1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 static int i_mac_constructor(void *, void *, int); 354 static void i_mac_destructor(void *, void *); 355 static int i_mac_ring_ctor(void *, void *, int); 356 static void i_mac_ring_dtor(void *, void *); 357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 358 void mac_tx_client_flush(mac_client_impl_t *); 359 void mac_tx_client_block(mac_client_impl_t *); 360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 361 static int mac_start_group_and_rings(mac_group_t *); 362 static void mac_stop_group_and_rings(mac_group_t *); 363 364 /* 365 * Module initialization functions. 366 */ 367 368 void 369 mac_init(void) 370 { 371 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 372 boot_max_ncpus); 373 374 /* Upper bound is mac_tx_percpu_cnt_max */ 375 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 376 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 377 378 if (mac_tx_percpu_cnt < 1) { 379 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 380 mac_tx_percpu_cnt = 1; 381 } 382 383 ASSERT(mac_tx_percpu_cnt >= 1); 384 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 385 /* 386 * Make it of the form 2**N - 1 in the range 387 * [0 .. mac_tx_percpu_cnt_max - 1] 388 */ 389 mac_tx_percpu_cnt--; 390 391 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 392 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 393 NULL, NULL, NULL, 0); 394 ASSERT(i_mac_impl_cachep != NULL); 395 396 mac_ring_cache = kmem_cache_create("mac_ring_cache", 397 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 398 NULL, NULL, 0); 399 ASSERT(mac_ring_cache != NULL); 400 401 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 402 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 403 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 404 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 405 406 mac_flow_init(); 407 mac_soft_ring_init(); 408 mac_bcast_init(); 409 mac_client_init(); 410 411 i_mac_impl_count = 0; 412 413 i_mactype_hash = mod_hash_create_extended("mactype_hash", 414 MACTYPE_HASHSZ, 415 mod_hash_null_keydtor, mod_hash_null_valdtor, 416 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 417 418 /* 419 * Allocate an id space to manage minor numbers. The range of the 420 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal 421 * minor number is MAXMIN, but id_t is type of integer and does not 422 * allow MAXMIN). 423 */ 424 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32); 425 ASSERT(minor_ids != NULL); 426 minor_count = 0; 427 428 /* Let's default to 20 seconds */ 429 mac_logging_interval = 20; 430 mac_flow_log_enable = B_FALSE; 431 mac_link_log_enable = B_FALSE; 432 mac_logging_timer = 0; 433 } 434 435 int 436 mac_fini(void) 437 { 438 if (i_mac_impl_count > 0 || minor_count > 0) 439 return (EBUSY); 440 441 id_space_destroy(minor_ids); 442 mac_flow_fini(); 443 444 mod_hash_destroy_hash(i_mac_impl_hash); 445 rw_destroy(&i_mac_impl_lock); 446 447 mac_client_fini(); 448 kmem_cache_destroy(mac_ring_cache); 449 450 mod_hash_destroy_hash(i_mactype_hash); 451 mac_soft_ring_finish(); 452 return (0); 453 } 454 455 void 456 mac_init_ops(struct dev_ops *ops, const char *name) 457 { 458 dld_init_ops(ops, name); 459 } 460 461 void 462 mac_fini_ops(struct dev_ops *ops) 463 { 464 dld_fini_ops(ops); 465 } 466 467 /*ARGSUSED*/ 468 static int 469 i_mac_constructor(void *buf, void *arg, int kmflag) 470 { 471 mac_impl_t *mip = buf; 472 473 bzero(buf, sizeof (mac_impl_t)); 474 475 mip->mi_linkstate = LINK_STATE_UNKNOWN; 476 mip->mi_nclients = 0; 477 478 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 479 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 480 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 481 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 482 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 483 484 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 485 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 486 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 487 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 488 return (0); 489 } 490 491 /*ARGSUSED*/ 492 static void 493 i_mac_destructor(void *buf, void *arg) 494 { 495 mac_impl_t *mip = buf; 496 mac_cb_info_t *mcbi; 497 498 ASSERT(mip->mi_ref == 0); 499 ASSERT(mip->mi_active == 0); 500 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 501 ASSERT(mip->mi_devpromisc == 0); 502 ASSERT(mip->mi_promisc == 0); 503 ASSERT(mip->mi_ksp == NULL); 504 ASSERT(mip->mi_kstat_count == 0); 505 ASSERT(mip->mi_nclients == 0); 506 ASSERT(mip->mi_nactiveclients == 0); 507 ASSERT(mip->mi_state_flags == 0); 508 ASSERT(mip->mi_factory_addr == NULL); 509 ASSERT(mip->mi_factory_addr_num == 0); 510 ASSERT(mip->mi_default_tx_ring == NULL); 511 512 mcbi = &mip->mi_notify_cb_info; 513 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 514 ASSERT(mip->mi_notify_bits == 0); 515 ASSERT(mip->mi_notify_thread == NULL); 516 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 517 mcbi->mcbi_lockp = NULL; 518 519 mcbi = &mip->mi_promisc_cb_info; 520 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 521 ASSERT(mip->mi_promisc_list == NULL); 522 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 523 mcbi->mcbi_lockp = NULL; 524 525 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 526 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 527 528 mutex_destroy(&mip->mi_lock); 529 rw_destroy(&mip->mi_rw_lock); 530 531 mutex_destroy(&mip->mi_promisc_lock); 532 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 533 mutex_destroy(&mip->mi_notify_lock); 534 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 535 mutex_destroy(&mip->mi_ring_lock); 536 } 537 538 /* ARGSUSED */ 539 static int 540 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 541 { 542 mac_ring_t *ring = (mac_ring_t *)buf; 543 544 bzero(ring, sizeof (mac_ring_t)); 545 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 546 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 547 ring->mr_state = MR_FREE; 548 return (0); 549 } 550 551 /* ARGSUSED */ 552 static void 553 i_mac_ring_dtor(void *buf, void *arg) 554 { 555 mac_ring_t *ring = (mac_ring_t *)buf; 556 557 cv_destroy(&ring->mr_cv); 558 mutex_destroy(&ring->mr_lock); 559 } 560 561 /* 562 * Common functions to do mac callback addition and deletion. Currently this is 563 * used by promisc callbacks and notify callbacks. List addition and deletion 564 * need to take care of list walkers. List walkers in general, can't hold list 565 * locks and make upcall callbacks due to potential lock order and recursive 566 * reentry issues. Instead list walkers increment the list walker count to mark 567 * the presence of a walker thread. Addition can be carefully done to ensure 568 * that the list walker always sees either the old list or the new list. 569 * However the deletion can't be done while the walker is active, instead the 570 * deleting thread simply marks the entry as logically deleted. The last walker 571 * physically deletes and frees up the logically deleted entries when the walk 572 * is complete. 573 */ 574 void 575 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 576 mac_cb_t *mcb_elem) 577 { 578 mac_cb_t *p; 579 mac_cb_t **pp; 580 581 /* Verify it is not already in the list */ 582 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 583 if (p == mcb_elem) 584 break; 585 } 586 VERIFY(p == NULL); 587 588 /* 589 * Add it to the head of the callback list. The membar ensures that 590 * the following list pointer manipulations reach global visibility 591 * in exactly the program order below. 592 */ 593 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 594 595 mcb_elem->mcb_nextp = *mcb_head; 596 membar_producer(); 597 *mcb_head = mcb_elem; 598 } 599 600 /* 601 * Mark the entry as logically deleted. If there aren't any walkers unlink 602 * from the list. In either case return the corresponding status. 603 */ 604 boolean_t 605 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 606 mac_cb_t *mcb_elem) 607 { 608 mac_cb_t *p; 609 mac_cb_t **pp; 610 611 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 612 /* 613 * Search the callback list for the entry to be removed 614 */ 615 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 616 if (p == mcb_elem) 617 break; 618 } 619 VERIFY(p != NULL); 620 621 /* 622 * If there are walkers just mark it as deleted and the last walker 623 * will remove from the list and free it. 624 */ 625 if (mcbi->mcbi_walker_cnt != 0) { 626 p->mcb_flags |= MCB_CONDEMNED; 627 mcbi->mcbi_del_cnt++; 628 return (B_FALSE); 629 } 630 631 ASSERT(mcbi->mcbi_del_cnt == 0); 632 *pp = p->mcb_nextp; 633 p->mcb_nextp = NULL; 634 return (B_TRUE); 635 } 636 637 /* 638 * Wait for all pending callback removals to be completed 639 */ 640 void 641 mac_callback_remove_wait(mac_cb_info_t *mcbi) 642 { 643 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 644 while (mcbi->mcbi_del_cnt != 0) { 645 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 646 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 647 } 648 } 649 650 /* 651 * The last mac callback walker does the cleanup. Walk the list and unlik 652 * all the logically deleted entries and construct a temporary list of 653 * removed entries. Return the list of removed entries to the caller. 654 */ 655 mac_cb_t * 656 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 657 { 658 mac_cb_t *p; 659 mac_cb_t **pp; 660 mac_cb_t *rmlist = NULL; /* List of removed elements */ 661 int cnt = 0; 662 663 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 664 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 665 666 pp = mcb_head; 667 while (*pp != NULL) { 668 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 669 p = *pp; 670 *pp = p->mcb_nextp; 671 p->mcb_nextp = rmlist; 672 rmlist = p; 673 cnt++; 674 continue; 675 } 676 pp = &(*pp)->mcb_nextp; 677 } 678 679 ASSERT(mcbi->mcbi_del_cnt == cnt); 680 mcbi->mcbi_del_cnt = 0; 681 return (rmlist); 682 } 683 684 boolean_t 685 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 686 { 687 mac_cb_t *mcb; 688 689 /* Verify it is not already in the list */ 690 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 691 if (mcb == mcb_elem) 692 return (B_TRUE); 693 } 694 695 return (B_FALSE); 696 } 697 698 boolean_t 699 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 700 { 701 boolean_t found; 702 703 mutex_enter(mcbi->mcbi_lockp); 704 found = mac_callback_lookup(mcb_headp, mcb_elem); 705 mutex_exit(mcbi->mcbi_lockp); 706 707 return (found); 708 } 709 710 /* Free the list of removed callbacks */ 711 void 712 mac_callback_free(mac_cb_t *rmlist) 713 { 714 mac_cb_t *mcb; 715 mac_cb_t *mcb_next; 716 717 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 718 mcb_next = mcb->mcb_nextp; 719 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 720 } 721 } 722 723 /* 724 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 725 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 726 * is only a single shared total walker count, and an entry can't be physically 727 * unlinked if a walker is active on either list. The last walker does this 728 * cleanup of logically deleted entries. 729 */ 730 void 731 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 732 { 733 mac_cb_t *rmlist; 734 mac_cb_t *mcb; 735 mac_cb_t *mcb_next; 736 mac_promisc_impl_t *mpip; 737 738 /* 739 * Construct a temporary list of deleted callbacks by walking the 740 * the mi_promisc_list. Then for each entry in the temporary list, 741 * remove it from the mci_promisc_list and free the entry. 742 */ 743 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 744 &mip->mi_promisc_list); 745 746 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 747 mcb_next = mcb->mcb_nextp; 748 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 749 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 750 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 751 mcb->mcb_flags = 0; 752 mcb->mcb_nextp = NULL; 753 kmem_cache_free(mac_promisc_impl_cache, mpip); 754 } 755 } 756 757 void 758 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 759 { 760 mac_cb_info_t *mcbi; 761 762 /* 763 * Signal the notify thread even after mi_ref has become zero and 764 * mi_disabled is set. The synchronization with the notify thread 765 * happens in mac_unregister and that implies the driver must make 766 * sure it is single-threaded (with respect to mac calls) and that 767 * all pending mac calls have returned before it calls mac_unregister 768 */ 769 rw_enter(&i_mac_impl_lock, RW_READER); 770 if (mip->mi_state_flags & MIS_DISABLED) 771 goto exit; 772 773 /* 774 * Guard against incorrect notifications. (Running a newer 775 * mac client against an older implementation?) 776 */ 777 if (type >= MAC_NNOTE) 778 goto exit; 779 780 mcbi = &mip->mi_notify_cb_info; 781 mutex_enter(mcbi->mcbi_lockp); 782 mip->mi_notify_bits |= (1 << type); 783 cv_broadcast(&mcbi->mcbi_cv); 784 mutex_exit(mcbi->mcbi_lockp); 785 786 exit: 787 rw_exit(&i_mac_impl_lock); 788 } 789 790 /* 791 * Mac serialization primitives. Please see the block comment at the 792 * top of the file. 793 */ 794 void 795 i_mac_perim_enter(mac_impl_t *mip) 796 { 797 mac_client_impl_t *mcip; 798 799 if (mip->mi_state_flags & MIS_IS_VNIC) { 800 /* 801 * This is a VNIC. Return the lower mac since that is what 802 * we want to serialize on. 803 */ 804 mcip = mac_vnic_lower(mip); 805 mip = mcip->mci_mip; 806 } 807 808 mutex_enter(&mip->mi_perim_lock); 809 if (mip->mi_perim_owner == curthread) { 810 mip->mi_perim_ocnt++; 811 mutex_exit(&mip->mi_perim_lock); 812 return; 813 } 814 815 while (mip->mi_perim_owner != NULL) 816 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 817 818 mip->mi_perim_owner = curthread; 819 ASSERT(mip->mi_perim_ocnt == 0); 820 mip->mi_perim_ocnt++; 821 #ifdef DEBUG 822 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 823 MAC_PERIM_STACK_DEPTH); 824 #endif 825 mutex_exit(&mip->mi_perim_lock); 826 } 827 828 int 829 i_mac_perim_enter_nowait(mac_impl_t *mip) 830 { 831 /* 832 * The vnic is a special case, since the serialization is done based 833 * on the lower mac. If the lower mac is busy, it does not imply the 834 * vnic can't be unregistered. But in the case of other drivers, 835 * a busy perimeter or open mac handles implies that the mac is busy 836 * and can't be unregistered. 837 */ 838 if (mip->mi_state_flags & MIS_IS_VNIC) { 839 i_mac_perim_enter(mip); 840 return (0); 841 } 842 843 mutex_enter(&mip->mi_perim_lock); 844 if (mip->mi_perim_owner != NULL) { 845 mutex_exit(&mip->mi_perim_lock); 846 return (EBUSY); 847 } 848 ASSERT(mip->mi_perim_ocnt == 0); 849 mip->mi_perim_owner = curthread; 850 mip->mi_perim_ocnt++; 851 mutex_exit(&mip->mi_perim_lock); 852 853 return (0); 854 } 855 856 void 857 i_mac_perim_exit(mac_impl_t *mip) 858 { 859 mac_client_impl_t *mcip; 860 861 if (mip->mi_state_flags & MIS_IS_VNIC) { 862 /* 863 * This is a VNIC. Return the lower mac since that is what 864 * we want to serialize on. 865 */ 866 mcip = mac_vnic_lower(mip); 867 mip = mcip->mci_mip; 868 } 869 870 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 871 872 mutex_enter(&mip->mi_perim_lock); 873 if (--mip->mi_perim_ocnt == 0) { 874 mip->mi_perim_owner = NULL; 875 cv_signal(&mip->mi_perim_cv); 876 } 877 mutex_exit(&mip->mi_perim_lock); 878 } 879 880 /* 881 * Returns whether the current thread holds the mac perimeter. Used in making 882 * assertions. 883 */ 884 boolean_t 885 mac_perim_held(mac_handle_t mh) 886 { 887 mac_impl_t *mip = (mac_impl_t *)mh; 888 mac_client_impl_t *mcip; 889 890 if (mip->mi_state_flags & MIS_IS_VNIC) { 891 /* 892 * This is a VNIC. Return the lower mac since that is what 893 * we want to serialize on. 894 */ 895 mcip = mac_vnic_lower(mip); 896 mip = mcip->mci_mip; 897 } 898 return (mip->mi_perim_owner == curthread); 899 } 900 901 /* 902 * mac client interfaces to enter the mac perimeter of a mac end point, given 903 * its mac handle, or macname or linkid. 904 */ 905 void 906 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 907 { 908 mac_impl_t *mip = (mac_impl_t *)mh; 909 910 i_mac_perim_enter(mip); 911 /* 912 * The mac_perim_handle_t returned encodes the 'mip' and whether a 913 * mac_open has been done internally while entering the perimeter. 914 * This information is used in mac_perim_exit 915 */ 916 MAC_ENCODE_MPH(*mphp, mip, 0); 917 } 918 919 int 920 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 921 { 922 int err; 923 mac_handle_t mh; 924 925 if ((err = mac_open(name, &mh)) != 0) 926 return (err); 927 928 mac_perim_enter_by_mh(mh, mphp); 929 MAC_ENCODE_MPH(*mphp, mh, 1); 930 return (0); 931 } 932 933 int 934 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 935 { 936 int err; 937 mac_handle_t mh; 938 939 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 940 return (err); 941 942 mac_perim_enter_by_mh(mh, mphp); 943 MAC_ENCODE_MPH(*mphp, mh, 1); 944 return (0); 945 } 946 947 void 948 mac_perim_exit(mac_perim_handle_t mph) 949 { 950 mac_impl_t *mip; 951 boolean_t need_close; 952 953 MAC_DECODE_MPH(mph, mip, need_close); 954 i_mac_perim_exit(mip); 955 if (need_close) 956 mac_close((mac_handle_t)mip); 957 } 958 959 int 960 mac_hold(const char *macname, mac_impl_t **pmip) 961 { 962 mac_impl_t *mip; 963 int err; 964 965 /* 966 * Check the device name length to make sure it won't overflow our 967 * buffer. 