1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 static int i_mac_constructor(void *, void *, int); 354 static void i_mac_destructor(void *, void *); 355 static int i_mac_ring_ctor(void *, void *, int); 356 static void i_mac_ring_dtor(void *, void *); 357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 358 void mac_tx_client_flush(mac_client_impl_t *); 359 void mac_tx_client_block(mac_client_impl_t *); 360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 361 static int mac_start_group_and_rings(mac_group_t *); 362 static void mac_stop_group_and_rings(mac_group_t *); 363 364 /* 365 * Module initialization functions. 366 */ 367 368 void 369 mac_init(void) 370 { 371 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 372 boot_max_ncpus); 373 374 /* Upper bound is mac_tx_percpu_cnt_max */ 375 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 376 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 377 378 if (mac_tx_percpu_cnt < 1) { 379 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 380 mac_tx_percpu_cnt = 1; 381 } 382 383 ASSERT(mac_tx_percpu_cnt >= 1); 384 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 385 /* 386 * Make it of the form 2**N - 1 in the range 387 * [0 .. mac_tx_percpu_cnt_max - 1] 388 */ 389 mac_tx_percpu_cnt--; 390 391 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 392 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 393 NULL, NULL, NULL, 0); 394 ASSERT(i_mac_impl_cachep != NULL); 395 396 mac_ring_cache = kmem_cache_create("mac_ring_cache", 397 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 398 NULL, NULL, 0); 399 ASSERT(mac_ring_cache != NULL); 400 401 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 402 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 403 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 404 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 405 406 mac_flow_init(); 407 mac_soft_ring_init(); 408 mac_bcast_init(); 409 mac_client_init(); 410 411 i_mac_impl_count = 0; 412 413 i_mactype_hash = mod_hash_create_extended("mactype_hash", 414 MACTYPE_HASHSZ, 415 mod_hash_null_keydtor, mod_hash_null_valdtor, 416 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 417 418 /* 419 * Allocate an id space to manage minor numbers. The range of the 420 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal 421 * minor number is MAXMIN, but id_t is type of integer and does not 422 * allow MAXMIN). 423 */ 424 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32); 425 ASSERT(minor_ids != NULL); 426 minor_count = 0; 427 428 /* Let's default to 20 seconds */ 429 mac_logging_interval = 20; 430 mac_flow_log_enable = B_FALSE; 431 mac_link_log_enable = B_FALSE; 432 mac_logging_timer = 0; 433 } 434 435 int 436 mac_fini(void) 437 { 438 if (i_mac_impl_count > 0 || minor_count > 0) 439 return (EBUSY); 440 441 id_space_destroy(minor_ids); 442 mac_flow_fini(); 443 444 mod_hash_destroy_hash(i_mac_impl_hash); 445 rw_destroy(&i_mac_impl_lock); 446 447 mac_client_fini(); 448 kmem_cache_destroy(mac_ring_cache); 449 450 mod_hash_destroy_hash(i_mactype_hash); 451 mac_soft_ring_finish(); 452 return (0); 453 } 454 455 void 456 mac_init_ops(struct dev_ops *ops, const char *name) 457 { 458 dld_init_ops(ops, name); 459 } 460 461 void 462 mac_fini_ops(struct dev_ops *ops) 463 { 464 dld_fini_ops(ops); 465 } 466 467 /*ARGSUSED*/ 468 static int 469 i_mac_constructor(void *buf, void *arg, int kmflag) 470 { 471 mac_impl_t *mip = buf; 472 473 bzero(buf, sizeof (mac_impl_t)); 474 475 mip->mi_linkstate = LINK_STATE_UNKNOWN; 476 mip->mi_nclients = 0; 477 478 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 479 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 480 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 481 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 482 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 483 484 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 485 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 486 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 487 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 488 return (0); 489 } 490 491 /*ARGSUSED*/ 492 static void 493 i_mac_destructor(void *buf, void *arg) 494 { 495 mac_impl_t *mip = buf; 496 mac_cb_info_t *mcbi; 497 498 ASSERT(mip->mi_ref == 0); 499 ASSERT(mip->mi_active == 0); 500 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 501 ASSERT(mip->mi_devpromisc == 0); 502 ASSERT(mip->mi_promisc == 0); 503 ASSERT(mip->mi_ksp == NULL); 504 ASSERT(mip->mi_kstat_count == 0); 505 ASSERT(mip->mi_nclients == 0); 506 ASSERT(mip->mi_nactiveclients == 0); 507 ASSERT(mip->mi_single_active_client == NULL); 508 ASSERT(mip->mi_state_flags == 0); 509 ASSERT(mip->mi_factory_addr == NULL); 510 ASSERT(mip->mi_factory_addr_num == 0); 511 ASSERT(mip->mi_default_tx_ring == NULL); 512 513 mcbi = &mip->mi_notify_cb_info; 514 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 515 ASSERT(mip->mi_notify_bits == 0); 516 ASSERT(mip->mi_notify_thread == NULL); 517 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 518 mcbi->mcbi_lockp = NULL; 519 520 mcbi = &mip->mi_promisc_cb_info; 521 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 522 ASSERT(mip->mi_promisc_list == NULL); 523 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 524 mcbi->mcbi_lockp = NULL; 525 526 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 527 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 528 529 mutex_destroy(&mip->mi_lock); 530 rw_destroy(&mip->mi_rw_lock); 531 532 mutex_destroy(&mip->mi_promisc_lock); 533 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 534 mutex_destroy(&mip->mi_notify_lock); 535 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 536 mutex_destroy(&mip->mi_ring_lock); 537 } 538 539 /* ARGSUSED */ 540 static int 541 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 542 { 543 mac_ring_t *ring = (mac_ring_t *)buf; 544 545 bzero(ring, sizeof (mac_ring_t)); 546 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 547 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 548 ring->mr_state = MR_FREE; 549 return (0); 550 } 551 552 /* ARGSUSED */ 553 static void 554 i_mac_ring_dtor(void *buf, void *arg) 555 { 556 mac_ring_t *ring = (mac_ring_t *)buf; 557 558 cv_destroy(&ring->mr_cv); 559 mutex_destroy(&ring->mr_lock); 560 } 561 562 /* 563 * Common functions to do mac callback addition and deletion. Currently this is 564 * used by promisc callbacks and notify callbacks. List addition and deletion 565 * need to take care of list walkers. List walkers in general, can't hold list 566 * locks and make upcall callbacks due to potential lock order and recursive 567 * reentry issues. Instead list walkers increment the list walker count to mark 568 * the presence of a walker thread. Addition can be carefully done to ensure 569 * that the list walker always sees either the old list or the new list. 570 * However the deletion can't be done while the walker is active, instead the 571 * deleting thread simply marks the entry as logically deleted. The last walker 572 * physically deletes and frees up the logically deleted entries when the walk 573 * is complete. 574 */ 575 void 576 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 577 mac_cb_t *mcb_elem) 578 { 579 mac_cb_t *p; 580 mac_cb_t **pp; 581 582 /* Verify it is not already in the list */ 583 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 584 if (p == mcb_elem) 585 break; 586 } 587 VERIFY(p == NULL); 588 589 /* 590 * Add it to the head of the callback list. The membar ensures that 591 * the following list pointer manipulations reach global visibility 592 * in exactly the program order below. 593 */ 594 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 595 596 mcb_elem->mcb_nextp = *mcb_head; 597 membar_producer(); 598 *mcb_head = mcb_elem; 599 } 600 601 /* 602 * Mark the entry as logically deleted. If there aren't any walkers unlink 603 * from the list. In either case return the corresponding status. 604 */ 605 boolean_t 606 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 607 mac_cb_t *mcb_elem) 608 { 609 mac_cb_t *p; 610 mac_cb_t **pp; 611 612 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 613 /* 614 * Search the callback list for the entry to be removed 615 */ 616 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 617 if (p == mcb_elem) 618 break; 619 } 620 VERIFY(p != NULL); 621 622 /* 623 * If there are walkers just mark it as deleted and the last walker 624 * will remove from the list and free it. 625 */ 626 if (mcbi->mcbi_walker_cnt != 0) { 627 p->mcb_flags |= MCB_CONDEMNED; 628 mcbi->mcbi_del_cnt++; 629 return (B_FALSE); 630 } 631 632 ASSERT(mcbi->mcbi_del_cnt == 0); 633 *pp = p->mcb_nextp; 634 p->mcb_nextp = NULL; 635 return (B_TRUE); 636 } 637 638 /* 639 * Wait for all pending callback removals to be completed 640 */ 641 void 642 mac_callback_remove_wait(mac_cb_info_t *mcbi) 643 { 644 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 645 while (mcbi->mcbi_del_cnt != 0) { 646 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 647 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 648 } 649 } 650 651 /* 652 * The last mac callback walker does the cleanup. Walk the list and unlik 653 * all the logically deleted entries and construct a temporary list of 654 * removed entries. Return the list of removed entries to the caller. 655 */ 656 mac_cb_t * 657 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 658 { 659 mac_cb_t *p; 660 mac_cb_t **pp; 661 mac_cb_t *rmlist = NULL; /* List of removed elements */ 662 int cnt = 0; 663 664 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 665 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 666 667 pp = mcb_head; 668 while (*pp != NULL) { 669 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 670 p = *pp; 671 *pp = p->mcb_nextp; 672 p->mcb_nextp = rmlist; 673 rmlist = p; 674 cnt++; 675 continue; 676 } 677 pp = &(*pp)->mcb_nextp; 678 } 679 680 ASSERT(mcbi->mcbi_del_cnt == cnt); 681 mcbi->mcbi_del_cnt = 0; 682 return (rmlist); 683 } 684 685 boolean_t 686 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 687 { 688 mac_cb_t *mcb; 689 690 /* Verify it is not already in the list */ 691 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 692 if (mcb == mcb_elem) 693 return (B_TRUE); 694 } 695 696 return (B_FALSE); 697 } 698 699 boolean_t 700 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 701 { 702 boolean_t found; 703 704 mutex_enter(mcbi->mcbi_lockp); 705 found = mac_callback_lookup(mcb_headp, mcb_elem); 706 mutex_exit(mcbi->mcbi_lockp); 707 708 return (found); 709 } 710 711 /* Free the list of removed callbacks */ 712 void 713 mac_callback_free(mac_cb_t *rmlist) 714 { 715 mac_cb_t *mcb; 716 mac_cb_t *mcb_next; 717 718 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 719 mcb_next = mcb->mcb_nextp; 720 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 721 } 722 } 723 724 /* 725 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 726 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 727 * is only a single shared total walker count, and an entry can't be physically 728 * unlinked if a walker is active on either list. The last walker does this 729 * cleanup of logically deleted entries. 730 */ 731 void 732 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 733 { 734 mac_cb_t *rmlist; 735 mac_cb_t *mcb; 736 mac_cb_t *mcb_next; 737 mac_promisc_impl_t *mpip; 738 739 /* 740 * Construct a temporary list of deleted callbacks by walking the 741 * the mi_promisc_list. Then for each entry in the temporary list, 742 * remove it from the mci_promisc_list and free the entry. 743 */ 744 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 745 &mip->mi_promisc_list); 746 747 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 748 mcb_next = mcb->mcb_nextp; 749 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 750 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 751 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 752 mcb->mcb_flags = 0; 753 mcb->mcb_nextp = NULL; 754 kmem_cache_free(mac_promisc_impl_cache, mpip); 755 } 756 } 757 758 void 759 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 760 { 761 mac_cb_info_t *mcbi; 762 763 /* 764 * Signal the notify thread even after mi_ref has become zero and 765 * mi_disabled is set. The synchronization with the notify thread 766 * happens in mac_unregister and that implies the driver must make 767 * sure it is single-threaded (with respect to mac calls) and that 768 * all pending mac calls have returned before it calls mac_unregister 769 */ 770 rw_enter(&i_mac_impl_lock, RW_READER); 771 if (mip->mi_state_flags & MIS_DISABLED) 772 goto exit; 773 774 /* 775 * Guard against incorrect notifications. (Running a newer 776 * mac client against an older implementation?) 777 */ 778 if (type >= MAC_NNOTE) 779 goto exit; 780 781 mcbi = &mip->mi_notify_cb_info; 782 mutex_enter(mcbi->mcbi_lockp); 783 mip->mi_notify_bits |= (1 << type); 784 cv_broadcast(&mcbi->mcbi_cv); 785 mutex_exit(mcbi->mcbi_lockp); 786 787 exit: 788 rw_exit(&i_mac_impl_lock); 789 } 790 791 /* 792 * Mac serialization primitives. Please see the block comment at the 793 * top of the file. 794 */ 795 void 796 i_mac_perim_enter(mac_impl_t *mip) 797 { 798 mac_client_impl_t *mcip; 799 800 if (mip->mi_state_flags & MIS_IS_VNIC) { 801 /* 802 * This is a VNIC. Return the lower mac since that is what 803 * we want to serialize on. 804 */ 805 mcip = mac_vnic_lower(mip); 806 mip = mcip->mci_mip; 807 } 808 809 mutex_enter(&mip->mi_perim_lock); 810 if (mip->mi_perim_owner == curthread) { 811 mip->mi_perim_ocnt++; 812 mutex_exit(&mip->mi_perim_lock); 813 return; 814 } 815 816 while (mip->mi_perim_owner != NULL) 817 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 818 819 mip->mi_perim_owner = curthread; 820 ASSERT(mip->mi_perim_ocnt == 0); 821 mip->mi_perim_ocnt++; 822 #ifdef DEBUG 823 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 824 MAC_PERIM_STACK_DEPTH); 825 #endif 826 mutex_exit(&mip->mi_perim_lock); 827 } 828 829 int 830 i_mac_perim_enter_nowait(mac_impl_t *mip) 831 { 832 /* 833 * The vnic is a special case, since the serialization is done based 834 * on the lower mac. If the lower mac is busy, it does not imply the 835 * vnic can't be unregistered. But in the case of other drivers, 836 * a busy perimeter or open mac handles implies that the mac is busy 837 * and can't be unregistered. 838 */ 839 if (mip->mi_state_flags & MIS_IS_VNIC) { 840 i_mac_perim_enter(mip); 841 return (0); 842 } 843 844 mutex_enter(&mip->mi_perim_lock); 845 if (mip->mi_perim_owner != NULL) { 846 mutex_exit(&mip->mi_perim_lock); 847 return (EBUSY); 848 } 849 ASSERT(mip->mi_perim_ocnt == 0); 850 mip->mi_perim_owner = curthread; 851 mip->mi_perim_ocnt++; 852 mutex_exit(&mip->mi_perim_lock); 853 854 return (0); 855 } 856 857 void 858 i_mac_perim_exit(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 872 873 mutex_enter(&mip->mi_perim_lock); 874 if (--mip->mi_perim_ocnt == 0) { 875 mip->mi_perim_owner = NULL; 876 cv_signal(&mip->mi_perim_cv); 877 } 878 mutex_exit(&mip->mi_perim_lock); 879 } 880 881 /* 882 * Returns whether the current thread holds the mac perimeter. Used in making 883 * assertions. 884 */ 885 boolean_t 886 mac_perim_held(mac_handle_t mh) 887 { 888 mac_impl_t *mip = (mac_impl_t *)mh; 889 mac_client_impl_t *mcip; 890 891 if (mip->mi_state_flags & MIS_IS_VNIC) { 892 /* 893 * This is a VNIC. Return the lower mac since that is what 894 * we want to serialize on. 895 */ 896 mcip = mac_vnic_lower(mip); 897 mip = mcip->mci_mip; 898 } 899 return (mip->mi_perim_owner == curthread); 900 } 901 902 /* 903 * mac client interfaces to enter the mac perimeter of a mac end point, given 904 * its mac handle, or macname or linkid. 905 */ 906 void 907 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 908 { 909 mac_impl_t *mip = (mac_impl_t *)mh; 910 911 i_mac_perim_enter(mip); 912 /* 913 * The mac_perim_handle_t returned encodes the 'mip' and whether a 914 * mac_open has been done internally while entering the perimeter. 915 * This information is used in mac_perim_exit 916 */ 917 MAC_ENCODE_MPH(*mphp, mip, 0); 918 } 919 920 int 921 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 922 { 923 int err; 924 mac_handle_t mh; 925 926 if ((err = mac_open(name, &mh)) != 0) 927 return (err); 928 929 mac_perim_enter_by_mh(mh, mphp); 930 MAC_ENCODE_MPH(*mphp, mh, 1); 931 return (0); 932 } 933 934 int 935 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 936 { 937 int err; 938 mac_handle_t mh; 939 940 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 941 return (err); 942 943 mac_perim_enter_by_mh(mh, mphp); 944 MAC_ENCODE_MPH(*mphp, mh, 1); 945 return (0); 946 } 947 948 void 949 mac_perim_exit(mac_perim_handle_t mph) 950 { 951 mac_impl_t *mip; 952 boolean_t need_close; 953 954 MAC_DECODE_MPH(mph, mip, need_close); 955 i_mac_perim_exit(mip); 956 if (need_close) 957 mac_close((mac_handle_t)mip); 958 } 959 960 int 961 mac_hold(const char *macname, mac_impl_t **pmip) 962 { 963 mac_impl_t *mip; 964 int err; 965 966 /* 967 * Check the device name length to make sure it won't overflow our 968 * buffer. 969 */ 970 if (strlen(macname) >= MAXNAMELEN) 971 return (EINVAL); 972 973 /* 974 * Look up its entry in the global hash table. 