1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 static int i_mac_constructor(void *, void *, int); 354 static void i_mac_destructor(void *, void *); 355 static int i_mac_ring_ctor(void *, void *, int); 356 static void i_mac_ring_dtor(void *, void *); 357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 358 void mac_tx_client_flush(mac_client_impl_t *); 359 void mac_tx_client_block(mac_client_impl_t *); 360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 361 static int mac_start_group_and_rings(mac_group_t *); 362 static void mac_stop_group_and_rings(mac_group_t *); 363 364 /* 365 * Module initialization functions. 366 */ 367 368 void 369 mac_init(void) 370 { 371 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 372 boot_max_ncpus); 373 374 /* Upper bound is mac_tx_percpu_cnt_max */ 375 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 376 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 377 378 if (mac_tx_percpu_cnt < 1) { 379 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 380 mac_tx_percpu_cnt = 1; 381 } 382 383 ASSERT(mac_tx_percpu_cnt >= 1); 384 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 385 /* 386 * Make it of the form 2**N - 1 in the range 387 * [0 .. mac_tx_percpu_cnt_max - 1] 388 */ 389 mac_tx_percpu_cnt--; 390 391 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 392 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 393 NULL, NULL, NULL, 0); 394 ASSERT(i_mac_impl_cachep != NULL); 395 396 mac_ring_cache = kmem_cache_create("mac_ring_cache", 397 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 398 NULL, NULL, 0); 399 ASSERT(mac_ring_cache != NULL); 400 401 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 402 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 403 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 404 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 405 406 mac_flow_init(); 407 mac_soft_ring_init(); 408 mac_bcast_init(); 409 mac_client_init(); 410 411 i_mac_impl_count = 0; 412 413 i_mactype_hash = mod_hash_create_extended("mactype_hash", 414 MACTYPE_HASHSZ, 415 mod_hash_null_keydtor, mod_hash_null_valdtor, 416 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 417 418 /* 419 * Allocate an id space to manage minor numbers. The range of the 420 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 421 * leaves half of the 32-bit minors available for driver private use. 422 */ 423 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 424 MAC_PRIVATE_MINOR-1); 425 ASSERT(minor_ids != NULL); 426 minor_count = 0; 427 428 /* Let's default to 20 seconds */ 429 mac_logging_interval = 20; 430 mac_flow_log_enable = B_FALSE; 431 mac_link_log_enable = B_FALSE; 432 mac_logging_timer = 0; 433 } 434 435 int 436 mac_fini(void) 437 { 438 if (i_mac_impl_count > 0 || minor_count > 0) 439 return (EBUSY); 440 441 id_space_destroy(minor_ids); 442 mac_flow_fini(); 443 444 mod_hash_destroy_hash(i_mac_impl_hash); 445 rw_destroy(&i_mac_impl_lock); 446 447 mac_client_fini(); 448 kmem_cache_destroy(mac_ring_cache); 449 450 mod_hash_destroy_hash(i_mactype_hash); 451 mac_soft_ring_finish(); 452 return (0); 453 } 454 455 void 456 mac_init_ops(struct dev_ops *ops, const char *name) 457 { 458 dld_init_ops(ops, name); 459 } 460 461 void 462 mac_fini_ops(struct dev_ops *ops) 463 { 464 dld_fini_ops(ops); 465 } 466 467 /*ARGSUSED*/ 468 static int 469 i_mac_constructor(void *buf, void *arg, int kmflag) 470 { 471 mac_impl_t *mip = buf; 472 473 bzero(buf, sizeof (mac_impl_t)); 474 475 mip->mi_linkstate = LINK_STATE_UNKNOWN; 476 mip->mi_nclients = 0; 477 478 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 479 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 480 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 481 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 482 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 483 484 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 485 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 486 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 487 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 488 return (0); 489 } 490 491 /*ARGSUSED*/ 492 static void 493 i_mac_destructor(void *buf, void *arg) 494 { 495 mac_impl_t *mip = buf; 496 mac_cb_info_t *mcbi; 497 498 ASSERT(mip->mi_ref == 0); 499 ASSERT(mip->mi_active == 0); 500 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 501 ASSERT(mip->mi_devpromisc == 0); 502 ASSERT(mip->mi_ksp == NULL); 503 ASSERT(mip->mi_kstat_count == 0); 504 ASSERT(mip->mi_nclients == 0); 505 ASSERT(mip->mi_nactiveclients == 0); 506 ASSERT(mip->mi_single_active_client == NULL); 507 ASSERT(mip->mi_state_flags == 0); 508 ASSERT(mip->mi_factory_addr == NULL); 509 ASSERT(mip->mi_factory_addr_num == 0); 510 ASSERT(mip->mi_default_tx_ring == NULL); 511 512 mcbi = &mip->mi_notify_cb_info; 513 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 514 ASSERT(mip->mi_notify_bits == 0); 515 ASSERT(mip->mi_notify_thread == NULL); 516 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 517 mcbi->mcbi_lockp = NULL; 518 519 mcbi = &mip->mi_promisc_cb_info; 520 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 521 ASSERT(mip->mi_promisc_list == NULL); 522 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 523 mcbi->mcbi_lockp = NULL; 524 525 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 526 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 527 528 mutex_destroy(&mip->mi_lock); 529 rw_destroy(&mip->mi_rw_lock); 530 531 mutex_destroy(&mip->mi_promisc_lock); 532 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 533 mutex_destroy(&mip->mi_notify_lock); 534 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 535 mutex_destroy(&mip->mi_ring_lock); 536 } 537 538 /* ARGSUSED */ 539 static int 540 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 541 { 542 mac_ring_t *ring = (mac_ring_t *)buf; 543 544 bzero(ring, sizeof (mac_ring_t)); 545 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 546 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 547 ring->mr_state = MR_FREE; 548 return (0); 549 } 550 551 /* ARGSUSED */ 552 static void 553 i_mac_ring_dtor(void *buf, void *arg) 554 { 555 mac_ring_t *ring = (mac_ring_t *)buf; 556 557 cv_destroy(&ring->mr_cv); 558 mutex_destroy(&ring->mr_lock); 559 } 560 561 /* 562 * Common functions to do mac callback addition and deletion. Currently this is 563 * used by promisc callbacks and notify callbacks. List addition and deletion 564 * need to take care of list walkers. List walkers in general, can't hold list 565 * locks and make upcall callbacks due to potential lock order and recursive 566 * reentry issues. Instead list walkers increment the list walker count to mark 567 * the presence of a walker thread. Addition can be carefully done to ensure 568 * that the list walker always sees either the old list or the new list. 569 * However the deletion can't be done while the walker is active, instead the 570 * deleting thread simply marks the entry as logically deleted. The last walker 571 * physically deletes and frees up the logically deleted entries when the walk 572 * is complete. 573 */ 574 void 575 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 576 mac_cb_t *mcb_elem) 577 { 578 mac_cb_t *p; 579 mac_cb_t **pp; 580 581 /* Verify it is not already in the list */ 582 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 583 if (p == mcb_elem) 584 break; 585 } 586 VERIFY(p == NULL); 587 588 /* 589 * Add it to the head of the callback list. The membar ensures that 590 * the following list pointer manipulations reach global visibility 591 * in exactly the program order below. 592 */ 593 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 594 595 mcb_elem->mcb_nextp = *mcb_head; 596 membar_producer(); 597 *mcb_head = mcb_elem; 598 } 599 600 /* 601 * Mark the entry as logically deleted. If there aren't any walkers unlink 602 * from the list. In either case return the corresponding status. 603 */ 604 boolean_t 605 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 606 mac_cb_t *mcb_elem) 607 { 608 mac_cb_t *p; 609 mac_cb_t **pp; 610 611 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 612 /* 613 * Search the callback list for the entry to be removed 614 */ 615 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 616 if (p == mcb_elem) 617 break; 618 } 619 VERIFY(p != NULL); 620 621 /* 622 * If there are walkers just mark it as deleted and the last walker 623 * will remove from the list and free it. 624 */ 625 if (mcbi->mcbi_walker_cnt != 0) { 626 p->mcb_flags |= MCB_CONDEMNED; 627 mcbi->mcbi_del_cnt++; 628 return (B_FALSE); 629 } 630 631 ASSERT(mcbi->mcbi_del_cnt == 0); 632 *pp = p->mcb_nextp; 633 p->mcb_nextp = NULL; 634 return (B_TRUE); 635 } 636 637 /* 638 * Wait for all pending callback removals to be completed 639 */ 640 void 641 mac_callback_remove_wait(mac_cb_info_t *mcbi) 642 { 643 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 644 while (mcbi->mcbi_del_cnt != 0) { 645 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 646 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 647 } 648 } 649 650 /* 651 * The last mac callback walker does the cleanup. Walk the list and unlik 652 * all the logically deleted entries and construct a temporary list of 653 * removed entries. Return the list of removed entries to the caller. 654 */ 655 mac_cb_t * 656 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 657 { 658 mac_cb_t *p; 659 mac_cb_t **pp; 660 mac_cb_t *rmlist = NULL; /* List of removed elements */ 661 int cnt = 0; 662 663 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 664 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 665 666 pp = mcb_head; 667 while (*pp != NULL) { 668 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 669 p = *pp; 670 *pp = p->mcb_nextp; 671 p->mcb_nextp = rmlist; 672 rmlist = p; 673 cnt++; 674 continue; 675 } 676 pp = &(*pp)->mcb_nextp; 677 } 678 679 ASSERT(mcbi->mcbi_del_cnt == cnt); 680 mcbi->mcbi_del_cnt = 0; 681 return (rmlist); 682 } 683 684 boolean_t 685 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 686 { 687 mac_cb_t *mcb; 688 689 /* Verify it is not already in the list */ 690 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 691 if (mcb == mcb_elem) 692 return (B_TRUE); 693 } 694 695 return (B_FALSE); 696 } 697 698 boolean_t 699 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 700 { 701 boolean_t found; 702 703 mutex_enter(mcbi->mcbi_lockp); 704 found = mac_callback_lookup(mcb_headp, mcb_elem); 705 mutex_exit(mcbi->mcbi_lockp); 706 707 return (found); 708 } 709 710 /* Free the list of removed callbacks */ 711 void 712 mac_callback_free(mac_cb_t *rmlist) 713 { 714 mac_cb_t *mcb; 715 mac_cb_t *mcb_next; 716 717 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 718 mcb_next = mcb->mcb_nextp; 719 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 720 } 721 } 722 723 /* 724 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 725 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 726 * is only a single shared total walker count, and an entry can't be physically 727 * unlinked if a walker is active on either list. The last walker does this 728 * cleanup of logically deleted entries. 729 */ 730 void 731 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 732 { 733 mac_cb_t *rmlist; 734 mac_cb_t *mcb; 735 mac_cb_t *mcb_next; 736 mac_promisc_impl_t *mpip; 737 738 /* 739 * Construct a temporary list of deleted callbacks by walking the 740 * the mi_promisc_list. Then for each entry in the temporary list, 741 * remove it from the mci_promisc_list and free the entry. 742 */ 743 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 744 &mip->mi_promisc_list); 745 746 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 747 mcb_next = mcb->mcb_nextp; 748 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 749 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 750 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 751 mcb->mcb_flags = 0; 752 mcb->mcb_nextp = NULL; 753 kmem_cache_free(mac_promisc_impl_cache, mpip); 754 } 755 } 756 757 void 758 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 759 { 760 mac_cb_info_t *mcbi; 761 762 /* 763 * Signal the notify thread even after mi_ref has become zero and 764 * mi_disabled is set. The synchronization with the notify thread 765 * happens in mac_unregister and that implies the driver must make 766 * sure it is single-threaded (with respect to mac calls) and that 767 * all pending mac calls have returned before it calls mac_unregister 768 */ 769 rw_enter(&i_mac_impl_lock, RW_READER); 770 if (mip->mi_state_flags & MIS_DISABLED) 771 goto exit; 772 773 /* 774 * Guard against incorrect notifications. (Running a newer 775 * mac client against an older implementation?) 776 */ 777 if (type >= MAC_NNOTE) 778 goto exit; 779 780 mcbi = &mip->mi_notify_cb_info; 781 mutex_enter(mcbi->mcbi_lockp); 782 mip->mi_notify_bits |= (1 << type); 783 cv_broadcast(&mcbi->mcbi_cv); 784 mutex_exit(mcbi->mcbi_lockp); 785 786 exit: 787 rw_exit(&i_mac_impl_lock); 788 } 789 790 /* 791 * Mac serialization primitives. Please see the block comment at the 792 * top of the file. 793 */ 794 void 795 i_mac_perim_enter(mac_impl_t *mip) 796 { 797 mac_client_impl_t *mcip; 798 799 if (mip->mi_state_flags & MIS_IS_VNIC) { 800 /* 801 * This is a VNIC. Return the lower mac since that is what 802 * we want to serialize on. 803 */ 804 mcip = mac_vnic_lower(mip); 805 mip = mcip->mci_mip; 806 } 807 808 mutex_enter(&mip->mi_perim_lock); 809 if (mip->mi_perim_owner == curthread) { 810 mip->mi_perim_ocnt++; 811 mutex_exit(&mip->mi_perim_lock); 812 return; 813 } 814 815 while (mip->mi_perim_owner != NULL) 816 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 817 818 mip->mi_perim_owner = curthread; 819 ASSERT(mip->mi_perim_ocnt == 0); 820 mip->mi_perim_ocnt++; 821 #ifdef DEBUG 822 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 823 MAC_PERIM_STACK_DEPTH); 824 #endif 825 mutex_exit(&mip->mi_perim_lock); 826 } 827 828 int 829 i_mac_perim_enter_nowait(mac_impl_t *mip) 830 { 831 /* 832 * The vnic is a special case, since the serialization is done based 833 * on the lower mac. If the lower mac is busy, it does not imply the 834 * vnic can't be unregistered. But in the case of other drivers, 835 * a busy perimeter or open mac handles implies that the mac is busy 836 * and can't be unregistered. 837 */ 838 if (mip->mi_state_flags & MIS_IS_VNIC) { 839 i_mac_perim_enter(mip); 840 return (0); 841 } 842 843 mutex_enter(&mip->mi_perim_lock); 844 if (mip->mi_perim_owner != NULL) { 845 mutex_exit(&mip->mi_perim_lock); 846 return (EBUSY); 847 } 848 ASSERT(mip->mi_perim_ocnt == 0); 849 mip->mi_perim_owner = curthread; 850 mip->mi_perim_ocnt++; 851 mutex_exit(&mip->mi_perim_lock); 852 853 return (0); 854 } 855 856 void 857 i_mac_perim_exit(mac_impl_t *mip) 858 { 859 mac_client_impl_t *mcip; 860 861 if (mip->mi_state_flags & MIS_IS_VNIC) { 862 /* 863 * This is a VNIC. Return the lower mac since that is what 864 * we want to serialize on. 865 */ 866 mcip = mac_vnic_lower(mip); 867 mip = mcip->mci_mip; 868 } 869 870 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 871 872 mutex_enter(&mip->mi_perim_lock); 873 if (--mip->mi_perim_ocnt == 0) { 874 mip->mi_perim_owner = NULL; 875 cv_signal(&mip->mi_perim_cv); 876 } 877 mutex_exit(&mip->mi_perim_lock); 878 } 879 880 /* 881 * Returns whether the current thread holds the mac perimeter. Used in making 882 * assertions. 883 */ 884 boolean_t 885 mac_perim_held(mac_handle_t mh) 886 { 887 mac_impl_t *mip = (mac_impl_t *)mh; 888 mac_client_impl_t *mcip; 889 890 if (mip->mi_state_flags & MIS_IS_VNIC) { 891 /* 892 * This is a VNIC. Return the lower mac since that is what 893 * we want to serialize on. 894 */ 895 mcip = mac_vnic_lower(mip); 896 mip = mcip->mci_mip; 897 } 898 return (mip->mi_perim_owner == curthread); 899 } 900 901 /* 902 * mac client interfaces to enter the mac perimeter of a mac end point, given 903 * its mac handle, or macname or linkid. 904 */ 905 void 906 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 907 { 908 mac_impl_t *mip = (mac_impl_t *)mh; 909 910 i_mac_perim_enter(mip); 911 /* 912 * The mac_perim_handle_t returned encodes the 'mip' and whether a 913 * mac_open has been done internally while entering the perimeter. 914 * This information is used in mac_perim_exit 915 */ 916 MAC_ENCODE_MPH(*mphp, mip, 0); 917 } 918 919 int 920 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 921 { 922 int err; 923 mac_handle_t mh; 924 925 if ((err = mac_open(name, &mh)) != 0) 926 return (err); 927 928 mac_perim_enter_by_mh(mh, mphp); 929 MAC_ENCODE_MPH(*mphp, mh, 1); 930 return (0); 931 } 932 933 int 934 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 935 { 936 int err; 937 mac_handle_t mh; 938 939 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 940 return (err); 941 942 mac_perim_enter_by_mh(mh, mphp); 943 MAC_ENCODE_MPH(*mphp, mh, 1); 944 return (0); 945 } 946 947 void 948 mac_perim_exit(mac_perim_handle_t mph) 949 { 950 mac_impl_t *mip; 951 boolean_t need_close; 952 953 MAC_DECODE_MPH(mph, mip, need_close); 954 i_mac_perim_exit(mip); 955 if (need_close) 956 mac_close((mac_handle_t)mip); 957 } 958 959 int 960 mac_hold(const char *macname, mac_impl_t **pmip) 961 { 962 mac_impl_t *mip; 963 int err; 964 965 /* 966 * Check the device name length to make sure it won't overflow our 967 * buffer. 