1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_stat.h> 284 #include <sys/mac_impl.h> 285 #include <sys/mac.h> 286 #include <sys/dls.h> 287 #include <sys/dld.h> 288 #include <sys/modctl.h> 289 #include <sys/fs/dv_node.h> 290 #include <sys/thread.h> 291 #include <sys/proc.h> 292 #include <sys/callb.h> 293 #include <sys/cpuvar.h> 294 #include <sys/atomic.h> 295 #include <sys/bitmap.h> 296 #include <sys/sdt.h> 297 #include <sys/mac_flow.h> 298 #include <sys/ddi_intr_impl.h> 299 #include <sys/disp.h> 300 #include <sys/sdt.h> 301 #include <sys/vnic.h> 302 #include <sys/vnic_impl.h> 303 #include <sys/vlan.h> 304 #include <inet/ip.h> 305 #include <inet/ip6.h> 306 #include <sys/exacct.h> 307 #include <sys/exacct_impl.h> 308 #include <inet/nd.h> 309 #include <sys/ethernet.h> 310 #include <sys/pool.h> 311 #include <sys/pool_pset.h> 312 #include <sys/cpupart.h> 313 #include <inet/wifi_ioctl.h> 314 #include <net/wpa.h> 315 316 #define IMPL_HASHSZ 67 /* prime */ 317 318 kmem_cache_t *i_mac_impl_cachep; 319 mod_hash_t *i_mac_impl_hash; 320 krwlock_t i_mac_impl_lock; 321 uint_t i_mac_impl_count; 322 static kmem_cache_t *mac_ring_cache; 323 static id_space_t *minor_ids; 324 static uint32_t minor_count; 325 static pool_event_cb_t mac_pool_event_reg; 326 327 /* 328 * Logging stuff. Perhaps mac_logging_interval could be broken into 329 * mac_flow_log_interval and mac_link_log_interval if we want to be 330 * able to schedule them differently. 331 */ 332 uint_t mac_logging_interval; 333 boolean_t mac_flow_log_enable; 334 boolean_t mac_link_log_enable; 335 timeout_id_t mac_logging_timer; 336 337 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 338 int mac_dbg = 0; 339 340 #define MACTYPE_KMODDIR "mac" 341 #define MACTYPE_HASHSZ 67 342 static mod_hash_t *i_mactype_hash; 343 /* 344 * i_mactype_lock synchronizes threads that obtain references to mactype_t 345 * structures through i_mactype_getplugin(). 346 */ 347 static kmutex_t i_mactype_lock; 348 349 /* 350 * mac_tx_percpu_cnt 351 * 352 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 353 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 354 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 355 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 356 */ 357 int mac_tx_percpu_cnt; 358 int mac_tx_percpu_cnt_max = 128; 359 360 /* 361 * Call back functions for the bridge module. These are guaranteed to be valid 362 * when holding a reference on a link or when holding mip->mi_bridge_lock and 363 * mi_bridge_link is non-NULL. 364 */ 365 mac_bridge_tx_t mac_bridge_tx_cb; 366 mac_bridge_rx_t mac_bridge_rx_cb; 367 mac_bridge_ref_t mac_bridge_ref_cb; 368 mac_bridge_ls_t mac_bridge_ls_cb; 369 370 static int i_mac_constructor(void *, void *, int); 371 static void i_mac_destructor(void *, void *); 372 static int i_mac_ring_ctor(void *, void *, int); 373 static void i_mac_ring_dtor(void *, void *); 374 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 375 void mac_tx_client_flush(mac_client_impl_t *); 376 void mac_tx_client_block(mac_client_impl_t *); 377 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 378 static int mac_start_group_and_rings(mac_group_t *); 379 static void mac_stop_group_and_rings(mac_group_t *); 380 static void mac_pool_event_cb(pool_event_t, int, void *); 381 382 /* 383 * Module initialization functions. 384 */ 385 386 void 387 mac_init(void) 388 { 389 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 390 boot_max_ncpus); 391 392 /* Upper bound is mac_tx_percpu_cnt_max */ 393 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 394 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 395 396 if (mac_tx_percpu_cnt < 1) { 397 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 398 mac_tx_percpu_cnt = 1; 399 } 400 401 ASSERT(mac_tx_percpu_cnt >= 1); 402 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 403 /* 404 * Make it of the form 2**N - 1 in the range 405 * [0 .. mac_tx_percpu_cnt_max - 1] 406 */ 407 mac_tx_percpu_cnt--; 408 409 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 410 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 411 NULL, NULL, NULL, 0); 412 ASSERT(i_mac_impl_cachep != NULL); 413 414 mac_ring_cache = kmem_cache_create("mac_ring_cache", 415 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 416 NULL, NULL, 0); 417 ASSERT(mac_ring_cache != NULL); 418 419 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 420 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 421 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 422 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 423 424 mac_flow_init(); 425 mac_soft_ring_init(); 426 mac_bcast_init(); 427 mac_client_init(); 428 429 i_mac_impl_count = 0; 430 431 i_mactype_hash = mod_hash_create_extended("mactype_hash", 432 MACTYPE_HASHSZ, 433 mod_hash_null_keydtor, mod_hash_null_valdtor, 434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 435 436 /* 437 * Allocate an id space to manage minor numbers. The range of the 438 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 439 * leaves half of the 32-bit minors available for driver private use. 440 */ 441 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 442 MAC_PRIVATE_MINOR-1); 443 ASSERT(minor_ids != NULL); 444 minor_count = 0; 445 446 /* Let's default to 20 seconds */ 447 mac_logging_interval = 20; 448 mac_flow_log_enable = B_FALSE; 449 mac_link_log_enable = B_FALSE; 450 mac_logging_timer = 0; 451 452 /* Register to be notified of noteworthy pools events */ 453 mac_pool_event_reg.pec_func = mac_pool_event_cb; 454 mac_pool_event_reg.pec_arg = NULL; 455 pool_event_cb_register(&mac_pool_event_reg); 456 } 457 458 int 459 mac_fini(void) 460 { 461 462 if (i_mac_impl_count > 0 || minor_count > 0) 463 return (EBUSY); 464 465 pool_event_cb_unregister(&mac_pool_event_reg); 466 467 id_space_destroy(minor_ids); 468 mac_flow_fini(); 469 470 mod_hash_destroy_hash(i_mac_impl_hash); 471 rw_destroy(&i_mac_impl_lock); 472 473 mac_client_fini(); 474 kmem_cache_destroy(mac_ring_cache); 475 476 mod_hash_destroy_hash(i_mactype_hash); 477 mac_soft_ring_finish(); 478 479 480 return (0); 481 } 482 483 /* 484 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 485 * (e.g. softmac) may pass in a NULL ops argument. 486 */ 487 void 488 mac_init_ops(struct dev_ops *ops, const char *name) 489 { 490 major_t major = ddi_name_to_major((char *)name); 491 492 /* 493 * By returning on error below, we are not letting the driver continue 494 * in an undefined context. The mac_register() function will faill if 495 * DN_GLDV3_DRIVER isn't set. 496 */ 497 if (major == DDI_MAJOR_T_NONE) 498 return; 499 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 500 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 501 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 502 if (ops != NULL) 503 dld_init_ops(ops, name); 504 } 505 506 void 507 mac_fini_ops(struct dev_ops *ops) 508 { 509 dld_fini_ops(ops); 510 } 511 512 /*ARGSUSED*/ 513 static int 514 i_mac_constructor(void *buf, void *arg, int kmflag) 515 { 516 mac_impl_t *mip = buf; 517 518 bzero(buf, sizeof (mac_impl_t)); 519 520 mip->mi_linkstate = LINK_STATE_UNKNOWN; 521 522 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 523 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 524 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 525 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 526 527 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 528 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 529 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 530 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 531 532 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 533 534 return (0); 535 } 536 537 /*ARGSUSED*/ 538 static void 539 i_mac_destructor(void *buf, void *arg) 540 { 541 mac_impl_t *mip = buf; 542 mac_cb_info_t *mcbi; 543 544 ASSERT(mip->mi_ref == 0); 545 ASSERT(mip->mi_active == 0); 546 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 547 ASSERT(mip->mi_devpromisc == 0); 548 ASSERT(mip->mi_ksp == NULL); 549 ASSERT(mip->mi_kstat_count == 0); 550 ASSERT(mip->mi_nclients == 0); 551 ASSERT(mip->mi_nactiveclients == 0); 552 ASSERT(mip->mi_single_active_client == NULL); 553 ASSERT(mip->mi_state_flags == 0); 554 ASSERT(mip->mi_factory_addr == NULL); 555 ASSERT(mip->mi_factory_addr_num == 0); 556 ASSERT(mip->mi_default_tx_ring == NULL); 557 558 mcbi = &mip->mi_notify_cb_info; 559 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 560 ASSERT(mip->mi_notify_bits == 0); 561 ASSERT(mip->mi_notify_thread == NULL); 562 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 563 mcbi->mcbi_lockp = NULL; 564 565 mcbi = &mip->mi_promisc_cb_info; 566 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 567 ASSERT(mip->mi_promisc_list == NULL); 568 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 569 mcbi->mcbi_lockp = NULL; 570 571 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 572 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 573 574 rw_destroy(&mip->mi_rw_lock); 575 576 mutex_destroy(&mip->mi_promisc_lock); 577 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 578 mutex_destroy(&mip->mi_notify_lock); 579 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 580 mutex_destroy(&mip->mi_ring_lock); 581 582 ASSERT(mip->mi_bridge_link == NULL); 583 } 584 585 /* ARGSUSED */ 586 static int 587 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 588 { 589 mac_ring_t *ring = (mac_ring_t *)buf; 590 591 bzero(ring, sizeof (mac_ring_t)); 592 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 593 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 594 ring->mr_state = MR_FREE; 595 return (0); 596 } 597 598 /* ARGSUSED */ 599 static void 600 i_mac_ring_dtor(void *buf, void *arg) 601 { 602 mac_ring_t *ring = (mac_ring_t *)buf; 603 604 cv_destroy(&ring->mr_cv); 605 mutex_destroy(&ring->mr_lock); 606 } 607 608 /* 609 * Common functions to do mac callback addition and deletion. Currently this is 610 * used by promisc callbacks and notify callbacks. List addition and deletion 611 * need to take care of list walkers. List walkers in general, can't hold list 612 * locks and make upcall callbacks due to potential lock order and recursive 613 * reentry issues. Instead list walkers increment the list walker count to mark 614 * the presence of a walker thread. Addition can be carefully done to ensure 615 * that the list walker always sees either the old list or the new list. 616 * However the deletion can't be done while the walker is active, instead the 617 * deleting thread simply marks the entry as logically deleted. The last walker 618 * physically deletes and frees up the logically deleted entries when the walk 619 * is complete. 620 */ 621 void 622 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 623 mac_cb_t *mcb_elem) 624 { 625 mac_cb_t *p; 626 mac_cb_t **pp; 627 628 /* Verify it is not already in the list */ 629 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 630 if (p == mcb_elem) 631 break; 632 } 633 VERIFY(p == NULL); 634 635 /* 636 * Add it to the head of the callback list. The membar ensures that 637 * the following list pointer manipulations reach global visibility 638 * in exactly the program order below. 639 */ 640 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 641 642 mcb_elem->mcb_nextp = *mcb_head; 643 membar_producer(); 644 *mcb_head = mcb_elem; 645 } 646 647 /* 648 * Mark the entry as logically deleted. If there aren't any walkers unlink 649 * from the list. In either case return the corresponding status. 650 */ 651 boolean_t 652 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 653 mac_cb_t *mcb_elem) 654 { 655 mac_cb_t *p; 656 mac_cb_t **pp; 657 658 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 659 /* 660 * Search the callback list for the entry to be removed 661 */ 662 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 663 if (p == mcb_elem) 664 break; 665 } 666 VERIFY(p != NULL); 667 668 /* 669 * If there are walkers just mark it as deleted and the last walker 670 * will remove from the list and free it. 671 */ 672 if (mcbi->mcbi_walker_cnt != 0) { 673 p->mcb_flags |= MCB_CONDEMNED; 674 mcbi->mcbi_del_cnt++; 675 return (B_FALSE); 676 } 677 678 ASSERT(mcbi->mcbi_del_cnt == 0); 679 *pp = p->mcb_nextp; 680 p->mcb_nextp = NULL; 681 return (B_TRUE); 682 } 683 684 /* 685 * Wait for all pending callback removals to be completed 686 */ 687 void 688 mac_callback_remove_wait(mac_cb_info_t *mcbi) 689 { 690 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 691 while (mcbi->mcbi_del_cnt != 0) { 692 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 693 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 694 } 695 } 696 697 /* 698 * The last mac callback walker does the cleanup. Walk the list and unlik 699 * all the logically deleted entries and construct a temporary list of 700 * removed entries. Return the list of removed entries to the caller. 701 */ 702 mac_cb_t * 703 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 704 { 705 mac_cb_t *p; 706 mac_cb_t **pp; 707 mac_cb_t *rmlist = NULL; /* List of removed elements */ 708 int cnt = 0; 709 710 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 711 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 712 713 pp = mcb_head; 714 while (*pp != NULL) { 715 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 716 p = *pp; 717 *pp = p->mcb_nextp; 718 p->mcb_nextp = rmlist; 719 rmlist = p; 720 cnt++; 721 continue; 722 } 723 pp = &(*pp)->mcb_nextp; 724 } 725 726 ASSERT(mcbi->mcbi_del_cnt == cnt); 727 mcbi->mcbi_del_cnt = 0; 728 return (rmlist); 729 } 730 731 boolean_t 732 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 733 { 734 mac_cb_t *mcb; 735 736 /* Verify it is not already in the list */ 737 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 738 if (mcb == mcb_elem) 739 return (B_TRUE); 740 } 741 742 return (B_FALSE); 743 } 744 745 boolean_t 746 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 747 { 748 boolean_t found; 749 750 mutex_enter(mcbi->mcbi_lockp); 751 found = mac_callback_lookup(mcb_headp, mcb_elem); 752 mutex_exit(mcbi->mcbi_lockp); 753 754 return (found); 755 } 756 757 /* Free the list of removed callbacks */ 758 void 759 mac_callback_free(mac_cb_t *rmlist) 760 { 761 mac_cb_t *mcb; 762 mac_cb_t *mcb_next; 763 764 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 765 mcb_next = mcb->mcb_nextp; 766 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 767 } 768 } 769 770 /* 771 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 772 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 773 * is only a single shared total walker count, and an entry can't be physically 774 * unlinked if a walker is active on either list. The last walker does this 775 * cleanup of logically deleted entries. 776 */ 777 void 778 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 779 { 780 mac_cb_t *rmlist; 781 mac_cb_t *mcb; 782 mac_cb_t *mcb_next; 783 mac_promisc_impl_t *mpip; 784 785 /* 786 * Construct a temporary list of deleted callbacks by walking the 787 * the mi_promisc_list. Then for each entry in the temporary list, 788 * remove it from the mci_promisc_list and free the entry. 789 */ 790 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 791 &mip->mi_promisc_list); 792 793 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 794 mcb_next = mcb->mcb_nextp; 795 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 796 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 797 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 798 mcb->mcb_flags = 0; 799 mcb->mcb_nextp = NULL; 800 kmem_cache_free(mac_promisc_impl_cache, mpip); 801 } 802 } 803 804 void 805 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 806 { 807 mac_cb_info_t *mcbi; 808 809 /* 810 * Signal the notify thread even after mi_ref has become zero and 811 * mi_disabled is set. The synchronization with the notify thread 812 * happens in mac_unregister and that implies the driver must make 813 * sure it is single-threaded (with respect to mac calls) and that 814 * all pending mac calls have returned before it calls mac_unregister 815 */ 816 rw_enter(&i_mac_impl_lock, RW_READER); 817 if (mip->mi_state_flags & MIS_DISABLED) 818 goto exit; 819 820 /* 821 * Guard against incorrect notifications. (Running a newer 822 * mac client against an older implementation?) 823 */ 824 if (type >= MAC_NNOTE) 825 goto exit; 826 827 mcbi = &mip->mi_notify_cb_info; 828 mutex_enter(mcbi->mcbi_lockp); 829 mip->mi_notify_bits |= (1 << type); 830 cv_broadcast(&mcbi->mcbi_cv); 831 mutex_exit(mcbi->mcbi_lockp); 832 833 exit: 834 rw_exit(&i_mac_impl_lock); 835 } 836 837 /* 838 * Mac serialization primitives. Please see the block comment at the 839 * top of the file. 840 */ 841 void 842 i_mac_perim_enter(mac_impl_t *mip) 843 { 844 mac_client_impl_t *mcip; 845 846 if (mip->mi_state_flags & MIS_IS_VNIC) { 847 /* 848 * This is a VNIC. Return the lower mac since that is what 849 * we want to serialize on. 850 */ 851 mcip = mac_vnic_lower(mip); 852 mip = mcip->mci_mip; 853 } 854 855 mutex_enter(&mip->mi_perim_lock); 856 if (mip->mi_perim_owner == curthread) { 857 mip->mi_perim_ocnt++; 858 mutex_exit(&mip->mi_perim_lock); 859 return; 860 } 861 862 while (mip->mi_perim_owner != NULL) 863 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 864 865 mip->mi_perim_owner = curthread; 866 ASSERT(mip->mi_perim_ocnt == 0); 867 mip->mi_perim_ocnt++; 868 #ifdef DEBUG 869 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 870 MAC_PERIM_STACK_DEPTH); 871 #endif 872 mutex_exit(&mip->mi_perim_lock); 873 } 874 875 int 876 i_mac_perim_enter_nowait(mac_impl_t *mip) 877 { 878 /* 879 * The vnic is a special case, since the serialization is done based 880 * on the lower mac. If the lower mac is busy, it does not imply the 881 * vnic can't be unregistered. But in the case of other drivers, 882 * a busy perimeter or open mac handles implies that the mac is busy 883 * and can't be unregistered. 884 */ 885 if (mip->mi_state_flags & MIS_IS_VNIC) { 886 i_mac_perim_enter(mip); 887 return (0); 888 } 889 890 mutex_enter(&mip->mi_perim_lock); 891 if (mip->mi_perim_owner != NULL) { 892 mutex_exit(&mip->mi_perim_lock); 893 return (EBUSY); 894 } 895 ASSERT(mip->mi_perim_ocnt == 0); 896 mip->mi_perim_owner = curthread; 897 mip->mi_perim_ocnt++; 898 mutex_exit(&mip->mi_perim_lock); 899 900 return (0); 901 } 902 903 void 904 i_mac_perim_exit(mac_impl_t *mip) 905 { 906 mac_client_impl_t *mcip; 907 908 if (mip->mi_state_flags & MIS_IS_VNIC) { 909 /* 910 * This is a VNIC. Return the lower mac since that is what 911 * we want to serialize on. 912 */ 913 mcip = mac_vnic_lower(mip); 914 mip = mcip->mci_mip; 915 } 916 917 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 918 919 mutex_enter(&mip->mi_perim_lock); 920 if (--mip->mi_perim_ocnt == 0) { 921 mip->mi_perim_owner = NULL; 922 cv_signal(&mip->mi_perim_cv); 923 } 924 mutex_exit(&mip->mi_perim_lock); 925 } 926 927 /* 928 * Returns whether the current thread holds the mac perimeter. Used in making 929 * assertions. 930 */ 931 boolean_t 932 mac_perim_held(mac_handle_t mh) 933 { 934 mac_impl_t *mip = (mac_impl_t *)mh; 935 mac_client_impl_t *mcip; 936 937 if (mip->mi_state_flags & MIS_IS_VNIC) { 938 /* 939 * This is a VNIC. Return the lower mac since that is what 940 * we want to serialize on. 941 */ 942 mcip = mac_vnic_lower(mip); 943 mip = mcip->mci_mip; 944 } 945 return (mip->mi_perim_owner == curthread); 946 } 947 948 /* 949 * mac client interfaces to enter the mac perimeter of a mac end point, given 950 * its mac handle, or macname or linkid. 951 */ 952 void 953 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 954 { 955 mac_impl_t *mip = (mac_impl_t *)mh; 956 957 i_mac_perim_enter(mip); 958 /* 959 * The mac_perim_handle_t returned encodes the 'mip' and whether a 960 * mac_open has been done internally while entering the perimeter. 961 * This information is used in mac_perim_exit 962 */ 963 MAC_ENCODE_MPH(*mphp, mip, 0); 964 } 965 966 int 967 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 968 { 969 int err; 970 mac_handle_t mh; 971 972 if ((err = mac_open(name, &mh)) != 0) 973 return (err); 974 975 mac_perim_enter_by_mh(mh, mphp); 976 MAC_ENCODE_MPH(*mphp, mh, 1); 977 return (0); 978 } 979 980 int 981 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 982 { 983 int err; 984 mac_handle_t mh; 985 986 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 987 return (err); 988 989 mac_perim_enter_by_mh(mh, mphp); 990 MAC_ENCODE_MPH(*mphp, mh, 1); 991 return (0); 992 } 993 994 void 995 mac_perim_exit(mac_perim_handle_t mph) 996 { 997 mac_impl_t *mip; 998 boolean_t need_close; 999 1000 MAC_DECODE_MPH(mph, mip, need_close); 1001 i_mac_perim_exit(mip); 1002 if (need_close) 1003 mac_close((mac_handle_t)mip); 1004 } 1005 1006 int 1007 mac_hold(const char *macname, mac_impl_t **pmip) 1008 { 1009 mac_impl_t *mip; 1010 int err; 1011 1012 /* 1013 * Check the device name length to make sure it won't overflow our 1014 * buffer. 1015 */ 1016 if (strlen(macname) >= MAXNAMELEN) 1017 return (EINVAL); 1018 1019 /* 1020 * Look up its entry in the global hash table. 1021 */ 1022 rw_enter(&i_mac_impl_lock, RW_WRITER); 1023 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1024 (mod_hash_val_t *)&mip); 1025 1026 if (err != 0) { 1027 rw_exit(&i_mac_impl_lock); 1028 return (ENOENT); 1029 } 1030 1031 if (mip->mi_state_flags & MIS_DISABLED) { 1032 rw_exit(&i_mac_impl_lock); 1033 return (ENOENT); 1034 } 1035 1036 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1037 rw_exit(&i_mac_impl_lock); 1038 return (EBUSY); 1039 } 1040 1041 mip->mi_ref++; 1042 rw_exit(&i_mac_impl_lock); 1043 1044 *pmip = mip; 1045 return (0); 1046 } 1047 1048 void 1049 mac_rele(mac_impl_t *mip) 1050 { 1051 rw_enter(&i_mac_impl_lock, RW_WRITER); 1052 ASSERT(mip->mi_ref != 0); 1053 if (--mip->mi_ref == 0) { 1054 ASSERT(mip->mi_nactiveclients == 0 && 1055 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1056 } 1057 rw_exit(&i_mac_impl_lock); 1058 } 1059 1060 /* 1061 * Private GLDv3 function to start a MAC instance. 1062 */ 1063 int 1064 mac_start(mac_handle_t mh) 1065 { 1066 mac_impl_t *mip = (mac_impl_t *)mh; 1067 int err = 0; 1068 mac_group_t *defgrp; 1069 1070 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1071 ASSERT(mip->mi_start != NULL); 1072 1073 /* 1074 * Check whether the device is already started. 1075 */ 1076 if (mip->mi_active++ == 0) { 1077 mac_ring_t *ring = NULL; 1078 1079 /* 1080 * Start the device. 1081 */ 1082 err = mip->mi_start(mip->mi_driver); 1083 if (err != 0) { 1084 mip->mi_active--; 1085 return (err); 1086 } 1087 1088 /* 1089 * Start the default tx ring. 1090 */ 1091 if (mip->mi_default_tx_ring != NULL) { 1092 1093 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1094 if (ring->mr_state != MR_INUSE) { 1095 err = mac_start_ring(ring); 1096 if (err != 0) { 1097 mip->mi_active--; 1098 return (err); 1099 } 1100 } 1101 } 1102 1103 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1104 /* 1105 * Start the default ring, since it will be needed 1106 * to receive broadcast and multicast traffic for 1107 * both primary and non-primary MAC clients. 1108 */ 1109 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1110 err = mac_start_group_and_rings(defgrp); 1111 if (err != 0) { 1112 mip->mi_active--; 1113 if ((ring != NULL) && 1114 (ring->mr_state == MR_INUSE)) 1115 mac_stop_ring(ring); 1116 return (err); 1117 } 1118 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1119 } 1120 } 1121 1122 return (err); 1123 } 1124 1125 /* 1126 * Private GLDv3 function to stop a MAC instance. 1127 */ 1128 void 1129 mac_stop(mac_handle_t mh) 1130 { 1131 mac_impl_t *mip = (mac_impl_t *)mh; 1132 mac_group_t *grp; 1133 1134 ASSERT(mip->mi_stop != NULL); 1135 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1136 1137 /* 1138 * Check whether the device is still needed. 1139 */ 1140 ASSERT(mip->mi_active != 0); 1141 if (--mip->mi_active == 0) { 1142 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1143 /* 1144 * There should be no more active clients since the 1145 * MAC is being stopped. Stop the default RX group 1146 * and transition it back to registered state. 1147 * 1148 * When clients are torn down, the groups 1149 * are release via mac_release_rx_group which 1150 * knows the the default group is always in 1151 * started mode since broadcast uses it. So 1152 * we can assert that their are no clients 1153 * (since mac_bcast_add doesn't register itself 1154 * as a client) and group is in SHARED state. 1155 */ 1156 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1157 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1158 mip->mi_nactiveclients == 0); 1159 mac_stop_group_and_rings(grp); 1160 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1161 } 1162 1163 if (mip->mi_default_tx_ring != NULL) { 1164 mac_ring_t *ring; 1165 1166 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1167 if (ring->mr_state == MR_INUSE) { 1168 mac_stop_ring(ring); 1169 ring->mr_flag = 0; 1170 } 1171 } 1172 1173 /* 1174 * Stop the device. 1175 */ 1176 mip->mi_stop(mip->mi_driver); 1177 } 1178 } 1179 1180 int 1181 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1182 { 1183 int err = 0; 1184 1185 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1186 ASSERT(mip->mi_setpromisc != NULL); 1187 1188 if (on) { 1189 /* 1190 * Enable promiscuous mode on the device if not yet enabled. 1191 */ 1192 if (mip->mi_devpromisc++ == 0) { 1193 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1194 if (err != 0) { 1195 mip->mi_devpromisc--; 1196 return (err); 1197 } 1198 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1199 } 1200 } else { 1201 if (mip->mi_devpromisc == 0) 1202 return (EPROTO); 1203 1204 /* 1205 * Disable promiscuous mode on the device if this is the last 1206 * enabling. 1207 */ 1208 if (--mip->mi_devpromisc == 0) { 1209 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1210 if (err != 0) { 1211 mip->mi_devpromisc++; 1212 return (err); 1213 } 1214 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1215 } 1216 } 1217 1218 return (0); 1219 } 1220 1221 /* 1222 * The promiscuity state can change any time. If the caller needs to take 1223 * actions that are atomic with the promiscuity state, then the caller needs 1224 * to bracket the entire sequence with mac_perim_enter/exit 1225 */ 1226 boolean_t 1227 mac_promisc_get(mac_handle_t mh) 1228 { 1229 mac_impl_t *mip = (mac_impl_t *)mh; 1230 1231 /* 1232 * Return the current promiscuity. 1233 */ 1234 return (mip->mi_devpromisc != 0); 1235 } 1236 1237 /* 1238 * Invoked at MAC instance attach time to initialize the list 1239 * of factory MAC addresses supported by a MAC instance. This function 1240 * builds a local cache in the mac_impl_t for the MAC addresses 1241 * supported by the underlying hardware. The MAC clients themselves 1242 * use the mac_addr_factory*() functions to query and reserve 1243 * factory MAC addresses. 1244 */ 1245 void 1246 mac_addr_factory_init(mac_impl_t *mip) 1247 { 1248 mac_capab_multifactaddr_t capab; 1249 uint8_t *addr; 1250 int i; 1251 1252 /* 1253 * First round to see how many factory MAC addresses are available. 