->mi_promisc_cb_info; 2270 mutex_enter(mcbi->mcbi_lockp); 2271 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 2272 &mpip->mpi_mi_link)) { 2273 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 2274 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 2275 kmem_cache_free(mac_promisc_impl_cache, mpip); 2276 } else { 2277 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 2278 } 2279 mutex_exit(mcbi->mcbi_lockp); 2280 mac_stop(mip); 2281 2282 done: 2283 i_mac_perim_exit(mip); 2284 return (rc); 2285 } 2286 2287 /* 2288 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 2289 * that a control operation wants to quiesce the Tx data flow in which case 2290 * we return an error. Holding any of the per cpu locks ensures that the 2291 * mci_tx_flag won't change. 2292 * 2293 * 'CPU' must be accessed just once and used to compute the index into the 2294 * percpu array, and that index must be used for the entire duration of the 2295 * packet send operation. Note that the thread may be preempted and run on 2296 * another cpu any time and so we can't use 'CPU' more than once for the 2297 * operation. 2298 */ 2299 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 2300 { \ 2301 (error) = 0; \ 2302 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 2303 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2304 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 2305 (mytx)->pcpu_tx_refcnt++; \ 2306 } else { \ 2307 (error) = -1; \ 2308 } \ 2309 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2310 } 2311 2312 /* 2313 * Release the reference. If needed, signal any control operation waiting 2314 * for Tx quiescence. The wait and signal are always done using the 2315 * mci_tx_pcpu[0]'s lock 2316 */ 2317 #define MAC_TX_RELE(mcip, mytx) { \ 2318 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2319 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 2320 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 2321 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2322 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2323 cv_signal(&(mcip)->mci_tx_cv); \ 2324 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2325 } else { \ 2326 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2327 } \ 2328 } 2329 2330 /* 2331 * Bump the count of the number of active Tx threads. This is maintained as 2332 * a per CPU counter. On (CMT kind of) machines with large number of CPUs, 2333 * a single mci_tx_lock may become contended. However a count of the total 2334 * number of Tx threads per client is needed in order to quiesce the Tx side 2335 * prior to reassigning a Tx ring dynamically to another client. The thread 2336 * that needs to quiesce the Tx traffic grabs all the percpu locks and checks 2337 * the sum of the individual percpu refcnts. Each Tx data thread only grabs 2338 * its own percpu lock and increments its own refcnt. 2339 */ 2340 void * 2341 mac_tx_hold(mac_client_handle_t mch) 2342 { 2343 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2344 mac_tx_percpu_t *mytx; 2345 int error; 2346 2347 MAC_TX_TRY_HOLD(mcip, mytx, error); 2348 return (error == 0 ? (void *)mytx : NULL); 2349 } 2350 2351 void 2352 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle) 2353 { 2354 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2355 mac_tx_percpu_t *mytx = mytx_handle; 2356 2357 MAC_TX_RELE(mcip, mytx) 2358 } 2359 2360 /* 2361 * Send function invoked by MAC clients. 2362 */ 2363 mac_tx_cookie_t 2364 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 2365 uint16_t flag, mblk_t **ret_mp) 2366 { 2367 mac_tx_cookie_t cookie; 2368 int error; 2369 mac_tx_percpu_t *mytx; 2370 mac_soft_ring_set_t *srs; 2371 flow_entry_t *flent; 2372 boolean_t is_subflow = B_FALSE; 2373 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2374 mac_impl_t *mip = mcip->mci_mip; 2375 mac_srs_tx_t *srs_tx; 2376 2377 /* 2378 * Check whether the active Tx threads count is bumped already. 2379 */ 2380 if (!(flag & MAC_TX_NO_HOLD)) { 2381 MAC_TX_TRY_HOLD(mcip, mytx, error); 2382 if (error != 0) { 2383 freemsgchain(mp_chain); 2384 return (NULL); 2385 } 2386 } 2387 2388 if (mcip->mci_subflow_tab != NULL && 2389 mcip->mci_subflow_tab->ft_flow_count > 0 && 2390 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 2391 FLOW_OUTBOUND, &flent) == 0) { 2392 /* 2393 * The main assumption here is that if in the event 2394 * we get a chain, all the packets will be classified 2395 * to the same Flow/SRS. If this changes for any 2396 * reason, the following logic should change as well. 2397 * I suppose the fanout_hint also assumes this . 2398 */ 2399 ASSERT(flent != NULL); 2400 is_subflow = B_TRUE; 2401 } else { 2402 flent = mcip->mci_flent; 2403 } 2404 2405 srs = flent->fe_tx_srs; 2406 srs_tx = &srs->srs_tx; 2407 if (srs_tx->st_mode == SRS_TX_DEFAULT && 2408 (srs->srs_state & SRS_ENQUEUED) == 0 && 2409 mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL && 2410 mp_chain->b_next == NULL) { 2411 uint64_t obytes; 2412 2413 /* 2414 * Since dls always opens the underlying MAC, nclients equals 2415 * to 1 means that the only active client is dls itself acting 2416 * as a primary client of the MAC instance. Since dls will not 2417 * send tagged packets in that case, and dls is trusted to send 2418 * packets for its allowed VLAN(s), the VLAN tag insertion and 2419 * check is required only if nclients is greater than 1. 