975 */ 976 rw_enter(&i_mac_impl_lock, RW_WRITER); 977 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 978 (mod_hash_val_t *)&mip); 979 980 if (err != 0) { 981 rw_exit(&i_mac_impl_lock); 982 return (ENOENT); 983 } 984 985 if (mip->mi_state_flags & MIS_DISABLED) { 986 rw_exit(&i_mac_impl_lock); 987 return (ENOENT); 988 } 989 990 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 991 rw_exit(&i_mac_impl_lock); 992 return (EBUSY); 993 } 994 995 mip->mi_ref++; 996 rw_exit(&i_mac_impl_lock); 997 998 *pmip = mip; 999 return (0); 1000 } 1001 1002 void 1003 mac_rele(mac_impl_t *mip) 1004 { 1005 rw_enter(&i_mac_impl_lock, RW_WRITER); 1006 ASSERT(mip->mi_ref != 0); 1007 if (--mip->mi_ref == 0) { 1008 ASSERT(mip->mi_nactiveclients == 0 && 1009 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1010 } 1011 rw_exit(&i_mac_impl_lock); 1012 } 1013 1014 /* 1015 * Private GLDv3 function to start a MAC instance. 1016 */ 1017 int 1018 mac_start(mac_handle_t mh) 1019 { 1020 mac_impl_t *mip = (mac_impl_t *)mh; 1021 int err = 0; 1022 1023 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1024 ASSERT(mip->mi_start != NULL); 1025 1026 /* 1027 * Check whether the device is already started. 1028 */ 1029 if (mip->mi_active++ == 0) { 1030 mac_ring_t *ring = NULL; 1031 1032 /* 1033 * Start the device. 1034 */ 1035 err = mip->mi_start(mip->mi_driver); 1036 if (err != 0) { 1037 mip->mi_active--; 1038 return (err); 1039 } 1040 1041 /* 1042 * Start the default tx ring. 1043 */ 1044 if (mip->mi_default_tx_ring != NULL) { 1045 1046 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1047 err = mac_start_ring(ring); 1048 if (err != 0) { 1049 mip->mi_active--; 1050 return (err); 1051 } 1052 ring->mr_state = MR_INUSE; 1053 } 1054 1055 if (mip->mi_rx_groups != NULL) { 1056 /* 1057 * Start the default ring, since it will be needed 1058 * to receive broadcast and multicast traffic for 1059 * both primary and non-primary MAC clients. 1060 */ 1061 mac_group_t *grp = &mip->mi_rx_groups[0]; 1062 1063 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1064 err = mac_start_group_and_rings(grp); 1065 if (err != 0) { 1066 mip->mi_active--; 1067 if (ring != NULL) { 1068 mac_stop_ring(ring); 1069 ring->mr_state = MR_FREE; 1070 } 1071 return (err); 1072 } 1073 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1074 } 1075 } 1076 1077 return (err); 1078 } 1079 1080 /* 1081 * Private GLDv3 function to stop a MAC instance. 1082 */ 1083 void 1084 mac_stop(mac_handle_t mh) 1085 { 1086 mac_impl_t *mip = (mac_impl_t *)mh; 1087 1088 ASSERT(mip->mi_stop != NULL); 1089 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1090 1091 /* 1092 * Check whether the device is still needed. 1093 */ 1094 ASSERT(mip->mi_active != 0); 1095 if (--mip->mi_active == 0) { 1096 if (mip->mi_rx_groups != NULL) { 1097 /* 1098 * There should be no more active clients since the 1099 * MAC is being stopped. Stop the default RX group 1100 * and transition it back to registered state. 1101 */ 1102 mac_group_t *grp = &mip->mi_rx_groups[0]; 1103 1104 /* 1105 * When clients are torn down, the groups 1106 * are release via mac_release_rx_group which 1107 * knows the the default group is always in 1108 * started mode since broadcast uses it. So 1109 * we can assert that their are no clients 1110 * (since mac_bcast_add doesn't register itself 1111 * as a client) and group is in SHARED state. 1112 */ 1113 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1114 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1115 mip->mi_nactiveclients == 0); 1116 mac_stop_group_and_rings(grp); 1117 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1118 } 1119 1120 if (mip->mi_default_tx_ring != NULL) { 1121 mac_ring_t *ring; 1122 1123 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1124 mac_stop_ring(ring); 1125 ring->mr_state = MR_FREE; 1126 } 1127 1128 /* 1129 * Stop the device. 1130 */ 1131 mip->mi_stop(mip->mi_driver); 1132 } 1133 } 1134 1135 int 1136 i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype) 1137 { 1138 int err = 0; 1139 1140 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1141 ASSERT(mip->mi_setpromisc != NULL); 1142 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1143 1144 /* 1145 * Determine whether we should enable or disable promiscuous mode. 1146 * For details on the distinction between "device promiscuous mode" 1147 * and "MAC promiscuous mode", see PSARC/2005/289. 1148 */ 1149 if (on) { 1150 /* 1151 * Enable promiscuous mode on the device if not yet enabled. 1152 */ 1153 if (mip->mi_devpromisc++ == 0) { 1154 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1155 if (err != 0) { 1156 mip->mi_devpromisc--; 1157 return (err); 1158 } 1159 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1160 } 1161 1162 /* 1163 * Enable promiscuous mode on the MAC if not yet enabled. 1164 */ 1165 if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0) 1166 i_mac_notify(mip, MAC_NOTE_PROMISC); 1167 } else { 1168 if (mip->mi_devpromisc == 0) 1169 return (EPROTO); 1170 1171 /* 1172 * Disable promiscuous mode on the device if this is the last 1173 * enabling. 1174 */ 1175 if (--mip->mi_devpromisc == 0) { 1176 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1177 if (err != 0) { 1178 mip->mi_devpromisc++; 1179 return (err); 1180 } 1181 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1182 } 1183 1184 /* 1185 * Disable promiscuous mode on the MAC if this is the last 1186 * enabling. 1187 */ 1188 if (ptype == MAC_PROMISC && --mip->mi_promisc == 0) 1189 i_mac_notify(mip, MAC_NOTE_PROMISC); 1190 } 1191 1192 return (0); 1193 } 1194 1195 int 1196 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype) 1197 { 1198 mac_impl_t *mip = (mac_impl_t *)mh; 1199 int rv; 1200 1201 i_mac_perim_enter(mip); 1202 rv = i_mac_promisc_set(mip, on, ptype); 1203 if (rv != 0 && !on) { 1204 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous mode " 1205 "because of error 0x%x", mip->mi_name, rv); 1206 rv = 0; 1207 } 1208 i_mac_perim_exit(mip); 1209 return (rv); 1210 } 1211 1212 /* 1213 * The promiscuity state can change any time. If the caller needs to take 1214 * actions that are atomic with the promiscuity state, then the caller needs 1215 * to bracket the entire sequence with mac_perim_enter/exit 1216 */ 1217 boolean_t 1218 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype) 1219 { 1220 mac_impl_t *mip = (mac_impl_t *)mh; 1221 1222 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1223 1224 /* 1225 * Return the current promiscuity. 1226 */ 1227 if (ptype == MAC_DEVPROMISC) 1228 return (mip->mi_devpromisc != 0); 1229 else 1230 return (mip->mi_promisc != 0); 1231 } 1232 1233 /* 1234 * Invoked at MAC instance attach time to initialize the list 1235 * of factory MAC addresses supported by a MAC instance. This function 1236 * builds a local cache in the mac_impl_t for the MAC addresses 1237 * supported by the underlying hardware. The MAC clients themselves 1238 * use the mac_addr_factory*() functions to query and reserve 1239 * factory MAC addresses. 1240 */ 1241 void 1242 mac_addr_factory_init(mac_impl_t *mip) 1243 { 1244 mac_capab_multifactaddr_t capab; 1245 uint8_t *addr; 1246 int i; 1247 1248 /* 1249 * First round to see how many factory MAC addresses are available. 1250 */ 1251 bzero(&capab, sizeof (capab)); 1252 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1253 &capab) || (capab.mcm_naddr == 0)) { 1254 /* 1255 * The MAC instance doesn't support multiple factory 1256 * MAC addresses, we're done here. 1257 */ 1258 return; 1259 } 1260 1261 /* 1262 * Allocate the space and get all the factory addresses. 1263 */ 1264 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1265 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1266 1267 mip->mi_factory_addr_num = capab.mcm_naddr; 1268 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1269 sizeof (mac_factory_addr_t), KM_SLEEP); 1270 1271 for (i = 0; i < capab.mcm_naddr; i++) { 1272 bcopy(addr + i * MAXMACADDRLEN, 1273 mip->mi_factory_addr[i].mfa_addr, 1274 mip->mi_type->mt_addr_length); 1275 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1276 } 1277 1278 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1279 } 1280 1281 void 1282 mac_addr_factory_fini(mac_impl_t *mip) 1283 { 1284 if (mip->mi_factory_addr == NULL) { 1285 ASSERT(mip->mi_factory_addr_num == 0); 1286 return; 1287 } 1288 1289 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1290 sizeof (mac_factory_addr_t)); 1291 1292 mip->mi_factory_addr = NULL; 1293 mip->mi_factory_addr_num = 0; 1294 } 1295 1296 /* 1297 * Reserve a factory MAC address. If *slot is set to -1, the function 1298 * attempts to reserve any of the available factory MAC addresses and 1299 * returns the reserved slot id. If no slots are available, the function 1300 * returns ENOSPC. If *slot is not set to -1, the function reserves 1301 * the specified slot if it is available, or returns EBUSY is the slot 1302 * is already used. Returns ENOTSUP if the underlying MAC does not 1303 * support multiple factory addresses. If the slot number is not -1 but 1304 * is invalid, returns EINVAL. 1305 */ 1306 int 1307 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1308 { 1309 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1310 mac_impl_t *mip = mcip->mci_mip; 1311 int i, ret = 0; 1312 1313 i_mac_perim_enter(mip); 1314 /* 1315 * Protect against concurrent readers that may need a self-consistent 1316 * view of the factory addresses 1317 */ 1318 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1319 1320 if (mip->mi_factory_addr_num == 0) { 1321 ret = ENOTSUP; 1322 goto bail; 1323 } 1324 1325 if (*slot != -1) { 1326 /* check the specified slot */ 1327 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1328 ret = EINVAL; 1329 goto bail; 1330 } 1331 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1332 ret = EBUSY; 1333 goto bail; 1334 } 1335 } else { 1336 /* pick the next available slot */ 1337 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1338 if (!mip->mi_factory_addr[i].mfa_in_use) 1339 break; 1340 } 1341 1342 if (i == mip->mi_factory_addr_num) { 1343 ret = ENOSPC; 1344 goto bail; 1345 } 1346 *slot = i+1; 1347 } 1348 1349 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1350 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1351 1352 bail: 1353 rw_exit(&mip->mi_rw_lock); 1354 i_mac_perim_exit(mip); 1355 return (ret); 1356 } 1357 1358 /* 1359 * Release the specified factory MAC address slot. 1360 */ 1361 void 1362 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1363 { 1364 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1365 mac_impl_t *mip = mcip->mci_mip; 1366 1367 i_mac_perim_enter(mip); 1368 /* 1369 * Protect against concurrent readers that may need a self-consistent 1370 * view of the factory addresses 1371 */ 1372 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1373 1374 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1375 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1376 1377 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1378 1379 rw_exit(&mip->mi_rw_lock); 1380 i_mac_perim_exit(mip); 1381 } 1382 1383 /* 1384 * Stores in mac_addr the value of the specified MAC address. Returns 1385 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1386 * The caller must provide a string of at least MAXNAMELEN bytes. 1387 */ 1388 void 1389 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1390 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1391 { 1392 mac_impl_t *mip = (mac_impl_t *)mh; 1393 boolean_t in_use; 1394 1395 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1396 1397 /* 1398 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1399 * and mi_rw_lock 1400 */ 1401 rw_enter(&mip->mi_rw_lock, RW_READER); 1402 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1403 *addr_len = mip->mi_type->mt_addr_length; 1404 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1405 if (in_use && client_name != NULL) { 1406 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1407 client_name, MAXNAMELEN); 1408 } 1409 if (in_use_arg != NULL) 1410 *in_use_arg = in_use; 1411 rw_exit(&mip->mi_rw_lock); 1412 } 1413 1414 /* 1415 * Returns the number of factory MAC addresses (in addition to the 1416 * primary MAC address), 0 if the underlying MAC doesn't support 1417 * that feature. 1418 */ 1419 uint_t 1420 mac_addr_factory_num(mac_handle_t mh) 1421 { 1422 mac_impl_t *mip = (mac_impl_t *)mh; 1423 1424 return (mip->mi_factory_addr_num); 1425 } 1426 1427 1428 void 1429 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1430 { 1431 mac_ring_t *ring; 1432 1433 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1434 ring->mr_flag &= ~flag; 1435 } 1436 1437 /* 1438 * The following mac_hwrings_xxx() functions are private mac client functions 1439 * used by the aggr driver to access and control the underlying HW Rx group 1440 * and rings. In this case, the aggr driver has exclusive control of the 1441 * underlying HW Rx group/rings, it calls the following functions to 1442 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1443 * addresses, or set up the Rx callback. 1444 */ 1445 /* ARGSUSED */ 1446 static void 1447 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1448 mblk_t *mp_chain, boolean_t loopback) 1449 { 1450 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1451 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1452 mac_direct_rx_t proc; 1453 void *arg1; 1454 mac_resource_handle_t arg2; 1455 1456 proc = srs_rx->sr_func; 1457 arg1 = srs_rx->sr_arg1; 1458 arg2 = mac_srs->srs_mrh; 1459 1460 proc(arg1, arg2, mp_chain, NULL); 1461 } 1462 1463 /* 1464 * This function is called to get the list of HW rings that are reserved by 1465 * an exclusive mac client. 1466 * 1467 * Return value: the number of HW rings. 1468 */ 1469 int 1470 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1471 mac_ring_handle_t *hwrh) 1472 { 1473 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1474 flow_entry_t *flent = mcip->mci_flent; 1475 mac_group_t *grp = flent->fe_rx_ring_group; 1476 mac_ring_t *ring; 1477 int cnt = 0; 1478 1479 /* 1480 * The mac client did not reserve any RX group, return directly. 1481 * This is probably because the underlying MAC does not support 1482 * any RX groups. 1483 */ 1484 *hwgh = NULL; 1485 if (grp == NULL) 1486 return (0); 1487 1488 /* 1489 * This RX group must be reserved by this mac client. 1490 */ 1491 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1492 (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1493 1494 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) { 1495 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1496 hwrh[cnt++] = (mac_ring_handle_t)ring; 1497 } 1498 *hwgh = (mac_group_handle_t)grp; 1499 return (cnt); 1500 } 1501 1502 /* 1503 * Setup the RX callback of the mac client which exclusively controls HW ring. 1504 */ 1505 void 1506 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1507 { 1508 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1509 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1510 1511 mac_srs->srs_mrh = prh; 1512 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1513 } 1514 1515 void 1516 mac_hwring_teardown(mac_ring_handle_t hwrh) 1517 { 1518 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1519 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1520 1521 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1522 mac_srs->srs_mrh = NULL; 1523 } 1524 1525 int 1526 mac_hwring_disable_intr(mac_ring_handle_t rh) 1527 { 1528 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1529 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1530 1531 return (intr->mi_disable(intr->mi_handle)); 1532 } 1533 1534 int 1535 mac_hwring_enable_intr(mac_ring_handle_t rh) 1536 { 1537 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1538 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1539 1540 return (intr->mi_enable(intr->mi_handle)); 1541 } 1542 1543 int 1544 mac_hwring_start(mac_ring_handle_t rh) 1545 { 1546 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1547 1548 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1549 return (0); 1550 } 1551 1552 void 1553 mac_hwring_stop(mac_ring_handle_t rh) 1554 { 1555 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1556 1557 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1558 } 1559 1560 mblk_t * 1561 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1562 { 1563 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1564 mac_ring_info_t *info = &rr_ring->mr_info; 1565 1566 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1567 } 1568 1569 int 1570 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1571 { 1572 mac_group_t *group = (mac_group_t *)gh; 1573 1574 return (mac_group_addmac(group, addr)); 1575 } 1576 1577 int 1578 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1579 { 1580 mac_group_t *group = (mac_group_t *)gh; 1581 1582 return (mac_group_remmac(group, addr)); 1583 } 1584 1585 /* 1586 * Set the RX group to be shared/reserved. Note that the group must be 1587 * started/stopped outside of this function. 1588 */ 1589 void 1590 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1591 { 1592 /* 1593 * If there is no change in the group state, just return. 1594 */ 1595 if (grp->mrg_state == state) 1596 return; 1597 1598 switch (state) { 1599 case MAC_GROUP_STATE_RESERVED: 1600 /* 1601 * Successfully reserved the group. 