1254 */ 1255 bzero(&capab, sizeof (capab)); 1256 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1257 &capab) || (capab.mcm_naddr == 0)) { 1258 /* 1259 * The MAC instance doesn't support multiple factory 1260 * MAC addresses, we're done here. 1261 */ 1262 return; 1263 } 1264 1265 /* 1266 * Allocate the space and get all the factory addresses. 1267 */ 1268 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1269 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1270 1271 mip->mi_factory_addr_num = capab.mcm_naddr; 1272 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1273 sizeof (mac_factory_addr_t), KM_SLEEP); 1274 1275 for (i = 0; i < capab.mcm_naddr; i++) { 1276 bcopy(addr + i * MAXMACADDRLEN, 1277 mip->mi_factory_addr[i].mfa_addr, 1278 mip->mi_type->mt_addr_length); 1279 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1280 } 1281 1282 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1283 } 1284 1285 void 1286 mac_addr_factory_fini(mac_impl_t *mip) 1287 { 1288 if (mip->mi_factory_addr == NULL) { 1289 ASSERT(mip->mi_factory_addr_num == 0); 1290 return; 1291 } 1292 1293 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1294 sizeof (mac_factory_addr_t)); 1295 1296 mip->mi_factory_addr = NULL; 1297 mip->mi_factory_addr_num = 0; 1298 } 1299 1300 /* 1301 * Reserve a factory MAC address. If *slot is set to -1, the function 1302 * attempts to reserve any of the available factory MAC addresses and 1303 * returns the reserved slot id. If no slots are available, the function 1304 * returns ENOSPC. If *slot is not set to -1, the function reserves 1305 * the specified slot if it is available, or returns EBUSY is the slot 1306 * is already used. Returns ENOTSUP if the underlying MAC does not 1307 * support multiple factory addresses. If the slot number is not -1 but 1308 * is invalid, returns EINVAL. 1309 */ 1310 int 1311 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1312 { 1313 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1314 mac_impl_t *mip = mcip->mci_mip; 1315 int i, ret = 0; 1316 1317 i_mac_perim_enter(mip); 1318 /* 1319 * Protect against concurrent readers that may need a self-consistent 1320 * view of the factory addresses 1321 */ 1322 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1323 1324 if (mip->mi_factory_addr_num == 0) { 1325 ret = ENOTSUP; 1326 goto bail; 1327 } 1328 1329 if (*slot != -1) { 1330 /* check the specified slot */ 1331 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1332 ret = EINVAL; 1333 goto bail; 1334 } 1335 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1336 ret = EBUSY; 1337 goto bail; 1338 } 1339 } else { 1340 /* pick the next available slot */ 1341 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1342 if (!mip->mi_factory_addr[i].mfa_in_use) 1343 break; 1344 } 1345 1346 if (i == mip->mi_factory_addr_num) { 1347 ret = ENOSPC; 1348 goto bail; 1349 } 1350 *slot = i+1; 1351 } 1352 1353 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1354 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1355 1356 bail: 1357 rw_exit(&mip->mi_rw_lock); 1358 i_mac_perim_exit(mip); 1359 return (ret); 1360 } 1361 1362 /* 1363 * Release the specified factory MAC address slot. 1364 */ 1365 void 1366 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1367 { 1368 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1369 mac_impl_t *mip = mcip->mci_mip; 1370 1371 i_mac_perim_enter(mip); 1372 /* 1373 * Protect against concurrent readers that may need a self-consistent 1374 * view of the factory addresses 1375 */ 1376 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1377 1378 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1379 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1380 1381 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1382 1383 rw_exit(&mip->mi_rw_lock); 1384 i_mac_perim_exit(mip); 1385 } 1386 1387 /* 1388 * Stores in mac_addr the value of the specified MAC address. Returns 1389 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1390 * The caller must provide a string of at least MAXNAMELEN bytes. 1391 */ 1392 void 1393 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1394 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1395 { 1396 mac_impl_t *mip = (mac_impl_t *)mh; 1397 boolean_t in_use; 1398 1399 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1400 1401 /* 1402 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1403 * and mi_rw_lock 1404 */ 1405 rw_enter(&mip->mi_rw_lock, RW_READER); 1406 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1407 *addr_len = mip->mi_type->mt_addr_length; 1408 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1409 if (in_use && client_name != NULL) { 1410 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1411 client_name, MAXNAMELEN); 1412 } 1413 if (in_use_arg != NULL) 1414 *in_use_arg = in_use; 1415 rw_exit(&mip->mi_rw_lock); 1416 } 1417 1418 /* 1419 * Returns the number of factory MAC addresses (in addition to the 1420 * primary MAC address), 0 if the underlying MAC doesn't support 1421 * that feature. 1422 */ 1423 uint_t 1424 mac_addr_factory_num(mac_handle_t mh) 1425 { 1426 mac_impl_t *mip = (mac_impl_t *)mh; 1427 1428 return (mip->mi_factory_addr_num); 1429 } 1430 1431 1432 void 1433 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1434 { 1435 mac_ring_t *ring; 1436 1437 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1438 ring->mr_flag &= ~flag; 1439 } 1440 1441 /* 1442 * The following mac_hwrings_xxx() functions are private mac client functions 1443 * used by the aggr driver to access and control the underlying HW Rx group 1444 * and rings. In this case, the aggr driver has exclusive control of the 1445 * underlying HW Rx group/rings, it calls the following functions to 1446 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1447 * addresses, or set up the Rx callback. 1448 */ 1449 /* ARGSUSED */ 1450 static void 1451 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1452 mblk_t *mp_chain, boolean_t loopback) 1453 { 1454 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1455 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1456 mac_direct_rx_t proc; 1457 void *arg1; 1458 mac_resource_handle_t arg2; 1459 1460 proc = srs_rx->sr_func; 1461 arg1 = srs_rx->sr_arg1; 1462 arg2 = mac_srs->srs_mrh; 1463 1464 proc(arg1, arg2, mp_chain, NULL); 1465 } 1466 1467 /* 1468 * This function is called to get the list of HW rings that are reserved by 1469 * an exclusive mac client. 1470 * 1471 * Return value: the number of HW rings. 1472 */ 1473 int 1474 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1475 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1476 { 1477 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1478 flow_entry_t *flent = mcip->mci_flent; 1479 mac_group_t *grp; 1480 mac_ring_t *ring; 1481 int cnt = 0; 1482 1483 if (rtype == MAC_RING_TYPE_RX) { 1484 grp = flent->fe_rx_ring_group; 1485 } else if (rtype == MAC_RING_TYPE_TX) { 1486 grp = flent->fe_tx_ring_group; 1487 } else { 1488 ASSERT(B_FALSE); 1489 return (-1); 1490 } 1491 /* 1492 * The mac client did not reserve any RX group, return directly. 1493 * This is probably because the underlying MAC does not support 1494 * any groups. 1495 */ 1496 if (hwgh != NULL) 1497 *hwgh = NULL; 1498 if (grp == NULL) 1499 return (0); 1500 /* 1501 * This group must be reserved by this mac client. 1502 */ 1503 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1504 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1505 1506 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1507 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1508 hwrh[cnt] = (mac_ring_handle_t)ring; 1509 } 1510 if (hwgh != NULL) 1511 *hwgh = (mac_group_handle_t)grp; 1512 1513 return (cnt); 1514 } 1515 1516 /* 1517 * This function is called to get info about Tx/Rx rings. 1518 * 1519 * Return value: returns uint_t which will have various bits set 1520 * that indicates different properties of the ring. 1521 */ 1522 uint_t 1523 mac_hwring_getinfo(mac_ring_handle_t rh) 1524 { 1525 mac_ring_t *ring = (mac_ring_t *)rh; 1526 mac_ring_info_t *info = &ring->mr_info; 1527 1528 return (info->mri_flags); 1529 } 1530 1531 /* 1532 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1533 * setup the RX callback of the mac client which exclusively controls 1534 * HW ring. 1535 */ 1536 void 1537 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1538 mac_ring_handle_t pseudo_rh) 1539 { 1540 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1541 mac_ring_t *pseudo_ring; 1542 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1543 1544 if (pseudo_rh != NULL) { 1545 pseudo_ring = (mac_ring_t *)pseudo_rh; 1546 /* Export the ddi handles to pseudo ring */ 1547 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1548 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1549 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1550 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1551 /* 1552 * Save a pointer to pseudo ring in the hw ring. If 1553 * interrupt handle changes, the hw ring will be 1554 * notified of the change (see mac_ring_intr_set()) 1555 * and the appropriate change has to be made to 1556 * the pseudo ring that has exported the ddi handle. 1557 */ 1558 hw_ring->mr_prh = pseudo_rh; 1559 } 1560 1561 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1562 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1563 mac_srs->srs_mrh = prh; 1564 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1565 } 1566 } 1567 1568 void 1569 mac_hwring_teardown(mac_ring_handle_t hwrh) 1570 { 1571 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1572 mac_soft_ring_set_t *mac_srs; 1573 1574 if (hw_ring == NULL) 1575 return; 1576 hw_ring->mr_prh = NULL; 1577 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1578 mac_srs = hw_ring->mr_srs; 1579 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1580 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1581 mac_srs->srs_mrh = NULL; 1582 } 1583 } 1584 1585 int 1586 mac_hwring_disable_intr(mac_ring_handle_t rh) 1587 { 1588 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1589 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1590 1591 return (intr->mi_disable(intr->mi_handle)); 1592 } 1593 1594 int 1595 mac_hwring_enable_intr(mac_ring_handle_t rh) 1596 { 1597 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1598 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1599 1600 return (intr->mi_enable(intr->mi_handle)); 1601 } 1602 1603 int 1604 mac_hwring_start(mac_ring_handle_t rh) 1605 { 1606 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1607 1608 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1609 return (0); 1610 } 1611 1612 void 1613 mac_hwring_stop(mac_ring_handle_t rh) 1614 { 1615 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1616 1617 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1618 } 1619 1620 mblk_t * 1621 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1622 { 1623 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1624 mac_ring_info_t *info = &rr_ring->mr_info; 1625 1626 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1627 } 1628 1629 /* 1630 * Send packets through a selected tx ring. 1631 */ 1632 mblk_t * 1633 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1634 { 1635 mac_ring_t *ring = (mac_ring_t *)rh; 1636 mac_ring_info_t *info = &ring->mr_info; 1637 1638 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1639 ring->mr_state >= MR_INUSE); 1640 return (info->mri_tx(info->mri_driver, mp)); 1641 } 1642 1643 /* 1644 * Query stats for a particular rx/tx ring 1645 */ 1646 int 1647 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1648 { 1649 mac_ring_t *ring = (mac_ring_t *)rh; 1650 mac_ring_info_t *info = &ring->mr_info; 1651 1652 return (info->mri_stat(info->mri_driver, stat, val)); 1653 } 1654 1655 /* 1656 * Private function that is only used by aggr to send packets through 1657 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1658 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1659 * access to mac_impl_t to send packets through m_tx() entry point. 1660 * It accomplishes this by calling mac_hwring_send_priv() function. 1661 */ 1662 mblk_t * 1663 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1664 { 1665 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1666 mac_impl_t *mip = mcip->mci_mip; 1667 1668 MAC_TX(mip, rh, mp, mcip); 1669 return (mp); 1670 } 1671 1672 int 1673 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1674 { 1675 mac_group_t *group = (mac_group_t *)gh; 1676 1677 return (mac_group_addmac(group, addr)); 1678 } 1679 1680 int 1681 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1682 { 1683 mac_group_t *group = (mac_group_t *)gh; 1684 1685 return (mac_group_remmac(group, addr)); 1686 } 1687 1688 /* 1689 * Set the RX group to be shared/reserved. Note that the group must be 1690 * started/stopped outside of this function. 1691 */ 1692 void 1693 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1694 { 1695 /* 1696 * If there is no change in the group state, just return. 1697 */ 1698 if (grp->mrg_state == state) 1699 return; 1700 1701 switch (state) { 1702 case MAC_GROUP_STATE_RESERVED: 1703 /* 1704 * Successfully reserved the group. 1705 * 1706 * Given that there is an exclusive client controlling this 1707 * group, we enable the group level polling when available, 1708 * so that SRSs get to turn on/off individual rings they's 1709 * assigned to. 1710 */ 1711 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1712 1713 if (grp->mrg_type == MAC_RING_TYPE_RX && 1714 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1715 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1716 } 1717 break; 1718 1719 case MAC_GROUP_STATE_SHARED: 1720 /* 1721 * Set all rings of this group to software classified. 1722 * If the group has an overriding interrupt, then re-enable it. 1723 */ 1724 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1725 1726 if (grp->mrg_type == MAC_RING_TYPE_RX && 1727 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1728 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1729 } 1730 /* The ring is not available for reservations any more */ 1731 break; 1732 1733 case MAC_GROUP_STATE_REGISTERED: 1734 /* Also callable from mac_register, perim is not held */ 1735 break; 1736 1737 default: 1738 ASSERT(B_FALSE); 1739 break; 1740 } 1741 1742 grp->mrg_state = state; 1743 } 1744 1745 /* 1746 * Quiesce future hardware classified packets for the specified Rx ring 1747 */ 1748 static void 1749 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1750 { 1751 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1752 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1753 1754 mutex_enter(&rx_ring->mr_lock); 1755 rx_ring->mr_flag |= ring_flag; 1756 while (rx_ring->mr_refcnt != 0) 1757 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1758 mutex_exit(&rx_ring->mr_lock); 1759 } 1760 1761 /* 1762 * Please see mac_tx for details about the per cpu locking scheme 1763 */ 1764 static void 1765 mac_tx_lock_all(mac_client_impl_t *mcip) 1766 { 1767 int i; 1768 1769 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1770 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1771 } 1772 1773 static void 1774 mac_tx_unlock_all(mac_client_impl_t *mcip) 1775 { 1776 int i; 1777 1778 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1779 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1780 } 1781 1782 static void 1783 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1784 { 1785 int i; 1786 1787 for (i = mac_tx_percpu_cnt; i > 0; i--) 1788 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1789 } 1790 1791 static int 1792 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1793 { 1794 int i; 1795 int refcnt = 0; 1796 1797 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1798 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1799 1800 return (refcnt); 1801 } 1802 1803 /* 1804 * Stop future Tx packets coming down from the client in preparation for 1805 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1806 * of rings between clients 1807 */ 1808 void 1809 mac_tx_client_block(mac_client_impl_t *mcip) 1810 { 1811 mac_tx_lock_all(mcip); 1812 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1813 while (mac_tx_sum_refcnt(mcip) != 0) { 1814 mac_tx_unlock_allbutzero(mcip); 1815 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1816 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1817 mac_tx_lock_all(mcip); 1818 } 1819 mac_tx_unlock_all(mcip); 1820 } 1821 1822 void 1823 mac_tx_client_unblock(mac_client_impl_t *mcip) 1824 { 1825 mac_tx_lock_all(mcip); 1826 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1827 mac_tx_unlock_all(mcip); 1828 /* 1829 * We may fail to disable flow control for the last MAC_NOTE_TX 1830 * notification because the MAC client is quiesced. Send the 1831 * notification again. 1832 */ 1833 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1834 } 1835 1836 /* 1837 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1838 * quiesce is done. 1839 */ 1840 static void 1841 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1842 { 1843 mutex_enter(&srs->srs_lock); 1844 while (!(srs->srs_state & srs_flag)) 1845 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1846 mutex_exit(&srs->srs_lock); 1847 } 1848 1849 /* 1850 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1851 * works bottom up by cutting off packet flow from the bottommost point in the 1852 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1853 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1854 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1855 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1856 * for the SRS and MR flags. In the former case the threads pause waiting for 1857 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1858 * is also mostly similar to the above. 1859 * 1860 * 1. Stop future hardware classified packets at the lowest level in the mac. 1861 * Remove any hardware classification rule (CONDEMNED case) and mark the 1862 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1863 * from increasing. Upcalls from the driver that come through hardware 1864 * classification will be dropped in mac_rx from now on. Then we wait for 1865 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1866 * sure there aren't any upcall threads from the driver through hardware 1867 * classification. In the case of SRS teardown we also remove the 1868 * classification rule in the driver. 1869 * 1870 * 2. Stop future software classified packets by marking the flow entry with 1871 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1872 * increasing. We also remove the flow entry from the table in the latter 1873 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1874 * that indicates there aren't any active threads using that flow entry. 1875 * 1876 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1877 * SRS worker thread, and the soft ring threads are quiesced in sequence 1878 * with the SRS worker thread serving as a master controller. This 1879 * mechansim is explained in mac_srs_worker_quiesce(). 1880 * 1881 * The restart mechanism to reactivate the SRS and softrings is explained 1882 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1883 * restart sequence. 1884 */ 1885 void 1886 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1887 { 1888 flow_entry_t *flent = srs->srs_flent; 1889 uint_t mr_flag, srs_done_flag; 1890 1891 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1892 ASSERT(!(srs->srs_type & SRST_TX)); 1893 1894 if (srs_quiesce_flag == SRS_CONDEMNED) { 1895 mr_flag = MR_CONDEMNED; 1896 srs_done_flag = SRS_CONDEMNED_DONE; 1897 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1898 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1899 } else { 1900 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1901 mr_flag = MR_QUIESCE; 1902 srs_done_flag = SRS_QUIESCE_DONE; 1903 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1904 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1905 } 1906 1907 if (srs->srs_ring != NULL) { 1908 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1909 } else { 1910 /* 1911 * SRS is driven by software classification. In case 1912 * of CONDEMNED, the top level teardown functions will 1913 * deal with flow removal. 1914 */ 1915 if (srs_quiesce_flag != SRS_CONDEMNED) { 1916 FLOW_MARK(flent, FE_QUIESCE); 1917 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1918 } 1919 } 1920 1921 /* 1922 * Signal the SRS to quiesce itself, and then cv_wait for the 1923 * SRS quiesce to complete. The SRS worker thread will wake us 1924 * up when the quiesce is complete 1925 */ 1926 mac_srs_signal(srs, srs_quiesce_flag); 1927 mac_srs_quiesce_wait(srs, srs_done_flag); 1928 } 1929 1930 /* 1931 * Remove an SRS. 1932 */ 1933 void 1934 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1935 { 1936 flow_entry_t *flent = srs->srs_flent; 1937 int i; 1938 1939 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1940 /* 1941 * Locate and remove our entry in the fe_rx_srs[] array, and 1942 * adjust the fe_rx_srs array entries and array count by 1943 * moving the last entry into the vacated spot. 1944 */ 1945 mutex_enter(&flent->fe_lock); 1946 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1947 if (flent->fe_rx_srs[i] == srs) 1948 break; 1949 } 1950 1951 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1952 if (i != flent->fe_rx_srs_cnt - 1) { 1953 flent->fe_rx_srs[i] = 1954 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1955 i = flent->fe_rx_srs_cnt - 1; 1956 } 1957 1958 flent->fe_rx_srs[i] = NULL; 1959 flent->fe_rx_srs_cnt--; 1960 mutex_exit(&flent->fe_lock); 1961 1962 mac_srs_free(srs); 1963 } 1964 1965 static void 1966 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1967 { 1968 mutex_enter(&srs->srs_lock); 1969 srs->srs_state &= ~flag; 1970 mutex_exit(&srs->srs_lock); 1971 } 1972 1973 void 1974 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1975 { 1976 flow_entry_t *flent = srs->srs_flent; 1977 mac_ring_t *mr; 1978 1979 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1980 ASSERT((srs->srs_type & SRST_TX) == 0); 1981 1982 /* 1983 * This handles a change in the number of SRSs between the quiesce and 1984 * and restart operation of a flow. 1985 */ 1986 if (!SRS_QUIESCED(srs)) 1987 return; 1988 1989 /* 1990 * Signal the SRS to restart itself. Wait for the restart to complete 1991 * Note that we only restart the SRS if it is not marked as 1992 * permanently quiesced. 1993 */ 1994 if (!SRS_QUIESCED_PERMANENT(srs)) { 1995 mac_srs_signal(srs, SRS_RESTART); 1996 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1997 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1998 1999 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2000 } 2001 2002 /* Finally clear the flags to let the packets in */ 2003 mr = srs->srs_ring; 2004 if (mr != NULL) { 2005 MAC_RING_UNMARK(mr, MR_QUIESCE); 2006 /* In case the ring was stopped, safely restart it */ 2007 if (mr->mr_state != MR_INUSE) 2008 (void) mac_start_ring(mr); 2009 } else { 2010 FLOW_UNMARK(flent, FE_QUIESCE); 2011 } 2012 } 2013 2014 /* 2015 * Temporary quiesce of a flow and associated Rx SRS. 2016 * Please see block comment above mac_rx_classify_flow_rem. 2017 */ 2018 /* ARGSUSED */ 2019 int 2020 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2021 { 2022 int i; 2023 2024 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2025 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2026 SRS_QUIESCE); 2027 } 2028 return (0); 2029 } 2030 2031 /* 2032 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2033 * Please see block comment above mac_rx_classify_flow_rem 2034 */ 2035 /* ARGSUSED */ 2036 int 2037 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2038 { 2039 int i; 2040 2041 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2042 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2043 2044 return (0); 2045 } 2046 2047 void 2048 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2049 { 2050 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2051 flow_entry_t *flent = mcip->mci_flent; 2052 mac_impl_t *mip = mcip->mci_mip; 2053 mac_soft_ring_set_t *mac_srs; 2054 int i; 2055 2056 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2057 2058 if (flent == NULL) 2059 return; 2060 2061 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2062 mac_srs = flent->fe_rx_srs[i]; 2063 mutex_enter(&mac_srs->srs_lock); 2064 if (on) 2065 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2066 else 2067 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2068 mutex_exit(&mac_srs->srs_lock); 2069 } 2070 } 2071 2072 void 2073 mac_rx_client_quiesce(mac_client_handle_t mch) 2074 { 2075 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2076 mac_impl_t *mip = mcip->mci_mip; 2077 2078 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2079 2080 if (MCIP_DATAPATH_SETUP(mcip)) { 2081 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2082 NULL); 2083 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2084 mac_rx_classify_flow_quiesce, NULL); 2085 } 2086 } 2087 2088 void 2089 mac_rx_client_restart(mac_client_handle_t mch) 2090 { 2091 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2092 mac_impl_t *mip = mcip->mci_mip; 2093 2094 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2095 2096 if (MCIP_DATAPATH_SETUP(mcip)) { 2097 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2098 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2099 mac_rx_classify_flow_restart, NULL); 2100 } 2101 } 2102 2103 /* 2104 * This function only quiesces the Tx SRS and softring worker threads. Callers 2105 * need to make sure that there aren't any mac client threads doing current or 2106 * future transmits in the mac before calling this function. 