968 */ 969 if (strlen(macname) >= MAXNAMELEN) 970 return (EINVAL); 971 972 /* 973 * Look up its entry in the global hash table. 974 */ 975 rw_enter(&i_mac_impl_lock, RW_WRITER); 976 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 977 (mod_hash_val_t *)&mip); 978 979 if (err != 0) { 980 rw_exit(&i_mac_impl_lock); 981 return (ENOENT); 982 } 983 984 if (mip->mi_state_flags & MIS_DISABLED) { 985 rw_exit(&i_mac_impl_lock); 986 return (ENOENT); 987 } 988 989 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 990 rw_exit(&i_mac_impl_lock); 991 return (EBUSY); 992 } 993 994 mip->mi_ref++; 995 rw_exit(&i_mac_impl_lock); 996 997 *pmip = mip; 998 return (0); 999 } 1000 1001 void 1002 mac_rele(mac_impl_t *mip) 1003 { 1004 rw_enter(&i_mac_impl_lock, RW_WRITER); 1005 ASSERT(mip->mi_ref != 0); 1006 if (--mip->mi_ref == 0) { 1007 ASSERT(mip->mi_nactiveclients == 0 && 1008 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1009 } 1010 rw_exit(&i_mac_impl_lock); 1011 } 1012 1013 /* 1014 * This function is called only by mac_client_open. 1015 */ 1016 int 1017 mac_start(mac_impl_t *mip) 1018 { 1019 int err = 0; 1020 1021 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1022 ASSERT(mip->mi_start != NULL); 1023 1024 /* 1025 * Check whether the device is already started. 1026 */ 1027 if (mip->mi_active++ == 0) { 1028 mac_ring_t *ring = NULL; 1029 1030 /* 1031 * Start the device. 1032 */ 1033 err = mip->mi_start(mip->mi_driver); 1034 if (err != 0) { 1035 mip->mi_active--; 1036 return (err); 1037 } 1038 1039 /* 1040 * Start the default tx ring. 1041 */ 1042 if (mip->mi_default_tx_ring != NULL) { 1043 1044 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1045 err = mac_start_ring(ring); 1046 if (err != 0) { 1047 mip->mi_active--; 1048 return (err); 1049 } 1050 ring->mr_state = MR_INUSE; 1051 } 1052 1053 if (mip->mi_rx_groups != NULL) { 1054 /* 1055 * Start the default ring, since it will be needed 1056 * to receive broadcast and multicast traffic for 1057 * both primary and non-primary MAC clients. 1058 */ 1059 mac_group_t *grp = &mip->mi_rx_groups[0]; 1060 1061 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1062 err = mac_start_group_and_rings(grp); 1063 if (err != 0) { 1064 mip->mi_active--; 1065 if (ring != NULL) { 1066 mac_stop_ring(ring); 1067 ring->mr_state = MR_FREE; 1068 } 1069 return (err); 1070 } 1071 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1072 } 1073 } 1074 1075 return (err); 1076 } 1077 1078 /* 1079 * This function is called only by mac_client_close. 1080 */ 1081 void 1082 mac_stop(mac_impl_t *mip) 1083 { 1084 ASSERT(mip->mi_stop != NULL); 1085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1086 1087 /* 1088 * Check whether the device is still needed. 1089 */ 1090 ASSERT(mip->mi_active != 0); 1091 if (--mip->mi_active == 0) { 1092 if (mip->mi_rx_groups != NULL) { 1093 /* 1094 * There should be no more active clients since the 1095 * MAC is being stopped. Stop the default RX group 1096 * and transition it back to registered state. 1097 */ 1098 mac_group_t *grp = &mip->mi_rx_groups[0]; 1099 1100 /* 1101 * When clients are torn down, the groups 1102 * are release via mac_release_rx_group which 1103 * knows the the default group is always in 1104 * started mode since broadcast uses it. So 1105 * we can assert that their are no clients 1106 * (since mac_bcast_add doesn't register itself 1107 * as a client) and group is in SHARED state. 1108 */ 1109 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1110 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1111 mip->mi_nactiveclients == 0); 1112 mac_stop_group_and_rings(grp); 1113 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1114 } 1115 1116 if (mip->mi_default_tx_ring != NULL) { 1117 mac_ring_t *ring; 1118 1119 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1120 mac_stop_ring(ring); 1121 ring->mr_state = MR_FREE; 1122 } 1123 1124 /* 1125 * Stop the device. 1126 */ 1127 mip->mi_stop(mip->mi_driver); 1128 } 1129 } 1130 1131 int 1132 i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype) 1133 { 1134 int err = 0; 1135 1136 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1137 ASSERT(mip->mi_setpromisc != NULL); 1138 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1139 1140 /* 1141 * Determine whether we should enable or disable promiscuous mode. 1142 * For details on the distinction between "device promiscuous mode" 1143 * and "MAC promiscuous mode", see PSARC/2005/289. 1144 */ 1145 if (on) { 1146 /* 1147 * Enable promiscuous mode on the device if not yet enabled. 1148 */ 1149 if (mip->mi_devpromisc++ == 0) { 1150 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1151 if (err != 0) { 1152 mip->mi_devpromisc--; 1153 return (err); 1154 } 1155 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1156 } 1157 1158 /* 1159 * Enable promiscuous mode on the MAC if not yet enabled. 1160 */ 1161 if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0) 1162 i_mac_notify(mip, MAC_NOTE_PROMISC); 1163 } else { 1164 if (mip->mi_devpromisc == 0) 1165 return (EPROTO); 1166 1167 /* 1168 * Disable promiscuous mode on the device if this is the last 1169 * enabling. 1170 */ 1171 if (--mip->mi_devpromisc == 0) { 1172 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1173 if (err != 0) { 1174 mip->mi_devpromisc++; 1175 return (err); 1176 } 1177 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1178 } 1179 1180 /* 1181 * Disable promiscuous mode on the MAC if this is the last 1182 * enabling. 1183 */ 1184 if (ptype == MAC_PROMISC && --mip->mi_promisc == 0) 1185 i_mac_notify(mip, MAC_NOTE_PROMISC); 1186 } 1187 1188 return (0); 1189 } 1190 1191 int 1192 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype) 1193 { 1194 mac_impl_t *mip = (mac_impl_t *)mh; 1195 int rv; 1196 1197 i_mac_perim_enter(mip); 1198 rv = i_mac_promisc_set(mip, on, ptype); 1199 i_mac_perim_exit(mip); 1200 1201 return (rv); 1202 } 1203 1204 /* 1205 * The promiscuity state can change any time. If the caller needs to take 1206 * actions that are atomic with the promiscuity state, then the caller needs 1207 * to bracket the entire sequence with mac_perim_enter/exit 1208 */ 1209 boolean_t 1210 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype) 1211 { 1212 mac_impl_t *mip = (mac_impl_t *)mh; 1213 1214 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1215 1216 /* 1217 * Return the current promiscuity. 1218 */ 1219 if (ptype == MAC_DEVPROMISC) 1220 return (mip->mi_devpromisc != 0); 1221 else 1222 return (mip->mi_promisc != 0); 1223 } 1224 1225 /* 1226 * Invoked at MAC instance attach time to initialize the list 1227 * of factory MAC addresses supported by a MAC instance. This function 1228 * builds a local cache in the mac_impl_t for the MAC addresses 1229 * supported by the underlying hardware. The MAC clients themselves 1230 * use the mac_addr_factory*() functions to query and reserve 1231 * factory MAC addresses. 1232 */ 1233 void 1234 mac_addr_factory_init(mac_impl_t *mip) 1235 { 1236 mac_capab_multifactaddr_t capab; 1237 uint8_t *addr; 1238 int i; 1239 1240 /* 1241 * First round to see how many factory MAC addresses are available. 1242 */ 1243 bzero(&capab, sizeof (capab)); 1244 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1245 &capab) || (capab.mcm_naddr == 0)) { 1246 /* 1247 * The MAC instance doesn't support multiple factory 1248 * MAC addresses, we're done here. 1249 */ 1250 return; 1251 } 1252 1253 /* 1254 * Allocate the space and get all the factory addresses. 1255 */ 1256 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1257 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1258 1259 mip->mi_factory_addr_num = capab.mcm_naddr; 1260 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1261 sizeof (mac_factory_addr_t), KM_SLEEP); 1262 1263 for (i = 0; i < capab.mcm_naddr; i++) { 1264 bcopy(addr + i * MAXMACADDRLEN, 1265 mip->mi_factory_addr[i].mfa_addr, 1266 mip->mi_type->mt_addr_length); 1267 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1268 } 1269 1270 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1271 } 1272 1273 void 1274 mac_addr_factory_fini(mac_impl_t *mip) 1275 { 1276 if (mip->mi_factory_addr == NULL) { 1277 ASSERT(mip->mi_factory_addr_num == 0); 1278 return; 1279 } 1280 1281 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1282 sizeof (mac_factory_addr_t)); 1283 1284 mip->mi_factory_addr = NULL; 1285 mip->mi_factory_addr_num = 0; 1286 } 1287 1288 /* 1289 * Reserve a factory MAC address. If *slot is set to -1, the function 1290 * attempts to reserve any of the available factory MAC addresses and 1291 * returns the reserved slot id. If no slots are available, the function 1292 * returns ENOSPC. If *slot is not set to -1, the function reserves 1293 * the specified slot if it is available, or returns EBUSY is the slot 1294 * is already used. Returns ENOTSUP if the underlying MAC does not 1295 * support multiple factory addresses. If the slot number is not -1 but 1296 * is invalid, returns EINVAL. 1297 */ 1298 int 1299 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1300 { 1301 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1302 mac_impl_t *mip = mcip->mci_mip; 1303 int i, ret = 0; 1304 1305 i_mac_perim_enter(mip); 1306 /* 1307 * Protect against concurrent readers that may need a self-consistent 1308 * view of the factory addresses 1309 */ 1310 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1311 1312 if (mip->mi_factory_addr_num == 0) { 1313 ret = ENOTSUP; 1314 goto bail; 1315 } 1316 1317 if (*slot != -1) { 1318 /* check the specified slot */ 1319 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1320 ret = EINVAL; 1321 goto bail; 1322 } 1323 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1324 ret = EBUSY; 1325 goto bail; 1326 } 1327 } else { 1328 /* pick the next available slot */ 1329 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1330 if (!mip->mi_factory_addr[i].mfa_in_use) 1331 break; 1332 } 1333 1334 if (i == mip->mi_factory_addr_num) { 1335 ret = ENOSPC; 1336 goto bail; 1337 } 1338 *slot = i+1; 1339 } 1340 1341 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1342 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1343 1344 bail: 1345 rw_exit(&mip->mi_rw_lock); 1346 i_mac_perim_exit(mip); 1347 return (ret); 1348 } 1349 1350 /* 1351 * Release the specified factory MAC address slot. 1352 */ 1353 void 1354 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1355 { 1356 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1357 mac_impl_t *mip = mcip->mci_mip; 1358 1359 i_mac_perim_enter(mip); 1360 /* 1361 * Protect against concurrent readers that may need a self-consistent 1362 * view of the factory addresses 1363 */ 1364 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1365 1366 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1367 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1368 1369 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1370 1371 rw_exit(&mip->mi_rw_lock); 1372 i_mac_perim_exit(mip); 1373 } 1374 1375 /* 1376 * Stores in mac_addr the value of the specified MAC address. Returns 1377 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1378 * The caller must provide a string of at least MAXNAMELEN bytes. 1379 */ 1380 void 1381 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1382 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1383 { 1384 mac_impl_t *mip = (mac_impl_t *)mh; 1385 boolean_t in_use; 1386 1387 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1388 1389 /* 1390 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1391 * and mi_rw_lock 1392 */ 1393 rw_enter(&mip->mi_rw_lock, RW_READER); 1394 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1395 *addr_len = mip->mi_type->mt_addr_length; 1396 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1397 if (in_use && client_name != NULL) { 1398 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1399 client_name, MAXNAMELEN); 1400 } 1401 if (in_use_arg != NULL) 1402 *in_use_arg = in_use; 1403 rw_exit(&mip->mi_rw_lock); 1404 } 1405 1406 /* 1407 * Returns the number of factory MAC addresses (in addition to the 1408 * primary MAC address), 0 if the underlying MAC doesn't support 1409 * that feature. 1410 */ 1411 uint_t 1412 mac_addr_factory_num(mac_handle_t mh) 1413 { 1414 mac_impl_t *mip = (mac_impl_t *)mh; 1415 1416 return (mip->mi_factory_addr_num); 1417 } 1418 1419 1420 void 1421 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1422 { 1423 mac_ring_t *ring; 1424 1425 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1426 ring->mr_flag &= ~flag; 1427 } 1428 1429 /* 1430 * The following mac_hwrings_xxx() functions are private mac client functions 1431 * used by the aggr driver to access and control the underlying HW Rx group 1432 * and rings. In this case, the aggr driver has exclusive control of the 1433 * underlying HW Rx group/rings, it calls the following functions to 1434 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1435 * addresses, or set up the Rx callback. 1436 */ 1437 /* ARGSUSED */ 1438 static void 1439 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1440 mblk_t *mp_chain, boolean_t loopback) 1441 { 1442 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1443 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1444 mac_direct_rx_t proc; 1445 void *arg1; 1446 mac_resource_handle_t arg2; 1447 1448 proc = srs_rx->sr_func; 1449 arg1 = srs_rx->sr_arg1; 1450 arg2 = mac_srs->srs_mrh; 1451 1452 proc(arg1, arg2, mp_chain, NULL); 1453 } 1454 1455 /* 1456 * This function is called to get the list of HW rings that are reserved by 1457 * an exclusive mac client. 1458 * 1459 * Return value: the number of HW rings. 1460 */ 1461 int 1462 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1463 mac_ring_handle_t *hwrh) 1464 { 1465 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1466 flow_entry_t *flent = mcip->mci_flent; 1467 mac_group_t *grp = flent->fe_rx_ring_group; 1468 mac_ring_t *ring; 1469 int cnt = 0; 1470 1471 /* 1472 * The mac client did not reserve any RX group, return directly. 1473 * This is probably because the underlying MAC does not support 1474 * any RX groups. 1475 */ 1476 *hwgh = NULL; 1477 if (grp == NULL) 1478 return (0); 1479 1480 /* 1481 * This RX group must be reserved by this mac client. 1482 */ 1483 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1484 (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1485 1486 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) { 1487 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1488 hwrh[cnt++] = (mac_ring_handle_t)ring; 1489 } 1490 *hwgh = (mac_group_handle_t)grp; 1491 return (cnt); 1492 } 1493 1494 /* 1495 * Setup the RX callback of the mac client which exclusively controls HW ring. 1496 */ 1497 void 1498 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1499 { 1500 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1501 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1502 1503 mac_srs->srs_mrh = prh; 1504 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1505 } 1506 1507 void 1508 mac_hwring_teardown(mac_ring_handle_t hwrh) 1509 { 1510 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1511 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1512 1513 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1514 mac_srs->srs_mrh = NULL; 1515 } 1516 1517 int 1518 mac_hwring_disable_intr(mac_ring_handle_t rh) 1519 { 1520 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1521 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1522 1523 return (intr->mi_disable(intr->mi_handle)); 1524 } 1525 1526 int 1527 mac_hwring_enable_intr(mac_ring_handle_t rh) 1528 { 1529 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1530 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1531 1532 return (intr->mi_enable(intr->mi_handle)); 1533 } 1534 1535 int 1536 mac_hwring_start(mac_ring_handle_t rh) 1537 { 1538 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1539 1540 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1541 return (0); 1542 } 1543 1544 void 1545 mac_hwring_stop(mac_ring_handle_t rh) 1546 { 1547 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1548 1549 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1550 } 1551 1552 mblk_t * 1553 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1554 { 1555 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1556 mac_ring_info_t *info = &rr_ring->mr_info; 1557 1558 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1559 } 1560 1561 int 1562 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1563 { 1564 mac_group_t *group = (mac_group_t *)gh; 1565 1566 return (mac_group_addmac(group, addr)); 1567 } 1568 1569 int 1570 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1571 { 1572 mac_group_t *group = (mac_group_t *)gh; 1573 1574 return (mac_group_remmac(group, addr)); 1575 } 1576 1577 /* 1578 * Set the RX group to be shared/reserved. Note that the group must be 1579 * started/stopped outside of this function. 