xref: /titanic_41/usr/src/uts/common/io/mac/mac_client.c (revision 028efd1c560953673904369fe3f2592de7103b8c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * - General Introduction:
29  *
30  * This file contains the implementation of the MAC client kernel
31  * API and related code. The MAC client API allows a kernel module
32  * to gain access to a MAC instance (physical NIC, link aggregation, etc).
33  * It allows a MAC client to associate itself with a MAC address,
34  * VLANs, callback functions for data traffic and for promiscuous mode.
35  * The MAC client API is also used to specify the properties associated
36  * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
37  * These properties are further used to determine the hardware resources
38  * to allocate to the various MAC clients.
39  *
40  * - Primary MAC clients:
41  *
42  * The MAC client API refers to "primary MAC clients". A primary MAC
43  * client is a client which "owns" the primary MAC address of
44  * the underlying MAC instance. The primary MAC address is called out
45  * since it is associated with specific semantics: the primary MAC
46  * address is the MAC address which is assigned to the IP interface
47  * when it is plumbed, and the primary MAC address is assigned
48  * to VLAN data-links. The primary address of a MAC instance can
49  * also change dynamically from under the MAC client, for example
50  * as a result of a change of state of a link aggregation. In that
51  * case the MAC layer automatically updates all data-structures which
52  * refer to the current value of the primary MAC address. Typical
53  * primary MAC clients are dls, aggr, and xnb. A typical non-primary
54  * MAC client is the vnic driver.
55  *
56  * - Virtual Switching:
57  *
58  * The MAC layer implements a virtual switch between the MAC clients
59  * (primary and non-primary) defined on top of the same underlying
60  * NIC (physical, link aggregation, etc). The virtual switch is
61  * VLAN-aware, i.e. it allows multiple MAC clients to be member
62  * of one or more VLANs, and the virtual switch will distribute
63  * multicast tagged packets only to the member of the corresponding
64  * VLANs.
65  *
66  * - Upper vs Lower MAC:
67  *
68  * Creating a VNIC on top of a MAC instance effectively causes
69  * two MAC instances to be layered on top of each other, one for
70  * the VNIC(s), one for the underlying MAC instance (physical NIC,
71  * link aggregation, etc). In the code below we refer to the
72  * underlying NIC as the "lower MAC", and we refer to VNICs as
73  * the "upper MAC".
74  *
75  * - Pass-through for VNICs:
76  *
77  * When VNICs are created on top of an underlying MAC, this causes
78  * a layering of two MAC instances. Since the lower MAC already
79  * does the switching and demultiplexing to its MAC clients, the
80  * upper MAC would simply have to pass packets to the layer below
81  * or above it, which would introduce overhead. In order to avoid
82  * this overhead, the MAC layer implements a pass-through mechanism
83  * for VNICs. When a VNIC opens the lower MAC instance, it saves
84  * the MAC client handle it optains from the MAC layer. When a MAC
85  * client opens a VNIC (upper MAC), the MAC layer detects that
86  * the MAC being opened is a VNIC, and gets the MAC client handle
87  * that the VNIC driver obtained from the lower MAC. This exchange
88  * is doing through a private capability between the MAC layer
89  * and the VNIC driver. The upper MAC then returns that handle
90  * directly to its MAC client. Any operation done by the upper
91  * MAC client is now done on the lower MAC client handle, which
92  * allows the VNIC driver to be completely bypassed for the
93  * performance sensitive data-path.
94  *
95  */
96 
97 #include <sys/types.h>
98 #include <sys/conf.h>
99 #include <sys/id_space.h>
100 #include <sys/esunddi.h>
101 #include <sys/stat.h>
102 #include <sys/mkdev.h>
103 #include <sys/stream.h>
104 #include <sys/strsun.h>
105 #include <sys/strsubr.h>
106 #include <sys/dlpi.h>
107 #include <sys/modhash.h>
108 #include <sys/mac_impl.h>
109 #include <sys/mac_client_impl.h>
110 #include <sys/mac_soft_ring.h>
111 #include <sys/dls.h>
112 #include <sys/dld.h>
113 #include <sys/modctl.h>
114 #include <sys/fs/dv_node.h>
115 #include <sys/thread.h>
116 #include <sys/proc.h>
117 #include <sys/callb.h>
118 #include <sys/cpuvar.h>
119 #include <sys/atomic.h>
120 #include <sys/sdt.h>
121 #include <sys/mac_flow.h>
122 #include <sys/ddi_intr_impl.h>
123 #include <sys/disp.h>
124 #include <sys/sdt.h>
125 #include <sys/vnic.h>
126 #include <sys/vnic_impl.h>
127 #include <sys/vlan.h>
128 #include <inet/ip.h>
129 #include <inet/ip6.h>
130 #include <sys/exacct.h>
131 #include <sys/exacct_impl.h>
132 #include <inet/nd.h>
133 #include <sys/ethernet.h>
134 
135 kmem_cache_t	*mac_client_impl_cache;
136 kmem_cache_t	*mac_promisc_impl_cache;
137 
138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
141     mac_unicast_impl_t *);
142 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
143     flow_entry_t *);
144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
145 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
146 static void mac_virtual_link_update(mac_impl_t *);
147 
148 /* ARGSUSED */
149 static int
150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
151 {
152 	int	i;
153 	mac_client_impl_t	*mcip = buf;
154 
155 	bzero(buf, MAC_CLIENT_IMPL_SIZE);
156 	mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
157 	mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
158 
159 	ASSERT(mac_tx_percpu_cnt >= 0);
160 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
161 		mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
162 		    MUTEX_DRIVER, NULL);
163 	}
164 	cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
165 
166 	return (0);
167 }
168 
169 /* ARGSUSED */
170 static void
171 i_mac_client_impl_dtor(void *buf, void *arg)
172 {
173 	int	i;
174 	mac_client_impl_t *mcip = buf;
175 
176 	ASSERT(mcip->mci_promisc_list == NULL);
177 	ASSERT(mcip->mci_unicast_list == NULL);
178 	ASSERT(mcip->mci_state_flags == 0);
179 	ASSERT(mcip->mci_tx_flag == 0);
180 
181 	mutex_destroy(&mcip->mci_tx_cb_lock);
182 
183 	ASSERT(mac_tx_percpu_cnt >= 0);
184 	for (i = 0; i <= mac_tx_percpu_cnt; i++) {
185 		ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
186 		mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
187 	}
188 	cv_destroy(&mcip->mci_tx_cv);
189 }
190 
191 /* ARGSUSED */
192 static int
193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
194 {
195 	mac_promisc_impl_t	*mpip = buf;
196 
197 	bzero(buf, sizeof (mac_promisc_impl_t));
198 	mpip->mpi_mci_link.mcb_objp = buf;
199 	mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
200 	mpip->mpi_mi_link.mcb_objp = buf;
201 	mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static void
207 i_mac_promisc_impl_dtor(void *buf, void *arg)
208 {
209 	mac_promisc_impl_t	*mpip = buf;
210 
211 	ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
212 	ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
213 	ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
214 	ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
215 
216 	mpip->mpi_mci_link.mcb_objp = NULL;
217 	mpip->mpi_mci_link.mcb_objsize = 0;
218 	mpip->mpi_mi_link.mcb_objp = NULL;
219 	mpip->mpi_mi_link.mcb_objsize = 0;
220 
221 	ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
222 	mpip->mpi_mci_link.mcb_objsize = 0;
223 }
224 
225 void
226 mac_client_init(void)
227 {
228 	ASSERT(mac_tx_percpu_cnt >= 0);
229 
230 	mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
231 	    MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
232 	    i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
233 	ASSERT(mac_client_impl_cache != NULL);
234 
235 	mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
236 	    sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
237 	    i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
238 	ASSERT(mac_promisc_impl_cache != NULL);
239 }
240 
241 void
242 mac_client_fini(void)
243 {
244 	kmem_cache_destroy(mac_client_impl_cache);
245 	kmem_cache_destroy(mac_promisc_impl_cache);
246 }
247 
248 /*
249  * Return the lower MAC client handle from the VNIC driver for the
250  * specified VNIC MAC instance.
251  */
252 mac_client_impl_t *
253 mac_vnic_lower(mac_impl_t *mip)
254 {
255 	mac_capab_vnic_t cap;
256 	mac_client_impl_t *mcip;
257 
258 	VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
259 	mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
260 
261 	return (mcip);
262 }
263 
264 /*
265  * Return the MAC client handle of the primary MAC client for the
266  * specified MAC instance, or NULL otherwise.
267  */
268 mac_client_impl_t *
269 mac_primary_client_handle(mac_impl_t *mip)
270 {
271 	mac_client_impl_t *mcip;
272 
273 	if (mip->mi_state_flags & MIS_IS_VNIC)
274 		return (mac_vnic_lower(mip));
275 
276 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
277 
278 	for (mcip = mip->mi_clients_list; mcip != NULL;
279 	    mcip = mcip->mci_client_next) {
280 		if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
281 			return (mcip);
282 	}
283 	return (NULL);
284 }
285 
286 /*
287  * Open a MAC specified by its MAC name.
288  */
289 int
290 mac_open(const char *macname, mac_handle_t *mhp)
291 {
292 	mac_impl_t	*mip;
293 	int		err;
294 
295 	/*
296 	 * Look up its entry in the global hash table.
297 	 */
298 	if ((err = mac_hold(macname, &mip)) != 0)
299 		return (err);
300 
301 	/*
302 	 * Hold the dip associated to the MAC to prevent it from being
303 	 * detached. For a softmac, its underlying dip is held by the
304 	 * mi_open() callback.
305 	 *
306 	 * This is done to be more tolerant with some defective drivers,
307 	 * which incorrectly handle mac_unregister() failure in their
308 	 * xxx_detach() routine. For example, some drivers ignore the
309 	 * failure of mac_unregister() and free all resources that
310 	 * that are needed for data transmition.
311 	 */
312 	e_ddi_hold_devi(mip->mi_dip);
313 
314 	if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
315 		*mhp = (mac_handle_t)mip;
316 		return (0);
317 	}
318 
319 	/*
320 	 * The mac perimeter is used in both mac_open and mac_close by the
321 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
322 	 */
323 	i_mac_perim_enter(mip);
324 	mip->mi_oref++;
325 	if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
326 		*mhp = (mac_handle_t)mip;
327 		i_mac_perim_exit(mip);
328 		return (0);
329 	}
330 	mip->mi_oref--;
331 	ddi_release_devi(mip->mi_dip);
332 	mac_rele(mip);
333 	i_mac_perim_exit(mip);
334 	return (err);
335 }
336 
337 /*
338  * Open a MAC specified by its linkid.
339  */
340 int
341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
342 {
343 	dls_dl_handle_t	dlh;
344 	int		err;
345 
346 	if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
347 		return (err);
348 
349 	dls_devnet_prop_task_wait(dlh);
350 
351 	err = mac_open(dls_devnet_mac(dlh), mhp);
352 
353 	dls_devnet_rele_tmp(dlh);
354 	return (err);
355 }
356 
357 /*
358  * Open a MAC specified by its link name.
359  */
360 int
361 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
362 {
363 	datalink_id_t	linkid;
364 	int		err;
365 
366 	if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
367 		return (err);
368 	return (mac_open_by_linkid(linkid, mhp));
369 }
370 
371 /*
372  * Close the specified MAC.
373  */
374 void
375 mac_close(mac_handle_t mh)
376 {
377 	mac_impl_t	*mip = (mac_impl_t *)mh;
378 
379 	i_mac_perim_enter(mip);
380 	/*
381 	 * The mac perimeter is used in both mac_open and mac_close by the
382 	 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
383 	 */
384 	if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
385 		ASSERT(mip->mi_oref != 0);
386 		if (--mip->mi_oref == 0) {
387 			if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
388 				mip->mi_close(mip->mi_driver);
389 		}
390 	}
391 	i_mac_perim_exit(mip);
392 	ddi_release_devi(mip->mi_dip);
393 	mac_rele(mip);
394 }
395 
396 /*
397  * Misc utility functions to retrieve various information about a MAC
398  * instance or a MAC client.
399  */
400 
401 const mac_info_t *
402 mac_info(mac_handle_t mh)
403 {
404 	return (&((mac_impl_t *)mh)->mi_info);
405 }
406 
407 dev_info_t *
408 mac_devinfo_get(mac_handle_t mh)
409 {
410 	return (((mac_impl_t *)mh)->mi_dip);
411 }
412 
413 void *
414 mac_driver(mac_handle_t mh)
415 {
416 	return (((mac_impl_t *)mh)->mi_driver);
417 }
418 
419 const char *
420 mac_name(mac_handle_t mh)
421 {
422 	return (((mac_impl_t *)mh)->mi_name);
423 }
424 
425 char *
426 mac_client_name(mac_client_handle_t mch)
427 {
428 	return (((mac_client_impl_t *)mch)->mci_name);
429 }
430 
431 minor_t
432 mac_minor(mac_handle_t mh)
433 {
434 	return (((mac_impl_t *)mh)->mi_minor);
435 }
436 
437 /*
438  * Return the VID associated with a MAC client. This function should
439  * be called for clients which are associated with only one VID.
440  */
441 uint16_t
442 mac_client_vid(mac_client_handle_t mch)
443 {
444 	uint16_t		vid = VLAN_ID_NONE;
445 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
446 	flow_desc_t		flow_desc;
447 
448 	if (mcip->mci_nflents == 0)
449 		return (vid);
450 
451 	ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
452 
453 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
454 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
455 		vid = flow_desc.fd_vid;
456 
457 	return (vid);
458 }
459 
460 /*
461  * Return whether the specified MAC client corresponds to a VLAN VNIC.
462  */
463 boolean_t
464 mac_client_is_vlan_vnic(mac_client_handle_t mch)
465 {
466 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
467 
468 	return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
469 	    ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
470 }
471 
472 /*
473  * Return the link speed associated with the specified MAC client.
474  *
475  * The link speed of a MAC client is equal to the smallest value of
476  * 1) the current link speed of the underlying NIC, or
477  * 2) the bandwidth limit set for the MAC client.
478  *
479  * Note that the bandwidth limit can be higher than the speed
480  * of the underlying NIC. This is allowed to avoid spurious
481  * administration action failures or artifically lowering the
482  * bandwidth limit of a link that may  have temporarily lowered
483  * its link speed due to hardware problem or administrator action.
484  */
485 static uint64_t
486 mac_client_ifspeed(mac_client_impl_t *mcip)
487 {
488 	mac_impl_t *mip = mcip->mci_mip;
489 	uint64_t nic_speed;
490 
491 	nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
492 
493 	if (nic_speed == 0) {
494 		return (0);
495 	} else {
496 		uint64_t policy_limit = (uint64_t)-1;
497 
498 		if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
499 			policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
500 
501 		return (MIN(policy_limit, nic_speed));
502 	}
503 }
504 
505 /*
506  * Return the link state of the specified client. If here are more
507  * than one clients of the underying mac_impl_t, the link state
508  * will always be UP regardless of the link state of the underlying
509  * mac_impl_t. This is needed to allow the MAC clients to continue
510  * to communicate with each other even when the physical link of
511  * their mac_impl_t is down.
512  */
513 static uint64_t
514 mac_client_link_state(mac_client_impl_t *mcip)
515 {
516 	mac_impl_t *mip = mcip->mci_mip;
517 	uint16_t vid;
518 	mac_client_impl_t *mci_list;
519 	mac_unicast_impl_t *mui_list, *oth_mui_list;
520 
521 	/*
522 	 * Returns LINK_STATE_UP if there are other MAC clients defined on
523 	 * mac_impl_t which share same VLAN ID as that of mcip. Note that
524 	 * if 'mcip' has more than one VID's then we match ANY one of the
525 	 * VID's with other MAC client's VID's and return LINK_STATE_UP.
526 	 */
527 	rw_enter(&mcip->mci_rw_lock, RW_READER);
528 	for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
529 	    mui_list = mui_list->mui_next) {
530 		vid = mui_list->mui_vid;
531 		for (mci_list = mip->mi_clients_list; mci_list != NULL;
532 		    mci_list = mci_list->mci_client_next) {
533 			if (mci_list == mcip)
534 				continue;
535 			for (oth_mui_list = mci_list->mci_unicast_list;
536 			    oth_mui_list != NULL; oth_mui_list = oth_mui_list->
537 			    mui_next) {
538 				if (vid == oth_mui_list->mui_vid) {
539 					rw_exit(&mcip->mci_rw_lock);
540 					return (LINK_STATE_UP);
541 				}
542 			}
543 		}
544 	}
545 	rw_exit(&mcip->mci_rw_lock);
546 
547 	return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
548 }
549 
550 /*
551  * Return the statistics of a MAC client. These statistics are different
552  * then the statistics of the underlying MAC which are returned by
553  * mac_stat_get().