2107 */ 2108 void 2109 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2110 { 2111 mac_client_impl_t *mcip = srs->srs_mcip; 2112 2113 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2114 2115 ASSERT(srs->srs_type & SRST_TX); 2116 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2117 srs_quiesce_flag == SRS_QUIESCE); 2118 2119 /* 2120 * Signal the SRS to quiesce itself, and then cv_wait for the 2121 * SRS quiesce to complete. The SRS worker thread will wake us 2122 * up when the quiesce is complete 2123 */ 2124 mac_srs_signal(srs, srs_quiesce_flag); 2125 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2126 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2127 } 2128 2129 void 2130 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2131 { 2132 /* 2133 * Resizing the fanout could result in creation of new SRSs. 2134 * They may not necessarily be in the quiesced state in which 2135 * case it need be restarted 2136 */ 2137 if (!SRS_QUIESCED(srs)) 2138 return; 2139 2140 mac_srs_signal(srs, SRS_RESTART); 2141 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2142 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2143 } 2144 2145 /* 2146 * Temporary quiesce of a flow and associated Rx SRS. 2147 * Please see block comment above mac_rx_srs_quiesce 2148 */ 2149 /* ARGSUSED */ 2150 int 2151 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2152 { 2153 /* 2154 * The fe_tx_srs is null for a subflow on an interface that is 2155 * not plumbed 2156 */ 2157 if (flent->fe_tx_srs != NULL) 2158 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2159 return (0); 2160 } 2161 2162 /* ARGSUSED */ 2163 int 2164 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2165 { 2166 /* 2167 * The fe_tx_srs is null for a subflow on an interface that is 2168 * not plumbed 2169 */ 2170 if (flent->fe_tx_srs != NULL) 2171 mac_tx_srs_restart(flent->fe_tx_srs); 2172 return (0); 2173 } 2174 2175 static void 2176 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2177 { 2178 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2179 2180 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2181 2182 mac_tx_client_block(mcip); 2183 if (MCIP_TX_SRS(mcip) != NULL) { 2184 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2185 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2186 mac_tx_flow_quiesce, NULL); 2187 } 2188 } 2189 2190 void 2191 mac_tx_client_quiesce(mac_client_handle_t mch) 2192 { 2193 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2194 } 2195 2196 void 2197 mac_tx_client_condemn(mac_client_handle_t mch) 2198 { 2199 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2200 } 2201 2202 void 2203 mac_tx_client_restart(mac_client_handle_t mch) 2204 { 2205 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2206 2207 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2208 2209 mac_tx_client_unblock(mcip); 2210 if (MCIP_TX_SRS(mcip) != NULL) { 2211 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2212 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2213 mac_tx_flow_restart, NULL); 2214 } 2215 } 2216 2217 void 2218 mac_tx_client_flush(mac_client_impl_t *mcip) 2219 { 2220 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2221 2222 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2223 mac_tx_client_restart((mac_client_handle_t)mcip); 2224 } 2225 2226 void 2227 mac_client_quiesce(mac_client_impl_t *mcip) 2228 { 2229 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2230 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2231 } 2232 2233 void 2234 mac_client_restart(mac_client_impl_t *mcip) 2235 { 2236 mac_rx_client_restart((mac_client_handle_t)mcip); 2237 mac_tx_client_restart((mac_client_handle_t)mcip); 2238 } 2239 2240 /* 2241 * Allocate a minor number. 2242 */ 2243 minor_t 2244 mac_minor_hold(boolean_t sleep) 2245 { 2246 minor_t minor; 2247 2248 /* 2249 * Grab a value from the arena. 2250 */ 2251 atomic_add_32(&minor_count, 1); 2252 2253 if (sleep) 2254 minor = (uint_t)id_alloc(minor_ids); 2255 else 2256 minor = (uint_t)id_alloc_nosleep(minor_ids); 2257 2258 if (minor == 0) { 2259 atomic_add_32(&minor_count, -1); 2260 return (0); 2261 } 2262 2263 return (minor); 2264 } 2265 2266 /* 2267 * Release a previously allocated minor number. 2268 */ 2269 void 2270 mac_minor_rele(minor_t minor) 2271 { 2272 /* 2273 * Return the value to the arena. 2274 */ 2275 id_free(minor_ids, minor); 2276 atomic_add_32(&minor_count, -1); 2277 } 2278 2279 uint32_t 2280 mac_no_notification(mac_handle_t mh) 2281 { 2282 mac_impl_t *mip = (mac_impl_t *)mh; 2283 2284 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2285 mip->mi_capab_legacy.ml_unsup_note : 0); 2286 } 2287 2288 /* 2289 * Prevent any new opens of this mac in preparation for unregister 2290 */ 2291 int 2292 i_mac_disable(mac_impl_t *mip) 2293 { 2294 mac_client_impl_t *mcip; 2295 2296 rw_enter(&i_mac_impl_lock, RW_WRITER); 2297 if (mip->mi_state_flags & MIS_DISABLED) { 2298 /* Already disabled, return success */ 2299 rw_exit(&i_mac_impl_lock); 2300 return (0); 2301 } 2302 /* 2303 * See if there are any other references to this mac_t (e.g., VLAN's). 2304 * If so return failure. If all the other checks below pass, then 2305 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2306 * any new VLAN's from being created or new mac client opens of this 2307 * mac end point. 2308 */ 2309 if (mip->mi_ref > 0) { 2310 rw_exit(&i_mac_impl_lock); 2311 return (EBUSY); 2312 } 2313 2314 /* 2315 * mac clients must delete all multicast groups they join before 2316 * closing. bcast groups are reference counted, the last client 2317 * to delete the group will wait till the group is physically 2318 * deleted. Since all clients have closed this mac end point 2319 * mi_bcast_ngrps must be zero at this point 2320 */ 2321 ASSERT(mip->mi_bcast_ngrps == 0); 2322 2323 /* 2324 * Don't let go of this if it has some flows. 2325 * All other code guarantees no flows are added to a disabled 2326 * mac, therefore it is sufficient to check for the flow table 2327 * only here. 2328 */ 2329 mcip = mac_primary_client_handle(mip); 2330 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2331 rw_exit(&i_mac_impl_lock); 2332 return (ENOTEMPTY); 2333 } 2334 2335 mip->mi_state_flags |= MIS_DISABLED; 2336 rw_exit(&i_mac_impl_lock); 2337 return (0); 2338 } 2339 2340 int 2341 mac_disable_nowait(mac_handle_t mh) 2342 { 2343 mac_impl_t *mip = (mac_impl_t *)mh; 2344 int err; 2345 2346 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2347 return (err); 2348 err = i_mac_disable(mip); 2349 i_mac_perim_exit(mip); 2350 return (err); 2351 } 2352 2353 int 2354 mac_disable(mac_handle_t mh) 2355 { 2356 mac_impl_t *mip = (mac_impl_t *)mh; 2357 int err; 2358 2359 i_mac_perim_enter(mip); 2360 err = i_mac_disable(mip); 2361 i_mac_perim_exit(mip); 2362 2363 /* 2364 * Clean up notification thread and wait for it to exit. 2365 */ 2366 if (err == 0) 2367 i_mac_notify_exit(mip); 2368 2369 return (err); 2370 } 2371 2372 /* 2373 * Called when the MAC instance has a non empty flow table, to de-multiplex 2374 * incoming packets to the right flow. 2375 * The MAC's rw lock is assumed held as a READER. 2376 */ 2377 /* ARGSUSED */ 2378 static mblk_t * 2379 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2380 { 2381 flow_entry_t *flent = NULL; 2382 uint_t flags = FLOW_INBOUND; 2383 int err; 2384 2385 /* 2386 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2387 * to mac_flow_lookup() so that the VLAN packets can be successfully 2388 * passed to the non-VLAN aggregation flows. 2389 * 2390 * Note that there is possibly a race between this and 2391 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2392 * classified to non-VLAN flows of non-aggregation mac clients. These 2393 * VLAN packets will be then filtered out by the mac module. 2394 */ 2395 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2396 flags |= FLOW_IGNORE_VLAN; 2397 2398 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2399 if (err != 0) { 2400 /* no registered receive function */ 2401 return (mp); 2402 } else { 2403 mac_client_impl_t *mcip; 2404 2405 /* 2406 * This flent might just be an additional one on the MAC client, 2407 * i.e. for classification purposes (different fdesc), however 2408 * the resources, SRS et. al., are in the mci_flent, so if 2409 * this isn't the mci_flent, we need to get it. 2410 */ 2411 if ((mcip = flent->fe_mcip) != NULL && 2412 mcip->mci_flent != flent) { 2413 FLOW_REFRELE(flent); 2414 flent = mcip->mci_flent; 2415 FLOW_TRY_REFHOLD(flent, err); 2416 if (err != 0) 2417 return (mp); 2418 } 2419 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2420 B_FALSE); 2421 FLOW_REFRELE(flent); 2422 } 2423 return (NULL); 2424 } 2425 2426 mblk_t * 2427 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2428 { 2429 mac_impl_t *mip = (mac_impl_t *)mh; 2430 mblk_t *bp, *bp1, **bpp, *list = NULL; 2431 2432 /* 2433 * We walk the chain and attempt to classify each packet. 2434 * The packets that couldn't be classified will be returned 2435 * back to the caller. 2436 */ 2437 bp = mp_chain; 2438 bpp = &list; 2439 while (bp != NULL) { 2440 bp1 = bp; 2441 bp = bp->b_next; 2442 bp1->b_next = NULL; 2443 2444 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2445 *bpp = bp1; 2446 bpp = &bp1->b_next; 2447 } 2448 } 2449 return (list); 2450 } 2451 2452 static int 2453 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2454 { 2455 mac_ring_handle_t ring = arg; 2456 2457 if (flent->fe_tx_srs) 2458 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2459 return (0); 2460 } 2461 2462 void 2463 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2464 { 2465 mac_client_impl_t *cclient; 2466 mac_soft_ring_set_t *mac_srs; 2467 2468 /* 2469 * After grabbing the mi_rw_lock, the list of clients can't change. 2470 * If there are any clients mi_disabled must be B_FALSE and can't 2471 * get set since there are clients. If there aren't any clients we 2472 * don't do anything. In any case the mip has to be valid. The driver 2473 * must make sure that it goes single threaded (with respect to mac 2474 * calls) and wait for all pending mac calls to finish before calling 2475 * mac_unregister. 2476 */ 2477 rw_enter(&i_mac_impl_lock, RW_READER); 2478 if (mip->mi_state_flags & MIS_DISABLED) { 2479 rw_exit(&i_mac_impl_lock); 2480 return; 2481 } 2482 2483 /* 2484 * Get MAC tx srs from walking mac_client_handle list. 2485 */ 2486 rw_enter(&mip->mi_rw_lock, RW_READER); 2487 for (cclient = mip->mi_clients_list; cclient != NULL; 2488 cclient = cclient->mci_client_next) { 2489 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2490 mac_tx_srs_wakeup(mac_srs, ring); 2491 } else { 2492 /* 2493 * Aggr opens underlying ports in exclusive mode 2494 * and registers flow control callbacks using 2495 * mac_tx_client_notify(). When opened in 2496 * exclusive mode, Tx SRS won't be created 2497 * during mac_unicast_add(). 2498 */ 2499 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2500 mac_tx_invoke_callbacks(cclient, 2501 (mac_tx_cookie_t)ring); 2502 } 2503 } 2504 (void) mac_flow_walk(cclient->mci_subflow_tab, 2505 mac_tx_flow_srs_wakeup, ring); 2506 } 2507 rw_exit(&mip->mi_rw_lock); 2508 rw_exit(&i_mac_impl_lock); 2509 } 2510 2511 /* ARGSUSED */ 2512 void 2513 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2514 boolean_t add) 2515 { 2516 mac_impl_t *mip = (mac_impl_t *)mh; 2517 2518 i_mac_perim_enter((mac_impl_t *)mh); 2519 /* 2520 * If no specific refresh function was given then default to the 2521 * driver's m_multicst entry point. 2522 */ 2523 if (refresh == NULL) { 2524 refresh = mip->mi_multicst; 2525 arg = mip->mi_driver; 2526 } 2527 2528 mac_bcast_refresh(mip, refresh, arg, add); 2529 i_mac_perim_exit((mac_impl_t *)mh); 2530 } 2531 2532 void 2533 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2534 { 2535 mac_impl_t *mip = (mac_impl_t *)mh; 2536 2537 /* 2538 * If no specific refresh function was given then default to the 2539 * driver's m_promisc entry point. 2540 */ 2541 if (refresh == NULL) { 2542 refresh = mip->mi_setpromisc; 2543 arg = mip->mi_driver; 2544 } 2545 ASSERT(refresh != NULL); 2546 2547 /* 2548 * Call the refresh function with the current promiscuity. 2549 */ 2550 refresh(arg, (mip->mi_devpromisc != 0)); 2551 } 2552 2553 /* 2554 * The mac client requests that the mac not to change its margin size to 2555 * be less than the specified value. If "current" is B_TRUE, then the client 2556 * requests the mac not to change its margin size to be smaller than the 2557 * current size. Further, return the current margin size value in this case. 2558 * 2559 * We keep every requested size in an ordered list from largest to smallest. 2560 */ 2561 int 2562 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2563 { 2564 mac_impl_t *mip = (mac_impl_t *)mh; 2565 mac_margin_req_t **pp, *p; 2566 int err = 0; 2567 2568 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2569 if (current) 2570 *marginp = mip->mi_margin; 2571 2572 /* 2573 * If the current margin value cannot satisfy the margin requested, 2574 * return ENOTSUP directly. 2575 */ 2576 if (*marginp > mip->mi_margin) { 2577 err = ENOTSUP; 2578 goto done; 2579 } 2580 2581 /* 2582 * Check whether the given margin is already in the list. If so, 2583 * bump the reference count. 2584 */ 2585 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2586 if (p->mmr_margin == *marginp) { 2587 /* 2588 * The margin requested is already in the list, 2589 * so just bump the reference count. 2590 */ 2591 p->mmr_ref++; 2592 goto done; 2593 } 2594 if (p->mmr_margin < *marginp) 2595 break; 2596 } 2597 2598 2599 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2600 p->mmr_margin = *marginp; 2601 p->mmr_ref++; 2602 p->mmr_nextp = *pp; 2603 *pp = p; 2604 2605 done: 2606 rw_exit(&(mip->mi_rw_lock)); 2607 return (err); 2608 } 2609 2610 /* 2611 * The mac client requests to cancel its previous mac_margin_add() request. 2612 * We remove the requested margin size from the list. 2613 */ 2614 int 2615 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2616 { 2617 mac_impl_t *mip = (mac_impl_t *)mh; 2618 mac_margin_req_t **pp, *p; 2619 int err = 0; 2620 2621 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2622 /* 2623 * Find the entry in the list for the given margin. 2624 */ 2625 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2626 if (p->mmr_margin == margin) { 2627 if (--p->mmr_ref == 0) 2628 break; 2629 2630 /* 2631 * There is still a reference to this address so 2632 * there's nothing more to do. 2633 */ 2634 goto done; 2635 } 2636 } 2637 2638 /* 2639 * We did not find an entry for the given margin. 2640 */ 2641 if (p == NULL) { 2642 err = ENOENT; 2643 goto done; 2644 } 2645 2646 ASSERT(p->mmr_ref == 0); 2647 2648 /* 2649 * Remove it from the list. 2650 */ 2651 *pp = p->mmr_nextp; 2652 kmem_free(p, sizeof (mac_margin_req_t)); 2653 done: 2654 rw_exit(&(mip->mi_rw_lock)); 2655 return (err); 2656 } 2657 2658 boolean_t 2659 mac_margin_update(mac_handle_t mh, uint32_t margin) 2660 { 2661 mac_impl_t *mip = (mac_impl_t *)mh; 2662 uint32_t margin_needed = 0; 2663 2664 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2665 2666 if (mip->mi_mmrp != NULL) 2667 margin_needed = mip->mi_mmrp->mmr_margin; 2668 2669 if (margin_needed <= margin) 2670 mip->mi_margin = margin; 2671 2672 rw_exit(&(mip->mi_rw_lock)); 2673 2674 if (margin_needed <= margin) 2675 i_mac_notify(mip, MAC_NOTE_MARGIN); 2676 2677 return (margin_needed <= margin); 2678 } 2679 2680 /* 2681 * MAC Type Plugin functions. 2682 */ 2683 2684 mactype_t * 2685 mactype_getplugin(const char *pname) 2686 { 2687 mactype_t *mtype = NULL; 2688 boolean_t tried_modload = B_FALSE; 2689 2690 mutex_enter(&i_mactype_lock); 2691 2692 find_registered_mactype: 2693 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2694 (mod_hash_val_t *)&mtype) != 0) { 2695 if (!tried_modload) { 2696 /* 2697 * If the plugin has not yet been loaded, then 2698 * attempt to load it now. If modload() succeeds, 2699 * the plugin should have registered using 2700 * mactype_register(), in which case we can go back 2701 * and attempt to find it again. 2702 */ 2703 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2704 tried_modload = B_TRUE; 2705 goto find_registered_mactype; 2706 } 2707 } 2708 } else { 2709 /* 2710 * Note that there's no danger that the plugin we've loaded 2711 * could be unloaded between the modload() step and the 2712 * reference count bump here, as we're holding 2713 * i_mactype_lock, which mactype_unregister() also holds. 2714 */ 2715 atomic_inc_32(&mtype->mt_ref); 2716 } 2717 2718 mutex_exit(&i_mactype_lock); 2719 return (mtype); 2720 } 2721 2722 mactype_register_t * 2723 mactype_alloc(uint_t mactype_version) 2724 { 2725 mactype_register_t *mtrp; 2726 2727 /* 2728 * Make sure there isn't a version mismatch between the plugin and 2729 * the framework. In the future, if multiple versions are 2730 * supported, this check could become more sophisticated. 2731 */ 2732 if (mactype_version != MACTYPE_VERSION) 2733 return (NULL); 2734 2735 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2736 mtrp->mtr_version = mactype_version; 2737 return (mtrp); 2738 } 2739 2740 void 2741 mactype_free(mactype_register_t *mtrp) 2742 { 2743 kmem_free(mtrp, sizeof (mactype_register_t)); 2744 } 2745 2746 int 2747 mactype_register(mactype_register_t *mtrp) 2748 { 2749 mactype_t *mtp; 2750 mactype_ops_t *ops = mtrp->mtr_ops; 2751 2752 /* Do some sanity checking before we register this MAC type. */ 2753 if (mtrp->mtr_ident == NULL || ops == NULL) 2754 return (EINVAL); 2755 2756 /* 2757 * Verify that all mandatory callbacks are set in the ops 2758 * vector. 2759 */ 2760 if (ops->mtops_unicst_verify == NULL || 2761 ops->mtops_multicst_verify == NULL || 2762 ops->mtops_sap_verify == NULL || 2763 ops->mtops_header == NULL || 2764 ops->mtops_header_info == NULL) { 2765 return (EINVAL); 2766 } 2767 2768 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2769 mtp->mt_ident = mtrp->mtr_ident; 2770 mtp->mt_ops = *ops; 2771 mtp->mt_type = mtrp->mtr_mactype; 2772 mtp->mt_nativetype = mtrp->mtr_nativetype; 2773 mtp->mt_addr_length = mtrp->mtr_addrlen; 2774 if (mtrp->mtr_brdcst_addr != NULL) { 2775 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2776 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2777 mtrp->mtr_addrlen); 2778 } 2779 2780 mtp->mt_stats = mtrp->mtr_stats; 2781 mtp->mt_statcount = mtrp->mtr_statcount; 2782 2783 mtp->mt_mapping = mtrp->mtr_mapping; 2784 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2785 2786 if (mod_hash_insert(i_mactype_hash, 2787 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2788 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2789 kmem_free(mtp, sizeof (*mtp)); 2790 return (EEXIST); 2791 } 2792 return (0); 2793 } 2794 2795 int 2796 mactype_unregister(const char *ident) 2797 { 2798 mactype_t *mtp; 2799 mod_hash_val_t val; 2800 int err; 2801 2802 /* 2803 * Let's not allow MAC drivers to use this plugin while we're 2804 * trying to unregister it. Holding i_mactype_lock also prevents a 2805 * plugin from unregistering while a MAC driver is attempting to 2806 * hold a reference to it in i_mactype_getplugin(). 2807 */ 2808 mutex_enter(&i_mactype_lock); 2809 2810 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2811 (mod_hash_val_t *)&mtp)) != 0) { 2812 /* A plugin is trying to unregister, but it never registered. */ 2813 err = ENXIO; 2814 goto done; 2815 } 2816 2817 if (mtp->mt_ref != 0) { 2818 err = EBUSY; 2819 goto done; 2820 } 2821 2822 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2823 ASSERT(err == 0); 2824 if (err != 0) { 2825 /* This should never happen, thus the ASSERT() above. */ 2826 err = EINVAL; 2827 goto done; 2828 } 2829 ASSERT(mtp == (mactype_t *)val); 2830 2831 if (mtp->mt_brdcst_addr != NULL) 2832 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2833 kmem_free(mtp, sizeof (mactype_t)); 2834 done: 2835 mutex_exit(&i_mactype_lock); 2836 return (err); 2837 } 2838 2839 /* 2840 * Checks the size of the value size specified for a property as 2841 * part of a property operation. Returns B_TRUE if the size is 2842 * correct, B_FALSE otherwise. 2843 */ 2844 boolean_t 2845 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 2846 { 2847 uint_t minsize = 0; 2848 2849 if (is_range) 2850 return (valsize >= sizeof (mac_propval_range_t)); 2851 2852 switch (id) { 2853 case MAC_PROP_ZONE: 2854 minsize = sizeof (dld_ioc_zid_t); 2855 break; 2856 case MAC_PROP_AUTOPUSH: 2857 if (valsize != 0) 2858 minsize = sizeof (struct dlautopush); 2859 break; 2860 case MAC_PROP_TAGMODE: 2861 minsize = sizeof (link_tagmode_t); 2862 break; 2863 case MAC_PROP_RESOURCE: 2864 case MAC_PROP_RESOURCE_EFF: 2865 minsize = sizeof (mac_resource_props_t); 2866 break; 2867 case MAC_PROP_DUPLEX: 2868 minsize = sizeof (link_duplex_t); 2869 break; 2870 case MAC_PROP_SPEED: 2871 minsize = sizeof (uint64_t); 2872 break; 2873 case MAC_PROP_STATUS: 2874 minsize = sizeof (link_state_t); 2875 break; 2876 case MAC_PROP_AUTONEG: 2877 case MAC_PROP_EN_AUTONEG: 2878 minsize = sizeof (uint8_t); 2879 break; 2880 case MAC_PROP_MTU: 2881 case MAC_PROP_LLIMIT: 2882 case MAC_PROP_LDECAY: 2883 minsize = sizeof (uint32_t); 2884 break; 2885 case MAC_PROP_FLOWCTRL: 2886 minsize = sizeof (link_flowctrl_t); 2887 break; 2888 case MAC_PROP_ADV_10GFDX_CAP: 2889 case MAC_PROP_EN_10GFDX_CAP: 2890 case MAC_PROP_ADV_1000HDX_CAP: 2891 case MAC_PROP_EN_1000HDX_CAP: 2892 case MAC_PROP_ADV_100FDX_CAP: 2893 case MAC_PROP_EN_100FDX_CAP: 2894 case MAC_PROP_ADV_100HDX_CAP: 2895 case MAC_PROP_EN_100HDX_CAP: 2896 case MAC_PROP_ADV_10FDX_CAP: 2897 case MAC_PROP_EN_10FDX_CAP: 2898 case MAC_PROP_ADV_10HDX_CAP: 2899 case MAC_PROP_EN_10HDX_CAP: 2900 case MAC_PROP_ADV_100T4_CAP: 2901 case MAC_PROP_EN_100T4_CAP: 2902 minsize = sizeof (uint8_t); 2903 break; 2904 case MAC_PROP_PVID: 2905 minsize = sizeof (uint16_t); 2906 break; 2907 case MAC_PROP_IPTUN_HOPLIMIT: 2908 minsize = sizeof (uint32_t); 2909 break; 2910 case MAC_PROP_IPTUN_ENCAPLIMIT: 2911 minsize = sizeof (uint32_t); 2912 break; 2913 case MAC_PROP_MAX_TX_RINGS_AVAIL: 2914 case MAC_PROP_MAX_RX_RINGS_AVAIL: 2915 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 2916 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 2917 minsize = sizeof (uint_t); 2918 break; 2919 case MAC_PROP_WL_ESSID: 2920 minsize = sizeof (wl_linkstatus_t); 2921 break; 2922 case MAC_PROP_WL_BSSID: 2923 minsize = sizeof (wl_bssid_t); 2924 break; 2925 case MAC_PROP_WL_BSSTYPE: 2926 minsize = sizeof (wl_bss_type_t); 2927 break; 2928 case MAC_PROP_WL_LINKSTATUS: 2929 minsize = sizeof (wl_linkstatus_t); 2930 break; 2931 case MAC_PROP_WL_DESIRED_RATES: 2932 minsize = sizeof (wl_rates_t); 2933 break; 2934 case MAC_PROP_WL_SUPPORTED_RATES: 2935 minsize = sizeof (wl_rates_t); 2936 break; 2937 case MAC_PROP_WL_AUTH_MODE: 2938 minsize = sizeof (wl_authmode_t); 2939 break; 2940 case MAC_PROP_WL_ENCRYPTION: 2941 minsize = sizeof (wl_encryption_t); 2942 break; 2943 case MAC_PROP_WL_RSSI: 2944 minsize = sizeof (wl_rssi_t); 2945 break; 2946 case MAC_PROP_WL_PHY_CONFIG: 2947 minsize = sizeof (wl_phy_conf_t); 2948 break; 2949 case MAC_PROP_WL_CAPABILITY: 2950 minsize = sizeof (wl_capability_t); 2951 break; 2952 case MAC_PROP_WL_WPA: 2953 minsize = sizeof (wl_wpa_t); 2954 break; 2955 case MAC_PROP_WL_SCANRESULTS: 2956 minsize = sizeof (wl_wpa_ess_t); 2957 break; 2958 case MAC_PROP_WL_POWER_MODE: 2959 minsize = sizeof (wl_ps_mode_t); 2960 break; 2961 case MAC_PROP_WL_RADIO: 2962 minsize = sizeof (wl_radio_t); 2963 break; 2964 case MAC_PROP_WL_ESS_LIST: 2965 minsize = sizeof (wl_ess_list_t); 2966 break; 2967 case MAC_PROP_WL_KEY_TAB: 2968 minsize = sizeof (wl_wep_key_tab_t); 2969 break; 2970 case MAC_PROP_WL_CREATE_IBSS: 2971 minsize = sizeof (wl_create_ibss_t); 2972 break; 2973 case MAC_PROP_WL_SETOPTIE: 2974 minsize = sizeof (wl_wpa_ie_t); 2975 break; 2976 case MAC_PROP_WL_DELKEY: 2977 minsize = sizeof (wl_del_key_t); 2978 break; 2979 case MAC_PROP_WL_KEY: 2980 minsize = sizeof (wl_key_t); 2981 break; 2982 case MAC_PROP_WL_MLME: 2983 minsize = sizeof (wl_mlme_t); 2984 break; 2985 } 2986 2987 return (valsize >= minsize); 2988 } 2989 2990 /* 2991 * mac_set_prop() sets MAC or hardware driver properties: 2992 * 2993 * - MAC-managed properties such as resource properties include maxbw, 2994 * priority, and cpu binding list, as well as the default port VID 2995 * used by bridging. These properties are consumed by the MAC layer 2996 * itself and not passed down to the driver. For resource control 2997 * properties, this function invokes mac_set_resources() which will 2998 * cache the property value in mac_impl_t and may call 2999 * mac_client_set_resource() to update property value of the primary 3000 * mac client, if it exists. 3001 * 3002 * - Properties which act on the hardware and must be passed to the 3003 * driver, such as MTU, through the driver's mc_setprop() entry point. 3004 */ 3005 int 3006 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3007 uint_t valsize) 3008 { 3009 int err = ENOTSUP; 3010 mac_impl_t *mip = (mac_impl_t *)mh; 3011 3012 ASSERT(MAC_PERIM_HELD(mh)); 3013 3014 switch (id) { 3015 case MAC_PROP_RESOURCE: { 3016 mac_resource_props_t *mrp; 3017 3018 /* call mac_set_resources() for MAC properties */ 3019 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3020 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3021 bcopy(val, mrp, sizeof (*mrp)); 3022 err = mac_set_resources(mh, mrp); 3023 kmem_free(mrp, sizeof (*mrp)); 3024 break; 3025 } 3026 3027 case MAC_PROP_PVID: 3028 ASSERT(valsize >= sizeof (uint16_t)); 3029 if (mip->mi_state_flags & MIS_IS_VNIC) 3030 return (EINVAL); 3031 err = mac_set_pvid(mh, *(uint16_t *)val); 3032 break; 3033 3034 case MAC_PROP_MTU: { 3035 uint32_t mtu; 3036 3037 ASSERT(valsize >= sizeof (uint32_t)); 3038 bcopy(val, &mtu, sizeof (mtu)); 3039 err = mac_set_mtu(mh, mtu, NULL); 3040 break; 3041 } 3042 3043 case MAC_PROP_LLIMIT: 3044 case MAC_PROP_LDECAY: { 3045 uint32_t learnval; 3046 3047 if (valsize < sizeof (learnval) || 3048 (mip->mi_state_flags & MIS_IS_VNIC)) 3049 return (EINVAL); 3050 bcopy(val, &learnval, sizeof (learnval)); 3051 if (learnval == 0 && id == MAC_PROP_LDECAY) 3052 return (EINVAL); 3053 if (id == MAC_PROP_LLIMIT) 3054 mip->mi_llimit = learnval; 3055 else 3056 mip->mi_ldecay = learnval; 3057 err = 0; 3058 break; 3059 } 3060 3061 default: 3062 /* For other driver properties, call driver's callback */ 3063 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3064 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3065 name, id, valsize, val); 3066 } 3067 } 3068 return (err); 3069 } 3070 3071 /* 3072 * mac_get_prop() gets MAC or device driver properties. 3073 * 3074 * If the property is a driver property, mac_get_prop() calls driver's callback 3075 * entry point to get it. 3076 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3077 * which returns the cached value in mac_impl_t. 3078 */ 3079 int 3080 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3081 uint_t valsize) 3082 { 3083 int err = ENOTSUP; 3084 mac_impl_t *mip = (mac_impl_t *)mh; 3085 uint_t rings; 3086 uint_t vlinks; 3087 3088 bzero(val, valsize); 3089 3090 switch (id) { 3091 case MAC_PROP_RESOURCE: { 3092 mac_resource_props_t *mrp; 3093 3094 /* If mac property, read from cache */ 3095 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3096 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3097 mac_get_resources(mh, mrp); 3098 bcopy(mrp, val, sizeof (*mrp)); 3099 kmem_free(mrp, sizeof (*mrp)); 3100 return (0); 3101 } 3102 case MAC_PROP_RESOURCE_EFF: { 3103 mac_resource_props_t *mrp; 3104 3105 /* If mac effective property, read from client */ 3106 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3107 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3108 mac_get_effective_resources(mh, mrp); 3109 bcopy(mrp, val, sizeof (*mrp)); 3110 kmem_free(mrp, sizeof (*mrp)); 3111 return (0); 3112 } 3113 3114 case MAC_PROP_PVID: 3115 ASSERT(valsize >= sizeof (uint16_t)); 3116 if (mip->mi_state_flags & MIS_IS_VNIC) 3117 return (EINVAL); 3118 *(uint16_t *)val = mac_get_pvid(mh); 3119 return (0); 3120 3121 case MAC_PROP_LLIMIT: 3122 case MAC_PROP_LDECAY: 3123 ASSERT(valsize >= sizeof (uint32_t)); 3124 if (mip->mi_state_flags & MIS_IS_VNIC) 3125 return (EINVAL); 3126 if (id == MAC_PROP_LLIMIT) 3127 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3128 else 3129 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3130 return (0); 3131 3132 case MAC_PROP_MTU: { 3133 uint32_t sdu; 3134 3135 ASSERT(valsize >= sizeof (uint32_t)); 3136 mac_sdu_get(mh, NULL, &sdu); 3137 bcopy(&sdu, val, sizeof (sdu)); 3138 3139 return (0); 3140 } 3141 case MAC_PROP_STATUS: { 3142 link_state_t link_state; 3143 3144 if (valsize < sizeof (link_state)) 3145 return (EINVAL); 3146 link_state = mac_link_get(mh); 3147 bcopy(&link_state, val, sizeof (link_state)); 3148 3149 return (0); 3150 } 3151 3152 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3153 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3154 ASSERT(valsize >= sizeof (uint_t)); 3155 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3156 mac_rxavail_get(mh) : mac_txavail_get(mh); 3157 bcopy(&rings, val, sizeof (uint_t)); 3158 return (0); 3159 3160 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3161 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3162 ASSERT(valsize >= sizeof (uint_t)); 3163 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3164 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3165 bcopy(&vlinks, val, sizeof (uint_t)); 3166 return (0); 3167 3168 case MAC_PROP_RXRINGSRANGE: 3169 case MAC_PROP_TXRINGSRANGE: 3170 /* 3171 * The value for these properties are returned through 3172 * the MAC_PROP_RESOURCE property. 