1580 */ 1581 void 1582 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1583 { 1584 /* 1585 * If there is no change in the group state, just return. 1586 */ 1587 if (grp->mrg_state == state) 1588 return; 1589 1590 switch (state) { 1591 case MAC_GROUP_STATE_RESERVED: 1592 /* 1593 * Successfully reserved the group. 1594 * 1595 * Given that there is an exclusive client controlling this 1596 * group, we enable the group level polling when available, 1597 * so that SRSs get to turn on/off individual rings they's 1598 * assigned to. 1599 */ 1600 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1601 1602 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1603 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1604 1605 break; 1606 1607 case MAC_GROUP_STATE_SHARED: 1608 /* 1609 * Set all rings of this group to software classified. 1610 * If the group has an overriding interrupt, then re-enable it. 1611 */ 1612 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1613 1614 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1615 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1616 1617 /* The ring is not available for reservations any more */ 1618 break; 1619 1620 case MAC_GROUP_STATE_REGISTERED: 1621 /* Also callable from mac_register, perim is not held */ 1622 break; 1623 1624 default: 1625 ASSERT(B_FALSE); 1626 break; 1627 } 1628 1629 grp->mrg_state = state; 1630 } 1631 1632 /* 1633 * Quiesce future hardware classified packets for the specified Rx ring 1634 */ 1635 static void 1636 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1637 { 1638 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1639 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1640 1641 mutex_enter(&rx_ring->mr_lock); 1642 rx_ring->mr_flag |= ring_flag; 1643 while (rx_ring->mr_refcnt != 0) 1644 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1645 mutex_exit(&rx_ring->mr_lock); 1646 } 1647 1648 /* 1649 * Please see mac_tx for details about the per cpu locking scheme 1650 */ 1651 static void 1652 mac_tx_lock_all(mac_client_impl_t *mcip) 1653 { 1654 int i; 1655 1656 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1657 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1658 } 1659 1660 static void 1661 mac_tx_unlock_all(mac_client_impl_t *mcip) 1662 { 1663 int i; 1664 1665 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1666 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1667 } 1668 1669 static void 1670 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1671 { 1672 int i; 1673 1674 for (i = mac_tx_percpu_cnt; i > 0; i--) 1675 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1676 } 1677 1678 static int 1679 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1680 { 1681 int i; 1682 int refcnt = 0; 1683 1684 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1685 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1686 1687 return (refcnt); 1688 } 1689 1690 /* 1691 * Stop future Tx packets coming down from the client in preparation for 1692 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1693 * of rings between clients 1694 */ 1695 void 1696 mac_tx_client_block(mac_client_impl_t *mcip) 1697 { 1698 mac_tx_lock_all(mcip); 1699 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1700 while (mac_tx_sum_refcnt(mcip) != 0) { 1701 mac_tx_unlock_allbutzero(mcip); 1702 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1703 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1704 mac_tx_lock_all(mcip); 1705 } 1706 mac_tx_unlock_all(mcip); 1707 } 1708 1709 void 1710 mac_tx_client_unblock(mac_client_impl_t *mcip) 1711 { 1712 mac_tx_lock_all(mcip); 1713 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1714 mac_tx_unlock_all(mcip); 1715 } 1716 1717 /* 1718 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1719 * quiesce is done. 1720 */ 1721 static void 1722 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1723 { 1724 mutex_enter(&srs->srs_lock); 1725 while (!(srs->srs_state & srs_flag)) 1726 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1727 mutex_exit(&srs->srs_lock); 1728 } 1729 1730 /* 1731 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1732 * works bottom up by cutting off packet flow from the bottommost point in the 1733 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1734 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1735 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1736 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1737 * for the SRS and MR flags. In the former case the threads pause waiting for 1738 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1739 * is also mostly similar to the above. 1740 * 1741 * 1. Stop future hardware classified packets at the lowest level in the mac. 1742 * Remove any hardware classification rule (CONDEMNED case) and mark the 1743 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1744 * from increasing. Upcalls from the driver that come through hardware 1745 * classification will be dropped in mac_rx from now on. Then we wait for 1746 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1747 * sure there aren't any upcall threads from the driver through hardware 1748 * classification. In the case of SRS teardown we also remove the 1749 * classification rule in the driver. 1750 * 1751 * 2. Stop future software classified packets by marking the flow entry with 1752 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1753 * increasing. We also remove the flow entry from the table in the latter 1754 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1755 * that indicates there aren't any active threads using that flow entry. 1756 * 1757 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1758 * SRS worker thread, and the soft ring threads are quiesced in sequence 1759 * with the SRS worker thread serving as a master controller. This 1760 * mechansim is explained in mac_srs_worker_quiesce(). 1761 * 1762 * The restart mechanism to reactivate the SRS and softrings is explained 1763 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1764 * restart sequence. 1765 */ 1766 void 1767 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1768 { 1769 flow_entry_t *flent = srs->srs_flent; 1770 uint_t mr_flag, srs_done_flag; 1771 1772 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1773 ASSERT(!(srs->srs_type & SRST_TX)); 1774 1775 if (srs_quiesce_flag == SRS_CONDEMNED) { 1776 mr_flag = MR_CONDEMNED; 1777 srs_done_flag = SRS_CONDEMNED_DONE; 1778 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1779 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1780 } else { 1781 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1782 mr_flag = MR_QUIESCE; 1783 srs_done_flag = SRS_QUIESCE_DONE; 1784 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1785 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1786 } 1787 1788 if (srs->srs_ring != NULL) { 1789 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1790 } else { 1791 /* 1792 * SRS is driven by software classification. In case 1793 * of CONDEMNED, the top level teardown functions will 1794 * deal with flow removal. 1795 */ 1796 if (srs_quiesce_flag != SRS_CONDEMNED) { 1797 FLOW_MARK(flent, FE_QUIESCE); 1798 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1799 } 1800 } 1801 1802 /* 1803 * Signal the SRS to quiesce itself, and then cv_wait for the 1804 * SRS quiesce to complete. The SRS worker thread will wake us 1805 * up when the quiesce is complete 1806 */ 1807 mac_srs_signal(srs, srs_quiesce_flag); 1808 mac_srs_quiesce_wait(srs, srs_done_flag); 1809 } 1810 1811 /* 1812 * Remove an SRS. 1813 */ 1814 void 1815 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1816 { 1817 flow_entry_t *flent = srs->srs_flent; 1818 int i; 1819 1820 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1821 /* 1822 * Locate and remove our entry in the fe_rx_srs[] array, and 1823 * adjust the fe_rx_srs array entries and array count by 1824 * moving the last entry into the vacated spot. 1825 */ 1826 mutex_enter(&flent->fe_lock); 1827 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1828 if (flent->fe_rx_srs[i] == srs) 1829 break; 1830 } 1831 1832 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1833 if (i != flent->fe_rx_srs_cnt - 1) { 1834 flent->fe_rx_srs[i] = 1835 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1836 i = flent->fe_rx_srs_cnt - 1; 1837 } 1838 1839 flent->fe_rx_srs[i] = NULL; 1840 flent->fe_rx_srs_cnt--; 1841 mutex_exit(&flent->fe_lock); 1842 1843 mac_srs_free(srs); 1844 } 1845 1846 static void 1847 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1848 { 1849 mutex_enter(&srs->srs_lock); 1850 srs->srs_state &= ~flag; 1851 mutex_exit(&srs->srs_lock); 1852 } 1853 1854 void 1855 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1856 { 1857 flow_entry_t *flent = srs->srs_flent; 1858 mac_ring_t *mr; 1859 1860 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1861 ASSERT((srs->srs_type & SRST_TX) == 0); 1862 1863 /* 1864 * This handles a change in the number of SRSs between the quiesce and 1865 * and restart operation of a flow. 1866 */ 1867 if (!SRS_QUIESCED(srs)) 1868 return; 1869 1870 /* 1871 * Signal the SRS to restart itself. Wait for the restart to complete 1872 * Note that we only restart the SRS if it is not marked as 1873 * permanently quiesced. 1874 */ 1875 if (!SRS_QUIESCED_PERMANENT(srs)) { 1876 mac_srs_signal(srs, SRS_RESTART); 1877 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1878 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1879 1880 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1881 } 1882 1883 /* Finally clear the flags to let the packets in */ 1884 mr = srs->srs_ring; 1885 if (mr != NULL) { 1886 MAC_RING_UNMARK(mr, MR_QUIESCE); 1887 /* In case the ring was stopped, safely restart it */ 1888 (void) mac_start_ring(mr); 1889 } else { 1890 FLOW_UNMARK(flent, FE_QUIESCE); 1891 } 1892 } 1893 1894 /* 1895 * Temporary quiesce of a flow and associated Rx SRS. 1896 * Please see block comment above mac_rx_classify_flow_rem. 1897 */ 1898 /* ARGSUSED */ 1899 int 1900 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1901 { 1902 int i; 1903 1904 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1905 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1906 SRS_QUIESCE); 1907 } 1908 return (0); 1909 } 1910 1911 /* 1912 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1913 * Please see block comment above mac_rx_classify_flow_rem 1914 */ 1915 /* ARGSUSED */ 1916 int 1917 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1918 { 1919 int i; 1920 1921 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1922 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1923 1924 return (0); 1925 } 1926 1927 void 1928 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1929 { 1930 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1931 flow_entry_t *flent = mcip->mci_flent; 1932 mac_impl_t *mip = mcip->mci_mip; 1933 mac_soft_ring_set_t *mac_srs; 1934 int i; 1935 1936 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1937 1938 if (flent == NULL) 1939 return; 1940 1941 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1942 mac_srs = flent->fe_rx_srs[i]; 1943 mutex_enter(&mac_srs->srs_lock); 1944 if (on) 1945 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1946 else 1947 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1948 mutex_exit(&mac_srs->srs_lock); 1949 } 1950 } 1951 1952 void 1953 mac_rx_client_quiesce(mac_client_handle_t mch) 1954 { 1955 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1956 mac_impl_t *mip = mcip->mci_mip; 1957 1958 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1959 1960 if (MCIP_DATAPATH_SETUP(mcip)) { 1961 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1962 NULL); 1963 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1964 mac_rx_classify_flow_quiesce, NULL); 1965 } 1966 } 1967 1968 void 1969 mac_rx_client_restart(mac_client_handle_t mch) 1970 { 1971 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1972 mac_impl_t *mip = mcip->mci_mip; 1973 1974 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1975 1976 if (MCIP_DATAPATH_SETUP(mcip)) { 1977 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1978 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1979 mac_rx_classify_flow_restart, NULL); 1980 } 1981 } 1982 1983 /* 1984 * This function only quiesces the Tx SRS and softring worker threads. Callers 1985 * need to make sure that there aren't any mac client threads doing current or 1986 * future transmits in the mac before calling this function. 1987 */ 1988 void 1989 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1990 { 1991 mac_client_impl_t *mcip = srs->srs_mcip; 1992 1993 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 1994 1995 ASSERT(srs->srs_type & SRST_TX); 1996 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 1997 srs_quiesce_flag == SRS_QUIESCE); 1998 1999 /* 2000 * Signal the SRS to quiesce itself, and then cv_wait for the 2001 * SRS quiesce to complete. The SRS worker thread will wake us 2002 * up when the quiesce is complete 2003 */ 2004 mac_srs_signal(srs, srs_quiesce_flag); 2005 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2006 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2007 } 2008 2009 void 2010 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2011 { 2012 /* 2013 * Resizing the fanout could result in creation of new SRSs. 2014 * They may not necessarily be in the quiesced state in which 2015 * case it need be restarted 2016 */ 2017 if (!SRS_QUIESCED(srs)) 2018 return; 2019 2020 mac_srs_signal(srs, SRS_RESTART); 2021 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2022 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2023 } 2024 2025 /* 2026 * Temporary quiesce of a flow and associated Rx SRS. 2027 * Please see block comment above mac_rx_srs_quiesce 2028 */ 2029 /* ARGSUSED */ 2030 int 2031 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2032 { 2033 /* 2034 * The fe_tx_srs is null for a subflow on an interface that is 2035 * not plumbed 2036 */ 2037 if (flent->fe_tx_srs != NULL) 2038 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2039 return (0); 2040 } 2041 2042 /* ARGSUSED */ 2043 int 2044 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2045 { 2046 /* 2047 * The fe_tx_srs is null for a subflow on an interface that is 2048 * not plumbed 2049 */ 2050 if (flent->fe_tx_srs != NULL) 2051 mac_tx_srs_restart(flent->fe_tx_srs); 2052 return (0); 2053 } 2054 2055 void 2056 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2057 { 2058 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2059 2060 mac_tx_client_block(mcip); 2061 if (MCIP_TX_SRS(mcip) != NULL) { 2062 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2063 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2064 mac_tx_flow_quiesce, NULL); 2065 } 2066 } 2067 2068 void 2069 mac_tx_client_restart(mac_client_impl_t *mcip) 2070 { 2071 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2072 2073 mac_tx_client_unblock(mcip); 2074 if (MCIP_TX_SRS(mcip) != NULL) { 2075 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2076 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2077 mac_tx_flow_restart, NULL); 2078 } 2079 } 2080 2081 void 2082 mac_tx_client_flush(mac_client_impl_t *mcip) 2083 { 2084 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2085 2086 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2087 mac_tx_client_restart(mcip); 2088 } 2089 2090 void 2091 mac_client_quiesce(mac_client_impl_t *mcip) 2092 { 2093 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2094 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2095 } 2096 2097 void 2098 mac_client_restart(mac_client_impl_t *mcip) 2099 { 2100 mac_rx_client_restart((mac_client_handle_t)mcip); 2101 mac_tx_client_restart(mcip); 2102 } 2103 2104 /* 2105 * Allocate a minor number. 2106 */ 2107 minor_t 2108 mac_minor_hold(boolean_t sleep) 2109 { 2110 minor_t minor; 2111 2112 /* 2113 * Grab a value from the arena. 2114 */ 2115 atomic_add_32(&minor_count, 1); 2116 2117 if (sleep) 2118 minor = (uint_t)id_alloc(minor_ids); 2119 else 2120 minor = (uint_t)id_alloc_nosleep(minor_ids); 2121 2122 if (minor == 0) { 2123 atomic_add_32(&minor_count, -1); 2124 return (0); 2125 } 2126 2127 return (minor); 2128 } 2129 2130 /* 2131 * Release a previously allocated minor number. 2132 */ 2133 void 2134 mac_minor_rele(minor_t minor) 2135 { 2136 /* 2137 * Return the value to the arena. 