554  */
555 uint64_t
556 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
557 {
558 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
559 	mac_impl_t *mip = mcip->mci_mip;
560 	uint64_t val;
561 
562 	switch (stat) {
563 	case MAC_STAT_LINK_STATE:
564 		val = mac_client_link_state(mcip);
565 		break;
566 	case MAC_STAT_LINK_UP:
567 		val = (mac_client_link_state(mcip) == LINK_STATE_UP);
568 		break;
569 	case MAC_STAT_PROMISC:
570 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
571 		break;
572 	case MAC_STAT_LOWLINK_STATE:
573 		val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
574 		break;
575 	case MAC_STAT_IFSPEED:
576 		val = mac_client_ifspeed(mcip);
577 		break;
578 	case MAC_STAT_MULTIRCV:
579 		val = mcip->mci_stat_multircv;
580 		break;
581 	case MAC_STAT_BRDCSTRCV:
582 		val = mcip->mci_stat_brdcstrcv;
583 		break;
584 	case MAC_STAT_MULTIXMT:
585 		val = mcip->mci_stat_multixmt;
586 		break;
587 	case MAC_STAT_BRDCSTXMT:
588 		val = mcip->mci_stat_brdcstxmt;
589 		break;
590 	case MAC_STAT_OBYTES:
591 		val = mcip->mci_stat_obytes;
592 		break;
593 	case MAC_STAT_OPACKETS:
594 		val = mcip->mci_stat_opackets;
595 		break;
596 	case MAC_STAT_OERRORS:
597 		val = mcip->mci_stat_oerrors;
598 		break;
599 	case MAC_STAT_IPACKETS:
600 		val = mcip->mci_stat_ipackets;
601 		break;
602 	case MAC_STAT_RBYTES:
603 		val = mcip->mci_stat_ibytes;
604 		break;
605 	case MAC_STAT_IERRORS:
606 		val = mcip->mci_stat_ierrors;
607 		break;
608 	default:
609 		val = mac_stat_default(mip, stat);
610 		break;
611 	}
612 
613 	return (val);
614 }
615 
616 /*
617  * Return the statistics of the specified MAC instance.
618  */
619 uint64_t
620 mac_stat_get(mac_handle_t mh, uint_t stat)
621 {
622 	mac_impl_t	*mip = (mac_impl_t *)mh;
623 	uint64_t	val;
624 	int		ret;
625 
626 	/*
627 	 * The range of stat determines where it is maintained.  Stat
628 	 * values from 0 up to (but not including) MAC_STAT_MIN are
629 	 * mainteined by the mac module itself.  Everything else is
630 	 * maintained by the driver.
631 	 *
632 	 * If the mac_impl_t being queried corresponds to a VNIC,
633 	 * the stats need to be queried from the lower MAC client
634 	 * corresponding to the VNIC. (The mac_link_update()
635 	 * invoked by the driver to the lower MAC causes the *lower
636 	 * MAC* to update its mi_linkstate, and send a notification
637 	 * to its MAC clients. Due to the VNIC passthrough,
638 	 * these notifications are sent to the upper MAC clients
639 	 * of the VNIC directly, and the upper mac_impl_t of the VNIC
640 	 * does not have a valid mi_linkstate.
641 	 */
642 	if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
643 		/* these stats are maintained by the mac module itself */
644 		switch (stat) {
645 		case MAC_STAT_LINK_STATE:
646 			return (mip->mi_linkstate);
647 		case MAC_STAT_LINK_UP:
648 			return (mip->mi_linkstate == LINK_STATE_UP);
649 		case MAC_STAT_PROMISC:
650 			return (mip->mi_devpromisc != 0);
651 		case MAC_STAT_LOWLINK_STATE:
652 			return (mip->mi_lowlinkstate);
653 		default:
654 			ASSERT(B_FALSE);
655 		}
656 	}
657 
658 	/*
659 	 * Call the driver to get the given statistic.
660 	 */
661 	ret = mip->mi_getstat(mip->mi_driver, stat, &val);
662 	if (ret != 0) {
663 		/*
664 		 * The driver doesn't support this statistic.  Get the
665 		 * statistic's default value.
666 		 */
667 		val = mac_stat_default(mip, stat);
668 	}
669 	return (val);
670 }
671 
672 /*
673  * Utility function which returns the VID associated with a flow entry.
674  */
675 uint16_t
676 i_mac_flow_vid(flow_entry_t *flent)
677 {
678 	flow_desc_t	flow_desc;
679 
680 	mac_flow_get_desc(flent, &flow_desc);
681 
682 	if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
683 		return (flow_desc.fd_vid);
684 	return (VLAN_ID_NONE);
685 }
686 
687 /*
688  * Verify the validity of the specified unicast MAC address. Returns B_TRUE
689  * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
690  * length.
691  */
692 boolean_t
693 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
694 {
695 	mac_impl_t	*mip = (mac_impl_t *)mh;
696 
697 	/*
698 	 * Verify the address. No lock is needed since mi_type and plugin
699 	 * details don't change after mac_register().
700 	 */
701 	if ((len != mip->mi_type->mt_addr_length) ||
702 	    (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
703 	    mip->mi_pdata)) != 0) {
704 		return (B_FALSE);
705 	} else {
706 		return (B_TRUE);
707 	}
708 }
709 
710 void
711 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
712 {
713 	mac_impl_t	*mip = (mac_impl_t *)mh;
714 
715 	if (min_sdu != NULL)
716 		*min_sdu = mip->mi_sdu_min;
717 	if (max_sdu != NULL)
718 		*max_sdu = mip->mi_sdu_max;
719 }
720 
721 /*
722  * Update the MAC unicast address of the specified client's flows. Currently
723  * only one unicast MAC unicast address is allowed per client.
724  */
725 static void
726 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
727 {
728 	mac_impl_t *mip = mcip->mci_mip;
729 	flow_entry_t *flent = mcip->mci_flent;
730 	mac_address_t *map = mcip->mci_unicast;
731 	flow_desc_t flow_desc;
732 
733 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
734 	ASSERT(flent != NULL);
735 
736 	mac_flow_get_desc(flent, &flow_desc);
737 	ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
738 
739 	bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
740 	mac_flow_set_desc(flent, &flow_desc);
741 
742 	/*
743 	 * A MAC client could have one MAC address but multiple
744 	 * VLANs. In that case update the flow entries corresponding
745 	 * to all VLANs of the MAC client.
746 	 */
747 	for (flent = mcip->mci_flent_list; flent != NULL;
748 	    flent = flent->fe_client_next) {
749 		mac_flow_get_desc(flent, &flow_desc);
750 		if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
751 		    flent->fe_type & FLOW_VNIC_MAC))
752 			continue;
753 
754 		bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
755 		mac_flow_set_desc(flent, &flow_desc);
756 	}
757 }
758 
759 /*
760  * Update all clients that share the same unicast address.
761  */
762 void
763 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
764 {
765 	mac_client_impl_t *mcip;
766 
767 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
768 
769 	/*
770 	 * Find all clients that share the same unicast MAC address and update
771 	 * them appropriately.
772 	 */
773 	for (mcip = mip->mi_clients_list; mcip != NULL;
774 	    mcip = mcip->mci_client_next) {
775 		/*
776 		 * Ignore clients that don't share this MAC address.
777 		 */
778 		if (map != mcip->mci_unicast)
779 			continue;
780 
781 		/*
782 		 * Update those clients with same old unicast MAC address.
783 		 */
784 		mac_unicast_update_client_flow(mcip);
785 	}
786 }
787 
788 /*
789  * Update the unicast MAC address of the specified VNIC MAC client.
790  *
791  * Check whether the operation is valid. Any of following cases should fail:
792  *
793  * 1. It's a VLAN type of VNIC.
794  * 2. The new value is current "primary" MAC address.
795  * 3. The current MAC address is shared with other clients.
796  * 4. The new MAC address has been used. This case will be valid when
797  *    client migration is fully supported.
798  */
799 int
800 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
801 {
802 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
803 	mac_impl_t *mip = mcip->mci_mip;
804 	mac_address_t *map = mcip->mci_unicast;
805 	int err;
806 
807 	ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
808 	ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
809 	ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
810 
811 	i_mac_perim_enter(mip);
812 
813 	/*
814 	 * If this is a VLAN type of VNIC, it's using "primary" MAC address
815 	 * of the underlying interface. Must fail here. Refer to case 1 above.
816 	 */
817 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
818 		i_mac_perim_exit(mip);
819 		return (ENOTSUP);
820 	}
821 
822 	/*
823 	 * If the new address is the "primary" one, must fail. Refer to
824 	 * case 2 above.
825 	 */
826 	if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
827 		i_mac_perim_exit(mip);
828 		return (EACCES);
829 	}
830 
831 	/*
832 	 * If the address is shared by multiple clients, must fail. Refer
833 	 * to case 3 above.
834 	 */
835 	if (mac_check_macaddr_shared(map)) {
836 		i_mac_perim_exit(mip);
837 		return (EBUSY);
838 	}
839 
840 	/*
841 	 * If the new address has been used, must fail for now. Refer to
842 	 * case 4 above.
843 	 */
844 	if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
845 		i_mac_perim_exit(mip);
846 		return (ENOTSUP);
847 	}
848 
849 	/*
850 	 * Update the MAC address.
851 	 */
852 	err = mac_update_macaddr(map, (uint8_t *)addr);
853 
854 	if (err != 0) {
855 		i_mac_perim_exit(mip);
856 		return (err);
857 	}
858 
859 	/*
860 	 * Update all flows of this MAC client.
861 	 */
862 	mac_unicast_update_client_flow(mcip);
863 
864 	i_mac_perim_exit(mip);
865 	return (0);
866 }
867 
868 /*
869  * Program the new primary unicast address of the specified MAC.
870  *
871  * Function mac_update_macaddr() takes care different types of underlying
872  * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
873  * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
874  * which will take care of updating the MAC address of the corresponding
875  * MAC client.
876  *
877  * This is the only interface that allow the client to update the "primary"
878  * MAC address of the underlying MAC. The new value must have not been
879  * used by other clients.
880  */
881 int
882 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
883 {
884 	mac_impl_t *mip = (mac_impl_t *)mh;
885 	mac_address_t *map;
886 	int err;
887 
888 	/* verify the address validity */
889 	if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
890 		return (EINVAL);
891 
892 	i_mac_perim_enter(mip);
893 
894 	/*
895 	 * If the new value is the same as the current primary address value,
896 	 * there's nothing to do.
897 	 */
898 	if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
899 		i_mac_perim_exit(mip);
900 		return (0);
901 	}
902 
903 	if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
904 		i_mac_perim_exit(mip);
905 		return (EBUSY);
906 	}
907 
908 	map = mac_find_macaddr(mip, mip->mi_addr);
909 	ASSERT(map != NULL);
910 
911 	/*
912 	 * Update the MAC address.
913 	 */
914 	if (mip->mi_state_flags & MIS_IS_AGGR) {
915 		mac_capab_aggr_t aggr_cap;
916 
917 		/*
918 		 * If the mac is an aggregation, other than the unicast
919 		 * addresses programming, aggr must be informed about this
920 		 * primary unicst address change to change its mac address
921 		 * policy to be user-specified.
922 		 */
923 		ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
924 		VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
925 		err = aggr_cap.mca_unicst(mip->mi_driver, addr);
926 		if (err == 0)
927 			bcopy(addr, map->ma_addr, map->ma_len);
928 	} else {
929 		err = mac_update_macaddr(map, (uint8_t *)addr);
930 	}
931 
932 	if (err != 0) {
933 		i_mac_perim_exit(mip);
934 		return (err);
935 	}
936 
937 	mac_unicast_update_clients(mip, map);
938 
939 	/*
940 	 * Save the new primary MAC address in mac_impl_t.
941 	 */
942 	bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
943 
944 	i_mac_perim_exit(mip);
945 
946 	if (err == 0)
947 		i_mac_notify(mip, MAC_NOTE_UNICST);
948 
949 	return (err);
950 }
951 
952 /*
953  * Return the current primary MAC address of the specified MAC.
954  */
955 void
956 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
957 {
958 	mac_impl_t *mip = (mac_impl_t *)mh;
959 
960 	rw_enter(&mip->mi_rw_lock, RW_READER);
961 	bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
962 	rw_exit(&mip->mi_rw_lock);
963 }
964 
965 /*
966  * Return information about the use of the primary MAC address of the
967  * specified MAC instance:
968  *
969  * - if client_name is non-NULL, it must point to a string of at
970  *   least MAXNAMELEN bytes, and will be set to the name of the MAC
971  *   client which uses the primary MAC address.
972  *
973  * - if in_use is non-NULL, used to return whether the primary MAC
974  *   address is currently in use.
975  */
976 void
977 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
978 {
979 	mac_impl_t *mip = (mac_impl_t *)mh;
980 	mac_client_impl_t *cur_client;
981 
982 	if (in_use != NULL)
983 		*in_use = B_FALSE;
984 	if (client_name != NULL)
985 		bzero(client_name, MAXNAMELEN);
986 
987 	/*
988 	 * The mi_rw_lock is used to protect threads that don't hold the
989 	 * mac perimeter to get a consistent view of the mi_clients_list.
990 	 * Threads that modify the list must hold both the mac perimeter and
991 	 * mi_rw_lock(RW_WRITER)
992 	 */
993 	rw_enter(&mip->mi_rw_lock, RW_READER);
994 	for (cur_client = mip->mi_clients_list; cur_client != NULL;
995 	    cur_client = cur_client->mci_client_next) {
996 		if (mac_is_primary_client(cur_client) ||
997 		    (mip->mi_state_flags & MIS_IS_VNIC)) {
998 			rw_exit(&mip->mi_rw_lock);
999 			if (in_use != NULL)
1000 				*in_use = B_TRUE;
1001 			if (client_name != NULL) {
1002 				bcopy(cur_client->mci_name, client_name,
1003 				    MAXNAMELEN);
1004 			}
1005 			return;
1006 		}
1007 	}
1008 	rw_exit(&mip->mi_rw_lock);
1009 }
1010 
1011 /*
1012  * Add the specified MAC client to the list of clients which opened
1013  * the specified MAC.
1014  */
1015 static void
1016 mac_client_add(mac_client_impl_t *mcip)
1017 {
1018 	mac_impl_t *mip = mcip->mci_mip;
1019 
1020 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1021 
1022 	/* add VNIC to the front of the list */
1023 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1024 	mcip->mci_client_next = mip->mi_clients_list;
1025 	mip->mi_clients_list = mcip;
1026 	mip->mi_nclients++;
1027 	rw_exit(&mip->mi_rw_lock);
1028 }
1029 
1030 /*
1031  * Remove the specified MAC client from the list of clients which opened
1032  * the specified MAC.
1033  */
1034 static void
1035 mac_client_remove(mac_client_impl_t *mcip)
1036 {
1037 	mac_impl_t *mip = mcip->mci_mip;
1038 	mac_client_impl_t **prev, *cclient;
1039 
1040 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1041 
1042 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1043 	prev = &mip->mi_clients_list;
1044 	cclient = *prev;
1045 	while (cclient != NULL && cclient != mcip) {
1046 		prev = &cclient->mci_client_next;
1047 		cclient = *prev;
1048 	}
1049 	ASSERT(cclient != NULL);
1050 	*prev = cclient->mci_client_next;
1051 	mip->mi_nclients--;
1052 	rw_exit(&mip->mi_rw_lock);
1053 }
1054 
1055 static mac_unicast_impl_t *
1056 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1057 {
1058 	mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1059 
1060 	while ((muip != NULL) && (muip->mui_vid != vid))
1061 		muip = muip->mui_next;
1062 
1063 	return (muip);
1064 }
1065 
1066 /*
1067  * Return whether the specified (MAC address, VID) tuple is already used by
1068  * one of the MAC clients associated with the specified MAC.
1069  */
1070 static boolean_t
1071 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1072 {
1073 	mac_client_impl_t *client;
1074 	mac_address_t *map;
1075 
1076 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1077 
1078 	for (client = mip->mi_clients_list; client != NULL;
1079 	    client = client->mci_client_next) {
1080 
1081 		/*
1082 		 * Ignore clients that don't have unicast address.
1083 		 */
1084 		if (client->mci_unicast_list == NULL)
1085 			continue;
1086 
1087 		map = client->mci_unicast;
1088 
1089 		if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1090 		    (mac_client_find_vid(client, vid) != NULL)) {
1091 			return (B_TRUE);
1092 		}
1093 	}
1094 
1095 	return (B_FALSE);
1096 }
1097 
1098 /*
1099  * Generate a random MAC address. The MAC address prefix is
1100  * stored in the array pointed to by mac_addr, and its length, in bytes,
1101  * is specified by prefix_len. The least significant bits
1102  * after prefix_len bytes are generated, and stored after the prefix
1103  * in the mac_addr array.
1104  */
1105 int
1106 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1107     uint8_t *mac_addr, mac_diag_t *diag)
1108 {
1109 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1110 	mac_impl_t *mip = mcip->mci_mip;
1111 	size_t addr_len = mip->mi_type->mt_addr_length;
1112 
1113 	if (prefix_len >= addr_len) {
1114 		*diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1115 		return (EINVAL);
1116 	}
1117 
1118 	/* check the prefix value */
1119 	if (prefix_len > 0) {
1120 		bzero(mac_addr + prefix_len, addr_len - prefix_len);
1121 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1122 		    addr_len)) {
1123 			*diag = MAC_DIAG_MACPREFIX_INVALID;
1124 			return (EINVAL);
1125 		}
1126 	}
1127 
1128 	/* generate the MAC address */
1129 	if (prefix_len < addr_len) {
1130 		(void) random_get_pseudo_bytes(mac_addr +
1131 		    prefix_len, addr_len - prefix_len);
1132 	}
1133 
1134 	*diag = 0;
1135 	return (0);
1136 }
1137 
1138 /*
1139  * Set the priority range for this MAC client. This will be used to
1140  * determine the absolute priority for the threads created for this
1141  * MAC client using the specified "low", "medium" and "high" level.
1142  * This will also be used for any subflows on this MAC client.