3173 */ 3174 return (0); 3175 3176 default: 3177 break; 3178 3179 } 3180 3181 /* If driver property, request from driver */ 3182 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3183 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3184 valsize, val); 3185 } 3186 3187 return (err); 3188 } 3189 3190 /* 3191 * Helper function to initialize the range structure for use in 3192 * mac_get_prop. If the type can be other than uint32, we can 3193 * pass that as an arg. 3194 */ 3195 static void 3196 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3197 { 3198 range->mpr_count = 1; 3199 range->mpr_type = MAC_PROPVAL_UINT32; 3200 range->mpr_range_uint32[0].mpur_min = min; 3201 range->mpr_range_uint32[0].mpur_max = max; 3202 } 3203 3204 /* 3205 * Returns information about the specified property, such as default 3206 * values or permissions. 3207 */ 3208 int 3209 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3210 void *default_val, uint_t default_size, mac_propval_range_t *range, 3211 uint_t *perm) 3212 { 3213 mac_prop_info_state_t state; 3214 mac_impl_t *mip = (mac_impl_t *)mh; 3215 uint_t max; 3216 3217 /* 3218 * A property is read/write by default unless the driver says 3219 * otherwise. 3220 */ 3221 if (perm != NULL) 3222 *perm = MAC_PROP_PERM_RW; 3223 3224 if (default_val != NULL) 3225 bzero(default_val, default_size); 3226 3227 /* 3228 * First, handle framework properties for which we don't need to 3229 * involve the driver. 3230 */ 3231 switch (id) { 3232 case MAC_PROP_RESOURCE: 3233 case MAC_PROP_PVID: 3234 case MAC_PROP_LLIMIT: 3235 case MAC_PROP_LDECAY: 3236 return (0); 3237 3238 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3239 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3240 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3241 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3242 if (perm != NULL) 3243 *perm = MAC_PROP_PERM_READ; 3244 return (0); 3245 3246 case MAC_PROP_RXRINGSRANGE: 3247 case MAC_PROP_TXRINGSRANGE: 3248 /* 3249 * Currently, we support range for RX and TX rings properties. 3250 * When we extend this support to maxbw, cpus and priority, 3251 * we should move this to mac_get_resources. 3252 * There is no default value for RX or TX rings. 3253 */ 3254 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3255 mac_is_vnic_primary(mh)) { 3256 /* 3257 * We don't support setting rings for a VLAN 3258 * data link because it shares its ring with the 3259 * primary MAC client. 3260 */ 3261 if (perm != NULL) 3262 *perm = MAC_PROP_PERM_READ; 3263 if (range != NULL) 3264 range->mpr_count = 0; 3265 } else if (range != NULL) { 3266 if (mip->mi_state_flags & MIS_IS_VNIC) 3267 mh = mac_get_lower_mac_handle(mh); 3268 mip = (mac_impl_t *)mh; 3269 if ((id == MAC_PROP_RXRINGSRANGE && 3270 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3271 (id == MAC_PROP_TXRINGSRANGE && 3272 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3273 if (id == MAC_PROP_RXRINGSRANGE) { 3274 if ((mac_rxhwlnksavail_get(mh) + 3275 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3276 /* 3277 * doesn't support groups or 3278 * rings 3279 */ 3280 range->mpr_count = 0; 3281 } else { 3282 /* 3283 * supports specifying groups, 3284 * but not rings 3285 */ 3286 _mac_set_range(range, 0, 0); 3287 } 3288 } else { 3289 if ((mac_txhwlnksavail_get(mh) + 3290 mac_txhwlnksrsvd_get(mh)) <= 1) { 3291 /* 3292 * doesn't support groups or 3293 * rings 3294 */ 3295 range->mpr_count = 0; 3296 } else { 3297 /* 3298 * supports specifying groups, 3299 * but not rings 3300 */ 3301 _mac_set_range(range, 0, 0); 3302 } 3303 } 3304 } else { 3305 max = id == MAC_PROP_RXRINGSRANGE ? 3306 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3307 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3308 if (max <= 1) { 3309 /* 3310 * doesn't support groups or 3311 * rings 3312 */ 3313 range->mpr_count = 0; 3314 } else { 3315 /* 3316 * -1 because we have to leave out the 3317 * default ring. 3318 */ 3319 _mac_set_range(range, 1, max - 1); 3320 } 3321 } 3322 } 3323 return (0); 3324 3325 case MAC_PROP_STATUS: 3326 if (perm != NULL) 3327 *perm = MAC_PROP_PERM_READ; 3328 return (0); 3329 } 3330 3331 /* 3332 * Get the property info from the driver if it implements the 3333 * property info entry point. 3334 */ 3335 bzero(&state, sizeof (state)); 3336 3337 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3338 state.pr_default = default_val; 3339 state.pr_default_size = default_size; 3340 state.pr_range = range; 3341 3342 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3343 (mac_prop_info_handle_t)&state); 3344 3345 /* 3346 * The operation could fail if the buffer supplied by 3347 * the user was too small for the range or default 3348 * value of the property. 3349 */ 3350 if (state.pr_default_status != 0) 3351 return (state.pr_default_status); 3352 3353 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3354 *perm = state.pr_perm; 3355 } 3356 3357 /* 3358 * The MAC layer may want to provide default values or allowed 3359 * ranges for properties if the driver does not provide a 3360 * property info entry point, or that entry point exists, but 3361 * it did not provide a default value or allowed ranges for 3362 * that property. 3363 */ 3364 switch (id) { 3365 case MAC_PROP_MTU: { 3366 uint32_t sdu; 3367 3368 mac_sdu_get(mh, NULL, &sdu); 3369 3370 if (range != NULL && !(state.pr_flags & 3371 MAC_PROP_INFO_RANGE)) { 3372 /* MTU range */ 3373 _mac_set_range(range, sdu, sdu); 3374 } 3375 3376 if (default_val != NULL && !(state.pr_flags & 3377 MAC_PROP_INFO_DEFAULT)) { 3378 if (mip->mi_info.mi_media == DL_ETHER) 3379 sdu = ETHERMTU; 3380 /* default MTU value */ 3381 bcopy(&sdu, default_val, sizeof (sdu)); 3382 } 3383 } 3384 } 3385 3386 return (0); 3387 } 3388 3389 int 3390 mac_fastpath_disable(mac_handle_t mh) 3391 { 3392 mac_impl_t *mip = (mac_impl_t *)mh; 3393 3394 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3395 return (0); 3396 3397 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3398 } 3399 3400 void 3401 mac_fastpath_enable(mac_handle_t mh) 3402 { 3403 mac_impl_t *mip = (mac_impl_t *)mh; 3404 3405 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3406 return; 3407 3408 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3409 } 3410 3411 void 3412 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3413 { 3414 uint_t nprops, i; 3415 3416 if (priv_props == NULL) 3417 return; 3418 3419 nprops = 0; 3420 while (priv_props[nprops] != NULL) 3421 nprops++; 3422 if (nprops == 0) 3423 return; 3424 3425 3426 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3427 3428 for (i = 0; i < nprops; i++) { 3429 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3430 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3431 MAXLINKPROPNAME); 3432 } 3433 3434 mip->mi_priv_prop_count = nprops; 3435 } 3436 3437 void 3438 mac_unregister_priv_prop(mac_impl_t *mip) 3439 { 3440 uint_t i; 3441 3442 if (mip->mi_priv_prop_count == 0) { 3443 ASSERT(mip->mi_priv_prop == NULL); 3444 return; 3445 } 3446 3447 for (i = 0; i < mip->mi_priv_prop_count; i++) 3448 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3449 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3450 sizeof (char *)); 3451 3452 mip->mi_priv_prop = NULL; 3453 mip->mi_priv_prop_count = 0; 3454 } 3455 3456 /* 3457 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3458 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3459 * cases if MAC free's the ring structure after mac_stop_ring(), any 3460 * illegal access to the ring structure coming from the driver will panic 3461 * the system. In order to protect the system from such inadverent access, 3462 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3463 * When packets are received on free'd up rings, MAC (through the generation 3464 * count mechanism) will drop such packets. 3465 */ 3466 static mac_ring_t * 3467 mac_ring_alloc(mac_impl_t *mip) 3468 { 3469 mac_ring_t *ring; 3470 3471 mutex_enter(&mip->mi_ring_lock); 3472 if (mip->mi_ring_freelist != NULL) { 3473 ring = mip->mi_ring_freelist; 3474 mip->mi_ring_freelist = ring->mr_next; 3475 bzero(ring, sizeof (mac_ring_t)); 3476 mutex_exit(&mip->mi_ring_lock); 3477 } else { 3478 mutex_exit(&mip->mi_ring_lock); 3479 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3480 } 3481 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3482 return (ring); 3483 } 3484 3485 static void 3486 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3487 { 3488 ASSERT(ring->mr_state == MR_FREE); 3489 3490 mutex_enter(&mip->mi_ring_lock); 3491 ring->mr_state = MR_FREE; 3492 ring->mr_flag = 0; 3493 ring->mr_next = mip->mi_ring_freelist; 3494 ring->mr_mip = NULL; 3495 mip->mi_ring_freelist = ring; 3496 mac_ring_stat_delete(ring); 3497 mutex_exit(&mip->mi_ring_lock); 3498 } 3499 3500 static void 3501 mac_ring_freeall(mac_impl_t *mip) 3502 { 3503 mac_ring_t *ring_next; 3504 mutex_enter(&mip->mi_ring_lock); 3505 mac_ring_t *ring = mip->mi_ring_freelist; 3506 while (ring != NULL) { 3507 ring_next = ring->mr_next; 3508 kmem_cache_free(mac_ring_cache, ring); 3509 ring = ring_next; 3510 } 3511 mip->mi_ring_freelist = NULL; 3512 mutex_exit(&mip->mi_ring_lock); 3513 } 3514 3515 int 3516 mac_start_ring(mac_ring_t *ring) 3517 { 3518 int rv = 0; 3519 3520 ASSERT(ring->mr_state == MR_FREE); 3521 3522 if (ring->mr_start != NULL) { 3523 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3524 if (rv != 0) 3525 return (rv); 3526 } 3527 3528 ring->mr_state = MR_INUSE; 3529 return (rv); 3530 } 3531 3532 void 3533 mac_stop_ring(mac_ring_t *ring) 3534 { 3535 ASSERT(ring->mr_state == MR_INUSE); 3536 3537 if (ring->mr_stop != NULL) 3538 ring->mr_stop(ring->mr_driver); 3539 3540 ring->mr_state = MR_FREE; 3541 3542 /* 3543 * Increment the ring generation number for this ring. 3544 */ 3545 ring->mr_gen_num++; 3546 } 3547 3548 int 3549 mac_start_group(mac_group_t *group) 3550 { 3551 int rv = 0; 3552 3553 if (group->mrg_start != NULL) 3554 rv = group->mrg_start(group->mrg_driver); 3555 3556 return (rv); 3557 } 3558 3559 void 3560 mac_stop_group(mac_group_t *group) 3561 { 3562 if (group->mrg_stop != NULL) 3563 group->mrg_stop(group->mrg_driver); 3564 } 3565 3566 /* 3567 * Called from mac_start() on the default Rx group. Broadcast and multicast 3568 * packets are received only on the default group. Hence the default group 3569 * needs to be up even if the primary client is not up, for the other groups 3570 * to be functional. We do this by calling this function at mac_start time 3571 * itself. However the broadcast packets that are received can't make their 3572 * way beyond mac_rx until a mac client creates a broadcast flow. 3573 */ 3574 static int 3575 mac_start_group_and_rings(mac_group_t *group) 3576 { 3577 mac_ring_t *ring; 3578 int rv = 0; 3579 3580 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3581 if ((rv = mac_start_group(group)) != 0) 3582 return (rv); 3583 3584 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3585 ASSERT(ring->mr_state == MR_FREE); 3586 if ((rv = mac_start_ring(ring)) != 0) 3587 goto error; 3588 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3589 } 3590 return (0); 3591 3592 error: 3593 mac_stop_group_and_rings(group); 3594 return (rv); 3595 } 3596 3597 /* Called from mac_stop on the default Rx group */ 3598 static void 3599 mac_stop_group_and_rings(mac_group_t *group) 3600 { 3601 mac_ring_t *ring; 3602 3603 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3604 if (ring->mr_state != MR_FREE) { 3605 mac_stop_ring(ring); 3606 ring->mr_flag = 0; 3607 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3608 } 3609 } 3610 mac_stop_group(group); 3611 } 3612 3613 3614 static mac_ring_t * 3615 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3616 mac_capab_rings_t *cap_rings) 3617 { 3618 mac_ring_t *ring, *rnext; 3619 mac_ring_info_t ring_info; 3620 ddi_intr_handle_t ddi_handle; 3621 3622 ring = mac_ring_alloc(mip); 3623 3624 /* Prepare basic information of ring */ 3625 3626 /* 3627 * Ring index is numbered to be unique across a particular device. 3628 * Ring index computation makes following assumptions: 3629 * - For drivers with static grouping (e.g. ixgbe, bge), 3630 * ring index exchanged with the driver (e.g. during mr_rget) 3631 * is unique only across the group the ring belongs to. 3632 * - Drivers with dynamic grouping (e.g. nxge), start 3633 * with single group (mrg_index = 0). 3634 */ 3635 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3636 ring->mr_type = group->mrg_type; 3637 ring->mr_gh = (mac_group_handle_t)group; 3638 3639 /* Insert the new ring to the list. */ 3640 ring->mr_next = group->mrg_rings; 3641 group->mrg_rings = ring; 3642 3643 /* Zero to reuse the info data structure */ 3644 bzero(&ring_info, sizeof (ring_info)); 3645 3646 /* Query ring information from driver */ 3647 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3648 index, &ring_info, (mac_ring_handle_t)ring); 3649 3650 ring->mr_info = ring_info; 3651 3652 /* 3653 * The interrupt handle could be shared among multiple rings. 3654 * Thus if there is a bunch of rings that are sharing an 3655 * interrupt, then only one ring among the bunch will be made 3656 * available for interrupt re-targeting; the rest will have 3657 * ddi_shared flag set to TRUE and would not be available for 3658 * be interrupt re-targeting. 3659 */ 3660 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3661 rnext = ring->mr_next; 3662 while (rnext != NULL) { 3663 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3664 ddi_handle) { 3665 /* 3666 * If default ring (mr_index == 0) is part 3667 * of a group of rings sharing an 3668 * interrupt, then set ddi_shared flag for 3669 * the default ring and give another ring 3670 * the chance to be re-targeted. 3671 */ 3672 if (rnext->mr_index == 0 && 3673 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3674 rnext->mr_info.mri_intr.mi_ddi_shared = 3675 B_TRUE; 3676 } else { 3677 ring->mr_info.mri_intr.mi_ddi_shared = 3678 B_TRUE; 3679 } 3680 break; 3681 } 3682 rnext = rnext->mr_next; 3683 } 3684 /* 3685 * If rnext is NULL, then no matching ddi_handle was found. 3686 * Rx rings get registered first. So if this is a Tx ring, 3687 * then go through all the Rx rings and see if there is a 3688 * matching ddi handle. 3689 */ 3690 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3691 mac_compare_ddi_handle(mip->mi_rx_groups, 3692 mip->mi_rx_group_count, ring); 3693 } 3694 } 3695 3696 /* Update ring's status */ 3697 ring->mr_state = MR_FREE; 3698 ring->mr_flag = 0; 3699 3700 /* Update the ring count of the group */ 3701 group->mrg_cur_count++; 3702 3703 /* Create per ring kstats */ 3704 if (ring->mr_stat != NULL) { 3705 ring->mr_mip = mip; 3706 mac_ring_stat_create(ring); 3707 } 3708 3709 return (ring); 3710 } 3711 3712 /* 3713 * Rings are chained together for easy regrouping. 3714 */ 3715 static void 3716 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3717 mac_capab_rings_t *cap_rings) 3718 { 3719 int index; 3720 3721 /* 3722 * Initialize all ring members of this group. Size of zero will not 3723 * enter the loop, so it's safe for initializing an empty group. 3724 */ 3725 for (index = size - 1; index >= 0; index--) 3726 (void) mac_init_ring(mip, group, index, cap_rings); 3727 } 3728 3729 int 3730 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3731 { 3732 mac_capab_rings_t *cap_rings; 3733 mac_group_t *group; 3734 mac_group_t *groups; 3735 mac_group_info_t group_info; 3736 uint_t group_free = 0; 3737 uint_t ring_left; 3738 mac_ring_t *ring; 3739 int g; 3740 int err = 0; 3741 uint_t grpcnt; 3742 boolean_t pseudo_txgrp = B_FALSE; 3743 3744 switch (rtype) { 3745 case MAC_RING_TYPE_RX: 3746 ASSERT(mip->mi_rx_groups == NULL); 3747 3748 cap_rings = &mip->mi_rx_rings_cap; 3749 cap_rings->mr_type = MAC_RING_TYPE_RX; 3750 break; 3751 case MAC_RING_TYPE_TX: 3752 ASSERT(mip->mi_tx_groups == NULL); 3753 3754 cap_rings = &mip->mi_tx_rings_cap; 3755 cap_rings->mr_type = MAC_RING_TYPE_TX; 3756 break; 3757 default: 3758 ASSERT(B_FALSE); 3759 } 3760 3761 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3762 return (0); 3763 grpcnt = cap_rings->mr_gnum; 3764 3765 /* 3766 * If we have multiple TX rings, but only one TX group, we can 3767 * create pseudo TX groups (one per TX ring) in the MAC layer, 3768 * except for an aggr. For an aggr currently we maintain only 3769 * one group with all the rings (for all its ports), going 3770 * forwards we might change this. 3771 */ 3772 if (rtype == MAC_RING_TYPE_TX && 3773 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 3774 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 3775 /* 3776 * The -1 here is because we create a default TX group 3777 * with all the rings in it. 3778 */ 3779 grpcnt = cap_rings->mr_rnum - 1; 3780 pseudo_txgrp = B_TRUE; 3781 } 3782 3783 /* 3784 * Allocate a contiguous buffer for all groups. 3785 */ 3786 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 3787 3788 ring_left = cap_rings->mr_rnum; 3789 3790 /* 3791 * Get all ring groups if any, and get their ring members 3792 * if any. 3793 */ 3794 for (g = 0; g < grpcnt; g++) { 3795 group = groups + g; 3796 3797 /* Prepare basic information of the group */ 3798 group->mrg_index = g; 3799 group->mrg_type = rtype; 3800 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3801 group->mrg_mh = (mac_handle_t)mip; 3802 group->mrg_next = group + 1; 3803 3804 /* Zero to reuse the info data structure */ 3805 bzero(&group_info, sizeof (group_info)); 3806 3807 if (pseudo_txgrp) { 3808 /* 3809 * This is a pseudo group that we created, apart 3810 * from setting the state there is nothing to be 3811 * done. 3812 */ 3813 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 3814 group_free++; 3815 continue; 3816 } 3817 /* Query group information from driver */ 3818 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3819 (mac_group_handle_t)group); 3820 3821 switch (cap_rings->mr_group_type) { 3822 case MAC_GROUP_TYPE_DYNAMIC: 3823 if (cap_rings->mr_gaddring == NULL || 3824 cap_rings->mr_gremring == NULL) { 3825 DTRACE_PROBE3( 3826 mac__init__rings_no_addremring, 3827 char *, mip->mi_name, 3828 mac_group_add_ring_t, 3829 cap_rings->mr_gaddring, 3830 mac_group_add_ring_t, 3831 cap_rings->mr_gremring); 3832 err = EINVAL; 3833 goto bail; 3834 } 3835 3836 switch (rtype) { 3837 case MAC_RING_TYPE_RX: 3838 /* 3839 * The first RX group must have non-zero 3840 * rings, and the following groups must 3841 * have zero rings. 3842 */ 3843 if (g == 0 && group_info.mgi_count == 0) { 3844 DTRACE_PROBE1( 3845 mac__init__rings__rx__def__zero, 3846 char *, mip->mi_name); 3847 err = EINVAL; 3848 goto bail; 3849 } 3850 if (g > 0 && group_info.mgi_count != 0) { 3851 DTRACE_PROBE3( 3852 mac__init__rings__rx__nonzero, 3853 char *, mip->mi_name, 3854 int, g, int, group_info.mgi_count); 3855 err = EINVAL; 3856 goto bail; 3857 } 3858 break; 3859 case MAC_RING_TYPE_TX: 3860 /* 3861 * All TX ring groups must have zero rings. 3862 */ 3863 if (group_info.mgi_count != 0) { 3864 DTRACE_PROBE3( 3865 mac__init__rings__tx__nonzero, 3866 char *, mip->mi_name, 3867 int, g, int, group_info.mgi_count); 3868 err = EINVAL; 3869 goto bail; 3870 } 3871 break; 3872 } 3873 break; 3874 case MAC_GROUP_TYPE_STATIC: 3875 /* 3876 * Note that an empty group is allowed, e.g., an aggr 3877 * would start with an empty group. 3878 */ 3879 break; 3880 default: 3881 /* unknown group type */ 3882 DTRACE_PROBE2(mac__init__rings__unknown__type, 3883 char *, mip->mi_name, 3884 int, cap_rings->mr_group_type); 3885 err = EINVAL; 3886 goto bail; 3887 } 3888 3889 3890 /* 3891 * Driver must register group->mgi_addmac/remmac() for rx groups 3892 * to support multiple MAC addresses. 3893 */ 3894 if (rtype == MAC_RING_TYPE_RX) { 3895 if ((group_info.mgi_addmac == NULL) || 3896 (group_info.mgi_addmac == NULL)) { 3897 goto bail; 3898 } 3899 } 3900 3901 /* Cache driver-supplied information */ 3902 group->mrg_info = group_info; 3903 3904 /* Update the group's status and group count. */ 3905 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 3906 group_free++; 3907 3908 group->mrg_rings = NULL; 3909 group->mrg_cur_count = 0; 3910 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3911 ring_left -= group_info.mgi_count; 3912 3913 /* The current group size should be equal to default value */ 3914 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3915 } 3916 3917 /* Build up a dummy group for free resources as a pool */ 3918 group = groups + grpcnt; 3919 3920 /* Prepare basic information of the group */ 3921 group->mrg_index = -1; 3922 group->mrg_type = rtype; 3923 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3924 group->mrg_mh = (mac_handle_t)mip; 3925 group->mrg_next = NULL; 3926 3927 /* 3928 * If there are ungrouped rings, allocate a continuous buffer for 3929 * remaining resources. 3930 */ 3931 if (ring_left != 0) { 3932 group->mrg_rings = NULL; 3933 group->mrg_cur_count = 0; 3934 mac_init_group(mip, group, ring_left, cap_rings); 3935 3936 /* The current group size should be equal to ring_left */ 3937 ASSERT(group->mrg_cur_count == ring_left); 3938 3939 ring_left = 0; 3940 3941 /* Update this group's status */ 3942 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 3943 } else 3944 group->mrg_rings = NULL; 3945 3946 ASSERT(ring_left == 0); 3947 3948 bail: 3949 3950 /* Cache other important information to finalize the initialization */ 3951 switch (rtype) { 3952 case MAC_RING_TYPE_RX: 3953 mip->mi_rx_group_type = cap_rings->mr_group_type; 3954 mip->mi_rx_group_count = cap_rings->mr_gnum; 3955 mip->mi_rx_groups = groups; 3956 mip->mi_rx_donor_grp = groups; 3957 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 3958 /* 3959 * The default ring is reserved since it is 3960 * used for sending the broadcast etc. packets. 3961 */ 3962 mip->mi_rxrings_avail = 3963 mip->mi_rx_groups->mrg_cur_count - 1; 3964 mip->mi_rxrings_rsvd = 1; 3965 } 3966 /* 3967 * The default group cannot be reserved. It is used by 3968 * all the clients that do not have an exclusive group. 3969 */ 3970 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 3971 mip->mi_rxhwclnt_used = 1; 3972 break; 3973 case MAC_RING_TYPE_TX: 3974 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 3975 cap_rings->mr_group_type; 3976 mip->mi_tx_group_count = grpcnt; 3977 mip->mi_tx_group_free = group_free; 3978 mip->mi_tx_groups = groups; 3979 3980 group = groups + grpcnt; 3981 ring = group->mrg_rings; 3982 /* 3983 * The ring can be NULL in the case of aggr. Aggr will 3984 * have an empty Tx group which will get populated 3985 * later when pseudo Tx rings are added after 3986 * mac_register() is done. 3987 */ 3988 if (ring == NULL) { 3989 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 3990 /* 3991 * pass the group to aggr so it can add Tx 3992 * rings to the group later. 3993 */ 3994 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 3995 (mac_group_handle_t)group); 3996 /* 3997 * Even though there are no rings at this time 3998 * (rings will come later), set the group 3999 * state to registered. 4000 */ 4001 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4002 } else { 4003 /* 4004 * Ring 0 is used as the default one and it could be 4005 * assigned to a client as well. 4006 */ 4007 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4008 ring = ring->mr_next; 4009 ASSERT(ring->mr_index == 0); 4010 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4011 } 4012 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 4013 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4014 /* 4015 * The default ring cannot be reserved. 4016 */ 4017 mip->mi_txrings_rsvd = 1; 4018 /* 4019 * The default group cannot be reserved. It will be shared 4020 * by clients that do not have an exclusive group. 4021 */ 4022 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4023 mip->mi_txhwclnt_used = 1; 4024 break; 4025 default: 4026 ASSERT(B_FALSE); 4027 } 4028 4029 if (err != 0) 4030 mac_free_rings(mip, rtype); 4031 4032 return (err); 4033 } 4034 4035 /* 4036 * The ddi interrupt handle could be shared amoung rings. If so, compare 4037 * the new ring's ddi handle with the existing ones and set ddi_shared 4038 * flag. 4039 */ 4040 void 4041 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4042 { 4043 mac_group_t *group; 4044 mac_ring_t *ring; 4045 ddi_intr_handle_t ddi_handle; 4046 int g; 4047 4048 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4049 for (g = 0; g < grpcnt; g++) { 4050 group = groups + g; 4051 for (ring = group->mrg_rings; ring != NULL; 4052 ring = ring->mr_next) { 4053 if (ring == cring) 4054 continue; 4055 if (ring->mr_info.mri_intr.mi_ddi_handle == 4056 ddi_handle) { 4057 if (cring->mr_type == MAC_RING_TYPE_RX && 4058 ring->mr_index == 0 && 4059 !ring->mr_info.mri_intr.mi_ddi_shared) { 4060 ring->mr_info.mri_intr.mi_ddi_shared = 4061 B_TRUE; 4062 } else { 4063 cring->mr_info.mri_intr.mi_ddi_shared = 4064 B_TRUE; 4065 } 4066 return; 4067 } 4068 } 4069 } 4070 } 4071 4072 /* 4073 * Called to free all groups of particular type (RX or TX). It's assumed that 4074 * no clients are using these groups. 4075 */ 4076 void 4077 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4078 { 4079 mac_group_t *group, *groups; 4080 uint_t group_count; 4081 4082 switch (rtype) { 4083 case MAC_RING_TYPE_RX: 4084 if (mip->mi_rx_groups == NULL) 4085 return; 4086 4087 groups = mip->mi_rx_groups; 4088 group_count = mip->mi_rx_group_count; 4089 4090 mip->mi_rx_groups = NULL; 4091 mip->mi_rx_donor_grp = NULL; 4092 mip->mi_rx_group_count = 0; 4093 break; 4094 case MAC_RING_TYPE_TX: 4095 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4096 4097 if (mip->mi_tx_groups == NULL) 4098 return; 4099 4100 groups = mip->mi_tx_groups; 4101 group_count = mip->mi_tx_group_count; 4102 4103 mip->mi_tx_groups = NULL; 4104 mip->mi_tx_group_count = 0; 4105 mip->mi_tx_group_free = 0; 4106 mip->mi_default_tx_ring = NULL; 4107 break; 4108 default: 4109 ASSERT(B_FALSE); 4110 } 4111 4112 for (group = groups; group != NULL; group = group->mrg_next) { 4113 mac_ring_t *ring; 4114 4115 if (group->mrg_cur_count == 0) 4116 continue; 4117 4118 ASSERT(group->mrg_rings != NULL); 4119 4120 while ((ring = group->mrg_rings) != NULL) { 4121 group->mrg_rings = ring->mr_next; 4122 mac_ring_free(mip, ring); 4123 } 4124 } 4125 4126 /* Free all the cached rings */ 4127 mac_ring_freeall(mip); 4128 /* Free the block of group data strutures */ 4129 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4130 } 4131 4132 /* 4133 * Associate a MAC address with a receive group. 