968 */ 969 if (strlen(macname) >= MAXNAMELEN) 970 return (EINVAL); 971 972 /* 973 * Look up its entry in the global hash table. 974 */ 975 rw_enter(&i_mac_impl_lock, RW_WRITER); 976 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 977 (mod_hash_val_t *)&mip); 978 979 if (err != 0) { 980 rw_exit(&i_mac_impl_lock); 981 return (ENOENT); 982 } 983 984 if (mip->mi_state_flags & MIS_DISABLED) { 985 rw_exit(&i_mac_impl_lock); 986 return (ENOENT); 987 } 988 989 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 990 rw_exit(&i_mac_impl_lock); 991 return (EBUSY); 992 } 993 994 mip->mi_ref++; 995 rw_exit(&i_mac_impl_lock); 996 997 *pmip = mip; 998 return (0); 999 } 1000 1001 void 1002 mac_rele(mac_impl_t *mip) 1003 { 1004 rw_enter(&i_mac_impl_lock, RW_WRITER); 1005 ASSERT(mip->mi_ref != 0); 1006 if (--mip->mi_ref == 0) { 1007 ASSERT(mip->mi_nactiveclients == 0 && 1008 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1009 } 1010 rw_exit(&i_mac_impl_lock); 1011 } 1012 1013 /* 1014 * Private GLDv3 function to start a MAC instance. 1015 */ 1016 int 1017 mac_start(mac_handle_t mh) 1018 { 1019 mac_impl_t *mip = (mac_impl_t *)mh; 1020 int err = 0; 1021 1022 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1023 ASSERT(mip->mi_start != NULL); 1024 1025 /* 1026 * Check whether the device is already started. 1027 */ 1028 if (mip->mi_active++ == 0) { 1029 mac_ring_t *ring = NULL; 1030 1031 /* 1032 * Start the device. 1033 */ 1034 err = mip->mi_start(mip->mi_driver); 1035 if (err != 0) { 1036 mip->mi_active--; 1037 return (err); 1038 } 1039 1040 /* 1041 * Start the default tx ring. 1042 */ 1043 if (mip->mi_default_tx_ring != NULL) { 1044 1045 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1046 err = mac_start_ring(ring); 1047 if (err != 0) { 1048 mip->mi_active--; 1049 return (err); 1050 } 1051 ring->mr_state = MR_INUSE; 1052 } 1053 1054 if (mip->mi_rx_groups != NULL) { 1055 /* 1056 * Start the default ring, since it will be needed 1057 * to receive broadcast and multicast traffic for 1058 * both primary and non-primary MAC clients. 1059 */ 1060 mac_group_t *grp = &mip->mi_rx_groups[0]; 1061 1062 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1063 err = mac_start_group_and_rings(grp); 1064 if (err != 0) { 1065 mip->mi_active--; 1066 if (ring != NULL) { 1067 mac_stop_ring(ring); 1068 ring->mr_state = MR_FREE; 1069 } 1070 return (err); 1071 } 1072 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1073 } 1074 } 1075 1076 return (err); 1077 } 1078 1079 /* 1080 * Private GLDv3 function to stop a MAC instance. 1081 */ 1082 void 1083 mac_stop(mac_handle_t mh) 1084 { 1085 mac_impl_t *mip = (mac_impl_t *)mh; 1086 1087 ASSERT(mip->mi_stop != NULL); 1088 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1089 1090 /* 1091 * Check whether the device is still needed. 1092 */ 1093 ASSERT(mip->mi_active != 0); 1094 if (--mip->mi_active == 0) { 1095 if (mip->mi_rx_groups != NULL) { 1096 /* 1097 * There should be no more active clients since the 1098 * MAC is being stopped. Stop the default RX group 1099 * and transition it back to registered state. 1100 */ 1101 mac_group_t *grp = &mip->mi_rx_groups[0]; 1102 1103 /* 1104 * When clients are torn down, the groups 1105 * are release via mac_release_rx_group which 1106 * knows the the default group is always in 1107 * started mode since broadcast uses it. So 1108 * we can assert that their are no clients 1109 * (since mac_bcast_add doesn't register itself 1110 * as a client) and group is in SHARED state. 1111 */ 1112 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1113 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1114 mip->mi_nactiveclients == 0); 1115 mac_stop_group_and_rings(grp); 1116 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1117 } 1118 1119 if (mip->mi_default_tx_ring != NULL) { 1120 mac_ring_t *ring; 1121 1122 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1123 mac_stop_ring(ring); 1124 ring->mr_state = MR_FREE; 1125 } 1126 1127 /* 1128 * Stop the device. 1129 */ 1130 mip->mi_stop(mip->mi_driver); 1131 } 1132 } 1133 1134 int 1135 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1136 { 1137 int err = 0; 1138 1139 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1140 ASSERT(mip->mi_setpromisc != NULL); 1141 1142 if (on) { 1143 /* 1144 * Enable promiscuous mode on the device if not yet enabled. 1145 */ 1146 if (mip->mi_devpromisc++ == 0) { 1147 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1148 if (err != 0) { 1149 mip->mi_devpromisc--; 1150 return (err); 1151 } 1152 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1153 } 1154 } else { 1155 if (mip->mi_devpromisc == 0) 1156 return (EPROTO); 1157 1158 /* 1159 * Disable promiscuous mode on the device if this is the last 1160 * enabling. 1161 */ 1162 if (--mip->mi_devpromisc == 0) { 1163 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1164 if (err != 0) { 1165 mip->mi_devpromisc++; 1166 return (err); 1167 } 1168 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1169 } 1170 } 1171 1172 return (0); 1173 } 1174 1175 /* 1176 * The promiscuity state can change any time. If the caller needs to take 1177 * actions that are atomic with the promiscuity state, then the caller needs 1178 * to bracket the entire sequence with mac_perim_enter/exit 1179 */ 1180 boolean_t 1181 mac_promisc_get(mac_handle_t mh) 1182 { 1183 mac_impl_t *mip = (mac_impl_t *)mh; 1184 1185 /* 1186 * Return the current promiscuity. 1187 */ 1188 return (mip->mi_devpromisc != 0); 1189 } 1190 1191 /* 1192 * Invoked at MAC instance attach time to initialize the list 1193 * of factory MAC addresses supported by a MAC instance. This function 1194 * builds a local cache in the mac_impl_t for the MAC addresses 1195 * supported by the underlying hardware. The MAC clients themselves 1196 * use the mac_addr_factory*() functions to query and reserve 1197 * factory MAC addresses. 1198 */ 1199 void 1200 mac_addr_factory_init(mac_impl_t *mip) 1201 { 1202 mac_capab_multifactaddr_t capab; 1203 uint8_t *addr; 1204 int i; 1205 1206 /* 1207 * First round to see how many factory MAC addresses are available. 1208 */ 1209 bzero(&capab, sizeof (capab)); 1210 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1211 &capab) || (capab.mcm_naddr == 0)) { 1212 /* 1213 * The MAC instance doesn't support multiple factory 1214 * MAC addresses, we're done here. 1215 */ 1216 return; 1217 } 1218 1219 /* 1220 * Allocate the space and get all the factory addresses. 1221 */ 1222 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1223 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1224 1225 mip->mi_factory_addr_num = capab.mcm_naddr; 1226 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1227 sizeof (mac_factory_addr_t), KM_SLEEP); 1228 1229 for (i = 0; i < capab.mcm_naddr; i++) { 1230 bcopy(addr + i * MAXMACADDRLEN, 1231 mip->mi_factory_addr[i].mfa_addr, 1232 mip->mi_type->mt_addr_length); 1233 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1234 } 1235 1236 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1237 } 1238 1239 void 1240 mac_addr_factory_fini(mac_impl_t *mip) 1241 { 1242 if (mip->mi_factory_addr == NULL) { 1243 ASSERT(mip->mi_factory_addr_num == 0); 1244 return; 1245 } 1246 1247 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1248 sizeof (mac_factory_addr_t)); 1249 1250 mip->mi_factory_addr = NULL; 1251 mip->mi_factory_addr_num = 0; 1252 } 1253 1254 /* 1255 * Reserve a factory MAC address. If *slot is set to -1, the function 1256 * attempts to reserve any of the available factory MAC addresses and 1257 * returns the reserved slot id. If no slots are available, the function 1258 * returns ENOSPC. If *slot is not set to -1, the function reserves 1259 * the specified slot if it is available, or returns EBUSY is the slot 1260 * is already used. Returns ENOTSUP if the underlying MAC does not 1261 * support multiple factory addresses. If the slot number is not -1 but 1262 * is invalid, returns EINVAL. 1263 */ 1264 int 1265 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1266 { 1267 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1268 mac_impl_t *mip = mcip->mci_mip; 1269 int i, ret = 0; 1270 1271 i_mac_perim_enter(mip); 1272 /* 1273 * Protect against concurrent readers that may need a self-consistent 1274 * view of the factory addresses 1275 */ 1276 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1277 1278 if (mip->mi_factory_addr_num == 0) { 1279 ret = ENOTSUP; 1280 goto bail; 1281 } 1282 1283 if (*slot != -1) { 1284 /* check the specified slot */ 1285 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1286 ret = EINVAL; 1287 goto bail; 1288 } 1289 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1290 ret = EBUSY; 1291 goto bail; 1292 } 1293 } else { 1294 /* pick the next available slot */ 1295 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1296 if (!mip->mi_factory_addr[i].mfa_in_use) 1297 break; 1298 } 1299 1300 if (i == mip->mi_factory_addr_num) { 1301 ret = ENOSPC; 1302 goto bail; 1303 } 1304 *slot = i+1; 1305 } 1306 1307 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1308 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1309 1310 bail: 1311 rw_exit(&mip->mi_rw_lock); 1312 i_mac_perim_exit(mip); 1313 return (ret); 1314 } 1315 1316 /* 1317 * Release the specified factory MAC address slot. 1318 */ 1319 void 1320 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1321 { 1322 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1323 mac_impl_t *mip = mcip->mci_mip; 1324 1325 i_mac_perim_enter(mip); 1326 /* 1327 * Protect against concurrent readers that may need a self-consistent 1328 * view of the factory addresses 1329 */ 1330 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1331 1332 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1333 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1334 1335 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1336 1337 rw_exit(&mip->mi_rw_lock); 1338 i_mac_perim_exit(mip); 1339 } 1340 1341 /* 1342 * Stores in mac_addr the value of the specified MAC address. Returns 1343 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1344 * The caller must provide a string of at least MAXNAMELEN bytes. 1345 */ 1346 void 1347 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1348 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1349 { 1350 mac_impl_t *mip = (mac_impl_t *)mh; 1351 boolean_t in_use; 1352 1353 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1354 1355 /* 1356 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1357 * and mi_rw_lock 1358 */ 1359 rw_enter(&mip->mi_rw_lock, RW_READER); 1360 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1361 *addr_len = mip->mi_type->mt_addr_length; 1362 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1363 if (in_use && client_name != NULL) { 1364 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1365 client_name, MAXNAMELEN); 1366 } 1367 if (in_use_arg != NULL) 1368 *in_use_arg = in_use; 1369 rw_exit(&mip->mi_rw_lock); 1370 } 1371 1372 /* 1373 * Returns the number of factory MAC addresses (in addition to the 1374 * primary MAC address), 0 if the underlying MAC doesn't support 1375 * that feature. 1376 */ 1377 uint_t 1378 mac_addr_factory_num(mac_handle_t mh) 1379 { 1380 mac_impl_t *mip = (mac_impl_t *)mh; 1381 1382 return (mip->mi_factory_addr_num); 1383 } 1384 1385 1386 void 1387 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1388 { 1389 mac_ring_t *ring; 1390 1391 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1392 ring->mr_flag &= ~flag; 1393 } 1394 1395 /* 1396 * The following mac_hwrings_xxx() functions are private mac client functions 1397 * used by the aggr driver to access and control the underlying HW Rx group 1398 * and rings. In this case, the aggr driver has exclusive control of the 1399 * underlying HW Rx group/rings, it calls the following functions to 1400 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1401 * addresses, or set up the Rx callback. 1402 */ 1403 /* ARGSUSED */ 1404 static void 1405 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1406 mblk_t *mp_chain, boolean_t loopback) 1407 { 1408 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1409 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1410 mac_direct_rx_t proc; 1411 void *arg1; 1412 mac_resource_handle_t arg2; 1413 1414 proc = srs_rx->sr_func; 1415 arg1 = srs_rx->sr_arg1; 1416 arg2 = mac_srs->srs_mrh; 1417 1418 proc(arg1, arg2, mp_chain, NULL); 1419 } 1420 1421 /* 1422 * This function is called to get the list of HW rings that are reserved by 1423 * an exclusive mac client. 1424 * 1425 * Return value: the number of HW rings. 1426 */ 1427 int 1428 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1429 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1430 { 1431 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1432 int cnt = 0; 1433 1434 switch (rtype) { 1435 case MAC_RING_TYPE_RX: { 1436 flow_entry_t *flent = mcip->mci_flent; 1437 mac_group_t *grp; 1438 mac_ring_t *ring; 1439 1440 grp = flent->fe_rx_ring_group; 1441 /* 1442 * The mac client did not reserve any RX group, return directly. 1443 * This is probably because the underlying MAC does not support 1444 * any groups. 1445 */ 1446 *hwgh = NULL; 1447 if (grp == NULL) 1448 return (0); 1449 /* 1450 * This group must be reserved by this mac client. 1451 */ 1452 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1453 (mch == (mac_client_handle_t) 1454 (MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1455 for (ring = grp->mrg_rings; 1456 ring != NULL; ring = ring->mr_next, cnt++) { 1457 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1458 hwrh[cnt] = (mac_ring_handle_t)ring; 1459 } 1460 *hwgh = (mac_group_handle_t)grp; 1461 return (cnt); 1462 } 1463 case MAC_RING_TYPE_TX: { 1464 mac_soft_ring_set_t *tx_srs; 1465 mac_srs_tx_t *tx; 1466 1467 tx_srs = MCIP_TX_SRS(mcip); 1468 tx = &tx_srs->srs_tx; 1469 for (; cnt < tx->st_ring_count; cnt++) 1470 hwrh[cnt] = tx->st_rings[cnt]; 1471 return (cnt); 1472 } 1473 default: 1474 ASSERT(B_FALSE); 1475 return (-1); 1476 } 1477 } 1478 1479 /* 1480 * Setup the RX callback of the mac client which exclusively controls HW ring. 1481 */ 1482 void 1483 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1484 { 1485 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1486 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1487 1488 mac_srs->srs_mrh = prh; 1489 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1490 } 1491 1492 void 1493 mac_hwring_teardown(mac_ring_handle_t hwrh) 1494 { 1495 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1496 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1497 1498 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1499 mac_srs->srs_mrh = NULL; 1500 } 1501 1502 int 1503 mac_hwring_disable_intr(mac_ring_handle_t rh) 1504 { 1505 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1506 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1507 1508 return (intr->mi_disable(intr->mi_handle)); 1509 } 1510 1511 int 1512 mac_hwring_enable_intr(mac_ring_handle_t rh) 1513 { 1514 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1515 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1516 1517 return (intr->mi_enable(intr->mi_handle)); 1518 } 1519 1520 int 1521 mac_hwring_start(mac_ring_handle_t rh) 1522 { 1523 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1524 1525 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1526 return (0); 1527 } 1528 1529 void 1530 mac_hwring_stop(mac_ring_handle_t rh) 1531 { 1532 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1533 1534 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1535 } 1536 1537 mblk_t * 1538 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1539 { 1540 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1541 mac_ring_info_t *info = &rr_ring->mr_info; 1542 1543 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1544 } 1545 1546 /* 1547 * Send packets through the selected tx ring. 1548 */ 1549 mblk_t * 1550 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1551 { 1552 mac_ring_t *ring = (mac_ring_t *)rh; 1553 mac_ring_info_t *info = &ring->mr_info; 1554 1555 ASSERT(ring->mr_type == MAC_RING_TYPE_TX); 1556 ASSERT(ring->mr_state >= MR_INUSE); 1557 ASSERT(info->mri_tx != NULL); 1558 1559 return (info->mri_tx(info->mri_driver, mp)); 1560 } 1561 1562 int 1563 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1564 { 1565 mac_group_t *group = (mac_group_t *)gh; 1566 1567 return (mac_group_addmac(group, addr)); 1568 } 1569 1570 int 1571 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1572 { 1573 mac_group_t *group = (mac_group_t *)gh; 1574 1575 return (mac_group_remmac(group, addr)); 1576 } 1577 1578 /* 1579 * Set the RX group to be shared/reserved. Note that the group must be 1580 * started/stopped outside of this function. 1581 */ 1582 void 1583 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1584 { 1585 /* 1586 * If there is no change in the group state, just return. 1587 */ 1588 if (grp->mrg_state == state) 1589 return; 1590 1591 switch (state) { 1592 case MAC_GROUP_STATE_RESERVED: 1593 /* 1594 * Successfully reserved the group. 1595 * 1596 * Given that there is an exclusive client controlling this 1597 * group, we enable the group level polling when available, 1598 * so that SRSs get to turn on/off individual rings they's 1599 * assigned to. 1600 */ 1601 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1602 1603 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1604 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1605 1606 break; 1607 1608 case MAC_GROUP_STATE_SHARED: 1609 /* 1610 * Set all rings of this group to software classified. 