1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/conf.h> 31 #include <sys/file.h> 32 #include <sys/user.h> 33 #include <sys/uio.h> 34 #include <sys/t_lock.h> 35 #include <sys/buf.h> 36 #include <sys/dkio.h> 37 #include <sys/vtoc.h> 38 #include <sys/kmem.h> 39 #include <vm/page.h> 40 #include <sys/cmn_err.h> 41 #include <sys/sysmacros.h> 42 #include <sys/types.h> 43 #include <sys/mkdev.h> 44 #include <sys/stat.h> 45 #include <sys/open.h> 46 #include <sys/lvm/mdio.h> 47 #include <sys/lvm/mdvar.h> 48 #include <sys/lvm/md_stripe.h> 49 #include <sys/lvm/md_convert.h> 50 #include <sys/lvm/md_notify.h> 51 #include <sys/modctl.h> 52 #include <sys/ddi.h> 53 #include <sys/sunddi.h> 54 #include <sys/debug.h> 55 #include <sys/sysevent/eventdefs.h> 56 #include <sys/sysevent/svm.h> 57 58 md_ops_t stripe_md_ops; 59 #ifndef lint 60 char _depends_on[] = "drv/md"; 61 md_ops_t *md_interface_ops = &stripe_md_ops; 62 #endif 63 64 extern unit_t md_nunits; 65 extern set_t md_nsets; 66 extern md_set_t md_set[]; 67 68 extern kmutex_t md_mx; 69 extern kcondvar_t md_cv; 70 71 extern int md_status; 72 extern major_t md_major; 73 extern mdq_anchor_t md_done_daemon; 74 75 static int md_stripe_mcs_buf_off; 76 static kmem_cache_t *stripe_parent_cache = NULL; 77 static kmem_cache_t *stripe_child_cache = NULL; 78 79 /*ARGSUSED1*/ 80 static int 81 stripe_parent_constructor(void *p, void *d1, int d2) 82 { 83 mutex_init(&((md_sps_t *)p)->ps_mx, 84 NULL, MUTEX_DEFAULT, NULL); 85 return (0); 86 } 87 88 static void 89 stripe_parent_init(void *ps) 90 { 91 bzero(ps, offsetof(md_sps_t, ps_mx)); 92 } 93 94 /*ARGSUSED1*/ 95 static void 96 stripe_parent_destructor(void *p, void *d) 97 { 98 mutex_destroy(&((md_sps_t *)p)->ps_mx); 99 } 100 101 /*ARGSUSED1*/ 102 static int 103 stripe_child_constructor(void *p, void *d1, int d2) 104 { 105 bioinit(&((md_scs_t *)p)->cs_buf); 106 return (0); 107 } 108 109 static void 110 stripe_child_init(md_scs_t *cs) 111 { 112 cs->cs_mdunit = 0; 113 cs->cs_ps = NULL; 114 cs->cs_comp = NULL; 115 md_bioreset(&cs->cs_buf); 116 } 117 118 /*ARGSUSED1*/ 119 static void 120 stripe_child_destructor(void *p, void *d) 121 { 122 biofini(&((md_scs_t *)p)->cs_buf); 123 } 124 125 /*ARGSUSED*/ 126 static void 127 stripe_run_queue(void *d) 128 { 129 if (!(md_status & MD_GBL_DAEMONS_LIVE)) 130 md_daemon(1, &md_done_daemon); 131 } 132 133 static void 134 stripe_close_all_devs(ms_unit_t *un, int md_cflags) 135 { 136 int row; 137 int i; 138 int c; 139 struct ms_comp *mdcomp; 140 141 mdcomp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 142 for (row = 0; row < un->un_nrows; row++) { 143 struct ms_row *mdr = &un->un_row[row]; 144 for (i = 0, c = mdr->un_icomp; i < mdr->un_ncomp; i++) { 145 struct ms_comp *mdc; 146 mdc = &mdcomp[c++]; 147 if (md_cflags & MD_OFLG_PROBEDEV) { 148 149 /* 150 * It is possible that the md_layered_open 151 * failed because the stripe unit structure 152 * contained a NODEV. In such a case since 153 * there is nothing to open, there is nothing 154 * to close. 