1143  */
1144 #define	MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) {			\
1145 	(mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI,	\
1146 	    MAXCLSYSPRI, (pri));					\
1147 	(mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI,	\
1148 	    MAXCLSYSPRI, (mcip)->mci_min_pri);				\
1149 	}
1150 
1151 /*
1152  * MAC client open entry point. Return a new MAC client handle. Each
1153  * MAC client is associated with a name, specified through the 'name'
1154  * argument.
1155  */
1156 int
1157 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1158     uint16_t flags)
1159 {
1160 	mac_impl_t *mip = (mac_impl_t *)mh;
1161 	mac_client_impl_t *mcip;
1162 	int err = 0;
1163 	boolean_t share_desired =
1164 	    ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0);
1165 	boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0);
1166 	boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0);
1167 	flow_entry_t	*flent = NULL;
1168 
1169 	*mchp = NULL;
1170 	if (share_desired && no_hwrings) {
1171 		/* can't have shares but no hardware rings */
1172 		return (EINVAL);
1173 	}
1174 
1175 	i_mac_perim_enter(mip);
1176 
1177 	if (mip->mi_state_flags & MIS_IS_VNIC) {
1178 		/*
1179 		 * The underlying MAC is a VNIC. Return the MAC client
1180 		 * handle of the lower MAC which was obtained by
1181 		 * the VNIC driver when it did its mac_client_open().
1182 		 */
1183 
1184 		mcip = mac_vnic_lower(mip);
1185 
1186 		/*
1187 		 * Note that multiple mac clients share the same mcip in
1188 		 * this case.
1189 		 */
1190 		if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1191 			mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1192 
1193 		if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1194 			mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1195 
1196 		mip->mi_clients_list = mcip;
1197 		i_mac_perim_exit(mip);
1198 		*mchp = (mac_client_handle_t)mcip;
1199 		return (err);
1200 	}
1201 
1202 	mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1203 
1204 	mcip->mci_mip = mip;
1205 	mcip->mci_upper_mip = NULL;
1206 	mcip->mci_rx_fn = mac_pkt_drop;
1207 	mcip->mci_rx_arg = NULL;
1208 	mcip->mci_rx_p_fn = NULL;
1209 	mcip->mci_rx_p_arg = NULL;
1210 	mcip->mci_p_unicast_list = NULL;
1211 	mcip->mci_direct_rx_fn = NULL;
1212 	mcip->mci_direct_rx_arg = NULL;
1213 
1214 	mcip->mci_unicast_list = NULL;
1215 
1216 	if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1217 		mcip->mci_state_flags |= MCIS_IS_VNIC;
1218 
1219 	if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1220 		mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1221 
1222 	if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1223 		mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1224 
1225 	if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1226 		datalink_id_t	linkid;
1227 
1228 		ASSERT(name == NULL);
1229 		if ((err = dls_devnet_macname2linkid(mip->mi_name,
1230 		    &linkid)) != 0) {
1231 			goto done;
1232 		}
1233 		if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1234 		    NULL, NULL)) != 0) {
1235 			/*
1236 			 * Use mac name if dlmgmtd is not available.
1237 			 */
1238 			if (err == EBADF) {
1239 				(void) strlcpy(mcip->mci_name, mip->mi_name,
1240 				    sizeof (mcip->mci_name));
1241 				err = 0;
1242 			} else {
1243 				goto done;
1244 			}
1245 		}
1246 		mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1247 	} else {
1248 		ASSERT(name != NULL);
1249 		if (strlen(name) > MAXNAMELEN) {
1250 			err = EINVAL;
1251 			goto done;
1252 		}
1253 		(void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1254 	}
1255 
1256 	if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1257 		mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1258 
1259 	/* the subflow table will be created dynamically */
1260 	mcip->mci_subflow_tab = NULL;
1261 	mcip->mci_stat_multircv = 0;
1262 	mcip->mci_stat_brdcstrcv = 0;
1263 	mcip->mci_stat_multixmt = 0;
1264 	mcip->mci_stat_brdcstxmt = 0;
1265 
1266 	mcip->mci_stat_obytes = 0;
1267 	mcip->mci_stat_opackets = 0;
1268 	mcip->mci_stat_oerrors = 0;
1269 	mcip->mci_stat_ibytes = 0;
1270 	mcip->mci_stat_ipackets = 0;
1271 	mcip->mci_stat_ierrors = 0;
1272 
1273 	/* Create an initial flow */
1274 
1275 	err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1276 	    mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1277 	    FLOW_PRIMARY_MAC, &flent);
1278 	if (err != 0)
1279 		goto done;
1280 	mcip->mci_flent = flent;
1281 	FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1282 	flent->fe_mcip = mcip;
1283 	/*
1284 	 * Place initial creation reference on the flow. This reference
1285 	 * is released in the corresponding delete action viz.
1286 	 * mac_unicast_remove after waiting for all transient refs to
1287 	 * to go away. The wait happens in mac_flow_wait.
1288 	 */
1289 	FLOW_REFHOLD(flent);
1290 
1291 	/*
1292 	 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1293 	 * will have the right value for mac_rx_srs_setup().
1294 	 */
1295 	mac_client_add(mcip);
1296 
1297 	if (no_hwrings)
1298 		mcip->mci_state_flags |= MCIS_NO_HWRINGS;
1299 	if (req_hwrings)
1300 		mcip->mci_state_flags |= MCIS_REQ_HWRINGS;
1301 	mcip->mci_share = NULL;
1302 	if (share_desired) {
1303 		ASSERT(!no_hwrings);
1304 		i_mac_share_alloc(mcip);
1305 	}
1306 
1307 	DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1308 	    mcip->mci_mip, mac_client_impl_t *, mcip);
1309 	*mchp = (mac_client_handle_t)mcip;
1310 
1311 	i_mac_perim_exit(mip);
1312 	return (0);
1313 
1314 done:
1315 	i_mac_perim_exit(mip);
1316 	mcip->mci_state_flags = 0;
1317 	mcip->mci_tx_flag = 0;
1318 	kmem_cache_free(mac_client_impl_cache, mcip);
1319 	return (err);
1320 }
1321 
1322 /*
1323  * Close the specified MAC client handle.
1324  */
1325 void
1326 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1327 {
1328 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1329 	mac_impl_t		*mip = mcip->mci_mip;
1330 	flow_entry_t		*flent;
1331 
1332 	i_mac_perim_enter(mip);
1333 
1334 	if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1335 		mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1336 
1337 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1338 	    !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1339 		/*
1340 		 * This is an upper VNIC client initiated operation.
1341 		 * The lower MAC client will be closed by the VNIC driver
1342 		 * when the VNIC is deleted.
1343 		 */
1344 
1345 		i_mac_perim_exit(mip);
1346 		return;
1347 	}
1348 
1349 	/*
1350 	 * Remove the flent associated with the MAC client
1351 	 */
1352 	flent = mcip->mci_flent;
1353 	mcip->mci_flent = NULL;
1354 	FLOW_FINAL_REFRELE(flent);
1355 
1356 	/*
1357 	 * MAC clients must remove the unicast addresses and promisc callbacks
1358 	 * they added before issuing a mac_client_close().
1359 	 */
1360 	ASSERT(mcip->mci_unicast_list == NULL);
1361 	ASSERT(mcip->mci_promisc_list == NULL);
1362 	ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1363 
1364 	i_mac_share_free(mcip);
1365 
1366 	mac_client_remove(mcip);
1367 
1368 	i_mac_perim_exit(mip);
1369 	mcip->mci_subflow_tab = NULL;
1370 	mcip->mci_state_flags = 0;
1371 	mcip->mci_tx_flag = 0;
1372 	kmem_cache_free(mac_client_impl_cache, mch);
1373 }
1374 
1375 /*
1376  * Enable bypass for the specified MAC client.
1377  */
1378 boolean_t
1379 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1380 {
1381 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1382 	mac_impl_t		*mip = mcip->mci_mip;
1383 
1384 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1385 
1386 	/*
1387 	 * If the mac_client is a VLAN, we should not do DLS bypass and
1388 	 * instead let the packets come up via mac_rx_deliver so the vlan
1389 	 * header can be stripped.
1390 	 */
1391 	if (mcip->mci_nvids > 0)
1392 		return (B_FALSE);
1393 
1394 	/*
1395 	 * These are not accessed directly in the data path, and hence
1396 	 * don't need any protection
1397 	 */
1398 	mcip->mci_direct_rx_fn = rx_fn;
1399 	mcip->mci_direct_rx_arg = arg1;
1400 	mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
1401 	return (B_TRUE);
1402 }
1403 
1404 /*
1405  * Set the receive callback for the specified MAC client. There can be
1406  * at most one such callback per MAC client.
1407  */
1408 void
1409 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1410 {
1411 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1412 	mac_impl_t	*mip = mcip->mci_mip;
1413 
1414 	/*
1415 	 * Instead of adding an extra set of locks and refcnts in
1416 	 * the datapath at the mac client boundary, we temporarily quiesce
1417 	 * the SRS and related entities. We then change the receive function
1418 	 * without interference from any receive data thread and then reenable
1419 	 * the data flow subsequently.
1420 	 */
1421 	i_mac_perim_enter(mip);
1422 	mac_rx_client_quiesce(mch);
1423 
1424 	mcip->mci_rx_fn = rx_fn;
1425 	mcip->mci_rx_arg = arg;
1426 	mac_rx_client_restart(mch);
1427 	i_mac_perim_exit(mip);
1428 }
1429 
1430 /*
1431  * Reset the receive callback for the specified MAC client.
1432  */
1433 void
1434 mac_rx_clear(mac_client_handle_t mch)
1435 {
1436 	mac_rx_set(mch, mac_pkt_drop, NULL);
1437 }
1438 
1439 /*
1440  * Walk the MAC client subflow table and updates their priority values.
1441  */
1442 static int
1443 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1444 {
1445 	mac_flow_update_priority(arg, flent);
1446 	return (0);
1447 }
1448 
1449 void
1450 mac_update_subflow_priority(mac_client_impl_t *mcip)
1451 {
1452 	(void) mac_flow_walk(mcip->mci_subflow_tab,
1453 	    mac_update_subflow_priority_cb, mcip);
1454 }
1455 
1456 /*
1457  * When the MAC client is being brought up (i.e. we do a unicast_add) we need
1458  * to initialize the cpu and resource control structure in the
1459  * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
1460  * properties before the flow entry for the unicast address was created).
1461  */
1462 int
1463 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
1464 {
1465 	mac_client_impl_t 	*mcip = (mac_client_impl_t *)mch;
1466 	mac_impl_t		*mip = (mac_impl_t *)mcip->mci_mip;
1467 	int			err = 0;
1468 
1469 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1470 
1471 	err = mac_validate_props(mrp);
1472 	if (err != 0)
1473 		return (err);
1474 
1475 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
1476 	if (MCIP_DATAPATH_SETUP(mcip)) {
1477 		/*
1478 		 * We have to set this prior to calling mac_flow_modify.
1479 		 */
1480 		if (mrp->mrp_mask & MRP_PRIORITY) {
1481 			if (mrp->mrp_priority == MPL_RESET) {
1482 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1483 				    MPL_LINK_DEFAULT);
1484 			} else {
1485 				MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1486 				    mrp->mrp_priority);
1487 			}
1488 		}
1489 
1490 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
1491 		if (mrp->mrp_mask & MRP_PRIORITY)
1492 			mac_update_subflow_priority(mcip);
1493 		return (0);
1494 	}
1495 	return (0);
1496 }
1497 
1498 void
1499 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp)
1500 {
1501 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1502 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
1503 
1504 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
1505 }
1506 
1507 static int
1508 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
1509     uint16_t vid, boolean_t is_primary, boolean_t first_flow,
1510     flow_entry_t **flent, mac_resource_props_t *mrp)
1511 {
1512 	mac_impl_t	*mip = (mac_impl_t *)mcip->mci_mip;
1513 	flow_desc_t	flow_desc;
1514 	char		flowname[MAXFLOWNAMELEN];
1515 	int		err;
1516 	uint_t		flent_flags;
1517 
1518 	/*
1519 	 * First unicast address being added, create a new flow
1520 	 * for that MAC client.
1521 	 */
1522 	bzero(&flow_desc, sizeof (flow_desc));
1523 
1524 	flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
1525 	bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
1526 	flow_desc.fd_mask = FLOW_LINK_DST;
1527 	if (vid != 0) {
1528 		flow_desc.fd_vid = vid;
1529 		flow_desc.fd_mask |= FLOW_LINK_VID;
1530 	}
1531 
1532 	/*
1533 	 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
1534 	 * and FLOW_VNIC. Even though they're a hack inherited
1535 	 * from the SRS code, we'll keep them for now. They're currently
1536 	 * consumed by mac_datapath_setup() to create the SRS.
1537 	 * That code should be eventually moved out of
1538 	 * mac_datapath_setup() and moved to a mac_srs_create()
1539 	 * function of some sort to keep things clean.
1540 	 *
1541 	 * Also, there's no reason why the SRS for the primary MAC
1542 	 * client should be different than any other MAC client. Until
1543 	 * this is cleaned-up, we support only one MAC unicast address
1544 	 * per client.
1545 	 *
1546 	 * We set FLOW_PRIMARY_MAC for the primary MAC address,
1547 	 * FLOW_VNIC for everything else.
1548 	 */
1549 	if (is_primary)
1550 		flent_flags = FLOW_PRIMARY_MAC;
1551 	else
1552 		flent_flags = FLOW_VNIC_MAC;
1553 
1554 	/*
1555 	 * For the first flow we use the mac client's name - mci_name, for
1556 	 * subsequent ones we just create a name with the vid. This is
1557 	 * so that we can add these flows to the same flow table. This is
1558 	 * fine as the flow name (except for the one with the mac client's
1559 	 * name) is not visible. When the first flow is removed, we just replace
1560 	 * its fdesc with another from the list, so we will still retain the
1561 	 * flent with the MAC client's flow name.
1562 	 */
1563 	if (first_flow) {
1564 		bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
1565 	} else {
1566 		(void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
1567 		flent_flags = FLOW_NO_STATS;
1568 	}
1569 
1570 	if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
1571 	    flent_flags, flent)) != 0)
1572 		return (err);
1573 
1574 	FLOW_MARK(*flent, FE_INCIPIENT);
1575 	(*flent)->fe_mcip = mcip;
1576 
1577 	/*
1578 	 * Place initial creation reference on the flow. This reference
1579 	 * is released in the corresponding delete action viz.
1580 	 * mac_unicast_remove after waiting for all transient refs to
1581 	 * to go away. The wait happens in mac_flow_wait.
1582 	 * We have already held the reference in mac_client_open().
1583 	 */
1584 	if (!first_flow)
1585 		FLOW_REFHOLD(*flent);
1586 	return (0);
1587 }
1588 
1589 /* Refresh the multicast grouping for this VID. */
1590 int
1591 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
1592 {
1593 	flow_entry_t		*flent = arg;
1594 	mac_client_impl_t	*mcip = flent->fe_mcip;
1595 	uint16_t		vid;
1596 	flow_desc_t		flow_desc;
1597 
1598 	mac_flow_get_desc(flent, &flow_desc);
1599 	vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
1600 	    flow_desc.fd_vid : VLAN_ID_NONE;
1601 
1602 	/*
1603 	 * We don't call mac_multicast_add()/mac_multicast_remove() as
1604 	 * we want to add/remove for this specific vid.
1605 	 */
1606 	if (add) {
1607 		return (mac_bcast_add(mcip, addrp, vid,
1608 		    MAC_ADDRTYPE_MULTICAST));
1609 	} else {
1610 		mac_bcast_delete(mcip, addrp, vid);
1611 		return (0);
1612 	}
1613 }
1614 
1615 static void
1616 mac_update_single_active_client(mac_impl_t *mip)
1617 {
1618 	mac_client_impl_t *client = NULL;
1619 
1620 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1621 
1622 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1623 	if (mip->mi_nactiveclients == 1) {
1624 		/*
1625 		 * Find the one active MAC client from the list of MAC
1626 		 * clients. The active MAC client has at least one
1627 		 * unicast address.
1628 		 */
1629 		for (client = mip->mi_clients_list; client != NULL;
1630 		    client = client->mci_client_next) {
1631 			if (client->mci_unicast_list != NULL)
1632 				break;
1633 		}
1634 		ASSERT(client != NULL);
1635 	}
1636 
1637 	/*
1638 	 * mi_single_active_client is protected by the MAC impl's read/writer
1639 	 * lock, which allows mac_rx() to check the value of that pointer
1640 	 * as a reader.
1641 	 */
1642 	mip->mi_single_active_client = client;
1643 	rw_exit(&mip->mi_rw_lock);
1644 }
1645 
1646 /*
1647  * Set up the data path. Called from i_mac_unicast_add after having
1648  * done all the validations including making sure this is an active
1649  * client (i.e that is ready to process packets.)
1650  */
1651 static int
1652 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
1653     uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
1654     mac_unicast_impl_t *muip)
1655 {
1656 	mac_impl_t	*mip = mcip->mci_mip;
1657 	boolean_t	mac_started = B_FALSE;
1658 	boolean_t	bcast_added = B_FALSE;
1659 	boolean_t	nactiveclients_added = B_FALSE;
1660 	flow_entry_t	*flent;
1661 	int		err = 0;
1662 
1663 	if ((err = mac_start((mac_handle_t)mip)) != 0)
1664 		goto bail;
1665 
1666 	mac_started = B_TRUE;
1667 
1668 	/* add the MAC client to the broadcast address group by default */
1669 	if (mip->mi_type->mt_brdcst_addr != NULL) {
1670 		err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
1671 		    MAC_ADDRTYPE_BROADCAST);
1672 		if (err != 0)
1673 			goto bail;
1674 		bcast_added = B_TRUE;
1675 	}
1676 
1677 	/*
1678 	 * If this is the first unicast address addition for this
1679 	 * client, reuse the pre-allocated larval flow entry associated with
1680 	 * the MAC client.