1602 * 1603 * Given that there is an exclusive client controlling this 1604 * group, we enable the group level polling when available, 1605 * so that SRSs get to turn on/off individual rings they's 1606 * assigned to. 1607 */ 1608 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1609 1610 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1611 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1612 1613 break; 1614 1615 case MAC_GROUP_STATE_SHARED: 1616 /* 1617 * Set all rings of this group to software classified. 1618 * If the group has an overriding interrupt, then re-enable it. 1619 */ 1620 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1621 1622 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1623 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1624 1625 /* The ring is not available for reservations any more */ 1626 break; 1627 1628 case MAC_GROUP_STATE_REGISTERED: 1629 /* Also callable from mac_register, perim is not held */ 1630 break; 1631 1632 default: 1633 ASSERT(B_FALSE); 1634 break; 1635 } 1636 1637 grp->mrg_state = state; 1638 } 1639 1640 /* 1641 * Quiesce future hardware classified packets for the specified Rx ring 1642 */ 1643 static void 1644 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1645 { 1646 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1647 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1648 1649 mutex_enter(&rx_ring->mr_lock); 1650 rx_ring->mr_flag |= ring_flag; 1651 while (rx_ring->mr_refcnt != 0) 1652 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1653 mutex_exit(&rx_ring->mr_lock); 1654 } 1655 1656 /* 1657 * Please see mac_tx for details about the per cpu locking scheme 1658 */ 1659 static void 1660 mac_tx_lock_all(mac_client_impl_t *mcip) 1661 { 1662 int i; 1663 1664 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1665 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1666 } 1667 1668 static void 1669 mac_tx_unlock_all(mac_client_impl_t *mcip) 1670 { 1671 int i; 1672 1673 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1674 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1675 } 1676 1677 static void 1678 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1679 { 1680 int i; 1681 1682 for (i = mac_tx_percpu_cnt; i > 0; i--) 1683 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1684 } 1685 1686 static int 1687 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1688 { 1689 int i; 1690 int refcnt = 0; 1691 1692 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1693 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1694 1695 return (refcnt); 1696 } 1697 1698 /* 1699 * Stop future Tx packets coming down from the client in preparation for 1700 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1701 * of rings between clients 1702 */ 1703 void 1704 mac_tx_client_block(mac_client_impl_t *mcip) 1705 { 1706 mac_tx_lock_all(mcip); 1707 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1708 while (mac_tx_sum_refcnt(mcip) != 0) { 1709 mac_tx_unlock_allbutzero(mcip); 1710 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1711 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1712 mac_tx_lock_all(mcip); 1713 } 1714 mac_tx_unlock_all(mcip); 1715 } 1716 1717 void 1718 mac_tx_client_unblock(mac_client_impl_t *mcip) 1719 { 1720 mac_tx_lock_all(mcip); 1721 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1722 mac_tx_unlock_all(mcip); 1723 /* 1724 * We may fail to disable flow control for the last MAC_NOTE_TX 1725 * notification because the MAC client is quiesced. Send the 1726 * notification again. 1727 */ 1728 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1729 } 1730 1731 /* 1732 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1733 * quiesce is done. 1734 */ 1735 static void 1736 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1737 { 1738 mutex_enter(&srs->srs_lock); 1739 while (!(srs->srs_state & srs_flag)) 1740 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1741 mutex_exit(&srs->srs_lock); 1742 } 1743 1744 /* 1745 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1746 * works bottom up by cutting off packet flow from the bottommost point in the 1747 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1748 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1749 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1750 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1751 * for the SRS and MR flags. In the former case the threads pause waiting for 1752 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1753 * is also mostly similar to the above. 1754 * 1755 * 1. Stop future hardware classified packets at the lowest level in the mac. 1756 * Remove any hardware classification rule (CONDEMNED case) and mark the 1757 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1758 * from increasing. Upcalls from the driver that come through hardware 1759 * classification will be dropped in mac_rx from now on. Then we wait for 1760 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1761 * sure there aren't any upcall threads from the driver through hardware 1762 * classification. In the case of SRS teardown we also remove the 1763 * classification rule in the driver. 1764 * 1765 * 2. Stop future software classified packets by marking the flow entry with 1766 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1767 * increasing. We also remove the flow entry from the table in the latter 1768 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1769 * that indicates there aren't any active threads using that flow entry. 1770 * 1771 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1772 * SRS worker thread, and the soft ring threads are quiesced in sequence 1773 * with the SRS worker thread serving as a master controller. This 1774 * mechansim is explained in mac_srs_worker_quiesce(). 1775 * 1776 * The restart mechanism to reactivate the SRS and softrings is explained 1777 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1778 * restart sequence. 1779 */ 1780 void 1781 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1782 { 1783 flow_entry_t *flent = srs->srs_flent; 1784 uint_t mr_flag, srs_done_flag; 1785 1786 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1787 ASSERT(!(srs->srs_type & SRST_TX)); 1788 1789 if (srs_quiesce_flag == SRS_CONDEMNED) { 1790 mr_flag = MR_CONDEMNED; 1791 srs_done_flag = SRS_CONDEMNED_DONE; 1792 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1793 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1794 } else { 1795 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1796 mr_flag = MR_QUIESCE; 1797 srs_done_flag = SRS_QUIESCE_DONE; 1798 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1799 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1800 } 1801 1802 if (srs->srs_ring != NULL) { 1803 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1804 } else { 1805 /* 1806 * SRS is driven by software classification. In case 1807 * of CONDEMNED, the top level teardown functions will 1808 * deal with flow removal. 1809 */ 1810 if (srs_quiesce_flag != SRS_CONDEMNED) { 1811 FLOW_MARK(flent, FE_QUIESCE); 1812 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1813 } 1814 } 1815 1816 /* 1817 * Signal the SRS to quiesce itself, and then cv_wait for the 1818 * SRS quiesce to complete. The SRS worker thread will wake us 1819 * up when the quiesce is complete 1820 */ 1821 mac_srs_signal(srs, srs_quiesce_flag); 1822 mac_srs_quiesce_wait(srs, srs_done_flag); 1823 } 1824 1825 /* 1826 * Remove an SRS. 1827 */ 1828 void 1829 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1830 { 1831 flow_entry_t *flent = srs->srs_flent; 1832 int i; 1833 1834 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1835 /* 1836 * Locate and remove our entry in the fe_rx_srs[] array, and 1837 * adjust the fe_rx_srs array entries and array count by 1838 * moving the last entry into the vacated spot. 1839 */ 1840 mutex_enter(&flent->fe_lock); 1841 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1842 if (flent->fe_rx_srs[i] == srs) 1843 break; 1844 } 1845 1846 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1847 if (i != flent->fe_rx_srs_cnt - 1) { 1848 flent->fe_rx_srs[i] = 1849 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1850 i = flent->fe_rx_srs_cnt - 1; 1851 } 1852 1853 flent->fe_rx_srs[i] = NULL; 1854 flent->fe_rx_srs_cnt--; 1855 mutex_exit(&flent->fe_lock); 1856 1857 mac_srs_free(srs); 1858 } 1859 1860 static void 1861 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1862 { 1863 mutex_enter(&srs->srs_lock); 1864 srs->srs_state &= ~flag; 1865 mutex_exit(&srs->srs_lock); 1866 } 1867 1868 void 1869 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1870 { 1871 flow_entry_t *flent = srs->srs_flent; 1872 mac_ring_t *mr; 1873 1874 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1875 ASSERT((srs->srs_type & SRST_TX) == 0); 1876 1877 /* 1878 * This handles a change in the number of SRSs between the quiesce and 1879 * and restart operation of a flow. 1880 */ 1881 if (!SRS_QUIESCED(srs)) 1882 return; 1883 1884 /* 1885 * Signal the SRS to restart itself. Wait for the restart to complete 1886 * Note that we only restart the SRS if it is not marked as 1887 * permanently quiesced. 1888 */ 1889 if (!SRS_QUIESCED_PERMANENT(srs)) { 1890 mac_srs_signal(srs, SRS_RESTART); 1891 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1892 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1893 1894 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1895 } 1896 1897 /* Finally clear the flags to let the packets in */ 1898 mr = srs->srs_ring; 1899 if (mr != NULL) { 1900 MAC_RING_UNMARK(mr, MR_QUIESCE); 1901 /* In case the ring was stopped, safely restart it */ 1902 (void) mac_start_ring(mr); 1903 } else { 1904 FLOW_UNMARK(flent, FE_QUIESCE); 1905 } 1906 } 1907 1908 /* 1909 * Temporary quiesce of a flow and associated Rx SRS. 1910 * Please see block comment above mac_rx_classify_flow_rem. 1911 */ 1912 /* ARGSUSED */ 1913 int 1914 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1915 { 1916 int i; 1917 1918 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1919 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1920 SRS_QUIESCE); 1921 } 1922 return (0); 1923 } 1924 1925 /* 1926 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1927 * Please see block comment above mac_rx_classify_flow_rem 1928 */ 1929 /* ARGSUSED */ 1930 int 1931 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1932 { 1933 int i; 1934 1935 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1936 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1937 1938 return (0); 1939 } 1940 1941 void 1942 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1943 { 1944 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1945 flow_entry_t *flent = mcip->mci_flent; 1946 mac_impl_t *mip = mcip->mci_mip; 1947 mac_soft_ring_set_t *mac_srs; 1948 int i; 1949 1950 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1951 1952 if (flent == NULL) 1953 return; 1954 1955 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1956 mac_srs = flent->fe_rx_srs[i]; 1957 mutex_enter(&mac_srs->srs_lock); 1958 if (on) 1959 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1960 else 1961 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1962 mutex_exit(&mac_srs->srs_lock); 1963 } 1964 } 1965 1966 void 1967 mac_rx_client_quiesce(mac_client_handle_t mch) 1968 { 1969 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1970 mac_impl_t *mip = mcip->mci_mip; 1971 1972 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1973 1974 if (MCIP_DATAPATH_SETUP(mcip)) { 1975 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1976 NULL); 1977 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1978 mac_rx_classify_flow_quiesce, NULL); 1979 } 1980 } 1981 1982 void 1983 mac_rx_client_restart(mac_client_handle_t mch) 1984 { 1985 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1986 mac_impl_t *mip = mcip->mci_mip; 1987 1988 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1989 1990 if (MCIP_DATAPATH_SETUP(mcip)) { 1991 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1992 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1993 mac_rx_classify_flow_restart, NULL); 1994 } 1995 } 1996 1997 /* 1998 * This function only quiesces the Tx SRS and softring worker threads. Callers 1999 * need to make sure that there aren't any mac client threads doing current or 2000 * future transmits in the mac before calling this function. 2001 */ 2002 void 2003 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2004 { 2005 mac_client_impl_t *mcip = srs->srs_mcip; 2006 2007 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2008 2009 ASSERT(srs->srs_type & SRST_TX); 2010 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2011 srs_quiesce_flag == SRS_QUIESCE); 2012 2013 /* 2014 * Signal the SRS to quiesce itself, and then cv_wait for the 2015 * SRS quiesce to complete. The SRS worker thread will wake us 2016 * up when the quiesce is complete 2017 */ 2018 mac_srs_signal(srs, srs_quiesce_flag); 2019 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2020 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2021 } 2022 2023 void 2024 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2025 { 2026 /* 2027 * Resizing the fanout could result in creation of new SRSs. 2028 * They may not necessarily be in the quiesced state in which 2029 * case it need be restarted 2030 */ 2031 if (!SRS_QUIESCED(srs)) 2032 return; 2033 2034 mac_srs_signal(srs, SRS_RESTART); 2035 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2036 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2037 } 2038 2039 /* 2040 * Temporary quiesce of a flow and associated Rx SRS. 2041 * Please see block comment above mac_rx_srs_quiesce 2042 */ 2043 /* ARGSUSED */ 2044 int 2045 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2046 { 2047 /* 2048 * The fe_tx_srs is null for a subflow on an interface that is 2049 * not plumbed 2050 */ 2051 if (flent->fe_tx_srs != NULL) 2052 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2053 return (0); 2054 } 2055 2056 /* ARGSUSED */ 2057 int 2058 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2059 { 2060 /* 2061 * The fe_tx_srs is null for a subflow on an interface that is 2062 * not plumbed 2063 */ 2064 if (flent->fe_tx_srs != NULL) 2065 mac_tx_srs_restart(flent->fe_tx_srs); 2066 return (0); 2067 } 2068 2069 void 2070 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2071 { 2072 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2073 2074 mac_tx_client_block(mcip); 2075 if (MCIP_TX_SRS(mcip) != NULL) { 2076 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2077 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2078 mac_tx_flow_quiesce, NULL); 2079 } 2080 } 2081 2082 void 2083 mac_tx_client_restart(mac_client_impl_t *mcip) 2084 { 2085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2086 2087 mac_tx_client_unblock(mcip); 2088 if (MCIP_TX_SRS(mcip) != NULL) { 2089 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2090 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2091 mac_tx_flow_restart, NULL); 2092 } 2093 } 2094 2095 void 2096 mac_tx_client_flush(mac_client_impl_t *mcip) 2097 { 2098 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2099 2100 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2101 mac_tx_client_restart(mcip); 2102 } 2103 2104 void 2105 mac_client_quiesce(mac_client_impl_t *mcip) 2106 { 2107 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2108 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2109 } 2110 2111 void 2112 mac_client_restart(mac_client_impl_t *mcip) 2113 { 2114 mac_rx_client_restart((mac_client_handle_t)mcip); 2115 mac_tx_client_restart(mcip); 2116 } 2117 2118 /* 2119 * Allocate a minor number. 2120 */ 2121 minor_t 2122 mac_minor_hold(boolean_t sleep) 2123 { 2124 minor_t minor; 2125 2126 /* 2127 * Grab a value from the arena. 2128 */ 2129 atomic_add_32(&minor_count, 1); 2130 2131 if (sleep) 2132 minor = (uint_t)id_alloc(minor_ids); 2133 else 2134 minor = (uint_t)id_alloc_nosleep(minor_ids); 2135 2136 if (minor == 0) { 2137 atomic_add_32(&minor_count, -1); 2138 return (0); 2139 } 2140 2141 return (minor); 2142 } 2143 2144 /* 2145 * Release a previously allocated minor number. 2146 */ 2147 void 2148 mac_minor_rele(minor_t minor) 2149 { 2150 /* 2151 * Return the value to the arena. 2152 */ 2153 id_free(minor_ids, minor); 2154 atomic_add_32(&minor_count, -1); 2155 } 2156 2157 uint32_t 2158 mac_no_notification(mac_handle_t mh) 2159 { 2160 mac_impl_t *mip = (mac_impl_t *)mh; 2161 2162 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2163 mip->mi_capab_legacy.ml_unsup_note : 0); 2164 } 2165 2166 /* 2167 * Prevent any new opens of this mac in preparation for unregister 2168 */ 2169 int 2170 i_mac_disable(mac_impl_t *mip) 2171 { 2172 mac_client_impl_t *mcip; 2173 2174 rw_enter(&i_mac_impl_lock, RW_WRITER); 2175 if (mip->mi_state_flags & MIS_DISABLED) { 2176 /* Already disabled, return success */ 2177 rw_exit(&i_mac_impl_lock); 2178 return (0); 2179 } 2180 /* 2181 * See if there are any other references to this mac_t (e.g., VLAN's). 2182 * If so return failure. If all the other checks below pass, then 2183 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2184 * any new VLAN's from being created or new mac client opens of this 2185 * mac end point. 