1611 * If the group has an overriding interrupt, then re-enable it. 1612 */ 1613 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1614 1615 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1616 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1617 1618 /* The ring is not available for reservations any more */ 1619 break; 1620 1621 case MAC_GROUP_STATE_REGISTERED: 1622 /* Also callable from mac_register, perim is not held */ 1623 break; 1624 1625 default: 1626 ASSERT(B_FALSE); 1627 break; 1628 } 1629 1630 grp->mrg_state = state; 1631 } 1632 1633 /* 1634 * Quiesce future hardware classified packets for the specified Rx ring 1635 */ 1636 static void 1637 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1638 { 1639 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1640 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1641 1642 mutex_enter(&rx_ring->mr_lock); 1643 rx_ring->mr_flag |= ring_flag; 1644 while (rx_ring->mr_refcnt != 0) 1645 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1646 mutex_exit(&rx_ring->mr_lock); 1647 } 1648 1649 /* 1650 * Please see mac_tx for details about the per cpu locking scheme 1651 */ 1652 static void 1653 mac_tx_lock_all(mac_client_impl_t *mcip) 1654 { 1655 int i; 1656 1657 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1658 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1659 } 1660 1661 static void 1662 mac_tx_unlock_all(mac_client_impl_t *mcip) 1663 { 1664 int i; 1665 1666 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1667 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1668 } 1669 1670 static void 1671 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1672 { 1673 int i; 1674 1675 for (i = mac_tx_percpu_cnt; i > 0; i--) 1676 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1677 } 1678 1679 static int 1680 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1681 { 1682 int i; 1683 int refcnt = 0; 1684 1685 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1686 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1687 1688 return (refcnt); 1689 } 1690 1691 /* 1692 * Stop future Tx packets coming down from the client in preparation for 1693 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1694 * of rings between clients 1695 */ 1696 void 1697 mac_tx_client_block(mac_client_impl_t *mcip) 1698 { 1699 mac_tx_lock_all(mcip); 1700 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1701 while (mac_tx_sum_refcnt(mcip) != 0) { 1702 mac_tx_unlock_allbutzero(mcip); 1703 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1704 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1705 mac_tx_lock_all(mcip); 1706 } 1707 mac_tx_unlock_all(mcip); 1708 } 1709 1710 void 1711 mac_tx_client_unblock(mac_client_impl_t *mcip) 1712 { 1713 mac_tx_lock_all(mcip); 1714 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1715 mac_tx_unlock_all(mcip); 1716 /* 1717 * We may fail to disable flow control for the last MAC_NOTE_TX 1718 * notification because the MAC client is quiesced. Send the 1719 * notification again. 1720 */ 1721 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1722 } 1723 1724 /* 1725 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1726 * quiesce is done. 1727 */ 1728 static void 1729 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1730 { 1731 mutex_enter(&srs->srs_lock); 1732 while (!(srs->srs_state & srs_flag)) 1733 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1734 mutex_exit(&srs->srs_lock); 1735 } 1736 1737 /* 1738 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1739 * works bottom up by cutting off packet flow from the bottommost point in the 1740 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1741 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1742 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1743 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1744 * for the SRS and MR flags. In the former case the threads pause waiting for 1745 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1746 * is also mostly similar to the above. 1747 * 1748 * 1. Stop future hardware classified packets at the lowest level in the mac. 1749 * Remove any hardware classification rule (CONDEMNED case) and mark the 1750 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1751 * from increasing. Upcalls from the driver that come through hardware 1752 * classification will be dropped in mac_rx from now on. Then we wait for 1753 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1754 * sure there aren't any upcall threads from the driver through hardware 1755 * classification. In the case of SRS teardown we also remove the 1756 * classification rule in the driver. 1757 * 1758 * 2. Stop future software classified packets by marking the flow entry with 1759 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1760 * increasing. We also remove the flow entry from the table in the latter 1761 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1762 * that indicates there aren't any active threads using that flow entry. 1763 * 1764 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1765 * SRS worker thread, and the soft ring threads are quiesced in sequence 1766 * with the SRS worker thread serving as a master controller. This 1767 * mechansim is explained in mac_srs_worker_quiesce(). 1768 * 1769 * The restart mechanism to reactivate the SRS and softrings is explained 1770 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1771 * restart sequence. 1772 */ 1773 void 1774 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1775 { 1776 flow_entry_t *flent = srs->srs_flent; 1777 uint_t mr_flag, srs_done_flag; 1778 1779 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1780 ASSERT(!(srs->srs_type & SRST_TX)); 1781 1782 if (srs_quiesce_flag == SRS_CONDEMNED) { 1783 mr_flag = MR_CONDEMNED; 1784 srs_done_flag = SRS_CONDEMNED_DONE; 1785 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1786 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1787 } else { 1788 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1789 mr_flag = MR_QUIESCE; 1790 srs_done_flag = SRS_QUIESCE_DONE; 1791 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1792 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1793 } 1794 1795 if (srs->srs_ring != NULL) { 1796 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1797 } else { 1798 /* 1799 * SRS is driven by software classification. In case 1800 * of CONDEMNED, the top level teardown functions will 1801 * deal with flow removal. 1802 */ 1803 if (srs_quiesce_flag != SRS_CONDEMNED) { 1804 FLOW_MARK(flent, FE_QUIESCE); 1805 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1806 } 1807 } 1808 1809 /* 1810 * Signal the SRS to quiesce itself, and then cv_wait for the 1811 * SRS quiesce to complete. The SRS worker thread will wake us 1812 * up when the quiesce is complete 1813 */ 1814 mac_srs_signal(srs, srs_quiesce_flag); 1815 mac_srs_quiesce_wait(srs, srs_done_flag); 1816 } 1817 1818 /* 1819 * Remove an SRS. 1820 */ 1821 void 1822 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1823 { 1824 flow_entry_t *flent = srs->srs_flent; 1825 int i; 1826 1827 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1828 /* 1829 * Locate and remove our entry in the fe_rx_srs[] array, and 1830 * adjust the fe_rx_srs array entries and array count by 1831 * moving the last entry into the vacated spot. 1832 */ 1833 mutex_enter(&flent->fe_lock); 1834 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1835 if (flent->fe_rx_srs[i] == srs) 1836 break; 1837 } 1838 1839 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1840 if (i != flent->fe_rx_srs_cnt - 1) { 1841 flent->fe_rx_srs[i] = 1842 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1843 i = flent->fe_rx_srs_cnt - 1; 1844 } 1845 1846 flent->fe_rx_srs[i] = NULL; 1847 flent->fe_rx_srs_cnt--; 1848 mutex_exit(&flent->fe_lock); 1849 1850 mac_srs_free(srs); 1851 } 1852 1853 static void 1854 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1855 { 1856 mutex_enter(&srs->srs_lock); 1857 srs->srs_state &= ~flag; 1858 mutex_exit(&srs->srs_lock); 1859 } 1860 1861 void 1862 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1863 { 1864 flow_entry_t *flent = srs->srs_flent; 1865 mac_ring_t *mr; 1866 1867 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1868 ASSERT((srs->srs_type & SRST_TX) == 0); 1869 1870 /* 1871 * This handles a change in the number of SRSs between the quiesce and 1872 * and restart operation of a flow. 1873 */ 1874 if (!SRS_QUIESCED(srs)) 1875 return; 1876 1877 /* 1878 * Signal the SRS to restart itself. Wait for the restart to complete 1879 * Note that we only restart the SRS if it is not marked as 1880 * permanently quiesced. 1881 */ 1882 if (!SRS_QUIESCED_PERMANENT(srs)) { 1883 mac_srs_signal(srs, SRS_RESTART); 1884 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1885 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1886 1887 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1888 } 1889 1890 /* Finally clear the flags to let the packets in */ 1891 mr = srs->srs_ring; 1892 if (mr != NULL) { 1893 MAC_RING_UNMARK(mr, MR_QUIESCE); 1894 /* In case the ring was stopped, safely restart it */ 1895 (void) mac_start_ring(mr); 1896 } else { 1897 FLOW_UNMARK(flent, FE_QUIESCE); 1898 } 1899 } 1900 1901 /* 1902 * Temporary quiesce of a flow and associated Rx SRS. 1903 * Please see block comment above mac_rx_classify_flow_rem. 1904 */ 1905 /* ARGSUSED */ 1906 int 1907 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1908 { 1909 int i; 1910 1911 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1912 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1913 SRS_QUIESCE); 1914 } 1915 return (0); 1916 } 1917 1918 /* 1919 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1920 * Please see block comment above mac_rx_classify_flow_rem 1921 */ 1922 /* ARGSUSED */ 1923 int 1924 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1925 { 1926 int i; 1927 1928 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1929 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1930 1931 return (0); 1932 } 1933 1934 void 1935 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1936 { 1937 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1938 flow_entry_t *flent = mcip->mci_flent; 1939 mac_impl_t *mip = mcip->mci_mip; 1940 mac_soft_ring_set_t *mac_srs; 1941 int i; 1942 1943 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1944 1945 if (flent == NULL) 1946 return; 1947 1948 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1949 mac_srs = flent->fe_rx_srs[i]; 1950 mutex_enter(&mac_srs->srs_lock); 1951 if (on) 1952 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1953 else 1954 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1955 mutex_exit(&mac_srs->srs_lock); 1956 } 1957 } 1958 1959 void 1960 mac_rx_client_quiesce(mac_client_handle_t mch) 1961 { 1962 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1963 mac_impl_t *mip = mcip->mci_mip; 1964 1965 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1966 1967 if (MCIP_DATAPATH_SETUP(mcip)) { 1968 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1969 NULL); 1970 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1971 mac_rx_classify_flow_quiesce, NULL); 1972 } 1973 } 1974 1975 void 1976 mac_rx_client_restart(mac_client_handle_t mch) 1977 { 1978 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1979 mac_impl_t *mip = mcip->mci_mip; 1980 1981 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1982 1983 if (MCIP_DATAPATH_SETUP(mcip)) { 1984 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1985 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1986 mac_rx_classify_flow_restart, NULL); 1987 } 1988 } 1989 1990 /* 1991 * This function only quiesces the Tx SRS and softring worker threads. Callers 1992 * need to make sure that there aren't any mac client threads doing current or 1993 * future transmits in the mac before calling this function. 1994 */ 1995 void 1996 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1997 { 1998 mac_client_impl_t *mcip = srs->srs_mcip; 1999 2000 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2001 2002 ASSERT(srs->srs_type & SRST_TX); 2003 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2004 srs_quiesce_flag == SRS_QUIESCE); 2005 2006 /* 2007 * Signal the SRS to quiesce itself, and then cv_wait for the 2008 * SRS quiesce to complete. The SRS worker thread will wake us 2009 * up when the quiesce is complete 2010 */ 2011 mac_srs_signal(srs, srs_quiesce_flag); 2012 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2013 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2014 } 2015 2016 void 2017 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2018 { 2019 /* 2020 * Resizing the fanout could result in creation of new SRSs. 2021 * They may not necessarily be in the quiesced state in which 2022 * case it need be restarted 2023 */ 2024 if (!SRS_QUIESCED(srs)) 2025 return; 2026 2027 mac_srs_signal(srs, SRS_RESTART); 2028 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2029 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2030 } 2031 2032 /* 2033 * Temporary quiesce of a flow and associated Rx SRS. 2034 * Please see block comment above mac_rx_srs_quiesce 2035 */ 2036 /* ARGSUSED */ 2037 int 2038 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2039 { 2040 /* 2041 * The fe_tx_srs is null for a subflow on an interface that is 2042 * not plumbed 2043 */ 2044 if (flent->fe_tx_srs != NULL) 2045 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2046 return (0); 2047 } 2048 2049 /* ARGSUSED */ 2050 int 2051 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2052 { 2053 /* 2054 * The fe_tx_srs is null for a subflow on an interface that is 2055 * not plumbed 2056 */ 2057 if (flent->fe_tx_srs != NULL) 2058 mac_tx_srs_restart(flent->fe_tx_srs); 2059 return (0); 2060 } 2061 2062 void 2063 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2064 { 2065 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2066 2067 mac_tx_client_block(mcip); 2068 if (MCIP_TX_SRS(mcip) != NULL) { 2069 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2070 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2071 mac_tx_flow_quiesce, NULL); 2072 } 2073 } 2074 2075 void 2076 mac_tx_client_restart(mac_client_impl_t *mcip) 2077 { 2078 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2079 2080 mac_tx_client_unblock(mcip); 2081 if (MCIP_TX_SRS(mcip) != NULL) { 2082 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2083 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2084 mac_tx_flow_restart, NULL); 2085 } 2086 } 2087 2088 void 2089 mac_tx_client_flush(mac_client_impl_t *mcip) 2090 { 2091 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2092 2093 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2094 mac_tx_client_restart(mcip); 2095 } 2096 2097 void 2098 mac_client_quiesce(mac_client_impl_t *mcip) 2099 { 2100 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2101 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2102 } 2103 2104 void 2105 mac_client_restart(mac_client_impl_t *mcip) 2106 { 2107 mac_rx_client_restart((mac_client_handle_t)mcip); 2108 mac_tx_client_restart(mcip); 2109 } 2110 2111 /* 2112 * Allocate a minor number. 2113 */ 2114 minor_t 2115 mac_minor_hold(boolean_t sleep) 2116 { 2117 minor_t minor; 2118 2119 /* 2120 * Grab a value from the arena. 2121 */ 2122 atomic_add_32(&minor_count, 1); 2123 2124 if (sleep) 2125 minor = (uint_t)id_alloc(minor_ids); 2126 else 2127 minor = (uint_t)id_alloc_nosleep(minor_ids); 2128 2129 if (minor == 0) { 2130 atomic_add_32(&minor_count, -1); 2131 return (0); 2132 } 2133 2134 return (minor); 2135 } 2136 2137 /* 2138 * Release a previously allocated minor number. 2139 */ 2140 void 2141 mac_minor_rele(minor_t minor) 2142 { 2143 /* 2144 * Return the value to the arena. 2145 */ 2146 id_free(minor_ids, minor); 2147 atomic_add_32(&minor_count, -1); 2148 } 2149 2150 uint32_t 2151 mac_no_notification(mac_handle_t mh) 2152 { 2153 mac_impl_t *mip = (mac_impl_t *)mh; 2154 2155 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2156 mip->mi_capab_legacy.ml_unsup_note : 0); 2157 } 2158 2159 /* 2160 * Prevent any new opens of this mac in preparation for unregister 2161 */ 2162 int 2163 i_mac_disable(mac_impl_t *mip) 2164 { 2165 mac_client_impl_t *mcip; 2166 2167 rw_enter(&i_mac_impl_lock, RW_WRITER); 2168 if (mip->mi_state_flags & MIS_DISABLED) { 2169 /* Already disabled, return success */ 2170 rw_exit(&i_mac_impl_lock); 2171 return (0); 2172 } 2173 /* 2174 * See if there are any other references to this mac_t (e.g., VLAN's). 2175 * If so return failure. If all the other checks below pass, then 2176 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2177 * any new VLAN's from being created or new mac client opens of this 2178 * mac end point. 2179 */ 2180 if (mip->mi_ref > 0) { 2181 rw_exit(&i_mac_impl_lock); 2182 return (EBUSY); 2183 } 2184 2185 /* 2186 * mac clients must delete all multicast groups they join before 2187 * closing. bcast groups are reference counted, the last client 2188 * to delete the group will wait till the group is physically 2189 * deleted. Since all clients have closed this mac end point 2190 * mi_bcast_ngrps must be zero at this point 2191 */ 2192 ASSERT(mip->mi_bcast_ngrps == 0); 2193 2194 /* 2195 * Don't let go of this if it has some flows. 