1681 	 */
1682 	flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
1683 
1684 	/* We are configuring the unicast flow now */
1685 	if (!MCIP_DATAPATH_SETUP(mcip)) {
1686 
1687 		MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
1688 		    (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
1689 		    MPL_LINK_DEFAULT);
1690 
1691 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1692 		    isprimary, B_TRUE, &flent, mrp)) != 0)
1693 			goto bail;
1694 
1695 		mip->mi_nactiveclients++;
1696 		nactiveclients_added = B_TRUE;
1697 
1698 		/*
1699 		 * This will allocate the RX ring group if possible for the
1700 		 * flow and program the software classifier as needed.
1701 		 */
1702 		if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
1703 			goto bail;
1704 
1705 		/*
1706 		 * The unicast MAC address must have been added successfully.
1707 		 */
1708 		ASSERT(mcip->mci_unicast != NULL);
1709 		/*
1710 		 * Push down the sub-flows that were defined on this link
1711 		 * hitherto. The flows are added to the active flow table
1712 		 * and SRS, softrings etc. are created as needed.
1713 		 */
1714 		mac_link_init_flows((mac_client_handle_t)mcip);
1715 	} else {
1716 		mac_address_t *map = mcip->mci_unicast;
1717 
1718 		/*
1719 		 * A unicast flow already exists for that MAC client,
1720 		 * this flow must be the same mac address but with
1721 		 * different VID. It has been checked by mac_addr_in_use().
1722 		 *
1723 		 * We will use the SRS etc. from the mci_flent. Note that
1724 		 * We don't need to create kstat for this as except for
1725 		 * the fdesc, everything will be used from in the 1st flent.
1726 		 */
1727 
1728 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
1729 			err = EINVAL;
1730 			goto bail;
1731 		}
1732 
1733 		if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
1734 		    isprimary, B_FALSE, &flent, NULL)) != 0) {
1735 			goto bail;
1736 		}
1737 		if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
1738 			FLOW_FINAL_REFRELE(flent);
1739 			goto bail;
1740 		}
1741 
1742 		/* update the multicast group for this vid */
1743 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
1744 		    (void *)flent, B_TRUE);
1745 
1746 	}
1747 
1748 	/* populate the shared MAC address */
1749 	muip->mui_map = mcip->mci_unicast;
1750 
1751 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
1752 	muip->mui_next = mcip->mci_unicast_list;
1753 	mcip->mci_unicast_list = muip;
1754 	rw_exit(&mcip->mci_rw_lock);
1755 
1756 
1757 	/*
1758 	 * First add the flent to the flow list of this mcip. Then set
1759 	 * the mip's mi_single_active_client if needed. The Rx path assumes
1760 	 * that mip->mi_single_active_client will always have an associated
1761 	 * flent.
1762 	 */
1763 	mac_client_add_to_flow_list(mcip, flent);
1764 
1765 	if (nactiveclients_added)
1766 		mac_update_single_active_client(mip);
1767 	/*
1768 	 * Trigger a renegotiation of the capabilities when the number of
1769 	 * active clients changes from 1 to 2, since some of the capabilities
1770 	 * might have to be disabled. Also send a MAC_NOTE_LINK notification
1771 	 * to all the MAC clients whenever physical link is DOWN.
1772 	 */
1773 	if (mip->mi_nactiveclients == 2) {
1774 		mac_capab_update((mac_handle_t)mip);
1775 		mac_virtual_link_update(mip);
1776 	}
1777 	/*
1778 	 * Now that the setup is complete, clear the INCIPIENT flag.
1779 	 * The flag was set to avoid incoming packets seeing inconsistent
1780 	 * structures while the setup was in progress. Clear the mci_tx_flag
1781 	 * by calling mac_tx_client_block. It is possible that
1782 	 * mac_unicast_remove was called prior to this mac_unicast_add which
1783 	 * could have set the MCI_TX_QUIESCE flag.
1784 	 */
1785 	if (flent->fe_rx_ring_group != NULL)
1786 		mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
1787 	FLOW_UNMARK(flent, FE_INCIPIENT);
1788 	FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
1789 	mac_tx_client_unblock(mcip);
1790 	return (0);
1791 bail:
1792 	if (bcast_added)
1793 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
1794 
1795 	if (nactiveclients_added)
1796 		mip->mi_nactiveclients--;
1797 
1798 	if (mac_started)
1799 		mac_stop((mac_handle_t)mip);
1800 
1801 	return (err);
1802 }
1803 
1804 /*
1805  * Return the passive primary MAC client, if present. The passive client is
1806  * a stand-by client that has the same unicast address as another that is
1807  * currenly active. Once the active client goes away, the passive client
1808  * becomes active.
1809  */
1810 static mac_client_impl_t *
1811 mac_get_passive_primary_client(mac_impl_t *mip)
1812 {
1813 	mac_client_impl_t	*mcip;
1814 
1815 	for (mcip = mip->mi_clients_list; mcip != NULL;
1816 	    mcip = mcip->mci_client_next) {
1817 		if (mac_is_primary_client(mcip) &&
1818 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
1819 			return (mcip);
1820 		}
1821 	}
1822 	return (NULL);
1823 }
1824 
1825 /*
1826  * Add a new unicast address to the MAC client.
1827  *
1828  * The MAC address can be specified either by value, or the MAC client
1829  * can specify that it wants to use the primary MAC address of the
1830  * underlying MAC. See the introductory comments at the beginning
1831  * of this file for more more information on primary MAC addresses.
1832  *
1833  * Note also the tuple (MAC address, VID) must be unique
1834  * for the MAC clients defined on top of the same underlying MAC
1835  * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
1836  *
1837  * In no case can a client use the PVID for the MAC, if the MAC has one set.
1838  */
1839 int
1840 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
1841     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
1842 {
1843 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1844 	mac_impl_t		*mip = mcip->mci_mip;
1845 	int			err;
1846 	uint_t			mac_len = mip->mi_type->mt_addr_length;
1847 	boolean_t		check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
1848 	boolean_t		fastpath_disabled = B_FALSE;
1849 	boolean_t		is_primary = (flags & MAC_UNICAST_PRIMARY);
1850 	boolean_t		is_unicast_hw = (flags & MAC_UNICAST_HW);
1851 	mac_resource_props_t	mrp;
1852 	boolean_t		passive_client = B_FALSE;
1853 	mac_unicast_impl_t	*muip;
1854 	boolean_t		is_vnic_primary =
1855 	    (flags & MAC_UNICAST_VNIC_PRIMARY);
1856 
1857 	/* when VID is non-zero, the underlying MAC can not be VNIC */
1858 	ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
1859 
1860 	/*
1861 	 * Check for an attempted use of the current Port VLAN ID, if enabled.
1862 	 * No client may use it.
1863 	 */
1864 	if (mip->mi_pvid != 0 && vid == mip->mi_pvid)
1865 		return (EBUSY);
1866 
1867 	/*
1868 	 * Check whether it's the primary client and flag it.
1869 	 */
1870 	if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
1871 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
1872 
1873 	/*
1874 	 * is_vnic_primary is true when we come here as a VLAN VNIC
1875 	 * which uses the primary mac client's address but with a non-zero
1876 	 * VID. In this case the MAC address is not specified by an upper
1877 	 * MAC client.
1878 	 */
1879 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
1880 	    !is_vnic_primary) {
1881 		/*
1882 		 * The address is being set by the upper MAC client
1883 		 * of a VNIC. The MAC address was already set by the
1884 		 * VNIC driver during VNIC creation.
1885 		 *
1886 		 * Note: a VNIC has only one MAC address. We return
1887 		 * the MAC unicast address handle of the lower MAC client
1888 		 * corresponding to the VNIC. We allocate a new entry
1889 		 * which is flagged appropriately, so that mac_unicast_remove()
1890 		 * doesn't attempt to free the original entry that
1891 		 * was allocated by the VNIC driver.
1892 		 */
1893 		ASSERT(mcip->mci_unicast != NULL);
1894 
1895 		/* Check for VLAN flags, if present */
1896 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
1897 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
1898 
1899 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
1900 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
1901 
1902 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
1903 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
1904 
1905 		/*
1906 		 * Ensure that the primary unicast address of the VNIC
1907 		 * is added only once unless we have the
1908 		 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
1909 		 * a passive MAC client).
1910 		 */
1911 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
1912 			if ((mcip->mci_flags &
1913 			    MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
1914 			    (mcip->mci_flags &
1915 			    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
1916 				return (EBUSY);
1917 			}
1918 			mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
1919 			passive_client = B_TRUE;
1920 		}
1921 
1922 		mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
1923 
1924 		/*
1925 		 * Create a handle for vid 0.
1926 		 */
1927 		ASSERT(vid == 0);
1928 		muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1929 		muip->mui_vid = vid;
1930 		*mah = (mac_unicast_handle_t)muip;
1931 		/*
1932 		 * This will be used by the caller to defer setting the
1933 		 * rx functions.
1934 		 */
1935 		if (passive_client)
1936 			return (EAGAIN);
1937 		return (0);
1938 	}
1939 
1940 	/* primary MAC clients cannot be opened on top of anchor VNICs */
1941 	if ((is_vnic_primary || is_primary) &&
1942 	    i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
1943 		return (ENXIO);
1944 	}
1945 
1946 	/*
1947 	 * If this is a VNIC/VLAN, disable softmac fast-path.
1948 	 */
1949 	if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1950 		err = mac_fastpath_disable((mac_handle_t)mip);
1951 		if (err != 0)
1952 			return (err);
1953 		fastpath_disabled = B_TRUE;
1954 	}
1955 
1956 	/*
1957 	 * Return EBUSY if:
1958 	 *  - there is an exclusively active mac client exists.
1959 	 *  - this is an exclusive active mac client but
1960 	 *	a. there is already active mac clients exist, or
1961 	 *	b. fastpath streams are already plumbed on this legacy device
1962 	 *  - the mac creator has disallowed active mac clients.
1963 	 */
1964 	if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
1965 		if (fastpath_disabled)
1966 			mac_fastpath_enable((mac_handle_t)mip);
1967 		return (EBUSY);
1968 	}
1969 
1970 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
1971 		ASSERT(!fastpath_disabled);
1972 		if (mip->mi_nactiveclients != 0)
1973 			return (EBUSY);
1974 
1975 		if ((mip->mi_state_flags & MIS_LEGACY) &&
1976 		    !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
1977 			return (EBUSY);
1978 		}
1979 		mip->mi_state_flags |= MIS_EXCLUSIVE;
1980 	}
1981 
1982 	bzero(&mrp, sizeof (mac_resource_props_t));
1983 	if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
1984 	    MCIS_IS_AGGR_PORT))) {
1985 		/*
1986 		 * Apply the property cached in the mac_impl_t to the primary
1987 		 * mac client. If the mac client is a VNIC or an aggregation
1988 		 * port, its property should be set in the mcip when the
1989 		 * VNIC/aggr was created.
1990 		 */
1991 		mac_get_resources((mac_handle_t)mip, &mrp);
1992 		(void) mac_client_set_resources(mch, &mrp);
1993 	} else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
1994 		bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp,
1995 		    sizeof (mac_resource_props_t));
1996 	}
1997 
1998 	muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
1999 	muip->mui_vid = vid;
2000 
2001 	if (is_primary || is_vnic_primary) {
2002 		mac_addr = mip->mi_addr;
2003 	} else {
2004 
2005 		/*
2006 		 * Verify the validity of the specified MAC addresses value.
2007 		 */
2008 		if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2009 			*diag = MAC_DIAG_MACADDR_INVALID;
2010 			err = EINVAL;
2011 			goto bail_out;
2012 		}
2013 
2014 		/*
2015 		 * Make sure that the specified MAC address is different
2016 		 * than the unicast MAC address of the underlying NIC.
2017 		 */
2018 		if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2019 			*diag = MAC_DIAG_MACADDR_NIC;
2020 			err = EINVAL;
2021 			goto bail_out;
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * Set the flags here so that if this is a passive client, we
2027 	 * can return  and set it when we call mac_client_datapath_setup
2028 	 * when this becomes the active client. If we defer to using these
2029 	 * flags to mac_client_datapath_setup, then for a passive client,
2030 	 * we'd have to store the flags somewhere (probably fe_flags)
2031 	 * and then use it.
2032 	 */
2033 	if (!MCIP_DATAPATH_SETUP(mcip)) {
2034 		if (is_unicast_hw) {
2035 			/*
2036 			 * The client requires a hardware MAC address slot
2037 			 * for that unicast address. Since we support only
2038 			 * one unicast MAC address per client, flag the
2039 			 * MAC client itself.
2040 			 */
2041 			mcip->mci_state_flags |= MCIS_UNICAST_HW;
2042 		}
2043 
2044 		/* Check for VLAN flags, if present */
2045 		if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2046 			mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2047 
2048 		if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2049 			mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2050 
2051 		if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2052 			mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2053 	} else {
2054 		/*
2055 		 * Assert that the specified flags are consistent with the
2056 		 * flags specified by previous calls to mac_unicast_add().
2057 		 */
2058 		ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2059 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2060 		    ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2061 		    (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2062 
2063 		ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2064 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2065 		    ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2066 		    (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2067 
2068 		ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2069 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2070 		    ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2071 		    (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2072 
2073 		/*
2074 		 * Make sure the client is consistent about its requests
2075 		 * for MAC addresses. I.e. all requests from the clients
2076 		 * must have the MAC_UNICAST_HW flag set or clear.
2077 		 */
2078 		if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2079 		    !is_unicast_hw ||
2080 		    (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2081 		    is_unicast_hw) {
2082 			err = EINVAL;
2083 			goto bail_out;
2084 		}
2085 	}
2086 	/*
2087 	 * Make sure the MAC address is not already used by
2088 	 * another MAC client defined on top of the same
2089 	 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2090 	 * set when we allow a passive client to be present which will
2091 	 * be activated when the currently active client goes away - this
2092 	 * works only with primary addresses.
2093 	 */
2094 	if ((check_dups || is_primary || is_vnic_primary) &&
2095 	    mac_addr_in_use(mip, mac_addr, vid)) {
2096 		/*
2097 		 * Must have set the multiple primary address flag when
2098 		 * we did a mac_client_open AND this should be a primary
2099 		 * MAC client AND there should not already be a passive
2100 		 * primary. If all is true then we let this succeed
2101 		 * even if the address is a dup.
2102 		 */
2103 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2104 		    (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2105 		    mac_get_passive_primary_client(mip) != NULL) {
2106 			*diag = MAC_DIAG_MACADDR_INUSE;
2107 			err = EEXIST;
2108 			goto bail_out;
2109 		}
2110 		ASSERT((mcip->mci_flags &
2111 		    MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2112 		mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2113 
2114 		/*
2115 		 * Stash the unicast address handle, we will use it when
2116 		 * we set up the passive client.
2117 		 */
2118 		mcip->mci_p_unicast_list = muip;
2119 		*mah = (mac_unicast_handle_t)muip;
2120 		return (0);
2121 	}
2122 
2123 	err = mac_client_datapath_setup(mcip, vid, mac_addr, &mrp,
2124 	    is_primary || is_vnic_primary, muip);
2125 	if (err != 0)
2126 		goto bail_out;
2127 	*mah = (mac_unicast_handle_t)muip;
2128 	return (0);
2129 
2130 bail_out:
2131 	if (fastpath_disabled)
2132 		mac_fastpath_enable((mac_handle_t)mip);
2133 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2134 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2135 		if (mip->mi_state_flags & MIS_LEGACY) {
2136 			mip->mi_capab_legacy.ml_active_clear(
2137 			    mip->mi_driver);
2138 		}
2139 	}
2140 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2141 	return (err);
2142 }
2143 
2144 /*
2145  * Wrapper function to mac_unicast_add when we want to have the same mac
2146  * client open for two instances, one that is currently active and another
2147  * that will become active when the current one is removed. In this case
2148  * mac_unicast_add will return EGAIN and we will save the rx function and
2149  * arg which will be used when we activate the passive client in
2150  * mac_unicast_remove.
2151  */
2152 int
2153 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2154     uint16_t flags, mac_unicast_handle_t *mah,  uint16_t vid, mac_diag_t *diag,
2155     mac_rx_t rx_fn, void *arg)
2156 {
2157 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2158 	uint_t			err;
2159 
2160 	err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2161 	if (err != 0 && err != EAGAIN)
2162 		return (err);
2163 	if (err == EAGAIN) {
2164 		if (rx_fn != NULL) {
2165 			mcip->mci_rx_p_fn = rx_fn;
2166 			mcip->mci_rx_p_arg = arg;
2167 		}
2168 		return (0);
2169 	}
2170 	if (rx_fn != NULL)
2171 		mac_rx_set(mch, rx_fn, arg);
2172 	return (err);
2173 }
2174 
2175 int
2176 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2177     mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2178 {
2179 	mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2180 	uint_t err;
2181 
2182 	i_mac_perim_enter(mip);
2183 	err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2184 	i_mac_perim_exit(mip);
2185 
2186 	return (err);
2187 }
2188 
2189 void
2190 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2191     flow_entry_t *flent)
2192 {
2193 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2194 	mac_impl_t		*mip = mcip->mci_mip;
2195 
2196 	/*
2197 	 * We would have initialized subflows etc. only if we brought up
2198 	 * the primary client and set the unicast unicast address etc.