2186 */ 2187 if (mip->mi_ref > 0) { 2188 rw_exit(&i_mac_impl_lock); 2189 return (EBUSY); 2190 } 2191 2192 /* 2193 * mac clients must delete all multicast groups they join before 2194 * closing. bcast groups are reference counted, the last client 2195 * to delete the group will wait till the group is physically 2196 * deleted. Since all clients have closed this mac end point 2197 * mi_bcast_ngrps must be zero at this point 2198 */ 2199 ASSERT(mip->mi_bcast_ngrps == 0); 2200 2201 /* 2202 * Don't let go of this if it has some flows. 2203 * All other code guarantees no flows are added to a disabled 2204 * mac, therefore it is sufficient to check for the flow table 2205 * only here. 2206 */ 2207 mcip = mac_primary_client_handle(mip); 2208 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2209 rw_exit(&i_mac_impl_lock); 2210 return (ENOTEMPTY); 2211 } 2212 2213 mip->mi_state_flags |= MIS_DISABLED; 2214 rw_exit(&i_mac_impl_lock); 2215 return (0); 2216 } 2217 2218 int 2219 mac_disable_nowait(mac_handle_t mh) 2220 { 2221 mac_impl_t *mip = (mac_impl_t *)mh; 2222 int err; 2223 2224 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2225 return (err); 2226 err = i_mac_disable(mip); 2227 i_mac_perim_exit(mip); 2228 return (err); 2229 } 2230 2231 int 2232 mac_disable(mac_handle_t mh) 2233 { 2234 mac_impl_t *mip = (mac_impl_t *)mh; 2235 int err; 2236 2237 i_mac_perim_enter(mip); 2238 err = i_mac_disable(mip); 2239 i_mac_perim_exit(mip); 2240 2241 /* 2242 * Clean up notification thread and wait for it to exit. 2243 */ 2244 if (err == 0) 2245 i_mac_notify_exit(mip); 2246 2247 return (err); 2248 } 2249 2250 /* 2251 * Called when the MAC instance has a non empty flow table, to de-multiplex 2252 * incoming packets to the right flow. 2253 * The MAC's rw lock is assumed held as a READER. 2254 */ 2255 /* ARGSUSED */ 2256 static mblk_t * 2257 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2258 { 2259 flow_entry_t *flent = NULL; 2260 uint_t flags = FLOW_INBOUND; 2261 int err; 2262 2263 /* 2264 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2265 * to mac_flow_lookup() so that the VLAN packets can be successfully 2266 * passed to the non-VLAN aggregation flows. 2267 * 2268 * Note that there is possibly a race between this and 2269 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2270 * classified to non-VLAN flows of non-aggregation mac clients. These 2271 * VLAN packets will be then filtered out by the mac module. 2272 */ 2273 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2274 flags |= FLOW_IGNORE_VLAN; 2275 2276 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2277 if (err != 0) { 2278 /* no registered receive function */ 2279 return (mp); 2280 } else { 2281 mac_client_impl_t *mcip; 2282 2283 /* 2284 * This flent might just be an additional one on the MAC client, 2285 * i.e. for classification purposes (different fdesc), however 2286 * the resources, SRS et. al., are in the mci_flent, so if 2287 * this isn't the mci_flent, we need to get it. 2288 */ 2289 if ((mcip = flent->fe_mcip) != NULL && 2290 mcip->mci_flent != flent) { 2291 FLOW_REFRELE(flent); 2292 flent = mcip->mci_flent; 2293 FLOW_TRY_REFHOLD(flent, err); 2294 if (err != 0) 2295 return (mp); 2296 } 2297 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2298 B_FALSE); 2299 FLOW_REFRELE(flent); 2300 } 2301 return (NULL); 2302 } 2303 2304 mblk_t * 2305 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2306 { 2307 mac_impl_t *mip = (mac_impl_t *)mh; 2308 mblk_t *bp, *bp1, **bpp, *list = NULL; 2309 2310 /* 2311 * We walk the chain and attempt to classify each packet. 2312 * The packets that couldn't be classified will be returned 2313 * back to the caller. 2314 */ 2315 bp = mp_chain; 2316 bpp = &list; 2317 while (bp != NULL) { 2318 bp1 = bp; 2319 bp = bp->b_next; 2320 bp1->b_next = NULL; 2321 2322 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2323 *bpp = bp1; 2324 bpp = &bp1->b_next; 2325 } 2326 } 2327 return (list); 2328 } 2329 2330 static int 2331 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2332 { 2333 mac_ring_handle_t ring = arg; 2334 2335 if (flent->fe_tx_srs) 2336 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2337 return (0); 2338 } 2339 2340 void 2341 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2342 { 2343 mac_client_impl_t *cclient; 2344 mac_soft_ring_set_t *mac_srs; 2345 2346 /* 2347 * After grabbing the mi_rw_lock, the list of clients can't change. 2348 * If there are any clients mi_disabled must be B_FALSE and can't 2349 * get set since there are clients. If there aren't any clients we 2350 * don't do anything. In any case the mip has to be valid. The driver 2351 * must make sure that it goes single threaded (with respect to mac 2352 * calls) and wait for all pending mac calls to finish before calling 2353 * mac_unregister. 2354 */ 2355 rw_enter(&i_mac_impl_lock, RW_READER); 2356 if (mip->mi_state_flags & MIS_DISABLED) { 2357 rw_exit(&i_mac_impl_lock); 2358 return; 2359 } 2360 2361 /* 2362 * Get MAC tx srs from walking mac_client_handle list. 2363 */ 2364 rw_enter(&mip->mi_rw_lock, RW_READER); 2365 for (cclient = mip->mi_clients_list; cclient != NULL; 2366 cclient = cclient->mci_client_next) { 2367 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2368 mac_tx_srs_wakeup(mac_srs, ring); 2369 (void) mac_flow_walk(cclient->mci_subflow_tab, 2370 mac_tx_flow_srs_wakeup, ring); 2371 } 2372 rw_exit(&mip->mi_rw_lock); 2373 rw_exit(&i_mac_impl_lock); 2374 } 2375 2376 /* ARGSUSED */ 2377 void 2378 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2379 boolean_t add) 2380 { 2381 mac_impl_t *mip = (mac_impl_t *)mh; 2382 2383 i_mac_perim_enter((mac_impl_t *)mh); 2384 /* 2385 * If no specific refresh function was given then default to the 2386 * driver's m_multicst entry point. 2387 */ 2388 if (refresh == NULL) { 2389 refresh = mip->mi_multicst; 2390 arg = mip->mi_driver; 2391 } 2392 2393 mac_bcast_refresh(mip, refresh, arg, add); 2394 i_mac_perim_exit((mac_impl_t *)mh); 2395 } 2396 2397 void 2398 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2399 { 2400 mac_impl_t *mip = (mac_impl_t *)mh; 2401 2402 /* 2403 * If no specific refresh function was given then default to the 2404 * driver's m_promisc entry point. 2405 */ 2406 if (refresh == NULL) { 2407 refresh = mip->mi_setpromisc; 2408 arg = mip->mi_driver; 2409 } 2410 ASSERT(refresh != NULL); 2411 2412 /* 2413 * Call the refresh function with the current promiscuity. 2414 */ 2415 refresh(arg, (mip->mi_devpromisc != 0)); 2416 } 2417 2418 /* 2419 * The mac client requests that the mac not to change its margin size to 2420 * be less than the specified value. If "current" is B_TRUE, then the client 2421 * requests the mac not to change its margin size to be smaller than the 2422 * current size. Further, return the current margin size value in this case. 2423 * 2424 * We keep every requested size in an ordered list from largest to smallest. 2425 */ 2426 int 2427 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2428 { 2429 mac_impl_t *mip = (mac_impl_t *)mh; 2430 mac_margin_req_t **pp, *p; 2431 int err = 0; 2432 2433 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2434 if (current) 2435 *marginp = mip->mi_margin; 2436 2437 /* 2438 * If the current margin value cannot satisfy the margin requested, 2439 * return ENOTSUP directly. 2440 */ 2441 if (*marginp > mip->mi_margin) { 2442 err = ENOTSUP; 2443 goto done; 2444 } 2445 2446 /* 2447 * Check whether the given margin is already in the list. If so, 2448 * bump the reference count. 2449 */ 2450 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2451 if (p->mmr_margin == *marginp) { 2452 /* 2453 * The margin requested is already in the list, 2454 * so just bump the reference count. 2455 */ 2456 p->mmr_ref++; 2457 goto done; 2458 } 2459 if (p->mmr_margin < *marginp) 2460 break; 2461 } 2462 2463 2464 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2465 p->mmr_margin = *marginp; 2466 p->mmr_ref++; 2467 p->mmr_nextp = *pp; 2468 *pp = p; 2469 2470 done: 2471 rw_exit(&(mip->mi_rw_lock)); 2472 return (err); 2473 } 2474 2475 /* 2476 * The mac client requests to cancel its previous mac_margin_add() request. 2477 * We remove the requested margin size from the list. 2478 */ 2479 int 2480 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2481 { 2482 mac_impl_t *mip = (mac_impl_t *)mh; 2483 mac_margin_req_t **pp, *p; 2484 int err = 0; 2485 2486 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2487 /* 2488 * Find the entry in the list for the given margin. 2489 */ 2490 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2491 if (p->mmr_margin == margin) { 2492 if (--p->mmr_ref == 0) 2493 break; 2494 2495 /* 2496 * There is still a reference to this address so 2497 * there's nothing more to do. 2498 */ 2499 goto done; 2500 } 2501 } 2502 2503 /* 2504 * We did not find an entry for the given margin. 2505 */ 2506 if (p == NULL) { 2507 err = ENOENT; 2508 goto done; 2509 } 2510 2511 ASSERT(p->mmr_ref == 0); 2512 2513 /* 2514 * Remove it from the list. 2515 */ 2516 *pp = p->mmr_nextp; 2517 kmem_free(p, sizeof (mac_margin_req_t)); 2518 done: 2519 rw_exit(&(mip->mi_rw_lock)); 2520 return (err); 2521 } 2522 2523 boolean_t 2524 mac_margin_update(mac_handle_t mh, uint32_t margin) 2525 { 2526 mac_impl_t *mip = (mac_impl_t *)mh; 2527 uint32_t margin_needed = 0; 2528 2529 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2530 2531 if (mip->mi_mmrp != NULL) 2532 margin_needed = mip->mi_mmrp->mmr_margin; 2533 2534 if (margin_needed <= margin) 2535 mip->mi_margin = margin; 2536 2537 rw_exit(&(mip->mi_rw_lock)); 2538 2539 if (margin_needed <= margin) 2540 i_mac_notify(mip, MAC_NOTE_MARGIN); 2541 2542 return (margin_needed <= margin); 2543 } 2544 2545 /* 2546 * MAC Type Plugin functions. 2547 */ 2548 2549 mactype_t * 2550 mactype_getplugin(const char *pname) 2551 { 2552 mactype_t *mtype = NULL; 2553 boolean_t tried_modload = B_FALSE; 2554 2555 mutex_enter(&i_mactype_lock); 2556 2557 find_registered_mactype: 2558 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2559 (mod_hash_val_t *)&mtype) != 0) { 2560 if (!tried_modload) { 2561 /* 2562 * If the plugin has not yet been loaded, then 2563 * attempt to load it now. If modload() succeeds, 2564 * the plugin should have registered using 2565 * mactype_register(), in which case we can go back 2566 * and attempt to find it again. 2567 */ 2568 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2569 tried_modload = B_TRUE; 2570 goto find_registered_mactype; 2571 } 2572 } 2573 } else { 2574 /* 2575 * Note that there's no danger that the plugin we've loaded 2576 * could be unloaded between the modload() step and the 2577 * reference count bump here, as we're holding 2578 * i_mactype_lock, which mactype_unregister() also holds. 2579 */ 2580 atomic_inc_32(&mtype->mt_ref); 2581 } 2582 2583 mutex_exit(&i_mactype_lock); 2584 return (mtype); 2585 } 2586 2587 mactype_register_t * 2588 mactype_alloc(uint_t mactype_version) 2589 { 2590 mactype_register_t *mtrp; 2591 2592 /* 2593 * Make sure there isn't a version mismatch between the plugin and 2594 * the framework. In the future, if multiple versions are 2595 * supported, this check could become more sophisticated. 2596 */ 2597 if (mactype_version != MACTYPE_VERSION) 2598 return (NULL); 2599 2600 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2601 mtrp->mtr_version = mactype_version; 2602 return (mtrp); 2603 } 2604 2605 void 2606 mactype_free(mactype_register_t *mtrp) 2607 { 2608 kmem_free(mtrp, sizeof (mactype_register_t)); 2609 } 2610 2611 int 2612 mactype_register(mactype_register_t *mtrp) 2613 { 2614 mactype_t *mtp; 2615 mactype_ops_t *ops = mtrp->mtr_ops; 2616 2617 /* Do some sanity checking before we register this MAC type. */ 2618 if (mtrp->mtr_ident == NULL || ops == NULL) 2619 return (EINVAL); 2620 2621 /* 2622 * Verify that all mandatory callbacks are set in the ops 2623 * vector. 2624 */ 2625 if (ops->mtops_unicst_verify == NULL || 2626 ops->mtops_multicst_verify == NULL || 2627 ops->mtops_sap_verify == NULL || 2628 ops->mtops_header == NULL || 2629 ops->mtops_header_info == NULL) { 2630 return (EINVAL); 2631 } 2632 2633 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2634 mtp->mt_ident = mtrp->mtr_ident; 2635 mtp->mt_ops = *ops; 2636 mtp->mt_type = mtrp->mtr_mactype; 2637 mtp->mt_nativetype = mtrp->mtr_nativetype; 2638 mtp->mt_addr_length = mtrp->mtr_addrlen; 2639 if (mtrp->mtr_brdcst_addr != NULL) { 2640 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2641 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2642 mtrp->mtr_addrlen); 2643 } 2644 2645 mtp->mt_stats = mtrp->mtr_stats; 2646 mtp->mt_statcount = mtrp->mtr_statcount; 2647 2648 mtp->mt_mapping = mtrp->mtr_mapping; 2649 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2650 2651 if (mod_hash_insert(i_mactype_hash, 2652 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2653 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2654 kmem_free(mtp, sizeof (*mtp)); 2655 return (EEXIST); 2656 } 2657 return (0); 2658 } 2659 2660 int 2661 mactype_unregister(const char *ident) 2662 { 2663 mactype_t *mtp; 2664 mod_hash_val_t val; 2665 int err; 2666 2667 /* 2668 * Let's not allow MAC drivers to use this plugin while we're 2669 * trying to unregister it. Holding i_mactype_lock also prevents a 2670 * plugin from unregistering while a MAC driver is attempting to 2671 * hold a reference to it in i_mactype_getplugin(). 2672 */ 2673 mutex_enter(&i_mactype_lock); 2674 2675 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2676 (mod_hash_val_t *)&mtp)) != 0) { 2677 /* A plugin is trying to unregister, but it never registered. */ 2678 err = ENXIO; 2679 goto done; 2680 } 2681 2682 if (mtp->mt_ref != 0) { 2683 err = EBUSY; 2684 goto done; 2685 } 2686 2687 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2688 ASSERT(err == 0); 2689 if (err != 0) { 2690 /* This should never happen, thus the ASSERT() above. */ 2691 err = EINVAL; 2692 goto done; 2693 } 2694 ASSERT(mtp == (mactype_t *)val); 2695 2696 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2697 kmem_free(mtp, sizeof (mactype_t)); 2698 done: 2699 mutex_exit(&i_mactype_lock); 2700 return (err); 2701 } 2702 2703 /* 2704 * Returns TRUE when the specified property is intended for the MAC framework, 2705 * as opposed to driver defined properties. 2706 */ 2707 static boolean_t 2708 mac_is_macprop(mac_prop_t *macprop) 2709 { 2710 switch (macprop->mp_id) { 2711 case MAC_PROP_MAXBW: 2712 case MAC_PROP_PRIO: 2713 case MAC_PROP_BIND_CPU: 2714 return (B_TRUE); 2715 default: 2716 return (B_FALSE); 2717 } 2718 } 2719 2720 /* 2721 * mac_set_prop() sets mac or hardware driver properties: 2722 * mac properties include maxbw, priority, and cpu binding list. Driver 2723 * properties are private properties to the hardware, such as mtu, speed 2724 * etc. 2725 * If the property is a driver property, mac_set_prop() calls driver's callback 2726 * function to set it. 2727 * If the property is a mac property, mac_set_prop() invokes mac_set_resources() 2728 * which will cache the property value in mac_impl_t and may call 2729 * mac_client_set_resource() to update property value of the primary mac client, 2730 * if it exists. 2731 */ 2732 int 2733 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2734 { 2735 int err = ENOTSUP; 2736 mac_impl_t *mip = (mac_impl_t *)mh; 2737 2738 ASSERT(MAC_PERIM_HELD(mh)); 2739 2740 /* If it is mac property, call mac_set_resources() */ 2741 if (mac_is_macprop(macprop)) { 2742 mac_resource_props_t mrp; 2743 2744 if (valsize < sizeof (mac_resource_props_t)) 2745 return (EINVAL); 2746 bzero(&mrp, sizeof (mac_resource_props_t)); 2747 bcopy(val, &mrp, sizeof (mrp)); 2748 return (mac_set_resources(mh, &mrp)); 2749 } 2750 switch (macprop->mp_id) { 2751 case MAC_PROP_MTU: { 2752 uint32_t mtu; 2753 2754 if (valsize < sizeof (mtu)) 2755 return (EINVAL); 2756 bcopy(val, &mtu, sizeof (mtu)); 2757 err = mac_set_mtu(mh, mtu, NULL); 2758 break; 2759 } 2760 default: 2761 /* For other driver properties, call driver's callback */ 2762 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2763 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2764 macprop->mp_name, macprop->mp_id, valsize, val); 2765 } 2766 } 2767 return (err); 2768 } 2769 2770 /* 2771 * mac_get_prop() gets mac or hardware driver properties. 2772 * 2773 * If the property is a driver property, mac_get_prop() calls driver's callback 2774 * function to get it. 2775 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2776 * which returns the cached value in mac_impl_t. 2777 */ 2778 int 2779 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2780 uint_t *perm) 2781 { 2782 int err = ENOTSUP; 2783 mac_impl_t *mip = (mac_impl_t *)mh; 2784 uint32_t sdu; 2785 link_state_t link_state; 2786 2787 /* If mac property, read from cache */ 2788 if (mac_is_macprop(macprop)) { 2789 mac_resource_props_t mrp; 2790 2791 if (valsize < sizeof (mac_resource_props_t)) 2792 return (EINVAL); 2793 bzero(&mrp, sizeof (mac_resource_props_t)); 2794 mac_get_resources(mh, &mrp); 2795 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2796 return (0); 2797 } 2798 2799 switch (macprop->mp_id) { 2800 case MAC_PROP_MTU: 2801 if (valsize < sizeof (sdu)) 2802 return (EINVAL); 2803 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2804 mac_sdu_get(mh, NULL, &sdu); 2805 bcopy(&sdu, val, sizeof (sdu)); 2806 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) && 2807 (mip->mi_callbacks->mc_setprop(mip->mi_driver, 2808 macprop->mp_name, macprop->mp_id, valsize, 2809 val) == 0)) { 2810 *perm = MAC_PROP_PERM_RW; 2811 } else { 2812 *perm = MAC_PROP_PERM_READ; 2813 } 2814 return (0); 2815 } else { 2816 if (mip->mi_info.mi_media == DL_ETHER) { 2817 sdu = ETHERMTU; 2818 bcopy(&sdu, val, sizeof (sdu)); 2819 2820 return (0); 2821 } 2822 /* 2823 * ask driver for its default. 