2420 */ 2421 if (mip->mi_nclients > 1) { 2422 if (MAC_VID_CHECK_NEEDED(mcip)) { 2423 int err = 0; 2424 2425 MAC_VID_CHECK(mcip, mp_chain, err); 2426 if (err != 0) { 2427 freemsg(mp_chain); 2428 mcip->mci_stat_oerrors++; 2429 goto done; 2430 } 2431 } 2432 if (MAC_TAG_NEEDED(mcip)) { 2433 mp_chain = mac_add_vlan_tag(mp_chain, 0, 2434 mac_client_vid(mch)); 2435 if (mp_chain == NULL) { 2436 mcip->mci_stat_oerrors++; 2437 goto done; 2438 } 2439 } 2440 } 2441 2442 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 2443 msgdsize(mp_chain)); 2444 2445 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 2446 2447 if (mp_chain == NULL) { 2448 cookie = NULL; 2449 mcip->mci_stat_obytes += obytes; 2450 mcip->mci_stat_opackets += 1; 2451 if ((srs->srs_type & SRST_FLOW) != 0) { 2452 FLOW_STAT_UPDATE(flent, obytes, obytes); 2453 FLOW_STAT_UPDATE(flent, opackets, 1); 2454 } 2455 } else { 2456 mutex_enter(&srs->srs_lock); 2457 cookie = mac_tx_srs_no_desc(srs, mp_chain, 2458 flag, ret_mp); 2459 mutex_exit(&srs->srs_lock); 2460 } 2461 } else { 2462 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 2463 } 2464 2465 done: 2466 if (is_subflow) 2467 FLOW_REFRELE(flent); 2468 2469 if (!(flag & MAC_TX_NO_HOLD)) 2470 MAC_TX_RELE(mcip, mytx); 2471 2472 return (cookie); 2473 } 2474 2475 /* 2476 * mac_tx_is_blocked 2477 * 2478 * Given a cookie, it returns if the ring identified by the cookie is 2479 * flow-controlled or not (this is not implemented yet). If NULL is 2480 * passed in place of a cookie, then it finds out if any of the 2481 * underlying rings belonging to the SRS is flow controlled or not 2482 * and returns that status. 2483 */ 2484 /* ARGSUSED */ 2485 boolean_t 2486 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 2487 { 2488 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2489 mac_soft_ring_set_t *mac_srs = MCIP_TX_SRS(mcip); 2490 mac_soft_ring_t *sringp; 2491 boolean_t blocked = B_FALSE; 2492 int i; 2493 2494 /* 2495 * On etherstubs, there won't be a Tx SRS or an Rx 2496 * SRS. Infact there won't even be a flow_entry. 2497 */ 2498 if (mac_srs == NULL) 2499 return (B_FALSE); 2500 2501 mutex_enter(&mac_srs->srs_lock); 2502 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) { 2503 for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { 2504 sringp = mac_srs->srs_oth_soft_rings[i]; 2505 mutex_enter(&sringp->s_ring_lock); 2506 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 2507 blocked = B_TRUE; 2508 mutex_exit(&sringp->s_ring_lock); 2509 break; 2510 } 2511 mutex_exit(&sringp->s_ring_lock); 2512 } 2513 } else { 2514 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 2515 } 2516 mutex_exit(&mac_srs->srs_lock); 2517 return (blocked); 2518 } 2519 2520 /* 2521 * Check if the MAC client is the primary MAC client. 2522 */ 2523 boolean_t 2524 mac_is_primary_client(mac_client_impl_t *mcip) 2525 { 2526 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 2527 } 2528 2529 void 2530 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 2531 { 2532 mac_impl_t *mip = (mac_impl_t *)mh; 2533 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 2534 2535 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 2536 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 2537 /* 2538 * If ndd props were registered, call them. 2539 * Note that ndd ioctls are Obsolete 2540 */ 2541 mac_ndd_ioctl(mip, wq, bp); 2542 return; 2543 } 2544 2545 /* 2546 * Call the driver to handle the ioctl. The driver may not support 2547 * any ioctls, in which case we reply with a NAK on its behalf. 2548 */ 2549 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 2550 mip->mi_ioctl(mip->mi_driver, wq, bp); 2551 else 2552 miocnak(wq, bp, 0, EINVAL); 2553 } 2554 2555 /* 2556 * Return the link state of the specified MAC instance. 2557 */ 2558 link_state_t 2559 mac_link_get(mac_handle_t mh) 2560 { 2561 return (((mac_impl_t *)mh)->mi_linkstate); 2562 } 2563 2564 /* 2565 * Add a mac client specified notification callback. Please see the comments 2566 * above mac_callback_add() for general information about mac callback 2567 * addition/deletion in the presence of mac callback list walkers 2568 */ 2569 mac_notify_handle_t 2570 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 2571 { 2572 mac_impl_t *mip = (mac_impl_t *)mh; 2573 mac_notify_cb_t *mncb; 2574 mac_cb_info_t *mcbi; 2575 2576 /* 2577 * Allocate a notify callback structure, fill in the details and 2578 * use the mac callback list manipulation functions to chain into 2579 * the list of callbacks. 2580 */ 2581 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 2582 mncb->mncb_fn = notify_fn; 2583 mncb->mncb_arg = arg; 2584 mncb->mncb_mip = mip; 2585 mncb->mncb_link.mcb_objp = mncb; 2586 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 2587 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 2588 2589 mcbi = &mip->mi_notify_cb_info; 2590 2591 i_mac_perim_enter(mip); 2592 mutex_enter(mcbi->mcbi_lockp); 2593 2594 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 2595 &mncb->mncb_link); 2596 2597 mutex_exit(mcbi->mcbi_lockp); 2598 i_mac_perim_exit(mip); 2599 return ((mac_notify_handle_t)mncb); 2600 } 2601 2602 void 2603 mac_notify_remove_wait(mac_handle_t mh) 2604 { 2605 mac_impl_t *mip = (mac_impl_t *)mh; 2606 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 2607 2608 mutex_enter(mcbi->mcbi_lockp); 2609 mac_callback_remove_wait(&mip->mi_notify_cb_info); 2610 mutex_exit(mcbi->mcbi_lockp); 2611 } 2612 2613 /* 2614 * Remove