4134 * 4135 * The return value of this function should always be checked properly, because 4136 * any type of failure could cause unexpected results. A group can be added 4137 * or removed with a MAC address only after it has been reserved. Ideally, 4138 * a successful reservation always leads to calling mac_group_addmac() to 4139 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4140 * always imply that the group is functioning abnormally. 4141 * 4142 * Currently this function is called everywhere, and it reflects assumptions 4143 * about MAC addresses in the implementation. CR 6735196. 4144 */ 4145 int 4146 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4147 { 4148 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4149 ASSERT(group->mrg_info.mgi_addmac != NULL); 4150 4151 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4152 } 4153 4154 /* 4155 * Remove the association between MAC address and receive group. 4156 */ 4157 int 4158 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4159 { 4160 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 4161 ASSERT(group->mrg_info.mgi_remmac != NULL); 4162 4163 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4164 } 4165 4166 /* 4167 * This is the entry point for packets transmitted through the bridging code. 4168 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4169 * pointer may be NULL to select the default ring. 4170 */ 4171 mblk_t * 4172 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4173 { 4174 mac_handle_t mh; 4175 4176 /* 4177 * Once we take a reference on the bridge link, the bridge 4178 * module itself can't unload, so the callback pointers are 4179 * stable. 4180 */ 4181 mutex_enter(&mip->mi_bridge_lock); 4182 if ((mh = mip->mi_bridge_link) != NULL) 4183 mac_bridge_ref_cb(mh, B_TRUE); 4184 mutex_exit(&mip->mi_bridge_lock); 4185 if (mh == NULL) { 4186 MAC_RING_TX(mip, rh, mp, mp); 4187 } else { 4188 mp = mac_bridge_tx_cb(mh, rh, mp); 4189 mac_bridge_ref_cb(mh, B_FALSE); 4190 } 4191 4192 return (mp); 4193 } 4194 4195 /* 4196 * Find a ring from its index. 4197 */ 4198 mac_ring_handle_t 4199 mac_find_ring(mac_group_handle_t gh, int index) 4200 { 4201 mac_group_t *group = (mac_group_t *)gh; 4202 mac_ring_t *ring = group->mrg_rings; 4203 4204 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4205 if (ring->mr_index == index) 4206 break; 4207 4208 return ((mac_ring_handle_t)ring); 4209 } 4210 /* 4211 * Add a ring to an existing group. 4212 * 4213 * The ring must be either passed directly (for example if the ring 4214 * movement is initiated by the framework), or specified through a driver 4215 * index (for example when the ring is added by the driver. 4216 * 4217 * The caller needs to call mac_perim_enter() before calling this function. 4218 */ 4219 int 4220 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4221 { 4222 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4223 mac_capab_rings_t *cap_rings; 4224 boolean_t driver_call = (ring == NULL); 4225 mac_group_type_t group_type; 4226 int ret = 0; 4227 flow_entry_t *flent; 4228 4229 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4230 4231 switch (group->mrg_type) { 4232 case MAC_RING_TYPE_RX: 4233 cap_rings = &mip->mi_rx_rings_cap; 4234 group_type = mip->mi_rx_group_type; 4235 break; 4236 case MAC_RING_TYPE_TX: 4237 cap_rings = &mip->mi_tx_rings_cap; 4238 group_type = mip->mi_tx_group_type; 4239 break; 4240 default: 4241 ASSERT(B_FALSE); 4242 } 4243 4244 /* 4245 * There should be no ring with the same ring index in the target 4246 * group. 4247 */ 4248 ASSERT(mac_find_ring((mac_group_handle_t)group, 4249 driver_call ? index : ring->mr_index) == NULL); 4250 4251 if (driver_call) { 4252 /* 4253 * The function is called as a result of a request from 4254 * a driver to add a ring to an existing group, for example 4255 * from the aggregation driver. Allocate a new mac_ring_t 4256 * for that ring. 4257 */ 4258 ring = mac_init_ring(mip, group, index, cap_rings); 4259 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4260 } else { 4261 /* 4262 * The function is called as a result of a MAC layer request 4263 * to add a ring to an existing group. In this case the 4264 * ring is being moved between groups, which requires 4265 * the underlying driver to support dynamic grouping, 4266 * and the mac_ring_t already exists. 4267 */ 4268 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4269 ASSERT(group->mrg_driver == NULL || 4270 cap_rings->mr_gaddring != NULL); 4271 ASSERT(ring->mr_gh == NULL); 4272 } 4273 4274 /* 4275 * At this point the ring should not be in use, and it should be 4276 * of the right for the target group. 4277 */ 4278 ASSERT(ring->mr_state < MR_INUSE); 4279 ASSERT(ring->mr_srs == NULL); 4280 ASSERT(ring->mr_type == group->mrg_type); 4281 4282 if (!driver_call) { 4283 /* 4284 * Add the driver level hardware ring if the process was not 4285 * initiated by the driver, and the target group is not the 4286 * group. 4287 */ 4288 if (group->mrg_driver != NULL) { 4289 cap_rings->mr_gaddring(group->mrg_driver, 4290 ring->mr_driver, ring->mr_type); 4291 } 4292 4293 /* 4294 * Insert the ring ahead existing rings. 4295 */ 4296 ring->mr_next = group->mrg_rings; 4297 group->mrg_rings = ring; 4298 ring->mr_gh = (mac_group_handle_t)group; 4299 group->mrg_cur_count++; 4300 } 4301 4302 /* 4303 * If the group has not been actively used, we're done. 4304 */ 4305 if (group->mrg_index != -1 && 4306 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4307 return (0); 4308 4309 /* 4310 * Start the ring if needed. Failure causes to undo the grouping action. 4311 */ 4312 if (ring->mr_state != MR_INUSE) { 4313 if ((ret = mac_start_ring(ring)) != 0) { 4314 if (!driver_call) { 4315 cap_rings->mr_gremring(group->mrg_driver, 4316 ring->mr_driver, ring->mr_type); 4317 } 4318 group->mrg_cur_count--; 4319 group->mrg_rings = ring->mr_next; 4320 4321 ring->mr_gh = NULL; 4322 4323 if (driver_call) 4324 mac_ring_free(mip, ring); 4325 4326 return (ret); 4327 } 4328 } 4329 4330 /* 4331 * Set up SRS/SR according to the ring type. 4332 */ 4333 switch (ring->mr_type) { 4334 case MAC_RING_TYPE_RX: 4335 /* 4336 * Setup SRS on top of the new ring if the group is 4337 * reserved for someones exclusive use. 4338 */ 4339 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4340 mac_client_impl_t *mcip; 4341 4342 mcip = MAC_GROUP_ONLY_CLIENT(group); 4343 /* 4344 * Even though this group is reserved we migth still 4345 * have multiple clients, i.e a VLAN shares the 4346 * group with the primary mac client. 4347 */ 4348 if (mcip != NULL) { 4349 flent = mcip->mci_flent; 4350 ASSERT(flent->fe_rx_srs_cnt > 0); 4351 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4352 mac_fanout_setup(mcip, flent, 4353 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, 4354 mcip, NULL, NULL); 4355 } else { 4356 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4357 } 4358 } 4359 break; 4360 case MAC_RING_TYPE_TX: 4361 { 4362 mac_grp_client_t *mgcp = group->mrg_clients; 4363 mac_client_impl_t *mcip; 4364 mac_soft_ring_set_t *mac_srs; 4365 mac_srs_tx_t *tx; 4366 4367 if (MAC_GROUP_NO_CLIENT(group)) { 4368 if (ring->mr_state == MR_INUSE) 4369 mac_stop_ring(ring); 4370 ring->mr_flag = 0; 4371 break; 4372 } 4373 /* 4374 * If the rings are being moved to a group that has 4375 * clients using it, then add the new rings to the 4376 * clients SRS. 4377 */ 4378 while (mgcp != NULL) { 4379 boolean_t is_aggr; 4380 4381 mcip = mgcp->mgc_client; 4382 flent = mcip->mci_flent; 4383 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR); 4384 mac_srs = MCIP_TX_SRS(mcip); 4385 tx = &mac_srs->srs_tx; 4386 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4387 /* 4388 * If we are growing from 1 to multiple rings. 4389 */ 4390 if (tx->st_mode == SRS_TX_BW || 4391 tx->st_mode == SRS_TX_SERIALIZE || 4392 tx->st_mode == SRS_TX_DEFAULT) { 4393 mac_ring_t *tx_ring = tx->st_arg2; 4394 4395 tx->st_arg2 = NULL; 4396 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4397 mac_tx_srs_add_ring(mac_srs, tx_ring); 4398 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4399 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4400 SRS_TX_BW_FANOUT; 4401 } else { 4402 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4403 SRS_TX_FANOUT; 4404 } 4405 tx->st_func = mac_tx_get_func(tx->st_mode); 4406 } 4407 mac_tx_srs_add_ring(mac_srs, ring); 4408 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4409 mac_rx_deliver, mcip, NULL, NULL); 4410 mac_tx_client_restart((mac_client_handle_t)mcip); 4411 mgcp = mgcp->mgc_next; 4412 } 4413 break; 4414 } 4415 default: 4416 ASSERT(B_FALSE); 4417 } 4418 /* 4419 * For aggr, the default ring will be NULL to begin with. If it 4420 * is NULL, then pick the first ring that gets added as the 4421 * default ring. Any ring in an aggregation can be removed at 4422 * any time (by the user action of removing a link) and if the 4423 * current default ring gets removed, then a new one gets 4424 * picked (see i_mac_group_rem_ring()). 4425 */ 4426 if (mip->mi_state_flags & MIS_IS_AGGR && 4427 mip->mi_default_tx_ring == NULL && 4428 ring->mr_type == MAC_RING_TYPE_TX) { 4429 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4430 } 4431 4432 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4433 return (0); 4434 } 4435 4436 /* 4437 * Remove a ring from it's current group. MAC internal function for dynamic 4438 * grouping. 4439 * 4440 * The caller needs to call mac_perim_enter() before calling this function. 4441 */ 4442 void 4443 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4444 boolean_t driver_call) 4445 { 4446 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4447 mac_capab_rings_t *cap_rings = NULL; 4448 mac_group_type_t group_type; 4449 4450 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4451 4452 ASSERT(mac_find_ring((mac_group_handle_t)group, 4453 ring->mr_index) == (mac_ring_handle_t)ring); 4454 ASSERT((mac_group_t *)ring->mr_gh == group); 4455 ASSERT(ring->mr_type == group->mrg_type); 4456 4457 if (ring->mr_state == MR_INUSE) 4458 mac_stop_ring(ring); 4459 switch (ring->mr_type) { 4460 case MAC_RING_TYPE_RX: 4461 group_type = mip->mi_rx_group_type; 4462 cap_rings = &mip->mi_rx_rings_cap; 4463 4464 /* 4465 * Only hardware classified packets hold a reference to the 4466 * ring all the way up the Rx path. mac_rx_srs_remove() 4467 * will take care of quiescing the Rx path and removing the 4468 * SRS. The software classified path neither holds a reference 4469 * nor any association with the ring in mac_rx. 4470 */ 4471 if (ring->mr_srs != NULL) { 4472 mac_rx_srs_remove(ring->mr_srs); 4473 ring->mr_srs = NULL; 4474 } 4475 4476 break; 4477 case MAC_RING_TYPE_TX: 4478 { 4479 mac_grp_client_t *mgcp; 4480 mac_client_impl_t *mcip; 4481 mac_soft_ring_set_t *mac_srs; 4482 mac_srs_tx_t *tx; 4483 mac_ring_t *rem_ring; 4484 mac_group_t *defgrp; 4485 uint_t ring_info = 0; 4486 4487 /* 4488 * For TX this function is invoked in three 4489 * cases: 4490 * 4491 * 1) In the case of a failure during the 4492 * initial creation of a group when a share is 4493 * associated with a MAC client. So the SRS is not 4494 * yet setup, and will be setup later after the 4495 * group has been reserved and populated. 4496 * 4497 * 2) From mac_release_tx_group() when freeing 4498 * a TX SRS. 4499 * 4500 * 3) In the case of aggr, when a port gets removed, 4501 * the pseudo Tx rings that it exposed gets removed. 4502 * 4503 * In the first two cases the SRS and its soft 4504 * rings are already quiesced. 4505 */ 4506 if (driver_call) { 4507 mac_client_impl_t *mcip; 4508 mac_soft_ring_set_t *mac_srs; 4509 mac_soft_ring_t *sringp; 4510 mac_srs_tx_t *srs_tx; 4511 4512 if (mip->mi_state_flags & MIS_IS_AGGR && 4513 mip->mi_default_tx_ring == 4514 (mac_ring_handle_t)ring) { 4515 /* pick a new default Tx ring */ 4516 mip->mi_default_tx_ring = 4517 (group->mrg_rings != ring) ? 4518 (mac_ring_handle_t)group->mrg_rings : 4519 (mac_ring_handle_t)(ring->mr_next); 4520 } 4521 /* Presently only aggr case comes here */ 4522 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4523 break; 4524 4525 mcip = MAC_GROUP_ONLY_CLIENT(group); 4526 ASSERT(mcip != NULL); 4527 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR); 4528 mac_srs = MCIP_TX_SRS(mcip); 4529 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4530 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4531 srs_tx = &mac_srs->srs_tx; 4532 /* 4533 * Wakeup any callers blocked on this 4534 * Tx ring due to flow control. 4535 */ 4536 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4537 ASSERT(sringp != NULL); 4538 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4539 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4540 mac_tx_srs_del_ring(mac_srs, ring); 4541 mac_tx_client_restart((mac_client_handle_t)mcip); 4542 break; 4543 } 4544 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4545 group_type = mip->mi_tx_group_type; 4546 cap_rings = &mip->mi_tx_rings_cap; 4547 /* 4548 * See if we need to take it out of the MAC clients using 4549 * this group 4550 */ 4551 if (MAC_GROUP_NO_CLIENT(group)) 4552 break; 4553 mgcp = group->mrg_clients; 4554 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4555 while (mgcp != NULL) { 4556 mcip = mgcp->mgc_client; 4557 mac_srs = MCIP_TX_SRS(mcip); 4558 tx = &mac_srs->srs_tx; 4559 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4560 /* 4561 * If we are here when removing rings from the 4562 * defgroup, mac_reserve_tx_ring would have 4563 * already deleted the ring from the MAC 4564 * clients in the group. 4565 */ 4566 if (group != defgrp) { 4567 mac_tx_invoke_callbacks(mcip, 4568 (mac_tx_cookie_t) 4569 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4570 mac_tx_srs_del_ring(mac_srs, ring); 4571 } 4572 /* 4573 * Additionally, if we are left with only 4574 * one ring in the group after this, we need 4575 * to modify the mode etc. to. (We haven't 4576 * yet taken the ring out, so we check with 2). 4577 */ 4578 if (group->mrg_cur_count == 2) { 4579 if (ring->mr_next == NULL) 4580 rem_ring = group->mrg_rings; 4581 else 4582 rem_ring = ring->mr_next; 4583 mac_tx_invoke_callbacks(mcip, 4584 (mac_tx_cookie_t) 4585 mac_tx_srs_get_soft_ring(mac_srs, 4586 rem_ring)); 4587 mac_tx_srs_del_ring(mac_srs, rem_ring); 4588 if (rem_ring->mr_state != MR_INUSE) { 4589 (void) mac_start_ring(rem_ring); 4590 } 4591 tx->st_arg2 = (void *)rem_ring; 4592 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4593 ring_info = mac_hwring_getinfo( 4594 (mac_ring_handle_t)rem_ring); 4595 /* 4596 * We are shrinking from multiple 4597 * to 1 ring. 4598 */ 4599 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4600 tx->st_mode = SRS_TX_BW; 4601 } else if (mac_tx_serialize || 4602 (ring_info & MAC_RING_TX_SERIALIZE)) { 4603 tx->st_mode = SRS_TX_SERIALIZE; 4604 } else { 4605 tx->st_mode = SRS_TX_DEFAULT; 4606 } 4607 tx->st_func = mac_tx_get_func(tx->st_mode); 4608 } 4609 mac_tx_client_restart((mac_client_handle_t)mcip); 4610 mgcp = mgcp->mgc_next; 4611 } 4612 break; 4613 } 4614 default: 4615 ASSERT(B_FALSE); 4616 } 4617 4618 /* 4619 * Remove the ring from the group. 4620 */ 4621 if (ring == group->mrg_rings) 4622 group->mrg_rings = ring->mr_next; 4623 else { 4624 mac_ring_t *pre; 4625 4626 pre = group->mrg_rings; 4627 while (pre->mr_next != ring) 4628 pre = pre->mr_next; 4629 pre->mr_next = ring->mr_next; 4630 } 4631 group->mrg_cur_count--; 4632 4633 if (!driver_call) { 4634 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4635 ASSERT(group->mrg_driver == NULL || 4636 cap_rings->mr_gremring != NULL); 4637 4638 /* 4639 * Remove the driver level hardware ring. 4640 */ 4641 if (group->mrg_driver != NULL) { 4642 cap_rings->mr_gremring(group->mrg_driver, 4643 ring->mr_driver, ring->mr_type); 4644 } 4645 } 4646 4647 ring->mr_gh = NULL; 4648 if (driver_call) 4649 mac_ring_free(mip, ring); 4650 else 4651 ring->mr_flag = 0; 4652 } 4653 4654 /* 4655 * Move a ring to the target group. If needed, remove the ring from the group 4656 * that it currently belongs to. 4657 * 4658 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4659 */ 4660 static int 4661 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4662 { 4663 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4664 int rv; 4665 4666 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4667 ASSERT(d_group != NULL); 4668 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 4669 4670 if (s_group == d_group) 4671 return (0); 4672 4673 /* 4674 * Remove it from current group first. 4675 */ 4676 if (s_group != NULL) 4677 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4678 4679 /* 4680 * Add it to the new group. 4681 */ 4682 rv = i_mac_group_add_ring(d_group, ring, 0); 4683 if (rv != 0) { 4684 /* 4685 * Failed to add ring back to source group. If 4686 * that fails, the ring is stuck in limbo, log message. 4687 */ 4688 if (i_mac_group_add_ring(s_group, ring, 0)) { 4689 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4690 mip->mi_name, (void *)ring); 4691 } 4692 } 4693 4694 return (rv); 4695 } 4696 4697 /* 4698 * Find a MAC address according to its value. 4699 */ 4700 mac_address_t * 4701 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4702 { 4703 mac_address_t *map; 4704 4705 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4706 4707 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4708 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4709 break; 4710 } 4711 4712 return (map); 4713 } 4714 4715 /* 4716 * Check whether the MAC address is shared by multiple clients. 4717 */ 4718 boolean_t 4719 mac_check_macaddr_shared(mac_address_t *map) 4720 { 4721 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4722 4723 return (map->ma_nusers > 1); 4724 } 4725 4726 /* 4727 * Remove the specified MAC address from the MAC address list and free it. 4728 */ 4729 static void 4730 mac_free_macaddr(mac_address_t *map) 4731 { 4732 mac_impl_t *mip = map->ma_mip; 4733 4734 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4735 ASSERT(mip->mi_addresses != NULL); 4736 4737 map = mac_find_macaddr(mip, map->ma_addr); 4738 4739 ASSERT(map != NULL); 4740 ASSERT(map->ma_nusers == 0); 4741 4742 if (map == mip->mi_addresses) { 4743 mip->mi_addresses = map->ma_next; 4744 } else { 4745 mac_address_t *pre; 4746 4747 pre = mip->mi_addresses; 4748 while (pre->ma_next != map) 4749 pre = pre->ma_next; 4750 pre->ma_next = map->ma_next; 4751 } 4752 4753 kmem_free(map, sizeof (mac_address_t)); 4754 } 4755 4756 /* 4757 * Add a MAC address reference for a client. If the desired MAC address 4758 * exists, add a reference to it. Otherwise, add the new address by adding 4759 * it to a reserved group or setting promiscuous mode. Won't try different 4760 * group is the group is non-NULL, so the caller must explictly share 4761 * default group when needed. 4762 * 4763 * Note, the primary MAC address is initialized at registration time, so 4764 * to add it to default group only need to activate it if its reference 4765 * count is still zero. Also, some drivers may not have advertised RINGS 4766 * capability. 4767 */ 4768 int 4769 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 4770 boolean_t use_hw) 4771 { 4772 mac_address_t *map; 4773 int err = 0; 4774 boolean_t allocated_map = B_FALSE; 4775 4776 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4777 4778 map = mac_find_macaddr(mip, mac_addr); 4779 4780 /* 4781 * If the new MAC address has not been added. Allocate a new one 4782 * and set it up. 4783 */ 4784 if (map == NULL) { 4785 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4786 map->ma_len = mip->mi_type->mt_addr_length; 4787 bcopy(mac_addr, map->ma_addr, map->ma_len); 4788 map->ma_nusers = 0; 4789 map->ma_group = group; 4790 map->ma_mip = mip; 4791 4792 /* add the new MAC address to the head of the address list */ 4793 map->ma_next = mip->mi_addresses; 4794 mip->mi_addresses = map; 4795 4796 allocated_map = B_TRUE; 4797 } 4798 4799 ASSERT(map->ma_group == NULL || map->ma_group == group); 4800 if (map->ma_group == NULL) 4801 map->ma_group = group; 4802 4803 /* 4804 * If the MAC address is already in use, simply account for the 4805 * new client. 4806 */ 4807 if (map->ma_nusers++ > 0) 4808 return (0); 4809 4810 /* 4811 * Activate this MAC address by adding it to the reserved group. 4812 */ 4813 if (group != NULL) { 4814 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 4815 if (err == 0) { 4816 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4817 return (0); 4818 } 4819 } 4820 4821 /* 4822 * The MAC address addition failed. If the client requires a 4823 * hardware classified MAC address, fail the operation. 4824 */ 4825 if (use_hw) { 4826 err = ENOSPC; 4827 goto bail; 4828 } 4829 4830 /* 4831 * Try promiscuous mode. 4832 * 4833 * For drivers that don't advertise RINGS capability, do 4834 * nothing for the primary address. 4835 */ 4836 if ((group == NULL) && 4837 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 4838 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4839 return (0); 4840 } 4841 4842 /* 4843 * Enable promiscuous mode in order to receive traffic 4844 * to the new MAC address. 4845 */ 4846 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 4847 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 4848 return (0); 4849 } 4850 4851 /* 4852 * Free the MAC address that could not be added. Don't free 4853 * a pre-existing address, it could have been the entry 4854 * for the primary MAC address which was pre-allocated by 4855 * mac_init_macaddr(), and which must remain on the list. 4856 */ 4857 bail: 4858 map->ma_nusers--; 4859 if (allocated_map) 4860 mac_free_macaddr(map); 4861 return (err); 4862 } 4863 4864 /* 4865 * Remove a reference to a MAC address. This may cause to remove the MAC 4866 * address from an associated group or to turn off promiscuous mode. 4867 * The caller needs to handle the failure properly. 4868 */ 4869 int 4870 mac_remove_macaddr(mac_address_t *map) 4871 { 4872 mac_impl_t *mip = map->ma_mip; 4873 int err = 0; 4874 4875 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4876 4877 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 4878 4879 /* 4880 * If it's not the last client using this MAC address, only update 4881 * the MAC clients count. 4882 */ 4883 if (--map->ma_nusers > 0) 4884 return (0); 4885 4886 /* 4887 * The MAC address is no longer used by any MAC client, so remove 4888 * it from its associated group, or turn off promiscuous mode 4889 * if it was enabled for the MAC address. 4890 */ 4891 switch (map->ma_type) { 4892 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4893 /* 4894 * Don't free the preset primary address for drivers that 4895 * don't advertise RINGS capability. 4896 */ 4897 if (map->ma_group == NULL) 4898 return (0); 4899 4900 err = mac_group_remmac(map->ma_group, map->ma_addr); 4901 if (err == 0) 4902 map->ma_group = NULL; 4903 break; 4904 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4905 err = i_mac_promisc_set(mip, B_FALSE); 4906 break; 4907 default: 4908 ASSERT(B_FALSE); 4909 } 4910 4911 if (err != 0) 4912 return (err); 4913 4914 /* 4915 * We created MAC address for the primary one at registration, so we 4916 * won't free it here. mac_fini_macaddr() will take care of it. 4917 */ 4918 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 4919 mac_free_macaddr(map); 4920 4921 return (0); 4922 } 4923 4924 /* 4925 * Update an existing MAC address. The caller need to make sure that the new 4926 * value has not been used. 4927 */ 4928 int 4929 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 4930 { 4931 mac_impl_t *mip = map->ma_mip; 4932 int err = 0; 4933 4934 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4935 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4936 4937 switch (map->ma_type) { 4938 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4939 /* 4940 * Update the primary address for drivers that are not 4941 * RINGS capable. 4942 */ 4943 if (mip->mi_rx_groups == NULL) { 4944 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4945 mac_addr); 4946 if (err != 0) 4947 return (err); 4948 break; 4949 } 4950 4951 /* 4952 * If this MAC address is not currently in use, 4953 * simply break out and update the value. 4954 */ 4955 if (map->ma_nusers == 0) 4956 break; 4957 4958 /* 4959 * Need to replace the MAC address associated with a group. 4960 */ 4961 err = mac_group_remmac(map->ma_group, map->ma_addr); 4962 if (err != 0) 4963 return (err); 4964 4965 err = mac_group_addmac(map->ma_group, mac_addr); 4966 4967 /* 4968 * Failure hints hardware error. The MAC layer needs to 4969 * have error notification facility to handle this. 4970 * Now, simply try to restore the value. 4971 */ 4972 if (err != 0) 4973 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4974 4975 break; 4976 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4977 /* 4978 * Need to do nothing more if in promiscuous mode. 4979 */ 4980 break; 4981 default: 4982 ASSERT(B_FALSE); 4983 } 4984 4985 /* 4986 * Successfully replaced the MAC address. 4987 */ 4988 if (err == 0) 4989 bcopy(mac_addr, map->ma_addr, map->ma_len); 4990 4991 return (err); 4992 } 4993 4994 /* 4995 * Freshen the MAC address with new value. Its caller must have updated the 4996 * hardware MAC address before calling this function. 4997 * This funcitons is supposed to be used to handle the MAC address change 4998 * notification from underlying drivers. 4999 */ 5000 void 5001 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5002 { 5003 mac_impl_t *mip = map->ma_mip; 5004 5005 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5006 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5007 5008 /* 5009 * Freshen the MAC address with new value. 5010 */ 5011 bcopy(mac_addr, map->ma_addr, map->ma_len); 5012 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5013 5014 /* 5015 * Update all MAC clients that share this MAC address. 5016 */ 5017 mac_unicast_update_clients(mip, map); 5018 } 5019 5020 /* 5021 * Set up the primary MAC address. 5022 */ 5023 void 5024 mac_init_macaddr(mac_impl_t *mip) 5025 { 5026 mac_address_t *map; 5027 5028 /* 5029 * The reference count is initialized to zero, until it's really 5030 * activated. 5031 */ 5032 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5033 map->ma_len = mip->mi_type->mt_addr_length; 5034 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5035 5036 /* 5037 * If driver advertises RINGS capability, it shouldn't have initialized 5038 * its primary MAC address. For other drivers, including VNIC, the 5039 * primary address must work after registration. 