2138 */ 2139 id_free(minor_ids, minor); 2140 atomic_add_32(&minor_count, -1); 2141 } 2142 2143 uint32_t 2144 mac_no_notification(mac_handle_t mh) 2145 { 2146 mac_impl_t *mip = (mac_impl_t *)mh; 2147 return (mip->mi_unsup_note); 2148 } 2149 2150 /* 2151 * Prevent any new opens of this mac in preparation for unregister 2152 */ 2153 int 2154 i_mac_disable(mac_impl_t *mip) 2155 { 2156 mac_client_impl_t *mcip; 2157 2158 rw_enter(&i_mac_impl_lock, RW_WRITER); 2159 if (mip->mi_state_flags & MIS_DISABLED) { 2160 /* Already disabled, return success */ 2161 rw_exit(&i_mac_impl_lock); 2162 return (0); 2163 } 2164 /* 2165 * See if there are any other references to this mac_t (e.g., VLAN's). 2166 * If so return failure. If all the other checks below pass, then 2167 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2168 * any new VLAN's from being created or new mac client opens of this 2169 * mac end point. 2170 */ 2171 if (mip->mi_ref > 0) { 2172 rw_exit(&i_mac_impl_lock); 2173 return (EBUSY); 2174 } 2175 2176 /* 2177 * mac clients must delete all multicast groups they join before 2178 * closing. bcast groups are reference counted, the last client 2179 * to delete the group will wait till the group is physically 2180 * deleted. Since all clients have closed this mac end point 2181 * mi_bcast_ngrps must be zero at this point 2182 */ 2183 ASSERT(mip->mi_bcast_ngrps == 0); 2184 2185 /* 2186 * Don't let go of this if it has some flows. 2187 * All other code guarantees no flows are added to a disabled 2188 * mac, therefore it is sufficient to check for the flow table 2189 * only here. 2190 */ 2191 mcip = mac_primary_client_handle(mip); 2192 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2193 rw_exit(&i_mac_impl_lock); 2194 return (ENOTEMPTY); 2195 } 2196 2197 mip->mi_state_flags |= MIS_DISABLED; 2198 rw_exit(&i_mac_impl_lock); 2199 return (0); 2200 } 2201 2202 int 2203 mac_disable_nowait(mac_handle_t mh) 2204 { 2205 mac_impl_t *mip = (mac_impl_t *)mh; 2206 int err; 2207 2208 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2209 return (err); 2210 err = i_mac_disable(mip); 2211 i_mac_perim_exit(mip); 2212 return (err); 2213 } 2214 2215 int 2216 mac_disable(mac_handle_t mh) 2217 { 2218 mac_impl_t *mip = (mac_impl_t *)mh; 2219 int err; 2220 2221 i_mac_perim_enter(mip); 2222 err = i_mac_disable(mip); 2223 i_mac_perim_exit(mip); 2224 2225 /* 2226 * Clean up notification thread and wait for it to exit. 2227 */ 2228 if (err == 0) 2229 i_mac_notify_exit(mip); 2230 2231 return (err); 2232 } 2233 2234 /* 2235 * Called when the MAC instance has a non empty flow table, to de-multiplex 2236 * incoming packets to the right flow. 2237 * The MAC's rw lock is assumed held as a READER. 2238 */ 2239 /* ARGSUSED */ 2240 static mblk_t * 2241 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2242 { 2243 flow_entry_t *flent = NULL; 2244 uint_t flags = FLOW_INBOUND; 2245 int err; 2246 2247 /* 2248 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2249 * to mac_flow_lookup() so that the VLAN packets can be successfully 2250 * passed to the non-VLAN aggregation flows. 2251 * 2252 * Note that there is possibly a race between this and 2253 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2254 * classified to non-VLAN flows of non-aggregation mac clients. These 2255 * VLAN packets will be then filtered out by the mac module. 2256 */ 2257 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2258 flags |= FLOW_IGNORE_VLAN; 2259 2260 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2261 if (err != 0) { 2262 /* no registered receive function */ 2263 return (mp); 2264 } else { 2265 mac_client_impl_t *mcip; 2266 2267 /* 2268 * This flent might just be an additional one on the MAC client, 2269 * i.e. for classification purposes (different fdesc), however 2270 * the resources, SRS et. al., are in the mci_flent, so if 2271 * this isn't the mci_flent, we need to get it. 2272 */ 2273 if ((mcip = flent->fe_mcip) != NULL && 2274 mcip->mci_flent != flent) { 2275 FLOW_REFRELE(flent); 2276 flent = mcip->mci_flent; 2277 FLOW_TRY_REFHOLD(flent, err); 2278 if (err != 0) 2279 return (mp); 2280 } 2281 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2282 B_FALSE); 2283 FLOW_REFRELE(flent); 2284 } 2285 return (NULL); 2286 } 2287 2288 mblk_t * 2289 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2290 { 2291 mac_impl_t *mip = (mac_impl_t *)mh; 2292 mblk_t *bp, *bp1, **bpp, *list = NULL; 2293 2294 /* 2295 * We walk the chain and attempt to classify each packet. 2296 * The packets that couldn't be classified will be returned 2297 * back to the caller. 2298 */ 2299 bp = mp_chain; 2300 bpp = &list; 2301 while (bp != NULL) { 2302 bp1 = bp; 2303 bp = bp->b_next; 2304 bp1->b_next = NULL; 2305 2306 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2307 *bpp = bp1; 2308 bpp = &bp1->b_next; 2309 } 2310 } 2311 return (list); 2312 } 2313 2314 static int 2315 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2316 { 2317 mac_ring_handle_t ring = arg; 2318 2319 if (flent->fe_tx_srs) 2320 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2321 return (0); 2322 } 2323 2324 void 2325 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2326 { 2327 mac_client_impl_t *cclient; 2328 mac_soft_ring_set_t *mac_srs; 2329 2330 /* 2331 * After grabbing the mi_rw_lock, the list of clients can't change. 2332 * If there are any clients mi_disabled must be B_FALSE and can't 2333 * get set since there are clients. If there aren't any clients we 2334 * don't do anything. In any case the mip has to be valid. The driver 2335 * must make sure that it goes single threaded (with respect to mac 2336 * calls) and wait for all pending mac calls to finish before calling 2337 * mac_unregister. 2338 */ 2339 rw_enter(&i_mac_impl_lock, RW_READER); 2340 if (mip->mi_state_flags & MIS_DISABLED) { 2341 rw_exit(&i_mac_impl_lock); 2342 return; 2343 } 2344 2345 /* 2346 * Get MAC tx srs from walking mac_client_handle list. 2347 */ 2348 rw_enter(&mip->mi_rw_lock, RW_READER); 2349 for (cclient = mip->mi_clients_list; cclient != NULL; 2350 cclient = cclient->mci_client_next) { 2351 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2352 mac_tx_srs_wakeup(mac_srs, ring); 2353 if (!FLOW_TAB_EMPTY(cclient->mci_subflow_tab)) { 2354 (void) mac_flow_walk_nolock(cclient->mci_subflow_tab, 2355 mac_tx_flow_srs_wakeup, ring); 2356 } 2357 } 2358 rw_exit(&mip->mi_rw_lock); 2359 rw_exit(&i_mac_impl_lock); 2360 } 2361 2362 /* ARGSUSED */ 2363 void 2364 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2365 boolean_t add) 2366 { 2367 mac_impl_t *mip = (mac_impl_t *)mh; 2368 2369 i_mac_perim_enter((mac_impl_t *)mh); 2370 /* 2371 * If no specific refresh function was given then default to the 2372 * driver's m_multicst entry point. 2373 */ 2374 if (refresh == NULL) { 2375 refresh = mip->mi_multicst; 2376 arg = mip->mi_driver; 2377 } 2378 2379 mac_bcast_refresh(mip, refresh, arg, add); 2380 i_mac_perim_exit((mac_impl_t *)mh); 2381 } 2382 2383 void 2384 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2385 { 2386 mac_impl_t *mip = (mac_impl_t *)mh; 2387 2388 /* 2389 * If no specific refresh function was given then default to the 2390 * driver's m_promisc entry point. 2391 */ 2392 if (refresh == NULL) { 2393 refresh = mip->mi_setpromisc; 2394 arg = mip->mi_driver; 2395 } 2396 ASSERT(refresh != NULL); 2397 2398 /* 2399 * Call the refresh function with the current promiscuity. 2400 */ 2401 refresh(arg, (mip->mi_devpromisc != 0)); 2402 } 2403 2404 /* 2405 * The mac client requests that the mac not to change its margin size to 2406 * be less than the specified value. If "current" is B_TRUE, then the client 2407 * requests the mac not to change its margin size to be smaller than the 2408 * current size. Further, return the current margin size value in this case. 2409 * 2410 * We keep every requested size in an ordered list from largest to smallest. 2411 */ 2412 int 2413 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2414 { 2415 mac_impl_t *mip = (mac_impl_t *)mh; 2416 mac_margin_req_t **pp, *p; 2417 int err = 0; 2418 2419 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2420 if (current) 2421 *marginp = mip->mi_margin; 2422 2423 /* 2424 * If the current margin value cannot satisfy the margin requested, 2425 * return ENOTSUP directly. 2426 */ 2427 if (*marginp > mip->mi_margin) { 2428 err = ENOTSUP; 2429 goto done; 2430 } 2431 2432 /* 2433 * Check whether the given margin is already in the list. If so, 2434 * bump the reference count. 2435 */ 2436 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2437 if (p->mmr_margin == *marginp) { 2438 /* 2439 * The margin requested is already in the list, 2440 * so just bump the reference count. 2441 */ 2442 p->mmr_ref++; 2443 goto done; 2444 } 2445 if (p->mmr_margin < *marginp) 2446 break; 2447 } 2448 2449 2450 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2451 p->mmr_margin = *marginp; 2452 p->mmr_ref++; 2453 p->mmr_nextp = *pp; 2454 *pp = p; 2455 2456 done: 2457 rw_exit(&(mip->mi_rw_lock)); 2458 return (err); 2459 } 2460 2461 /* 2462 * The mac client requests to cancel its previous mac_margin_add() request. 2463 * We remove the requested margin size from the list. 2464 */ 2465 int 2466 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2467 { 2468 mac_impl_t *mip = (mac_impl_t *)mh; 2469 mac_margin_req_t **pp, *p; 2470 int err = 0; 2471 2472 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2473 /* 2474 * Find the entry in the list for the given margin. 2475 */ 2476 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2477 if (p->mmr_margin == margin) { 2478 if (--p->mmr_ref == 0) 2479 break; 2480 2481 /* 2482 * There is still a reference to this address so 2483 * there's nothing more to do. 2484 */ 2485 goto done; 2486 } 2487 } 2488 2489 /* 2490 * We did not find an entry for the given margin. 2491 */ 2492 if (p == NULL) { 2493 err = ENOENT; 2494 goto done; 2495 } 2496 2497 ASSERT(p->mmr_ref == 0); 2498 2499 /* 2500 * Remove it from the list. 2501 */ 2502 *pp = p->mmr_nextp; 2503 kmem_free(p, sizeof (mac_margin_req_t)); 2504 done: 2505 rw_exit(&(mip->mi_rw_lock)); 2506 return (err); 2507 } 2508 2509 boolean_t 2510 mac_margin_update(mac_handle_t mh, uint32_t margin) 2511 { 2512 mac_impl_t *mip = (mac_impl_t *)mh; 2513 uint32_t margin_needed = 0; 2514 2515 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2516 2517 if (mip->mi_mmrp != NULL) 2518 margin_needed = mip->mi_mmrp->mmr_margin; 2519 2520 if (margin_needed <= margin) 2521 mip->mi_margin = margin; 2522 2523 rw_exit(&(mip->mi_rw_lock)); 2524 2525 if (margin_needed <= margin) 2526 i_mac_notify(mip, MAC_NOTE_MARGIN); 2527 2528 return (margin_needed <= margin); 2529 } 2530 2531 /* 2532 * MAC Type Plugin functions. 2533 */ 2534 2535 mactype_t * 2536 mactype_getplugin(const char *pname) 2537 { 2538 mactype_t *mtype = NULL; 2539 boolean_t tried_modload = B_FALSE; 2540 2541 mutex_enter(&i_mactype_lock); 2542 2543 find_registered_mactype: 2544 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2545 (mod_hash_val_t *)&mtype) != 0) { 2546 if (!tried_modload) { 2547 /* 2548 * If the plugin has not yet been loaded, then 2549 * attempt to load it now. If modload() succeeds, 2550 * the plugin should have registered using 2551 * mactype_register(), in which case we can go back 2552 * and attempt to find it again. 2553 */ 2554 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2555 tried_modload = B_TRUE; 2556 goto find_registered_mactype; 2557 } 2558 } 2559 } else { 2560 /* 2561 * Note that there's no danger that the plugin we've loaded 2562 * could be unloaded between the modload() step and the 2563 * reference count bump here, as we're holding 2564 * i_mactype_lock, which mactype_unregister() also holds. 2565 */ 2566 atomic_inc_32(&mtype->mt_ref); 2567 } 2568 2569 mutex_exit(&i_mactype_lock); 2570 return (mtype); 2571 } 2572 2573 mactype_register_t * 2574 mactype_alloc(uint_t mactype_version) 2575 { 2576 mactype_register_t *mtrp; 2577 2578 /* 2579 * Make sure there isn't a version mismatch between the plugin and 2580 * the framework. In the future, if multiple versions are 2581 * supported, this check could become more sophisticated. 2582 */ 2583 if (mactype_version != MACTYPE_VERSION) 2584 return (NULL); 2585 2586 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2587 mtrp->mtr_version = mactype_version; 2588 return (mtrp); 2589 } 2590 2591 void 2592 mactype_free(mactype_register_t *mtrp) 2593 { 2594 kmem_free(mtrp, sizeof (mactype_register_t)); 2595 } 2596 2597 int 2598 mactype_register(mactype_register_t *mtrp) 2599 { 2600 mactype_t *mtp; 2601 mactype_ops_t *ops = mtrp->mtr_ops; 2602 2603 /* Do some sanity checking before we register this MAC type. */ 2604 if (mtrp->mtr_ident == NULL || ops == NULL) 2605 return (EINVAL); 2606 2607 /* 2608 * Verify that all mandatory callbacks are set in the ops 2609 * vector. 2610 */ 2611 if (ops->mtops_unicst_verify == NULL || 2612 ops->mtops_multicst_verify == NULL || 2613 ops->mtops_sap_verify == NULL || 2614 ops->mtops_header == NULL || 2615 ops->mtops_header_info == NULL) { 2616 return (EINVAL); 2617 } 2618 2619 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2620 mtp->mt_ident = mtrp->mtr_ident; 2621 mtp->mt_ops = *ops; 2622 mtp->mt_type = mtrp->mtr_mactype; 2623 mtp->mt_nativetype = mtrp->mtr_nativetype; 2624 mtp->mt_addr_length = mtrp->mtr_addrlen; 2625 if (mtrp->mtr_brdcst_addr != NULL) { 2626 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2627 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2628 mtrp->mtr_addrlen); 2629 } 2630 2631 mtp->mt_stats = mtrp->mtr_stats; 2632 mtp->mt_statcount = mtrp->mtr_statcount; 2633 2634 mtp->mt_mapping = mtrp->mtr_mapping; 2635 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2636 2637 if (mod_hash_insert(i_mactype_hash, 2638 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2639 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2640 kmem_free(mtp, sizeof (*mtp)); 2641 return (EEXIST); 2642 } 2643 return (0); 2644 } 2645 2646 int 2647 mactype_unregister(const char *ident) 2648 { 2649 mactype_t *mtp; 2650 mod_hash_val_t val; 2651 int err; 2652 2653 /* 2654 * Let's not allow MAC drivers to use this plugin while we're 2655 * trying to unregister it. Holding i_mactype_lock also prevents a 2656 * plugin from unregistering while a MAC driver is attempting to 2657 * hold a reference to it in i_mactype_getplugin(). 2658 */ 2659 mutex_enter(&i_mactype_lock); 2660 2661 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2662 (mod_hash_val_t *)&mtp)) != 0) { 2663 /* A plugin is trying to unregister, but it never registered. */ 2664 err = ENXIO; 2665 goto done; 2666 } 2667 2668 if (mtp->mt_ref != 0) { 2669 err = EBUSY; 2670 goto done; 2671 } 2672 2673 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2674 ASSERT(err == 0); 2675 if (err != 0) { 2676 /* This should never happen, thus the ASSERT() above. */ 2677 err = EINVAL; 2678 goto done; 2679 } 2680 ASSERT(mtp == (mactype_t *)val); 2681 2682 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2683 kmem_free(mtp, sizeof (mactype_t)); 2684 done: 2685 mutex_exit(&i_mactype_lock); 2686 return (err); 2687 } 2688 2689 /* 2690 * Returns TRUE when the specified property is intended for the MAC framework, 2691 * as opposed to driver defined properties. 2692 */ 2693 static boolean_t 2694 mac_is_macprop(mac_prop_t *macprop) 2695 { 2696 switch (macprop->mp_id) { 2697 case MAC_PROP_MAXBW: 2698 case MAC_PROP_PRIO: 2699 case MAC_PROP_BIND_CPU: 2700 return (B_TRUE); 2701 default: 2702 return (B_FALSE); 2703 } 2704 } 2705 2706 /* 2707 * mac_set_prop() sets mac or hardware driver properties: 2708 * mac properties include maxbw, priority, and cpu binding list. Driver 2709 * properties are private properties to the hardware, such as mtu, speed 2710 * etc. 2711 * If the property is a driver property, mac_set_prop() calls driver's callback 2712 * function to set it. 2713 * If the property is a mac property, mac_set_prop() invokes mac_set_resources() 2714 * which will cache the property value in mac_impl_t and may call 2715 * mac_client_set_resource() to update property value of the primary mac client, 2716 * if it exists. 2717 */ 2718 int 2719 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2720 { 2721 int err = ENOTSUP; 2722 mac_impl_t *mip = (mac_impl_t *)mh; 2723 2724 ASSERT(MAC_PERIM_HELD(mh)); 2725 2726 /* If it is mac property, call mac_set_resources() */ 2727 if (mac_is_macprop(macprop)) { 2728 mac_resource_props_t mrp; 2729 2730 if (valsize < sizeof (mac_resource_props_t)) 2731 return (EINVAL); 2732 bzero(&mrp, sizeof (mac_resource_props_t)); 2733 bcopy(val, &mrp, sizeof (mrp)); 2734 return (mac_set_resources(mh, &mrp)); 2735 } 2736 /* For driver properties, call driver's callback */ 2737 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2738 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2739 macprop->mp_name, macprop->mp_id, valsize, val); 2740 } 2741 2742 return (err); 2743 } 2744 2745 /* 2746 * mac_get_prop() gets mac or hardware driver properties. 