a mac client specified notification callback 2615 */ 2616 int 2617 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 2618 { 2619 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 2620 mac_impl_t *mip = mncb->mncb_mip; 2621 mac_cb_info_t *mcbi; 2622 int err = 0; 2623 2624 mcbi = &mip->mi_notify_cb_info; 2625 2626 i_mac_perim_enter(mip); 2627 mutex_enter(mcbi->mcbi_lockp); 2628 2629 ASSERT(mncb->mncb_link.mcb_objp == mncb); 2630 /* 2631 * If there aren't any list walkers, the remove would succeed 2632 * inline, else we wait for the deferred remove to complete 2633 */ 2634 if (mac_callback_remove(&mip->mi_notify_cb_info, 2635 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 2636 kmem_free(mncb, sizeof (mac_notify_cb_t)); 2637 } else { 2638 err = EBUSY; 2639 } 2640 2641 mutex_exit(mcbi->mcbi_lockp); 2642 i_mac_perim_exit(mip); 2643 2644 /* 2645 * If we failed to remove the notification callback and "wait" is set 2646 * to be B_TRUE, wait for the callback to finish after we exit the 2647 * mac perimeter. 2648 */ 2649 if (err != 0 && wait) { 2650 mac_notify_remove_wait((mac_handle_t)mip); 2651 return (0); 2652 } 2653 2654 return (err); 2655 } 2656 2657 /* 2658 * Associate resource management callbacks with the specified MAC 2659 * clients. 2660 */ 2661 2662 void 2663 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 2664 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 2665 mac_resource_restart_t restart, mac_resource_bind_t bind, 2666 void *arg) 2667 { 2668 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2669 2670 mcip->mci_resource_add = add; 2671 mcip->mci_resource_remove = remove; 2672 mcip->mci_resource_quiesce = quiesce; 2673 mcip->mci_resource_restart = restart; 2674 mcip->mci_resource_bind = bind; 2675 mcip->mci_resource_arg = arg; 2676 2677 if (arg == NULL) 2678 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 2679 } 2680 2681 void 2682 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 2683 { 2684 /* update the 'resource_add' callback */ 2685 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 2686 } 2687 2688 /* 2689 * Sets up the client resources and enable the polling interface over all the 2690 * SRS's and the soft rings of the client 2691 */ 2692 void 2693 mac_client_poll_enable(mac_client_handle_t mch) 2694 { 2695 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2696 mac_soft_ring_set_t *mac_srs; 2697 flow_entry_t *flent; 2698 int i; 2699 2700 flent = mcip->mci_flent; 2701 ASSERT(flent != NULL); 2702 2703 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2704 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2705 ASSERT(mac_srs->srs_mcip == mcip); 2706 mac_srs_client_poll_enable(mcip, mac_srs); 2707 } 2708 } 2709 2710 /* 2711 * Tears down the client resources and disable the polling interface over all 2712 * the SRS's and the soft rings of the client 2713 */ 2714 void 2715 mac_client_poll_disable(mac_client_handle_t mch) 2716 { 2717 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2718 mac_soft_ring_set_t *mac_srs; 2719 flow_entry_t *flent; 2720 int i; 2721 2722 flent = mcip->mci_flent; 2723 ASSERT(flent != NULL); 2724 2725 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2726 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2727 ASSERT(mac_srs->srs_mcip == mcip); 2728 mac_srs_client_poll_disable(mcip, mac_srs); 2729 } 2730 } 2731 2732 /* 2733 * Associate the CPUs specified by the given property with a MAC client. 2734 */ 2735 int 2736 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2737 { 2738 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2739 mac_impl_t *mip = mcip->mci_mip; 2740 int err = 0; 2741 2742 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2743 2744 if ((err = mac_validate_props(mrp)) != 0) 2745 return (err); 2746 2747 if (MCIP_DATAPATH_SETUP(mcip)) 2748 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 2749 2750 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2751 return (0); 2752 } 2753 2754 /* 2755 * Apply the specified properties to the specified MAC client. 2756 */ 2757 int 2758 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2759 { 2760 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2761 mac_impl_t *mip = mcip->mci_mip; 2762 int err = 0; 2763 2764 i_mac_perim_enter(mip); 2765 2766 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 2767 err = mac_resource_ctl_set(mch, mrp); 2768 if (err != 0) { 2769 i_mac_perim_exit(mip); 2770 return (err); 2771 } 2772 } 2773 2774 if (mrp->mrp_mask & MRP_CPUS) 2775 err = mac_cpu_set(mch, mrp); 2776 2777 i_mac_perim_exit(mip); 2778 return (err); 2779 } 2780 2781 /* 2782 * Return the properties currently associated with the specified MAC client. 2783 */ 2784 void 2785 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2786 { 2787 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2788 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 2789 2790 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 2791 } 2792 2793 /* 2794 * Pass a copy of the specified packet to the promiscuous callbacks 2795 * of the specified MAC. 2796 * 2797 * If sender is NULL, the function is being invoked for a packet chain 2798 * received from the wire. If sender is non-NULL, it points to 2799 * the MAC client from which the packet is being sent. 2800 * 2801 * The packets are distributed to the promiscuous callbacks as follows: 2802 * 2803 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 2804 * - all broadcast and multicast packets are sent to the 2805 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 2806 * 2807 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 2808 * after classification by mac_rx_deliver(). 