2199 	 * Deactivate the flows. The flow entry will be removed from the
2200 	 * active flow tables, and the associated SRS, softrings etc will
2201 	 * be deleted. But the flow entry itself won't be destroyed, instead
2202 	 * it will continue to be archived off the  the global flow hash
2203 	 * list, for a possible future activation when say IP is plumbed
2204 	 * again.
2205 	 */
2206 	mac_link_release_flows(mch);
2207 
2208 	mip->mi_nactiveclients--;
2209 	mac_update_single_active_client(mip);
2210 
2211 	/* Tear down the data path */
2212 	mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2213 
2214 	/*
2215 	 * Prevent any future access to the flow entry through the mci_flent
2216 	 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2217 	 * mac_bcast_send is also under mi_rw_lock.
2218 	 */
2219 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
2220 	flent = mcip->mci_flent;
2221 	mac_client_remove_flow_from_list(mcip, flent);
2222 
2223 	if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2224 		mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2225 
2226 	/*
2227 	 * This is the last unicast address being removed and there shouldn't
2228 	 * be any outbound data threads at this point coming down from mac
2229 	 * clients. We have waited for the data threads to finish before
2230 	 * starting dld_str_detach. Non-data threads must access TX SRS
2231 	 * under mi_rw_lock.
2232 	 */
2233 	rw_exit(&mip->mi_rw_lock);
2234 
2235 	/*
2236 	 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2237 	 * contain other flags, such as FE_CONDEMNED, which we need to
2238 	 * cleared. We don't call mac_flow_cleanup() for this unicast
2239 	 * flow as we have a already cleaned up SRSs etc. (via the teadown
2240 	 * path). We just clear the stats and reset the initial callback
2241 	 * function, the rest will be set when we call mac_flow_create,
2242 	 * if at all.
2243 	 */
2244 	mutex_enter(&flent->fe_lock);
2245 	ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2246 	    flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2247 	flent->fe_flags = FE_MC_NO_DATAPATH;
2248 	flow_stat_destroy(flent);
2249 
2250 	/* Initialize the receiver function to a safe routine */
2251 	flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2252 	flent->fe_cb_arg1 = NULL;
2253 	flent->fe_cb_arg2 = NULL;
2254 
2255 	flent->fe_index = -1;
2256 	mutex_exit(&flent->fe_lock);
2257 
2258 	if (mip->mi_type->mt_brdcst_addr != NULL) {
2259 		mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2260 		    muip->mui_vid);
2261 	}
2262 
2263 	if (mip->mi_nactiveclients == 1) {
2264 		mac_capab_update((mac_handle_t)mip);
2265 		mac_virtual_link_update(mip);
2266 	}
2267 
2268 	if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2269 		mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2270 
2271 		if (mip->mi_state_flags & MIS_LEGACY)
2272 			mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2273 	}
2274 
2275 	mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2276 
2277 	if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2278 		mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2279 
2280 	if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2281 		mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2282 
2283 	if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2284 		mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2285 
2286 	kmem_free(muip, sizeof (mac_unicast_impl_t));
2287 
2288 	/*
2289 	 * Disable fastpath if this is a VNIC or a VLAN.
2290 	 */
2291 	if (mcip->mci_state_flags & MCIS_IS_VNIC)
2292 		mac_fastpath_enable((mac_handle_t)mip);
2293 	mac_stop((mac_handle_t)mip);
2294 }
2295 
2296 /*
2297  * Remove a MAC address which was previously added by mac_unicast_add().
2298  */
2299 int
2300 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2301 {
2302 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2303 	mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2304 	mac_unicast_impl_t *pre;
2305 	mac_impl_t *mip = mcip->mci_mip;
2306 	flow_entry_t		*flent;
2307 	boolean_t		isprimary = B_FALSE;
2308 
2309 	i_mac_perim_enter(mip);
2310 	if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2311 		/*
2312 		 * Called made by the upper MAC client of a VNIC.
2313 		 * There's nothing much to do, the unicast address will
2314 		 * be removed by the VNIC driver when the VNIC is deleted,
2315 		 * but let's ensure that all our transmit is done before
2316 		 * the client does a mac_client_stop lest it trigger an
2317 		 * assert in the driver.
2318 		 */
2319 		ASSERT(muip->mui_vid == 0);
2320 
2321 		mac_tx_client_flush(mcip);
2322 
2323 		if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2324 			mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2325 			if (mcip->mci_rx_p_fn != NULL) {
2326 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2327 				    mcip->mci_rx_p_arg);
2328 				mcip->mci_rx_p_fn = NULL;
2329 				mcip->mci_rx_p_arg = NULL;
2330 			}
2331 			kmem_free(muip, sizeof (mac_unicast_impl_t));
2332 			i_mac_perim_exit(mip);
2333 			return (0);
2334 		}
2335 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2336 
2337 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2338 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2339 
2340 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2341 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2342 
2343 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2344 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2345 
2346 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2347 		i_mac_perim_exit(mip);
2348 		return (0);
2349 	}
2350 
2351 	ASSERT(muip != NULL);
2352 
2353 	/*
2354 	 * We are removing a passive client, we haven't setup the datapath
2355 	 * for this yet, so nothing much to do.
2356 	 */
2357 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2358 
2359 		ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
2360 		ASSERT(mcip->mci_p_unicast_list == muip);
2361 
2362 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2363 
2364 		mcip->mci_p_unicast_list = NULL;
2365 		mcip->mci_rx_p_fn = NULL;
2366 		mcip->mci_rx_p_arg = NULL;
2367 
2368 		mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2369 
2370 		if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2371 			mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2372 
2373 		if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2374 			mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2375 
2376 		if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2377 			mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2378 
2379 		kmem_free(muip, sizeof (mac_unicast_impl_t));
2380 		i_mac_perim_exit(mip);
2381 		return (0);
2382 	}
2383 	/*
2384 	 * Remove the VID from the list of client's VIDs.
2385 	 */
2386 	pre = mcip->mci_unicast_list;
2387 	if (muip == pre) {
2388 		mcip->mci_unicast_list = muip->mui_next;
2389 	} else {
2390 		while ((pre->mui_next != NULL) && (pre->mui_next != muip))
2391 			pre = pre->mui_next;
2392 		ASSERT(pre->mui_next == muip);
2393 		rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2394 		pre->mui_next = muip->mui_next;
2395 		rw_exit(&mcip->mci_rw_lock);
2396 	}
2397 
2398 	if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) &&
2399 	    muip->mui_vid == 0) {
2400 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
2401 		isprimary = B_TRUE;
2402 	}
2403 	if (!mac_client_single_rcvr(mcip)) {
2404 		/*
2405 		 * This MAC client is shared by more than one unicast
2406 		 * addresses, so we will just remove the flent
2407 		 * corresponding to the address being removed. We don't invoke
2408 		 * mac_rx_classify_flow_rem() since the additional flow is
2409 		 * not associated with its own separate set of SRS and rings,
2410 		 * and these constructs are still needed for the remaining
2411 		 * flows.
2412 		 */
2413 		flent = mac_client_get_flow(mcip, muip);
2414 		ASSERT(flent != NULL);
2415 
2416 		/*
2417 		 * The first one is disappearing, need to make sure
2418 		 * we replace it with another from the list of
2419 		 * shared clients.
2420 		 */
2421 		if (flent == mcip->mci_flent)
2422 			flent = mac_client_swap_mciflent(mcip);
2423 		mac_client_remove_flow_from_list(mcip, flent);
2424 		mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
2425 		mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2426 
2427 		/*
2428 		 * The multicast groups that were added by the client so
2429 		 * far must be removed from the brodcast domain corresponding
2430 		 * to the VID being removed.
2431 		 */
2432 		mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2433 		    (void *)flent, B_FALSE);
2434 
2435 		if (mip->mi_type->mt_brdcst_addr != NULL) {
2436 			mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2437 			    muip->mui_vid);
2438 		}
2439 
2440 		FLOW_FINAL_REFRELE(flent);
2441 		ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
2442 		/*
2443 		 * Enable fastpath if this is a VNIC or a VLAN.
2444 		 */
2445 		if (mcip->mci_state_flags & MCIS_IS_VNIC)
2446 			mac_fastpath_enable((mac_handle_t)mip);
2447 		mac_stop((mac_handle_t)mip);
2448 		i_mac_perim_exit(mip);
2449 		return (0);
2450 	}
2451 
2452 	mac_client_datapath_teardown(mch, muip, flent);
2453 
2454 	/*
2455 	 * If we are removing the primary, check if we have a passive primary
2456 	 * client that we need to activate now.
2457 	 */
2458 	if (!isprimary) {
2459 		i_mac_perim_exit(mip);
2460 		return (0);
2461 	}
2462 	mcip = mac_get_passive_primary_client(mip);
2463 	if (mcip != NULL) {
2464 		mac_resource_props_t	mrp;
2465 		mac_unicast_impl_t	*muip;
2466 
2467 		mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2468 		bzero(&mrp, sizeof (mac_resource_props_t));
2469 		/*
2470 		 * Apply the property cached in the mac_impl_t to the
2471 		 * primary mac client.
2472 		 */
2473 		mac_get_resources((mac_handle_t)mip, &mrp);
2474 		(void) mac_client_set_resources(mch, &mrp);
2475 		ASSERT(mcip->mci_p_unicast_list != NULL);
2476 		muip = mcip->mci_p_unicast_list;
2477 		mcip->mci_p_unicast_list = NULL;
2478 		if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
2479 		    mip->mi_addr, &mrp, B_TRUE, muip) == 0) {
2480 			if (mcip->mci_rx_p_fn != NULL) {
2481 				mac_rx_set(mch, mcip->mci_rx_p_fn,
2482 				    mcip->mci_rx_p_arg);
2483 				mcip->mci_rx_p_fn = NULL;
2484 				mcip->mci_rx_p_arg = NULL;
2485 			}
2486 		} else {
2487 			kmem_free(muip, sizeof (mac_unicast_impl_t));
2488 		}
2489 	}
2490 	i_mac_perim_exit(mip);
2491 	return (0);
2492 }
2493 
2494 /*
2495  * Multicast add function invoked by MAC clients.
2496  */
2497 int
2498 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
2499 {
2500 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2501 	mac_impl_t		*mip = mcip->mci_mip;
2502 	flow_entry_t		*flent = mcip->mci_flent_list;
2503 	flow_entry_t		*prev_fe = NULL;
2504 	uint16_t		vid;
2505 	int			err = 0;
2506 
2507 	/* Verify the address is a valid multicast address */
2508 	if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
2509 	    mip->mi_pdata)) != 0)
2510 		return (err);
2511 
2512 	i_mac_perim_enter(mip);
2513 	while (flent != NULL) {
2514 		vid = i_mac_flow_vid(flent);
2515 
2516 		err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
2517 		    MAC_ADDRTYPE_MULTICAST);
2518 		if (err != 0)
2519 			break;
2520 		prev_fe = flent;
2521 		flent = flent->fe_client_next;
2522 	}
2523 
2524 	/*
2525 	 * If we failed adding, then undo all, rather than partial
2526 	 * success.
2527 	 */
2528 	if (flent != NULL && prev_fe != NULL) {
2529 		flent = mcip->mci_flent_list;
2530 		while (flent != prev_fe->fe_client_next) {
2531 			vid = i_mac_flow_vid(flent);
2532 			mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2533 			flent = flent->fe_client_next;
2534 		}
2535 	}
2536 	i_mac_perim_exit(mip);
2537 	return (err);
2538 }
2539 
2540 /*
2541  * Multicast delete function invoked by MAC clients.
2542  */
2543 void
2544 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
2545 {
2546 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2547 	mac_impl_t		*mip = mcip->mci_mip;
2548 	flow_entry_t		*flent;
2549 	uint16_t		vid;
2550 
2551 	i_mac_perim_enter(mip);
2552 	for (flent = mcip->mci_flent_list; flent != NULL;
2553 	    flent = flent->fe_client_next) {
2554 		vid = i_mac_flow_vid(flent);
2555 		mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
2556 	}
2557 	i_mac_perim_exit(mip);
2558 }
2559 
2560 /*
2561  * When a MAC client desires to capture packets on an interface,
2562  * it registers a promiscuous call back with mac_promisc_add().
2563  * There are three types of promiscuous callbacks:
2564  *
2565  * * MAC_CLIENT_PROMISC_ALL
2566  *   Captures all packets sent and received by the MAC client,
2567  *   the physical interface, as well as all other MAC clients
2568  *   defined on top of the same MAC.
2569  *
2570  * * MAC_CLIENT_PROMISC_FILTERED
2571  *   Captures all packets sent and received by the MAC client,
2572  *   plus all multicast traffic sent and received by the phyisical
2573  *   interface and the other MAC clients.
2574  *
2575  * * MAC_CLIENT_PROMISC_MULTI
2576  *   Captures all broadcast and multicast packets sent and
2577  *   received by the MAC clients as well as the physical interface.
2578  *
2579  * In all cases, the underlying MAC is put in promiscuous mode.
2580  */
2581 int
2582 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
2583     mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
2584 {
2585 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2586 	mac_impl_t *mip = mcip->mci_mip;
2587 	mac_promisc_impl_t *mpip;
2588 	mac_cb_info_t	*mcbi;
2589 	int rc;
2590 
2591 	i_mac_perim_enter(mip);
2592 
2593 	if ((rc = mac_start((mac_handle_t)mip)) != 0) {
2594 		i_mac_perim_exit(mip);
2595 		return (rc);
2596 	}
2597 
2598 	if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
2599 	    type == MAC_CLIENT_PROMISC_ALL) {
2600 		/*
2601 		 * The function is being invoked by the upper MAC client
2602 		 * of a VNIC. The VNIC should only see the traffic
2603 		 * it is entitled to.
2604 		 */
2605 		type = MAC_CLIENT_PROMISC_FILTERED;
2606 	}
2607 
2608 
2609 	/*
2610 	 * Turn on promiscuous mode for the underlying NIC.
2611 	 * This is needed even for filtered callbacks which
2612 	 * expect to receive all multicast traffic on the wire.
2613 	 *
2614 	 * Physical promiscuous mode should not be turned on if
2615 	 * MAC_PROMISC_FLAGS_NO_PHYS is set.
2616 	 */
2617 	if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
2618 		if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
2619 			mac_stop((mac_handle_t)mip);
2620 			i_mac_perim_exit(mip);
2621 			return (rc);
2622 		}
2623 	}
2624 
2625 	mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
2626 
2627 	mpip->mpi_type = type;
2628 	mpip->mpi_fn = fn;
2629 	mpip->mpi_arg = arg;
2630 	mpip->mpi_mcip = mcip;
2631 	mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
2632 	mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
2633 	mpip->mpi_strip_vlan_tag =
2634 	    ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
2635 
2636 	mcbi = &mip->mi_promisc_cb_info;
2637 	mutex_enter(mcbi->mcbi_lockp);
2638 
2639 	mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
2640 	    &mpip->mpi_mci_link);
2641 	mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
2642 	    &mpip->mpi_mi_link);
2643 
2644 	mutex_exit(mcbi->mcbi_lockp);
2645 
2646 	*mphp = (mac_promisc_handle_t)mpip;
2647 	i_mac_perim_exit(mip);
2648 	return (0);
2649 }
2650 
2651 /*
2652  * Remove a multicast address previously aded through mac_promisc_add().
2653  */
2654 void
2655 mac_promisc_remove(mac_promisc_handle_t mph)
2656 {
2657 	mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
2658 	mac_client_impl_t *mcip = mpip->mpi_mcip;
2659 	mac_impl_t *mip = mcip->mci_mip;
2660 	mac_cb_info_t *mcbi;
2661 	int rv;
2662 
2663 	i_mac_perim_enter(mip);
2664 
2665 	/*
2666 	 * Even if the device can't be reset into normal mode, we still
2667 	 * need to clear the client promisc callbacks. The client may want
2668 	 * to close the mac end point and we can't have stale callbacks.
2669 	 */
2670 	if (!(mpip->mpi_no_phys)) {
2671 		if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
2672 			cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
2673 			    " mode because of error 0x%x", mip->mi_name, rv);
2674 		}
2675 	}
2676 	mcbi = &mip->mi_promisc_cb_info;
2677 	mutex_enter(mcbi->mcbi_lockp);
2678 	if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
2679 	    &mpip->mpi_mi_link)) {
2680 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
2681 		    &mcip->mci_promisc_list, &mpip->mpi_mci_link));
2682 		kmem_cache_free(mac_promisc_impl_cache, mpip);
2683 	} else {
2684 		mac_callback_remove_wait(&mip->mi_promisc_cb_info);
2685 	}
2686 	mutex_exit(mcbi->mcbi_lockp);
2687 	mac_stop((mac_handle_t)mip);
2688 
2689 	i_mac_perim_exit(mip);
2690 }
2691 
2692 /*
2693  * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
2694  * that a control operation wants to quiesce the Tx data flow in which case
2695  * we return an error. Holding any of the per cpu locks ensures that the
2696  * mci_tx_flag won't change.
2697  *
2698  * 'CPU' must be accessed just once and used to compute the index into the
2699  * percpu array, and that index must be used for the entire duration of the
2700  * packet send operation. Note that the thread may be preempted and run on
2701  * another cpu any time and so we can't use 'CPU' more than once for the
2702  * operation.