2747 * 2748 * If the property is a driver property, mac_get_prop() calls driver's callback 2749 * function to get it. 2750 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2751 * which returns the cached value in mac_impl_t. 2752 */ 2753 int 2754 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2755 uint_t *perm) 2756 { 2757 int err = ENOTSUP; 2758 mac_impl_t *mip = (mac_impl_t *)mh; 2759 uint32_t sdu; 2760 link_state_t link_state; 2761 2762 /* If mac property, read from cache */ 2763 if (mac_is_macprop(macprop)) { 2764 mac_resource_props_t mrp; 2765 2766 if (valsize < sizeof (mac_resource_props_t)) 2767 return (EINVAL); 2768 bzero(&mrp, sizeof (mac_resource_props_t)); 2769 mac_get_resources(mh, &mrp); 2770 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2771 return (0); 2772 } 2773 2774 switch (macprop->mp_id) { 2775 case MAC_PROP_MTU: 2776 if (valsize < sizeof (sdu)) 2777 return (EINVAL); 2778 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2779 mac_sdu_get(mh, NULL, &sdu); 2780 bcopy(&sdu, val, sizeof (sdu)); 2781 if (mac_set_prop(mh, macprop, val, sizeof (sdu)) != 0) 2782 *perm = MAC_PROP_PERM_READ; 2783 else 2784 *perm = MAC_PROP_PERM_RW; 2785 return (0); 2786 } else { 2787 if (mip->mi_info.mi_media == DL_ETHER) { 2788 sdu = ETHERMTU; 2789 bcopy(&sdu, val, sizeof (sdu)); 2790 return (0); 2791 } 2792 /* 2793 * ask driver for its default. 2794 */ 2795 break; 2796 } 2797 case MAC_PROP_STATUS: 2798 if (valsize < sizeof (link_state)) 2799 return (EINVAL); 2800 *perm = MAC_PROP_PERM_READ; 2801 link_state = mac_link_get(mh); 2802 bcopy(&link_state, val, sizeof (link_state)); 2803 return (0); 2804 default: 2805 break; 2806 2807 } 2808 /* If driver property, request from driver */ 2809 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 2810 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2811 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2812 valsize, val, perm); 2813 } 2814 return (err); 2815 } 2816 2817 void 2818 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2819 { 2820 mac_priv_prop_t *mpriv; 2821 2822 if (mpp == NULL) 2823 return; 2824 2825 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2826 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2827 mip->mi_priv_prop = mpriv; 2828 mip->mi_priv_prop_count = nprop; 2829 } 2830 2831 void 2832 mac_unregister_priv_prop(mac_impl_t *mip) 2833 { 2834 mac_priv_prop_t *mpriv; 2835 2836 mpriv = mip->mi_priv_prop; 2837 if (mpriv != NULL) { 2838 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2839 mip->mi_priv_prop = NULL; 2840 } 2841 mip->mi_priv_prop_count = 0; 2842 } 2843 2844 /* 2845 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2846 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2847 * cases if MAC free's the ring structure after mac_stop_ring(), any 2848 * illegal access to the ring structure coming from the driver will panic 2849 * the system. In order to protect the system from such inadverent access, 2850 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2851 * When packets are received on free'd up rings, MAC (through the generation 2852 * count mechanism) will drop such packets. 2853 */ 2854 static mac_ring_t * 2855 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2856 { 2857 mac_ring_t *ring; 2858 2859 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2860 mutex_enter(&mip->mi_ring_lock); 2861 if (mip->mi_ring_freelist != NULL) { 2862 ring = mip->mi_ring_freelist; 2863 mip->mi_ring_freelist = ring->mr_next; 2864 bzero(ring, sizeof (mac_ring_t)); 2865 } else { 2866 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2867 } 2868 mutex_exit(&mip->mi_ring_lock); 2869 } else { 2870 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2871 } 2872 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2873 return (ring); 2874 } 2875 2876 static void 2877 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2878 { 2879 if (ring->mr_type == MAC_RING_TYPE_RX) { 2880 mutex_enter(&mip->mi_ring_lock); 2881 ring->mr_state = MR_FREE; 2882 ring->mr_flag = 0; 2883 ring->mr_next = mip->mi_ring_freelist; 2884 mip->mi_ring_freelist = ring; 2885 mutex_exit(&mip->mi_ring_lock); 2886 } else { 2887 kmem_free(ring, sizeof (mac_ring_t)); 2888 } 2889 } 2890 2891 static void 2892 mac_ring_freeall(mac_impl_t *mip) 2893 { 2894 mac_ring_t *ring_next; 2895 mutex_enter(&mip->mi_ring_lock); 2896 mac_ring_t *ring = mip->mi_ring_freelist; 2897 while (ring != NULL) { 2898 ring_next = ring->mr_next; 2899 kmem_cache_free(mac_ring_cache, ring); 2900 ring = ring_next; 2901 } 2902 mip->mi_ring_freelist = NULL; 2903 mutex_exit(&mip->mi_ring_lock); 2904 } 2905 2906 int 2907 mac_start_ring(mac_ring_t *ring) 2908 { 2909 int rv = 0; 2910 2911 if (ring->mr_start != NULL) 2912 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 2913 2914 return (rv); 2915 } 2916 2917 void 2918 mac_stop_ring(mac_ring_t *ring) 2919 { 2920 if (ring->mr_stop != NULL) 2921 ring->mr_stop(ring->mr_driver); 2922 2923 /* 2924 * Increment the ring generation number for this ring. 2925 */ 2926 ring->mr_gen_num++; 2927 } 2928 2929 int 2930 mac_start_group(mac_group_t *group) 2931 { 2932 int rv = 0; 2933 2934 if (group->mrg_start != NULL) 2935 rv = group->mrg_start(group->mrg_driver); 2936 2937 return (rv); 2938 } 2939 2940 void 2941 mac_stop_group(mac_group_t *group) 2942 { 2943 if (group->mrg_stop != NULL) 2944 group->mrg_stop(group->mrg_driver); 2945 } 2946 2947 /* 2948 * Called from mac_start() on the default Rx group. Broadcast and multicast 2949 * packets are received only on the default group. Hence the default group 2950 * needs to be up even if the primary client is not up, for the other groups 2951 * to be functional. We do this by calling this function at mac_start time 2952 * itself. However the broadcast packets that are received can't make their 2953 * way beyond mac_rx until a mac client creates a broadcast flow. 2954 */ 2955 static int 2956 mac_start_group_and_rings(mac_group_t *group) 2957 { 2958 mac_ring_t *ring; 2959 int rv = 0; 2960 2961 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 2962 if ((rv = mac_start_group(group)) != 0) 2963 return (rv); 2964 2965 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 2966 ASSERT(ring->mr_state == MR_FREE); 2967 if ((rv = mac_start_ring(ring)) != 0) 2968 goto error; 2969 ring->mr_state = MR_INUSE; 2970 ring->mr_classify_type = MAC_SW_CLASSIFIER; 2971 } 2972 return (0); 2973 2974 error: 2975 mac_stop_group_and_rings(group); 2976 return (rv); 2977 } 2978 2979 /* Called from mac_stop on the default Rx group */ 2980 static void 2981 mac_stop_group_and_rings(mac_group_t *group) 2982 { 2983 mac_ring_t *ring; 2984 2985 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 2986 if (ring->mr_state != MR_FREE) { 2987 mac_stop_ring(ring); 2988 ring->mr_state = MR_FREE; 2989 ring->mr_flag = 0; 2990 ring->mr_classify_type = MAC_NO_CLASSIFIER; 2991 } 2992 } 2993 mac_stop_group(group); 2994 } 2995 2996 2997 static mac_ring_t * 2998 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 2999 mac_capab_rings_t *cap_rings) 3000 { 3001 mac_ring_t *ring; 3002 mac_ring_info_t ring_info; 3003 3004 ring = mac_ring_alloc(mip, cap_rings); 3005 3006 /* Prepare basic information of ring */ 3007 ring->mr_index = index; 3008 ring->mr_type = group->mrg_type; 3009 ring->mr_gh = (mac_group_handle_t)group; 3010 3011 /* Insert the new ring to the list. */ 3012 ring->mr_next = group->mrg_rings; 3013 group->mrg_rings = ring; 3014 3015 /* Zero to reuse the info data structure */ 3016 bzero(&ring_info, sizeof (ring_info)); 3017 3018 /* Query ring information from driver */ 3019 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3020 index, &ring_info, (mac_ring_handle_t)ring); 3021 3022 ring->mr_info = ring_info; 3023 3024 /* Update ring's status */ 3025 ring->mr_state = MR_FREE; 3026 ring->mr_flag = 0; 3027 3028 /* Update the ring count of the group */ 3029 group->mrg_cur_count++; 3030 return (ring); 3031 } 3032 3033 /* 3034 * Rings are chained together for easy regrouping. 3035 */ 3036 static void 3037 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3038 mac_capab_rings_t *cap_rings) 3039 { 3040 int index; 3041 3042 /* 3043 * Initialize all ring members of this group. Size of zero will not 3044 * enter the loop, so it's safe for initializing an empty group. 3045 */ 3046 for (index = size - 1; index >= 0; index--) 3047 (void) mac_init_ring(mip, group, index, cap_rings); 3048 } 3049 3050 int 3051 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3052 { 3053 mac_capab_rings_t *cap_rings; 3054 mac_group_t *group, *groups; 3055 mac_group_info_t group_info; 3056 uint_t group_free = 0; 3057 uint_t ring_left; 3058 mac_ring_t *ring; 3059 int g, err = 0; 3060 3061 switch (rtype) { 3062 case MAC_RING_TYPE_RX: 3063 ASSERT(mip->mi_rx_groups == NULL); 3064 3065 cap_rings = &mip->mi_rx_rings_cap; 3066 cap_rings->mr_type = MAC_RING_TYPE_RX; 3067 break; 3068 case MAC_RING_TYPE_TX: 3069 ASSERT(mip->mi_tx_groups == NULL); 3070 3071 cap_rings = &mip->mi_tx_rings_cap; 3072 cap_rings->mr_type = MAC_RING_TYPE_TX; 3073 break; 3074 default: 3075 ASSERT(B_FALSE); 3076 } 3077 3078 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3079 cap_rings)) 3080 return (0); 3081 3082 /* 3083 * Allocate a contiguous buffer for all groups. 3084 */ 3085 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3086 KM_SLEEP); 3087 3088 ring_left = cap_rings->mr_rnum; 3089 3090 /* 3091 * Get all ring groups if any, and get their ring members 3092 * if any. 3093 */ 3094 for (g = 0; g < cap_rings->mr_gnum; g++) { 3095 group = groups + g; 3096 3097 /* Prepare basic information of the group */ 3098 group->mrg_index = g; 3099 group->mrg_type = rtype; 3100 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3101 group->mrg_mh = (mac_handle_t)mip; 3102 group->mrg_next = group + 1; 3103 3104 /* Zero to reuse the info data structure */ 3105 bzero(&group_info, sizeof (group_info)); 3106 3107 /* Query group information from driver */ 3108 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3109 (mac_group_handle_t)group); 3110 3111 switch (cap_rings->mr_group_type) { 3112 case MAC_GROUP_TYPE_DYNAMIC: 3113 if (cap_rings->mr_gaddring == NULL || 3114 cap_rings->mr_gremring == NULL) { 3115 DTRACE_PROBE3( 3116 mac__init__rings_no_addremring, 3117 char *, mip->mi_name, 3118 mac_group_add_ring_t, 3119 cap_rings->mr_gaddring, 3120 mac_group_add_ring_t, 3121 cap_rings->mr_gremring); 3122 err = EINVAL; 3123 goto bail; 3124 } 3125 3126 switch (rtype) { 3127 case MAC_RING_TYPE_RX: 3128 /* 3129 * The first RX group must have non-zero 3130 * rings, and the following groups must 3131 * have zero rings. 3132 */ 3133 if (g == 0 && group_info.mgi_count == 0) { 3134 DTRACE_PROBE1( 3135 mac__init__rings__rx__def__zero, 3136 char *, mip->mi_name); 3137 err = EINVAL; 3138 goto bail; 3139 } 3140 if (g > 0 && group_info.mgi_count != 0) { 3141 DTRACE_PROBE3( 3142 mac__init__rings__rx__nonzero, 3143 char *, mip->mi_name, 3144 int, g, int, group_info.mgi_count); 3145 err = EINVAL; 3146 goto bail; 3147 } 3148 break; 3149 case MAC_RING_TYPE_TX: 3150 /* 3151 * All TX ring groups must have zero rings. 3152 */ 3153 if (group_info.mgi_count != 0) { 3154 DTRACE_PROBE3( 3155 mac__init__rings__tx__nonzero, 3156 char *, mip->mi_name, 3157 int, g, int, group_info.mgi_count); 3158 err = EINVAL; 3159 goto bail; 3160 } 3161 break; 3162 } 3163 break; 3164 case MAC_GROUP_TYPE_STATIC: 3165 /* 3166 * Note that an empty group is allowed, e.g., an aggr 3167 * would start with an empty group. 3168 */ 3169 break; 3170 default: 3171 /* unknown group type */ 3172 DTRACE_PROBE2(mac__init__rings__unknown__type, 3173 char *, mip->mi_name, 3174 int, cap_rings->mr_group_type); 3175 err = EINVAL; 3176 goto bail; 3177 } 3178 3179 3180 /* 3181 * Driver must register group->mgi_addmac/remmac() for rx groups 3182 * to support multiple MAC addresses. 3183 */ 3184 if (rtype == MAC_RING_TYPE_RX) { 3185 if ((group_info.mgi_addmac == NULL) || 3186 (group_info.mgi_addmac == NULL)) 3187 goto bail; 3188 } 3189 3190 /* Cache driver-supplied information */ 3191 group->mrg_info = group_info; 3192 3193 /* Update the group's status and group count. */ 3194 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3195 group_free++; 3196 3197 group->mrg_rings = NULL; 3198 group->mrg_cur_count = 0; 3199 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3200 ring_left -= group_info.mgi_count; 3201 3202 /* The current group size should be equal to default value */ 3203 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3204 } 3205 3206 /* Build up a dummy group for free resources as a pool */ 3207 group = groups + cap_rings->mr_gnum; 3208 3209 /* Prepare basic information of the group */ 3210 group->mrg_index = -1; 3211 group->mrg_type = rtype; 3212 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3213 group->mrg_mh = (mac_handle_t)mip; 3214 group->mrg_next = NULL; 3215 3216 /* 3217 * If there are ungrouped rings, allocate a continuous buffer for 3218 * remaining resources. 3219 */ 3220 if (ring_left != 0) { 3221 group->mrg_rings = NULL; 3222 group->mrg_cur_count = 0; 3223 mac_init_group(mip, group, ring_left, cap_rings); 3224 3225 /* The current group size should be equal to ring_left */ 3226 ASSERT(group->mrg_cur_count == ring_left); 3227 3228 ring_left = 0; 3229 3230 /* Update this group's status */ 3231 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3232 } else 3233 group->mrg_rings = NULL; 3234 3235 ASSERT(ring_left == 0); 3236 3237 bail: 3238 /* Cache other important information to finalize the initialization */ 3239 switch (rtype) { 3240 case MAC_RING_TYPE_RX: 3241 mip->mi_rx_group_type = cap_rings->mr_group_type; 3242 mip->mi_rx_group_count = cap_rings->mr_gnum; 3243 mip->mi_rx_groups = groups; 3244 break; 3245 case MAC_RING_TYPE_TX: 3246 mip->mi_tx_group_type = cap_rings->mr_group_type; 3247 mip->mi_tx_group_count = cap_rings->mr_gnum; 3248 mip->mi_tx_group_free = group_free; 3249 mip->mi_tx_groups = groups; 3250 3251 /* 3252 * Ring 0 is used as the default one and it could be assigned 3253 * to a client as well. 3254 */ 3255 group = groups + cap_rings->mr_gnum; 3256 ring = group->mrg_rings; 3257 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3258 ring = ring->mr_next; 3259 ASSERT(ring->mr_index == 0); 3260 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3261 break; 3262 default: 3263 ASSERT(B_FALSE); 3264 } 3265 3266 if (err != 0) 3267 mac_free_rings(mip, rtype); 3268 3269 return (err); 3270 } 3271 3272 /* 3273 * Called to free all ring groups with particular type. It's supposed all groups 3274 * have been released by clinet. 3275 */ 3276 void 3277 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3278 { 3279 mac_group_t *group, *groups; 3280 uint_t group_count; 3281 3282 switch (rtype) { 3283 case MAC_RING_TYPE_RX: 3284 if (mip->mi_rx_groups == NULL) 3285 return; 3286 3287 groups = mip->mi_rx_groups; 3288 group_count = mip->mi_rx_group_count; 3289 3290 mip->mi_rx_groups = NULL; 3291 mip->mi_rx_group_count = 0; 3292 break; 3293 case MAC_RING_TYPE_TX: 3294 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3295 3296 if (mip->mi_tx_groups == NULL) 3297 return; 3298 3299 groups = mip->mi_tx_groups; 3300 group_count = mip->mi_tx_group_count; 3301 3302 mip->mi_tx_groups = NULL; 3303 mip->mi_tx_group_count = 0; 3304 mip->mi_tx_group_free = 0; 3305 mip->mi_default_tx_ring = NULL; 3306 break; 3307 default: 3308 ASSERT(B_FALSE); 3309 } 3310 3311 for (group = groups; group != NULL; group = group->mrg_next) { 3312 mac_ring_t *ring; 3313 3314 if (group->mrg_cur_count == 0) 3315 continue; 3316 3317 ASSERT(group->mrg_rings != NULL); 3318 3319 while ((ring = group->mrg_rings) != NULL) { 3320 group->mrg_rings = ring->mr_next; 3321 mac_ring_free(mip, ring); 3322 } 3323 } 3324 3325 /* Free all the cached rings */ 3326 mac_ring_freeall(mip); 3327 /* Free the block of group data strutures */ 3328 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3329 } 3330 3331 /* 3332 * Associate a MAC address with a receive group. 3333 * 3334 * The return value of this function should always be checked properly, because 3335 * any type of failure could cause unexpected results. A group can be added 3336 * or removed with a MAC address only after it has been reserved. Ideally, 3337 * a successful reservation always leads to calling mac_group_addmac() to 3338 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3339 * always imply that the group is functioning abnormally. 3340 * 3341 * Currently this function is called everywhere, and it reflects assumptions 3342 * about MAC addresses in the implementation. CR 6735196. 3343 */ 3344 int 3345 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3346 { 3347 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3348 ASSERT(group->mrg_info.mgi_addmac != NULL); 3349 3350 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3351 } 3352 3353 /* 3354 * Remove the association between MAC address and receive group. 