2809 */ 2810 2811 static void 2812 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 2813 boolean_t loopback) 2814 { 2815 mblk_t *mp_copy; 2816 2817 mp_copy = copymsg(mp); 2818 if (mp_copy == NULL) 2819 return; 2820 mp_copy->b_next = NULL; 2821 2822 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 2823 } 2824 2825 /* 2826 * Return the VID of a packet. Zero if the packet is not tagged. 2827 */ 2828 static uint16_t 2829 mac_ether_vid(mblk_t *mp) 2830 { 2831 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 2832 2833 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 2834 struct ether_vlan_header *t_evhp = 2835 (struct ether_vlan_header *)mp->b_rptr; 2836 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 2837 } 2838 2839 return (0); 2840 } 2841 2842 /* 2843 * Return whether the specified packet contains a multicast or broadcast 2844 * destination MAC address. 2845 */ 2846 static boolean_t 2847 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 2848 { 2849 mac_header_info_t hdr_info; 2850 2851 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 2852 return (B_FALSE); 2853 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 2854 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 2855 } 2856 2857 /* 2858 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 2859 * "sender" points to the sender MAC client for outbound packets, and 2860 * is set to NULL for inbound packets. 2861 */ 2862 void 2863 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 2864 mac_client_impl_t *sender) 2865 { 2866 mac_promisc_impl_t *mpip; 2867 mac_cb_t *mcb; 2868 mblk_t *mp; 2869 boolean_t is_mcast, is_sender; 2870 2871 MAC_PROMISC_WALKER_INC(mip); 2872 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 2873 is_mcast = mac_is_mcast(mip, mp); 2874 /* send packet to interested callbacks */ 2875 for (mcb = mip->mi_promisc_list; mcb != NULL; 2876 mcb = mcb->mcb_nextp) { 2877 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 2878 is_sender = (mpip->mpi_mcip == sender); 2879 2880 if (is_sender && mpip->mpi_no_tx_loop) 2881 /* 2882 * The sender doesn't want to receive 2883 * copies of the packets it sends. 2884 */ 2885 continue; 2886 2887 /* 2888 * For an ethernet MAC, don't displatch a multicast 2889 * packet to a non-PROMISC_ALL callbacks unless the VID 2890 * of the packet matches the VID of the client. 2891 */ 2892 if (is_mcast && 2893 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 2894 !mac_client_check_flow_vid(mpip->mpi_mcip, 2895 mac_ether_vid(mp))) 2896 continue; 2897 2898 if (is_sender || 2899 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 2900 is_mcast) 2901 mac_promisc_dispatch_one(mpip, mp, is_sender); 2902 } 2903 } 2904 MAC_PROMISC_WALKER_DCR(mip); 2905 } 2906 2907 void 2908 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 2909 { 2910 mac_impl_t *mip = mcip->mci_mip; 2911 mac_promisc_impl_t *mpip; 2912 boolean_t is_mcast; 2913 mblk_t *mp; 2914 mac_cb_t *mcb; 2915 2916 /* 2917 * The unicast packets for the MAC client still 2918 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 2919 * promiscuous callbacks. The broadcast and multicast 2920 * packets were delivered from mac_rx(). 2921 */ 2922 MAC_PROMISC_WALKER_INC(mip); 2923 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 2924 is_mcast = mac_is_mcast(mip, mp); 2925 for (mcb = mcip->mci_promisc_list; mcb != NULL; 2926 mcb = mcb->mcb_nextp) { 2927 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 2928 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 2929 !is_mcast) { 2930 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 2931 } 2932 } 2933 } 2934 MAC_PROMISC_WALKER_DCR(mip); 2935 } 2936 2937 /* 2938 * Return the margin value currently assigned to the specified MAC instance. 2939 */ 2940 void 2941 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 2942 { 2943 mac_impl_t *mip = (mac_impl_t *)mh; 2944 2945 rw_enter(&(mip->mi_rw_lock), RW_READER); 2946 *marginp = mip->mi_margin; 2947 rw_exit(&(mip->mi_rw_lock)); 2948 } 2949 2950 /* 2951 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 2952 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 2953 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 2954 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 2955 * cannot disappear while we are accessing it. 2956 */ 2957 typedef struct i_mac_info_state_s { 2958 const char *mi_name; 2959 mac_info_t *mi_infop; 2960 } i_mac_info_state_t; 2961 2962 /*ARGSUSED*/ 2963 static uint_t 2964 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2965 { 2966 i_mac_info_state_t *statep = arg; 2967 mac_impl_t *mip = (mac_impl_t *)val; 2968 2969 if (mip->mi_state_flags & MIS_DISABLED) 2970 return (MH_WALK_CONTINUE); 2971 2972 if (strcmp(statep->mi_name, 2973 ddi_driver_name(mip->mi_dip)) != 0) 2974 return (MH_WALK_CONTINUE); 2975 2976 statep->mi_infop = &mip->mi_info; 2977 return (MH_WALK_TERMINATE); 2978 } 2979 2980 boolean_t 2981 mac_info_get(const char *name, mac_info_t *minfop) 2982 { 2983 i_mac_info_state_t state; 2984 2985 rw_enter(&i_mac_impl_lock, RW_READER); 2986 state.mi_name = name; 2987 state.mi_infop = NULL; 2988 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 2989 if (state.mi_infop == NULL) { 2990 rw_exit(&i_mac_impl_lock); 2991 return (B_FALSE); 2992 } 2993 *minfop = *state.mi_infop; 2994 rw_exit(&i_mac_impl_lock); 2995 return (B_TRUE); 2996 } 2997 2998 /* 2999 * To get the capabilities that MAC layer cares about, such as rings, factory 3000 * mac address, vnic or not, it should directly invoke this function 3001 */ 3002 boolean_t 3003 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3004 { 3005 mac_impl_t *mip = (mac_impl_t *)mh; 3006 3007 if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 3008 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 3009 else 3010 return (B_FALSE); 3011 } 3012 3013 /* 3014 * Capability query function. If number of active mac clients is greater than 3015 * 1, only limited capabilities can be advertised to the caller no matter the 3016 * driver has certain capability or not. Else, we query the driver to get the 3017 * capability. 3018 */ 3019 boolean_t 3020 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3021 { 3022 mac_impl_t *mip = (mac_impl_t *)mh; 3023 3024 /* 3025 * if mi_nactiveclients > 1, only MAC_CAPAB_HCKSUM, 3026 * MAC_CAPAB_NO_NATIVEVLAN, MAC_CAPAB_NO_ZCOPY can be advertised. 3027 */ 3028 if (mip->mi_nactiveclients > 1) { 3029 switch (cap) { 3030 case MAC_CAPAB_HCKSUM: 3031 return (i_mac_capab_get(mh, cap, cap_data)); 3032 case MAC_CAPAB_NO_NATIVEVLAN: 3033 case MAC_CAPAB_NO_ZCOPY: 3034 return (B_TRUE); 3035 default: 3036 return (B_FALSE); 3037 } 3038 } 3039 3040 /* else get capab from driver */ 3041 return (i_mac_capab_get(mh, cap, cap_data)); 3042 } 3043 3044 boolean_t 3045 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 3046 { 3047 mac_impl_t *mip = (mac_impl_t *)mh; 3048 3049 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 3050 mip->mi_pdata)); 3051 } 3052 3053 mblk_t * 3054 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 3055 size_t extra_len) 3056 { 3057 mac_impl_t *mip = (mac_impl_t *)mh; 3058 3059 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap, 3060 mip->mi_pdata, payload, extra_len)); 3061 } 3062 3063 int 3064 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 3065 { 3066 mac_impl_t *mip = (mac_impl_t *)mh; 3067 3068 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 3069 mhip)); 3070 } 3071 3072 mblk_t * 3073 mac_header_cook(mac_handle_t mh, mblk_t *mp) 3074 { 3075 mac_impl_t *mip = (mac_impl_t *)mh; 3076 3077 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 3078 if (DB_REF(mp) > 1) { 3079 mblk_t *newmp = copymsg(mp); 3080 if (newmp == NULL) 3081 return (NULL); 3082 freemsg(mp); 3083 mp = newmp; 3084 } 3085 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 3086 mip->mi_pdata)); 3087 } 3088 return (mp); 3089 } 3090 3091 mblk_t * 3092 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 3093 { 3094 mac_impl_t *mip = (mac_impl_t *)mh; 3095 3096 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 3097 if (DB_REF(mp) > 1) { 3098 mblk_t *newmp = copymsg(mp); 3099 if (newmp == NULL) 3100 return (NULL); 3101 freemsg(mp); 3102 mp = newmp; 3103 } 3104 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 3105 mip->mi_pdata)); 3106 } 3107 return (mp); 3108 } 3109 3110 uint_t 3111 mac_addr_len(mac_handle_t mh) 3112 { 3113 mac_impl_t *mip = (mac_impl_t *)mh; 3114 3115 return (mip->mi_type->mt_addr_length); 3116 } 3117 3118 /* True if a MAC is a VNIC */ 3119 boolean_t 3120 mac_is_vnic(mac_handle_t mh) 3121 { 3122 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 3123 } 3124 3125 mac_handle_t 3126 mac_get_lower_mac_handle(mac_handle_t mh) 3127 { 3128 mac_impl_t *mip = (mac_impl_t *)mh; 3129 3130 ASSERT(mac_is_vnic(mh)); 3131 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 3132 } 3133 3134 void 3135 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 3136 boolean_t is_user_flow) 3137 { 3138 if (nmrp != NULL && cmrp != NULL) { 3139 if (nmrp->mrp_mask & MRP_PRIORITY) { 3140 if (nmrp->mrp_priority == MPL_RESET) { 3141 cmrp->mrp_mask &= ~MRP_PRIORITY; 3142 if (is_user_flow) { 3143 cmrp->mrp_priority = 3144 MPL_SUBFLOW_DEFAULT; 3145 } else { 3146 cmrp->mrp_priority = MPL_LINK_DEFAULT; 3147 } 3148 } else { 3149 cmrp->mrp_mask |= MRP_PRIORITY; 3150 cmrp->mrp_priority = nmrp->mrp_priority; 3151 } 3152 } 3153 if (nmrp->mrp_mask & MRP_MAXBW) { 3154 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 3155 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) 3156 cmrp->mrp_mask &= ~MRP_MAXBW; 3157 else 3158 cmrp->mrp_mask |= MRP_MAXBW; 3159 } 3160 if (nmrp->mrp_mask & MRP_CPUS) 3161 MAC_COPY_CPUS(nmrp, cmrp); 3162 } 3163 } 3164 3165 /* 3166 * i_mac_set_resources: 3167 * 3168 * This routine associates properties with the primary MAC client of 3169 * the specified MAC instance. 3170 * - Cache the properties in mac_impl_t 3171 * - Apply the properties to the primary MAC client if exists 3172 */ 3173 int 3174 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3175 { 3176 mac_impl_t *mip = (mac_impl_t *)mh; 3177 mac_client_impl_t *mcip; 3178 int err = 0; 3179 mac_resource_props_t tmrp; 3180 3181 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3182 3183 err = mac_validate_props(mrp); 3184 if (err != 0) 3185 return (err); 3186 3187 /* 3188 * Since bind_cpu may be modified by mac_client_set_resources() 3189 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 3190 * This allows us to cache only user edits in mip. 3191 */ 3192 bcopy(mrp, &tmrp, sizeof (mac_resource_props_t)); 3193 mcip = mac_primary_client_handle(mip); 3194 if (mcip != NULL) { 3195 err = 3196 mac_client_set_resources((mac_client_handle_t)mcip, &tmrp); 3197 } 3198 /* if mac_client_set_resources failed, do not update the values */ 3199 if (err == 0) 3200 mac_update_resources(mrp, &mip->mi_resource_props, B_FALSE); 3201 return (err); 3202 } 3203 3204 int 3205 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3206 { 3207 int err; 3208 3209 i_mac_perim_enter((mac_impl_t *)mh); 3210 err = i_mac_set_resources(mh, mrp); 3211 i_mac_perim_exit((mac_impl_t *)mh); 3212 return (err); 3213 } 3214 3215 /* 3216 * Get the properties cached for the specified MAC instance. 