2196 * All other code guarantees no flows are added to a disabled 2197 * mac, therefore it is sufficient to check for the flow table 2198 * only here. 2199 */ 2200 mcip = mac_primary_client_handle(mip); 2201 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2202 rw_exit(&i_mac_impl_lock); 2203 return (ENOTEMPTY); 2204 } 2205 2206 mip->mi_state_flags |= MIS_DISABLED; 2207 rw_exit(&i_mac_impl_lock); 2208 return (0); 2209 } 2210 2211 int 2212 mac_disable_nowait(mac_handle_t mh) 2213 { 2214 mac_impl_t *mip = (mac_impl_t *)mh; 2215 int err; 2216 2217 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2218 return (err); 2219 err = i_mac_disable(mip); 2220 i_mac_perim_exit(mip); 2221 return (err); 2222 } 2223 2224 int 2225 mac_disable(mac_handle_t mh) 2226 { 2227 mac_impl_t *mip = (mac_impl_t *)mh; 2228 int err; 2229 2230 i_mac_perim_enter(mip); 2231 err = i_mac_disable(mip); 2232 i_mac_perim_exit(mip); 2233 2234 /* 2235 * Clean up notification thread and wait for it to exit. 2236 */ 2237 if (err == 0) 2238 i_mac_notify_exit(mip); 2239 2240 return (err); 2241 } 2242 2243 /* 2244 * Called when the MAC instance has a non empty flow table, to de-multiplex 2245 * incoming packets to the right flow. 2246 * The MAC's rw lock is assumed held as a READER. 2247 */ 2248 /* ARGSUSED */ 2249 static mblk_t * 2250 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2251 { 2252 flow_entry_t *flent = NULL; 2253 uint_t flags = FLOW_INBOUND; 2254 int err; 2255 2256 /* 2257 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2258 * to mac_flow_lookup() so that the VLAN packets can be successfully 2259 * passed to the non-VLAN aggregation flows. 2260 * 2261 * Note that there is possibly a race between this and 2262 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2263 * classified to non-VLAN flows of non-aggregation mac clients. These 2264 * VLAN packets will be then filtered out by the mac module. 2265 */ 2266 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2267 flags |= FLOW_IGNORE_VLAN; 2268 2269 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2270 if (err != 0) { 2271 /* no registered receive function */ 2272 return (mp); 2273 } else { 2274 mac_client_impl_t *mcip; 2275 2276 /* 2277 * This flent might just be an additional one on the MAC client, 2278 * i.e. for classification purposes (different fdesc), however 2279 * the resources, SRS et. al., are in the mci_flent, so if 2280 * this isn't the mci_flent, we need to get it. 2281 */ 2282 if ((mcip = flent->fe_mcip) != NULL && 2283 mcip->mci_flent != flent) { 2284 FLOW_REFRELE(flent); 2285 flent = mcip->mci_flent; 2286 FLOW_TRY_REFHOLD(flent, err); 2287 if (err != 0) 2288 return (mp); 2289 } 2290 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2291 B_FALSE); 2292 FLOW_REFRELE(flent); 2293 } 2294 return (NULL); 2295 } 2296 2297 mblk_t * 2298 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2299 { 2300 mac_impl_t *mip = (mac_impl_t *)mh; 2301 mblk_t *bp, *bp1, **bpp, *list = NULL; 2302 2303 /* 2304 * We walk the chain and attempt to classify each packet. 2305 * The packets that couldn't be classified will be returned 2306 * back to the caller. 2307 */ 2308 bp = mp_chain; 2309 bpp = &list; 2310 while (bp != NULL) { 2311 bp1 = bp; 2312 bp = bp->b_next; 2313 bp1->b_next = NULL; 2314 2315 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2316 *bpp = bp1; 2317 bpp = &bp1->b_next; 2318 } 2319 } 2320 return (list); 2321 } 2322 2323 static int 2324 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2325 { 2326 mac_ring_handle_t ring = arg; 2327 2328 if (flent->fe_tx_srs) 2329 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2330 return (0); 2331 } 2332 2333 void 2334 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2335 { 2336 mac_client_impl_t *cclient; 2337 mac_soft_ring_set_t *mac_srs; 2338 2339 /* 2340 * After grabbing the mi_rw_lock, the list of clients can't change. 2341 * If there are any clients mi_disabled must be B_FALSE and can't 2342 * get set since there are clients. If there aren't any clients we 2343 * don't do anything. In any case the mip has to be valid. The driver 2344 * must make sure that it goes single threaded (with respect to mac 2345 * calls) and wait for all pending mac calls to finish before calling 2346 * mac_unregister. 2347 */ 2348 rw_enter(&i_mac_impl_lock, RW_READER); 2349 if (mip->mi_state_flags & MIS_DISABLED) { 2350 rw_exit(&i_mac_impl_lock); 2351 return; 2352 } 2353 2354 /* 2355 * Get MAC tx srs from walking mac_client_handle list. 2356 */ 2357 rw_enter(&mip->mi_rw_lock, RW_READER); 2358 for (cclient = mip->mi_clients_list; cclient != NULL; 2359 cclient = cclient->mci_client_next) { 2360 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2361 mac_tx_srs_wakeup(mac_srs, ring); 2362 (void) mac_flow_walk(cclient->mci_subflow_tab, 2363 mac_tx_flow_srs_wakeup, ring); 2364 } 2365 rw_exit(&mip->mi_rw_lock); 2366 rw_exit(&i_mac_impl_lock); 2367 } 2368 2369 /* ARGSUSED */ 2370 void 2371 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2372 boolean_t add) 2373 { 2374 mac_impl_t *mip = (mac_impl_t *)mh; 2375 2376 i_mac_perim_enter((mac_impl_t *)mh); 2377 /* 2378 * If no specific refresh function was given then default to the 2379 * driver's m_multicst entry point. 2380 */ 2381 if (refresh == NULL) { 2382 refresh = mip->mi_multicst; 2383 arg = mip->mi_driver; 2384 } 2385 2386 mac_bcast_refresh(mip, refresh, arg, add); 2387 i_mac_perim_exit((mac_impl_t *)mh); 2388 } 2389 2390 void 2391 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2392 { 2393 mac_impl_t *mip = (mac_impl_t *)mh; 2394 2395 /* 2396 * If no specific refresh function was given then default to the 2397 * driver's m_promisc entry point. 2398 */ 2399 if (refresh == NULL) { 2400 refresh = mip->mi_setpromisc; 2401 arg = mip->mi_driver; 2402 } 2403 ASSERT(refresh != NULL); 2404 2405 /* 2406 * Call the refresh function with the current promiscuity. 2407 */ 2408 refresh(arg, (mip->mi_devpromisc != 0)); 2409 } 2410 2411 /* 2412 * The mac client requests that the mac not to change its margin size to 2413 * be less than the specified value. If "current" is B_TRUE, then the client 2414 * requests the mac not to change its margin size to be smaller than the 2415 * current size. Further, return the current margin size value in this case. 2416 * 2417 * We keep every requested size in an ordered list from largest to smallest. 2418 */ 2419 int 2420 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2421 { 2422 mac_impl_t *mip = (mac_impl_t *)mh; 2423 mac_margin_req_t **pp, *p; 2424 int err = 0; 2425 2426 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2427 if (current) 2428 *marginp = mip->mi_margin; 2429 2430 /* 2431 * If the current margin value cannot satisfy the margin requested, 2432 * return ENOTSUP directly. 2433 */ 2434 if (*marginp > mip->mi_margin) { 2435 err = ENOTSUP; 2436 goto done; 2437 } 2438 2439 /* 2440 * Check whether the given margin is already in the list. If so, 2441 * bump the reference count. 2442 */ 2443 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2444 if (p->mmr_margin == *marginp) { 2445 /* 2446 * The margin requested is already in the list, 2447 * so just bump the reference count. 2448 */ 2449 p->mmr_ref++; 2450 goto done; 2451 } 2452 if (p->mmr_margin < *marginp) 2453 break; 2454 } 2455 2456 2457 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2458 p->mmr_margin = *marginp; 2459 p->mmr_ref++; 2460 p->mmr_nextp = *pp; 2461 *pp = p; 2462 2463 done: 2464 rw_exit(&(mip->mi_rw_lock)); 2465 return (err); 2466 } 2467 2468 /* 2469 * The mac client requests to cancel its previous mac_margin_add() request. 2470 * We remove the requested margin size from the list. 2471 */ 2472 int 2473 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2474 { 2475 mac_impl_t *mip = (mac_impl_t *)mh; 2476 mac_margin_req_t **pp, *p; 2477 int err = 0; 2478 2479 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2480 /* 2481 * Find the entry in the list for the given margin. 2482 */ 2483 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2484 if (p->mmr_margin == margin) { 2485 if (--p->mmr_ref == 0) 2486 break; 2487 2488 /* 2489 * There is still a reference to this address so 2490 * there's nothing more to do. 2491 */ 2492 goto done; 2493 } 2494 } 2495 2496 /* 2497 * We did not find an entry for the given margin. 2498 */ 2499 if (p == NULL) { 2500 err = ENOENT; 2501 goto done; 2502 } 2503 2504 ASSERT(p->mmr_ref == 0); 2505 2506 /* 2507 * Remove it from the list. 2508 */ 2509 *pp = p->mmr_nextp; 2510 kmem_free(p, sizeof (mac_margin_req_t)); 2511 done: 2512 rw_exit(&(mip->mi_rw_lock)); 2513 return (err); 2514 } 2515 2516 boolean_t 2517 mac_margin_update(mac_handle_t mh, uint32_t margin) 2518 { 2519 mac_impl_t *mip = (mac_impl_t *)mh; 2520 uint32_t margin_needed = 0; 2521 2522 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2523 2524 if (mip->mi_mmrp != NULL) 2525 margin_needed = mip->mi_mmrp->mmr_margin; 2526 2527 if (margin_needed <= margin) 2528 mip->mi_margin = margin; 2529 2530 rw_exit(&(mip->mi_rw_lock)); 2531 2532 if (margin_needed <= margin) 2533 i_mac_notify(mip, MAC_NOTE_MARGIN); 2534 2535 return (margin_needed <= margin); 2536 } 2537 2538 /* 2539 * MAC Type Plugin functions. 2540 */ 2541 2542 mactype_t * 2543 mactype_getplugin(const char *pname) 2544 { 2545 mactype_t *mtype = NULL; 2546 boolean_t tried_modload = B_FALSE; 2547 2548 mutex_enter(&i_mactype_lock); 2549 2550 find_registered_mactype: 2551 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2552 (mod_hash_val_t *)&mtype) != 0) { 2553 if (!tried_modload) { 2554 /* 2555 * If the plugin has not yet been loaded, then 2556 * attempt to load it now. If modload() succeeds, 2557 * the plugin should have registered using 2558 * mactype_register(), in which case we can go back 2559 * and attempt to find it again. 2560 */ 2561 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2562 tried_modload = B_TRUE; 2563 goto find_registered_mactype; 2564 } 2565 } 2566 } else { 2567 /* 2568 * Note that there's no danger that the plugin we've loaded 2569 * could be unloaded between the modload() step and the 2570 * reference count bump here, as we're holding 2571 * i_mactype_lock, which mactype_unregister() also holds. 2572 */ 2573 atomic_inc_32(&mtype->mt_ref); 2574 } 2575 2576 mutex_exit(&i_mactype_lock); 2577 return (mtype); 2578 } 2579 2580 mactype_register_t * 2581 mactype_alloc(uint_t mactype_version) 2582 { 2583 mactype_register_t *mtrp; 2584 2585 /* 2586 * Make sure there isn't a version mismatch between the plugin and 2587 * the framework. In the future, if multiple versions are 2588 * supported, this check could become more sophisticated. 2589 */ 2590 if (mactype_version != MACTYPE_VERSION) 2591 return (NULL); 2592 2593 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2594 mtrp->mtr_version = mactype_version; 2595 return (mtrp); 2596 } 2597 2598 void 2599 mactype_free(mactype_register_t *mtrp) 2600 { 2601 kmem_free(mtrp, sizeof (mactype_register_t)); 2602 } 2603 2604 int 2605 mactype_register(mactype_register_t *mtrp) 2606 { 2607 mactype_t *mtp; 2608 mactype_ops_t *ops = mtrp->mtr_ops; 2609 2610 /* Do some sanity checking before we register this MAC type. */ 2611 if (mtrp->mtr_ident == NULL || ops == NULL) 2612 return (EINVAL); 2613 2614 /* 2615 * Verify that all mandatory callbacks are set in the ops 2616 * vector. 2617 */ 2618 if (ops->mtops_unicst_verify == NULL || 2619 ops->mtops_multicst_verify == NULL || 2620 ops->mtops_sap_verify == NULL || 2621 ops->mtops_header == NULL || 2622 ops->mtops_header_info == NULL) { 2623 return (EINVAL); 2624 } 2625 2626 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2627 mtp->mt_ident = mtrp->mtr_ident; 2628 mtp->mt_ops = *ops; 2629 mtp->mt_type = mtrp->mtr_mactype; 2630 mtp->mt_nativetype = mtrp->mtr_nativetype; 2631 mtp->mt_addr_length = mtrp->mtr_addrlen; 2632 if (mtrp->mtr_brdcst_addr != NULL) { 2633 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2634 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2635 mtrp->mtr_addrlen); 2636 } 2637 2638 mtp->mt_stats = mtrp->mtr_stats; 2639 mtp->mt_statcount = mtrp->mtr_statcount; 2640 2641 mtp->mt_mapping = mtrp->mtr_mapping; 2642 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2643 2644 if (mod_hash_insert(i_mactype_hash, 2645 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2646 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2647 kmem_free(mtp, sizeof (*mtp)); 2648 return (EEXIST); 2649 } 2650 return (0); 2651 } 2652 2653 int 2654 mactype_unregister(const char *ident) 2655 { 2656 mactype_t *mtp; 2657 mod_hash_val_t val; 2658 int err; 2659 2660 /* 2661 * Let's not allow MAC drivers to use this plugin while we're 2662 * trying to unregister it. Holding i_mactype_lock also prevents a 2663 * plugin from unregistering while a MAC driver is attempting to 2664 * hold a reference to it in i_mactype_getplugin(). 2665 */ 2666 mutex_enter(&i_mactype_lock); 2667 2668 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2669 (mod_hash_val_t *)&mtp)) != 0) { 2670 /* A plugin is trying to unregister, but it never registered. */ 2671 err = ENXIO; 2672 goto done; 2673 } 2674 2675 if (mtp->mt_ref != 0) { 2676 err = EBUSY; 2677 goto done; 2678 } 2679 2680 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2681 ASSERT(err == 0); 2682 if (err != 0) { 2683 /* This should never happen, thus the ASSERT() above. */ 2684 err = EINVAL; 2685 goto done; 2686 } 2687 ASSERT(mtp == (mactype_t *)val); 2688 2689 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2690 kmem_free(mtp, sizeof (mactype_t)); 2691 done: 2692 mutex_exit(&i_mactype_lock); 2693 return (err); 2694 } 2695 2696 /* 2697 * Returns TRUE when the specified property is intended for the MAC framework, 2698 * as opposed to driver defined properties. 2699 */ 2700 static boolean_t 2701 mac_is_macprop(mac_prop_t *macprop) 2702 { 2703 switch (macprop->mp_id) { 2704 case MAC_PROP_MAXBW: 2705 case MAC_PROP_PRIO: 2706 case MAC_PROP_BIND_CPU: 2707 return (B_TRUE); 2708 default: 2709 return (B_FALSE); 2710 } 2711 } 2712 2713 /* 2714 * mac_set_prop() sets mac or hardware driver properties: 2715 * mac properties include maxbw, priority, and cpu binding list. Driver 2716 * properties are private properties to the hardware, such as mtu, speed 2717 * etc. 2718 * If the property is a driver property, mac_set_prop() calls driver's callback 2719 * function to set it. 2720 * If the property is a mac property, mac_set_prop() invokes mac_set_resources() 2721 * which will cache the property value in mac_impl_t and may call 2722 * mac_client_set_resource() to update property value of the primary mac client, 2723 * if it exists. 2724 */ 2725 int 2726 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2727 { 2728 int err = ENOTSUP; 2729 mac_impl_t *mip = (mac_impl_t *)mh; 2730 2731 ASSERT(MAC_PERIM_HELD(mh)); 2732 2733 /* If it is mac property, call mac_set_resources() */ 2734 if (mac_is_macprop(macprop)) { 2735 mac_resource_props_t mrp; 2736 2737 if (valsize < sizeof (mac_resource_props_t)) 2738 return (EINVAL); 2739 bzero(&mrp, sizeof (mac_resource_props_t)); 2740 bcopy(val, &mrp, sizeof (mrp)); 2741 return (mac_set_resources(mh, &mrp)); 2742 } 2743 switch (macprop->mp_id) { 2744 case MAC_PROP_MTU: { 2745 uint32_t mtu; 2746 2747 if (valsize < sizeof (mtu)) 2748 return (EINVAL); 2749 bcopy(val, &mtu, sizeof (mtu)); 2750 err = mac_set_mtu(mh, mtu, NULL); 2751 break; 2752 } 2753 default: 2754 /* For other driver properties, call driver's callback */ 2755 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2756 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2757 macprop->mp_name, macprop->mp_id, valsize, val); 2758 } 2759 } 2760 return (err); 2761 } 2762 2763 /* 2764 * mac_get_prop() gets mac or hardware driver properties. 2765 * 2766 * If the property is a driver property, mac_get_prop() calls driver's callback 2767 * function to get it. 2768 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2769 * which returns the cached value in mac_impl_t. 2770 */ 2771 int 2772 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2773 uint_t *perm) 2774 { 2775 int err = ENOTSUP; 2776 mac_impl_t *mip = (mac_impl_t *)mh; 2777 link_state_t link_state; 2778 boolean_t is_getprop, is_setprop; 2779 2780 is_getprop = (mip->mi_callbacks->mc_callbacks & MC_GETPROP); 2781 is_setprop = (mip->mi_callbacks->mc_callbacks & MC_SETPROP); 2782 2783 /* If mac property, read from cache */ 2784 if (mac_is_macprop(macprop)) { 2785 mac_resource_props_t mrp; 2786 2787 if (valsize < sizeof (mac_resource_props_t)) 2788 return (EINVAL); 2789 bzero(&mrp, sizeof (mac_resource_props_t)); 2790 mac_get_resources(mh, &mrp); 2791 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2792 return (0); 2793 } 2794 2795 switch (macprop->mp_id) { 2796 case MAC_PROP_MTU: { 2797 uint32_t sdu; 2798 mac_propval_range_t range; 2799 2800 if ((macprop->mp_flags & MAC_PROP_POSSIBLE) != 0) { 2801 if (valsize < sizeof (mac_propval_range_t)) 2802 return (EINVAL); 2803 if (is_getprop) { 2804 err = mip->mi_callbacks->mc_getprop(mip-> 2805 mi_driver, macprop->mp_name, macprop->mp_id, 2806 macprop->mp_flags, valsize, val, perm); 2807 } 2808 /* 2809 * If the driver doesn't have *_m_getprop defined or 2810 * if the driver doesn't support setting MTU then 2811 * return the CURRENT value as POSSIBLE value. 