3355 */ 3356 int 3357 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3358 { 3359 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3360 ASSERT(group->mrg_info.mgi_remmac != NULL); 3361 3362 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3363 } 3364 3365 /* 3366 * Release a ring in use by marking it MR_FREE. 3367 * Any other client may reserve it for its use. 3368 */ 3369 void 3370 mac_release_tx_ring(mac_ring_handle_t rh) 3371 { 3372 mac_ring_t *ring = (mac_ring_t *)rh; 3373 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3374 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3375 3376 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3377 ASSERT(ring->mr_state != MR_FREE); 3378 3379 /* 3380 * Default tx ring will be released by mac_stop(). 3381 */ 3382 if (rh == mip->mi_default_tx_ring) 3383 return; 3384 3385 mac_stop_ring(ring); 3386 3387 ring->mr_state = MR_FREE; 3388 ring->mr_flag = 0; 3389 } 3390 3391 /* 3392 * Send packets through a selected tx ring. 3393 */ 3394 mblk_t * 3395 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp) 3396 { 3397 mac_ring_t *ring = (mac_ring_t *)rh; 3398 mac_ring_info_t *info = &ring->mr_info; 3399 3400 ASSERT(ring->mr_type == MAC_RING_TYPE_TX); 3401 ASSERT(ring->mr_state >= MR_INUSE); 3402 ASSERT(info->mri_tx != NULL); 3403 3404 return (info->mri_tx(info->mri_driver, mp)); 3405 } 3406 3407 /* 3408 * Find a ring from its index. 3409 */ 3410 mac_ring_t * 3411 mac_find_ring(mac_group_t *group, int index) 3412 { 3413 mac_ring_t *ring = group->mrg_rings; 3414 3415 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3416 if (ring->mr_index == index) 3417 break; 3418 3419 return (ring); 3420 } 3421 /* 3422 * Add a ring to an existing group. 3423 * 3424 * The ring must be either passed directly (for example if the ring 3425 * movement is initiated by the framework), or specified through a driver 3426 * index (for example when the ring is added by the driver. 3427 * 3428 * The caller needs to call mac_perim_enter() before calling this function. 3429 */ 3430 int 3431 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3432 { 3433 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3434 mac_capab_rings_t *cap_rings; 3435 boolean_t driver_call = (ring == NULL); 3436 mac_group_type_t group_type; 3437 int ret = 0; 3438 3439 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3440 3441 switch (group->mrg_type) { 3442 case MAC_RING_TYPE_RX: 3443 cap_rings = &mip->mi_rx_rings_cap; 3444 group_type = mip->mi_rx_group_type; 3445 break; 3446 case MAC_RING_TYPE_TX: 3447 cap_rings = &mip->mi_tx_rings_cap; 3448 group_type = mip->mi_tx_group_type; 3449 break; 3450 default: 3451 ASSERT(B_FALSE); 3452 } 3453 3454 /* 3455 * There should be no ring with the same ring index in the target 3456 * group. 3457 */ 3458 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3459 NULL); 3460 3461 if (driver_call) { 3462 /* 3463 * The function is called as a result of a request from 3464 * a driver to add a ring to an existing group, for example 3465 * from the aggregation driver. Allocate a new mac_ring_t 3466 * for that ring. 3467 */ 3468 ring = mac_init_ring(mip, group, index, cap_rings); 3469 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3470 } else { 3471 /* 3472 * The function is called as a result of a MAC layer request 3473 * to add a ring to an existing group. In this case the 3474 * ring is being moved between groups, which requires 3475 * the underlying driver to support dynamic grouping, 3476 * and the mac_ring_t already exists. 3477 */ 3478 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3479 ASSERT(cap_rings->mr_gaddring != NULL); 3480 ASSERT(ring->mr_gh == NULL); 3481 } 3482 3483 /* 3484 * At this point the ring should not be in use, and it should be 3485 * of the right for the target group. 3486 */ 3487 ASSERT(ring->mr_state < MR_INUSE); 3488 ASSERT(ring->mr_srs == NULL); 3489 ASSERT(ring->mr_type == group->mrg_type); 3490 3491 if (!driver_call) { 3492 /* 3493 * Add the driver level hardware ring if the process was not 3494 * initiated by the driver, and the target group is not the 3495 * group. 3496 */ 3497 if (group->mrg_driver != NULL) { 3498 cap_rings->mr_gaddring(group->mrg_driver, 3499 ring->mr_driver, ring->mr_type); 3500 } 3501 3502 /* 3503 * Insert the ring ahead existing rings. 3504 */ 3505 ring->mr_next = group->mrg_rings; 3506 group->mrg_rings = ring; 3507 ring->mr_gh = (mac_group_handle_t)group; 3508 group->mrg_cur_count++; 3509 } 3510 3511 /* 3512 * If the group has not been actively used, we're done. 3513 */ 3514 if (group->mrg_index != -1 && 3515 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3516 return (0); 3517 3518 /* 3519 * Set up SRS/SR according to the ring type. 3520 */ 3521 switch (ring->mr_type) { 3522 case MAC_RING_TYPE_RX: 3523 /* 3524 * Setup SRS on top of the new ring if the group is 3525 * reserved for someones exclusive use. 3526 */ 3527 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3528 flow_entry_t *flent; 3529 mac_client_impl_t *mcip; 3530 3531 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3532 ASSERT(mcip != NULL); 3533 flent = mcip->mci_flent; 3534 ASSERT(flent->fe_rx_srs_cnt > 0); 3535 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3536 } 3537 break; 3538 case MAC_RING_TYPE_TX: 3539 /* 3540 * For TX this function is only invoked during the 3541 * initial creation of a group when a share is 3542 * associated with a MAC client. So the datapath is not 3543 * yet setup, and will be setup later after the 3544 * group has been reserved and populated. 3545 */ 3546 break; 3547 default: 3548 ASSERT(B_FALSE); 3549 } 3550 3551 /* 3552 * Start the ring if needed. Failure causes to undo the grouping action. 3553 */ 3554 if ((ret = mac_start_ring(ring)) != 0) { 3555 if (ring->mr_type == MAC_RING_TYPE_RX) { 3556 if (ring->mr_srs != NULL) { 3557 mac_rx_srs_remove(ring->mr_srs); 3558 ring->mr_srs = NULL; 3559 } 3560 } 3561 if (!driver_call) { 3562 cap_rings->mr_gremring(group->mrg_driver, 3563 ring->mr_driver, ring->mr_type); 3564 } 3565 group->mrg_cur_count--; 3566 group->mrg_rings = ring->mr_next; 3567 3568 ring->mr_gh = NULL; 3569 3570 if (driver_call) 3571 mac_ring_free(mip, ring); 3572 3573 return (ret); 3574 } 3575 3576 /* 3577 * Update the ring's state. 3578 */ 3579 ring->mr_state = MR_INUSE; 3580 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3581 return (0); 3582 } 3583 3584 /* 3585 * Remove a ring from it's current group. MAC internal function for dynamic 3586 * grouping. 3587 * 3588 * The caller needs to call mac_perim_enter() before calling this function. 3589 */ 3590 void 3591 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3592 boolean_t driver_call) 3593 { 3594 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3595 mac_capab_rings_t *cap_rings = NULL; 3596 mac_group_type_t group_type; 3597 3598 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3599 3600 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3601 ASSERT((mac_group_t *)ring->mr_gh == group); 3602 ASSERT(ring->mr_type == group->mrg_type); 3603 3604 switch (ring->mr_type) { 3605 case MAC_RING_TYPE_RX: 3606 group_type = mip->mi_rx_group_type; 3607 cap_rings = &mip->mi_rx_rings_cap; 3608 3609 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3610 mac_stop_ring(ring); 3611 3612 /* 3613 * Only hardware classified packets hold a reference to the 3614 * ring all the way up the Rx path. mac_rx_srs_remove() 3615 * will take care of quiescing the Rx path and removing the 3616 * SRS. The software classified path neither holds a reference 3617 * nor any association with the ring in mac_rx. 3618 */ 3619 if (ring->mr_srs != NULL) { 3620 mac_rx_srs_remove(ring->mr_srs); 3621 ring->mr_srs = NULL; 3622 } 3623 ring->mr_state = MR_FREE; 3624 ring->mr_flag = 0; 3625 3626 break; 3627 case MAC_RING_TYPE_TX: 3628 /* 3629 * For TX this function is only invoked in two 3630 * cases: 3631 * 3632 * 1) In the case of a failure during the 3633 * initial creation of a group when a share is 3634 * associated with a MAC client. So the SRS is not 3635 * yet setup, and will be setup later after the 3636 * group has been reserved and populated. 3637 * 3638 * 2) From mac_release_tx_group() when freeing 3639 * a TX SRS. 3640 * 3641 * In both cases the SRS and its soft rings are 3642 * already quiesced. 3643 */ 3644 ASSERT(!driver_call); 3645 group_type = mip->mi_tx_group_type; 3646 cap_rings = &mip->mi_tx_rings_cap; 3647 break; 3648 default: 3649 ASSERT(B_FALSE); 3650 } 3651 3652 /* 3653 * Remove the ring from the group. 3654 */ 3655 if (ring == group->mrg_rings) 3656 group->mrg_rings = ring->mr_next; 3657 else { 3658 mac_ring_t *pre; 3659 3660 pre = group->mrg_rings; 3661 while (pre->mr_next != ring) 3662 pre = pre->mr_next; 3663 pre->mr_next = ring->mr_next; 3664 } 3665 group->mrg_cur_count--; 3666 3667 if (!driver_call) { 3668 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3669 ASSERT(cap_rings->mr_gremring != NULL); 3670 3671 /* 3672 * Remove the driver level hardware ring. 3673 */ 3674 if (group->mrg_driver != NULL) { 3675 cap_rings->mr_gremring(group->mrg_driver, 3676 ring->mr_driver, ring->mr_type); 3677 } 3678 } 3679 3680 ring->mr_gh = NULL; 3681 if (driver_call) { 3682 mac_ring_free(mip, ring); 3683 } else { 3684 ring->mr_state = MR_FREE; 3685 ring->mr_flag = 0; 3686 } 3687 } 3688 3689 /* 3690 * Move a ring to the target group. If needed, remove the ring from the group 3691 * that it currently belongs to. 3692 * 3693 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3694 */ 3695 static int 3696 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3697 { 3698 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3699 int rv; 3700 3701 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3702 ASSERT(d_group != NULL); 3703 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3704 3705 if (s_group == d_group) 3706 return (0); 3707 3708 /* 3709 * Remove it from current group first. 3710 */ 3711 if (s_group != NULL) 3712 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3713 3714 /* 3715 * Add it to the new group. 3716 */ 3717 rv = i_mac_group_add_ring(d_group, ring, 0); 3718 if (rv != 0) { 3719 /* 3720 * Failed to add ring back to source group. If 3721 * that fails, the ring is stuck in limbo, log message. 3722 */ 3723 if (i_mac_group_add_ring(s_group, ring, 0)) { 3724 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3725 mip->mi_name, (void *)ring); 3726 } 3727 } 3728 3729 return (rv); 3730 } 3731 3732 /* 3733 * Find a MAC address according to its value. 3734 */ 3735 mac_address_t * 3736 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3737 { 3738 mac_address_t *map; 3739 3740 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3741 3742 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3743 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3744 break; 3745 } 3746 3747 return (map); 3748 } 3749 3750 /* 3751 * Check whether the MAC address is shared by multiple clients. 3752 */ 3753 boolean_t 3754 mac_check_macaddr_shared(mac_address_t *map) 3755 { 3756 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3757 3758 return (map->ma_nusers > 1); 3759 } 3760 3761 /* 3762 * Enable a MAC address by enabling promiscuous mode. 3763 */ 3764 static int 3765 mac_add_macaddr_promisc(mac_impl_t *mip, mac_group_t *group) 3766 { 3767 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3768 3769 /* 3770 * Current interface only allow to set promiscuous mode with the 3771 * default group. Note, mip->mi_rx_groups might be NULL. 3772 */ 3773 ASSERT(group == mip->mi_rx_groups); 3774 3775 if (group == mip->mi_rx_groups) 3776 return (i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)); 3777 else 3778 return (ENOTSUP); 3779 } 3780 3781 /* 3782 * Remove a MAC address that was added by enabling promiscuous mode. 3783 */ 3784 static int 3785 mac_remove_macaddr_promisc(mac_impl_t *mip, mac_group_t *group) 3786 { 3787 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3788 ASSERT(group == mip->mi_rx_groups); 3789 3790 return (i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC)); 3791 } 3792 3793 /* 3794 * Remove the specified MAC address from the MAC address list and free it. 3795 */ 3796 static void 3797 mac_free_macaddr(mac_address_t *map) 3798 { 3799 mac_impl_t *mip = map->ma_mip; 3800 3801 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3802 ASSERT(mip->mi_addresses != NULL); 3803 3804 map = mac_find_macaddr(mip, map->ma_addr); 3805 3806 ASSERT(map != NULL); 3807 ASSERT(map->ma_nusers == 0); 3808 3809 if (map == mip->mi_addresses) { 3810 mip->mi_addresses = map->ma_next; 3811 } else { 3812 mac_address_t *pre; 3813 3814 pre = mip->mi_addresses; 3815 while (pre->ma_next != map) 3816 pre = pre->ma_next; 3817 pre->ma_next = map->ma_next; 3818 } 3819 3820 kmem_free(map, sizeof (mac_address_t)); 3821 } 3822 3823 /* 3824 * Add a MAC address reference for a client. If the desired MAC address 3825 * exists, add a reference to it. Otherwise, add the new address by adding 3826 * it to a reserved group or setting promiscuous mode. Won't try different 3827 * group is the group is non-NULL, so the caller must explictly share 3828 * default group when needed. 3829 * 3830 * Note, the primary MAC address is initialized at registration time, so 3831 * to add it to default group only need to activate it if its reference 3832 * count is still zero. Also, some drivers may not have advertised RINGS 3833 * capability. 3834 */ 3835 int 3836 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr) 3837 { 3838 mac_address_t *map; 3839 int err = 0; 3840 boolean_t allocated_map = B_FALSE; 3841 3842 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3843 3844 map = mac_find_macaddr(mip, mac_addr); 3845 3846 /* 3847 * If the new MAC address has not been added. Allocate a new one 3848 * and set it up. 3849 */ 3850 if (map == NULL) { 3851 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3852 map->ma_len = mip->mi_type->mt_addr_length; 3853 bcopy(mac_addr, map->ma_addr, map->ma_len); 3854 map->ma_nusers = 0; 3855 map->ma_group = group; 3856 map->ma_mip = mip; 3857 3858 /* add the new MAC address to the head of the address list */ 3859 map->ma_next = mip->mi_addresses; 3860 mip->mi_addresses = map; 3861 3862 allocated_map = B_TRUE; 3863 } 3864 3865 ASSERT(map->ma_group == group); 3866 3867 /* 3868 * If the MAC address is already in use, simply account for the 3869 * new client. 3870 */ 3871 if (map->ma_nusers++ > 0) 3872 return (0); 3873 3874 /* 3875 * Activate this MAC address by adding it to the reserved group. 3876 */ 3877 if (group != NULL) { 3878 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3879 if (err == 0) { 3880 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3881 return (0); 3882 } 3883 } 3884 3885 /* 3886 * Try promiscuous mode. Note that rx_groups could be NULL, so we 3887 * need to handle drivers that don't advertise the RINGS capability. 3888 */ 3889 if (group == mip->mi_rx_groups) { 3890 /* 3891 * For drivers that don't advertise RINGS capability, do 3892 * nothing for the primary address. 3893 */ 3894 if ((group == NULL) && 3895 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 3896 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3897 return (0); 3898 } 3899 3900 /* 3901 * Enable promiscuous mode in order to receive traffic 3902 * to the new MAC address. 3903 */ 3904 err = mac_add_macaddr_promisc(mip, group); 3905 if (err == 0) { 3906 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 3907 return (0); 3908 } 3909 } 3910 3911 /* 3912 * Free the MAC address that could not be added. Don't free 3913 * a pre-existing address, it could have been the entry 3914 * for the primary MAC address which was pre-allocated by 3915 * mac_init_macaddr(), and which must remain on the list. 3916 */ 3917 map->ma_nusers--; 3918 if (allocated_map) 3919 mac_free_macaddr(map); 3920 return (err); 3921 } 3922 3923 /* 3924 * Remove a reference to a MAC address. This may cause to remove the MAC 3925 * address from an associated group or to turn off promiscuous mode. 3926 * The caller needs to handle the failure properly. 3927 */ 3928 int 3929 mac_remove_macaddr(mac_address_t *map) 3930 { 3931 mac_impl_t *mip = map->ma_mip; 3932 int err = 0; 3933 3934 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3935 3936 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 3937 3938 /* 3939 * If it's not the last client using this MAC address, only update 3940 * the MAC clients count. 3941 */ 3942 if (--map->ma_nusers > 0) 3943 return (0); 3944 3945 /* 3946 * The MAC address is no longer used by any MAC client, so remove 3947 * it from its associated group, or turn off promiscuous mode 3948 * if it was enabled for the MAC address. 3949 */ 3950 switch (map->ma_type) { 3951 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3952 /* 3953 * Don't free the preset primary address for drivers that 3954 * don't advertise RINGS capability. 