3217 */ 3218 void 3219 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3220 { 3221 mac_impl_t *mip = (mac_impl_t *)mh; 3222 mac_client_impl_t *mcip; 3223 3224 if (mip->mi_state_flags & MIS_IS_VNIC) { 3225 mcip = mac_primary_client_handle(mip); 3226 if (mcip != NULL) { 3227 mac_client_get_resources((mac_client_handle_t)mcip, 3228 mrp); 3229 return; 3230 } 3231 } 3232 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 3233 } 3234 3235 /* 3236 * Rename a mac client, its flow, and the kstat. 3237 */ 3238 int 3239 mac_rename_primary(mac_handle_t mh, const char *new_name) 3240 { 3241 mac_impl_t *mip = (mac_impl_t *)mh; 3242 mac_client_impl_t *cur_clnt = NULL; 3243 flow_entry_t *fep; 3244 3245 i_mac_perim_enter(mip); 3246 3247 /* 3248 * VNICs: we need to change the sys flow name and 3249 * the associated flow kstat. 3250 */ 3251 if (mip->mi_state_flags & MIS_IS_VNIC) { 3252 ASSERT(new_name != NULL); 3253 mac_rename_flow_names(mac_vnic_lower(mip), new_name); 3254 goto done; 3255 } 3256 /* 3257 * This mac may itself be an aggr link, or it may have some client 3258 * which is an aggr port. For both cases, we need to change the 3259 * aggr port's mac client name, its flow name and the associated flow 3260 * kstat. 3261 */ 3262 if (mip->mi_state_flags & MIS_IS_AGGR) { 3263 mac_capab_aggr_t aggr_cap; 3264 mac_rename_fn_t rename_fn; 3265 boolean_t ret; 3266 3267 ASSERT(new_name != NULL); 3268 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 3269 (void *)(&aggr_cap)); 3270 ASSERT(ret == B_TRUE); 3271 rename_fn = aggr_cap.mca_rename_fn; 3272 rename_fn(new_name, mip->mi_driver); 3273 /* 3274 * The aggr's client name and kstat flow name will be 3275 * updated below, i.e. via mac_rename_flow_names. 3276 */ 3277 } 3278 3279 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 3280 cur_clnt = cur_clnt->mci_client_next) { 3281 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 3282 if (new_name != NULL) { 3283 char *str_st = cur_clnt->mci_name; 3284 char *str_del = strchr(str_st, '-'); 3285 3286 ASSERT(str_del != NULL); 3287 bzero(str_del + 1, MAXNAMELEN - 3288 (str_del - str_st + 1)); 3289 bcopy(new_name, str_del + 1, 3290 strlen(new_name)); 3291 } 3292 fep = cur_clnt->mci_flent; 3293 mac_rename_flow(fep, cur_clnt->mci_name); 3294 break; 3295 } else if (new_name != NULL && 3296 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 3297 mac_rename_flow_names(cur_clnt, new_name); 3298 break; 3299 } 3300 } 3301 3302 done: 3303 i_mac_perim_exit(mip); 3304 return (0); 3305 } 3306 3307 /* 3308 * Rename the MAC client's flow names 3309 */ 3310 static void 3311 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 3312 { 3313 flow_entry_t *flent; 3314 uint16_t vid; 3315 char flowname[MAXFLOWNAME]; 3316 mac_impl_t *mip = mcip->mci_mip; 3317 3318 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3319 3320 /* 3321 * Use mi_rw_lock to ensure that threads not in the mac perimeter 3322 * see a self-consistent value for mci_name 3323 */ 3324 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3325 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 3326 rw_exit(&mip->mi_rw_lock); 3327 3328 mac_rename_flow(mcip->mci_flent, new_name); 3329 3330 if (mcip->mci_nflents == 1) 3331 return; 3332 3333 /* 3334 * We have to rename all the others too, no stats to destroy for 3335 * these. 3336 */ 3337 for (flent = mcip->mci_flent_list; flent != NULL; 3338 flent = flent->fe_client_next) { 3339 if (flent != mcip->mci_flent) { 3340 vid = i_mac_flow_vid(flent); 3341 (void) sprintf(flowname, "%s%u", new_name, vid); 3342 mac_flow_set_name(flent, flowname); 3343 } 3344 } 3345 } 3346 3347 3348 /* 3349 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 3350 * defined for the specified MAC client. 3351 */ 3352 static void 3353 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3354 { 3355 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3356 /* 3357 * The promisc Rx data path walks the mci_flent_list. Protect by 3358 * using mi_rw_lock 3359 */ 3360 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3361 3362 /* Add it to the head */ 3363 flent->fe_client_next = mcip->mci_flent_list; 3364 mcip->mci_flent_list = flent; 3365 mcip->mci_nflents++; 3366 3367 /* 3368 * Keep track of the number of non-zero VIDs addresses per MAC 3369 * client to avoid figuring it out in the data-path. 3370 */ 3371 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3372 mcip->mci_nvids++; 3373 3374 rw_exit(&mcip->mci_rw_lock); 3375 } 3376 3377 /* 3378 * Remove a flow entry from the MAC client's list. 3379 */ 3380 static void 3381 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3382 { 3383 flow_entry_t *fe = mcip->mci_flent_list; 3384 flow_entry_t *prev_fe = NULL; 3385 3386 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3387 /* 3388 * The promisc Rx data path walks the mci_flent_list. Protect by 3389 * using mci_rw_lock 3390 */ 3391 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3392 while ((fe != NULL) && (fe != flent)) { 3393 prev_fe = fe; 3394 fe = fe->fe_client_next; 3395 } 3396 3397 /* XXX should be an ASSERT */ 3398 if (fe != NULL) { 3399 if (prev_fe == NULL) { 3400 /* Deleting the first node */ 3401 mcip->mci_flent_list = fe->fe_client_next; 3402 } else { 3403 prev_fe->fe_client_next = fe->fe_client_next; 3404 } 3405 mcip->mci_nflents--; 3406 3407 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3408 mcip->mci_nvids--; 3409 } 3410 rw_exit(&mcip->mci_rw_lock); 3411 } 3412 3413 /* 3414 * Check if the given VID belongs to this MAC client. 