2812 */ 2813 if (!is_getprop || err == ENOTSUP) { 2814 mac_sdu_get(mh, NULL, &sdu); 2815 range.mpr_count = 1; 2816 range.mpr_type = MAC_PROPVAL_UINT32; 2817 range.range_uint32[0].mpur_min = 2818 range.range_uint32[0].mpur_max = sdu; 2819 bcopy(&range, val, sizeof (range)); 2820 err = 0; 2821 } 2822 return (err); 2823 } 2824 if (valsize < sizeof (sdu)) 2825 return (EINVAL); 2826 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2827 mac_sdu_get(mh, NULL, &sdu); 2828 bcopy(&sdu, val, sizeof (sdu)); 2829 if (is_setprop && (mip->mi_callbacks->mc_setprop(mip-> 2830 mi_driver, macprop->mp_name, macprop->mp_id, 2831 valsize, val) == 0)) { 2832 *perm = MAC_PROP_PERM_RW; 2833 } else { 2834 *perm = MAC_PROP_PERM_READ; 2835 } 2836 return (0); 2837 } else { 2838 if (mip->mi_info.mi_media == DL_ETHER) { 2839 sdu = ETHERMTU; 2840 bcopy(&sdu, val, sizeof (sdu)); 2841 2842 return (0); 2843 } 2844 /* 2845 * ask driver for its default. 2846 */ 2847 break; 2848 } 2849 } 2850 case MAC_PROP_STATUS: 2851 if (valsize < sizeof (link_state)) 2852 return (EINVAL); 2853 *perm = MAC_PROP_PERM_READ; 2854 link_state = mac_link_get(mh); 2855 bcopy(&link_state, val, sizeof (link_state)); 2856 return (0); 2857 default: 2858 break; 2859 2860 } 2861 /* If driver property, request from driver */ 2862 if (is_getprop) { 2863 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2864 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2865 valsize, val, perm); 2866 } 2867 return (err); 2868 } 2869 2870 int 2871 mac_fastpath_disable(mac_handle_t mh) 2872 { 2873 mac_impl_t *mip = (mac_impl_t *)mh; 2874 2875 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2876 return (0); 2877 2878 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 2879 } 2880 2881 void 2882 mac_fastpath_enable(mac_handle_t mh) 2883 { 2884 mac_impl_t *mip = (mac_impl_t *)mh; 2885 2886 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2887 return; 2888 2889 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 2890 } 2891 2892 void 2893 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2894 { 2895 mac_priv_prop_t *mpriv; 2896 2897 if (mpp == NULL) 2898 return; 2899 2900 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2901 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2902 mip->mi_priv_prop = mpriv; 2903 mip->mi_priv_prop_count = nprop; 2904 } 2905 2906 void 2907 mac_unregister_priv_prop(mac_impl_t *mip) 2908 { 2909 mac_priv_prop_t *mpriv; 2910 2911 mpriv = mip->mi_priv_prop; 2912 if (mpriv != NULL) { 2913 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2914 mip->mi_priv_prop = NULL; 2915 } 2916 mip->mi_priv_prop_count = 0; 2917 } 2918 2919 /* 2920 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2921 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2922 * cases if MAC free's the ring structure after mac_stop_ring(), any 2923 * illegal access to the ring structure coming from the driver will panic 2924 * the system. In order to protect the system from such inadverent access, 2925 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2926 * When packets are received on free'd up rings, MAC (through the generation 2927 * count mechanism) will drop such packets. 2928 */ 2929 static mac_ring_t * 2930 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2931 { 2932 mac_ring_t *ring; 2933 2934 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2935 mutex_enter(&mip->mi_ring_lock); 2936 if (mip->mi_ring_freelist != NULL) { 2937 ring = mip->mi_ring_freelist; 2938 mip->mi_ring_freelist = ring->mr_next; 2939 bzero(ring, sizeof (mac_ring_t)); 2940 } else { 2941 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2942 } 2943 mutex_exit(&mip->mi_ring_lock); 2944 } else { 2945 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2946 } 2947 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2948 return (ring); 2949 } 2950 2951 static void 2952 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2953 { 2954 if (ring->mr_type == MAC_RING_TYPE_RX) { 2955 mutex_enter(&mip->mi_ring_lock); 2956 ring->mr_state = MR_FREE; 2957 ring->mr_flag = 0; 2958 ring->mr_next = mip->mi_ring_freelist; 2959 mip->mi_ring_freelist = ring; 2960 mutex_exit(&mip->mi_ring_lock); 2961 } else { 2962 kmem_free(ring, sizeof (mac_ring_t)); 2963 } 2964 } 2965 2966 static void 2967 mac_ring_freeall(mac_impl_t *mip) 2968 { 2969 mac_ring_t *ring_next; 2970 mutex_enter(&mip->mi_ring_lock); 2971 mac_ring_t *ring = mip->mi_ring_freelist; 2972 while (ring != NULL) { 2973 ring_next = ring->mr_next; 2974 kmem_cache_free(mac_ring_cache, ring); 2975 ring = ring_next; 2976 } 2977 mip->mi_ring_freelist = NULL; 2978 mutex_exit(&mip->mi_ring_lock); 2979 } 2980 2981 int 2982 mac_start_ring(mac_ring_t *ring) 2983 { 2984 int rv = 0; 2985 2986 if (ring->mr_start != NULL) 2987 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 2988 2989 return (rv); 2990 } 2991 2992 void 2993 mac_stop_ring(mac_ring_t *ring) 2994 { 2995 if (ring->mr_stop != NULL) 2996 ring->mr_stop(ring->mr_driver); 2997 2998 /* 2999 * Increment the ring generation number for this ring. 3000 */ 3001 ring->mr_gen_num++; 3002 } 3003 3004 int 3005 mac_start_group(mac_group_t *group) 3006 { 3007 int rv = 0; 3008 3009 if (group->mrg_start != NULL) 3010 rv = group->mrg_start(group->mrg_driver); 3011 3012 return (rv); 3013 } 3014 3015 void 3016 mac_stop_group(mac_group_t *group) 3017 { 3018 if (group->mrg_stop != NULL) 3019 group->mrg_stop(group->mrg_driver); 3020 } 3021 3022 /* 3023 * Called from mac_start() on the default Rx group. Broadcast and multicast 3024 * packets are received only on the default group. Hence the default group 3025 * needs to be up even if the primary client is not up, for the other groups 3026 * to be functional. We do this by calling this function at mac_start time 3027 * itself. However the broadcast packets that are received can't make their 3028 * way beyond mac_rx until a mac client creates a broadcast flow. 3029 */ 3030 static int 3031 mac_start_group_and_rings(mac_group_t *group) 3032 { 3033 mac_ring_t *ring; 3034 int rv = 0; 3035 3036 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3037 if ((rv = mac_start_group(group)) != 0) 3038 return (rv); 3039 3040 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3041 ASSERT(ring->mr_state == MR_FREE); 3042 if ((rv = mac_start_ring(ring)) != 0) 3043 goto error; 3044 ring->mr_state = MR_INUSE; 3045 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3046 } 3047 return (0); 3048 3049 error: 3050 mac_stop_group_and_rings(group); 3051 return (rv); 3052 } 3053 3054 /* Called from mac_stop on the default Rx group */ 3055 static void 3056 mac_stop_group_and_rings(mac_group_t *group) 3057 { 3058 mac_ring_t *ring; 3059 3060 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3061 if (ring->mr_state != MR_FREE) { 3062 mac_stop_ring(ring); 3063 ring->mr_state = MR_FREE; 3064 ring->mr_flag = 0; 3065 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3066 } 3067 } 3068 mac_stop_group(group); 3069 } 3070 3071 3072 static mac_ring_t * 3073 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3074 mac_capab_rings_t *cap_rings) 3075 { 3076 mac_ring_t *ring; 3077 mac_ring_info_t ring_info; 3078 3079 ring = mac_ring_alloc(mip, cap_rings); 3080 3081 /* Prepare basic information of ring */ 3082 ring->mr_index = index; 3083 ring->mr_type = group->mrg_type; 3084 ring->mr_gh = (mac_group_handle_t)group; 3085 3086 /* Insert the new ring to the list. */ 3087 ring->mr_next = group->mrg_rings; 3088 group->mrg_rings = ring; 3089 3090 /* Zero to reuse the info data structure */ 3091 bzero(&ring_info, sizeof (ring_info)); 3092 3093 /* Query ring information from driver */ 3094 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3095 index, &ring_info, (mac_ring_handle_t)ring); 3096 3097 ring->mr_info = ring_info; 3098 3099 /* Update ring's status */ 3100 ring->mr_state = MR_FREE; 3101 ring->mr_flag = 0; 3102 3103 /* Update the ring count of the group */ 3104 group->mrg_cur_count++; 3105 return (ring); 3106 } 3107 3108 /* 3109 * Rings are chained together for easy regrouping. 3110 */ 3111 static void 3112 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3113 mac_capab_rings_t *cap_rings) 3114 { 3115 int index; 3116 3117 /* 3118 * Initialize all ring members of this group. Size of zero will not 3119 * enter the loop, so it's safe for initializing an empty group. 3120 */ 3121 for (index = size - 1; index >= 0; index--) 3122 (void) mac_init_ring(mip, group, index, cap_rings); 3123 } 3124 3125 int 3126 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3127 { 3128 mac_capab_rings_t *cap_rings; 3129 mac_group_t *group, *groups; 3130 mac_group_info_t group_info; 3131 uint_t group_free = 0; 3132 uint_t ring_left; 3133 mac_ring_t *ring; 3134 int g, err = 0; 3135 3136 switch (rtype) { 3137 case MAC_RING_TYPE_RX: 3138 ASSERT(mip->mi_rx_groups == NULL); 3139 3140 cap_rings = &mip->mi_rx_rings_cap; 3141 cap_rings->mr_type = MAC_RING_TYPE_RX; 3142 break; 3143 case MAC_RING_TYPE_TX: 3144 ASSERT(mip->mi_tx_groups == NULL); 3145 3146 cap_rings = &mip->mi_tx_rings_cap; 3147 cap_rings->mr_type = MAC_RING_TYPE_TX; 3148 break; 3149 default: 3150 ASSERT(B_FALSE); 3151 } 3152 3153 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3154 cap_rings)) 3155 return (0); 3156 3157 /* 3158 * Allocate a contiguous buffer for all groups. 3159 */ 3160 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3161 KM_SLEEP); 3162 3163 ring_left = cap_rings->mr_rnum; 3164 3165 /* 3166 * Get all ring groups if any, and get their ring members 3167 * if any. 3168 */ 3169 for (g = 0; g < cap_rings->mr_gnum; g++) { 3170 group = groups + g; 3171 3172 /* Prepare basic information of the group */ 3173 group->mrg_index = g; 3174 group->mrg_type = rtype; 3175 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3176 group->mrg_mh = (mac_handle_t)mip; 3177 group->mrg_next = group + 1; 3178 3179 /* Zero to reuse the info data structure */ 3180 bzero(&group_info, sizeof (group_info)); 3181 3182 /* Query group information from driver */ 3183 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3184 (mac_group_handle_t)group); 3185 3186 switch (cap_rings->mr_group_type) { 3187 case MAC_GROUP_TYPE_DYNAMIC: 3188 if (cap_rings->mr_gaddring == NULL || 3189 cap_rings->mr_gremring == NULL) { 3190 DTRACE_PROBE3( 3191 mac__init__rings_no_addremring, 3192 char *, mip->mi_name, 3193 mac_group_add_ring_t, 3194 cap_rings->mr_gaddring, 3195 mac_group_add_ring_t, 3196 cap_rings->mr_gremring); 3197 err = EINVAL; 3198 goto bail; 3199 } 3200 3201 switch (rtype) { 3202 case MAC_RING_TYPE_RX: 3203 /* 3204 * The first RX group must have non-zero 3205 * rings, and the following groups must 3206 * have zero rings. 3207 */ 3208 if (g == 0 && group_info.mgi_count == 0) { 3209 DTRACE_PROBE1( 3210 mac__init__rings__rx__def__zero, 3211 char *, mip->mi_name); 3212 err = EINVAL; 3213 goto bail; 3214 } 3215 if (g > 0 && group_info.mgi_count != 0) { 3216 DTRACE_PROBE3( 3217 mac__init__rings__rx__nonzero, 3218 char *, mip->mi_name, 3219 int, g, int, group_info.mgi_count); 3220 err = EINVAL; 3221 goto bail; 3222 } 3223 break; 3224 case MAC_RING_TYPE_TX: 3225 /* 3226 * All TX ring groups must have zero rings. 3227 */ 3228 if (group_info.mgi_count != 0) { 3229 DTRACE_PROBE3( 3230 mac__init__rings__tx__nonzero, 3231 char *, mip->mi_name, 3232 int, g, int, group_info.mgi_count); 3233 err = EINVAL; 3234 goto bail; 3235 } 3236 break; 3237 } 3238 break; 3239 case MAC_GROUP_TYPE_STATIC: 3240 /* 3241 * Note that an empty group is allowed, e.g., an aggr 3242 * would start with an empty group. 3243 */ 3244 break; 3245 default: 3246 /* unknown group type */ 3247 DTRACE_PROBE2(mac__init__rings__unknown__type, 3248 char *, mip->mi_name, 3249 int, cap_rings->mr_group_type); 3250 err = EINVAL; 3251 goto bail; 3252 } 3253 3254 3255 /* 3256 * Driver must register group->mgi_addmac/remmac() for rx groups 3257 * to support multiple MAC addresses. 3258 */ 3259 if (rtype == MAC_RING_TYPE_RX) { 3260 if ((group_info.mgi_addmac == NULL) || 3261 (group_info.mgi_addmac == NULL)) 3262 goto bail; 3263 } 3264 3265 /* Cache driver-supplied information */ 3266 group->mrg_info = group_info; 3267 3268 /* Update the group's status and group count. */ 3269 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3270 group_free++; 3271 3272 group->mrg_rings = NULL; 3273 group->mrg_cur_count = 0; 3274 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3275 ring_left -= group_info.mgi_count; 3276 3277 /* The current group size should be equal to default value */ 3278 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3279 } 3280 3281 /* Build up a dummy group for free resources as a pool */ 3282 group = groups + cap_rings->mr_gnum; 3283 3284 /* Prepare basic information of the group */ 3285 group->mrg_index = -1; 3286 group->mrg_type = rtype; 3287 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3288 group->mrg_mh = (mac_handle_t)mip; 3289 group->mrg_next = NULL; 3290 3291 /* 3292 * If there are ungrouped rings, allocate a continuous buffer for 3293 * remaining resources. 3294 */ 3295 if (ring_left != 0) { 3296 group->mrg_rings = NULL; 3297 group->mrg_cur_count = 0; 3298 mac_init_group(mip, group, ring_left, cap_rings); 3299 3300 /* The current group size should be equal to ring_left */ 3301 ASSERT(group->mrg_cur_count == ring_left); 3302 3303 ring_left = 0; 3304 3305 /* Update this group's status */ 3306 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3307 } else 3308 group->mrg_rings = NULL; 3309 3310 ASSERT(ring_left == 0); 3311 3312 bail: 3313 /* Cache other important information to finalize the initialization */ 3314 switch (rtype) { 3315 case MAC_RING_TYPE_RX: 3316 mip->mi_rx_group_type = cap_rings->mr_group_type; 3317 mip->mi_rx_group_count = cap_rings->mr_gnum; 3318 mip->mi_rx_groups = groups; 3319 break; 3320 case MAC_RING_TYPE_TX: 3321 mip->mi_tx_group_type = cap_rings->mr_group_type; 3322 mip->mi_tx_group_count = cap_rings->mr_gnum; 3323 mip->mi_tx_group_free = group_free; 3324 mip->mi_tx_groups = groups; 3325 3326 /* 3327 * Ring 0 is used as the default one and it could be assigned 3328 * to a client as well. 3329 */ 3330 group = groups + cap_rings->mr_gnum; 3331 ring = group->mrg_rings; 3332 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3333 ring = ring->mr_next; 3334 ASSERT(ring->mr_index == 0); 3335 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3336 break; 3337 default: 3338 ASSERT(B_FALSE); 3339 } 3340 3341 if (err != 0) 3342 mac_free_rings(mip, rtype); 3343 3344 return (err); 3345 } 3346 3347 /* 3348 * Called to free all ring groups with particular type. It's supposed all groups 3349 * have been released by clinet. 3350 */ 3351 void 3352 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3353 { 3354 mac_group_t *group, *groups; 3355 uint_t group_count; 3356 3357 switch (rtype) { 3358 case MAC_RING_TYPE_RX: 3359 if (mip->mi_rx_groups == NULL) 3360 return; 3361 3362 groups = mip->mi_rx_groups; 3363 group_count = mip->mi_rx_group_count; 3364 3365 mip->mi_rx_groups = NULL; 3366 mip->mi_rx_group_count = 0; 3367 break; 3368 case MAC_RING_TYPE_TX: 3369 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3370 3371 if (mip->mi_tx_groups == NULL) 3372 return; 3373 3374 groups = mip->mi_tx_groups; 3375 group_count = mip->mi_tx_group_count; 3376 3377 mip->mi_tx_groups = NULL; 3378 mip->mi_tx_group_count = 0; 3379 mip->mi_tx_group_free = 0; 3380 mip->mi_default_tx_ring = NULL; 3381 break; 3382 default: 3383 ASSERT(B_FALSE); 3384 } 3385 3386 for (group = groups; group != NULL; group = group->mrg_next) { 3387 mac_ring_t *ring; 3388 3389 if (group->mrg_cur_count == 0) 3390 continue; 3391 3392 ASSERT(group->mrg_rings != NULL); 3393 3394 while ((ring = group->mrg_rings) != NULL) { 3395 group->mrg_rings = ring->mr_next; 3396 mac_ring_free(mip, ring); 3397 } 3398 } 3399 3400 /* Free all the cached rings */ 3401 mac_ring_freeall(mip); 3402 /* Free the block of group data strutures */ 3403 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3404 } 3405 3406 /* 3407 * Associate a MAC address with a receive group. 3408 * 3409 * The return value of this function should always be checked properly, because 3410 * any type of failure could cause unexpected results. A group can be added 3411 * or removed with a MAC address only after it has been reserved. Ideally, 3412 * a successful reservation always leads to calling mac_group_addmac() to 3413 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3414 * always imply that the group is functioning abnormally. 3415 * 3416 * Currently this function is called everywhere, and it reflects assumptions 3417 * about MAC addresses in the implementation. CR 6735196. 3418 */ 3419 int 3420 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3421 { 3422 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3423 ASSERT(group->mrg_info.mgi_addmac != NULL); 3424 3425 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3426 } 3427 3428 /* 3429 * Remove the association between MAC address and receive group. 