3955 */ 3956 if (map->ma_group == NULL) 3957 return (0); 3958 3959 err = mac_group_remmac(map->ma_group, map->ma_addr); 3960 break; 3961 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 3962 err = mac_remove_macaddr_promisc(mip, map->ma_group); 3963 break; 3964 default: 3965 ASSERT(B_FALSE); 3966 } 3967 3968 if (err != 0) 3969 return (err); 3970 3971 /* 3972 * We created MAC address for the primary one at registration, so we 3973 * won't free it here. mac_fini_macaddr() will take care of it. 3974 */ 3975 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 3976 mac_free_macaddr(map); 3977 3978 return (0); 3979 } 3980 3981 /* 3982 * Update an existing MAC address. The caller need to make sure that the new 3983 * value has not been used. 3984 */ 3985 int 3986 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 3987 { 3988 mac_impl_t *mip = map->ma_mip; 3989 int err = 0; 3990 3991 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3992 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 3993 3994 switch (map->ma_type) { 3995 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 3996 /* 3997 * Update the primary address for drivers that are not 3998 * RINGS capable. 3999 */ 4000 if (map->ma_group == NULL) { 4001 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4002 mac_addr); 4003 if (err != 0) 4004 return (err); 4005 break; 4006 } 4007 4008 /* 4009 * If this MAC address is not currently in use, 4010 * simply break out and update the value. 4011 */ 4012 if (map->ma_nusers == 0) 4013 break; 4014 4015 /* 4016 * Need to replace the MAC address associated with a group. 4017 */ 4018 err = mac_group_remmac(map->ma_group, map->ma_addr); 4019 if (err != 0) 4020 return (err); 4021 4022 err = mac_group_addmac(map->ma_group, mac_addr); 4023 4024 /* 4025 * Failure hints hardware error. The MAC layer needs to 4026 * have error notification facility to handle this. 4027 * Now, simply try to restore the value. 4028 */ 4029 if (err != 0) 4030 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4031 4032 break; 4033 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4034 /* 4035 * Need to do nothing more if in promiscuous mode. 4036 */ 4037 break; 4038 default: 4039 ASSERT(B_FALSE); 4040 } 4041 4042 /* 4043 * Successfully replaced the MAC address. 4044 */ 4045 if (err == 0) 4046 bcopy(mac_addr, map->ma_addr, map->ma_len); 4047 4048 return (err); 4049 } 4050 4051 /* 4052 * Freshen the MAC address with new value. Its caller must have updated the 4053 * hardware MAC address before calling this function. 4054 * This funcitons is supposed to be used to handle the MAC address change 4055 * notification from underlying drivers. 4056 */ 4057 void 4058 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4059 { 4060 mac_impl_t *mip = map->ma_mip; 4061 4062 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4063 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4064 4065 /* 4066 * Freshen the MAC address with new value. 4067 */ 4068 bcopy(mac_addr, map->ma_addr, map->ma_len); 4069 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4070 4071 /* 4072 * Update all MAC clients that share this MAC address. 4073 */ 4074 mac_unicast_update_clients(mip, map); 4075 } 4076 4077 /* 4078 * Set up the primary MAC address. 4079 */ 4080 void 4081 mac_init_macaddr(mac_impl_t *mip) 4082 { 4083 mac_address_t *map; 4084 4085 /* 4086 * The reference count is initialized to zero, until it's really 4087 * activated. 4088 */ 4089 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4090 map->ma_len = mip->mi_type->mt_addr_length; 4091 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4092 4093 /* 4094 * If driver advertises RINGS capability, it shouldn't have initialized 4095 * its primary MAC address. For other drivers, including VNIC, the 4096 * primary address must work after registration. 4097 */ 4098 if (mip->mi_rx_groups == NULL) 4099 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4100 4101 /* 4102 * The primary MAC address is reserved for default group according 4103 * to current design. 4104 */ 4105 map->ma_group = mip->mi_rx_groups; 4106 map->ma_mip = mip; 4107 4108 mip->mi_addresses = map; 4109 } 4110 4111 /* 4112 * Clean up the primary MAC address. Note, only one primary MAC address 4113 * is allowed. All other MAC addresses must have been freed appropriately. 4114 */ 4115 void 4116 mac_fini_macaddr(mac_impl_t *mip) 4117 { 4118 mac_address_t *map = mip->mi_addresses; 4119 4120 /* there should be exactly one entry left on the list */ 4121 ASSERT(map != NULL); 4122 ASSERT(map->ma_nusers == 0); 4123 ASSERT(map->ma_next == NULL); 4124 4125 kmem_free(map, sizeof (mac_address_t)); 4126 mip->mi_addresses = NULL; 4127 } 4128 4129 /* 4130 * Logging related functions. 4131 */ 4132 4133 /* Write the Flow description to the log file */ 4134 int 4135 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4136 { 4137 flow_desc_t *fdesc; 4138 mac_resource_props_t *mrp; 4139 net_desc_t ndesc; 4140 4141 bzero(&ndesc, sizeof (net_desc_t)); 4142 4143 /* 4144 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4145 * Updates to the fe_flow_desc are done under the fe_lock 4146 */ 4147 mutex_enter(&flent->fe_lock); 4148 fdesc = &flent->fe_flow_desc; 4149 mrp = &flent->fe_resource_props; 4150 4151 ndesc.nd_name = flent->fe_flow_name; 4152 ndesc.nd_devname = mcip->mci_name; 4153 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4154 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4155 ndesc.nd_sap = htonl(fdesc->fd_sap); 4156 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4157 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4158 if (ndesc.nd_isv4) { 4159 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4160 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4161 } else { 4162 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4163 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4164 } 4165 ndesc.nd_sport = htons(fdesc->fd_local_port); 4166 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4167 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4168 mutex_exit(&flent->fe_lock); 4169 4170 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4171 } 4172 4173 /* Write the Flow statistics to the log file */ 4174 int 4175 mac_write_flow_stats(flow_entry_t *flent) 4176 { 4177 flow_stats_t *fl_stats; 4178 net_stat_t nstat; 4179 4180 fl_stats = &flent->fe_flowstats; 4181 nstat.ns_name = flent->fe_flow_name; 4182 nstat.ns_ibytes = fl_stats->fs_rbytes; 4183 nstat.ns_obytes = fl_stats->fs_obytes; 4184 nstat.ns_ipackets = fl_stats->fs_ipackets; 4185 nstat.ns_opackets = fl_stats->fs_opackets; 4186 nstat.ns_ierrors = fl_stats->fs_ierrors; 4187 nstat.ns_oerrors = fl_stats->fs_oerrors; 4188 4189 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4190 } 4191 4192 /* Write the Link Description to the log file */ 4193 int 4194 mac_write_link_desc(mac_client_impl_t *mcip) 4195 { 4196 net_desc_t ndesc; 4197 flow_entry_t *flent = mcip->mci_flent; 4198 4199 bzero(&ndesc, sizeof (net_desc_t)); 4200 4201 ndesc.nd_name = mcip->mci_name; 4202 ndesc.nd_devname = mcip->mci_name; 4203 ndesc.nd_isv4 = B_TRUE; 4204 /* 4205 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4206 * Updates to the fe_flow_desc are done under the fe_lock 4207 * after removing the flent from the flow table. 4208 */ 4209 mutex_enter(&flent->fe_lock); 4210 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4211 mutex_exit(&flent->fe_lock); 4212 4213 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4214 } 4215 4216 /* Write the Link statistics to the log file */ 4217 int 4218 mac_write_link_stats(mac_client_impl_t *mcip) 4219 { 4220 net_stat_t nstat; 4221 4222 nstat.ns_name = mcip->mci_name; 4223 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4224 nstat.ns_obytes = mcip->mci_stat_obytes; 4225 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4226 nstat.ns_opackets = mcip->mci_stat_opackets; 4227 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4228 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4229 4230 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4231 } 4232 4233 /* 4234 * For a given flow, if the descrition has not been logged before, do it now. 4235 * If it is a VNIC, then we have collected information about it from the MAC 4236 * table, so skip it. 4237 */ 4238 /*ARGSUSED*/ 4239 static int 4240 mac_log_flowinfo(flow_entry_t *flent, void *args) 4241 { 4242 mac_client_impl_t *mcip = flent->fe_mcip; 4243 4244 if (mcip == NULL) 4245 return (0); 4246 4247 /* 4248 * If the name starts with "vnic", and fe_user_generated is true (to 4249 * exclude the mcast and active flow entries created implicitly for 4250 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4251 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4252 */ 4253 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4254 (flent->fe_type & FLOW_USER) != 0) { 4255 return (0); 4256 } 4257 4258 if (!flent->fe_desc_logged) { 4259 /* 4260 * We don't return error because we want to continu the 4261 * walk in case this is the last walk which means we 4262 * need to reset fe_desc_logged in all the flows. 4263 */ 4264 if (mac_write_flow_desc(flent, mcip) != 0) 4265 return (0); 4266 flent->fe_desc_logged = B_TRUE; 4267 } 4268 4269 /* 4270 * Regardless of the error, we want to proceed in case we have to 4271 * reset fe_desc_logged. 4272 */ 4273 (void) mac_write_flow_stats(flent); 4274 4275 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4276 flent->fe_desc_logged = B_FALSE; 4277 4278 return (0); 4279 } 4280 4281 typedef struct i_mac_log_state_s { 4282 boolean_t mi_last; 4283 int mi_fenable; 4284 int mi_lenable; 4285 } i_mac_log_state_t; 4286 4287 /* 4288 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4289 * if it hasn't already been done. Additionally, log statistics for the link as 4290 * well. Walk the flow table and log information for each flow as well. 4291 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4292 * also fe_desc_logged, if flow logging is on) since we want to log the 4293 * description if and when logging is restarted. 4294 */ 4295 /*ARGSUSED*/ 4296 static uint_t 4297 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4298 { 4299 mac_impl_t *mip = (mac_impl_t *)val; 4300 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4301 int ret; 4302 mac_client_impl_t *mcip; 4303 4304 /* 4305 * Only walk the client list for NIC and etherstub 4306 */ 4307 if ((mip->mi_state_flags & MIS_DISABLED) || 4308 ((mip->mi_state_flags & MIS_IS_VNIC) && 4309 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4310 return (MH_WALK_CONTINUE); 4311 4312 for (mcip = mip->mi_clients_list; mcip != NULL; 4313 mcip = mcip->mci_client_next) { 4314 if (!MCIP_DATAPATH_SETUP(mcip)) 4315 continue; 4316 if (lstate->mi_lenable) { 4317 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4318 ret = mac_write_link_desc(mcip); 4319 if (ret != 0) { 4320 /* 4321 * We can't terminate it if this is the last 4322 * walk, else there might be some links with 4323 * mi_desc_logged set to true, which means 4324 * their description won't be logged the next 4325 * time logging is started (similarly for the 4326 * flows within such links). We can continue 4327 * without walking the flow table (i.e. to 4328 * set fe_desc_logged to false) because we 4329 * won't have written any flow stuff for this 4330 * link as we haven't logged the link itself. 4331 */ 4332 if (lstate->mi_last) 4333 return (MH_WALK_CONTINUE); 4334 else 4335 return (MH_WALK_TERMINATE); 4336 } 4337 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4338 } 4339 } 4340 4341 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4342 return (MH_WALK_TERMINATE); 4343 4344 if (lstate->mi_last) 4345 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4346 4347 if (lstate->mi_fenable) { 4348 if (mcip->mci_subflow_tab != NULL) { 4349 (void) mac_flow_walk(mcip->mci_subflow_tab, 4350 mac_log_flowinfo, mip); 4351 } 4352 } 4353 } 4354 return (MH_WALK_CONTINUE); 4355 } 4356 4357 /* 4358 * The timer thread that runs every mac_logging_interval seconds and logs 4359 * link and/or flow information. 4360 */ 4361 /* ARGSUSED */ 4362 void 4363 mac_log_linkinfo(void *arg) 4364 { 4365 i_mac_log_state_t lstate; 4366 4367 rw_enter(&i_mac_impl_lock, RW_READER); 4368 if (!mac_flow_log_enable && !mac_link_log_enable) { 4369 rw_exit(&i_mac_impl_lock); 4370 return; 4371 } 4372 lstate.mi_fenable = mac_flow_log_enable; 4373 lstate.mi_lenable = mac_link_log_enable; 4374 lstate.mi_last = B_FALSE; 4375 rw_exit(&i_mac_impl_lock); 4376 4377 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4378 4379 rw_enter(&i_mac_impl_lock, RW_WRITER); 4380 if (mac_flow_log_enable || mac_link_log_enable) { 4381 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4382 SEC_TO_TICK(mac_logging_interval)); 4383 } 4384 rw_exit(&i_mac_impl_lock); 4385 } 4386 4387 /* 4388 * Start the logging timer. 4389 */ 4390 void 4391 mac_start_logusage(mac_logtype_t type, uint_t interval) 4392 { 4393 rw_enter(&i_mac_impl_lock, RW_WRITER); 4394 switch (type) { 4395 case MAC_LOGTYPE_FLOW: 4396 if (mac_flow_log_enable) { 4397 rw_exit(&i_mac_impl_lock); 4398 return; 4399 } 4400 mac_flow_log_enable = B_TRUE; 4401 /* FALLTHRU */ 4402 case MAC_LOGTYPE_LINK: 4403 if (mac_link_log_enable) { 4404 rw_exit(&i_mac_impl_lock); 4405 return; 4406 } 4407 mac_link_log_enable = B_TRUE; 4408 break; 4409 default: 4410 ASSERT(0); 4411 } 4412 mac_logging_interval = interval; 4413 rw_exit(&i_mac_impl_lock); 4414 mac_log_linkinfo(NULL); 4415 } 4416 4417 /* 4418 * Stop the logging timer if both Link and Flow logging are turned off. 4419 */ 4420 void 4421 mac_stop_logusage(mac_logtype_t type) 4422 { 4423 i_mac_log_state_t lstate; 4424 4425 rw_enter(&i_mac_impl_lock, RW_WRITER); 4426 lstate.mi_fenable = mac_flow_log_enable; 4427 lstate.mi_lenable = mac_link_log_enable; 4428 4429 /* Last walk */ 4430 lstate.mi_last = B_TRUE; 4431 4432 switch (type) { 4433 case MAC_LOGTYPE_FLOW: 4434 if (lstate.mi_fenable) { 4435 ASSERT(mac_link_log_enable); 4436 mac_flow_log_enable = B_FALSE; 4437 mac_link_log_enable = B_FALSE; 4438 break; 4439 } 4440 /* FALLTHRU */ 4441 case MAC_LOGTYPE_LINK: 4442 if (!lstate.mi_lenable || mac_flow_log_enable) { 4443 rw_exit(&i_mac_impl_lock); 4444 return; 4445 } 4446 mac_link_log_enable = B_FALSE; 4447 break; 4448 default: 4449 ASSERT(0); 4450 } 4451 rw_exit(&i_mac_impl_lock); 4452 (void) untimeout(mac_logging_timer); 4453 mac_logging_timer = 0; 4454 4455 /* Last walk */ 4456 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4457 } 4458 4459 /* 4460 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4461 */ 4462 void 4463 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4464 { 4465 pri_t pri; 4466 int count; 4467 mac_soft_ring_set_t *mac_srs; 4468 4469 if (flent->fe_rx_srs_cnt <= 0) 4470 return; 4471 4472 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4473 SRST_FLOW) { 4474 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4475 mcip->mci_max_pri, 4476 flent->fe_resource_props.mrp_priority); 4477 } else { 4478 pri = mcip->mci_max_pri; 4479 } 4480 4481 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4482 mac_srs = flent->fe_rx_srs[count]; 4483 mac_update_srs_priority(mac_srs, pri); 4484 } 4485 /* 4486 * If we have a Tx SRS, we need to modify all the threads associated 4487 * with it. 4488 */ 4489 if (flent->fe_tx_srs != NULL) 4490 mac_update_srs_priority(flent->fe_tx_srs, pri); 4491 } 4492 4493 /* 4494 * RX and TX rings are reserved according to different semantics depending 4495 * on the requests from the MAC clients and type of rings: 4496 * 4497 * On the Tx side, by default we reserve individual rings, independently from 4498 * the groups. 4499 * 4500 * On the Rx side, the reservation is at the granularity of the group 4501 * of rings, and used for v12n level 1 only. It has a special case for the 4502 * primary client. 4503 * 4504 * If a share is allocated to a MAC client, we allocate a TX group and an 4505 * RX group to the client, and assign TX rings and RX rings to these 4506 * groups according to information gathered from the driver through 4507 * the share capability. 4508 * 4509 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4510 * to allocate individual rings out of a group and program the hw classifier 4511 * based on IP address or higher level criteria. 4512 */ 4513 4514 /* 4515 * mac_reserve_tx_ring() 4516 * Reserve a unused ring by marking it with MR_INUSE state. 4517 * As reserved, the ring is ready to function. 4518 * 4519 * Notes for Hybrid I/O: 4520 * 4521 * If a specific ring is needed, it is specified through the desired_ring 4522 * argument. Otherwise that argument is set to NULL. 4523 * If the desired ring was previous allocated to another client, this 4524 * function swaps it with a new ring from the group of unassigned rings. 4525 */ 4526 mac_ring_t * 4527 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4528 { 4529 mac_group_t *group; 4530 mac_ring_t *ring; 4531 4532 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4533 4534 if (mip->mi_tx_groups == NULL) 4535 return (NULL); 4536 4537 /* 4538 * Find an available ring and start it before changing its status. 4539 * The unassigned rings are at the end of the mi_tx_groups 4540 * array. 