2824 */ 2825 break; 2826 } 2827 case MAC_PROP_STATUS: 2828 if (valsize < sizeof (link_state)) 2829 return (EINVAL); 2830 *perm = MAC_PROP_PERM_READ; 2831 link_state = mac_link_get(mh); 2832 bcopy(&link_state, val, sizeof (link_state)); 2833 return (0); 2834 default: 2835 break; 2836 2837 } 2838 /* If driver property, request from driver */ 2839 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 2840 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2841 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2842 valsize, val, perm); 2843 } 2844 return (err); 2845 } 2846 2847 int 2848 mac_fastpath_disable(mac_handle_t mh) 2849 { 2850 mac_impl_t *mip = (mac_impl_t *)mh; 2851 2852 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2853 return (0); 2854 2855 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 2856 } 2857 2858 void 2859 mac_fastpath_enable(mac_handle_t mh) 2860 { 2861 mac_impl_t *mip = (mac_impl_t *)mh; 2862 2863 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2864 return; 2865 2866 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 2867 } 2868 2869 void 2870 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2871 { 2872 mac_priv_prop_t *mpriv; 2873 2874 if (mpp == NULL) 2875 return; 2876 2877 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2878 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2879 mip->mi_priv_prop = mpriv; 2880 mip->mi_priv_prop_count = nprop; 2881 } 2882 2883 void 2884 mac_unregister_priv_prop(mac_impl_t *mip) 2885 { 2886 mac_priv_prop_t *mpriv; 2887 2888 mpriv = mip->mi_priv_prop; 2889 if (mpriv != NULL) { 2890 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2891 mip->mi_priv_prop = NULL; 2892 } 2893 mip->mi_priv_prop_count = 0; 2894 } 2895 2896 /* 2897 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2898 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2899 * cases if MAC free's the ring structure after mac_stop_ring(), any 2900 * illegal access to the ring structure coming from the driver will panic 2901 * the system. In order to protect the system from such inadverent access, 2902 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2903 * When packets are received on free'd up rings, MAC (through the generation 2904 * count mechanism) will drop such packets. 2905 */ 2906 static mac_ring_t * 2907 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2908 { 2909 mac_ring_t *ring; 2910 2911 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2912 mutex_enter(&mip->mi_ring_lock); 2913 if (mip->mi_ring_freelist != NULL) { 2914 ring = mip->mi_ring_freelist; 2915 mip->mi_ring_freelist = ring->mr_next; 2916 bzero(ring, sizeof (mac_ring_t)); 2917 } else { 2918 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2919 } 2920 mutex_exit(&mip->mi_ring_lock); 2921 } else { 2922 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2923 } 2924 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2925 return (ring); 2926 } 2927 2928 static void 2929 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2930 { 2931 if (ring->mr_type == MAC_RING_TYPE_RX) { 2932 mutex_enter(&mip->mi_ring_lock); 2933 ring->mr_state = MR_FREE; 2934 ring->mr_flag = 0; 2935 ring->mr_next = mip->mi_ring_freelist; 2936 mip->mi_ring_freelist = ring; 2937 mutex_exit(&mip->mi_ring_lock); 2938 } else { 2939 kmem_free(ring, sizeof (mac_ring_t)); 2940 } 2941 } 2942 2943 static void 2944 mac_ring_freeall(mac_impl_t *mip) 2945 { 2946 mac_ring_t *ring_next; 2947 mutex_enter(&mip->mi_ring_lock); 2948 mac_ring_t *ring = mip->mi_ring_freelist; 2949 while (ring != NULL) { 2950 ring_next = ring->mr_next; 2951 kmem_cache_free(mac_ring_cache, ring); 2952 ring = ring_next; 2953 } 2954 mip->mi_ring_freelist = NULL; 2955 mutex_exit(&mip->mi_ring_lock); 2956 } 2957 2958 int 2959 mac_start_ring(mac_ring_t *ring) 2960 { 2961 int rv = 0; 2962 2963 if (ring->mr_start != NULL) 2964 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 2965 2966 return (rv); 2967 } 2968 2969 void 2970 mac_stop_ring(mac_ring_t *ring) 2971 { 2972 if (ring->mr_stop != NULL) 2973 ring->mr_stop(ring->mr_driver); 2974 2975 /* 2976 * Increment the ring generation number for this ring. 2977 */ 2978 ring->mr_gen_num++; 2979 } 2980 2981 int 2982 mac_start_group(mac_group_t *group) 2983 { 2984 int rv = 0; 2985 2986 if (group->mrg_start != NULL) 2987 rv = group->mrg_start(group->mrg_driver); 2988 2989 return (rv); 2990 } 2991 2992 void 2993 mac_stop_group(mac_group_t *group) 2994 { 2995 if (group->mrg_stop != NULL) 2996 group->mrg_stop(group->mrg_driver); 2997 } 2998 2999 /* 3000 * Called from mac_start() on the default Rx group. Broadcast and multicast 3001 * packets are received only on the default group. Hence the default group 3002 * needs to be up even if the primary client is not up, for the other groups 3003 * to be functional. We do this by calling this function at mac_start time 3004 * itself. However the broadcast packets that are received can't make their 3005 * way beyond mac_rx until a mac client creates a broadcast flow. 3006 */ 3007 static int 3008 mac_start_group_and_rings(mac_group_t *group) 3009 { 3010 mac_ring_t *ring; 3011 int rv = 0; 3012 3013 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3014 if ((rv = mac_start_group(group)) != 0) 3015 return (rv); 3016 3017 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3018 ASSERT(ring->mr_state == MR_FREE); 3019 if ((rv = mac_start_ring(ring)) != 0) 3020 goto error; 3021 ring->mr_state = MR_INUSE; 3022 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3023 } 3024 return (0); 3025 3026 error: 3027 mac_stop_group_and_rings(group); 3028 return (rv); 3029 } 3030 3031 /* Called from mac_stop on the default Rx group */ 3032 static void 3033 mac_stop_group_and_rings(mac_group_t *group) 3034 { 3035 mac_ring_t *ring; 3036 3037 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3038 if (ring->mr_state != MR_FREE) { 3039 mac_stop_ring(ring); 3040 ring->mr_state = MR_FREE; 3041 ring->mr_flag = 0; 3042 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3043 } 3044 } 3045 mac_stop_group(group); 3046 } 3047 3048 3049 static mac_ring_t * 3050 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3051 mac_capab_rings_t *cap_rings) 3052 { 3053 mac_ring_t *ring; 3054 mac_ring_info_t ring_info; 3055 3056 ring = mac_ring_alloc(mip, cap_rings); 3057 3058 /* Prepare basic information of ring */ 3059 ring->mr_index = index; 3060 ring->mr_type = group->mrg_type; 3061 ring->mr_gh = (mac_group_handle_t)group; 3062 3063 /* Insert the new ring to the list. */ 3064 ring->mr_next = group->mrg_rings; 3065 group->mrg_rings = ring; 3066 3067 /* Zero to reuse the info data structure */ 3068 bzero(&ring_info, sizeof (ring_info)); 3069 3070 /* Query ring information from driver */ 3071 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3072 index, &ring_info, (mac_ring_handle_t)ring); 3073 3074 ring->mr_info = ring_info; 3075 3076 /* Update ring's status */ 3077 ring->mr_state = MR_FREE; 3078 ring->mr_flag = 0; 3079 3080 /* Update the ring count of the group */ 3081 group->mrg_cur_count++; 3082 return (ring); 3083 } 3084 3085 /* 3086 * Rings are chained together for easy regrouping. 3087 */ 3088 static void 3089 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3090 mac_capab_rings_t *cap_rings) 3091 { 3092 int index; 3093 3094 /* 3095 * Initialize all ring members of this group. Size of zero will not 3096 * enter the loop, so it's safe for initializing an empty group. 3097 */ 3098 for (index = size - 1; index >= 0; index--) 3099 (void) mac_init_ring(mip, group, index, cap_rings); 3100 } 3101 3102 int 3103 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3104 { 3105 mac_capab_rings_t *cap_rings; 3106 mac_group_t *group, *groups; 3107 mac_group_info_t group_info; 3108 uint_t group_free = 0; 3109 uint_t ring_left; 3110 mac_ring_t *ring; 3111 int g, err = 0; 3112 3113 switch (rtype) { 3114 case MAC_RING_TYPE_RX: 3115 ASSERT(mip->mi_rx_groups == NULL); 3116 3117 cap_rings = &mip->mi_rx_rings_cap; 3118 cap_rings->mr_type = MAC_RING_TYPE_RX; 3119 break; 3120 case MAC_RING_TYPE_TX: 3121 ASSERT(mip->mi_tx_groups == NULL); 3122 3123 cap_rings = &mip->mi_tx_rings_cap; 3124 cap_rings->mr_type = MAC_RING_TYPE_TX; 3125 break; 3126 default: 3127 ASSERT(B_FALSE); 3128 } 3129 3130 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3131 cap_rings)) 3132 return (0); 3133 3134 /* 3135 * Allocate a contiguous buffer for all groups. 3136 */ 3137 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3138 KM_SLEEP); 3139 3140 ring_left = cap_rings->mr_rnum; 3141 3142 /* 3143 * Get all ring groups if any, and get their ring members 3144 * if any. 3145 */ 3146 for (g = 0; g < cap_rings->mr_gnum; g++) { 3147 group = groups + g; 3148 3149 /* Prepare basic information of the group */ 3150 group->mrg_index = g; 3151 group->mrg_type = rtype; 3152 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3153 group->mrg_mh = (mac_handle_t)mip; 3154 group->mrg_next = group + 1; 3155 3156 /* Zero to reuse the info data structure */ 3157 bzero(&group_info, sizeof (group_info)); 3158 3159 /* Query group information from driver */ 3160 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3161 (mac_group_handle_t)group); 3162 3163 switch (cap_rings->mr_group_type) { 3164 case MAC_GROUP_TYPE_DYNAMIC: 3165 if (cap_rings->mr_gaddring == NULL || 3166 cap_rings->mr_gremring == NULL) { 3167 DTRACE_PROBE3( 3168 mac__init__rings_no_addremring, 3169 char *, mip->mi_name, 3170 mac_group_add_ring_t, 3171 cap_rings->mr_gaddring, 3172 mac_group_add_ring_t, 3173 cap_rings->mr_gremring); 3174 err = EINVAL; 3175 goto bail; 3176 } 3177 3178 switch (rtype) { 3179 case MAC_RING_TYPE_RX: 3180 /* 3181 * The first RX group must have non-zero 3182 * rings, and the following groups must 3183 * have zero rings. 3184 */ 3185 if (g == 0 && group_info.mgi_count == 0) { 3186 DTRACE_PROBE1( 3187 mac__init__rings__rx__def__zero, 3188 char *, mip->mi_name); 3189 err = EINVAL; 3190 goto bail; 3191 } 3192 if (g > 0 && group_info.mgi_count != 0) { 3193 DTRACE_PROBE3( 3194 mac__init__rings__rx__nonzero, 3195 char *, mip->mi_name, 3196 int, g, int, group_info.mgi_count); 3197 err = EINVAL; 3198 goto bail; 3199 } 3200 break; 3201 case MAC_RING_TYPE_TX: 3202 /* 3203 * All TX ring groups must have zero rings. 3204 */ 3205 if (group_info.mgi_count != 0) { 3206 DTRACE_PROBE3( 3207 mac__init__rings__tx__nonzero, 3208 char *, mip->mi_name, 3209 int, g, int, group_info.mgi_count); 3210 err = EINVAL; 3211 goto bail; 3212 } 3213 break; 3214 } 3215 break; 3216 case MAC_GROUP_TYPE_STATIC: 3217 /* 3218 * Note that an empty group is allowed, e.g., an aggr 3219 * would start with an empty group. 3220 */ 3221 break; 3222 default: 3223 /* unknown group type */ 3224 DTRACE_PROBE2(mac__init__rings__unknown__type, 3225 char *, mip->mi_name, 3226 int, cap_rings->mr_group_type); 3227 err = EINVAL; 3228 goto bail; 3229 } 3230 3231 3232 /* 3233 * Driver must register group->mgi_addmac/remmac() for rx groups 3234 * to support multiple MAC addresses. 3235 */ 3236 if (rtype == MAC_RING_TYPE_RX) { 3237 if ((group_info.mgi_addmac == NULL) || 3238 (group_info.mgi_addmac == NULL)) 3239 goto bail; 3240 } 3241 3242 /* Cache driver-supplied information */ 3243 group->mrg_info = group_info; 3244 3245 /* Update the group's status and group count. */ 3246 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3247 group_free++; 3248 3249 group->mrg_rings = NULL; 3250 group->mrg_cur_count = 0; 3251 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3252 ring_left -= group_info.mgi_count; 3253 3254 /* The current group size should be equal to default value */ 3255 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3256 } 3257 3258 /* Build up a dummy group for free resources as a pool */ 3259 group = groups + cap_rings->mr_gnum; 3260 3261 /* Prepare basic information of the group */ 3262 group->mrg_index = -1; 3263 group->mrg_type = rtype; 3264 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3265 group->mrg_mh = (mac_handle_t)mip; 3266 group->mrg_next = NULL; 3267 3268 /* 3269 * If there are ungrouped rings, allocate a continuous buffer for 3270 * remaining resources. 3271 */ 3272 if (ring_left != 0) { 3273 group->mrg_rings = NULL; 3274 group->mrg_cur_count = 0; 3275 mac_init_group(mip, group, ring_left, cap_rings); 3276 3277 /* The current group size should be equal to ring_left */ 3278 ASSERT(group->mrg_cur_count == ring_left); 3279 3280 ring_left = 0; 3281 3282 /* Update this group's status */ 3283 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3284 } else 3285 group->mrg_rings = NULL; 3286 3287 ASSERT(ring_left == 0); 3288 3289 bail: 3290 /* Cache other important information to finalize the initialization */ 3291 switch (rtype) { 3292 case MAC_RING_TYPE_RX: 3293 mip->mi_rx_group_type = cap_rings->mr_group_type; 3294 mip->mi_rx_group_count = cap_rings->mr_gnum; 3295 mip->mi_rx_groups = groups; 3296 break; 3297 case MAC_RING_TYPE_TX: 3298 mip->mi_tx_group_type = cap_rings->mr_group_type; 3299 mip->mi_tx_group_count = cap_rings->mr_gnum; 3300 mip->mi_tx_group_free = group_free; 3301 mip->mi_tx_groups = groups; 3302 3303 /* 3304 * Ring 0 is used as the default one and it could be assigned 3305 * to a client as well. 3306 */ 3307 group = groups + cap_rings->mr_gnum; 3308 ring = group->mrg_rings; 3309 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3310 ring = ring->mr_next; 3311 ASSERT(ring->mr_index == 0); 3312 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3313 break; 3314 default: 3315 ASSERT(B_FALSE); 3316 } 3317 3318 if (err != 0) 3319 mac_free_rings(mip, rtype); 3320 3321 return (err); 3322 } 3323 3324 /* 3325 * Called to free all ring groups with particular type. It's supposed all groups 3326 * have been released by clinet. 3327 */ 3328 void 3329 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3330 { 3331 mac_group_t *group, *groups; 3332 uint_t group_count; 3333 3334 switch (rtype) { 3335 case MAC_RING_TYPE_RX: 3336 if (mip->mi_rx_groups == NULL) 3337 return; 3338 3339 groups = mip->mi_rx_groups; 3340 group_count = mip->mi_rx_group_count; 3341 3342 mip->mi_rx_groups = NULL; 3343 mip->mi_rx_group_count = 0; 3344 break; 3345 case MAC_RING_TYPE_TX: 3346 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3347 3348 if (mip->mi_tx_groups == NULL) 3349 return; 3350 3351 groups = mip->mi_tx_groups; 3352 group_count = mip->mi_tx_group_count; 3353 3354 mip->mi_tx_groups = NULL; 3355 mip->mi_tx_group_count = 0; 3356 mip->mi_tx_group_free = 0; 3357 mip->mi_default_tx_ring = NULL; 3358 break; 3359 default: 3360 ASSERT(B_FALSE); 3361 } 3362 3363 for (group = groups; group != NULL; group = group->mrg_next) { 3364 mac_ring_t *ring; 3365 3366 if (group->mrg_cur_count == 0) 3367 continue; 3368 3369 ASSERT(group->mrg_rings != NULL); 3370 3371 while ((ring = group->mrg_rings) != NULL) { 3372 group->mrg_rings = ring->mr_next; 3373 mac_ring_free(mip, ring); 3374 } 3375 } 3376 3377 /* Free all the cached rings */ 3378 mac_ring_freeall(mip); 3379 /* Free the block of group data strutures */ 3380 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3381 } 3382 3383 /* 3384 * Associate a MAC address with a receive group. 3385 * 3386 * The return value of this function should always be checked properly, because 3387 * any type of failure could cause unexpected results. A group can be added 3388 * or removed with a MAC address only after it has been reserved. Ideally, 3389 * a successful reservation always leads to calling mac_group_addmac() to 3390 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3391 * always imply that the group is functioning abnormally. 3392 * 3393 * Currently this function is called everywhere, and it reflects assumptions 3394 * about MAC addresses in the implementation. CR 6735196. 3395 */ 3396 int 3397 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3398 { 3399 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3400 ASSERT(group->mrg_info.mgi_addmac != NULL); 3401 3402 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3403 } 3404 3405 /* 3406 * Remove the association between MAC address and receive group. 3407 */ 3408 int 3409 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3410 { 3411 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3412 ASSERT(group->mrg_info.mgi_remmac != NULL); 3413 3414 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3415 } 3416 3417 /* 3418 * Release a ring in use by marking it MR_FREE. 3419 * Any other client may reserve it for its use. 3420 */ 3421 void 3422 mac_release_tx_ring(mac_ring_handle_t rh) 3423 { 3424 mac_ring_t *ring = (mac_ring_t *)rh; 3425 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3426 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3427 3428 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3429 ASSERT(ring->mr_state != MR_FREE); 3430 3431 /* 3432 * Default tx ring will be released by mac_stop(). 