3430 */ 3431 int 3432 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3433 { 3434 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3435 ASSERT(group->mrg_info.mgi_remmac != NULL); 3436 3437 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3438 } 3439 3440 /* 3441 * Release a ring in use by marking it MR_FREE. 3442 * Any other client may reserve it for its use. 3443 */ 3444 void 3445 mac_release_tx_ring(mac_ring_handle_t rh) 3446 { 3447 mac_ring_t *ring = (mac_ring_t *)rh; 3448 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3449 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3450 3451 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3452 ASSERT(ring->mr_state != MR_FREE); 3453 3454 /* 3455 * Default tx ring will be released by mac_stop(). 3456 */ 3457 if (rh == mip->mi_default_tx_ring) 3458 return; 3459 3460 mac_stop_ring(ring); 3461 3462 ring->mr_state = MR_FREE; 3463 ring->mr_flag = 0; 3464 } 3465 3466 /* 3467 * Find a ring from its index. 3468 */ 3469 mac_ring_t * 3470 mac_find_ring(mac_group_t *group, int index) 3471 { 3472 mac_ring_t *ring = group->mrg_rings; 3473 3474 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3475 if (ring->mr_index == index) 3476 break; 3477 3478 return (ring); 3479 } 3480 /* 3481 * Add a ring to an existing group. 3482 * 3483 * The ring must be either passed directly (for example if the ring 3484 * movement is initiated by the framework), or specified through a driver 3485 * index (for example when the ring is added by the driver. 3486 * 3487 * The caller needs to call mac_perim_enter() before calling this function. 3488 */ 3489 int 3490 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3491 { 3492 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3493 mac_capab_rings_t *cap_rings; 3494 boolean_t driver_call = (ring == NULL); 3495 mac_group_type_t group_type; 3496 int ret = 0; 3497 3498 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3499 3500 switch (group->mrg_type) { 3501 case MAC_RING_TYPE_RX: 3502 cap_rings = &mip->mi_rx_rings_cap; 3503 group_type = mip->mi_rx_group_type; 3504 break; 3505 case MAC_RING_TYPE_TX: 3506 cap_rings = &mip->mi_tx_rings_cap; 3507 group_type = mip->mi_tx_group_type; 3508 break; 3509 default: 3510 ASSERT(B_FALSE); 3511 } 3512 3513 /* 3514 * There should be no ring with the same ring index in the target 3515 * group. 3516 */ 3517 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3518 NULL); 3519 3520 if (driver_call) { 3521 /* 3522 * The function is called as a result of a request from 3523 * a driver to add a ring to an existing group, for example 3524 * from the aggregation driver. Allocate a new mac_ring_t 3525 * for that ring. 3526 */ 3527 ring = mac_init_ring(mip, group, index, cap_rings); 3528 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3529 } else { 3530 /* 3531 * The function is called as a result of a MAC layer request 3532 * to add a ring to an existing group. In this case the 3533 * ring is being moved between groups, which requires 3534 * the underlying driver to support dynamic grouping, 3535 * and the mac_ring_t already exists. 3536 */ 3537 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3538 ASSERT(cap_rings->mr_gaddring != NULL); 3539 ASSERT(ring->mr_gh == NULL); 3540 } 3541 3542 /* 3543 * At this point the ring should not be in use, and it should be 3544 * of the right for the target group. 3545 */ 3546 ASSERT(ring->mr_state < MR_INUSE); 3547 ASSERT(ring->mr_srs == NULL); 3548 ASSERT(ring->mr_type == group->mrg_type); 3549 3550 if (!driver_call) { 3551 /* 3552 * Add the driver level hardware ring if the process was not 3553 * initiated by the driver, and the target group is not the 3554 * group. 3555 */ 3556 if (group->mrg_driver != NULL) { 3557 cap_rings->mr_gaddring(group->mrg_driver, 3558 ring->mr_driver, ring->mr_type); 3559 } 3560 3561 /* 3562 * Insert the ring ahead existing rings. 3563 */ 3564 ring->mr_next = group->mrg_rings; 3565 group->mrg_rings = ring; 3566 ring->mr_gh = (mac_group_handle_t)group; 3567 group->mrg_cur_count++; 3568 } 3569 3570 /* 3571 * If the group has not been actively used, we're done. 3572 */ 3573 if (group->mrg_index != -1 && 3574 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3575 return (0); 3576 3577 /* 3578 * Set up SRS/SR according to the ring type. 3579 */ 3580 switch (ring->mr_type) { 3581 case MAC_RING_TYPE_RX: 3582 /* 3583 * Setup SRS on top of the new ring if the group is 3584 * reserved for someones exclusive use. 3585 */ 3586 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3587 flow_entry_t *flent; 3588 mac_client_impl_t *mcip; 3589 3590 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3591 ASSERT(mcip != NULL); 3592 flent = mcip->mci_flent; 3593 ASSERT(flent->fe_rx_srs_cnt > 0); 3594 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3595 } 3596 break; 3597 case MAC_RING_TYPE_TX: 3598 /* 3599 * For TX this function is only invoked during the 3600 * initial creation of a group when a share is 3601 * associated with a MAC client. So the datapath is not 3602 * yet setup, and will be setup later after the 3603 * group has been reserved and populated. 3604 */ 3605 break; 3606 default: 3607 ASSERT(B_FALSE); 3608 } 3609 3610 /* 3611 * Start the ring if needed. Failure causes to undo the grouping action. 3612 */ 3613 if ((ret = mac_start_ring(ring)) != 0) { 3614 if (ring->mr_type == MAC_RING_TYPE_RX) { 3615 if (ring->mr_srs != NULL) { 3616 mac_rx_srs_remove(ring->mr_srs); 3617 ring->mr_srs = NULL; 3618 } 3619 } 3620 if (!driver_call) { 3621 cap_rings->mr_gremring(group->mrg_driver, 3622 ring->mr_driver, ring->mr_type); 3623 } 3624 group->mrg_cur_count--; 3625 group->mrg_rings = ring->mr_next; 3626 3627 ring->mr_gh = NULL; 3628 3629 if (driver_call) 3630 mac_ring_free(mip, ring); 3631 3632 return (ret); 3633 } 3634 3635 /* 3636 * Update the ring's state. 3637 */ 3638 ring->mr_state = MR_INUSE; 3639 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3640 return (0); 3641 } 3642 3643 /* 3644 * Remove a ring from it's current group. MAC internal function for dynamic 3645 * grouping. 3646 * 3647 * The caller needs to call mac_perim_enter() before calling this function. 3648 */ 3649 void 3650 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3651 boolean_t driver_call) 3652 { 3653 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3654 mac_capab_rings_t *cap_rings = NULL; 3655 mac_group_type_t group_type; 3656 3657 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3658 3659 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3660 ASSERT((mac_group_t *)ring->mr_gh == group); 3661 ASSERT(ring->mr_type == group->mrg_type); 3662 3663 switch (ring->mr_type) { 3664 case MAC_RING_TYPE_RX: 3665 group_type = mip->mi_rx_group_type; 3666 cap_rings = &mip->mi_rx_rings_cap; 3667 3668 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3669 mac_stop_ring(ring); 3670 3671 /* 3672 * Only hardware classified packets hold a reference to the 3673 * ring all the way up the Rx path. mac_rx_srs_remove() 3674 * will take care of quiescing the Rx path and removing the 3675 * SRS. The software classified path neither holds a reference 3676 * nor any association with the ring in mac_rx. 3677 */ 3678 if (ring->mr_srs != NULL) { 3679 mac_rx_srs_remove(ring->mr_srs); 3680 ring->mr_srs = NULL; 3681 } 3682 ring->mr_state = MR_FREE; 3683 ring->mr_flag = 0; 3684 3685 break; 3686 case MAC_RING_TYPE_TX: 3687 /* 3688 * For TX this function is only invoked in two 3689 * cases: 3690 * 3691 * 1) In the case of a failure during the 3692 * initial creation of a group when a share is 3693 * associated with a MAC client. So the SRS is not 3694 * yet setup, and will be setup later after the 3695 * group has been reserved and populated. 3696 * 3697 * 2) From mac_release_tx_group() when freeing 3698 * a TX SRS. 3699 * 3700 * In both cases the SRS and its soft rings are 3701 * already quiesced. 3702 */ 3703 ASSERT(!driver_call); 3704 group_type = mip->mi_tx_group_type; 3705 cap_rings = &mip->mi_tx_rings_cap; 3706 break; 3707 default: 3708 ASSERT(B_FALSE); 3709 } 3710 3711 /* 3712 * Remove the ring from the group. 3713 */ 3714 if (ring == group->mrg_rings) 3715 group->mrg_rings = ring->mr_next; 3716 else { 3717 mac_ring_t *pre; 3718 3719 pre = group->mrg_rings; 3720 while (pre->mr_next != ring) 3721 pre = pre->mr_next; 3722 pre->mr_next = ring->mr_next; 3723 } 3724 group->mrg_cur_count--; 3725 3726 if (!driver_call) { 3727 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3728 ASSERT(cap_rings->mr_gremring != NULL); 3729 3730 /* 3731 * Remove the driver level hardware ring. 3732 */ 3733 if (group->mrg_driver != NULL) { 3734 cap_rings->mr_gremring(group->mrg_driver, 3735 ring->mr_driver, ring->mr_type); 3736 } 3737 } 3738 3739 ring->mr_gh = NULL; 3740 if (driver_call) { 3741 mac_ring_free(mip, ring); 3742 } else { 3743 ring->mr_state = MR_FREE; 3744 ring->mr_flag = 0; 3745 } 3746 } 3747 3748 /* 3749 * Move a ring to the target group. If needed, remove the ring from the group 3750 * that it currently belongs to. 3751 * 3752 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3753 */ 3754 static int 3755 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3756 { 3757 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3758 int rv; 3759 3760 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3761 ASSERT(d_group != NULL); 3762 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3763 3764 if (s_group == d_group) 3765 return (0); 3766 3767 /* 3768 * Remove it from current group first. 3769 */ 3770 if (s_group != NULL) 3771 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3772 3773 /* 3774 * Add it to the new group. 3775 */ 3776 rv = i_mac_group_add_ring(d_group, ring, 0); 3777 if (rv != 0) { 3778 /* 3779 * Failed to add ring back to source group. If 3780 * that fails, the ring is stuck in limbo, log message. 3781 */ 3782 if (i_mac_group_add_ring(s_group, ring, 0)) { 3783 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3784 mip->mi_name, (void *)ring); 3785 } 3786 } 3787 3788 return (rv); 3789 } 3790 3791 /* 3792 * Find a MAC address according to its value. 3793 */ 3794 mac_address_t * 3795 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3796 { 3797 mac_address_t *map; 3798 3799 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3800 3801 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3802 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3803 break; 3804 } 3805 3806 return (map); 3807 } 3808 3809 /* 3810 * Check whether the MAC address is shared by multiple clients. 3811 */ 3812 boolean_t 3813 mac_check_macaddr_shared(mac_address_t *map) 3814 { 3815 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3816 3817 return (map->ma_nusers > 1); 3818 } 3819 3820 /* 3821 * Remove the specified MAC address from the MAC address list and free it. 3822 */ 3823 static void 3824 mac_free_macaddr(mac_address_t *map) 3825 { 3826 mac_impl_t *mip = map->ma_mip; 3827 3828 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3829 ASSERT(mip->mi_addresses != NULL); 3830 3831 map = mac_find_macaddr(mip, map->ma_addr); 3832 3833 ASSERT(map != NULL); 3834 ASSERT(map->ma_nusers == 0); 3835 3836 if (map == mip->mi_addresses) { 3837 mip->mi_addresses = map->ma_next; 3838 } else { 3839 mac_address_t *pre; 3840 3841 pre = mip->mi_addresses; 3842 while (pre->ma_next != map) 3843 pre = pre->ma_next; 3844 pre->ma_next = map->ma_next; 3845 } 3846 3847 kmem_free(map, sizeof (mac_address_t)); 3848 } 3849 3850 /* 3851 * Add a MAC address reference for a client. If the desired MAC address 3852 * exists, add a reference to it. Otherwise, add the new address by adding 3853 * it to a reserved group or setting promiscuous mode. Won't try different 3854 * group is the group is non-NULL, so the caller must explictly share 3855 * default group when needed. 3856 * 3857 * Note, the primary MAC address is initialized at registration time, so 3858 * to add it to default group only need to activate it if its reference 3859 * count is still zero. Also, some drivers may not have advertised RINGS 3860 * capability. 3861 */ 3862 int 3863 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 3864 boolean_t use_hw) 3865 { 3866 mac_address_t *map; 3867 int err = 0; 3868 boolean_t allocated_map = B_FALSE; 3869 3870 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3871 3872 map = mac_find_macaddr(mip, mac_addr); 3873 3874 /* 3875 * If the new MAC address has not been added. Allocate a new one 3876 * and set it up. 3877 */ 3878 if (map == NULL) { 3879 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3880 map->ma_len = mip->mi_type->mt_addr_length; 3881 bcopy(mac_addr, map->ma_addr, map->ma_len); 3882 map->ma_nusers = 0; 3883 map->ma_group = group; 3884 map->ma_mip = mip; 3885 3886 /* add the new MAC address to the head of the address list */ 3887 map->ma_next = mip->mi_addresses; 3888 mip->mi_addresses = map; 3889 3890 allocated_map = B_TRUE; 3891 } 3892 3893 ASSERT(map->ma_group == group); 3894 3895 /* 3896 * If the MAC address is already in use, simply account for the 3897 * new client. 3898 */ 3899 if (map->ma_nusers++ > 0) 3900 return (0); 3901 3902 /* 3903 * Activate this MAC address by adding it to the reserved group. 3904 */ 3905 if (group != NULL) { 3906 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3907 if (err == 0) { 3908 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3909 return (0); 3910 } 3911 } 3912 3913 /* 3914 * The MAC address addition failed. If the client requires a 3915 * hardware classified MAC address, fail the operation. 3916 */ 3917 if (use_hw) { 3918 err = ENOSPC; 3919 goto bail; 3920 } 3921 3922 /* 3923 * Try promiscuous mode. 3924 * 3925 * For drivers that don't advertise RINGS capability, do 3926 * nothing for the primary address. 3927 */ 3928 if ((group == NULL) && 3929 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 3930 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3931 return (0); 3932 } 3933 3934 /* 3935 * Enable promiscuous mode in order to receive traffic 3936 * to the new MAC address. 3937 */ 3938 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 3939 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 3940 return (0); 3941 } 3942 3943 /* 3944 * Free the MAC address that could not be added. Don't free 3945 * a pre-existing address, it could have been the entry 3946 * for the primary MAC address which was pre-allocated by 3947 * mac_init_macaddr(), and which must remain on the list. 3948 */ 3949 bail: 3950 map->ma_nusers--; 3951 if (allocated_map) 3952 mac_free_macaddr(map); 3953 return (err); 3954 } 3955 3956 /* 3957 * Remove a reference to a MAC address. This may cause to remove the MAC 3958 * address from an associated group or to turn off promiscuous mode. 3959 * The caller needs to handle the failure properly. 3960 */ 3961 int 3962 mac_remove_macaddr(mac_address_t *map) 3963 { 3964 mac_impl_t *mip = map->ma_mip; 3965 int err = 0; 3966 3967 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3968 3969 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 3970 3971 /* 3972 * If it's not the last client using this MAC address, only update 3973 * the MAC clients count. 3974 */ 3975 if (--map->ma_nusers > 0) 3976 return (0); 3977 3978 /* 3979 * The MAC address is no longer used by any MAC client, so remove 3980 * it from its associated group, or turn off promiscuous mode 3981 * if it was enabled for the MAC address. 3982 */ 3983 switch (map->ma_type) { 3984 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3985 /* 3986 * Don't free the preset primary address for drivers that 3987 * don't advertise RINGS capability. 3988 */ 3989 if (map->ma_group == NULL) 3990 return (0); 3991 3992 err = mac_group_remmac(map->ma_group, map->ma_addr); 3993 break; 3994 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 3995 err = i_mac_promisc_set(mip, B_FALSE); 3996 break; 3997 default: 3998 ASSERT(B_FALSE); 3999 } 4000 4001 if (err != 0) 4002 return (err); 4003 4004 /* 4005 * We created MAC address for the primary one at registration, so we 4006 * won't free it here. mac_fini_macaddr() will take care of it. 4007 */ 4008 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 4009 mac_free_macaddr(map); 4010 4011 return (0); 4012 } 4013 4014 /* 4015 * Update an existing MAC address. The caller need to make sure that the new 4016 * value has not been used. 4017 */ 4018 int 4019 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 4020 { 4021 mac_impl_t *mip = map->ma_mip; 4022 int err = 0; 4023 4024 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4025 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4026 4027 switch (map->ma_type) { 4028 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4029 /* 4030 * Update the primary address for drivers that are not 4031 * RINGS capable. 4032 */ 4033 if (map->ma_group == NULL) { 4034 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4035 mac_addr); 4036 if (err != 0) 4037 return (err); 4038 break; 4039 } 4040 4041 /* 4042 * If this MAC address is not currently in use, 4043 * simply break out and update the value. 4044 */ 4045 if (map->ma_nusers == 0) 4046 break; 4047 4048 /* 4049 * Need to replace the MAC address associated with a group. 4050 */ 4051 err = mac_group_remmac(map->ma_group, map->ma_addr); 4052 if (err != 0) 4053 return (err); 4054 4055 err = mac_group_addmac(map->ma_group, mac_addr); 4056 4057 /* 4058 * Failure hints hardware error. The MAC layer needs to 4059 * have error notification facility to handle this. 4060 * Now, simply try to restore the value. 4061 */ 4062 if (err != 0) 4063 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4064 4065 break; 4066 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4067 /* 4068 * Need to do nothing more if in promiscuous mode. 4069 */ 4070 break; 4071 default: 4072 ASSERT(B_FALSE); 4073 } 4074 4075 /* 4076 * Successfully replaced the MAC address. 