2703  */
2704 #define	MAC_TX_TRY_HOLD(mcip, mytx, error)				\
2705 {									\
2706 	(error) = 0;							\
2707 	(mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
2708 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2709 	if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) {			\
2710 		(mytx)->pcpu_tx_refcnt++;				\
2711 	} else {							\
2712 		(error) = -1;						\
2713 	}								\
2714 	mutex_exit(&(mytx)->pcpu_tx_lock);				\
2715 }
2716 
2717 /*
2718  * Release the reference. If needed, signal any control operation waiting
2719  * for Tx quiescence. The wait and signal are always done using the
2720  * mci_tx_pcpu[0]'s lock
2721  */
2722 #define	MAC_TX_RELE(mcip, mytx) {					\
2723 	mutex_enter(&(mytx)->pcpu_tx_lock);				\
2724 	if (--(mytx)->pcpu_tx_refcnt == 0 &&				\
2725 	    (mcip)->mci_tx_flag & MCI_TX_QUIESCE) {			\
2726 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2727 		mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2728 		cv_signal(&(mcip)->mci_tx_cv);				\
2729 		mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock);	\
2730 	} else {							\
2731 		mutex_exit(&(mytx)->pcpu_tx_lock);			\
2732 	}								\
2733 }
2734 
2735 /*
2736  * Bump the count of the number of active Tx threads. This is maintained as
2737  * a per CPU counter. On (CMT kind of) machines with large number of CPUs,
2738  * a single mci_tx_lock may become contended. However a count of the total
2739  * number of Tx threads per client is needed in order to quiesce the Tx side
2740  * prior to reassigning a Tx ring dynamically to another client. The thread
2741  * that needs to quiesce the Tx traffic grabs all the percpu locks and checks
2742  * the sum of the individual percpu refcnts. Each Tx data thread only grabs
2743  * its own percpu lock and increments its own refcnt.
2744  */
2745 void *
2746 mac_tx_hold(mac_client_handle_t mch)
2747 {
2748 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2749 	mac_tx_percpu_t	*mytx;
2750 	int error;
2751 
2752 	MAC_TX_TRY_HOLD(mcip, mytx, error);
2753 	return (error == 0 ? (void *)mytx : NULL);
2754 }
2755 
2756 void
2757 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle)
2758 {
2759 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2760 	mac_tx_percpu_t	*mytx = mytx_handle;
2761 
2762 	MAC_TX_RELE(mcip, mytx)
2763 }
2764 
2765 /*
2766  * Send function invoked by MAC clients.
2767  */
2768 mac_tx_cookie_t
2769 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
2770     uint16_t flag, mblk_t **ret_mp)
2771 {
2772 	mac_tx_cookie_t		cookie;
2773 	int			error;
2774 	mac_tx_percpu_t		*mytx;
2775 	mac_soft_ring_set_t	*srs;
2776 	flow_entry_t		*flent;
2777 	boolean_t		is_subflow = B_FALSE;
2778 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
2779 	mac_impl_t		*mip = mcip->mci_mip;
2780 	mac_srs_tx_t		*srs_tx;
2781 
2782 	/*
2783 	 * Check whether the active Tx threads count is bumped already.
2784 	 */
2785 	if (!(flag & MAC_TX_NO_HOLD)) {
2786 		MAC_TX_TRY_HOLD(mcip, mytx, error);
2787 		if (error != 0) {
2788 			freemsgchain(mp_chain);
2789 			return (NULL);
2790 		}
2791 	}
2792 
2793 	if (mcip->mci_subflow_tab != NULL &&
2794 	    mcip->mci_subflow_tab->ft_flow_count > 0 &&
2795 	    mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
2796 	    FLOW_OUTBOUND, &flent) == 0) {
2797 		/*
2798 		 * The main assumption here is that if in the event
2799 		 * we get a chain, all the packets will be classified
2800 		 * to the same Flow/SRS. If this changes for any
2801 		 * reason, the following logic should change as well.
2802 		 * I suppose the fanout_hint also assumes this .
2803 		 */
2804 		ASSERT(flent != NULL);
2805 		is_subflow = B_TRUE;
2806 	} else {
2807 		flent = mcip->mci_flent;
2808 	}
2809 
2810 	srs = flent->fe_tx_srs;
2811 	srs_tx = &srs->srs_tx;
2812 	if (srs_tx->st_mode == SRS_TX_DEFAULT &&
2813 	    (srs->srs_state & SRS_ENQUEUED) == 0 &&
2814 	    mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL &&
2815 	    mp_chain->b_next == NULL) {
2816 		uint64_t	obytes;
2817 
2818 		/*
2819 		 * Since dls always opens the underlying MAC, nclients equals
2820 		 * to 1 means that the only active client is dls itself acting
2821 		 * as a primary client of the MAC instance. Since dls will not
2822 		 * send tagged packets in that case, and dls is trusted to send
2823 		 * packets for its allowed VLAN(s), the VLAN tag insertion and
2824 		 * check is required only if nclients is greater than 1.
2825 		 */
2826 		if (mip->mi_nclients > 1) {
2827 			if (MAC_VID_CHECK_NEEDED(mcip)) {
2828 				int	err = 0;
2829 
2830 				MAC_VID_CHECK(mcip, mp_chain, err);
2831 				if (err != 0) {
2832 					freemsg(mp_chain);
2833 					mcip->mci_stat_oerrors++;
2834 					goto done;
2835 				}
2836 			}
2837 			if (MAC_TAG_NEEDED(mcip)) {
2838 				mp_chain = mac_add_vlan_tag(mp_chain, 0,
2839 				    mac_client_vid(mch));
2840 				if (mp_chain == NULL) {
2841 					mcip->mci_stat_oerrors++;
2842 					goto done;
2843 				}
2844 			}
2845 		}
2846 
2847 		obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
2848 		    msgdsize(mp_chain));
2849 
2850 		MAC_TX(mip, srs_tx->st_arg2, mp_chain,
2851 		    ((mcip->mci_state_flags & MCIS_SHARE_BOUND) != 0));
2852 
2853 		if (mp_chain == NULL) {
2854 			cookie = NULL;
2855 			mcip->mci_stat_obytes += obytes;
2856 			mcip->mci_stat_opackets += 1;
2857 			if ((srs->srs_type & SRST_FLOW) != 0) {
2858 				FLOW_STAT_UPDATE(flent, obytes, obytes);
2859 				FLOW_STAT_UPDATE(flent, opackets, 1);
2860 			}
2861 		} else {
2862 			mutex_enter(&srs->srs_lock);
2863 			cookie = mac_tx_srs_no_desc(srs, mp_chain,
2864 			    flag, ret_mp);
2865 			mutex_exit(&srs->srs_lock);
2866 		}
2867 	} else {
2868 		cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
2869 	}
2870 
2871 done:
2872 	if (is_subflow)
2873 		FLOW_REFRELE(flent);
2874 
2875 	if (!(flag & MAC_TX_NO_HOLD))
2876 		MAC_TX_RELE(mcip, mytx);
2877 
2878 	return (cookie);
2879 }
2880 
2881 /*
2882  * mac_tx_is_blocked
2883  *
2884  * Given a cookie, it returns if the ring identified by the cookie is
2885  * flow-controlled or not. If NULL is passed in place of a cookie,
2886  * then it finds out if any of the underlying rings belonging to the
2887  * SRS is flow controlled or not and returns that status.
2888  */
2889 /* ARGSUSED */
2890 boolean_t
2891 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
2892 {
2893 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2894 	mac_soft_ring_set_t *mac_srs;
2895 	mac_soft_ring_t *sringp;
2896 	boolean_t blocked = B_FALSE;
2897 	mac_tx_percpu_t *mytx;
2898 	int err;
2899 	int i;
2900 
2901 	/*
2902 	 * Bump the reference count so that mac_srs won't be deleted.
2903 	 * If the client is currently quiesced and we failed to bump
2904 	 * the reference, return B_TRUE so that flow control stays
2905 	 * as enabled.
2906 	 *
2907 	 * Flow control will then be disabled once the client is no
2908 	 * longer quiesced.
2909 	 */
2910 	MAC_TX_TRY_HOLD(mcip, mytx, err);
2911 	if (err != 0)
2912 		return (B_TRUE);
2913 
2914 	if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
2915 		MAC_TX_RELE(mcip, mytx);
2916 		return (B_FALSE);
2917 	}
2918 
2919 	mutex_enter(&mac_srs->srs_lock);
2920 	if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) {
2921 		if (cookie != NULL) {
2922 			sringp = (mac_soft_ring_t *)cookie;
2923 			mutex_enter(&sringp->s_ring_lock);
2924 			if (sringp->s_ring_state & S_RING_TX_HIWAT)
2925 				blocked = B_TRUE;
2926 			mutex_exit(&sringp->s_ring_lock);
2927 		} else {
2928 			for (i = 0; i < mac_srs->srs_oth_ring_count; i++) {
2929 				sringp = mac_srs->srs_oth_soft_rings[i];
2930 				mutex_enter(&sringp->s_ring_lock);
2931 				if (sringp->s_ring_state & S_RING_TX_HIWAT) {
2932 					blocked = B_TRUE;
2933 					mutex_exit(&sringp->s_ring_lock);
2934 					break;
2935 				}
2936 				mutex_exit(&sringp->s_ring_lock);
2937 			}
2938 		}
2939 	} else {
2940 		blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
2941 	}
2942 	mutex_exit(&mac_srs->srs_lock);
2943 	MAC_TX_RELE(mcip, mytx);
2944 	return (blocked);
2945 }
2946 
2947 /*
2948  * Check if the MAC client is the primary MAC client.
2949  */
2950 boolean_t
2951 mac_is_primary_client(mac_client_impl_t *mcip)
2952 {
2953 	return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
2954 }
2955 
2956 void
2957 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
2958 {
2959 	mac_impl_t	*mip = (mac_impl_t *)mh;
2960 	int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
2961 
2962 	if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
2963 	    (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
2964 		/*
2965 		 * If ndd props were registered, call them.
2966 		 * Note that ndd ioctls are Obsolete
2967 		 */
2968 		mac_ndd_ioctl(mip, wq, bp);
2969 		return;
2970 	}
2971 
2972 	/*
2973 	 * Call the driver to handle the ioctl.  The driver may not support
2974 	 * any ioctls, in which case we reply with a NAK on its behalf.
2975 	 */
2976 	if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
2977 		mip->mi_ioctl(mip->mi_driver, wq, bp);
2978 	else
2979 		miocnak(wq, bp, 0, EINVAL);
2980 }
2981 
2982 /*
2983  * Return the link state of the specified MAC instance.
2984  */
2985 link_state_t
2986 mac_link_get(mac_handle_t mh)
2987 {
2988 	return (((mac_impl_t *)mh)->mi_linkstate);
2989 }
2990 
2991 /*
2992  * Add a mac client specified notification callback. Please see the comments
2993  * above mac_callback_add() for general information about mac callback
2994  * addition/deletion in the presence of mac callback list walkers
2995  */
2996 mac_notify_handle_t
2997 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
2998 {
2999 	mac_impl_t		*mip = (mac_impl_t *)mh;
3000 	mac_notify_cb_t		*mncb;
3001 	mac_cb_info_t		*mcbi;
3002 
3003 	/*
3004 	 * Allocate a notify callback structure, fill in the details and
3005 	 * use the mac callback list manipulation functions to chain into
3006 	 * the list of callbacks.
3007 	 */
3008 	mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3009 	mncb->mncb_fn = notify_fn;
3010 	mncb->mncb_arg = arg;
3011 	mncb->mncb_mip = mip;
3012 	mncb->mncb_link.mcb_objp = mncb;
3013 	mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3014 	mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3015 
3016 	mcbi = &mip->mi_notify_cb_info;
3017 
3018 	i_mac_perim_enter(mip);
3019 	mutex_enter(mcbi->mcbi_lockp);
3020 
3021 	mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3022 	    &mncb->mncb_link);
3023 
3024 	mutex_exit(mcbi->mcbi_lockp);
3025 	i_mac_perim_exit(mip);
3026 	return ((mac_notify_handle_t)mncb);
3027 }
3028 
3029 void
3030 mac_notify_remove_wait(mac_handle_t mh)
3031 {
3032 	mac_impl_t	*mip = (mac_impl_t *)mh;
3033 	mac_cb_info_t	*mcbi = &mip->mi_notify_cb_info;
3034 
3035 	mutex_enter(mcbi->mcbi_lockp);
3036 	mac_callback_remove_wait(&mip->mi_notify_cb_info);
3037 	mutex_exit(mcbi->mcbi_lockp);
3038 }
3039 
3040 /*
3041  * Remove a mac client specified notification callback
3042  */
3043 int
3044 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3045 {
3046 	mac_notify_cb_t	*mncb = (mac_notify_cb_t *)mnh;
3047 	mac_impl_t	*mip = mncb->mncb_mip;
3048 	mac_cb_info_t	*mcbi;
3049 	int		err = 0;
3050 
3051 	mcbi = &mip->mi_notify_cb_info;
3052 
3053 	i_mac_perim_enter(mip);
3054 	mutex_enter(mcbi->mcbi_lockp);
3055 
3056 	ASSERT(mncb->mncb_link.mcb_objp == mncb);
3057 	/*
3058 	 * If there aren't any list walkers, the remove would succeed
3059 	 * inline, else we wait for the deferred remove to complete
3060 	 */
3061 	if (mac_callback_remove(&mip->mi_notify_cb_info,
3062 	    &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3063 		kmem_free(mncb, sizeof (mac_notify_cb_t));
3064 	} else {
3065 		err = EBUSY;
3066 	}
3067 
3068 	mutex_exit(mcbi->mcbi_lockp);
3069 	i_mac_perim_exit(mip);
3070 
3071 	/*
3072 	 * If we failed to remove the notification callback and "wait" is set
3073 	 * to be B_TRUE, wait for the callback to finish after we exit the
3074 	 * mac perimeter.
3075 	 */
3076 	if (err != 0 && wait) {
3077 		mac_notify_remove_wait((mac_handle_t)mip);
3078 		return (0);
3079 	}
3080 
3081 	return (err);
3082 }
3083 
3084 /*
3085  * Associate resource management callbacks with the specified MAC
3086  * clients.
3087  */
3088 
3089 void
3090 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3091     mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3092     mac_resource_restart_t restart, mac_resource_bind_t bind,
3093     void *arg)
3094 {
3095 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3096 
3097 	mcip->mci_resource_add = add;
3098 	mcip->mci_resource_remove = remove;
3099 	mcip->mci_resource_quiesce = quiesce;
3100 	mcip->mci_resource_restart = restart;
3101 	mcip->mci_resource_bind = bind;
3102 	mcip->mci_resource_arg = arg;
3103 
3104 	if (arg == NULL)
3105 		mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3106 }
3107 
3108 void
3109 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3110 {
3111 	/* update the 'resource_add' callback */
3112 	mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3113 }
3114 
3115 /*
3116  * Sets up the client resources and enable the polling interface over all the
3117  * SRS's and the soft rings of the client
3118  */
3119 void
3120 mac_client_poll_enable(mac_client_handle_t mch)
3121 {
3122 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3123 	mac_soft_ring_set_t	*mac_srs;
3124 	flow_entry_t		*flent;
3125 	int			i;
3126 
3127 	flent = mcip->mci_flent;
3128 	ASSERT(flent != NULL);
3129 
3130 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3131 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3132 		ASSERT(mac_srs->srs_mcip == mcip);
3133 		mac_srs_client_poll_enable(mcip, mac_srs);
3134 	}
3135 }
3136 
3137 /*
3138  * Tears down the client resources and disable the polling interface over all
3139  * the SRS's and the soft rings of the client
3140  */
3141 void
3142 mac_client_poll_disable(mac_client_handle_t mch)
3143 {
3144 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3145 	mac_soft_ring_set_t	*mac_srs;
3146 	flow_entry_t		*flent;
3147 	int			i;
3148 
3149 	flent = mcip->mci_flent;
3150 	ASSERT(flent != NULL);
3151 
3152 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3153 		mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3154 		ASSERT(mac_srs->srs_mcip == mcip);
3155 		mac_srs_client_poll_disable(mcip, mac_srs);
3156 	}
3157 }
3158 
3159 /*
3160  * Associate the CPUs specified by the given property with a MAC client.
3161  */
3162 int
3163 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3164 {
3165 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3166 	mac_impl_t *mip = mcip->mci_mip;
3167 	int err = 0;
3168 
3169 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3170 
3171 	if ((err = mac_validate_props(mrp)) != 0)
3172 		return (err);
3173 
3174 	if (MCIP_DATAPATH_SETUP(mcip))
3175 		mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3176 
3177 	mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3178 	return (0);
3179 }
3180 
3181 /*
3182  * Apply the specified properties to the specified MAC client.
3183  */
3184 int
3185 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3186 {
3187 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3188 	mac_impl_t *mip = mcip->mci_mip;
3189 	int err = 0;
3190 
3191 	i_mac_perim_enter(mip);
3192 
3193 	if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3194 		err = mac_resource_ctl_set(mch, mrp);
3195 		if (err != 0) {
3196 			i_mac_perim_exit(mip);
3197 			return (err);
3198 		}
3199 	}
3200 
3201 	if (mrp->mrp_mask & MRP_CPUS)
3202 		err = mac_cpu_set(mch, mrp);
3203 
3204 	i_mac_perim_exit(mip);
3205 	return (err);
3206 }
3207 
3208 /*
3209  * Return the properties currently associated with the specified MAC client.