5040 */ 5041 if (mip->mi_rx_groups == NULL) 5042 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5043 5044 map->ma_mip = mip; 5045 5046 mip->mi_addresses = map; 5047 } 5048 5049 /* 5050 * Clean up the primary MAC address. Note, only one primary MAC address 5051 * is allowed. All other MAC addresses must have been freed appropriately. 5052 */ 5053 void 5054 mac_fini_macaddr(mac_impl_t *mip) 5055 { 5056 mac_address_t *map = mip->mi_addresses; 5057 5058 if (map == NULL) 5059 return; 5060 5061 /* 5062 * If mi_addresses is initialized, there should be exactly one 5063 * entry left on the list with no users. 5064 */ 5065 ASSERT(map->ma_nusers == 0); 5066 ASSERT(map->ma_next == NULL); 5067 5068 kmem_free(map, sizeof (mac_address_t)); 5069 mip->mi_addresses = NULL; 5070 } 5071 5072 /* 5073 * Logging related functions. 5074 * 5075 * Note that Kernel statistics have been extended to maintain fine 5076 * granularity of statistics viz. hardware lane, software lane, fanout 5077 * stats etc. However, extended accounting continues to support only 5078 * aggregate statistics like before. 5079 */ 5080 5081 /* Write the Flow description to the log file */ 5082 int 5083 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5084 { 5085 flow_desc_t *fdesc; 5086 mac_resource_props_t *mrp; 5087 net_desc_t ndesc; 5088 5089 bzero(&ndesc, sizeof (net_desc_t)); 5090 5091 /* 5092 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5093 * Updates to the fe_flow_desc are done under the fe_lock 5094 */ 5095 mutex_enter(&flent->fe_lock); 5096 fdesc = &flent->fe_flow_desc; 5097 mrp = &flent->fe_resource_props; 5098 5099 ndesc.nd_name = flent->fe_flow_name; 5100 ndesc.nd_devname = mcip->mci_name; 5101 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 5102 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 5103 ndesc.nd_sap = htonl(fdesc->fd_sap); 5104 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5105 ndesc.nd_bw_limit = mrp->mrp_maxbw; 5106 if (ndesc.nd_isv4) { 5107 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5108 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5109 } else { 5110 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 5111 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 5112 } 5113 ndesc.nd_sport = htons(fdesc->fd_local_port); 5114 ndesc.nd_dport = htons(fdesc->fd_remote_port); 5115 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 5116 mutex_exit(&flent->fe_lock); 5117 5118 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 5119 } 5120 5121 /* Write the Flow statistics to the log file */ 5122 int 5123 mac_write_flow_stats(flow_entry_t *flent) 5124 { 5125 net_stat_t nstat; 5126 mac_soft_ring_set_t *mac_srs; 5127 mac_rx_stats_t *mac_rx_stat; 5128 mac_tx_stats_t *mac_tx_stat; 5129 int i; 5130 5131 bzero(&nstat, sizeof (net_stat_t)); 5132 nstat.ns_name = flent->fe_flow_name; 5133 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5134 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5135 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5136 5137 nstat.ns_ibytes += mac_rx_stat->mrs_intrbytes + 5138 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5139 nstat.ns_ipackets += mac_rx_stat->mrs_intrcnt + 5140 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5141 nstat.ns_oerrors += mac_rx_stat->mrs_ierrors; 5142 } 5143 5144 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5145 if (mac_srs != NULL) { 5146 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5147 5148 nstat.ns_obytes = mac_tx_stat->mts_obytes; 5149 nstat.ns_opackets = mac_tx_stat->mts_opackets; 5150 nstat.ns_oerrors = mac_tx_stat->mts_oerrors; 5151 } 5152 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 5153 } 5154 5155 /* Write the Link Description to the log file */ 5156 int 5157 mac_write_link_desc(mac_client_impl_t *mcip) 5158 { 5159 net_desc_t ndesc; 5160 flow_entry_t *flent = mcip->mci_flent; 5161 5162 bzero(&ndesc, sizeof (net_desc_t)); 5163 5164 ndesc.nd_name = mcip->mci_name; 5165 ndesc.nd_devname = mcip->mci_name; 5166 ndesc.nd_isv4 = B_TRUE; 5167 /* 5168 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5169 * Updates to the fe_flow_desc are done under the fe_lock 5170 * after removing the flent from the flow table. 5171 */ 5172 mutex_enter(&flent->fe_lock); 5173 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 5174 mutex_exit(&flent->fe_lock); 5175 5176 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 5177 } 5178 5179 /* Write the Link statistics to the log file */ 5180 int 5181 mac_write_link_stats(mac_client_impl_t *mcip) 5182 { 5183 net_stat_t nstat; 5184 flow_entry_t *flent; 5185 mac_soft_ring_set_t *mac_srs; 5186 mac_rx_stats_t *mac_rx_stat; 5187 mac_tx_stats_t *mac_tx_stat; 5188 int i; 5189 5190 bzero(&nstat, sizeof (net_stat_t)); 5191 nstat.ns_name = mcip->mci_name; 5192 flent = mcip->mci_flent; 5193 if (flent != NULL) { 5194 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5195 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5196 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5197 5198 nstat.ns_ibytes += mac_rx_stat->mrs_intrbytes + 5199 mac_rx_stat->mrs_pollbytes + 5200 mac_rx_stat->mrs_lclbytes; 5201 nstat.ns_ipackets += mac_rx_stat->mrs_intrcnt + 5202 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5203 nstat.ns_oerrors += mac_rx_stat->mrs_ierrors; 5204 } 5205 } 5206 5207 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5208 if (mac_srs != NULL) { 5209 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5210 5211 nstat.ns_obytes = mac_tx_stat->mts_obytes; 5212 nstat.ns_opackets = mac_tx_stat->mts_opackets; 5213 nstat.ns_oerrors = mac_tx_stat->mts_oerrors; 5214 } 5215 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 5216 } 5217 5218 /* 5219 * For a given flow, if the descrition has not been logged before, do it now. 5220 * If it is a VNIC, then we have collected information about it from the MAC 5221 * table, so skip it. 5222 */ 5223 /*ARGSUSED*/ 5224 static int 5225 mac_log_flowinfo(flow_entry_t *flent, void *args) 5226 { 5227 mac_client_impl_t *mcip = flent->fe_mcip; 5228 5229 if (mcip == NULL) 5230 return (0); 5231 5232 /* 5233 * If the name starts with "vnic", and fe_user_generated is true (to 5234 * exclude the mcast and active flow entries created implicitly for 5235 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5236 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5237 */ 5238 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5239 (flent->fe_type & FLOW_USER) != 0) { 5240 return (0); 5241 } 5242 5243 if (!flent->fe_desc_logged) { 5244 /* 5245 * We don't return error because we want to continu the 5246 * walk in case this is the last walk which means we 5247 * need to reset fe_desc_logged in all the flows. 5248 */ 5249 if (mac_write_flow_desc(flent, mcip) != 0) 5250 return (0); 5251 flent->fe_desc_logged = B_TRUE; 5252 } 5253 5254 /* 5255 * Regardless of the error, we want to proceed in case we have to 5256 * reset fe_desc_logged. 5257 */ 5258 (void) mac_write_flow_stats(flent); 5259 5260 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5261 flent->fe_desc_logged = B_FALSE; 5262 5263 return (0); 5264 } 5265 5266 typedef struct i_mac_log_state_s { 5267 boolean_t mi_last; 5268 int mi_fenable; 5269 int mi_lenable; 5270 } i_mac_log_state_t; 5271 5272 /* 5273 * Walk the mac_impl_ts and log the description for each mac client of this mac, 5274 * if it hasn't already been done. Additionally, log statistics for the link as 5275 * well. Walk the flow table and log information for each flow as well. 5276 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5277 * also fe_desc_logged, if flow logging is on) since we want to log the 5278 * description if and when logging is restarted. 5279 */ 5280 /*ARGSUSED*/ 5281 static uint_t 5282 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5283 { 5284 mac_impl_t *mip = (mac_impl_t *)val; 5285 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 5286 int ret; 5287 mac_client_impl_t *mcip; 5288 5289 /* 5290 * Only walk the client list for NIC and etherstub 5291 */ 5292 if ((mip->mi_state_flags & MIS_DISABLED) || 5293 ((mip->mi_state_flags & MIS_IS_VNIC) && 5294 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 5295 return (MH_WALK_CONTINUE); 5296 5297 for (mcip = mip->mi_clients_list; mcip != NULL; 5298 mcip = mcip->mci_client_next) { 5299 if (!MCIP_DATAPATH_SETUP(mcip)) 5300 continue; 5301 if (lstate->mi_lenable) { 5302 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5303 ret = mac_write_link_desc(mcip); 5304 if (ret != 0) { 5305 /* 5306 * We can't terminate it if this is the last 5307 * walk, else there might be some links with 5308 * mi_desc_logged set to true, which means 5309 * their description won't be logged the next 5310 * time logging is started (similarly for the 5311 * flows within such links). We can continue 5312 * without walking the flow table (i.e. to 5313 * set fe_desc_logged to false) because we 5314 * won't have written any flow stuff for this 5315 * link as we haven't logged the link itself. 5316 */ 5317 if (lstate->mi_last) 5318 return (MH_WALK_CONTINUE); 5319 else 5320 return (MH_WALK_TERMINATE); 5321 } 5322 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5323 } 5324 } 5325 5326 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 5327 return (MH_WALK_TERMINATE); 5328 5329 if (lstate->mi_last) 5330 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5331 5332 if (lstate->mi_fenable) { 5333 if (mcip->mci_subflow_tab != NULL) { 5334 (void) mac_flow_walk(mcip->mci_subflow_tab, 5335 mac_log_flowinfo, mip); 5336 } 5337 } 5338 } 5339 return (MH_WALK_CONTINUE); 5340 } 5341 5342 /* 5343 * The timer thread that runs every mac_logging_interval seconds and logs 5344 * link and/or flow information. 5345 */ 5346 /* ARGSUSED */ 5347 void 5348 mac_log_linkinfo(void *arg) 5349 { 5350 i_mac_log_state_t lstate; 5351 5352 rw_enter(&i_mac_impl_lock, RW_READER); 5353 if (!mac_flow_log_enable && !mac_link_log_enable) { 5354 rw_exit(&i_mac_impl_lock); 5355 return; 5356 } 5357 lstate.mi_fenable = mac_flow_log_enable; 5358 lstate.mi_lenable = mac_link_log_enable; 5359 lstate.mi_last = B_FALSE; 5360 rw_exit(&i_mac_impl_lock); 5361 5362 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 5363 5364 rw_enter(&i_mac_impl_lock, RW_WRITER); 5365 if (mac_flow_log_enable || mac_link_log_enable) { 5366 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5367 SEC_TO_TICK(mac_logging_interval)); 5368 } 5369 rw_exit(&i_mac_impl_lock); 5370 } 5371 5372 typedef struct i_mac_fastpath_state_s { 5373 boolean_t mf_disable; 5374 int mf_err; 5375 } i_mac_fastpath_state_t; 5376 5377 /*ARGSUSED*/ 5378 static uint_t 5379 i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val, 5380 void *arg) 5381 { 5382 i_mac_fastpath_state_t *state = arg; 5383 mac_handle_t mh = (mac_handle_t)val; 5384 5385 if (state->mf_disable) 5386 state->mf_err = mac_fastpath_disable(mh); 5387 else 5388 mac_fastpath_enable(mh); 5389 5390 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5391 } 5392 5393 /* 5394 * Start the logging timer. 5395 */ 5396 int 5397 mac_start_logusage(mac_logtype_t type, uint_t interval) 5398 { 5399 i_mac_fastpath_state_t state = {B_TRUE, 0}; 5400 int err; 5401 5402 rw_enter(&i_mac_impl_lock, RW_WRITER); 5403 switch (type) { 5404 case MAC_LOGTYPE_FLOW: 5405 if (mac_flow_log_enable) { 5406 rw_exit(&i_mac_impl_lock); 5407 return (0); 5408 } 5409 /* FALLTHRU */ 5410 case MAC_LOGTYPE_LINK: 5411 if (mac_link_log_enable) { 5412 rw_exit(&i_mac_impl_lock); 5413 return (0); 5414 } 5415 break; 5416 default: 5417 ASSERT(0); 5418 } 5419 5420 /* Disable fastpath */ 5421 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 5422 if ((err = state.mf_err) != 0) { 5423 /* Reenable fastpath */ 5424 state.mf_disable = B_FALSE; 5425 state.mf_err = 0; 5426 mod_hash_walk(i_mac_impl_hash, 5427 i_mac_fastpath_disable_walker, &state); 5428 rw_exit(&i_mac_impl_lock); 5429 return (err); 5430 } 5431 5432 switch (type) { 5433 case MAC_LOGTYPE_FLOW: 5434 mac_flow_log_enable = B_TRUE; 5435 /* FALLTHRU */ 5436 case MAC_LOGTYPE_LINK: 5437 mac_link_log_enable = B_TRUE; 5438 break; 5439 } 5440 5441 mac_logging_interval = interval; 5442 rw_exit(&i_mac_impl_lock); 5443 mac_log_linkinfo(NULL); 5444 return (0); 5445 } 5446 5447 /* 5448 * Stop the logging timer if both Link and Flow logging are turned off. 5449 */ 5450 void 5451 mac_stop_logusage(mac_logtype_t type) 5452 { 5453 i_mac_log_state_t lstate; 5454 i_mac_fastpath_state_t state = {B_FALSE, 0}; 5455 5456 rw_enter(&i_mac_impl_lock, RW_WRITER); 5457 lstate.mi_fenable = mac_flow_log_enable; 5458 lstate.mi_lenable = mac_link_log_enable; 5459 5460 /* Last walk */ 5461 lstate.mi_last = B_TRUE; 5462 5463 switch (type) { 5464 case MAC_LOGTYPE_FLOW: 5465 if (lstate.mi_fenable) { 5466 ASSERT(mac_link_log_enable); 5467 mac_flow_log_enable = B_FALSE; 5468 mac_link_log_enable = B_FALSE; 5469 break; 5470 } 5471 /* FALLTHRU */ 5472 case MAC_LOGTYPE_LINK: 5473 if (!lstate.mi_lenable || mac_flow_log_enable) { 5474 rw_exit(&i_mac_impl_lock); 5475 return; 5476 } 5477 mac_link_log_enable = B_FALSE; 5478 break; 5479 default: 5480 ASSERT(0); 5481 } 5482 5483 /* Reenable fastpath */ 5484 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 5485 5486 rw_exit(&i_mac_impl_lock); 5487 (void) untimeout(mac_logging_timer); 5488 mac_logging_timer = 0; 5489 5490 /* Last walk */ 5491 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 5492 } 5493 5494 /* 5495 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 5496 */ 5497 void 5498 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 5499 { 5500 pri_t pri; 5501 int count; 5502 mac_soft_ring_set_t *mac_srs; 5503 5504 if (flent->fe_rx_srs_cnt <= 0) 5505 return; 5506 5507 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 5508 SRST_FLOW) { 5509 pri = FLOW_PRIORITY(mcip->mci_min_pri, 5510 mcip->mci_max_pri, 5511 flent->fe_resource_props.mrp_priority); 5512 } else { 5513 pri = mcip->mci_max_pri; 5514 } 5515 5516 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 5517 mac_srs = flent->fe_rx_srs[count]; 5518 mac_update_srs_priority(mac_srs, pri); 5519 } 5520 /* 5521 * If we have a Tx SRS, we need to modify all the threads associated 5522 * with it. 5523 */ 5524 if (flent->fe_tx_srs != NULL) 5525 mac_update_srs_priority(flent->fe_tx_srs, pri); 5526 } 5527 5528 /* 5529 * RX and TX rings are reserved according to different semantics depending 5530 * on the requests from the MAC clients and type of rings: 5531 * 5532 * On the Tx side, by default we reserve individual rings, independently from 5533 * the groups. 5534 * 5535 * On the Rx side, the reservation is at the granularity of the group 5536 * of rings, and used for v12n level 1 only. It has a special case for the 5537 * primary client. 5538 * 5539 * If a share is allocated to a MAC client, we allocate a TX group and an 5540 * RX group to the client, and assign TX rings and RX rings to these 5541 * groups according to information gathered from the driver through 5542 * the share capability. 5543 * 5544 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 5545 * to allocate individual rings out of a group and program the hw classifier 5546 * based on IP address or higher level criteria. 5547 */ 5548 5549 /* 5550 * mac_reserve_tx_ring() 5551 * Reserve a unused ring by marking it with MR_INUSE state. 5552 * As reserved, the ring is ready to function. 5553 * 5554 * Notes for Hybrid I/O: 5555 * 5556 * If a specific ring is needed, it is specified through the desired_ring 5557 * argument. Otherwise that argument is set to NULL. 5558 * If the desired ring was previous allocated to another client, this 5559 * function swaps it with a new ring from the group of unassigned rings. 5560 */ 5561 mac_ring_t * 5562 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 5563 { 5564 mac_group_t *group; 5565 mac_grp_client_t *mgcp; 5566 mac_client_impl_t *mcip; 5567 mac_soft_ring_set_t *srs; 5568 5569 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5570 5571 /* 5572 * Find an available ring and start it before changing its status. 5573 * The unassigned rings are at the end of the mi_tx_groups 5574 * array. 5575 */ 5576 group = MAC_DEFAULT_TX_GROUP(mip); 5577 5578 /* Can't take the default ring out of the default group */ 5579 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 5580 5581 if (desired_ring->mr_state == MR_FREE) { 5582 ASSERT(MAC_GROUP_NO_CLIENT(group)); 5583 if (mac_start_ring(desired_ring) != 0) 5584 return (NULL); 5585 return (desired_ring); 5586 } 5587 /* 5588 * There are clients using this ring, so let's move the clients 5589 * away from using this ring. 5590 */ 5591 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5592 mcip = mgcp->mgc_client; 5593 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5594 srs = MCIP_TX_SRS(mcip); 5595 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 5596 mac_tx_invoke_callbacks(mcip, 5597 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 5598 desired_ring)); 5599 mac_tx_srs_del_ring(srs, desired_ring); 5600 mac_tx_client_restart((mac_client_handle_t)mcip); 5601 } 5602 return (desired_ring); 5603 } 5604 5605 /* 5606 * For a reserved group with multiple clients, return the primary client. 5607 */ 5608 static mac_client_impl_t * 5609 mac_get_grp_primary(mac_group_t *grp) 5610 { 5611 mac_grp_client_t *mgcp = grp->mrg_clients; 5612 mac_client_impl_t *mcip; 5613 5614 while (mgcp != NULL) { 5615 mcip = mgcp->mgc_client; 5616 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 5617 return (mcip); 5618 mgcp = mgcp->mgc_next; 5619 } 5620 return (NULL); 5621 } 5622 5623 /* 5624 * Hybrid I/O specifies the ring that should be given to a share. 5625 * If the ring is already used by clients, then we need to release 5626 * the ring back to the default group so that we can give it to 5627 * the share. This means the clients using this ring now get a 5628 * replacement ring. If there aren't any replacement rings, this 5629 * function returns a failure. 5630 */ 5631 static int 5632 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 5633 mac_ring_t *ring, mac_ring_t **rings, int nrings) 5634 { 5635 mac_group_t *group = (mac_group_t *)ring->mr_gh; 5636 mac_resource_props_t *mrp; 5637 mac_client_impl_t *mcip; 5638 mac_group_t *defgrp; 5639 mac_ring_t *tring; 5640 mac_group_t *tgrp; 5641 int i; 5642 int j; 5643 5644 mcip = MAC_GROUP_ONLY_CLIENT(group); 5645 if (mcip == NULL) 5646 mcip = mac_get_grp_primary(group); 5647 ASSERT(mcip != NULL); 5648 ASSERT(mcip->mci_share == NULL); 5649 5650 mrp = MCIP_RESOURCE_PROPS(mcip); 5651 if (ring_type == MAC_RING_TYPE_RX) { 5652 defgrp = mip->mi_rx_donor_grp; 5653 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 5654 /* Need to put this mac client in the default group */ 5655 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 5656 return (ENOSPC); 5657 } else { 5658 /* 5659 * Switch this ring with some other ring from 5660 * the default group. 5661 */ 5662 for (tring = defgrp->mrg_rings; tring != NULL; 5663 tring = tring->mr_next) { 5664 if (tring->mr_index == 0) 5665 continue; 5666 for (j = 0; j < nrings; j++) { 5667 if (rings[j] == tring) 5668 break; 5669 } 5670 if (j >= nrings) 5671 break; 5672 } 5673 if (tring == NULL) 5674 return (ENOSPC); 5675 if (mac_group_mov_ring(mip, group, tring) != 0) 5676 return (ENOSPC); 5677 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 5678 (void) mac_group_mov_ring(mip, defgrp, tring); 5679 return (ENOSPC); 5680 } 5681 } 5682 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 5683 return (0); 5684 } 5685 5686 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5687 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 5688 /* 5689 * See if we can get a spare ring to replace the default 5690 * ring. 5691 */ 5692 if (defgrp->mrg_cur_count == 1) { 5693 /* 5694 * Need to get a ring from another client, see if 5695 * there are any clients that can be moved to 5696 * the default group, thereby freeing some rings. 5697 */ 5698 for (i = 0; i < mip->mi_tx_group_count; i++) { 5699 tgrp = &mip->mi_tx_groups[i]; 5700 if (tgrp->mrg_state == 5701 MAC_GROUP_STATE_REGISTERED) { 5702 continue; 5703 } 5704 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 5705 if (mcip == NULL) 5706 mcip = mac_get_grp_primary(tgrp); 5707 ASSERT(mcip != NULL); 5708 mrp = MCIP_RESOURCE_PROPS(mcip); 5709 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 5710 ASSERT(tgrp->mrg_cur_count == 1); 5711 /* 5712 * If this ring is part of the 5713 * rings asked by the share we cannot 5714 * use it as the default ring. 5715 */ 5716 for (j = 0; j < nrings; j++) { 5717 if (rings[j] == tgrp->mrg_rings) 5718 break; 5719 } 5720 if (j < nrings) 5721 continue; 5722 mac_tx_client_quiesce( 5723 (mac_client_handle_t)mcip); 5724 mac_tx_switch_group(mcip, tgrp, 5725 defgrp); 5726 mac_tx_client_restart( 5727 (mac_client_handle_t)mcip); 5728 break; 5729 } 5730 } 5731 /* 5732 * All the rings are reserved, can't give up the 5733 * default ring. 5734 */ 5735 if (defgrp->mrg_cur_count <= 1) 5736 return (ENOSPC); 5737 } 5738 /* 5739 * Swap the default ring with another. 5740 */ 5741 for (tring = defgrp->mrg_rings; tring != NULL; 5742 tring = tring->mr_next) { 5743 /* 5744 * If this ring is part of the rings asked by the 5745 * share we cannot use it as the default ring. 5746 */ 5747 for (j = 0; j < nrings; j++) { 5748 if (rings[j] == tring) 5749 break; 5750 } 5751 if (j >= nrings) 5752 break; 5753 } 5754 ASSERT(tring != NULL); 5755 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 5756 return (0); 5757 } 5758 /* 5759 * The Tx ring is with a group reserved by a MAC client. See if 5760 * we can swap it. 5761 */ 5762 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 5763 mcip = MAC_GROUP_ONLY_CLIENT(group); 5764 if (mcip == NULL) 5765 mcip = mac_get_grp_primary(group); 5766 ASSERT(mcip != NULL); 5767 mrp = MCIP_RESOURCE_PROPS(mcip); 5768 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5769 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 5770 ASSERT(group->mrg_cur_count == 1); 5771 /* Put this mac client in the default group */ 5772 mac_tx_switch_group(mcip, group, defgrp); 5773 } else { 5774 /* 5775 * Switch this ring with some other ring from 5776 * the default group. 5777 */ 5778 for (tring = defgrp->mrg_rings; tring != NULL; 5779 tring = tring->mr_next) { 5780 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 5781 continue; 5782 /* 5783 * If this ring is part of the rings asked by the 5784 * share we cannot use it for swapping. 5785 */ 5786 for (j = 0; j < nrings; j++) { 5787 if (rings[j] == tring) 5788 break; 5789 } 5790 if (j >= nrings) 5791 break; 5792 } 5793 if (tring == NULL) { 5794 mac_tx_client_restart((mac_client_handle_t)mcip); 5795 return (ENOSPC); 5796 } 5797 if (mac_group_mov_ring(mip, group, tring) != 0) { 5798 mac_tx_client_restart((mac_client_handle_t)mcip); 5799 return (ENOSPC); 5800 } 5801 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 5802 (void) mac_group_mov_ring(mip, defgrp, tring); 5803 mac_tx_client_restart((mac_client_handle_t)mcip); 5804 return (ENOSPC); 5805 } 5806 } 5807 mac_tx_client_restart((mac_client_handle_t)mcip); 5808 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 5809 return (0); 5810 } 5811 5812 /* 5813 * Populate a zero-ring group with rings. If the share is non-NULL, 5814 * the rings are chosen according to that share. 5815 * Invoked after allocating a new RX or TX group through 5816 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 5817 * Returns zero on success, an errno otherwise. 5818 */ 5819 int 5820 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 5821 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 5822 uint32_t ringcnt) 5823 { 5824 mac_ring_t **rings, *ring; 5825 uint_t nrings; 5826 int rv = 0, i = 0, j; 5827 5828 ASSERT((ring_type == MAC_RING_TYPE_RX && 5829 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 5830 (ring_type == MAC_RING_TYPE_TX && 5831 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 5832 5833 /* 5834 * First find the rings to allocate to the group. 5835 */ 5836 if (share != NULL) { 5837 /* get rings through ms_squery() */ 5838 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 5839 ASSERT(nrings != 0); 5840 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 5841 KM_SLEEP); 5842 mip->mi_share_capab.ms_squery(share, ring_type, 5843 (mac_ring_handle_t *)rings, &nrings); 5844 for (i = 0; i < nrings; i++) { 5845 /* 5846 * If we have given this ring to a non-default 5847 * group, we need to check if we can get this 5848 * ring. 5849 */ 5850 ring = rings[i]; 5851 if (ring->mr_gh != (mac_group_handle_t)src_group || 5852 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 5853 if (mac_reclaim_ring_from_grp(mip, ring_type, 5854 ring, rings, nrings) != 0) { 5855 rv = ENOSPC; 5856 goto bail; 5857 } 5858 } 5859 } 5860 } else { 5861 /* 5862 * Pick one ring from default group. 5863 * 5864 * for now pick the second ring which requires the first ring 5865 * at index 0 to stay in the default group, since it is the 5866 * ring which carries the multicast traffic. 5867 * We need a better way for a driver to indicate this, 5868 * for example a per-ring flag. 5869 */ 5870 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 5871 KM_SLEEP); 5872 for (ring = src_group->mrg_rings; ring != NULL; 5873 ring = ring->mr_next) { 5874 if (ring_type == MAC_RING_TYPE_RX && 5875 ring->mr_index == 0) { 5876 continue; 5877 } 5878 if (ring_type == MAC_RING_TYPE_TX && 5879 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 5880 continue; 5881 } 5882 rings[i++] = ring; 5883 if (i == ringcnt) 5884 break; 5885 } 5886 ASSERT(ring != NULL); 5887 nrings = i; 5888 /* Not enough rings as required */ 5889 if (nrings != ringcnt) { 5890 rv = ENOSPC; 5891 goto bail; 5892 } 5893 } 5894 5895 switch (ring_type) { 5896 case MAC_RING_TYPE_RX: 5897 if (src_group->mrg_cur_count - nrings < 1) { 5898 /* we ran out of rings */ 5899 rv = ENOSPC; 5900 goto bail; 5901 } 5902 5903 /* move receive rings to new group */ 5904 for (i = 0; i < nrings; i++) { 5905 rv = mac_group_mov_ring(mip, new_group, rings[i]); 5906 if (rv != 0) { 5907 /* move rings back on failure */ 5908 for (j = 0; j < i; j++) { 5909 (void) mac_group_mov_ring(mip, 5910 src_group, rings[j]); 5911 } 5912 goto bail; 5913 } 5914 } 5915 break; 5916 5917 case MAC_RING_TYPE_TX: { 5918 mac_ring_t *tmp_ring; 5919 5920 /* move the TX rings to the new group */ 5921 for (i = 0; i < nrings; i++) { 5922 /* get the desired ring */ 5923 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 5924 if (tmp_ring == NULL) { 5925 rv = ENOSPC; 5926 goto bail; 5927 } 5928 ASSERT(tmp_ring == rings[i]); 5929 rv = mac_group_mov_ring(mip, new_group, rings[i]); 5930 if (rv != 0) { 5931 /* cleanup on failure */ 5932 for (j = 0; j < i; j++) { 5933 (void) mac_group_mov_ring(mip, 5934 MAC_DEFAULT_TX_GROUP(mip), 5935 rings[j]); 5936 } 5937 goto bail; 5938 } 5939 } 5940 break; 5941 } 5942 } 5943 5944 /* add group to share */ 5945 if (share != NULL) 5946 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 5947 5948 bail: 5949 /* free temporary array of rings */ 5950 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 5951 5952 return (rv); 5953 } 5954 5955 void 5956 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 5957 { 5958 mac_grp_client_t *mgcp; 5959 5960 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 5961 if (mgcp->mgc_client == mcip) 5962 break; 5963 } 5964 5965 VERIFY(mgcp == NULL); 5966 5967 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 5968 mgcp->mgc_client = mcip; 5969 mgcp->mgc_next = grp->mrg_clients; 5970 grp->mrg_clients = mgcp; 5971 5972 } 5973 5974 void 5975 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 5976 { 5977 mac_grp_client_t *mgcp, **pprev; 5978 5979 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 5980 pprev = &mgcp->mgc_next, mgcp = *pprev) { 5981 if (mgcp->mgc_client == mcip) 5982 break; 5983 } 5984 5985 ASSERT(mgcp != NULL); 5986 5987 *pprev = mgcp->mgc_next; 5988 kmem_free(mgcp, sizeof (mac_grp_client_t)); 5989 } 5990 5991 /* 5992 * mac_reserve_rx_group() 5993 * 5994 * Finds an available group and exclusively reserves it for a client. 