4077 */ 4078 if (err == 0) 4079 bcopy(mac_addr, map->ma_addr, map->ma_len); 4080 4081 return (err); 4082 } 4083 4084 /* 4085 * Freshen the MAC address with new value. Its caller must have updated the 4086 * hardware MAC address before calling this function. 4087 * This funcitons is supposed to be used to handle the MAC address change 4088 * notification from underlying drivers. 4089 */ 4090 void 4091 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4092 { 4093 mac_impl_t *mip = map->ma_mip; 4094 4095 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4096 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4097 4098 /* 4099 * Freshen the MAC address with new value. 4100 */ 4101 bcopy(mac_addr, map->ma_addr, map->ma_len); 4102 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4103 4104 /* 4105 * Update all MAC clients that share this MAC address. 4106 */ 4107 mac_unicast_update_clients(mip, map); 4108 } 4109 4110 /* 4111 * Set up the primary MAC address. 4112 */ 4113 void 4114 mac_init_macaddr(mac_impl_t *mip) 4115 { 4116 mac_address_t *map; 4117 4118 /* 4119 * The reference count is initialized to zero, until it's really 4120 * activated. 4121 */ 4122 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4123 map->ma_len = mip->mi_type->mt_addr_length; 4124 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4125 4126 /* 4127 * If driver advertises RINGS capability, it shouldn't have initialized 4128 * its primary MAC address. For other drivers, including VNIC, the 4129 * primary address must work after registration. 4130 */ 4131 if (mip->mi_rx_groups == NULL) 4132 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4133 4134 /* 4135 * The primary MAC address is reserved for default group according 4136 * to current design. 4137 */ 4138 map->ma_group = mip->mi_rx_groups; 4139 map->ma_mip = mip; 4140 4141 mip->mi_addresses = map; 4142 } 4143 4144 /* 4145 * Clean up the primary MAC address. Note, only one primary MAC address 4146 * is allowed. All other MAC addresses must have been freed appropriately. 4147 */ 4148 void 4149 mac_fini_macaddr(mac_impl_t *mip) 4150 { 4151 mac_address_t *map = mip->mi_addresses; 4152 4153 if (map == NULL) 4154 return; 4155 4156 /* 4157 * If mi_addresses is initialized, there should be exactly one 4158 * entry left on the list with no users. 4159 */ 4160 ASSERT(map->ma_nusers == 0); 4161 ASSERT(map->ma_next == NULL); 4162 4163 kmem_free(map, sizeof (mac_address_t)); 4164 mip->mi_addresses = NULL; 4165 } 4166 4167 /* 4168 * Logging related functions. 4169 */ 4170 4171 /* Write the Flow description to the log file */ 4172 int 4173 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4174 { 4175 flow_desc_t *fdesc; 4176 mac_resource_props_t *mrp; 4177 net_desc_t ndesc; 4178 4179 bzero(&ndesc, sizeof (net_desc_t)); 4180 4181 /* 4182 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4183 * Updates to the fe_flow_desc are done under the fe_lock 4184 */ 4185 mutex_enter(&flent->fe_lock); 4186 fdesc = &flent->fe_flow_desc; 4187 mrp = &flent->fe_resource_props; 4188 4189 ndesc.nd_name = flent->fe_flow_name; 4190 ndesc.nd_devname = mcip->mci_name; 4191 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4192 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4193 ndesc.nd_sap = htonl(fdesc->fd_sap); 4194 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4195 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4196 if (ndesc.nd_isv4) { 4197 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4198 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4199 } else { 4200 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4201 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4202 } 4203 ndesc.nd_sport = htons(fdesc->fd_local_port); 4204 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4205 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4206 mutex_exit(&flent->fe_lock); 4207 4208 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4209 } 4210 4211 /* Write the Flow statistics to the log file */ 4212 int 4213 mac_write_flow_stats(flow_entry_t *flent) 4214 { 4215 flow_stats_t *fl_stats; 4216 net_stat_t nstat; 4217 4218 fl_stats = &flent->fe_flowstats; 4219 nstat.ns_name = flent->fe_flow_name; 4220 nstat.ns_ibytes = fl_stats->fs_rbytes; 4221 nstat.ns_obytes = fl_stats->fs_obytes; 4222 nstat.ns_ipackets = fl_stats->fs_ipackets; 4223 nstat.ns_opackets = fl_stats->fs_opackets; 4224 nstat.ns_ierrors = fl_stats->fs_ierrors; 4225 nstat.ns_oerrors = fl_stats->fs_oerrors; 4226 4227 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4228 } 4229 4230 /* Write the Link Description to the log file */ 4231 int 4232 mac_write_link_desc(mac_client_impl_t *mcip) 4233 { 4234 net_desc_t ndesc; 4235 flow_entry_t *flent = mcip->mci_flent; 4236 4237 bzero(&ndesc, sizeof (net_desc_t)); 4238 4239 ndesc.nd_name = mcip->mci_name; 4240 ndesc.nd_devname = mcip->mci_name; 4241 ndesc.nd_isv4 = B_TRUE; 4242 /* 4243 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4244 * Updates to the fe_flow_desc are done under the fe_lock 4245 * after removing the flent from the flow table. 4246 */ 4247 mutex_enter(&flent->fe_lock); 4248 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4249 mutex_exit(&flent->fe_lock); 4250 4251 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4252 } 4253 4254 /* Write the Link statistics to the log file */ 4255 int 4256 mac_write_link_stats(mac_client_impl_t *mcip) 4257 { 4258 net_stat_t nstat; 4259 4260 nstat.ns_name = mcip->mci_name; 4261 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4262 nstat.ns_obytes = mcip->mci_stat_obytes; 4263 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4264 nstat.ns_opackets = mcip->mci_stat_opackets; 4265 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4266 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4267 4268 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4269 } 4270 4271 /* 4272 * For a given flow, if the descrition has not been logged before, do it now. 4273 * If it is a VNIC, then we have collected information about it from the MAC 4274 * table, so skip it. 4275 */ 4276 /*ARGSUSED*/ 4277 static int 4278 mac_log_flowinfo(flow_entry_t *flent, void *args) 4279 { 4280 mac_client_impl_t *mcip = flent->fe_mcip; 4281 4282 if (mcip == NULL) 4283 return (0); 4284 4285 /* 4286 * If the name starts with "vnic", and fe_user_generated is true (to 4287 * exclude the mcast and active flow entries created implicitly for 4288 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4289 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4290 */ 4291 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4292 (flent->fe_type & FLOW_USER) != 0) { 4293 return (0); 4294 } 4295 4296 if (!flent->fe_desc_logged) { 4297 /* 4298 * We don't return error because we want to continu the 4299 * walk in case this is the last walk which means we 4300 * need to reset fe_desc_logged in all the flows. 4301 */ 4302 if (mac_write_flow_desc(flent, mcip) != 0) 4303 return (0); 4304 flent->fe_desc_logged = B_TRUE; 4305 } 4306 4307 /* 4308 * Regardless of the error, we want to proceed in case we have to 4309 * reset fe_desc_logged. 4310 */ 4311 (void) mac_write_flow_stats(flent); 4312 4313 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4314 flent->fe_desc_logged = B_FALSE; 4315 4316 return (0); 4317 } 4318 4319 typedef struct i_mac_log_state_s { 4320 boolean_t mi_last; 4321 int mi_fenable; 4322 int mi_lenable; 4323 } i_mac_log_state_t; 4324 4325 /* 4326 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4327 * if it hasn't already been done. Additionally, log statistics for the link as 4328 * well. Walk the flow table and log information for each flow as well. 4329 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4330 * also fe_desc_logged, if flow logging is on) since we want to log the 4331 * description if and when logging is restarted. 4332 */ 4333 /*ARGSUSED*/ 4334 static uint_t 4335 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4336 { 4337 mac_impl_t *mip = (mac_impl_t *)val; 4338 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4339 int ret; 4340 mac_client_impl_t *mcip; 4341 4342 /* 4343 * Only walk the client list for NIC and etherstub 4344 */ 4345 if ((mip->mi_state_flags & MIS_DISABLED) || 4346 ((mip->mi_state_flags & MIS_IS_VNIC) && 4347 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4348 return (MH_WALK_CONTINUE); 4349 4350 for (mcip = mip->mi_clients_list; mcip != NULL; 4351 mcip = mcip->mci_client_next) { 4352 if (!MCIP_DATAPATH_SETUP(mcip)) 4353 continue; 4354 if (lstate->mi_lenable) { 4355 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4356 ret = mac_write_link_desc(mcip); 4357 if (ret != 0) { 4358 /* 4359 * We can't terminate it if this is the last 4360 * walk, else there might be some links with 4361 * mi_desc_logged set to true, which means 4362 * their description won't be logged the next 4363 * time logging is started (similarly for the 4364 * flows within such links). We can continue 4365 * without walking the flow table (i.e. to 4366 * set fe_desc_logged to false) because we 4367 * won't have written any flow stuff for this 4368 * link as we haven't logged the link itself. 4369 */ 4370 if (lstate->mi_last) 4371 return (MH_WALK_CONTINUE); 4372 else 4373 return (MH_WALK_TERMINATE); 4374 } 4375 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4376 } 4377 } 4378 4379 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4380 return (MH_WALK_TERMINATE); 4381 4382 if (lstate->mi_last) 4383 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4384 4385 if (lstate->mi_fenable) { 4386 if (mcip->mci_subflow_tab != NULL) { 4387 (void) mac_flow_walk(mcip->mci_subflow_tab, 4388 mac_log_flowinfo, mip); 4389 } 4390 } 4391 } 4392 return (MH_WALK_CONTINUE); 4393 } 4394 4395 /* 4396 * The timer thread that runs every mac_logging_interval seconds and logs 4397 * link and/or flow information. 4398 */ 4399 /* ARGSUSED */ 4400 void 4401 mac_log_linkinfo(void *arg) 4402 { 4403 i_mac_log_state_t lstate; 4404 4405 rw_enter(&i_mac_impl_lock, RW_READER); 4406 if (!mac_flow_log_enable && !mac_link_log_enable) { 4407 rw_exit(&i_mac_impl_lock); 4408 return; 4409 } 4410 lstate.mi_fenable = mac_flow_log_enable; 4411 lstate.mi_lenable = mac_link_log_enable; 4412 lstate.mi_last = B_FALSE; 4413 rw_exit(&i_mac_impl_lock); 4414 4415 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4416 4417 rw_enter(&i_mac_impl_lock, RW_WRITER); 4418 if (mac_flow_log_enable || mac_link_log_enable) { 4419 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4420 SEC_TO_TICK(mac_logging_interval)); 4421 } 4422 rw_exit(&i_mac_impl_lock); 4423 } 4424 4425 typedef struct i_mac_fastpath_state_s { 4426 boolean_t mf_disable; 4427 int mf_err; 4428 } i_mac_fastpath_state_t; 4429 4430 /*ARGSUSED*/ 4431 static uint_t 4432 i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val, 4433 void *arg) 4434 { 4435 i_mac_fastpath_state_t *state = arg; 4436 mac_handle_t mh = (mac_handle_t)val; 4437 4438 if (state->mf_disable) 4439 state->mf_err = mac_fastpath_disable(mh); 4440 else 4441 mac_fastpath_enable(mh); 4442 4443 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 4444 } 4445 4446 /* 4447 * Start the logging timer. 4448 */ 4449 int 4450 mac_start_logusage(mac_logtype_t type, uint_t interval) 4451 { 4452 i_mac_fastpath_state_t state = {B_TRUE, 0}; 4453 int err; 4454 4455 rw_enter(&i_mac_impl_lock, RW_WRITER); 4456 switch (type) { 4457 case MAC_LOGTYPE_FLOW: 4458 if (mac_flow_log_enable) { 4459 rw_exit(&i_mac_impl_lock); 4460 return (0); 4461 } 4462 /* FALLTHRU */ 4463 case MAC_LOGTYPE_LINK: 4464 if (mac_link_log_enable) { 4465 rw_exit(&i_mac_impl_lock); 4466 return (0); 4467 } 4468 break; 4469 default: 4470 ASSERT(0); 4471 } 4472 4473 /* Disable fastpath */ 4474 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4475 if ((err = state.mf_err) != 0) { 4476 /* Reenable fastpath */ 4477 state.mf_disable = B_FALSE; 4478 state.mf_err = 0; 4479 mod_hash_walk(i_mac_impl_hash, 4480 i_mac_fastpath_disable_walker, &state); 4481 rw_exit(&i_mac_impl_lock); 4482 return (err); 4483 } 4484 4485 switch (type) { 4486 case MAC_LOGTYPE_FLOW: 4487 mac_flow_log_enable = B_TRUE; 4488 /* FALLTHRU */ 4489 case MAC_LOGTYPE_LINK: 4490 mac_link_log_enable = B_TRUE; 4491 break; 4492 } 4493 4494 mac_logging_interval = interval; 4495 rw_exit(&i_mac_impl_lock); 4496 mac_log_linkinfo(NULL); 4497 return (0); 4498 } 4499 4500 /* 4501 * Stop the logging timer if both Link and Flow logging are turned off. 4502 */ 4503 void 4504 mac_stop_logusage(mac_logtype_t type) 4505 { 4506 i_mac_log_state_t lstate; 4507 i_mac_fastpath_state_t state = {B_FALSE, 0}; 4508 4509 rw_enter(&i_mac_impl_lock, RW_WRITER); 4510 lstate.mi_fenable = mac_flow_log_enable; 4511 lstate.mi_lenable = mac_link_log_enable; 4512 4513 /* Last walk */ 4514 lstate.mi_last = B_TRUE; 4515 4516 switch (type) { 4517 case MAC_LOGTYPE_FLOW: 4518 if (lstate.mi_fenable) { 4519 ASSERT(mac_link_log_enable); 4520 mac_flow_log_enable = B_FALSE; 4521 mac_link_log_enable = B_FALSE; 4522 break; 4523 } 4524 /* FALLTHRU */ 4525 case MAC_LOGTYPE_LINK: 4526 if (!lstate.mi_lenable || mac_flow_log_enable) { 4527 rw_exit(&i_mac_impl_lock); 4528 return; 4529 } 4530 mac_link_log_enable = B_FALSE; 4531 break; 4532 default: 4533 ASSERT(0); 4534 } 4535 4536 /* Reenable fastpath */ 4537 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4538 4539 rw_exit(&i_mac_impl_lock); 4540 (void) untimeout(mac_logging_timer); 4541 mac_logging_timer = 0; 4542 4543 /* Last walk */ 4544 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4545 } 4546 4547 /* 4548 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4549 */ 4550 void 4551 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4552 { 4553 pri_t pri; 4554 int count; 4555 mac_soft_ring_set_t *mac_srs; 4556 4557 if (flent->fe_rx_srs_cnt <= 0) 4558 return; 4559 4560 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4561 SRST_FLOW) { 4562 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4563 mcip->mci_max_pri, 4564 flent->fe_resource_props.mrp_priority); 4565 } else { 4566 pri = mcip->mci_max_pri; 4567 } 4568 4569 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4570 mac_srs = flent->fe_rx_srs[count]; 4571 mac_update_srs_priority(mac_srs, pri); 4572 } 4573 /* 4574 * If we have a Tx SRS, we need to modify all the threads associated 4575 * with it. 4576 */ 4577 if (flent->fe_tx_srs != NULL) 4578 mac_update_srs_priority(flent->fe_tx_srs, pri); 4579 } 4580 4581 /* 4582 * RX and TX rings are reserved according to different semantics depending 4583 * on the requests from the MAC clients and type of rings: 4584 * 4585 * On the Tx side, by default we reserve individual rings, independently from 4586 * the groups. 4587 * 4588 * On the Rx side, the reservation is at the granularity of the group 4589 * of rings, and used for v12n level 1 only. It has a special case for the 4590 * primary client. 4591 * 4592 * If a share is allocated to a MAC client, we allocate a TX group and an 4593 * RX group to the client, and assign TX rings and RX rings to these 4594 * groups according to information gathered from the driver through 4595 * the share capability. 4596 * 4597 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4598 * to allocate individual rings out of a group and program the hw classifier 4599 * based on IP address or higher level criteria. 4600 */ 4601 4602 /* 4603 * mac_reserve_tx_ring() 4604 * Reserve a unused ring by marking it with MR_INUSE state. 4605 * As reserved, the ring is ready to function. 4606 * 4607 * Notes for Hybrid I/O: 4608 * 4609 * If a specific ring is needed, it is specified through the desired_ring 4610 * argument. Otherwise that argument is set to NULL. 4611 * If the desired ring was previous allocated to another client, this 4612 * function swaps it with a new ring from the group of unassigned rings. 4613 */ 4614 mac_ring_t * 4615 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4616 { 4617 mac_group_t *group; 4618 mac_ring_t *ring; 4619 4620 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4621 4622 if (mip->mi_tx_groups == NULL) 4623 return (NULL); 4624 4625 /* 4626 * Find an available ring and start it before changing its status. 4627 * The unassigned rings are at the end of the mi_tx_groups 4628 * array. 