3433 */ 3434 if (rh == mip->mi_default_tx_ring) 3435 return; 3436 3437 mac_stop_ring(ring); 3438 3439 ring->mr_state = MR_FREE; 3440 ring->mr_flag = 0; 3441 } 3442 3443 /* 3444 * Send packets through a selected tx ring. 3445 */ 3446 mblk_t * 3447 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp) 3448 { 3449 mac_ring_t *ring = (mac_ring_t *)rh; 3450 mac_ring_info_t *info = &ring->mr_info; 3451 3452 ASSERT(ring->mr_type == MAC_RING_TYPE_TX); 3453 ASSERT(ring->mr_state >= MR_INUSE); 3454 ASSERT(info->mri_tx != NULL); 3455 3456 return (info->mri_tx(info->mri_driver, mp)); 3457 } 3458 3459 /* 3460 * Find a ring from its index. 3461 */ 3462 mac_ring_t * 3463 mac_find_ring(mac_group_t *group, int index) 3464 { 3465 mac_ring_t *ring = group->mrg_rings; 3466 3467 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3468 if (ring->mr_index == index) 3469 break; 3470 3471 return (ring); 3472 } 3473 /* 3474 * Add a ring to an existing group. 3475 * 3476 * The ring must be either passed directly (for example if the ring 3477 * movement is initiated by the framework), or specified through a driver 3478 * index (for example when the ring is added by the driver. 3479 * 3480 * The caller needs to call mac_perim_enter() before calling this function. 3481 */ 3482 int 3483 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3484 { 3485 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3486 mac_capab_rings_t *cap_rings; 3487 boolean_t driver_call = (ring == NULL); 3488 mac_group_type_t group_type; 3489 int ret = 0; 3490 3491 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3492 3493 switch (group->mrg_type) { 3494 case MAC_RING_TYPE_RX: 3495 cap_rings = &mip->mi_rx_rings_cap; 3496 group_type = mip->mi_rx_group_type; 3497 break; 3498 case MAC_RING_TYPE_TX: 3499 cap_rings = &mip->mi_tx_rings_cap; 3500 group_type = mip->mi_tx_group_type; 3501 break; 3502 default: 3503 ASSERT(B_FALSE); 3504 } 3505 3506 /* 3507 * There should be no ring with the same ring index in the target 3508 * group. 3509 */ 3510 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3511 NULL); 3512 3513 if (driver_call) { 3514 /* 3515 * The function is called as a result of a request from 3516 * a driver to add a ring to an existing group, for example 3517 * from the aggregation driver. Allocate a new mac_ring_t 3518 * for that ring. 3519 */ 3520 ring = mac_init_ring(mip, group, index, cap_rings); 3521 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3522 } else { 3523 /* 3524 * The function is called as a result of a MAC layer request 3525 * to add a ring to an existing group. In this case the 3526 * ring is being moved between groups, which requires 3527 * the underlying driver to support dynamic grouping, 3528 * and the mac_ring_t already exists. 3529 */ 3530 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3531 ASSERT(cap_rings->mr_gaddring != NULL); 3532 ASSERT(ring->mr_gh == NULL); 3533 } 3534 3535 /* 3536 * At this point the ring should not be in use, and it should be 3537 * of the right for the target group. 3538 */ 3539 ASSERT(ring->mr_state < MR_INUSE); 3540 ASSERT(ring->mr_srs == NULL); 3541 ASSERT(ring->mr_type == group->mrg_type); 3542 3543 if (!driver_call) { 3544 /* 3545 * Add the driver level hardware ring if the process was not 3546 * initiated by the driver, and the target group is not the 3547 * group. 3548 */ 3549 if (group->mrg_driver != NULL) { 3550 cap_rings->mr_gaddring(group->mrg_driver, 3551 ring->mr_driver, ring->mr_type); 3552 } 3553 3554 /* 3555 * Insert the ring ahead existing rings. 3556 */ 3557 ring->mr_next = group->mrg_rings; 3558 group->mrg_rings = ring; 3559 ring->mr_gh = (mac_group_handle_t)group; 3560 group->mrg_cur_count++; 3561 } 3562 3563 /* 3564 * If the group has not been actively used, we're done. 3565 */ 3566 if (group->mrg_index != -1 && 3567 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3568 return (0); 3569 3570 /* 3571 * Set up SRS/SR according to the ring type. 3572 */ 3573 switch (ring->mr_type) { 3574 case MAC_RING_TYPE_RX: 3575 /* 3576 * Setup SRS on top of the new ring if the group is 3577 * reserved for someones exclusive use. 3578 */ 3579 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3580 flow_entry_t *flent; 3581 mac_client_impl_t *mcip; 3582 3583 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3584 ASSERT(mcip != NULL); 3585 flent = mcip->mci_flent; 3586 ASSERT(flent->fe_rx_srs_cnt > 0); 3587 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3588 } 3589 break; 3590 case MAC_RING_TYPE_TX: 3591 /* 3592 * For TX this function is only invoked during the 3593 * initial creation of a group when a share is 3594 * associated with a MAC client. So the datapath is not 3595 * yet setup, and will be setup later after the 3596 * group has been reserved and populated. 3597 */ 3598 break; 3599 default: 3600 ASSERT(B_FALSE); 3601 } 3602 3603 /* 3604 * Start the ring if needed. Failure causes to undo the grouping action. 3605 */ 3606 if ((ret = mac_start_ring(ring)) != 0) { 3607 if (ring->mr_type == MAC_RING_TYPE_RX) { 3608 if (ring->mr_srs != NULL) { 3609 mac_rx_srs_remove(ring->mr_srs); 3610 ring->mr_srs = NULL; 3611 } 3612 } 3613 if (!driver_call) { 3614 cap_rings->mr_gremring(group->mrg_driver, 3615 ring->mr_driver, ring->mr_type); 3616 } 3617 group->mrg_cur_count--; 3618 group->mrg_rings = ring->mr_next; 3619 3620 ring->mr_gh = NULL; 3621 3622 if (driver_call) 3623 mac_ring_free(mip, ring); 3624 3625 return (ret); 3626 } 3627 3628 /* 3629 * Update the ring's state. 3630 */ 3631 ring->mr_state = MR_INUSE; 3632 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3633 return (0); 3634 } 3635 3636 /* 3637 * Remove a ring from it's current group. MAC internal function for dynamic 3638 * grouping. 3639 * 3640 * The caller needs to call mac_perim_enter() before calling this function. 3641 */ 3642 void 3643 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3644 boolean_t driver_call) 3645 { 3646 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3647 mac_capab_rings_t *cap_rings = NULL; 3648 mac_group_type_t group_type; 3649 3650 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3651 3652 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3653 ASSERT((mac_group_t *)ring->mr_gh == group); 3654 ASSERT(ring->mr_type == group->mrg_type); 3655 3656 switch (ring->mr_type) { 3657 case MAC_RING_TYPE_RX: 3658 group_type = mip->mi_rx_group_type; 3659 cap_rings = &mip->mi_rx_rings_cap; 3660 3661 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3662 mac_stop_ring(ring); 3663 3664 /* 3665 * Only hardware classified packets hold a reference to the 3666 * ring all the way up the Rx path. mac_rx_srs_remove() 3667 * will take care of quiescing the Rx path and removing the 3668 * SRS. The software classified path neither holds a reference 3669 * nor any association with the ring in mac_rx. 3670 */ 3671 if (ring->mr_srs != NULL) { 3672 mac_rx_srs_remove(ring->mr_srs); 3673 ring->mr_srs = NULL; 3674 } 3675 ring->mr_state = MR_FREE; 3676 ring->mr_flag = 0; 3677 3678 break; 3679 case MAC_RING_TYPE_TX: 3680 /* 3681 * For TX this function is only invoked in two 3682 * cases: 3683 * 3684 * 1) In the case of a failure during the 3685 * initial creation of a group when a share is 3686 * associated with a MAC client. So the SRS is not 3687 * yet setup, and will be setup later after the 3688 * group has been reserved and populated. 3689 * 3690 * 2) From mac_release_tx_group() when freeing 3691 * a TX SRS. 3692 * 3693 * In both cases the SRS and its soft rings are 3694 * already quiesced. 3695 */ 3696 ASSERT(!driver_call); 3697 group_type = mip->mi_tx_group_type; 3698 cap_rings = &mip->mi_tx_rings_cap; 3699 break; 3700 default: 3701 ASSERT(B_FALSE); 3702 } 3703 3704 /* 3705 * Remove the ring from the group. 3706 */ 3707 if (ring == group->mrg_rings) 3708 group->mrg_rings = ring->mr_next; 3709 else { 3710 mac_ring_t *pre; 3711 3712 pre = group->mrg_rings; 3713 while (pre->mr_next != ring) 3714 pre = pre->mr_next; 3715 pre->mr_next = ring->mr_next; 3716 } 3717 group->mrg_cur_count--; 3718 3719 if (!driver_call) { 3720 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3721 ASSERT(cap_rings->mr_gremring != NULL); 3722 3723 /* 3724 * Remove the driver level hardware ring. 3725 */ 3726 if (group->mrg_driver != NULL) { 3727 cap_rings->mr_gremring(group->mrg_driver, 3728 ring->mr_driver, ring->mr_type); 3729 } 3730 } 3731 3732 ring->mr_gh = NULL; 3733 if (driver_call) { 3734 mac_ring_free(mip, ring); 3735 } else { 3736 ring->mr_state = MR_FREE; 3737 ring->mr_flag = 0; 3738 } 3739 } 3740 3741 /* 3742 * Move a ring to the target group. If needed, remove the ring from the group 3743 * that it currently belongs to. 3744 * 3745 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3746 */ 3747 static int 3748 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3749 { 3750 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3751 int rv; 3752 3753 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3754 ASSERT(d_group != NULL); 3755 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3756 3757 if (s_group == d_group) 3758 return (0); 3759 3760 /* 3761 * Remove it from current group first. 3762 */ 3763 if (s_group != NULL) 3764 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3765 3766 /* 3767 * Add it to the new group. 3768 */ 3769 rv = i_mac_group_add_ring(d_group, ring, 0); 3770 if (rv != 0) { 3771 /* 3772 * Failed to add ring back to source group. If 3773 * that fails, the ring is stuck in limbo, log message. 3774 */ 3775 if (i_mac_group_add_ring(s_group, ring, 0)) { 3776 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3777 mip->mi_name, (void *)ring); 3778 } 3779 } 3780 3781 return (rv); 3782 } 3783 3784 /* 3785 * Find a MAC address according to its value. 3786 */ 3787 mac_address_t * 3788 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3789 { 3790 mac_address_t *map; 3791 3792 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3793 3794 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3795 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3796 break; 3797 } 3798 3799 return (map); 3800 } 3801 3802 /* 3803 * Check whether the MAC address is shared by multiple clients. 3804 */ 3805 boolean_t 3806 mac_check_macaddr_shared(mac_address_t *map) 3807 { 3808 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3809 3810 return (map->ma_nusers > 1); 3811 } 3812 3813 /* 3814 * Remove the specified MAC address from the MAC address list and free it. 3815 */ 3816 static void 3817 mac_free_macaddr(mac_address_t *map) 3818 { 3819 mac_impl_t *mip = map->ma_mip; 3820 3821 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3822 ASSERT(mip->mi_addresses != NULL); 3823 3824 map = mac_find_macaddr(mip, map->ma_addr); 3825 3826 ASSERT(map != NULL); 3827 ASSERT(map->ma_nusers == 0); 3828 3829 if (map == mip->mi_addresses) { 3830 mip->mi_addresses = map->ma_next; 3831 } else { 3832 mac_address_t *pre; 3833 3834 pre = mip->mi_addresses; 3835 while (pre->ma_next != map) 3836 pre = pre->ma_next; 3837 pre->ma_next = map->ma_next; 3838 } 3839 3840 kmem_free(map, sizeof (mac_address_t)); 3841 } 3842 3843 /* 3844 * Add a MAC address reference for a client. If the desired MAC address 3845 * exists, add a reference to it. Otherwise, add the new address by adding 3846 * it to a reserved group or setting promiscuous mode. Won't try different 3847 * group is the group is non-NULL, so the caller must explictly share 3848 * default group when needed. 3849 * 3850 * Note, the primary MAC address is initialized at registration time, so 3851 * to add it to default group only need to activate it if its reference 3852 * count is still zero. Also, some drivers may not have advertised RINGS 3853 * capability. 3854 */ 3855 int 3856 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 3857 boolean_t use_hw) 3858 { 3859 mac_address_t *map; 3860 int err = 0; 3861 boolean_t allocated_map = B_FALSE; 3862 3863 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3864 3865 map = mac_find_macaddr(mip, mac_addr); 3866 3867 /* 3868 * If the new MAC address has not been added. Allocate a new one 3869 * and set it up. 3870 */ 3871 if (map == NULL) { 3872 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3873 map->ma_len = mip->mi_type->mt_addr_length; 3874 bcopy(mac_addr, map->ma_addr, map->ma_len); 3875 map->ma_nusers = 0; 3876 map->ma_group = group; 3877 map->ma_mip = mip; 3878 3879 /* add the new MAC address to the head of the address list */ 3880 map->ma_next = mip->mi_addresses; 3881 mip->mi_addresses = map; 3882 3883 allocated_map = B_TRUE; 3884 } 3885 3886 ASSERT(map->ma_group == group); 3887 3888 /* 3889 * If the MAC address is already in use, simply account for the 3890 * new client. 3891 */ 3892 if (map->ma_nusers++ > 0) 3893 return (0); 3894 3895 /* 3896 * Activate this MAC address by adding it to the reserved group. 3897 */ 3898 if (group != NULL) { 3899 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3900 if (err == 0) { 3901 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3902 return (0); 3903 } 3904 } 3905 3906 /* 3907 * The MAC address addition failed. If the client requires a 3908 * hardware classified MAC address, fail the operation. 3909 */ 3910 if (use_hw) { 3911 err = ENOSPC; 3912 goto bail; 3913 } 3914 3915 /* 3916 * Try promiscuous mode. 3917 * 3918 * For drivers that don't advertise RINGS capability, do 3919 * nothing for the primary address. 3920 */ 3921 if ((group == NULL) && 3922 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 3923 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3924 return (0); 3925 } 3926 3927 /* 3928 * Enable promiscuous mode in order to receive traffic 3929 * to the new MAC address. 3930 */ 3931 if ((err = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) == 0) { 3932 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 3933 return (0); 3934 } 3935 3936 /* 3937 * Free the MAC address that could not be added. Don't free 3938 * a pre-existing address, it could have been the entry 3939 * for the primary MAC address which was pre-allocated by 3940 * mac_init_macaddr(), and which must remain on the list. 3941 */ 3942 bail: 3943 map->ma_nusers--; 3944 if (allocated_map) 3945 mac_free_macaddr(map); 3946 return (err); 3947 } 3948 3949 /* 3950 * Remove a reference to a MAC address. This may cause to remove the MAC 3951 * address from an associated group or to turn off promiscuous mode. 3952 * The caller needs to handle the failure properly. 3953 */ 3954 int 3955 mac_remove_macaddr(mac_address_t *map) 3956 { 3957 mac_impl_t *mip = map->ma_mip; 3958 int err = 0; 3959 3960 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3961 3962 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 3963 3964 /* 3965 * If it's not the last client using this MAC address, only update 3966 * the MAC clients count. 3967 */ 3968 if (--map->ma_nusers > 0) 3969 return (0); 3970 3971 /* 3972 * The MAC address is no longer used by any MAC client, so remove 3973 * it from its associated group, or turn off promiscuous mode 3974 * if it was enabled for the MAC address. 3975 */ 3976 switch (map->ma_type) { 3977 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3978 /* 3979 * Don't free the preset primary address for drivers that 3980 * don't advertise RINGS capability. 3981 */ 3982 if (map->ma_group == NULL) 3983 return (0); 3984 3985 err = mac_group_remmac(map->ma_group, map->ma_addr); 3986 break; 3987 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 3988 err = i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC); 3989 break; 3990 default: 3991 ASSERT(B_FALSE); 3992 } 3993 3994 if (err != 0) 3995 return (err); 3996 3997 /* 3998 * We created MAC address for the primary one at registration, so we 3999 * won't free it here. mac_fini_macaddr() will take care of it. 4000 */ 4001 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 4002 mac_free_macaddr(map); 4003 4004 return (0); 4005 } 4006 4007 /* 4008 * Update an existing MAC address. The caller need to make sure that the new 4009 * value has not been used. 4010 */ 4011 int 4012 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 4013 { 4014 mac_impl_t *mip = map->ma_mip; 4015 int err = 0; 4016 4017 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4018 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4019 4020 switch (map->ma_type) { 4021 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4022 /* 4023 * Update the primary address for drivers that are not 4024 * RINGS capable. 4025 */ 4026 if (map->ma_group == NULL) { 4027 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4028 mac_addr); 4029 if (err != 0) 4030 return (err); 4031 break; 4032 } 4033 4034 /* 4035 * If this MAC address is not currently in use, 4036 * simply break out and update the value. 4037 */ 4038 if (map->ma_nusers == 0) 4039 break; 4040 4041 /* 4042 * Need to replace the MAC address associated with a group. 4043 */ 4044 err = mac_group_remmac(map->ma_group, map->ma_addr); 4045 if (err != 0) 4046 return (err); 4047 4048 err = mac_group_addmac(map->ma_group, mac_addr); 4049 4050 /* 4051 * Failure hints hardware error. The MAC layer needs to 4052 * have error notification facility to handle this. 4053 * Now, simply try to restore the value. 4054 */ 4055 if (err != 0) 4056 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4057 4058 break; 4059 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4060 /* 4061 * Need to do nothing more if in promiscuous mode. 4062 */ 4063 break; 4064 default: 4065 ASSERT(B_FALSE); 4066 } 4067 4068 /* 4069 * Successfully replaced the MAC address. 