3415 */ 3416 boolean_t 3417 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 3418 { 3419 flow_entry_t *flent; 3420 uint16_t mci_vid; 3421 3422 /* The mci_flent_list is protected by mci_rw_lock */ 3423 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3424 for (flent = mcip->mci_flent_list; flent != NULL; 3425 flent = flent->fe_client_next) { 3426 mci_vid = i_mac_flow_vid(flent); 3427 if (vid == mci_vid) { 3428 rw_exit(&mcip->mci_rw_lock); 3429 return (B_TRUE); 3430 } 3431 } 3432 rw_exit(&mcip->mci_rw_lock); 3433 return (B_FALSE); 3434 } 3435 3436 /* 3437 * Get the flow entry for the specified <MAC addr, VID> tuple. 3438 */ 3439 static flow_entry_t * 3440 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 3441 { 3442 mac_address_t *map = mcip->mci_unicast; 3443 flow_entry_t *flent; 3444 uint16_t vid; 3445 flow_desc_t flow_desc; 3446 3447 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3448 3449 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 3450 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 3451 return (NULL); 3452 3453 for (flent = mcip->mci_flent_list; flent != NULL; 3454 flent = flent->fe_client_next) { 3455 vid = i_mac_flow_vid(flent); 3456 if (vid == muip->mui_vid) { 3457 return (flent); 3458 } 3459 } 3460 3461 return (NULL); 3462 } 3463 3464 /* 3465 * Since mci_flent has the SRSs, when we want to remove it, we replace 3466 * the flow_desc_t in mci_flent with that of an existing flent and then 3467 * remove that flent instead of mci_flent. 3468 */ 3469 static flow_entry_t * 3470 mac_client_swap_mciflent(mac_client_impl_t *mcip) 3471 { 3472 flow_entry_t *flent = mcip->mci_flent; 3473 flow_tab_t *ft = flent->fe_flow_tab; 3474 flow_entry_t *flent1; 3475 flow_desc_t fl_desc; 3476 char fl_name[MAXFLOWNAME]; 3477 int err; 3478 3479 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3480 ASSERT(mcip->mci_nflents > 1); 3481 3482 /* get the next flent following the primary flent */ 3483 flent1 = mcip->mci_flent_list->fe_client_next; 3484 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 3485 3486 /* 3487 * Remove the flent from the flow table before updating the 3488 * flow descriptor as the hash depends on the flow descriptor. 3489 * This also helps incoming packet classification avoid having 3490 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 3491 * flow table is done under the fe_lock so that log or stat functions 3492 * see a self-consistent fe_flow_desc. The name and desc are specific 3493 * to a flow, the rest are shared by all the clients, including 3494 * resource control etc. 3495 */ 3496 mac_flow_remove(ft, flent, B_TRUE); 3497 mac_flow_remove(ft, flent1, B_TRUE); 3498 3499 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 3500 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAME); 3501 3502 /* update the primary flow entry */ 3503 mutex_enter(&flent->fe_lock); 3504 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 3505 sizeof (flow_desc_t)); 3506 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAME); 3507 mutex_exit(&flent->fe_lock); 3508 3509 /* update the flow entry that is to be freed */ 3510 mutex_enter(&flent1->fe_lock); 3511 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 3512 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAME); 3513 mutex_exit(&flent1->fe_lock); 3514 3515 /* now reinsert the flow entries in the table */ 3516 err = mac_flow_add(ft, flent); 3517 ASSERT(err == 0); 3518 3519 err = mac_flow_add(ft, flent1); 3520 ASSERT(err == 0); 3521 3522 return (flent1); 3523 } 3524 3525 /* 3526 * Return whether there is only one flow entry associated with this 3527 * MAC client. 3528 */ 3529 static boolean_t 3530 mac_client_single_rcvr(mac_client_impl_t *mcip) 3531 { 3532 return (mcip->mci_nflents == 1); 3533 } 3534 3535 int 3536 mac_validate_props(mac_resource_props_t *mrp) 3537 { 3538 if (mrp == NULL) 3539 return (0); 3540 3541 if (mrp->mrp_mask & MRP_PRIORITY) { 3542 mac_priority_level_t pri = mrp->mrp_priority; 3543 3544 if (pri < MPL_LOW || pri > MPL_RESET) 3545 return (EINVAL); 3546 } 3547 3548 if (mrp->mrp_mask & MRP_MAXBW) { 3549 uint64_t maxbw = mrp->mrp_maxbw; 3550 3551 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 3552 return (EINVAL); 3553 } 3554 if (mrp->mrp_mask & MRP_CPUS) { 3555 int i; 3556 mac_cpu_mode_t fanout; 3557 3558 if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT) 3559 return (EINVAL); 3560 3561 for (i = 0; i < mrp->mrp_ncpus; i++) { 3562 cpu_t *cp; 3563 int rv; 3564 3565 mutex_enter(&cpu_lock); 3566 cp = cpu_get(mrp->mrp_cpu[i]); 3567 if (cp != NULL) 3568 rv = cpu_is_online(cp); 3569 else 3570 rv = 0; 3571 mutex_exit(&cpu_lock); 3572 if (rv == 0) 3573 return (EINVAL); 3574 } 3575 3576 fanout = mrp->mrp_fanout_mode; 3577 if (fanout < 0 || fanout > MCM_CPUS) 3578 return (EINVAL); 3579 } 3580 return (0); 3581 } 3582 3583 /* 3584 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 3585 * underlying physical link is down. This is to allow MAC clients to 3586 * communicate with other clients. 