4629 */ 4630 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4631 4632 for (ring = group->mrg_rings; ring != NULL; 4633 ring = ring->mr_next) { 4634 if (desired_ring == NULL) { 4635 if (ring->mr_state == MR_FREE) 4636 /* wanted any free ring and found one */ 4637 break; 4638 } else { 4639 mac_ring_t *sring; 4640 mac_client_impl_t *client; 4641 mac_soft_ring_set_t *srs; 4642 4643 if (ring != desired_ring) 4644 /* wants a desired ring but this one ain't it */ 4645 continue; 4646 4647 if (ring->mr_state == MR_FREE) 4648 break; 4649 4650 /* 4651 * Found the desired ring but it's already in use. 4652 * Swap it with a new ring. 4653 */ 4654 4655 /* find the client which owns that ring */ 4656 for (client = mip->mi_clients_list; client != NULL; 4657 client = client->mci_client_next) { 4658 srs = MCIP_TX_SRS(client); 4659 if (srs != NULL && mac_tx_srs_ring_present(srs, 4660 desired_ring)) { 4661 /* found our ring */ 4662 break; 4663 } 4664 } 4665 if (client == NULL) { 4666 /* 4667 * The TX ring is in use, but it's not 4668 * associated with any clients, so it 4669 * has to be the default ring. In that 4670 * case we can simply assign a new ring 4671 * as the default ring, and we're done. 4672 */ 4673 ASSERT(mip->mi_default_tx_ring == 4674 (mac_ring_handle_t)desired_ring); 4675 4676 /* 4677 * Quiesce all clients on top of 4678 * the NIC to make sure there are no 4679 * pending threads still relying on 4680 * that default ring, for example 4681 * the multicast path. 4682 */ 4683 for (client = mip->mi_clients_list; 4684 client != NULL; 4685 client = client->mci_client_next) { 4686 mac_tx_client_quiesce(client, 4687 SRS_QUIESCE); 4688 } 4689 4690 mip->mi_default_tx_ring = (mac_ring_handle_t) 4691 mac_reserve_tx_ring(mip, NULL); 4692 4693 /* resume the clients */ 4694 for (client = mip->mi_clients_list; 4695 client != NULL; 4696 client = client->mci_client_next) 4697 mac_tx_client_restart(client); 4698 4699 break; 4700 } 4701 4702 /* 4703 * Note that we cannot simply invoke the group 4704 * add/rem routines since the client doesn't have a 4705 * TX group. So we need to instead add/remove 4706 * the rings from the SRS. 4707 */ 4708 ASSERT(client->mci_share == NULL); 4709 4710 /* first quiece the client */ 4711 mac_tx_client_quiesce(client, SRS_QUIESCE); 4712 4713 /* give a new ring to the client... */ 4714 sring = mac_reserve_tx_ring(mip, NULL); 4715 if (sring != NULL) { 4716 /* 4717 * There are no other available ring 4718 * on that MAC instance. The client 4719 * will fallback to the shared TX 4720 * ring. 4721 */ 4722 mac_tx_srs_add_ring(srs, sring); 4723 } 4724 4725 /* ... in exchange for our desired ring */ 4726 mac_tx_srs_del_ring(srs, desired_ring); 4727 4728 /* restart the client */ 4729 mac_tx_client_restart(client); 4730 4731 if (mip->mi_default_tx_ring == 4732 (mac_ring_handle_t)desired_ring) { 4733 /* 4734 * The desired ring is the default ring, 4735 * and there are one or more clients 4736 * using that default ring directly. 4737 */ 4738 mip->mi_default_tx_ring = 4739 (mac_ring_handle_t)sring; 4740 /* 4741 * Find clients using default ring and 4742 * swap it with the new default ring. 4743 */ 4744 for (client = mip->mi_clients_list; 4745 client != NULL; 4746 client = client->mci_client_next) { 4747 srs = MCIP_TX_SRS(client); 4748 if (srs != NULL && 4749 mac_tx_srs_ring_present(srs, 4750 desired_ring)) { 4751 /* first quiece the client */ 4752 mac_tx_client_quiesce(client, 4753 SRS_QUIESCE); 4754 4755 /* 4756 * Give it the new default 4757 * ring, and remove the old 4758 * one. 4759 */ 4760 if (sring != NULL) { 4761 mac_tx_srs_add_ring(srs, 4762 sring); 4763 } 4764 mac_tx_srs_del_ring(srs, 4765 desired_ring); 4766 4767 /* restart the client */ 4768 mac_tx_client_restart(client); 4769 } 4770 } 4771 } 4772 break; 4773 } 4774 } 4775 4776 if (ring != NULL) { 4777 if (mac_start_ring(ring) != 0) 4778 return (NULL); 4779 ring->mr_state = MR_INUSE; 4780 } 4781 4782 return (ring); 4783 } 4784 4785 /* 4786 * Minimum number of rings to leave in the default TX group when allocating 4787 * rings to new clients. 4788 */ 4789 static uint_t mac_min_rx_default_rings = 1; 4790 4791 /* 4792 * Populate a zero-ring group with rings. If the share is non-NULL, 4793 * the rings are chosen according to that share. 4794 * Invoked after allocating a new RX or TX group through 4795 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4796 * Returns zero on success, an errno otherwise. 4797 */ 4798 int 4799 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4800 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4801 { 4802 mac_ring_t **rings, *tmp_ring[1], *ring; 4803 uint_t nrings; 4804 int rv, i, j; 4805 4806 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4807 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4808 ASSERT(new_group->mrg_cur_count == 0); 4809 4810 /* 4811 * First find the rings to allocate to the group. 4812 */ 4813 if (share != NULL) { 4814 /* get rings through ms_squery() */ 4815 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4816 ASSERT(nrings != 0); 4817 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4818 KM_SLEEP); 4819 mip->mi_share_capab.ms_squery(share, ring_type, 4820 (mac_ring_handle_t *)rings, &nrings); 4821 } else { 4822 /* this function is called for TX only with a share */ 4823 ASSERT(ring_type == MAC_RING_TYPE_RX); 4824 /* 4825 * Pick one ring from default group. 4826 * 4827 * for now pick the second ring which requires the first ring 4828 * at index 0 to stay in the default group, since it is the 4829 * ring which carries the multicast traffic. 4830 * We need a better way for a driver to indicate this, 4831 * for example a per-ring flag. 4832 */ 4833 for (ring = src_group->mrg_rings; ring != NULL; 4834 ring = ring->mr_next) { 4835 if (ring->mr_index != 0) 4836 break; 4837 } 4838 ASSERT(ring != NULL); 4839 nrings = 1; 4840 tmp_ring[0] = ring; 4841 rings = tmp_ring; 4842 } 4843 4844 switch (ring_type) { 4845 case MAC_RING_TYPE_RX: 4846 if (src_group->mrg_cur_count - nrings < 4847 mac_min_rx_default_rings) { 4848 /* we ran out of rings */ 4849 return (ENOSPC); 4850 } 4851 4852 /* move receive rings to new group */ 4853 for (i = 0; i < nrings; i++) { 4854 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4855 if (rv != 0) { 4856 /* move rings back on failure */ 4857 for (j = 0; j < i; j++) { 4858 (void) mac_group_mov_ring(mip, 4859 src_group, rings[j]); 4860 } 4861 return (rv); 4862 } 4863 } 4864 break; 4865 4866 case MAC_RING_TYPE_TX: { 4867 mac_ring_t *tmp_ring; 4868 4869 /* move the TX rings to the new group */ 4870 ASSERT(src_group == NULL); 4871 for (i = 0; i < nrings; i++) { 4872 /* get the desired ring */ 4873 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4874 ASSERT(tmp_ring == rings[i]); 4875 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4876 if (rv != 0) { 4877 /* cleanup on failure */ 4878 for (j = 0; j < i; j++) { 4879 (void) mac_group_mov_ring(mip, 4880 mip->mi_tx_groups + 4881 mip->mi_tx_group_count, rings[j]); 4882 } 4883 } 4884 } 4885 break; 4886 } 4887 } 4888 4889 if (share != NULL) { 4890 /* add group to share */ 4891 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4892 /* free temporary array of rings */ 4893 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4894 } 4895 4896 return (0); 4897 } 4898 4899 void 4900 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4901 { 4902 mac_grp_client_t *mgcp; 4903 4904 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4905 if (mgcp->mgc_client == mcip) 4906 break; 4907 } 4908 4909 VERIFY(mgcp == NULL); 4910 4911 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4912 mgcp->mgc_client = mcip; 4913 mgcp->mgc_next = grp->mrg_clients; 4914 grp->mrg_clients = mgcp; 4915 4916 } 4917 4918 void 4919 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4920 { 4921 mac_grp_client_t *mgcp, **pprev; 4922 4923 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4924 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4925 if (mgcp->mgc_client == mcip) 4926 break; 4927 } 4928 4929 ASSERT(mgcp != NULL); 4930 4931 *pprev = mgcp->mgc_next; 4932 kmem_free(mgcp, sizeof (mac_grp_client_t)); 4933 } 4934 4935 /* 4936 * mac_reserve_rx_group() 4937 * 4938 * Finds an available group and exclusively reserves it for a client. 4939 * The group is chosen to suit the flow's resource controls (bandwidth and 4940 * fanout requirements) and the address type. 4941 * If the requestor is the pimary MAC then return the group with the 4942 * largest number of rings, otherwise the default ring when available. 4943 */ 4944 mac_group_t * 4945 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 4946 mac_rx_group_reserve_type_t rtype) 4947 { 4948 mac_share_handle_t share = mcip->mci_share; 4949 mac_impl_t *mip = mcip->mci_mip; 4950 mac_group_t *grp = NULL; 4951 int i, start, loopcount; 4952 int err; 4953 mac_address_t *map; 4954 4955 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4956 4957 /* Check if a group already has this mac address (case of VLANs) */ 4958 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 4959 return (map->ma_group); 4960 4961 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 4962 rtype == MAC_RX_NO_RESERVE) 4963 return (NULL); 4964 4965 /* 4966 * Try to exclusively reserve a RX group. 4967 * 4968 * For flows requires SW_RING it always goes to the default group 4969 * (Until we can explicitely call out default groups (CR 6695600), 4970 * we assume that the default group is always at position zero); 4971 * 4972 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 4973 * client), try to reserve the default RX group only. 4974 * 4975 * For flows requires HW_RING (unicast flow of other clients), try 4976 * to reserve non-default RX group then the default group. 4977 */ 4978 switch (rtype) { 4979 case MAC_RX_RESERVE_DEFAULT: 4980 start = 0; 4981 loopcount = 1; 4982 break; 4983 case MAC_RX_RESERVE_NONDEFAULT: 4984 start = 1; 4985 loopcount = mip->mi_rx_group_count; 4986 } 4987 4988 for (i = start; i < start + loopcount; i++) { 4989 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 4990 4991 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 4992 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 4993 4994 /* 4995 * Check to see whether this mac client is the only client 4996 * on this RX group. If not, we cannot exclusively reserve 4997 * this RX group. 4998 */ 4999 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 5000 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 5001 continue; 5002 } 5003 5004 /* 5005 * This group could already be SHARED by other multicast 5006 * flows on this client. In that case, the group would 5007 * be shared and has already been started. 5008 */ 5009 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 5010 5011 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 5012 (mac_start_group(grp) != 0)) { 5013 continue; 5014 } 5015 5016 if ((i % mip->mi_rx_group_count) == 0 || 5017 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 5018 break; 5019 } 5020 5021 ASSERT(grp->mrg_cur_count == 0); 5022 5023 /* 5024 * Populate the group. Rings should be taken 5025 * from the default group at position 0 for now. 5026 */ 5027 5028 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 5029 &mip->mi_rx_groups[0], grp, share); 5030 if (err == 0) 5031 break; 5032 5033 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 5034 mip->mi_name, int, grp->mrg_index, int, err); 5035 5036 /* 5037 * It's a dynamic group but the grouping operation failed. 5038 */ 5039 mac_stop_group(grp); 5040 } 5041 5042 if (i == start + loopcount) 5043 return (NULL); 5044 5045 ASSERT(grp != NULL); 5046 5047 DTRACE_PROBE2(rx__group__reserved, 5048 char *, mip->mi_name, int, grp->mrg_index); 5049 return (grp); 5050 } 5051 5052 /* 5053 * mac_rx_release_group() 5054 * 5055 * This is called when there are no clients left for the group. 5056 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 5057 * and if it is a non default group, the shares are removed and 5058 * all rings are assigned back to default group. 5059 */ 5060 void 5061 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 5062 { 5063 mac_impl_t *mip = mcip->mci_mip; 5064 mac_ring_t *ring; 5065 5066 ASSERT(group != &mip->mi_rx_groups[0]); 5067 5068 /* 5069 * This is the case where there are no clients left. Any 5070 * SRS etc on this group have also be quiesced. 5071 */ 5072 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 5073 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 5074 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 5075 /* 5076 * Remove the SRS associated with the HW ring. 5077 * As a result, polling will be disabled. 5078 */ 5079 ring->mr_srs = NULL; 5080 } 5081 ASSERT(ring->mr_state == MR_INUSE); 5082 mac_stop_ring(ring); 5083 ring->mr_state = MR_FREE; 5084 ring->mr_flag = 0; 5085 } 5086 5087 /* remove group from share */ 5088 if (mcip->mci_share != NULL) { 5089 mip->mi_share_capab.ms_sremove(mcip->mci_share, 5090 group->mrg_driver); 5091 } 5092 5093 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 5094 mac_ring_t *ring; 5095 5096 /* 5097 * Rings were dynamically allocated to group. 5098 * Move rings back to default group. 5099 */ 5100 while ((ring = group->mrg_rings) != NULL) { 5101 (void) mac_group_mov_ring(mip, 5102 &mip->mi_rx_groups[0], ring); 5103 } 5104 } 5105 mac_stop_group(group); 5106 /* 5107 * Possible improvement: See if we can assign the group just released 5108 * to a another client of the mip 5109 */ 5110 } 5111 5112 /* 5113 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 5114 * when a share was allocated to the client. 5115 */ 5116 mac_group_t * 5117 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 5118 { 5119 mac_group_t *grp; 5120 int rv, i; 5121 5122 /* 5123 * TX groups are currently allocated only to MAC clients 5124 * which are associated with a share. Since we have a fixed 5125 * number of share and groups, and we already successfully 5126 * allocated a share, find an available TX group. 5127 */ 5128 ASSERT(share != NULL); 5129 ASSERT(mip->mi_tx_group_free > 0); 5130 5131 for (i = 0; i < mip->mi_tx_group_count; i++) { 5132 grp = &mip->mi_tx_groups[i]; 5133 5134 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 5135 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 5136 continue; 5137 5138 rv = mac_start_group(grp); 5139 ASSERT(rv == 0); 5140 5141 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 5142 break; 5143 } 5144 5145 ASSERT(grp != NULL); 5146 5147 /* 5148 * Populate the group. Rings should be taken from the group 5149 * of unassigned rings, which is past the array of TX 5150 * groups adversized by the driver. 5151 */ 5152 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5153 grp, share); 5154 if (rv != 0) { 5155 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5156 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5157 5158 mac_stop_group(grp); 5159 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5160 5161 return (NULL); 5162 } 5163 5164 mip->mi_tx_group_free--; 5165 5166 return (grp); 5167 } 5168 5169 void 5170 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5171 { 5172 mac_client_impl_t *mcip = grp->mrg_tx_client; 5173 mac_share_handle_t share = mcip->mci_share; 5174 mac_ring_t *ring; 5175 5176 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5177 ASSERT(share != NULL); 5178 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5179 5180 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5181 while ((ring = grp->mrg_rings) != NULL) { 5182 /* move the ring back to the pool */ 5183 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5184 mip->mi_tx_group_count, ring); 5185 } 5186 mac_stop_group(grp); 5187 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5188 grp->mrg_tx_client = NULL; 5189 mip->mi_tx_group_free++; 5190 } 5191 5192 /* 5193 * This is a 1-time control path activity initiated by the client (IP). 5194 * The mac perimeter protects against other simultaneous control activities, 5195 * for example an ioctl that attempts to change the degree of fanout and 5196 * increase or decrease the number of softrings associated with this Tx SRS. 5197 */ 5198 static mac_tx_notify_cb_t * 5199 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5200 mac_tx_notify_t notify, void *arg) 5201 { 5202 mac_cb_info_t *mcbi; 5203 mac_tx_notify_cb_t *mtnfp; 5204 5205 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5206 5207 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5208 mtnfp->mtnf_fn = notify; 5209 mtnfp->mtnf_arg = arg; 5210 mtnfp->mtnf_link.mcb_objp = mtnfp; 5211 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5212 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5213 5214 mcbi = &mcip->mci_tx_notify_cb_info; 5215 mutex_enter(mcbi->mcbi_lockp); 5216 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5217 mutex_exit(mcbi->mcbi_lockp); 5218 return (mtnfp); 5219 } 5220 5221 static void 5222 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5223 { 5224 mac_cb_info_t *mcbi; 5225 mac_cb_t **cblist; 5226 5227 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5228 5229 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5230 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5231 cmn_err(CE_WARN, 5232 "mac_client_tx_notify_remove: callback not " 5233 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5234 return; 5235 } 5236 5237 mcbi = &mcip->mci_tx_notify_cb_info; 5238 cblist = &mcip->mci_tx_notify_cb_list; 5239 mutex_enter(mcbi->mcbi_lockp); 5240 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5241 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5242 else 5243 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5244 mutex_exit(mcbi->mcbi_lockp); 5245 } 5246 5247 /* 5248 * mac_client_tx_notify(): 5249 * call to add and remove flow control callback routine. 5250 */ 5251 mac_tx_notify_handle_t 5252 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5253 void *ptr) 5254 { 5255 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5256 mac_tx_notify_cb_t *mtnfp = NULL; 5257 5258 i_mac_perim_enter(mcip->mci_mip); 5259 5260 if (callb_func != NULL) { 5261 /* Add a notify callback */ 5262 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5263 } else { 5264 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5265 } 5266 i_mac_perim_exit(mcip->mci_mip); 5267 5268 return ((mac_tx_notify_handle_t)mtnfp); 5269 } 5270