4070 */ 4071 if (err == 0) 4072 bcopy(mac_addr, map->ma_addr, map->ma_len); 4073 4074 return (err); 4075 } 4076 4077 /* 4078 * Freshen the MAC address with new value. Its caller must have updated the 4079 * hardware MAC address before calling this function. 4080 * This funcitons is supposed to be used to handle the MAC address change 4081 * notification from underlying drivers. 4082 */ 4083 void 4084 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4085 { 4086 mac_impl_t *mip = map->ma_mip; 4087 4088 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4089 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4090 4091 /* 4092 * Freshen the MAC address with new value. 4093 */ 4094 bcopy(mac_addr, map->ma_addr, map->ma_len); 4095 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4096 4097 /* 4098 * Update all MAC clients that share this MAC address. 4099 */ 4100 mac_unicast_update_clients(mip, map); 4101 } 4102 4103 /* 4104 * Set up the primary MAC address. 4105 */ 4106 void 4107 mac_init_macaddr(mac_impl_t *mip) 4108 { 4109 mac_address_t *map; 4110 4111 /* 4112 * The reference count is initialized to zero, until it's really 4113 * activated. 4114 */ 4115 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4116 map->ma_len = mip->mi_type->mt_addr_length; 4117 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4118 4119 /* 4120 * If driver advertises RINGS capability, it shouldn't have initialized 4121 * its primary MAC address. For other drivers, including VNIC, the 4122 * primary address must work after registration. 4123 */ 4124 if (mip->mi_rx_groups == NULL) 4125 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4126 4127 /* 4128 * The primary MAC address is reserved for default group according 4129 * to current design. 4130 */ 4131 map->ma_group = mip->mi_rx_groups; 4132 map->ma_mip = mip; 4133 4134 mip->mi_addresses = map; 4135 } 4136 4137 /* 4138 * Clean up the primary MAC address. Note, only one primary MAC address 4139 * is allowed. All other MAC addresses must have been freed appropriately. 4140 */ 4141 void 4142 mac_fini_macaddr(mac_impl_t *mip) 4143 { 4144 mac_address_t *map = mip->mi_addresses; 4145 4146 if (map == NULL) 4147 return; 4148 4149 /* 4150 * If mi_addresses is initialized, there should be exactly one 4151 * entry left on the list with no users. 4152 */ 4153 ASSERT(map->ma_nusers == 0); 4154 ASSERT(map->ma_next == NULL); 4155 4156 kmem_free(map, sizeof (mac_address_t)); 4157 mip->mi_addresses = NULL; 4158 } 4159 4160 /* 4161 * Logging related functions. 4162 */ 4163 4164 /* Write the Flow description to the log file */ 4165 int 4166 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4167 { 4168 flow_desc_t *fdesc; 4169 mac_resource_props_t *mrp; 4170 net_desc_t ndesc; 4171 4172 bzero(&ndesc, sizeof (net_desc_t)); 4173 4174 /* 4175 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4176 * Updates to the fe_flow_desc are done under the fe_lock 4177 */ 4178 mutex_enter(&flent->fe_lock); 4179 fdesc = &flent->fe_flow_desc; 4180 mrp = &flent->fe_resource_props; 4181 4182 ndesc.nd_name = flent->fe_flow_name; 4183 ndesc.nd_devname = mcip->mci_name; 4184 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4185 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4186 ndesc.nd_sap = htonl(fdesc->fd_sap); 4187 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4188 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4189 if (ndesc.nd_isv4) { 4190 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4191 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4192 } else { 4193 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4194 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4195 } 4196 ndesc.nd_sport = htons(fdesc->fd_local_port); 4197 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4198 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4199 mutex_exit(&flent->fe_lock); 4200 4201 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4202 } 4203 4204 /* Write the Flow statistics to the log file */ 4205 int 4206 mac_write_flow_stats(flow_entry_t *flent) 4207 { 4208 flow_stats_t *fl_stats; 4209 net_stat_t nstat; 4210 4211 fl_stats = &flent->fe_flowstats; 4212 nstat.ns_name = flent->fe_flow_name; 4213 nstat.ns_ibytes = fl_stats->fs_rbytes; 4214 nstat.ns_obytes = fl_stats->fs_obytes; 4215 nstat.ns_ipackets = fl_stats->fs_ipackets; 4216 nstat.ns_opackets = fl_stats->fs_opackets; 4217 nstat.ns_ierrors = fl_stats->fs_ierrors; 4218 nstat.ns_oerrors = fl_stats->fs_oerrors; 4219 4220 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4221 } 4222 4223 /* Write the Link Description to the log file */ 4224 int 4225 mac_write_link_desc(mac_client_impl_t *mcip) 4226 { 4227 net_desc_t ndesc; 4228 flow_entry_t *flent = mcip->mci_flent; 4229 4230 bzero(&ndesc, sizeof (net_desc_t)); 4231 4232 ndesc.nd_name = mcip->mci_name; 4233 ndesc.nd_devname = mcip->mci_name; 4234 ndesc.nd_isv4 = B_TRUE; 4235 /* 4236 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4237 * Updates to the fe_flow_desc are done under the fe_lock 4238 * after removing the flent from the flow table. 4239 */ 4240 mutex_enter(&flent->fe_lock); 4241 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4242 mutex_exit(&flent->fe_lock); 4243 4244 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4245 } 4246 4247 /* Write the Link statistics to the log file */ 4248 int 4249 mac_write_link_stats(mac_client_impl_t *mcip) 4250 { 4251 net_stat_t nstat; 4252 4253 nstat.ns_name = mcip->mci_name; 4254 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4255 nstat.ns_obytes = mcip->mci_stat_obytes; 4256 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4257 nstat.ns_opackets = mcip->mci_stat_opackets; 4258 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4259 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4260 4261 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4262 } 4263 4264 /* 4265 * For a given flow, if the descrition has not been logged before, do it now. 4266 * If it is a VNIC, then we have collected information about it from the MAC 4267 * table, so skip it. 4268 */ 4269 /*ARGSUSED*/ 4270 static int 4271 mac_log_flowinfo(flow_entry_t *flent, void *args) 4272 { 4273 mac_client_impl_t *mcip = flent->fe_mcip; 4274 4275 if (mcip == NULL) 4276 return (0); 4277 4278 /* 4279 * If the name starts with "vnic", and fe_user_generated is true (to 4280 * exclude the mcast and active flow entries created implicitly for 4281 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4282 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4283 */ 4284 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4285 (flent->fe_type & FLOW_USER) != 0) { 4286 return (0); 4287 } 4288 4289 if (!flent->fe_desc_logged) { 4290 /* 4291 * We don't return error because we want to continu the 4292 * walk in case this is the last walk which means we 4293 * need to reset fe_desc_logged in all the flows. 4294 */ 4295 if (mac_write_flow_desc(flent, mcip) != 0) 4296 return (0); 4297 flent->fe_desc_logged = B_TRUE; 4298 } 4299 4300 /* 4301 * Regardless of the error, we want to proceed in case we have to 4302 * reset fe_desc_logged. 4303 */ 4304 (void) mac_write_flow_stats(flent); 4305 4306 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4307 flent->fe_desc_logged = B_FALSE; 4308 4309 return (0); 4310 } 4311 4312 typedef struct i_mac_log_state_s { 4313 boolean_t mi_last; 4314 int mi_fenable; 4315 int mi_lenable; 4316 } i_mac_log_state_t; 4317 4318 /* 4319 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4320 * if it hasn't already been done. Additionally, log statistics for the link as 4321 * well. Walk the flow table and log information for each flow as well. 4322 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4323 * also fe_desc_logged, if flow logging is on) since we want to log the 4324 * description if and when logging is restarted. 4325 */ 4326 /*ARGSUSED*/ 4327 static uint_t 4328 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4329 { 4330 mac_impl_t *mip = (mac_impl_t *)val; 4331 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4332 int ret; 4333 mac_client_impl_t *mcip; 4334 4335 /* 4336 * Only walk the client list for NIC and etherstub 4337 */ 4338 if ((mip->mi_state_flags & MIS_DISABLED) || 4339 ((mip->mi_state_flags & MIS_IS_VNIC) && 4340 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4341 return (MH_WALK_CONTINUE); 4342 4343 for (mcip = mip->mi_clients_list; mcip != NULL; 4344 mcip = mcip->mci_client_next) { 4345 if (!MCIP_DATAPATH_SETUP(mcip)) 4346 continue; 4347 if (lstate->mi_lenable) { 4348 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4349 ret = mac_write_link_desc(mcip); 4350 if (ret != 0) { 4351 /* 4352 * We can't terminate it if this is the last 4353 * walk, else there might be some links with 4354 * mi_desc_logged set to true, which means 4355 * their description won't be logged the next 4356 * time logging is started (similarly for the 4357 * flows within such links). We can continue 4358 * without walking the flow table (i.e. to 4359 * set fe_desc_logged to false) because we 4360 * won't have written any flow stuff for this 4361 * link as we haven't logged the link itself. 4362 */ 4363 if (lstate->mi_last) 4364 return (MH_WALK_CONTINUE); 4365 else 4366 return (MH_WALK_TERMINATE); 4367 } 4368 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4369 } 4370 } 4371 4372 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4373 return (MH_WALK_TERMINATE); 4374 4375 if (lstate->mi_last) 4376 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4377 4378 if (lstate->mi_fenable) { 4379 if (mcip->mci_subflow_tab != NULL) { 4380 (void) mac_flow_walk(mcip->mci_subflow_tab, 4381 mac_log_flowinfo, mip); 4382 } 4383 } 4384 } 4385 return (MH_WALK_CONTINUE); 4386 } 4387 4388 /* 4389 * The timer thread that runs every mac_logging_interval seconds and logs 4390 * link and/or flow information. 4391 */ 4392 /* ARGSUSED */ 4393 void 4394 mac_log_linkinfo(void *arg) 4395 { 4396 i_mac_log_state_t lstate; 4397 4398 rw_enter(&i_mac_impl_lock, RW_READER); 4399 if (!mac_flow_log_enable && !mac_link_log_enable) { 4400 rw_exit(&i_mac_impl_lock); 4401 return; 4402 } 4403 lstate.mi_fenable = mac_flow_log_enable; 4404 lstate.mi_lenable = mac_link_log_enable; 4405 lstate.mi_last = B_FALSE; 4406 rw_exit(&i_mac_impl_lock); 4407 4408 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4409 4410 rw_enter(&i_mac_impl_lock, RW_WRITER); 4411 if (mac_flow_log_enable || mac_link_log_enable) { 4412 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4413 SEC_TO_TICK(mac_logging_interval)); 4414 } 4415 rw_exit(&i_mac_impl_lock); 4416 } 4417 4418 typedef struct i_mac_fastpath_state_s { 4419 boolean_t mf_disable; 4420 int mf_err; 4421 } i_mac_fastpath_state_t; 4422 4423 /*ARGSUSED*/ 4424 static uint_t 4425 i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val, 4426 void *arg) 4427 { 4428 i_mac_fastpath_state_t *state = arg; 4429 mac_handle_t mh = (mac_handle_t)val; 4430 4431 if (state->mf_disable) 4432 state->mf_err = mac_fastpath_disable(mh); 4433 else 4434 mac_fastpath_enable(mh); 4435 4436 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 4437 } 4438 4439 /* 4440 * Start the logging timer. 4441 */ 4442 int 4443 mac_start_logusage(mac_logtype_t type, uint_t interval) 4444 { 4445 i_mac_fastpath_state_t state = {B_TRUE, 0}; 4446 int err; 4447 4448 rw_enter(&i_mac_impl_lock, RW_WRITER); 4449 switch (type) { 4450 case MAC_LOGTYPE_FLOW: 4451 if (mac_flow_log_enable) { 4452 rw_exit(&i_mac_impl_lock); 4453 return (0); 4454 } 4455 /* FALLTHRU */ 4456 case MAC_LOGTYPE_LINK: 4457 if (mac_link_log_enable) { 4458 rw_exit(&i_mac_impl_lock); 4459 return (0); 4460 } 4461 break; 4462 default: 4463 ASSERT(0); 4464 } 4465 4466 /* Disable fastpath */ 4467 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4468 if ((err = state.mf_err) != 0) { 4469 /* Reenable fastpath */ 4470 state.mf_disable = B_FALSE; 4471 state.mf_err = 0; 4472 mod_hash_walk(i_mac_impl_hash, 4473 i_mac_fastpath_disable_walker, &state); 4474 rw_exit(&i_mac_impl_lock); 4475 return (err); 4476 } 4477 4478 switch (type) { 4479 case MAC_LOGTYPE_FLOW: 4480 mac_flow_log_enable = B_TRUE; 4481 /* FALLTHRU */ 4482 case MAC_LOGTYPE_LINK: 4483 mac_link_log_enable = B_TRUE; 4484 break; 4485 } 4486 4487 mac_logging_interval = interval; 4488 rw_exit(&i_mac_impl_lock); 4489 mac_log_linkinfo(NULL); 4490 return (0); 4491 } 4492 4493 /* 4494 * Stop the logging timer if both Link and Flow logging are turned off. 4495 */ 4496 void 4497 mac_stop_logusage(mac_logtype_t type) 4498 { 4499 i_mac_log_state_t lstate; 4500 i_mac_fastpath_state_t state = {B_FALSE, 0}; 4501 4502 rw_enter(&i_mac_impl_lock, RW_WRITER); 4503 lstate.mi_fenable = mac_flow_log_enable; 4504 lstate.mi_lenable = mac_link_log_enable; 4505 4506 /* Last walk */ 4507 lstate.mi_last = B_TRUE; 4508 4509 switch (type) { 4510 case MAC_LOGTYPE_FLOW: 4511 if (lstate.mi_fenable) { 4512 ASSERT(mac_link_log_enable); 4513 mac_flow_log_enable = B_FALSE; 4514 mac_link_log_enable = B_FALSE; 4515 break; 4516 } 4517 /* FALLTHRU */ 4518 case MAC_LOGTYPE_LINK: 4519 if (!lstate.mi_lenable || mac_flow_log_enable) { 4520 rw_exit(&i_mac_impl_lock); 4521 return; 4522 } 4523 mac_link_log_enable = B_FALSE; 4524 break; 4525 default: 4526 ASSERT(0); 4527 } 4528 4529 /* Reenable fastpath */ 4530 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4531 4532 rw_exit(&i_mac_impl_lock); 4533 (void) untimeout(mac_logging_timer); 4534 mac_logging_timer = 0; 4535 4536 /* Last walk */ 4537 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4538 } 4539 4540 /* 4541 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4542 */ 4543 void 4544 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4545 { 4546 pri_t pri; 4547 int count; 4548 mac_soft_ring_set_t *mac_srs; 4549 4550 if (flent->fe_rx_srs_cnt <= 0) 4551 return; 4552 4553 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4554 SRST_FLOW) { 4555 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4556 mcip->mci_max_pri, 4557 flent->fe_resource_props.mrp_priority); 4558 } else { 4559 pri = mcip->mci_max_pri; 4560 } 4561 4562 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4563 mac_srs = flent->fe_rx_srs[count]; 4564 mac_update_srs_priority(mac_srs, pri); 4565 } 4566 /* 4567 * If we have a Tx SRS, we need to modify all the threads associated 4568 * with it. 4569 */ 4570 if (flent->fe_tx_srs != NULL) 4571 mac_update_srs_priority(flent->fe_tx_srs, pri); 4572 } 4573 4574 /* 4575 * RX and TX rings are reserved according to different semantics depending 4576 * on the requests from the MAC clients and type of rings: 4577 * 4578 * On the Tx side, by default we reserve individual rings, independently from 4579 * the groups. 4580 * 4581 * On the Rx side, the reservation is at the granularity of the group 4582 * of rings, and used for v12n level 1 only. It has a special case for the 4583 * primary client. 4584 * 4585 * If a share is allocated to a MAC client, we allocate a TX group and an 4586 * RX group to the client, and assign TX rings and RX rings to these 4587 * groups according to information gathered from the driver through 4588 * the share capability. 4589 * 4590 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4591 * to allocate individual rings out of a group and program the hw classifier 4592 * based on IP address or higher level criteria. 4593 */ 4594 4595 /* 4596 * mac_reserve_tx_ring() 4597 * Reserve a unused ring by marking it with MR_INUSE state. 4598 * As reserved, the ring is ready to function. 4599 * 4600 * Notes for Hybrid I/O: 4601 * 4602 * If a specific ring is needed, it is specified through the desired_ring 4603 * argument. Otherwise that argument is set to NULL. 4604 * If the desired ring was previous allocated to another client, this 4605 * function swaps it with a new ring from the group of unassigned rings. 4606 */ 4607 mac_ring_t * 4608 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4609 { 4610 mac_group_t *group; 4611 mac_ring_t *ring; 4612 4613 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4614 4615 if (mip->mi_tx_groups == NULL) 4616 return (NULL); 4617 4618 /* 4619 * Find an available ring and start it before changing its status. 4620 * The unassigned rings are at the end of the mi_tx_groups 4621 * array. 