5995 * The group is chosen to suit the flow's resource controls (bandwidth and 5996 * fanout requirements) and the address type. 5997 * If the requestor is the pimary MAC then return the group with the 5998 * largest number of rings, otherwise the default ring when available. 5999 */ 6000 mac_group_t * 6001 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6002 { 6003 mac_share_handle_t share = mcip->mci_share; 6004 mac_impl_t *mip = mcip->mci_mip; 6005 mac_group_t *grp = NULL; 6006 int i; 6007 int err = 0; 6008 mac_address_t *map; 6009 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6010 int nrings; 6011 int donor_grp_rcnt; 6012 boolean_t need_exclgrp = B_FALSE; 6013 int need_rings = 0; 6014 mac_group_t *candidate_grp = NULL; 6015 mac_client_impl_t *gclient; 6016 mac_resource_props_t *gmrp; 6017 mac_group_t *donorgrp = NULL; 6018 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6019 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6020 boolean_t isprimary; 6021 6022 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6023 6024 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6025 6026 /* 6027 * Check if a group already has this mac address (case of VLANs) 6028 * unless we are moving this MAC client from one group to another. 6029 */ 6030 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6031 if (map->ma_group != NULL) 6032 return (map->ma_group); 6033 } 6034 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6035 return (NULL); 6036 /* 6037 * If exclusive open, return NULL which will enable the 6038 * caller to use the default group. 6039 */ 6040 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6041 return (NULL); 6042 6043 /* For dynamic groups default unspecified to 1 */ 6044 if (rxhw && unspec && 6045 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6046 mrp->mrp_nrxrings = 1; 6047 } 6048 /* 6049 * For static grouping we allow only specifying rings=0 and 6050 * unspecified 6051 */ 6052 if (rxhw && mrp->mrp_nrxrings > 0 && 6053 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6054 return (NULL); 6055 } 6056 if (rxhw) { 6057 /* 6058 * We have explicitly asked for a group (with nrxrings, 6059 * if unspec). 6060 */ 6061 if (unspec || mrp->mrp_nrxrings > 0) { 6062 need_exclgrp = B_TRUE; 6063 need_rings = mrp->mrp_nrxrings; 6064 } else if (mrp->mrp_nrxrings == 0) { 6065 /* 6066 * We have asked for a software group. 6067 */ 6068 return (NULL); 6069 } 6070 } else if (isprimary && mip->mi_nactiveclients == 1 && 6071 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6072 /* 6073 * If the primary is the only active client on this 6074 * mip and we have not asked for any rings, we give 6075 * it the default group so that the primary gets to 6076 * use all the rings. 6077 */ 6078 return (NULL); 6079 } 6080 6081 /* The group that can donate rings */ 6082 donorgrp = mip->mi_rx_donor_grp; 6083 6084 /* 6085 * The number of rings that the default group can donate. 6086 * We need to leave at least one ring. 6087 */ 6088 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6089 6090 /* 6091 * Try to exclusively reserve a RX group. 6092 * 6093 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6094 * client), try to reserve the a non-default RX group and give 6095 * it all the rings from the donor group, except the default ring 6096 * 6097 * For flows requiring HW_RING (unicast flow of other clients), try 6098 * to reserve non-default RX group with the specified number of 6099 * rings, if available. 6100 * 6101 * For flows that have not asked for software or hardware ring, 6102 * try to reserve a non-default group with 1 ring, if available. 6103 */ 6104 for (i = 1; i < mip->mi_rx_group_count; i++) { 6105 grp = &mip->mi_rx_groups[i]; 6106 6107 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6108 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6109 6110 /* 6111 * Check if this group could be a candidate group for 6112 * eviction if we need a group for this MAC client, 6113 * but there aren't any. A candidate group is one 6114 * that didn't ask for an exclusive group, but got 6115 * one and it has enough rings (combined with what 6116 * the donor group can donate) for the new MAC 6117 * client 6118 */ 6119 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6120 /* 6121 * If the primary/donor group is not the default 6122 * group, don't bother looking for a candidate group. 6123 * If we don't have enough rings we will check 6124 * if the primary group can be vacated. 6125 */ 6126 if (candidate_grp == NULL && 6127 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6128 ASSERT(!MAC_GROUP_NO_CLIENT(grp)); 6129 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6130 if (gclient == NULL) 6131 gclient = mac_get_grp_primary(grp); 6132 ASSERT(gclient != NULL); 6133 gmrp = MCIP_RESOURCE_PROPS(gclient); 6134 if (gclient->mci_share == NULL && 6135 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 && 6136 (unspec || 6137 (grp->mrg_cur_count + donor_grp_rcnt >= 6138 need_rings))) { 6139 candidate_grp = grp; 6140 } 6141 } 6142 continue; 6143 } 6144 /* 6145 * This group could already be SHARED by other multicast 6146 * flows on this client. In that case, the group would 6147 * be shared and has already been started. 6148 */ 6149 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6150 6151 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6152 (mac_start_group(grp) != 0)) { 6153 continue; 6154 } 6155 6156 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6157 break; 6158 ASSERT(grp->mrg_cur_count == 0); 6159 6160 /* 6161 * Populate the group. Rings should be taken 6162 * from the donor group. 6163 */ 6164 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6165 6166 /* 6167 * If the donor group can't donate, let's just walk and 6168 * see if someone can vacate a group, so that we have 6169 * enough rings for this, unless we already have 6170 * identified a candiate group.. 6171 */ 6172 if (nrings <= donor_grp_rcnt) { 6173 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6174 donorgrp, grp, share, nrings); 6175 if (err == 0) { 6176 /* 6177 * For a share i_mac_group_allocate_rings gets 6178 * the rings from the driver, let's populate 6179 * the property for the client now. 6180 */ 6181 if (share != NULL) { 6182 mac_client_set_rings( 6183 (mac_client_handle_t)mcip, 6184 grp->mrg_cur_count, -1); 6185 } 6186 if (mac_is_primary_client(mcip) && !rxhw) 6187 mip->mi_rx_donor_grp = grp; 6188 break; 6189 } 6190 } 6191 6192 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6193 mip->mi_name, int, grp->mrg_index, int, err); 6194 6195 /* 6196 * It's a dynamic group but the grouping operation 6197 * failed. 6198 */ 6199 mac_stop_group(grp); 6200 } 6201 /* We didn't find an exclusive group for this MAC client */ 6202 if (i >= mip->mi_rx_group_count) { 6203 6204 if (!need_exclgrp) 6205 return (NULL); 6206 6207 /* 6208 * If we found a candidate group then we switch the 6209 * MAC client from the candidate_group to the default 6210 * group and give the group to this MAC client. If 6211 * we didn't find a candidate_group, check if the 6212 * primary is in its own group and if it can make way 6213 * for this MAC client. 6214 */ 6215 if (candidate_grp == NULL && 6216 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6217 donorgrp->mrg_cur_count >= need_rings) { 6218 candidate_grp = donorgrp; 6219 } 6220 if (candidate_grp != NULL) { 6221 boolean_t prim_grp = B_FALSE; 6222 6223 /* 6224 * Switch the MAC client from the candidate group 6225 * to the default group.. If this group was the 6226 * donor group, then after the switch we need 6227 * to update the donor group too. 6228 */ 6229 grp = candidate_grp; 6230 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6231 if (gclient == NULL) 6232 gclient = mac_get_grp_primary(grp); 6233 if (grp == mip->mi_rx_donor_grp) 6234 prim_grp = B_TRUE; 6235 if (mac_rx_switch_group(gclient, grp, 6236 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6237 return (NULL); 6238 } 6239 if (prim_grp) { 6240 mip->mi_rx_donor_grp = 6241 MAC_DEFAULT_RX_GROUP(mip); 6242 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6243 } 6244 6245 6246 /* 6247 * Now give this group with the required rings 6248 * to this MAC client. 6249 */ 6250 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6251 if (mac_start_group(grp) != 0) 6252 return (NULL); 6253 6254 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6255 return (grp); 6256 6257 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6258 ASSERT(grp->mrg_cur_count == 0); 6259 ASSERT(donor_grp_rcnt >= need_rings); 6260 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6261 donorgrp, grp, share, need_rings); 6262 if (err == 0) { 6263 /* 6264 * For a share i_mac_group_allocate_rings gets 6265 * the rings from the driver, let's populate 6266 * the property for the client now. 6267 */ 6268 if (share != NULL) { 6269 mac_client_set_rings( 6270 (mac_client_handle_t)mcip, 6271 grp->mrg_cur_count, -1); 6272 } 6273 DTRACE_PROBE2(rx__group__reserved, 6274 char *, mip->mi_name, int, grp->mrg_index); 6275 return (grp); 6276 } 6277 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6278 mip->mi_name, int, grp->mrg_index, int, err); 6279 mac_stop_group(grp); 6280 } 6281 return (NULL); 6282 } 6283 ASSERT(grp != NULL); 6284 6285 DTRACE_PROBE2(rx__group__reserved, 6286 char *, mip->mi_name, int, grp->mrg_index); 6287 return (grp); 6288 } 6289 6290 /* 6291 * mac_rx_release_group() 6292 * 6293 * This is called when there are no clients left for the group. 6294 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 6295 * and if it is a non default group, the shares are removed and 6296 * all rings are assigned back to default group. 6297 */ 6298 void 6299 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6300 { 6301 mac_impl_t *mip = mcip->mci_mip; 6302 mac_ring_t *ring; 6303 6304 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6305 6306 if (mip->mi_rx_donor_grp == group) 6307 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6308 6309 /* 6310 * This is the case where there are no clients left. Any 6311 * SRS etc on this group have also be quiesced. 6312 */ 6313 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6314 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6315 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6316 /* 6317 * Remove the SRS associated with the HW ring. 6318 * As a result, polling will be disabled. 6319 */ 6320 ring->mr_srs = NULL; 6321 } 6322 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6323 ring->mr_state == MR_INUSE); 6324 if (ring->mr_state == MR_INUSE) { 6325 mac_stop_ring(ring); 6326 ring->mr_flag = 0; 6327 } 6328 } 6329 6330 /* remove group from share */ 6331 if (mcip->mci_share != NULL) { 6332 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6333 group->mrg_driver); 6334 } 6335 6336 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6337 mac_ring_t *ring; 6338 6339 /* 6340 * Rings were dynamically allocated to group. 6341 * Move rings back to default group. 6342 */ 6343 while ((ring = group->mrg_rings) != NULL) { 6344 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6345 ring); 6346 } 6347 } 6348 mac_stop_group(group); 6349 /* 6350 * Possible improvement: See if we can assign the group just released 6351 * to a another client of the mip 6352 */ 6353 } 6354 6355 /* 6356 * When we move the primary's mac address between groups, we need to also 6357 * take all the clients sharing the same mac address along with it (VLANs) 6358 * We remove the mac address for such clients from the group after quiescing 6359 * them. When we add the mac address we restart the client. Note that 6360 * the primary's mac address is removed from the group after all the 6361 * other clients sharing the address are removed. Similarly, the primary's 6362 * mac address is added before all the other client's mac address are 6363 * added. While grp is the group where the clients reside, tgrp is 6364 * the group where the addresses have to be added. 6365 */ 6366 static void 6367 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp, 6368 mac_group_t *tgrp, uint8_t *maddr, boolean_t add) 6369 { 6370 mac_impl_t *mip = mcip->mci_mip; 6371 mac_grp_client_t *mgcp = grp->mrg_clients; 6372 mac_client_impl_t *gmcip; 6373 boolean_t prim; 6374 6375 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6376 6377 /* 6378 * If the clients are in a non-default group, we just have to 6379 * walk the group's client list. If it is in the default group 6380 * (which will be shared by other clients as well, we need to 6381 * check if the unicast address matches mcip's unicast. 6382 */ 6383 while (mgcp != NULL) { 6384 gmcip = mgcp->mgc_client; 6385 if (gmcip != mcip && 6386 (grp != MAC_DEFAULT_RX_GROUP(mip) || 6387 mcip->mci_unicast == gmcip->mci_unicast)) { 6388 if (!add) { 6389 mac_rx_client_quiesce( 6390 (mac_client_handle_t)gmcip); 6391 (void) mac_remove_macaddr(mcip->mci_unicast); 6392 } else { 6393 (void) mac_add_macaddr(mip, tgrp, maddr, prim); 6394 mac_rx_client_restart( 6395 (mac_client_handle_t)gmcip); 6396 } 6397 } 6398 mgcp = mgcp->mgc_next; 6399 } 6400 } 6401 6402 6403 /* 6404 * Move the MAC address from fgrp to tgrp. If this is the primary client, 6405 * we need to take any VLANs etc. together too. 6406 */ 6407 static int 6408 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6409 mac_group_t *tgrp) 6410 { 6411 mac_impl_t *mip = mcip->mci_mip; 6412 uint8_t maddr[MAXMACADDRLEN]; 6413 int err = 0; 6414 boolean_t prim; 6415 boolean_t multiclnt = B_FALSE; 6416 6417 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6418 ASSERT(mcip->mci_unicast != NULL); 6419 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6420 6421 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6422 if (mcip->mci_unicast->ma_nusers > 1) { 6423 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE); 6424 multiclnt = B_TRUE; 6425 } 6426 ASSERT(mcip->mci_unicast->ma_nusers == 1); 6427 err = mac_remove_macaddr(mcip->mci_unicast); 6428 if (err != 0) { 6429 mac_rx_client_restart((mac_client_handle_t)mcip); 6430 if (multiclnt) { 6431 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6432 B_TRUE); 6433 } 6434 return (err); 6435 } 6436 /* 6437 * Program the H/W Classifier first, if this fails we need 6438 * not proceed with the other stuff. 6439 */ 6440 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) { 6441 /* Revert back the H/W Classifier */ 6442 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) { 6443 /* 6444 * This should not fail now since it worked earlier, 6445 * should we panic? 6446 */ 6447 cmn_err(CE_WARN, 6448 "mac_rx_switch_group: switching %p back" 6449 " to group %p failed!!", (void *)mcip, 6450 (void *)fgrp); 6451 } 6452 mac_rx_client_restart((mac_client_handle_t)mcip); 6453 if (multiclnt) { 6454 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr, 6455 B_TRUE); 6456 } 6457 return (err); 6458 } 6459 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 6460 mac_rx_client_restart((mac_client_handle_t)mcip); 6461 if (multiclnt) 6462 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE); 6463 return (err); 6464 } 6465 6466 /* 6467 * Switch the MAC client from one group to another. This means we need 6468 * to remove the MAC address from the group, remove the MAC client, 6469 * teardown the SRSs and revert the group state. Then, we add the client 6470 * to the destination group, set the SRSs, and add the MAC address to the 6471 * group. 6472 */ 6473 int 6474 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6475 mac_group_t *tgrp) 6476 { 6477 int err; 6478 mac_group_state_t next_state; 6479 mac_client_impl_t *group_only_mcip; 6480 mac_client_impl_t *gmcip; 6481 mac_impl_t *mip = mcip->mci_mip; 6482 mac_grp_client_t *mgcp; 6483 6484 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group); 6485 6486 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 6487 return (err); 6488 6489 /* 6490 * The group might be reserved, but SRSs may not be set up, e.g. 6491 * primary and its vlans using a reserved group. 6492 */ 6493 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 6494 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6495 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 6496 } 6497 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 6498 mgcp = fgrp->mrg_clients; 6499 while (mgcp != NULL) { 6500 gmcip = mgcp->mgc_client; 6501 mgcp = mgcp->mgc_next; 6502 mac_group_remove_client(fgrp, gmcip); 6503 mac_group_add_client(tgrp, gmcip); 6504 gmcip->mci_flent->fe_rx_ring_group = tgrp; 6505 } 6506 mac_release_rx_group(mcip, fgrp); 6507 ASSERT(MAC_GROUP_NO_CLIENT(fgrp)); 6508 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 6509 } else { 6510 mac_group_remove_client(fgrp, mcip); 6511 mac_group_add_client(tgrp, mcip); 6512 mcip->mci_flent->fe_rx_ring_group = tgrp; 6513 /* 6514 * If there are other clients (VLANs) sharing this address 6515 * we should be here only for the primary. 6516 */ 6517 if (mcip->mci_unicast->ma_nusers > 1) { 6518 /* 6519 * We need to move all the clients that are using 6520 * this h/w address. 6521 */ 6522 mgcp = fgrp->mrg_clients; 6523 while (mgcp != NULL) { 6524 gmcip = mgcp->mgc_client; 6525 mgcp = mgcp->mgc_next; 6526 if (mcip->mci_unicast == gmcip->mci_unicast) { 6527 mac_group_remove_client(fgrp, gmcip); 6528 mac_group_add_client(tgrp, gmcip); 6529 gmcip->mci_flent->fe_rx_ring_group = 6530 tgrp; 6531 } 6532 } 6533 } 6534 /* 6535 * The default group will still take the multicast, 6536 * broadcast traffic etc., so it won't go to 6537 * MAC_GROUP_STATE_REGISTERED. 6538 */ 6539 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 6540 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 6541 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 6542 } 6543 next_state = mac_group_next_state(tgrp, &group_only_mcip, 6544 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 6545 mac_set_group_state(tgrp, next_state); 6546 /* 6547 * If the destination group is reserved, setup the SRSs etc. 6548 */ 6549 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 6550 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 6551 mac_fanout_setup(mcip, mcip->mci_flent, 6552 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 6553 NULL); 6554 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 6555 } else { 6556 mac_rx_switch_grp_to_sw(tgrp); 6557 } 6558 return (0); 6559 } 6560 6561 /* 6562 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 6563 * when a share was allocated to the client. 6564 */ 6565 mac_group_t * 6566 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 6567 { 6568 mac_impl_t *mip = mcip->mci_mip; 6569 mac_group_t *grp = NULL; 6570 int rv; 6571 int i; 6572 int err; 6573 mac_group_t *defgrp; 6574 mac_share_handle_t share = mcip->mci_share; 6575 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6576 int nrings; 6577 int defnrings; 6578 boolean_t need_exclgrp = B_FALSE; 6579 int need_rings = 0; 6580 mac_group_t *candidate_grp = NULL; 6581 mac_client_impl_t *gclient; 6582 mac_resource_props_t *gmrp; 6583 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 6584 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 6585 boolean_t isprimary; 6586 6587 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6588 /* 6589 * When we come here for a VLAN on the primary (dladm create-vlan), 6590 * we need to pair it along with the primary (to keep it consistent 6591 * with the RX side). So, we check if the primary is already assigned 6592 * to a group and return the group if so. The other way is also 6593 * true, i.e. the VLAN is already created and now we are plumbing 6594 * the primary. 6595 */ 6596 if (!move && isprimary) { 6597 for (gclient = mip->mi_clients_list; gclient != NULL; 6598 gclient = gclient->mci_client_next) { 6599 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 6600 gclient->mci_flent->fe_tx_ring_group != NULL) { 6601 return (gclient->mci_flent->fe_tx_ring_group); 6602 } 6603 } 6604 } 6605 6606 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 6607 return (NULL); 6608 6609 /* For dynamic groups, default unspec to 1 */ 6610 if (txhw && unspec && 6611 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6612 mrp->mrp_ntxrings = 1; 6613 } 6614 /* 6615 * For static grouping we allow only specifying rings=0 and 6616 * unspecified 6617 */ 6618 if (txhw && mrp->mrp_ntxrings > 0 && 6619 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 6620 return (NULL); 6621 } 6622 6623 if (txhw) { 6624 /* 6625 * We have explicitly asked for a group (with ntxrings, 6626 * if unspec). 6627 */ 6628 if (unspec || mrp->mrp_ntxrings > 0) { 6629 need_exclgrp = B_TRUE; 6630 need_rings = mrp->mrp_ntxrings; 6631 } else if (mrp->mrp_ntxrings == 0) { 6632 /* 6633 * We have asked for a software group. 6634 */ 6635 return (NULL); 6636 } 6637 } 6638 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6639 /* 6640 * The number of rings that the default group can donate. 6641 * We need to leave at least one ring - the default ring - in 6642 * this group. 6643 */ 6644 defnrings = defgrp->mrg_cur_count - 1; 6645 6646 /* 6647 * Primary gets default group unless explicitly told not 6648 * to (i.e. rings > 0). 6649 */ 6650 if (isprimary && !need_exclgrp) 6651 return (NULL); 6652 6653 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 6654 for (i = 0; i < mip->mi_tx_group_count; i++) { 6655 grp = &mip->mi_tx_groups[i]; 6656 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 6657 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 6658 /* 6659 * Select a candidate for replacement if we don't 6660 * get an exclusive group. A candidate group is one 6661 * that didn't ask for an exclusive group, but got 6662 * one and it has enough rings (combined with what 6663 * the default group can donate) for the new MAC 6664 * client. 6665 */ 6666 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 6667 candidate_grp == NULL) { 6668 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6669 if (gclient == NULL) 6670 gclient = mac_get_grp_primary(grp); 6671 gmrp = MCIP_RESOURCE_PROPS(gclient); 6672 if (gclient->mci_share == NULL && 6673 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 6674 (unspec || 6675 (grp->mrg_cur_count + defnrings) >= 6676 need_rings)) { 6677 candidate_grp = grp; 6678 } 6679 } 6680 continue; 6681 } 6682 /* 6683 * If the default can't donate let's just walk and 6684 * see if someone can vacate a group, so that we have 6685 * enough rings for this. 6686 */ 6687 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 6688 nrings <= defnrings) { 6689 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 6690 rv = mac_start_group(grp); 6691 ASSERT(rv == 0); 6692 } 6693 break; 6694 } 6695 } 6696 6697 /* The default group */ 6698 if (i >= mip->mi_tx_group_count) { 6699 /* 6700 * If we need an exclusive group and have identified a 6701 * candidate group we switch the MAC client from the 6702 * candidate group to the default group and give the 6703 * candidate group to this client. 6704 */ 6705 if (need_exclgrp && candidate_grp != NULL) { 6706 /* 6707 * Switch the MAC client from the candidate group 6708 * to the default group. 6709 */ 6710 grp = candidate_grp; 6711 gclient = MAC_GROUP_ONLY_CLIENT(grp); 6712 if (gclient == NULL) 6713 gclient = mac_get_grp_primary(grp); 6714 mac_tx_client_quiesce((mac_client_handle_t)gclient); 6715 mac_tx_switch_group(gclient, grp, defgrp); 6716 mac_tx_client_restart((mac_client_handle_t)gclient); 6717 6718 /* 6719 * Give the candidate group with the specified number 6720 * of rings to this MAC client. 6721 */ 6722 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6723 rv = mac_start_group(grp); 6724 ASSERT(rv == 0); 6725 6726 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6727 return (grp); 6728 6729 ASSERT(grp->mrg_cur_count == 0); 6730 ASSERT(defgrp->mrg_cur_count > need_rings); 6731 6732 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 6733 defgrp, grp, share, need_rings); 6734 if (err == 0) { 6735 /* 6736 * For a share i_mac_group_allocate_rings gets 6737 * the rings from the driver, let's populate 6738 * the property for the client now. 6739 */ 6740 if (share != NULL) { 6741 mac_client_set_rings( 6742 (mac_client_handle_t)mcip, -1, 6743 grp->mrg_cur_count); 6744 } 6745 mip->mi_tx_group_free--; 6746 return (grp); 6747 } 6748 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 6749 mip->mi_name, int, grp->mrg_index, int, err); 6750 mac_stop_group(grp); 6751 } 6752 return (NULL); 6753 } 6754 /* 6755 * We got an exclusive group, but it is not dynamic. 6756 */ 6757 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 6758 mip->mi_tx_group_free--; 6759 return (grp); 6760 } 6761 6762 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 6763 share, nrings); 6764 if (rv != 0) { 6765 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 6766 char *, mip->mi_name, int, grp->mrg_index, int, rv); 6767 mac_stop_group(grp); 6768 return (NULL); 6769 } 6770 /* 6771 * For a share i_mac_group_allocate_rings gets the rings from the 6772 * driver, let's populate the property for the client now. 6773 */ 6774 if (share != NULL) { 6775 mac_client_set_rings((mac_client_handle_t)mcip, -1, 6776 grp->mrg_cur_count); 6777 } 6778 mip->mi_tx_group_free--; 6779 return (grp); 6780 } 6781 6782 void 6783 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 6784 { 6785 mac_impl_t *mip = mcip->mci_mip; 6786 mac_share_handle_t share = mcip->mci_share; 6787 mac_ring_t *ring; 6788 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 6789 mac_group_t *defgrp; 6790 6791 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6792 if (srs != NULL) { 6793 if (srs->srs_soft_ring_count > 0) { 6794 for (ring = grp->mrg_rings; ring != NULL; 6795 ring = ring->mr_next) { 6796 ASSERT(mac_tx_srs_ring_present(srs, ring)); 6797 mac_tx_invoke_callbacks(mcip, 6798 (mac_tx_cookie_t) 6799 mac_tx_srs_get_soft_ring(srs, ring)); 6800 mac_tx_srs_del_ring(srs, ring); 6801 } 6802 } else { 6803 ASSERT(srs->srs_tx.st_arg2 != NULL); 6804 srs->srs_tx.st_arg2 = NULL; 6805 mac_srs_stat_delete(srs); 6806 } 6807 } 6808 if (share != NULL) 6809 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 6810 6811 /* move the ring back to the pool */ 6812 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6813 while ((ring = grp->mrg_rings) != NULL) 6814 (void) mac_group_mov_ring(mip, defgrp, ring); 6815 } 6816 mac_stop_group(grp); 6817 mip->mi_tx_group_free++; 6818 } 6819 6820 /* 6821 * Disassociate a MAC client from a group, i.e go through the rings in the 6822 * group and delete all the soft rings tied to them. 6823 */ 6824 static void 6825 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 6826 { 6827 mac_client_impl_t *mcip = flent->fe_mcip; 6828 mac_soft_ring_set_t *tx_srs; 6829 mac_srs_tx_t *tx; 6830 mac_ring_t *ring; 6831 6832 tx_srs = flent->fe_tx_srs; 6833 tx = &tx_srs->srs_tx; 6834 6835 /* Single ring case we haven't created any soft rings */ 6836 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 6837 tx->st_mode == SRS_TX_DEFAULT) { 6838 tx->st_arg2 = NULL; 6839 mac_srs_stat_delete(tx_srs); 6840 /* Fanout case, where we have to dismantle the soft rings */ 6841 } else { 6842 for (ring = fgrp->mrg_rings; ring != NULL; 6843 ring = ring->mr_next) { 6844 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 6845 mac_tx_invoke_callbacks(mcip, 6846 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 6847 ring)); 6848 mac_tx_srs_del_ring(tx_srs, ring); 6849 } 6850 ASSERT(tx->st_arg2 == NULL); 6851 } 6852 } 6853 6854 /* 6855 * Switch the MAC client from one group to another. This means we need 6856 * to remove the MAC client, teardown the SRSs and revert the group state. 