3587 */ 3588 void 3589 mac_virtual_link_update(mac_impl_t *mip) 3590 { 3591 if (mip->mi_linkstate != LINK_STATE_UP) 3592 i_mac_notify(mip, MAC_NOTE_LINK); 3593 } 3594 3595 /* 3596 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 3597 * mac handle in the client. 3598 */ 3599 void 3600 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh) 3601 { 3602 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3603 3604 mcip->mci_upper_mip = (mac_impl_t *)mh; 3605 } 3606 3607 /* 3608 * Mark the mac as being used exclusively by the single mac client that is 3609 * doing some control operation on this mac. No further opens of this mac 3610 * will be allowed until this client calls mac_unmark_exclusive. The mac 3611 * client calling this function must already be in the mac perimeter 3612 */ 3613 int 3614 mac_mark_exclusive(mac_handle_t mh) 3615 { 3616 mac_impl_t *mip = (mac_impl_t *)mh; 3617 3618 ASSERT(MAC_PERIM_HELD(mh)); 3619 /* 3620 * Look up its entry in the global hash table. 3621 */ 3622 rw_enter(&i_mac_impl_lock, RW_WRITER); 3623 if (mip->mi_state_flags & MIS_DISABLED) { 3624 rw_exit(&i_mac_impl_lock); 3625 return (ENOENT); 3626 } 3627 3628 /* 3629 * A reference to mac is held even if the link is not plumbed. 3630 * In i_dls_link_create() we open the MAC interface and hold the 3631 * reference. There is an additional reference for the mac_open 3632 * done in acquiring the mac perimeter 3633 */ 3634 if (mip->mi_ref != 2) { 3635 rw_exit(&i_mac_impl_lock); 3636 return (EBUSY); 3637 } 3638 3639 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3640 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 3641 rw_exit(&i_mac_impl_lock); 3642 return (0); 3643 } 3644 3645 void 3646 mac_unmark_exclusive(mac_handle_t mh) 3647 { 3648 mac_impl_t *mip = (mac_impl_t *)mh; 3649 3650 ASSERT(MAC_PERIM_HELD(mh)); 3651 3652 rw_enter(&i_mac_impl_lock, RW_WRITER); 3653 /* 1 for the creation and another for the perimeter */ 3654 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3655 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 3656 rw_exit(&i_mac_impl_lock); 3657 } 3658 3659 /* 3660 * Set the MTU for the specified device. The function returns EBUSY if 3661 * another MAC client prevents the caller to become the exclusive client. 3662 * Returns EAGAIN if the client is started. 3663 */ 3664 int 3665 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 3666 { 3667 mac_impl_t *mip = (mac_impl_t *)mh; 3668 uint_t old_mtu; 3669 int rv; 3670 boolean_t exclusive = B_FALSE; 3671 3672 i_mac_perim_enter(mip); 3673 3674 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 || 3675 (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) { 3676 rv = ENOTSUP; 3677 goto bail; 3678 } 3679 3680 if ((rv = mac_mark_exclusive(mh)) != 0) 3681 goto bail; 3682 exclusive = B_TRUE; 3683 3684 if (mip->mi_active > 0) { 3685 /* 3686 * The MAC instance is started, for example due to the 3687 * presence of a promiscuous clients. Fail the operation 3688 * since the MAC's MTU cannot be changed while the NIC 3689 * is started. 3690 */ 3691 rv = EAGAIN; 3692 goto bail; 3693 } 3694 3695 mac_sdu_get(mh, NULL, &old_mtu); 3696 3697 if (old_mtu != new_mtu) { 3698 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3699 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 3700 } 3701 3702 bail: 3703 if (exclusive) 3704 mac_unmark_exclusive(mh); 3705 i_mac_perim_exit(mip); 3706 3707 if (rv == 0 && old_mtu_arg != NULL) 3708 *old_mtu_arg = old_mtu; 3709 return (rv); 3710 } 3711 3712 void 3713 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 3714 uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name) 3715 { 3716 mac_impl_t *mip = (mac_impl_t *)mh; 3717 mac_grp_client_t *mcip; 3718 uint_t i = 0, index = 0; 3719 3720 /* Revisit when we implement fully dynamic group allocation */ 3721 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 3722 3723 rw_enter(&mip->mi_rw_lock, RW_READER); 3724 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 3725 *type = mip->mi_rx_groups[grp_index].mrg_type; 3726 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 3727 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 3728 mcip = mcip->mgc_next) { 3729 int name_len = strlen(mcip->mgc_client->mci_name); 3730 3731 /* 3732 * MAXCLIENTNAMELEN is the buffer size reserved for client 3733 * names. 3734 * XXXX Formating the client name string needs to be moved 3735 * to user land when fixing the size of dhi_clnts in 3736 * dld_hwgrpinfo_t. We should use n_clients * client_name for 3737 * dhi_clntsin instead of MAXCLIENTNAMELEN 3738 */ 3739 if (index + name_len >= MAXCLIENTNAMELEN) { 3740 index = MAXCLIENTNAMELEN; 3741 break; 3742 } 3743 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 3744 name_len); 3745 index += name_len; 3746 clnts_name[index++] = ','; 3747 i++; 3748 } 3749 3750 /* Get rid of the last , */ 3751 if (index > 0) 3752 clnts_name[index - 1] = '\0'; 3753 *n_clnts = i; 3754 rw_exit(&mip->mi_rw_lock); 3755 } 3756 3757 uint_t 3758 mac_hwgrp_num(mac_handle_t mh) 3759 { 3760 mac_impl_t *mip = (mac_impl_t *)mh; 3761 3762 return (mip->mi_rx_group_count); 3763 } 3764