3210  */
3211 void
3212 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3213 {
3214 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
3215 	mac_resource_props_t	*mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3216 
3217 	bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3218 }
3219 
3220 /*
3221  * Pass a copy of the specified packet to the promiscuous callbacks
3222  * of the specified MAC.
3223  *
3224  * If sender is NULL, the function is being invoked for a packet chain
3225  * received from the wire. If sender is non-NULL, it points to
3226  * the MAC client from which the packet is being sent.
3227  *
3228  * The packets are distributed to the promiscuous callbacks as follows:
3229  *
3230  * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3231  * - all broadcast and multicast packets are sent to the
3232  *   MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3233  *
3234  * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3235  * after classification by mac_rx_deliver().
3236  */
3237 
3238 static void
3239 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3240     boolean_t loopback)
3241 {
3242 	mblk_t *mp_copy;
3243 
3244 	mp_copy = copymsg(mp);
3245 	if (mp_copy == NULL)
3246 		return;
3247 	mp_copy->b_next = NULL;
3248 
3249 	if (mpip->mpi_strip_vlan_tag) {
3250 		if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL)
3251 			return;
3252 	}
3253 	mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
3254 }
3255 
3256 /*
3257  * Return the VID of a packet. Zero if the packet is not tagged.
3258  */
3259 static uint16_t
3260 mac_ether_vid(mblk_t *mp)
3261 {
3262 	struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3263 
3264 	if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3265 		struct ether_vlan_header *t_evhp =
3266 		    (struct ether_vlan_header *)mp->b_rptr;
3267 		return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3268 	}
3269 
3270 	return (0);
3271 }
3272 
3273 /*
3274  * Return whether the specified packet contains a multicast or broadcast
3275  * destination MAC address.
3276  */
3277 static boolean_t
3278 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3279 {
3280 	mac_header_info_t hdr_info;
3281 
3282 	if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
3283 		return (B_FALSE);
3284 	return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
3285 	    (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
3286 }
3287 
3288 /*
3289  * Send a copy of an mblk chain to the MAC clients of the specified MAC.
3290  * "sender" points to the sender MAC client for outbound packets, and
3291  * is set to NULL for inbound packets.
3292  */
3293 void
3294 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
3295     mac_client_impl_t *sender)
3296 {
3297 	mac_promisc_impl_t *mpip;
3298 	mac_cb_t *mcb;
3299 	mblk_t *mp;
3300 	boolean_t is_mcast, is_sender;
3301 
3302 	MAC_PROMISC_WALKER_INC(mip);
3303 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3304 		is_mcast = mac_is_mcast(mip, mp);
3305 		/* send packet to interested callbacks */
3306 		for (mcb = mip->mi_promisc_list; mcb != NULL;
3307 		    mcb = mcb->mcb_nextp) {
3308 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3309 			is_sender = (mpip->mpi_mcip == sender);
3310 
3311 			if (is_sender && mpip->mpi_no_tx_loop)
3312 				/*
3313 				 * The sender doesn't want to receive
3314 				 * copies of the packets it sends.
3315 				 */
3316 				continue;
3317 
3318 			/* this client doesn't need any packets (bridge) */
3319 			if (mpip->mpi_fn == NULL)
3320 				continue;
3321 
3322 			/*
3323 			 * For an ethernet MAC, don't displatch a multicast
3324 			 * packet to a non-PROMISC_ALL callbacks unless the VID
3325 			 * of the packet matches the VID of the client.
3326 			 */
3327 			if (is_mcast &&
3328 			    mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
3329 			    !mac_client_check_flow_vid(mpip->mpi_mcip,
3330 			    mac_ether_vid(mp)))
3331 				continue;
3332 
3333 			if (is_sender ||
3334 			    mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
3335 			    is_mcast)
3336 				mac_promisc_dispatch_one(mpip, mp, is_sender);
3337 		}
3338 	}
3339 	MAC_PROMISC_WALKER_DCR(mip);
3340 }
3341 
3342 void
3343 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
3344 {
3345 	mac_impl_t		*mip = mcip->mci_mip;
3346 	mac_promisc_impl_t	*mpip;
3347 	boolean_t		is_mcast;
3348 	mblk_t			*mp;
3349 	mac_cb_t		*mcb;
3350 
3351 	/*
3352 	 * The unicast packets for the MAC client still
3353 	 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
3354 	 * promiscuous callbacks. The broadcast and multicast
3355 	 * packets were delivered from mac_rx().
3356 	 */
3357 	MAC_PROMISC_WALKER_INC(mip);
3358 	for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
3359 		is_mcast = mac_is_mcast(mip, mp);
3360 		for (mcb = mcip->mci_promisc_list; mcb != NULL;
3361 		    mcb = mcb->mcb_nextp) {
3362 			mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
3363 			if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
3364 			    !is_mcast) {
3365 				mac_promisc_dispatch_one(mpip, mp, B_FALSE);
3366 			}
3367 		}
3368 	}
3369 	MAC_PROMISC_WALKER_DCR(mip);
3370 }
3371 
3372 /*
3373  * Return the margin value currently assigned to the specified MAC instance.
3374  */
3375 void
3376 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
3377 {
3378 	mac_impl_t *mip = (mac_impl_t *)mh;
3379 
3380 	rw_enter(&(mip->mi_rw_lock), RW_READER);
3381 	*marginp = mip->mi_margin;
3382 	rw_exit(&(mip->mi_rw_lock));
3383 }
3384 
3385 /*
3386  * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
3387  * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
3388  * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
3389  * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
3390  * cannot disappear while we are accessing it.
3391  */
3392 typedef struct i_mac_info_state_s {
3393 	const char	*mi_name;
3394 	mac_info_t	*mi_infop;
3395 } i_mac_info_state_t;
3396 
3397 /*ARGSUSED*/
3398 static uint_t
3399 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3400 {
3401 	i_mac_info_state_t *statep = arg;
3402 	mac_impl_t *mip = (mac_impl_t *)val;
3403 
3404 	if (mip->mi_state_flags & MIS_DISABLED)
3405 		return (MH_WALK_CONTINUE);
3406 
3407 	if (strcmp(statep->mi_name,
3408 	    ddi_driver_name(mip->mi_dip)) != 0)
3409 		return (MH_WALK_CONTINUE);
3410 
3411 	statep->mi_infop = &mip->mi_info;
3412 	return (MH_WALK_TERMINATE);
3413 }
3414 
3415 boolean_t
3416 mac_info_get(const char *name, mac_info_t *minfop)
3417 {
3418 	i_mac_info_state_t state;
3419 
3420 	rw_enter(&i_mac_impl_lock, RW_READER);
3421 	state.mi_name = name;
3422 	state.mi_infop = NULL;
3423 	mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
3424 	if (state.mi_infop == NULL) {
3425 		rw_exit(&i_mac_impl_lock);
3426 		return (B_FALSE);
3427 	}
3428 	*minfop = *state.mi_infop;
3429 	rw_exit(&i_mac_impl_lock);
3430 	return (B_TRUE);
3431 }
3432 
3433 /*
3434  * To get the capabilities that MAC layer cares about, such as rings, factory
3435  * mac address, vnic or not, it should directly invoke this function.  If the
3436  * link is part of a bridge, then the only "capability" it has is the inability
3437  * to do zero copy.
3438  */
3439 boolean_t
3440 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3441 {
3442 	mac_impl_t *mip = (mac_impl_t *)mh;
3443 
3444 	if (mip->mi_bridge_link != NULL)
3445 		return (cap == MAC_CAPAB_NO_ZCOPY);
3446 	else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
3447 		return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
3448 	else
3449 		return (B_FALSE);
3450 }
3451 
3452 /*
3453  * Capability query function. If number of active mac clients is greater than
3454  * 1, only limited capabilities can be advertised to the caller no matter the
3455  * driver has certain capability or not. Else, we query the driver to get the
3456  * capability.
3457  */
3458 boolean_t
3459 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
3460 {
3461 	mac_impl_t *mip = (mac_impl_t *)mh;
3462 
3463 	/*
3464 	 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
3465 	 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
3466 	 */
3467 	if (mip->mi_nactiveclients > 1) {
3468 		switch (cap) {
3469 		case MAC_CAPAB_NO_NATIVEVLAN:
3470 		case MAC_CAPAB_NO_ZCOPY:
3471 			return (B_TRUE);
3472 		case MAC_CAPAB_LEGACY:
3473 		case MAC_CAPAB_HCKSUM:
3474 			break;
3475 		default:
3476 			return (B_FALSE);
3477 		}
3478 	}
3479 
3480 	/* else get capab from driver */
3481 	return (i_mac_capab_get(mh, cap, cap_data));
3482 }
3483 
3484 boolean_t
3485 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
3486 {
3487 	mac_impl_t *mip = (mac_impl_t *)mh;
3488 
3489 	return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
3490 	    mip->mi_pdata));
3491 }
3492 
3493 mblk_t *
3494 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
3495     size_t extra_len)
3496 {
3497 	mac_impl_t *mip = (mac_impl_t *)mh;
3498 
3499 	return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap,
3500 	    mip->mi_pdata, payload, extra_len));
3501 }
3502 
3503 int
3504 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
3505 {
3506 	mac_impl_t *mip = (mac_impl_t *)mh;
3507 
3508 	return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
3509 	    mhip));
3510 }
3511 
3512 mblk_t *
3513 mac_header_cook(mac_handle_t mh, mblk_t *mp)
3514 {
3515 	mac_impl_t *mip = (mac_impl_t *)mh;
3516 
3517 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
3518 		if (DB_REF(mp) > 1) {
3519 			mblk_t *newmp = copymsg(mp);
3520 			if (newmp == NULL)
3521 				return (NULL);
3522 			freemsg(mp);
3523 			mp = newmp;
3524 		}
3525 		return (mip->mi_type->mt_ops.mtops_header_cook(mp,
3526 		    mip->mi_pdata));
3527 	}
3528 	return (mp);
3529 }
3530 
3531 mblk_t *
3532 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
3533 {
3534 	mac_impl_t *mip = (mac_impl_t *)mh;
3535 
3536 	if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
3537 		if (DB_REF(mp) > 1) {
3538 			mblk_t *newmp = copymsg(mp);
3539 			if (newmp == NULL)
3540 				return (NULL);
3541 			freemsg(mp);
3542 			mp = newmp;
3543 		}
3544 		return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
3545 		    mip->mi_pdata));
3546 	}
3547 	return (mp);
3548 }
3549 
3550 uint_t
3551 mac_addr_len(mac_handle_t mh)
3552 {
3553 	mac_impl_t *mip = (mac_impl_t *)mh;
3554 
3555 	return (mip->mi_type->mt_addr_length);
3556 }
3557 
3558 /* True if a MAC is a VNIC */
3559 boolean_t
3560 mac_is_vnic(mac_handle_t mh)
3561 {
3562 	return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
3563 }
3564 
3565 mac_handle_t
3566 mac_get_lower_mac_handle(mac_handle_t mh)
3567 {
3568 	mac_impl_t *mip = (mac_impl_t *)mh;
3569 
3570 	ASSERT(mac_is_vnic(mh));
3571 	return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
3572 }
3573 
3574 void
3575 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
3576     boolean_t is_user_flow)
3577 {
3578 	if (nmrp != NULL && cmrp != NULL) {
3579 		if (nmrp->mrp_mask & MRP_PRIORITY) {
3580 			if (nmrp->mrp_priority == MPL_RESET) {
3581 				cmrp->mrp_mask &= ~MRP_PRIORITY;
3582 				if (is_user_flow) {
3583 					cmrp->mrp_priority =
3584 					    MPL_SUBFLOW_DEFAULT;
3585 				} else {
3586 					cmrp->mrp_priority = MPL_LINK_DEFAULT;
3587 				}
3588 			} else {
3589 				cmrp->mrp_mask |= MRP_PRIORITY;
3590 				cmrp->mrp_priority = nmrp->mrp_priority;
3591 			}
3592 		}
3593 		if (nmrp->mrp_mask & MRP_MAXBW) {
3594 			cmrp->mrp_maxbw = nmrp->mrp_maxbw;
3595 			if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL)
3596 				cmrp->mrp_mask &= ~MRP_MAXBW;
3597 			else
3598 				cmrp->mrp_mask |= MRP_MAXBW;
3599 		}
3600 		if (nmrp->mrp_mask & MRP_CPUS)
3601 			MAC_COPY_CPUS(nmrp, cmrp);
3602 	}
3603 }
3604 
3605 /*
3606  * i_mac_set_resources:
3607  *
3608  * This routine associates properties with the primary MAC client of
3609  * the specified MAC instance.
3610  * - Cache the properties in mac_impl_t
3611  * - Apply the properties to the primary MAC client if exists
3612  */
3613 int
3614 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3615 {
3616 	mac_impl_t		*mip = (mac_impl_t *)mh;
3617 	mac_client_impl_t	*mcip;
3618 	int			err = 0;
3619 	uint32_t		resmask, newresmask;
3620 	mac_resource_props_t	tmrp, umrp;
3621 
3622 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3623 
3624 	err = mac_validate_props(mrp);
3625 	if (err != 0)
3626 		return (err);
3627 
3628 	bcopy(&mip->mi_resource_props, &umrp, sizeof (mac_resource_props_t));
3629 	resmask = umrp.mrp_mask;
3630 	mac_update_resources(mrp, &umrp, B_FALSE);
3631 	newresmask = umrp.mrp_mask;
3632 
3633 	if (resmask == 0 && newresmask != 0) {
3634 		/*
3635 		 * Bandwidth, priority or cpu link properties configured,
3636 		 * must disable fastpath.
3637 		 */
3638 		if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0)
3639 			return (err);
3640 	}
3641 
3642 	/*
3643 	 * Since bind_cpu may be modified by mac_client_set_resources()
3644 	 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
3645 	 * This allows us to cache only user edits in mip.
3646 	 */
3647 	bcopy(mrp, &tmrp, sizeof (mac_resource_props_t));
3648 	mcip = mac_primary_client_handle(mip);
3649 	if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
3650 		err =
3651 		    mac_client_set_resources((mac_client_handle_t)mcip, &tmrp);
3652 	}
3653 
3654 	/* Only update the values if mac_client_set_resources succeeded */
3655 	if (err == 0) {
3656 		bcopy(&umrp, &mip->mi_resource_props,
3657 		    sizeof (mac_resource_props_t));
3658 		/*
3659 		 * If bankwidth, priority or cpu link properties cleared,
3660 		 * renable fastpath.
3661 		 */
3662 		if (resmask != 0 && newresmask == 0)
3663 			mac_fastpath_enable((mac_handle_t)mip);
3664 	} else if (resmask == 0 && newresmask != 0) {
3665 		mac_fastpath_enable((mac_handle_t)mip);
3666 	}
3667 	return (err);
3668 }
3669 
3670 int
3671 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3672 {
3673 	int err;
3674 
3675 	i_mac_perim_enter((mac_impl_t *)mh);
3676 	err = i_mac_set_resources(mh, mrp);
3677 	i_mac_perim_exit((mac_impl_t *)mh);
3678 	return (err);
3679 }
3680 
3681 /*
3682  * Get the properties cached for the specified MAC instance.
3683  */
3684 void
3685 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
3686 {
3687 	mac_impl_t 		*mip = (mac_impl_t *)mh;
3688 	mac_client_impl_t	*mcip;
3689 
3690 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3691 		mcip = mac_primary_client_handle(mip);
3692 		if (mcip != NULL) {
3693 			mac_client_get_resources((mac_client_handle_t)mcip,
3694 			    mrp);
3695 			return;
3696 		}
3697 	}
3698 	bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
3699 }
3700 
3701 int
3702 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
3703 {
3704 	mac_impl_t *mip = (mac_impl_t *)mh;
3705 	mac_client_impl_t *mcip;
3706 	mac_unicast_impl_t *muip;
3707 
3708 	i_mac_perim_enter(mip);
3709 	if (pvid != 0) {
3710 		for (mcip = mip->mi_clients_list; mcip != NULL;
3711 		    mcip = mcip->mci_client_next) {
3712 			for (muip = mcip->mci_unicast_list; muip != NULL;
3713 			    muip = muip->mui_next) {
3714 				if (muip->mui_vid == pvid) {
3715 					i_mac_perim_exit(mip);
3716 					return (EBUSY);
3717 				}
3718 			}
3719 		}
3720 	}
3721 	mip->mi_pvid = pvid;
3722 	i_mac_perim_exit(mip);
3723 	return (0);
3724 }
3725 
3726 uint16_t
3727 mac_get_pvid(mac_handle_t mh)
3728 {
3729 	mac_impl_t *mip = (mac_impl_t *)mh;
3730 
3731 	return (mip->mi_pvid);
3732 }
3733 
3734 uint32_t
3735 mac_get_llimit(mac_handle_t mh)
3736 {
3737 	mac_impl_t *mip = (mac_impl_t *)mh;
3738 
3739 	return (mip->mi_llimit);
3740 }
3741 
3742 uint32_t
3743 mac_get_ldecay(mac_handle_t mh)
3744 {
3745 	mac_impl_t *mip = (mac_impl_t *)mh;
3746 
3747 	return (mip->mi_ldecay);
3748 }
3749 
3750 /*
3751  * Rename a mac client, its flow, and the kstat.