6857 * Then, we add the client to the destination roup, set the SRSs etc. 6858 */ 6859 void 6860 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 6861 mac_group_t *tgrp) 6862 { 6863 mac_client_impl_t *group_only_mcip; 6864 mac_impl_t *mip = mcip->mci_mip; 6865 flow_entry_t *flent = mcip->mci_flent; 6866 mac_group_t *defgrp; 6867 mac_grp_client_t *mgcp; 6868 mac_client_impl_t *gmcip; 6869 flow_entry_t *gflent; 6870 6871 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6872 ASSERT(fgrp == flent->fe_tx_ring_group); 6873 6874 if (fgrp == defgrp) { 6875 /* 6876 * If this is the primary we need to find any VLANs on 6877 * the primary and move them too. 6878 */ 6879 mac_group_remove_client(fgrp, mcip); 6880 mac_tx_dismantle_soft_rings(fgrp, flent); 6881 if (mcip->mci_unicast->ma_nusers > 1) { 6882 mgcp = fgrp->mrg_clients; 6883 while (mgcp != NULL) { 6884 gmcip = mgcp->mgc_client; 6885 mgcp = mgcp->mgc_next; 6886 if (mcip->mci_unicast != gmcip->mci_unicast) 6887 continue; 6888 mac_tx_client_quiesce( 6889 (mac_client_handle_t)gmcip); 6890 6891 gflent = gmcip->mci_flent; 6892 mac_group_remove_client(fgrp, gmcip); 6893 mac_tx_dismantle_soft_rings(fgrp, gflent); 6894 6895 mac_group_add_client(tgrp, gmcip); 6896 gflent->fe_tx_ring_group = tgrp; 6897 /* We could directly set this to SHARED */ 6898 tgrp->mrg_state = mac_group_next_state(tgrp, 6899 &group_only_mcip, defgrp, B_FALSE); 6900 6901 mac_tx_srs_group_setup(gmcip, gflent, 6902 SRST_LINK); 6903 mac_fanout_setup(gmcip, gflent, 6904 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 6905 gmcip, NULL, NULL); 6906 6907 mac_tx_client_restart( 6908 (mac_client_handle_t)gmcip); 6909 } 6910 } 6911 if (MAC_GROUP_NO_CLIENT(fgrp)) { 6912 mac_ring_t *ring; 6913 int cnt; 6914 int ringcnt; 6915 6916 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 6917 /* 6918 * Additionally, we also need to stop all 6919 * the rings in the default group, except 6920 * the default ring. The reason being 6921 * this group won't be released since it is 6922 * the default group, so the rings won't 6923 * be stopped otherwise. 6924 */ 6925 ringcnt = fgrp->mrg_cur_count; 6926 ring = fgrp->mrg_rings; 6927 for (cnt = 0; cnt < ringcnt; cnt++) { 6928 if (ring->mr_state == MR_INUSE && 6929 ring != 6930 (mac_ring_t *)mip->mi_default_tx_ring) { 6931 mac_stop_ring(ring); 6932 ring->mr_flag = 0; 6933 } 6934 ring = ring->mr_next; 6935 } 6936 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 6937 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 6938 } else { 6939 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 6940 } 6941 } else { 6942 /* 6943 * We could have VLANs sharing the non-default group with 6944 * the primary. 6945 */ 6946 mgcp = fgrp->mrg_clients; 6947 while (mgcp != NULL) { 6948 gmcip = mgcp->mgc_client; 6949 mgcp = mgcp->mgc_next; 6950 if (gmcip == mcip) 6951 continue; 6952 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 6953 gflent = gmcip->mci_flent; 6954 6955 mac_group_remove_client(fgrp, gmcip); 6956 mac_tx_dismantle_soft_rings(fgrp, gflent); 6957 6958 mac_group_add_client(tgrp, gmcip); 6959 gflent->fe_tx_ring_group = tgrp; 6960 /* We could directly set this to SHARED */ 6961 tgrp->mrg_state = mac_group_next_state(tgrp, 6962 &group_only_mcip, defgrp, B_FALSE); 6963 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 6964 mac_fanout_setup(gmcip, gflent, 6965 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 6966 gmcip, NULL, NULL); 6967 6968 mac_tx_client_restart((mac_client_handle_t)gmcip); 6969 } 6970 mac_group_remove_client(fgrp, mcip); 6971 mac_release_tx_group(mcip, fgrp); 6972 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 6973 } 6974 6975 /* Add it to the tgroup */ 6976 mac_group_add_client(tgrp, mcip); 6977 flent->fe_tx_ring_group = tgrp; 6978 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 6979 defgrp, B_FALSE); 6980 6981 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 6982 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 6983 mac_rx_deliver, mcip, NULL, NULL); 6984 } 6985 6986 /* 6987 * This is a 1-time control path activity initiated by the client (IP). 6988 * The mac perimeter protects against other simultaneous control activities, 6989 * for example an ioctl that attempts to change the degree of fanout and 6990 * increase or decrease the number of softrings associated with this Tx SRS. 6991 */ 6992 static mac_tx_notify_cb_t * 6993 mac_client_tx_notify_add(mac_client_impl_t *mcip, 6994 mac_tx_notify_t notify, void *arg) 6995 { 6996 mac_cb_info_t *mcbi; 6997 mac_tx_notify_cb_t *mtnfp; 6998 6999 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7000 7001 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7002 mtnfp->mtnf_fn = notify; 7003 mtnfp->mtnf_arg = arg; 7004 mtnfp->mtnf_link.mcb_objp = mtnfp; 7005 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7006 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7007 7008 mcbi = &mcip->mci_tx_notify_cb_info; 7009 mutex_enter(mcbi->mcbi_lockp); 7010 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7011 mutex_exit(mcbi->mcbi_lockp); 7012 return (mtnfp); 7013 } 7014 7015 static void 7016 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7017 { 7018 mac_cb_info_t *mcbi; 7019 mac_cb_t **cblist; 7020 7021 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7022 7023 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7024 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7025 cmn_err(CE_WARN, 7026 "mac_client_tx_notify_remove: callback not " 7027 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7028 return; 7029 } 7030 7031 mcbi = &mcip->mci_tx_notify_cb_info; 7032 cblist = &mcip->mci_tx_notify_cb_list; 7033 mutex_enter(mcbi->mcbi_lockp); 7034 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7035 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7036 else 7037 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7038 mutex_exit(mcbi->mcbi_lockp); 7039 } 7040 7041 /* 7042 * mac_client_tx_notify(): 7043 * call to add and remove flow control callback routine. 7044 */ 7045 mac_tx_notify_handle_t 7046 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7047 void *ptr) 7048 { 7049 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7050 mac_tx_notify_cb_t *mtnfp = NULL; 7051 7052 i_mac_perim_enter(mcip->mci_mip); 7053 7054 if (callb_func != NULL) { 7055 /* Add a notify callback */ 7056 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7057 } else { 7058 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7059 } 7060 i_mac_perim_exit(mcip->mci_mip); 7061 7062 return ((mac_tx_notify_handle_t)mtnfp); 7063 } 7064 7065 void 7066 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7067 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7068 { 7069 mac_bridge_tx_cb = txf; 7070 mac_bridge_rx_cb = rxf; 7071 mac_bridge_ref_cb = reff; 7072 mac_bridge_ls_cb = lsf; 7073 } 7074 7075 int 7076 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7077 { 7078 mac_impl_t *mip = (mac_impl_t *)mh; 7079 int retv; 7080 7081 mutex_enter(&mip->mi_bridge_lock); 7082 if (mip->mi_bridge_link == NULL) { 7083 mip->mi_bridge_link = link; 7084 retv = 0; 7085 } else { 7086 retv = EBUSY; 7087 } 7088 mutex_exit(&mip->mi_bridge_lock); 7089 if (retv == 0) { 7090 mac_poll_state_change(mh, B_FALSE); 7091 mac_capab_update(mh); 7092 } 7093 return (retv); 7094 } 7095 7096 /* 7097 * Disable bridging on the indicated link. 7098 */ 7099 void 7100 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7101 { 7102 mac_impl_t *mip = (mac_impl_t *)mh; 7103 7104 mutex_enter(&mip->mi_bridge_lock); 7105 ASSERT(mip->mi_bridge_link == link); 7106 mip->mi_bridge_link = NULL; 7107 mutex_exit(&mip->mi_bridge_lock); 7108 mac_poll_state_change(mh, B_TRUE); 7109 mac_capab_update(mh); 7110 } 7111 7112 void 7113 mac_no_active(mac_handle_t mh) 7114 { 7115 mac_impl_t *mip = (mac_impl_t *)mh; 7116 7117 i_mac_perim_enter(mip); 7118 mip->mi_state_flags |= MIS_NO_ACTIVE; 7119 i_mac_perim_exit(mip); 7120 } 7121 7122 /* 7123 * Walk the primary VLAN clients whenever the primary's rings property 7124 * changes and update the mac_resource_props_t for the VLAN's client. 7125 * We need to do this since we don't support setting these properties 7126 * on the primary's VLAN clients, but the VLAN clients have to 7127 * follow the primary w.r.t the rings property; 7128 */ 7129 void 7130 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7131 { 7132 mac_client_impl_t *vmcip; 7133 mac_resource_props_t *vmrp; 7134 7135 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7136 vmcip = vmcip->mci_client_next) { 7137 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7138 mac_client_vid((mac_client_handle_t)vmcip) == 7139 VLAN_ID_NONE) { 7140 continue; 7141 } 7142 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7143 7144 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7145 if (mrp->mrp_mask & MRP_RX_RINGS) 7146 vmrp->mrp_mask |= MRP_RX_RINGS; 7147 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7148 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7149 7150 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7151 if (mrp->mrp_mask & MRP_TX_RINGS) 7152 vmrp->mrp_mask |= MRP_TX_RINGS; 7153 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7154 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7155 7156 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7157 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7158 else 7159 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7160 7161 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7162 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7163 else 7164 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7165 } 7166 } 7167 7168 /* 7169 * We are adding or removing ring(s) from a group. The source for taking 7170 * rings is the default group. The destination for giving rings back is 7171 * the default group. 7172 */ 7173 int 7174 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7175 mac_group_t *defgrp) 7176 { 7177 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7178 uint_t modify; 7179 int count; 7180 mac_ring_t *ring; 7181 mac_ring_t *next; 7182 mac_impl_t *mip = mcip->mci_mip; 7183 mac_ring_t **rings; 7184 uint_t ringcnt; 7185 int i = 0; 7186 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7187 int start; 7188 int end; 7189 mac_group_t *tgrp; 7190 int j; 7191 int rv = 0; 7192 7193 /* 7194 * If we are asked for just a group, we give 1 ring, else 7195 * the specified number of rings. 7196 */ 7197 if (rx_group) { 7198 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7199 mrp->mrp_nrxrings; 7200 } else { 7201 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7202 mrp->mrp_ntxrings; 7203 } 7204 7205 /* don't allow modifying rings for a share for now. */ 7206 ASSERT(mcip->mci_share == NULL); 7207 7208 if (ringcnt == group->mrg_cur_count) 7209 return (0); 7210 7211 if (group->mrg_cur_count > ringcnt) { 7212 modify = group->mrg_cur_count - ringcnt; 7213 if (rx_group) { 7214 if (mip->mi_rx_donor_grp == group) { 7215 ASSERT(mac_is_primary_client(mcip)); 7216 mip->mi_rx_donor_grp = defgrp; 7217 } else { 7218 defgrp = mip->mi_rx_donor_grp; 7219 } 7220 } 7221 ring = group->mrg_rings; 7222 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7223 KM_SLEEP); 7224 j = 0; 7225 for (count = 0; count < modify; count++) { 7226 next = ring->mr_next; 7227 rv = mac_group_mov_ring(mip, defgrp, ring); 7228 if (rv != 0) { 7229 /* cleanup on failure */ 7230 for (j = 0; j < count; j++) { 7231 (void) mac_group_mov_ring(mip, group, 7232 rings[j]); 7233 } 7234 break; 7235 } 7236 rings[j++] = ring; 7237 ring = next; 7238 } 7239 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7240 return (rv); 7241 } 7242 if (ringcnt >= MAX_RINGS_PER_GROUP) 7243 return (EINVAL); 7244 7245 modify = ringcnt - group->mrg_cur_count; 7246 7247 if (rx_group) { 7248 if (group != mip->mi_rx_donor_grp) 7249 defgrp = mip->mi_rx_donor_grp; 7250 else 7251 /* 7252 * This is the donor group with all the remaining 7253 * rings. Default group now gets to be the donor 7254 */ 7255 mip->mi_rx_donor_grp = defgrp; 7256 start = 1; 7257 end = mip->mi_rx_group_count; 7258 } else { 7259 start = 0; 7260 end = mip->mi_tx_group_count - 1; 7261 } 7262 /* 7263 * If the default doesn't have any rings, lets see if we can 7264 * take rings given to an h/w client that doesn't need it. 7265 * For now, we just see if there is any one client that can donate 7266 * all the required rings. 7267 */ 7268 if (defgrp->mrg_cur_count < (modify + 1)) { 7269 for (i = start; i < end; i++) { 7270 if (rx_group) { 7271 tgrp = &mip->mi_rx_groups[i]; 7272 if (tgrp == group || tgrp->mrg_state < 7273 MAC_GROUP_STATE_RESERVED) { 7274 continue; 7275 } 7276 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7277 if (mcip == NULL) 7278 mcip = mac_get_grp_primary(tgrp); 7279 ASSERT(mcip != NULL); 7280 mrp = MCIP_RESOURCE_PROPS(mcip); 7281 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0) 7282 continue; 7283 if ((tgrp->mrg_cur_count + 7284 defgrp->mrg_cur_count) < (modify + 1)) { 7285 continue; 7286 } 7287 if (mac_rx_switch_group(mcip, tgrp, 7288 defgrp) != 0) { 7289 return (ENOSPC); 7290 } 7291 } else { 7292 tgrp = &mip->mi_tx_groups[i]; 7293 if (tgrp == group || tgrp->mrg_state < 7294 MAC_GROUP_STATE_RESERVED) { 7295 continue; 7296 } 7297 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 7298 if (mcip == NULL) 7299 mcip = mac_get_grp_primary(tgrp); 7300 mrp = MCIP_RESOURCE_PROPS(mcip); 7301 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0) 7302 continue; 7303 if ((tgrp->mrg_cur_count + 7304 defgrp->mrg_cur_count) < (modify + 1)) { 7305 continue; 7306 } 7307 /* OK, we can switch this to s/w */ 7308 mac_tx_client_quiesce( 7309 (mac_client_handle_t)mcip); 7310 mac_tx_switch_group(mcip, tgrp, defgrp); 7311 mac_tx_client_restart( 7312 (mac_client_handle_t)mcip); 7313 } 7314 } 7315 if (defgrp->mrg_cur_count < (modify + 1)) 7316 return (ENOSPC); 7317 } 7318 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7319 group, mcip->mci_share, modify)) != 0) { 7320 return (rv); 7321 } 7322 return (0); 7323 } 7324 7325 /* 7326 * Given the poolname in mac_resource_props, find the cpupart 7327 * that is associated with this pool. The cpupart will be used 7328 * later for finding the cpus to be bound to the networking threads. 7329 * 7330 * use_default is set B_TRUE if pools are enabled and pool_default 7331 * is returned. This avoids a 2nd lookup to set the poolname 7332 * for pool-effective. 7333 * 7334 * returns: 7335 * 7336 * NULL - pools are disabled or if the 'cpus' property is set. 7337 * cpupart of pool_default - pools are enabled and the pool 7338 * is not available or poolname is blank 7339 * cpupart of named pool - pools are enabled and the pool 7340 * is available. 7341 */ 7342 cpupart_t * 7343 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7344 { 7345 pool_t *pool; 7346 cpupart_t *cpupart; 7347 7348 *use_default = B_FALSE; 7349 7350 /* CPUs property is set */ 7351 if (mrp->mrp_mask & MRP_CPUS) 7352 return (NULL); 7353 7354 ASSERT(pool_lock_held()); 7355 7356 /* Pools are disabled, no pset */ 7357 if (pool_state == POOL_DISABLED) 7358 return (NULL); 7359 7360 /* Pools property is set */ 7361 if (mrp->mrp_mask & MRP_POOL) { 7362 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7363 /* Pool not found */ 7364 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7365 mrp->mrp_pool); 7366 *use_default = B_TRUE; 7367 pool = pool_default; 7368 } 7369 /* Pools property is not set */ 7370 } else { 7371 *use_default = B_TRUE; 7372 pool = pool_default; 7373 } 7374 7375 /* Find the CPU pset that corresponds to the pool */ 7376 mutex_enter(&cpu_lock); 7377 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7378 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7379 pool->pool_pset->pset_id); 7380 } 7381 mutex_exit(&cpu_lock); 7382 7383 return (cpupart); 7384 } 7385 7386 void 7387 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7388 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7389 { 7390 ASSERT(pool_lock_held()); 7391 7392 if (cpupart != NULL) { 7393 emrp->mrp_mask |= MRP_POOL; 7394 if (use_default) { 7395 (void) strcpy(emrp->mrp_pool, 7396 "pool_default"); 7397 } else { 7398 ASSERT(strlen(mrp->mrp_pool) != 0); 7399 (void) strcpy(emrp->mrp_pool, 7400 mrp->mrp_pool); 7401 } 7402 } else { 7403 emrp->mrp_mask &= ~MRP_POOL; 7404 bzero(emrp->mrp_pool, MAXPATHLEN); 7405 } 7406 } 7407 7408 struct mac_pool_arg { 7409 char mpa_poolname[MAXPATHLEN]; 7410 pool_event_t mpa_what; 7411 }; 7412 7413 /*ARGSUSED*/ 7414 static uint_t 7415 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7416 { 7417 struct mac_pool_arg *mpa = arg; 7418 mac_impl_t *mip = (mac_impl_t *)val; 7419 mac_client_impl_t *mcip; 7420 mac_resource_props_t *mrp, *emrp; 7421 boolean_t pool_update = B_FALSE; 7422 boolean_t pool_clear = B_FALSE; 7423 boolean_t use_default = B_FALSE; 7424 cpupart_t *cpupart = NULL; 7425 7426 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 7427 i_mac_perim_enter(mip); 7428 for (mcip = mip->mi_clients_list; mcip != NULL; 7429 mcip = mcip->mci_client_next) { 7430 pool_update = B_FALSE; 7431 pool_clear = B_FALSE; 7432 use_default = B_FALSE; 7433 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 7434 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7435 7436 /* 7437 * When pools are enabled 7438 */ 7439 if ((mpa->mpa_what == POOL_E_ENABLE) && 7440 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7441 mrp->mrp_mask |= MRP_POOL; 7442 pool_update = B_TRUE; 7443 } 7444 7445 /* 7446 * When pools are disabled 7447 */ 7448 if ((mpa->mpa_what == POOL_E_DISABLE) && 7449 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 7450 mrp->mrp_mask |= MRP_POOL; 7451 pool_clear = B_TRUE; 7452 } 7453 7454 /* 7455 * Look for links with the pool property set and the poolname 7456 * matching the one which is changing. 7457 */ 7458 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 7459 /* 7460 * The pool associated with the link has changed. 7461 */ 7462 if (mpa->mpa_what == POOL_E_CHANGE) { 7463 mrp->mrp_mask |= MRP_POOL; 7464 pool_update = B_TRUE; 7465 } 7466 } 7467 7468 /* 7469 * This link is associated with pool_default and 7470 * pool_default has changed. 7471 */ 7472 if ((mpa->mpa_what == POOL_E_CHANGE) && 7473 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 7474 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 7475 mrp->mrp_mask |= MRP_POOL; 7476 pool_update = B_TRUE; 7477 } 7478 7479 /* 7480 * Get new list of cpus for the pool, bind network 7481 * threads to new list of cpus and update resources. 7482 */ 7483 if (pool_update) { 7484 if (MCIP_DATAPATH_SETUP(mcip)) { 7485 pool_lock(); 7486 cpupart = mac_pset_find(mrp, &use_default); 7487 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7488 mac_rx_deliver, mcip, NULL, cpupart); 7489 mac_set_pool_effective(use_default, cpupart, 7490 mrp, emrp); 7491 pool_unlock(); 7492 } 7493 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7494 B_FALSE); 7495 } 7496 7497 /* 7498 * Clear the effective pool and bind network threads 7499 * to any available CPU. 7500 */ 7501 if (pool_clear) { 7502 if (MCIP_DATAPATH_SETUP(mcip)) { 7503 emrp->mrp_mask &= ~MRP_POOL; 7504 bzero(emrp->mrp_pool, MAXPATHLEN); 7505 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 7506 mac_rx_deliver, mcip, NULL, NULL); 7507 } 7508 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 7509 B_FALSE); 7510 } 7511 } 7512 i_mac_perim_exit(mip); 7513 kmem_free(mrp, sizeof (*mrp)); 7514 return (MH_WALK_CONTINUE); 7515 } 7516 7517 static void 7518 mac_pool_update(void *arg) 7519 { 7520 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 7521 kmem_free(arg, sizeof (struct mac_pool_arg)); 7522 } 7523 7524 /* 7525 * Callback function to be executed when a noteworthy pool event 7526 * takes place. 7527 */ 7528 /* ARGSUSED */ 7529 static void 7530 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 7531 { 7532 pool_t *pool; 7533 char *poolname = NULL; 7534 struct mac_pool_arg *mpa; 7535 7536 pool_lock(); 7537 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 7538 7539 switch (what) { 7540 case POOL_E_ENABLE: 7541 case POOL_E_DISABLE: 7542 break; 7543 7544 case POOL_E_CHANGE: 7545 pool = pool_lookup_pool_by_id(id); 7546 if (pool == NULL) { 7547 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7548 pool_unlock(); 7549 return; 7550 } 7551 pool_get_name(pool, &poolname); 7552 (void) strlcpy(mpa->mpa_poolname, poolname, 7553 sizeof (mpa->mpa_poolname)); 7554 break; 7555 7556 default: 7557 kmem_free(mpa, sizeof (struct mac_pool_arg)); 7558 pool_unlock(); 7559 return; 7560 } 7561 pool_unlock(); 7562 7563 mpa->mpa_what = what; 7564 7565 mac_pool_update(mpa); 7566 } 7567 7568 /* 7569 * Set effective rings property. This could be called from datapath_setup/ 7570 * datapath_teardown or set-linkprop. 7571 * If the group is reserved we just go ahead and set the effective rings. 7572 * Additionally, for TX this could mean the default group has lost/gained 7573 * some rings, so if the default group is reserved, we need to adjust the 7574 * effective rings for the default group clients. For RX, if we are working 7575 * with the non-default group, we just need * to reset the effective props 7576 * for the default group clients. 7577 */ 7578 void 7579 mac_set_rings_effective(mac_client_impl_t *mcip) 7580 { 7581 mac_impl_t *mip = mcip->mci_mip; 7582 mac_group_t *grp; 7583 mac_group_t *defgrp; 7584 flow_entry_t *flent = mcip->mci_flent; 7585 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 7586 mac_grp_client_t *mgcp; 7587 mac_client_impl_t *gmcip; 7588 7589 grp = flent->fe_rx_ring_group; 7590 if (grp != NULL) { 7591 defgrp = MAC_DEFAULT_RX_GROUP(mip); 7592 /* 7593 * If we have reserved a group, set the effective rings 7594 * to the ring count in the group. 7595 */ 7596 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7597 emrp->mrp_mask |= MRP_RX_RINGS; 7598 emrp->mrp_nrxrings = grp->mrg_cur_count; 7599 } 7600 7601 /* 7602 * We go through the clients in the shared group and 7603 * reset the effective properties. It is possible this 7604 * might have already been done for some client (i.e. 7605 * if some client is being moved to a group that is 7606 * already shared). The case where the default group is 7607 * RESERVED is taken care of above (note in the RX side if 7608 * there is a non-default group, the default group is always 7609 * SHARED). 7610 */ 7611 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7612 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 7613 mgcp = grp->mrg_clients; 7614 else 7615 mgcp = defgrp->mrg_clients; 7616 while (mgcp != NULL) { 7617 gmcip = mgcp->mgc_client; 7618 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7619 if (emrp->mrp_mask & MRP_RX_RINGS) { 7620 emrp->mrp_mask &= ~MRP_RX_RINGS; 7621 emrp->mrp_nrxrings = 0; 7622 } 7623 mgcp = mgcp->mgc_next; 7624 } 7625 } 7626 } 7627 7628 /* Now the TX side */ 7629 grp = flent->fe_tx_ring_group; 7630 if (grp != NULL) { 7631 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7632 7633 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7634 emrp->mrp_mask |= MRP_TX_RINGS; 7635 emrp->mrp_ntxrings = grp->mrg_cur_count; 7636 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 7637 mgcp = grp->mrg_clients; 7638 while (mgcp != NULL) { 7639 gmcip = mgcp->mgc_client; 7640 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7641 if (emrp->mrp_mask & MRP_TX_RINGS) { 7642 emrp->mrp_mask &= ~MRP_TX_RINGS; 7643 emrp->mrp_ntxrings = 0; 7644 } 7645 mgcp = mgcp->mgc_next; 7646 } 7647 } 7648 7649 /* 7650 * If the group is not the default group and the default 7651 * group is reserved, the ring count in the default group 7652 * might have changed, update it. 7653 */ 7654 if (grp != defgrp && 7655 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7656 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 7657 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 7658 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 7659 } 7660 } 7661 emrp = MCIP_EFFECTIVE_PROPS(mcip); 7662 } 7663 7664 /* 7665 * Check if the primary is in the default group. If so, see if we 7666 * can give it a an exclusive group now that another client is 7667 * being configured. We take the primary out of the default group 7668 * because the multicast/broadcast packets for the all the clients 7669 * will land in the default ring in the default group which means 7670 * any client in the default group, even if it is the only on in 7671 * the group, will lose exclusive access to the rings, hence 7672 * polling. 7673 */ 7674 mac_client_impl_t * 7675 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 7676 { 7677 mac_impl_t *mip = mcip->mci_mip; 7678 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 7679 flow_entry_t *flent = mcip->mci_flent; 7680 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7681 uint8_t *mac_addr; 7682 mac_group_t *ngrp; 7683 7684 /* 7685 * Check if the primary is in the default group, if not 7686 * or if it is explicitly configured to be in the default 7687 * group OR set the RX rings property, return. 7688 */ 7689 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 7690 return (NULL); 7691 7692 /* 7693 * If the new client needs an exclusive group and we 7694 * don't have another for the primary, return. 7695 */ 7696 if (rxhw && mip->mi_rxhwclnt_avail < 2) 7697 return (NULL); 7698 7699 mac_addr = flent->fe_flow_desc.fd_dst_mac; 7700 /* 7701 * We call this when we are setting up the datapath for 7702 * the first non-primary. 7703 */ 7704 ASSERT(mip->mi_nactiveclients == 2); 7705 /* 7706 * OK, now we have the primary that needs to be relocated. 7707 */ 7708 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 7709 if (ngrp == NULL) 7710 return (NULL); 7711 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 7712 mac_stop_group(ngrp); 7713 return (NULL); 7714 } 7715 return (mcip); 7716 } 7717