4541 */ 4542 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4543 4544 for (ring = group->mrg_rings; ring != NULL; 4545 ring = ring->mr_next) { 4546 if (desired_ring == NULL) { 4547 if (ring->mr_state == MR_FREE) 4548 /* wanted any free ring and found one */ 4549 break; 4550 } else { 4551 mac_ring_t *sring; 4552 mac_client_impl_t *client; 4553 mac_soft_ring_set_t *srs; 4554 4555 if (ring != desired_ring) 4556 /* wants a desired ring but this one ain't it */ 4557 continue; 4558 4559 if (ring->mr_state == MR_FREE) 4560 break; 4561 4562 /* 4563 * Found the desired ring but it's already in use. 4564 * Swap it with a new ring. 4565 */ 4566 4567 /* find the client which owns that ring */ 4568 for (client = mip->mi_clients_list; client != NULL; 4569 client = client->mci_client_next) { 4570 srs = MCIP_TX_SRS(client); 4571 if (srs != NULL && mac_tx_srs_ring_present(srs, 4572 desired_ring)) { 4573 /* found our ring */ 4574 break; 4575 } 4576 } 4577 ASSERT(client != NULL); 4578 4579 /* 4580 * Note that we cannot simply invoke the group 4581 * add/rem routines since the client doesn't have a 4582 * TX group. So we need to instead add/remove 4583 * the rings from the SRS. 4584 */ 4585 ASSERT(client->mci_share == NULL); 4586 4587 /* first quiece the client */ 4588 mac_tx_client_quiesce(client, SRS_QUIESCE); 4589 4590 /* give a new ring to the client... */ 4591 sring = mac_reserve_tx_ring(mip, NULL); 4592 if (sring != NULL) { 4593 /* 4594 * There are no other available ring 4595 * on that MAC instance. The client 4596 * will fallback to the shared TX 4597 * ring. 4598 * 4599 * XXX if the user required the client 4600 * to have a hardware transmit ring, 4601 * we need to ensure we don't remove 4602 * the last ring from the client. 4603 * In that case look for a repacement 4604 * ring from a client which does not 4605 * require a hardware ring, we could 4606 * add an argument to 4607 * mac_reserve_tx_ring() which causes 4608 * it to take a ring from such a client 4609 * even if the desired ring is NULL. 4610 * This will have to be done as part 4611 * of the fix for CR 6758935. If that still 4612 * fails, i.e. if all rings are allocated 4613 * to clients which require rings, then 4614 * cleanly fail the operation. 4615 */ 4616 mac_tx_srs_add_ring(srs, sring); 4617 } 4618 4619 /* ... in exchange for our desired ring */ 4620 mac_tx_srs_del_ring(srs, desired_ring); 4621 4622 /* restart the client */ 4623 mac_tx_client_restart(client); 4624 4625 break; 4626 } 4627 } 4628 4629 if (ring != NULL) { 4630 if (mac_start_ring(ring) != 0) 4631 return (NULL); 4632 ring->mr_state = MR_INUSE; 4633 } 4634 4635 return (ring); 4636 } 4637 4638 /* 4639 * Minimum number of rings to leave in the default TX group when allocating 4640 * rings to new clients. 4641 */ 4642 static uint_t mac_min_rx_default_rings = 1; 4643 4644 /* 4645 * Populate a zero-ring group with rings. If the share is non-NULL, 4646 * the rings are chosen according to that share. 4647 * Invoked after allocating a new RX or TX group through 4648 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4649 * Returns zero on success, an errno otherwise. 4650 */ 4651 int 4652 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4653 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4654 { 4655 mac_ring_t **rings, *tmp_ring[1], *ring; 4656 uint_t nrings; 4657 int rv, i, j; 4658 4659 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4660 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4661 ASSERT(new_group->mrg_cur_count == 0); 4662 4663 /* 4664 * First find the rings to allocate to the group. 4665 */ 4666 if (share != NULL) { 4667 /* get rings through ms_squery() */ 4668 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4669 ASSERT(nrings != 0); 4670 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4671 KM_SLEEP); 4672 mip->mi_share_capab.ms_squery(share, ring_type, 4673 (mac_ring_handle_t *)rings, &nrings); 4674 } else { 4675 /* this function is called for TX only with a share */ 4676 ASSERT(ring_type == MAC_RING_TYPE_RX); 4677 /* 4678 * Pick one ring from default group. 4679 * 4680 * for now pick the second ring which requires the first ring 4681 * at index 0 to stay in the default group, since it is the 4682 * ring which carries the multicast traffic. 4683 * We need a better way for a driver to indicate this, 4684 * for example a per-ring flag. 4685 */ 4686 for (ring = src_group->mrg_rings; ring != NULL; 4687 ring = ring->mr_next) { 4688 if (ring->mr_index != 0) 4689 break; 4690 } 4691 ASSERT(ring != NULL); 4692 nrings = 1; 4693 tmp_ring[0] = ring; 4694 rings = tmp_ring; 4695 } 4696 4697 switch (ring_type) { 4698 case MAC_RING_TYPE_RX: 4699 if (src_group->mrg_cur_count - nrings < 4700 mac_min_rx_default_rings) { 4701 /* we ran out of rings */ 4702 return (ENOSPC); 4703 } 4704 4705 /* move receive rings to new group */ 4706 for (i = 0; i < nrings; i++) { 4707 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4708 if (rv != 0) { 4709 /* move rings back on failure */ 4710 for (j = 0; j < i; j++) { 4711 (void) mac_group_mov_ring(mip, 4712 src_group, rings[j]); 4713 } 4714 return (rv); 4715 } 4716 } 4717 break; 4718 4719 case MAC_RING_TYPE_TX: { 4720 mac_ring_t *tmp_ring; 4721 4722 /* move the TX rings to the new group */ 4723 ASSERT(src_group == NULL); 4724 for (i = 0; i < nrings; i++) { 4725 /* get the desired ring */ 4726 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4727 ASSERT(tmp_ring == rings[i]); 4728 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4729 if (rv != 0) { 4730 /* cleanup on failure */ 4731 for (j = 0; j < i; j++) { 4732 (void) mac_group_mov_ring(mip, 4733 mip->mi_tx_groups + 4734 mip->mi_tx_group_count, rings[j]); 4735 } 4736 } 4737 } 4738 break; 4739 } 4740 } 4741 4742 if (share != NULL) { 4743 /* add group to share */ 4744 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4745 /* free temporary array of rings */ 4746 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4747 } 4748 4749 return (0); 4750 } 4751 4752 void 4753 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4754 { 4755 mac_grp_client_t *mgcp; 4756 4757 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4758 if (mgcp->mgc_client == mcip) 4759 break; 4760 } 4761 4762 VERIFY(mgcp == NULL); 4763 4764 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4765 mgcp->mgc_client = mcip; 4766 mgcp->mgc_next = grp->mrg_clients; 4767 grp->mrg_clients = mgcp; 4768 4769 } 4770 4771 void 4772 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4773 { 4774 mac_grp_client_t *mgcp, **pprev; 4775 4776 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4777 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4778 if (mgcp->mgc_client == mcip) 4779 break; 4780 } 4781 4782 ASSERT(mgcp != NULL); 4783 4784 *pprev = mgcp->mgc_next; 4785 kmem_free(mgcp, sizeof (mac_grp_client_t)); 4786 } 4787 4788 /* 4789 * mac_reserve_rx_group() 4790 * 4791 * Finds an available group and exclusively reserves it for a client. 4792 * The group is chosen to suit the flow's resource controls (bandwidth and 4793 * fanout requirements) and the address type. 4794 * If the requestor is the pimary MAC then return the group with the 4795 * largest number of rings, otherwise the default ring when available. 4796 */ 4797 mac_group_t * 4798 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 4799 mac_rx_group_reserve_type_t rtype) 4800 { 4801 mac_share_handle_t share = mcip->mci_share; 4802 mac_impl_t *mip = mcip->mci_mip; 4803 mac_group_t *grp = NULL; 4804 int i, start, loopcount; 4805 int err; 4806 mac_address_t *map; 4807 4808 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4809 4810 /* Check if a group already has this mac address (case of VLANs) */ 4811 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 4812 return (map->ma_group); 4813 4814 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 4815 rtype == MAC_RX_NO_RESERVE) 4816 return (NULL); 4817 4818 /* 4819 * Try to exclusively reserve a RX group. 4820 * 4821 * For flows requires SW_RING it always goes to the default group 4822 * (Until we can explicitely call out default groups (CR 6695600), 4823 * we assume that the default group is always at position zero); 4824 * 4825 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 4826 * client), try to reserve the default RX group only. 4827 * 4828 * For flows requires HW_RING (unicast flow of other clients), try 4829 * to reserve non-default RX group then the default group. 4830 */ 4831 switch (rtype) { 4832 case MAC_RX_RESERVE_DEFAULT: 4833 start = 0; 4834 loopcount = 1; 4835 break; 4836 case MAC_RX_RESERVE_NONDEFAULT: 4837 start = 1; 4838 loopcount = mip->mi_rx_group_count; 4839 } 4840 4841 for (i = start; i < start + loopcount; i++) { 4842 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 4843 4844 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 4845 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 4846 4847 /* 4848 * Check to see whether this mac client is the only client 4849 * on this RX group. If not, we cannot exclusively reserve 4850 * this RX group. 4851 */ 4852 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 4853 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 4854 continue; 4855 } 4856 4857 /* 4858 * This group could already be SHARED by other multicast 4859 * flows on this client. In that case, the group would 4860 * be shared and has already been started. 4861 */ 4862 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 4863 4864 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 4865 (mac_start_group(grp) != 0)) { 4866 continue; 4867 } 4868 4869 if ((i % mip->mi_rx_group_count) == 0 || 4870 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 4871 break; 4872 } 4873 4874 ASSERT(grp->mrg_cur_count == 0); 4875 4876 /* 4877 * Populate the group. Rings should be taken 4878 * from the default group at position 0 for now. 4879 */ 4880 4881 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 4882 &mip->mi_rx_groups[0], grp, share); 4883 if (err == 0) 4884 break; 4885 4886 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 4887 mip->mi_name, int, grp->mrg_index, int, err); 4888 4889 /* 4890 * It's a dynamic group but the grouping operation failed. 4891 */ 4892 mac_stop_group(grp); 4893 } 4894 4895 if (i == start + loopcount) 4896 return (NULL); 4897 4898 ASSERT(grp != NULL); 4899 4900 DTRACE_PROBE2(rx__group__reserved, 4901 char *, mip->mi_name, int, grp->mrg_index); 4902 return (grp); 4903 } 4904 4905 /* 4906 * mac_rx_release_group() 4907 * 4908 * This is called when there are no clients left for the group. 4909 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 4910 * and if it is a non default group, the shares are removed and 4911 * all rings are assigned back to default group. 4912 */ 4913 void 4914 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 4915 { 4916 mac_impl_t *mip = mcip->mci_mip; 4917 mac_ring_t *ring; 4918 4919 ASSERT(group != &mip->mi_rx_groups[0]); 4920 4921 /* 4922 * This is the case where there are no clients left. Any 4923 * SRS etc on this group have also be quiesced. 4924 */ 4925 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4926 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 4927 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 4928 /* 4929 * Remove the SRS associated with the HW ring. 4930 * As a result, polling will be disabled. 4931 */ 4932 ring->mr_srs = NULL; 4933 } 4934 ASSERT(ring->mr_state == MR_INUSE); 4935 mac_stop_ring(ring); 4936 ring->mr_state = MR_FREE; 4937 ring->mr_flag = 0; 4938 } 4939 4940 /* remove group from share */ 4941 if (mcip->mci_share != NULL) { 4942 mip->mi_share_capab.ms_sremove(mcip->mci_share, 4943 group->mrg_driver); 4944 } 4945 4946 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4947 mac_ring_t *ring; 4948 4949 /* 4950 * Rings were dynamically allocated to group. 4951 * Move rings back to default group. 4952 */ 4953 while ((ring = group->mrg_rings) != NULL) { 4954 (void) mac_group_mov_ring(mip, 4955 &mip->mi_rx_groups[0], ring); 4956 } 4957 } 4958 mac_stop_group(group); 4959 /* 4960 * Possible improvement: See if we can assign the group just released 4961 * to a another client of the mip 4962 */ 4963 } 4964 4965 /* 4966 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 4967 * when a share was allocated to the client. 4968 */ 4969 mac_group_t * 4970 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 4971 { 4972 mac_group_t *grp; 4973 int rv, i; 4974 4975 /* 4976 * TX groups are currently allocated only to MAC clients 4977 * which are associated with a share. Since we have a fixed 4978 * number of share and groups, and we already successfully 4979 * allocated a share, find an available TX group. 4980 */ 4981 ASSERT(share != NULL); 4982 ASSERT(mip->mi_tx_group_free > 0); 4983 4984 for (i = 0; i < mip->mi_tx_group_count; i++) { 4985 grp = &mip->mi_tx_groups[i]; 4986 4987 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 4988 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 4989 continue; 4990 4991 rv = mac_start_group(grp); 4992 ASSERT(rv == 0); 4993 4994 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 4995 break; 4996 } 4997 4998 ASSERT(grp != NULL); 4999 5000 /* 5001 * Populate the group. Rings should be taken from the group 5002 * of unassigned rings, which is past the array of TX 5003 * groups adversized by the driver. 5004 */ 5005 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5006 grp, share); 5007 if (rv != 0) { 5008 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5009 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5010 5011 mac_stop_group(grp); 5012 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5013 5014 return (NULL); 5015 } 5016 5017 mip->mi_tx_group_free--; 5018 5019 return (grp); 5020 } 5021 5022 void 5023 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5024 { 5025 mac_client_impl_t *mcip = grp->mrg_tx_client; 5026 mac_share_handle_t share = mcip->mci_share; 5027 mac_ring_t *ring; 5028 5029 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5030 ASSERT(share != NULL); 5031 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5032 5033 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5034 while ((ring = grp->mrg_rings) != NULL) { 5035 /* move the ring back to the pool */ 5036 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5037 mip->mi_tx_group_count, ring); 5038 } 5039 mac_stop_group(grp); 5040 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5041 grp->mrg_tx_client = NULL; 5042 mip->mi_tx_group_free++; 5043 } 5044 5045 /* 5046 * This is a 1-time control path activity initiated by the client (IP). 5047 * The mac perimeter protects against other simultaneous control activities, 5048 * for example an ioctl that attempts to change the degree of fanout and 5049 * increase or decrease the number of softrings associated with this Tx SRS. 5050 */ 5051 static mac_tx_notify_cb_t * 5052 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5053 mac_tx_notify_t notify, void *arg) 5054 { 5055 mac_cb_info_t *mcbi; 5056 mac_tx_notify_cb_t *mtnfp; 5057 5058 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5059 5060 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5061 mtnfp->mtnf_fn = notify; 5062 mtnfp->mtnf_arg = arg; 5063 mtnfp->mtnf_link.mcb_objp = mtnfp; 5064 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5065 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5066 5067 mcbi = &mcip->mci_tx_notify_cb_info; 5068 mutex_enter(mcbi->mcbi_lockp); 5069 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5070 mutex_exit(mcbi->mcbi_lockp); 5071 return (mtnfp); 5072 } 5073 5074 static void 5075 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5076 { 5077 mac_cb_info_t *mcbi; 5078 mac_cb_t **cblist; 5079 5080 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5081 5082 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5083 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5084 cmn_err(CE_WARN, 5085 "mac_client_tx_notify_remove: callback not " 5086 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5087 return; 5088 } 5089 5090 mcbi = &mcip->mci_tx_notify_cb_info; 5091 cblist = &mcip->mci_tx_notify_cb_list; 5092 mutex_enter(mcbi->mcbi_lockp); 5093 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5094 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5095 else 5096 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5097 mutex_exit(mcbi->mcbi_lockp); 5098 } 5099 5100 /* 5101 * mac_client_tx_notify(): 5102 * call to add and remove flow control callback routine. 5103 */ 5104 mac_tx_notify_handle_t 5105 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5106 void *ptr) 5107 { 5108 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5109 mac_tx_notify_cb_t *mtnfp = NULL; 5110 5111 i_mac_perim_enter(mcip->mci_mip); 5112 5113 if (callb_func != NULL) { 5114 /* Add a notify callback */ 5115 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5116 } else { 5117 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5118 } 5119 i_mac_perim_exit(mcip->mci_mip); 5120 5121 return ((mac_tx_notify_handle_t)mtnfp); 5122 } 5123