3752  */
3753 int
3754 mac_rename_primary(mac_handle_t mh, const char *new_name)
3755 {
3756 	mac_impl_t		*mip = (mac_impl_t *)mh;
3757 	mac_client_impl_t	*cur_clnt = NULL;
3758 	flow_entry_t		*fep;
3759 
3760 	i_mac_perim_enter(mip);
3761 
3762 	/*
3763 	 * VNICs: we need to change the sys flow name and
3764 	 * the associated flow kstat.
3765 	 */
3766 	if (mip->mi_state_flags & MIS_IS_VNIC) {
3767 		ASSERT(new_name != NULL);
3768 		mac_rename_flow_names(mac_vnic_lower(mip), new_name);
3769 		goto done;
3770 	}
3771 	/*
3772 	 * This mac may itself be an aggr link, or it may have some client
3773 	 * which is an aggr port. For both cases, we need to change the
3774 	 * aggr port's mac client name, its flow name and the associated flow
3775 	 * kstat.
3776 	 */
3777 	if (mip->mi_state_flags & MIS_IS_AGGR) {
3778 		mac_capab_aggr_t aggr_cap;
3779 		mac_rename_fn_t rename_fn;
3780 		boolean_t ret;
3781 
3782 		ASSERT(new_name != NULL);
3783 		ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
3784 		    (void *)(&aggr_cap));
3785 		ASSERT(ret == B_TRUE);
3786 		rename_fn = aggr_cap.mca_rename_fn;
3787 		rename_fn(new_name, mip->mi_driver);
3788 		/*
3789 		 * The aggr's client name and kstat flow name will be
3790 		 * updated below, i.e. via mac_rename_flow_names.
3791 		 */
3792 	}
3793 
3794 	for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
3795 	    cur_clnt = cur_clnt->mci_client_next) {
3796 		if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
3797 			if (new_name != NULL) {
3798 				char *str_st = cur_clnt->mci_name;
3799 				char *str_del = strchr(str_st, '-');
3800 
3801 				ASSERT(str_del != NULL);
3802 				bzero(str_del + 1, MAXNAMELEN -
3803 				    (str_del - str_st + 1));
3804 				bcopy(new_name, str_del + 1,
3805 				    strlen(new_name));
3806 			}
3807 			fep = cur_clnt->mci_flent;
3808 			mac_rename_flow(fep, cur_clnt->mci_name);
3809 			break;
3810 		} else if (new_name != NULL &&
3811 		    cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
3812 			mac_rename_flow_names(cur_clnt, new_name);
3813 			break;
3814 		}
3815 	}
3816 
3817 done:
3818 	i_mac_perim_exit(mip);
3819 	return (0);
3820 }
3821 
3822 /*
3823  * Rename the MAC client's flow names
3824  */
3825 static void
3826 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
3827 {
3828 	flow_entry_t	*flent;
3829 	uint16_t	vid;
3830 	char		flowname[MAXFLOWNAMELEN];
3831 	mac_impl_t	*mip = mcip->mci_mip;
3832 
3833 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3834 
3835 	/*
3836 	 * Use mi_rw_lock to ensure that threads not in the mac perimeter
3837 	 * see a self-consistent value for mci_name
3838 	 */
3839 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
3840 	(void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
3841 	rw_exit(&mip->mi_rw_lock);
3842 
3843 	mac_rename_flow(mcip->mci_flent, new_name);
3844 
3845 	if (mcip->mci_nflents == 1)
3846 		return;
3847 
3848 	/*
3849 	 * We have to rename all the others too, no stats to destroy for
3850 	 * these.
3851 	 */
3852 	for (flent = mcip->mci_flent_list; flent != NULL;
3853 	    flent = flent->fe_client_next) {
3854 		if (flent != mcip->mci_flent) {
3855 			vid = i_mac_flow_vid(flent);
3856 			(void) sprintf(flowname, "%s%u", new_name, vid);
3857 			mac_flow_set_name(flent, flowname);
3858 		}
3859 	}
3860 }
3861 
3862 
3863 /*
3864  * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
3865  * defined for the specified MAC client.
3866  */
3867 static void
3868 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3869 {
3870 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3871 	/*
3872 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3873 	 * using mi_rw_lock
3874 	 */
3875 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3876 
3877 	/* Add it to the head */
3878 	flent->fe_client_next = mcip->mci_flent_list;
3879 	mcip->mci_flent_list = flent;
3880 	mcip->mci_nflents++;
3881 
3882 	/*
3883 	 * Keep track of the number of non-zero VIDs addresses per MAC
3884 	 * client to avoid figuring it out in the data-path.
3885 	 */
3886 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3887 		mcip->mci_nvids++;
3888 
3889 	rw_exit(&mcip->mci_rw_lock);
3890 }
3891 
3892 /*
3893  * Remove a flow entry from the MAC client's list.
3894  */
3895 static void
3896 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
3897 {
3898 	flow_entry_t	*fe = mcip->mci_flent_list;
3899 	flow_entry_t	*prev_fe = NULL;
3900 
3901 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3902 	/*
3903 	 * The promisc Rx data path walks the mci_flent_list. Protect by
3904 	 * using mci_rw_lock
3905 	 */
3906 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3907 	while ((fe != NULL) && (fe != flent)) {
3908 		prev_fe = fe;
3909 		fe = fe->fe_client_next;
3910 	}
3911 
3912 	ASSERT(fe != NULL);
3913 	if (prev_fe == NULL) {
3914 		/* Deleting the first node */
3915 		mcip->mci_flent_list = fe->fe_client_next;
3916 	} else {
3917 		prev_fe->fe_client_next = fe->fe_client_next;
3918 	}
3919 	mcip->mci_nflents--;
3920 
3921 	if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
3922 		mcip->mci_nvids--;
3923 
3924 	rw_exit(&mcip->mci_rw_lock);
3925 }
3926 
3927 /*
3928  * Check if the given VID belongs to this MAC client.
3929  */
3930 boolean_t
3931 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
3932 {
3933 	flow_entry_t	*flent;
3934 	uint16_t	mci_vid;
3935 
3936 	/* The mci_flent_list is protected by mci_rw_lock */
3937 	rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3938 	for (flent = mcip->mci_flent_list; flent != NULL;
3939 	    flent = flent->fe_client_next) {
3940 		mci_vid = i_mac_flow_vid(flent);
3941 		if (vid == mci_vid) {
3942 			rw_exit(&mcip->mci_rw_lock);
3943 			return (B_TRUE);
3944 		}
3945 	}
3946 	rw_exit(&mcip->mci_rw_lock);
3947 	return (B_FALSE);
3948 }
3949 
3950 /*
3951  * Get the flow entry for the specified <MAC addr, VID> tuple.
3952  */
3953 static flow_entry_t *
3954 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
3955 {
3956 	mac_address_t *map = mcip->mci_unicast;
3957 	flow_entry_t *flent;
3958 	uint16_t vid;
3959 	flow_desc_t flow_desc;
3960 
3961 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3962 
3963 	mac_flow_get_desc(mcip->mci_flent, &flow_desc);
3964 	if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
3965 		return (NULL);
3966 
3967 	for (flent = mcip->mci_flent_list; flent != NULL;
3968 	    flent = flent->fe_client_next) {
3969 		vid = i_mac_flow_vid(flent);
3970 		if (vid == muip->mui_vid) {
3971 			return (flent);
3972 		}
3973 	}
3974 
3975 	return (NULL);
3976 }
3977 
3978 /*
3979  * Since mci_flent has the SRSs, when we want to remove it, we replace
3980  * the flow_desc_t in mci_flent with that of an existing flent and then
3981  * remove that flent instead of mci_flent.
3982  */
3983 static flow_entry_t *
3984 mac_client_swap_mciflent(mac_client_impl_t *mcip)
3985 {
3986 	flow_entry_t	*flent = mcip->mci_flent;
3987 	flow_tab_t	*ft = flent->fe_flow_tab;
3988 	flow_entry_t	*flent1;
3989 	flow_desc_t	fl_desc;
3990 	char		fl_name[MAXFLOWNAMELEN];
3991 	int		err;
3992 
3993 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
3994 	ASSERT(mcip->mci_nflents > 1);
3995 
3996 	/* get the next flent following the primary flent  */
3997 	flent1 = mcip->mci_flent_list->fe_client_next;
3998 	ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
3999 
4000 	/*
4001 	 * Remove the flent from the flow table before updating the
4002 	 * flow descriptor as the hash depends on the flow descriptor.
4003 	 * This also helps incoming packet classification avoid having
4004 	 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
4005 	 * flow table is done under the fe_lock so that log or stat functions
4006 	 * see a self-consistent fe_flow_desc. The name and desc are specific
4007 	 * to a flow, the rest are shared by all the clients, including
4008 	 * resource control etc.
4009 	 */
4010 	mac_flow_remove(ft, flent, B_TRUE);
4011 	mac_flow_remove(ft, flent1, B_TRUE);
4012 
4013 	bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
4014 	bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
4015 
4016 	/* update the primary flow entry */
4017 	mutex_enter(&flent->fe_lock);
4018 	bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
4019 	    sizeof (flow_desc_t));
4020 	bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
4021 	mutex_exit(&flent->fe_lock);
4022 
4023 	/* update the flow entry that is to be freed */
4024 	mutex_enter(&flent1->fe_lock);
4025 	bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
4026 	bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
4027 	mutex_exit(&flent1->fe_lock);
4028 
4029 	/* now reinsert the flow entries in the table */
4030 	err = mac_flow_add(ft, flent);
4031 	ASSERT(err == 0);
4032 
4033 	err = mac_flow_add(ft, flent1);
4034 	ASSERT(err == 0);
4035 
4036 	return (flent1);
4037 }
4038 
4039 /*
4040  * Return whether there is only one flow entry associated with this
4041  * MAC client.
4042  */
4043 static boolean_t
4044 mac_client_single_rcvr(mac_client_impl_t *mcip)
4045 {
4046 	return (mcip->mci_nflents == 1);
4047 }
4048 
4049 int
4050 mac_validate_props(mac_resource_props_t *mrp)
4051 {
4052 	if (mrp == NULL)
4053 		return (0);
4054 
4055 	if (mrp->mrp_mask & MRP_PRIORITY) {
4056 		mac_priority_level_t	pri = mrp->mrp_priority;
4057 
4058 		if (pri < MPL_LOW || pri > MPL_RESET)
4059 			return (EINVAL);
4060 	}
4061 
4062 	if (mrp->mrp_mask & MRP_MAXBW) {
4063 		uint64_t maxbw = mrp->mrp_maxbw;
4064 
4065 		if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
4066 			return (EINVAL);
4067 	}
4068 	if (mrp->mrp_mask & MRP_CPUS) {
4069 		int i, j;
4070 		mac_cpu_mode_t	fanout;
4071 
4072 		if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT)
4073 			return (EINVAL);
4074 
4075 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4076 			for (j = 0; j < mrp->mrp_ncpus; j++) {
4077 				if (i != j &&
4078 				    mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
4079 					return (EINVAL);
4080 				}
4081 			}
4082 		}
4083 
4084 		for (i = 0; i < mrp->mrp_ncpus; i++) {
4085 			cpu_t *cp;
4086 			int rv;
4087 
4088 			mutex_enter(&cpu_lock);
4089 			cp = cpu_get(mrp->mrp_cpu[i]);
4090 			if (cp != NULL)
4091 				rv = cpu_is_online(cp);
4092 			else
4093 				rv = 0;
4094 			mutex_exit(&cpu_lock);
4095 			if (rv == 0)
4096 				return (EINVAL);
4097 		}
4098 
4099 		fanout = mrp->mrp_fanout_mode;
4100 		if (fanout < 0 || fanout > MCM_CPUS)
4101 			return (EINVAL);
4102 	}
4103 	return (0);
4104 }
4105 
4106 /*
4107  * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
4108  * underlying physical link is down. This is to allow MAC clients to
4109  * communicate with other clients.
4110  */
4111 void
4112 mac_virtual_link_update(mac_impl_t *mip)
4113 {
4114 	if (mip->mi_linkstate != LINK_STATE_UP)
4115 		i_mac_notify(mip, MAC_NOTE_LINK);
4116 }
4117 
4118 /*
4119  * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
4120  * mac handle in the client.
4121  */
4122 void
4123 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh)
4124 {
4125 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
4126 
4127 	mcip->mci_upper_mip = (mac_impl_t *)mh;
4128 }
4129 
4130 /*
4131  * Mark the mac as being used exclusively by the single mac client that is
4132  * doing some control operation on this mac. No further opens of this mac
4133  * will be allowed until this client calls mac_unmark_exclusive. The mac
4134  * client calling this function must already be in the mac perimeter
4135  */
4136 int
4137 mac_mark_exclusive(mac_handle_t mh)
4138 {
4139 	mac_impl_t	*mip = (mac_impl_t *)mh;
4140 
4141 	ASSERT(MAC_PERIM_HELD(mh));
4142 	/*
4143 	 * Look up its entry in the global hash table.
4144 	 */
4145 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4146 	if (mip->mi_state_flags & MIS_DISABLED) {
4147 		rw_exit(&i_mac_impl_lock);
4148 		return (ENOENT);
4149 	}
4150 
4151 	/*
4152 	 * A reference to mac is held even if the link is not plumbed.
4153 	 * In i_dls_link_create() we open the MAC interface and hold the
4154 	 * reference. There is an additional reference for the mac_open
4155 	 * done in acquiring the mac perimeter
4156 	 */
4157 	if (mip->mi_ref != 2) {
4158 		rw_exit(&i_mac_impl_lock);
4159 		return (EBUSY);
4160 	}
4161 
4162 	ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
4163 	mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
4164 	rw_exit(&i_mac_impl_lock);
4165 	return (0);
4166 }
4167 
4168 void
4169 mac_unmark_exclusive(mac_handle_t mh)
4170 {
4171 	mac_impl_t	*mip = (mac_impl_t *)mh;
4172 
4173 	ASSERT(MAC_PERIM_HELD(mh));
4174 
4175 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4176 	/* 1 for the creation and another for the perimeter */
4177 	ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
4178 	mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
4179 	rw_exit(&i_mac_impl_lock);
4180 }
4181 
4182 /*
4183  * Set the MTU for the specified device. The function returns EBUSY if
4184  * another MAC client prevents the caller to become the exclusive client.
4185  * Returns EAGAIN if the client is started.
4186  */
4187 int
4188 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
4189 {
4190 	mac_impl_t *mip = (mac_impl_t *)mh;
4191 	uint_t old_mtu;
4192 	int rv;
4193 	boolean_t exclusive = B_FALSE;
4194 
4195 	i_mac_perim_enter(mip);
4196 
4197 	if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 ||
4198 	    (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) {
4199 		rv = ENOTSUP;
4200 		goto bail;
4201 	}
4202 
4203 	if ((rv = mac_mark_exclusive(mh)) != 0)
4204 		goto bail;
4205 	exclusive = B_TRUE;
4206 
4207 	if (mip->mi_active > 0) {
4208 		/*
4209 		 * The MAC instance is started, for example due to the
4210 		 * presence of a promiscuous clients. Fail the operation
4211 		 * since the MAC's MTU cannot be changed while the NIC
4212 		 * is started.
4213 		 */
4214 		rv = EAGAIN;
4215 		goto bail;
4216 	}
4217 
4218 	mac_sdu_get(mh, NULL, &old_mtu);
4219 
4220 	if (old_mtu != new_mtu) {
4221 		rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
4222 		    "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
4223 	}
4224 
4225 bail:
4226 	if (exclusive)
4227 		mac_unmark_exclusive(mh);
4228 	i_mac_perim_exit(mip);
4229 
4230 	if (rv == 0 && old_mtu_arg != NULL)
4231 		*old_mtu_arg = old_mtu;
4232 	return (rv);
4233 }
4234 
4235 void
4236 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
4237     uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name)
4238 {
4239 	mac_impl_t *mip = (mac_impl_t *)mh;
4240 	mac_grp_client_t *mcip;
4241 	uint_t i = 0, index = 0;
4242 
4243 	/* Revisit when we implement fully dynamic group allocation */
4244 	ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
4245 
4246 	rw_enter(&mip->mi_rw_lock, RW_READER);
4247 	*grp_num = mip->mi_rx_groups[grp_index].mrg_index;
4248 	*type = mip->mi_rx_groups[grp_index].mrg_type;
4249 	*n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
4250 	for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
4251 	    mcip = mcip->mgc_next) {
4252 		int name_len = strlen(mcip->mgc_client->mci_name);
4253 
4254 		/*
4255 		 * MAXCLIENTNAMELEN is the buffer size reserved for client
4256 		 * names.
4257 		 * XXXX Formating the client name string needs to be moved
4258 		 * to user land when fixing the size of dhi_clnts in
4259 		 * dld_hwgrpinfo_t. We should use n_clients * client_name for
4260 		 * dhi_clntsin instead of MAXCLIENTNAMELEN
4261 		 */
4262 		if (index + name_len >= MAXCLIENTNAMELEN) {
4263 			index = MAXCLIENTNAMELEN;
4264 			break;
4265 		}
4266 		bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
4267 		    name_len);
4268 		index += name_len;
4269 		clnts_name[index++] = ',';
4270 		i++;
4271 	}
4272 
4273 	/* Get rid of the last , */
4274 	if (index > 0)
4275 		clnts_name[index - 1] = '\0';
4276 	*n_clnts = i;
4277 	rw_exit(&mip->mi_rw_lock);
4278 }
4279 
4280 uint_t
4281 mac_hwgrp_num(mac_handle_t mh)
4282 {
4283 	mac_impl_t *mip = (mac_impl_t *)mh;
4284 
4285 	return (mip->mi_rx_group_count);
4286 }
4287