4622 */ 4623 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4624 4625 for (ring = group->mrg_rings; ring != NULL; 4626 ring = ring->mr_next) { 4627 if (desired_ring == NULL) { 4628 if (ring->mr_state == MR_FREE) 4629 /* wanted any free ring and found one */ 4630 break; 4631 } else { 4632 mac_ring_t *sring; 4633 mac_client_impl_t *client; 4634 mac_soft_ring_set_t *srs; 4635 4636 if (ring != desired_ring) 4637 /* wants a desired ring but this one ain't it */ 4638 continue; 4639 4640 if (ring->mr_state == MR_FREE) 4641 break; 4642 4643 /* 4644 * Found the desired ring but it's already in use. 4645 * Swap it with a new ring. 4646 */ 4647 4648 /* find the client which owns that ring */ 4649 for (client = mip->mi_clients_list; client != NULL; 4650 client = client->mci_client_next) { 4651 srs = MCIP_TX_SRS(client); 4652 if (srs != NULL && mac_tx_srs_ring_present(srs, 4653 desired_ring)) { 4654 /* found our ring */ 4655 break; 4656 } 4657 } 4658 if (client == NULL) { 4659 /* 4660 * The TX ring is in use, but it's not 4661 * associated with any clients, so it 4662 * has to be the default ring. In that 4663 * case we can simply assign a new ring 4664 * as the default ring, and we're done. 4665 */ 4666 ASSERT(mip->mi_default_tx_ring == 4667 (mac_ring_handle_t)desired_ring); 4668 4669 /* 4670 * Quiesce all clients on top of 4671 * the NIC to make sure there are no 4672 * pending threads still relying on 4673 * that default ring, for example 4674 * the multicast path. 4675 */ 4676 for (client = mip->mi_clients_list; 4677 client != NULL; 4678 client = client->mci_client_next) { 4679 mac_tx_client_quiesce(client, 4680 SRS_QUIESCE); 4681 } 4682 4683 mip->mi_default_tx_ring = (mac_ring_handle_t) 4684 mac_reserve_tx_ring(mip, NULL); 4685 4686 /* resume the clients */ 4687 for (client = mip->mi_clients_list; 4688 client != NULL; 4689 client = client->mci_client_next) 4690 mac_tx_client_restart(client); 4691 4692 break; 4693 } 4694 4695 /* 4696 * Note that we cannot simply invoke the group 4697 * add/rem routines since the client doesn't have a 4698 * TX group. So we need to instead add/remove 4699 * the rings from the SRS. 4700 */ 4701 ASSERT(client->mci_share == NULL); 4702 4703 /* first quiece the client */ 4704 mac_tx_client_quiesce(client, SRS_QUIESCE); 4705 4706 /* give a new ring to the client... */ 4707 sring = mac_reserve_tx_ring(mip, NULL); 4708 if (sring != NULL) { 4709 /* 4710 * There are no other available ring 4711 * on that MAC instance. The client 4712 * will fallback to the shared TX 4713 * ring. 4714 */ 4715 mac_tx_srs_add_ring(srs, sring); 4716 } 4717 4718 /* ... in exchange for our desired ring */ 4719 mac_tx_srs_del_ring(srs, desired_ring); 4720 4721 /* restart the client */ 4722 mac_tx_client_restart(client); 4723 4724 if (mip->mi_default_tx_ring == 4725 (mac_ring_handle_t)desired_ring) { 4726 /* 4727 * The desired ring is the default ring, 4728 * and there are one or more clients 4729 * using that default ring directly. 4730 */ 4731 mip->mi_default_tx_ring = 4732 (mac_ring_handle_t)sring; 4733 /* 4734 * Find clients using default ring and 4735 * swap it with the new default ring. 4736 */ 4737 for (client = mip->mi_clients_list; 4738 client != NULL; 4739 client = client->mci_client_next) { 4740 srs = MCIP_TX_SRS(client); 4741 if (srs != NULL && 4742 mac_tx_srs_ring_present(srs, 4743 desired_ring)) { 4744 /* first quiece the client */ 4745 mac_tx_client_quiesce(client, 4746 SRS_QUIESCE); 4747 4748 /* 4749 * Give it the new default 4750 * ring, and remove the old 4751 * one. 4752 */ 4753 if (sring != NULL) { 4754 mac_tx_srs_add_ring(srs, 4755 sring); 4756 } 4757 mac_tx_srs_del_ring(srs, 4758 desired_ring); 4759 4760 /* restart the client */ 4761 mac_tx_client_restart(client); 4762 } 4763 } 4764 } 4765 break; 4766 } 4767 } 4768 4769 if (ring != NULL) { 4770 if (mac_start_ring(ring) != 0) 4771 return (NULL); 4772 ring->mr_state = MR_INUSE; 4773 } 4774 4775 return (ring); 4776 } 4777 4778 /* 4779 * Minimum number of rings to leave in the default TX group when allocating 4780 * rings to new clients. 4781 */ 4782 static uint_t mac_min_rx_default_rings = 1; 4783 4784 /* 4785 * Populate a zero-ring group with rings. If the share is non-NULL, 4786 * the rings are chosen according to that share. 4787 * Invoked after allocating a new RX or TX group through 4788 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4789 * Returns zero on success, an errno otherwise. 4790 */ 4791 int 4792 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4793 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4794 { 4795 mac_ring_t **rings, *tmp_ring[1], *ring; 4796 uint_t nrings; 4797 int rv, i, j; 4798 4799 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4800 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4801 ASSERT(new_group->mrg_cur_count == 0); 4802 4803 /* 4804 * First find the rings to allocate to the group. 4805 */ 4806 if (share != NULL) { 4807 /* get rings through ms_squery() */ 4808 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4809 ASSERT(nrings != 0); 4810 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4811 KM_SLEEP); 4812 mip->mi_share_capab.ms_squery(share, ring_type, 4813 (mac_ring_handle_t *)rings, &nrings); 4814 } else { 4815 /* this function is called for TX only with a share */ 4816 ASSERT(ring_type == MAC_RING_TYPE_RX); 4817 /* 4818 * Pick one ring from default group. 4819 * 4820 * for now pick the second ring which requires the first ring 4821 * at index 0 to stay in the default group, since it is the 4822 * ring which carries the multicast traffic. 4823 * We need a better way for a driver to indicate this, 4824 * for example a per-ring flag. 4825 */ 4826 for (ring = src_group->mrg_rings; ring != NULL; 4827 ring = ring->mr_next) { 4828 if (ring->mr_index != 0) 4829 break; 4830 } 4831 ASSERT(ring != NULL); 4832 nrings = 1; 4833 tmp_ring[0] = ring; 4834 rings = tmp_ring; 4835 } 4836 4837 switch (ring_type) { 4838 case MAC_RING_TYPE_RX: 4839 if (src_group->mrg_cur_count - nrings < 4840 mac_min_rx_default_rings) { 4841 /* we ran out of rings */ 4842 return (ENOSPC); 4843 } 4844 4845 /* move receive rings to new group */ 4846 for (i = 0; i < nrings; i++) { 4847 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4848 if (rv != 0) { 4849 /* move rings back on failure */ 4850 for (j = 0; j < i; j++) { 4851 (void) mac_group_mov_ring(mip, 4852 src_group, rings[j]); 4853 } 4854 return (rv); 4855 } 4856 } 4857 break; 4858 4859 case MAC_RING_TYPE_TX: { 4860 mac_ring_t *tmp_ring; 4861 4862 /* move the TX rings to the new group */ 4863 ASSERT(src_group == NULL); 4864 for (i = 0; i < nrings; i++) { 4865 /* get the desired ring */ 4866 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4867 ASSERT(tmp_ring == rings[i]); 4868 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4869 if (rv != 0) { 4870 /* cleanup on failure */ 4871 for (j = 0; j < i; j++) { 4872 (void) mac_group_mov_ring(mip, 4873 mip->mi_tx_groups + 4874 mip->mi_tx_group_count, rings[j]); 4875 } 4876 } 4877 } 4878 break; 4879 } 4880 } 4881 4882 if (share != NULL) { 4883 /* add group to share */ 4884 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4885 /* free temporary array of rings */ 4886 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4887 } 4888 4889 return (0); 4890 } 4891 4892 void 4893 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4894 { 4895 mac_grp_client_t *mgcp; 4896 4897 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4898 if (mgcp->mgc_client == mcip) 4899 break; 4900 } 4901 4902 VERIFY(mgcp == NULL); 4903 4904 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4905 mgcp->mgc_client = mcip; 4906 mgcp->mgc_next = grp->mrg_clients; 4907 grp->mrg_clients = mgcp; 4908 4909 } 4910 4911 void 4912 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4913 { 4914 mac_grp_client_t *mgcp, **pprev; 4915 4916 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4917 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4918 if (mgcp->mgc_client == mcip) 4919 break; 4920 } 4921 4922 ASSERT(mgcp != NULL); 4923 4924 *pprev = mgcp->mgc_next; 4925 kmem_free(mgcp, sizeof (mac_grp_client_t)); 4926 } 4927 4928 /* 4929 * mac_reserve_rx_group() 4930 * 4931 * Finds an available group and exclusively reserves it for a client. 4932 * The group is chosen to suit the flow's resource controls (bandwidth and 4933 * fanout requirements) and the address type. 4934 * If the requestor is the pimary MAC then return the group with the 4935 * largest number of rings, otherwise the default ring when available. 4936 */ 4937 mac_group_t * 4938 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 4939 mac_rx_group_reserve_type_t rtype) 4940 { 4941 mac_share_handle_t share = mcip->mci_share; 4942 mac_impl_t *mip = mcip->mci_mip; 4943 mac_group_t *grp = NULL; 4944 int i, start, loopcount; 4945 int err; 4946 mac_address_t *map; 4947 4948 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4949 4950 /* Check if a group already has this mac address (case of VLANs) */ 4951 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 4952 return (map->ma_group); 4953 4954 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 4955 rtype == MAC_RX_NO_RESERVE) 4956 return (NULL); 4957 4958 /* 4959 * Try to exclusively reserve a RX group. 4960 * 4961 * For flows requires SW_RING it always goes to the default group 4962 * (Until we can explicitely call out default groups (CR 6695600), 4963 * we assume that the default group is always at position zero); 4964 * 4965 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 4966 * client), try to reserve the default RX group only. 4967 * 4968 * For flows requires HW_RING (unicast flow of other clients), try 4969 * to reserve non-default RX group then the default group. 4970 */ 4971 switch (rtype) { 4972 case MAC_RX_RESERVE_DEFAULT: 4973 start = 0; 4974 loopcount = 1; 4975 break; 4976 case MAC_RX_RESERVE_NONDEFAULT: 4977 start = 1; 4978 loopcount = mip->mi_rx_group_count; 4979 } 4980 4981 for (i = start; i < start + loopcount; i++) { 4982 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 4983 4984 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 4985 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 4986 4987 /* 4988 * Check to see whether this mac client is the only client 4989 * on this RX group. If not, we cannot exclusively reserve 4990 * this RX group. 4991 */ 4992 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 4993 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 4994 continue; 4995 } 4996 4997 /* 4998 * This group could already be SHARED by other multicast 4999 * flows on this client. In that case, the group would 5000 * be shared and has already been started. 5001 */ 5002 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 5003 5004 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 5005 (mac_start_group(grp) != 0)) { 5006 continue; 5007 } 5008 5009 if ((i % mip->mi_rx_group_count) == 0 || 5010 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 5011 break; 5012 } 5013 5014 ASSERT(grp->mrg_cur_count == 0); 5015 5016 /* 5017 * Populate the group. Rings should be taken 5018 * from the default group at position 0 for now. 5019 */ 5020 5021 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 5022 &mip->mi_rx_groups[0], grp, share); 5023 if (err == 0) 5024 break; 5025 5026 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 5027 mip->mi_name, int, grp->mrg_index, int, err); 5028 5029 /* 5030 * It's a dynamic group but the grouping operation failed. 5031 */ 5032 mac_stop_group(grp); 5033 } 5034 5035 if (i == start + loopcount) 5036 return (NULL); 5037 5038 ASSERT(grp != NULL); 5039 5040 DTRACE_PROBE2(rx__group__reserved, 5041 char *, mip->mi_name, int, grp->mrg_index); 5042 return (grp); 5043 } 5044 5045 /* 5046 * mac_rx_release_group() 5047 * 5048 * This is called when there are no clients left for the group. 5049 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 5050 * and if it is a non default group, the shares are removed and 5051 * all rings are assigned back to default group. 5052 */ 5053 void 5054 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 5055 { 5056 mac_impl_t *mip = mcip->mci_mip; 5057 mac_ring_t *ring; 5058 5059 ASSERT(group != &mip->mi_rx_groups[0]); 5060 5061 /* 5062 * This is the case where there are no clients left. Any 5063 * SRS etc on this group have also be quiesced. 5064 */ 5065 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 5066 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 5067 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 5068 /* 5069 * Remove the SRS associated with the HW ring. 5070 * As a result, polling will be disabled. 5071 */ 5072 ring->mr_srs = NULL; 5073 } 5074 ASSERT(ring->mr_state == MR_INUSE); 5075 mac_stop_ring(ring); 5076 ring->mr_state = MR_FREE; 5077 ring->mr_flag = 0; 5078 } 5079 5080 /* remove group from share */ 5081 if (mcip->mci_share != NULL) { 5082 mip->mi_share_capab.ms_sremove(mcip->mci_share, 5083 group->mrg_driver); 5084 } 5085 5086 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 5087 mac_ring_t *ring; 5088 5089 /* 5090 * Rings were dynamically allocated to group. 5091 * Move rings back to default group. 5092 */ 5093 while ((ring = group->mrg_rings) != NULL) { 5094 (void) mac_group_mov_ring(mip, 5095 &mip->mi_rx_groups[0], ring); 5096 } 5097 } 5098 mac_stop_group(group); 5099 /* 5100 * Possible improvement: See if we can assign the group just released 5101 * to a another client of the mip 5102 */ 5103 } 5104 5105 /* 5106 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 5107 * when a share was allocated to the client. 5108 */ 5109 mac_group_t * 5110 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 5111 { 5112 mac_group_t *grp; 5113 int rv, i; 5114 5115 /* 5116 * TX groups are currently allocated only to MAC clients 5117 * which are associated with a share. Since we have a fixed 5118 * number of share and groups, and we already successfully 5119 * allocated a share, find an available TX group. 5120 */ 5121 ASSERT(share != NULL); 5122 ASSERT(mip->mi_tx_group_free > 0); 5123 5124 for (i = 0; i < mip->mi_tx_group_count; i++) { 5125 grp = &mip->mi_tx_groups[i]; 5126 5127 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 5128 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 5129 continue; 5130 5131 rv = mac_start_group(grp); 5132 ASSERT(rv == 0); 5133 5134 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 5135 break; 5136 } 5137 5138 ASSERT(grp != NULL); 5139 5140 /* 5141 * Populate the group. Rings should be taken from the group 5142 * of unassigned rings, which is past the array of TX 5143 * groups adversized by the driver. 5144 */ 5145 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5146 grp, share); 5147 if (rv != 0) { 5148 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5149 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5150 5151 mac_stop_group(grp); 5152 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5153 5154 return (NULL); 5155 } 5156 5157 mip->mi_tx_group_free--; 5158 5159 return (grp); 5160 } 5161 5162 void 5163 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5164 { 5165 mac_client_impl_t *mcip = grp->mrg_tx_client; 5166 mac_share_handle_t share = mcip->mci_share; 5167 mac_ring_t *ring; 5168 5169 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5170 ASSERT(share != NULL); 5171 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5172 5173 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5174 while ((ring = grp->mrg_rings) != NULL) { 5175 /* move the ring back to the pool */ 5176 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5177 mip->mi_tx_group_count, ring); 5178 } 5179 mac_stop_group(grp); 5180 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5181 grp->mrg_tx_client = NULL; 5182 mip->mi_tx_group_free++; 5183 } 5184 5185 /* 5186 * This is a 1-time control path activity initiated by the client (IP). 5187 * The mac perimeter protects against other simultaneous control activities, 5188 * for example an ioctl that attempts to change the degree of fanout and 5189 * increase or decrease the number of softrings associated with this Tx SRS. 5190 */ 5191 static mac_tx_notify_cb_t * 5192 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5193 mac_tx_notify_t notify, void *arg) 5194 { 5195 mac_cb_info_t *mcbi; 5196 mac_tx_notify_cb_t *mtnfp; 5197 5198 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5199 5200 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5201 mtnfp->mtnf_fn = notify; 5202 mtnfp->mtnf_arg = arg; 5203 mtnfp->mtnf_link.mcb_objp = mtnfp; 5204 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5205 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5206 5207 mcbi = &mcip->mci_tx_notify_cb_info; 5208 mutex_enter(mcbi->mcbi_lockp); 5209 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5210 mutex_exit(mcbi->mcbi_lockp); 5211 return (mtnfp); 5212 } 5213 5214 static void 5215 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5216 { 5217 mac_cb_info_t *mcbi; 5218 mac_cb_t **cblist; 5219 5220 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5221 5222 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5223 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5224 cmn_err(CE_WARN, 5225 "mac_client_tx_notify_remove: callback not " 5226 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5227 return; 5228 } 5229 5230 mcbi = &mcip->mci_tx_notify_cb_info; 5231 cblist = &mcip->mci_tx_notify_cb_list; 5232 mutex_enter(mcbi->mcbi_lockp); 5233 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5234 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5235 else 5236 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5237 mutex_exit(mcbi->mcbi_lockp); 5238 } 5239 5240 /* 5241 * mac_client_tx_notify(): 5242 * call to add and remove flow control callback routine. 5243 */ 5244 mac_tx_notify_handle_t 5245 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5246 void *ptr) 5247 { 5248 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5249 mac_tx_notify_cb_t *mtnfp = NULL; 5250 5251 i_mac_perim_enter(mcip->mci_mip); 5252 5253 if (callb_func != NULL) { 5254 /* Add a notify callback */ 5255 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5256 } else { 5257 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5258 } 5259 i_mac_perim_exit(mcip->mci_mip); 5260 5261 return ((mac_tx_notify_handle_t)mtnfp); 5262 } 5263