155 */ 156 if (mdc->un_dev == NODEV64) 157 continue; 158 } 159 if ((md_cflags & MD_OFLG_PROBEDEV) && 160 (mdc->un_mirror.ms_flags & MDM_S_PROBEOPEN)) { 161 md_layered_close(mdc->un_dev, 162 md_cflags); 163 mdc->un_mirror.ms_flags &= 164 ~MDM_S_PROBEOPEN; 165 } else if (mdc->un_mirror.ms_flags & MDM_S_ISOPEN) { 166 md_layered_close(mdc->un_dev, md_cflags); 167 mdc->un_mirror.ms_flags &= ~MDM_S_ISOPEN; 168 } 169 } 170 } 171 } 172 173 static int 174 stripe_open_all_devs(ms_unit_t *un, int md_oflags) 175 { 176 minor_t mnum = MD_SID(un); 177 int row; 178 int i; 179 int c; 180 struct ms_comp *mdcomp; 181 int err; 182 int cont_on_errors = (md_oflags & MD_OFLG_CONT_ERRS); 183 int probe_err_cnt = 0; 184 int total_comp_cnt = 0; 185 set_t setno = MD_MIN2SET(MD_SID(un)); 186 side_t side = mddb_getsidenum(setno); 187 mdkey_t key; 188 189 mdcomp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 190 191 /* 192 * For a probe call, if any component of a stripe or a concat 193 * can be opened, it is considered to be a success. The total number 194 * of components in a stripe are computed prior to starting a probe. 195 * This number is then compared against the number of components 196 * that could be be successfully opened. If none of the components 197 * in a stripe can be opened, only then an ENXIO is returned for a 198 * probe type open. 199 */ 200 201 for (row = 0; row < un->un_nrows; row++) { 202 struct ms_row *mdr = &un->un_row[row]; 203 204 if (md_oflags & MD_OFLG_PROBEDEV) 205 total_comp_cnt += mdr->un_ncomp; 206 207 for (i = 0, c = mdr->un_icomp; i < mdr->un_ncomp; i++) { 208 struct ms_comp *mdc; 209 md_dev64_t tmpdev; 210 211 mdc = &mdcomp[c++]; 212 tmpdev = mdc->un_dev; 213 /* 214 * Do the open by device id 215 * Check if this comp is hotspared and 216 * if it is then use the key for hotspare. 217 * MN disksets don't use devids, so we better don't use 218 * md_devid_found/md_resolve_bydevid there. Rather do, 219 * what's done in stripe_build_incore() 220 */ 221 if (MD_MNSET_SETNO(setno)) { 222 if (mdc->un_mirror.ms_hs_id != 0) { 223 (void) md_hot_spare_ifc(HS_MKDEV, 0, 0, 224 0, &mdc->un_mirror.ms_hs_id, NULL, 225 &tmpdev, NULL); 226 } 227 } else { 228 key = mdc->un_mirror.ms_hs_id ? 229 mdc->un_mirror.ms_hs_key : mdc->un_key; 230 if ((md_getmajor(tmpdev) != md_major) && 231 md_devid_found(setno, side, key) == 1) { 232 tmpdev = md_resolve_bydevid(mnum, 233 tmpdev, key); 234 } 235 } 236 237 /* 238 * For a submirror, we only want to open those devices 239 * that are not errored. If the device is errored then 240 * then there is no reason to open it and leaving it 241 * closed allows the RCM/DR code to work so that the 242 * errored device can be replaced. 243 */ 244 if ((md_oflags & MD_OFLG_PROBEDEV) || 245 ! (mdc->un_mirror.ms_state & CS_ERRED)) { 246 247 err = md_layered_open(mnum, &tmpdev, md_oflags); 248 } else { 249 err = ENXIO; 250 } 251 252 /* 253 * Only set the un_dev if the tmpdev != NODEV64. If 254 * it is NODEV64 then the md_layered_open() will have 255 * failed in some manner. 256 */ 257 if (tmpdev != NODEV64) 258 mdc->un_dev = tmpdev; 259 260 if (err) { 261 if (!cont_on_errors) { 262 stripe_close_all_devs(un, md_oflags); 263 return (ENXIO); 264 } 265 266 if (md_oflags & MD_OFLG_PROBEDEV) 267 probe_err_cnt++; 268 } else { 269 if (md_oflags & MD_OFLG_PROBEDEV) { 270 mdc->un_mirror.ms_flags |= 271 MDM_S_PROBEOPEN; 272 } else 273 mdc->un_mirror.ms_flags |= MDM_S_ISOPEN; 274 } 275 } 276 } 277 278 /* If every component in a stripe could not be opened fail */ 279 if ((md_oflags & MD_OFLG_PROBEDEV) && 280 (probe_err_cnt == total_comp_cnt)) 281 return (ENXIO); 282 else 283 return (0); 284 } 285 286 int 287 stripe_build_incore(void *p, int snarfing) 288 { 289 ms_unit_t *un = (ms_unit_t *)p; 290 struct ms_comp *mdcomp; 291 minor_t mnum; 292 int row; 293 int i; 294 int c; 295 int ncomps; 296 297 mnum = MD_SID(un); 298 299 if (MD_UNIT(mnum) != NULL) 300 return (0); 301 302 MD_STATUS(un) = 0; 303 304 /* 305 * Reset all the is_open flags, these are probably set 306 * cause they just came out of the database. 307 */ 308 mdcomp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 309 310 ncomps = 0; 311 for (row = 0; row < un->un_nrows; row++) { 312 struct ms_row *mdr = &un->un_row[row]; 313 ncomps += mdr->un_ncomp; 314 } 315 316 for (row = 0; row < un->un_nrows; row++) { 317 struct ms_row *mdr = &un->un_row[row]; 318 for (i = 0, c = mdr->un_icomp; i < mdr->un_ncomp; i++) { 319 struct ms_comp *mdc; 320 set_t setno; 321 md_dev64_t tmpdev; 322 323 mdc = &mdcomp[c++]; 324 mdc->un_mirror.ms_flags &= 325 ~(MDM_S_ISOPEN | MDM_S_IOERR | MDM_S_RS_TRIED); 326 327 if (!snarfing) 328 continue; 329 330 setno = MD_MIN2SET(mnum); 331 332 tmpdev = md_getdevnum(setno, mddb_getsidenum(setno), 333 mdc->un_key, MD_NOTRUST_DEVT); 334 mdc->un_dev = tmpdev; 335 /* 336 * Check for hotspares. If the hotspares haven't been 337 * snarfed yet, stripe_open_all_devs() will do the 338 * remapping of the dev's later. 339 */ 340 if (mdc->un_mirror.ms_hs_id != 0) { 341 mdc->un_mirror.ms_orig_dev = mdc->un_dev; 342 (void) md_hot_spare_ifc(HS_MKDEV, 0, 0, 343 0, &mdc->un_mirror.ms_hs_id, NULL, 344 &tmpdev, NULL); 345 mdc->un_dev = tmpdev; 346 } 347 } 348 } 349 350 MD_UNIT(mnum) = un; 351 return (0); 352 } 353 354 void 355 reset_stripe(ms_unit_t *un, minor_t mnum, int removing) 356 { 357 ms_comp_t *mdcomp; 358 struct ms_row *mdr; 359 int i, c; 360 int row; 361 int nsv; 362 int isv; 363 sv_dev_t *sv; 364 mddb_recid_t *recids; 365 mddb_recid_t vtoc_id; 366 int rid = 0; 367 368 md_destroy_unit_incore(mnum, &stripe_md_ops); 369 370 MD_UNIT(mnum) = NULL; 371 372 /* 373 * Attempt release of its minor node 374 */ 375 md_remove_minor_node(mnum); 376 377 if (!removing) 378 return; 379 380 nsv = 0; 381 /* Count the number of devices */ 382 for (row = 0; row < un->un_nrows; row++) { 383 mdr = &un->un_row[row]; 384 nsv += mdr->un_ncomp; 385 } 386 sv = (sv_dev_t *)kmem_alloc(sizeof (sv_dev_t) * nsv, KM_SLEEP); 387 388 /* 389 * allocate recids array. since we may have to commit 390 * underlying soft partition records, we need an array 391 * of size: total number of components in stripe + 3 392 * (one for the stripe itself, one for the hotspare, one 393 * for the end marker). 394 */ 395 recids = kmem_alloc(sizeof (mddb_recid_t) * (nsv + 3), KM_SLEEP); 396 397 /* 398 * Save the md_dev64_t's and driver nm indexes. 399 * Because after the mddb_deleterec() we will 400 * not be able to access the unit structure. 401 * 402 * NOTE: Deleting the names before deleting the 403 * unit structure would cause problems if 404 * the machine crashed in between the two. 405 */ 406 isv = 0; 407 mdcomp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 408 409 for (row = 0; row < un->un_nrows; row++) { 410 mdr = &un->un_row[row]; 411 for (i = 0, c = mdr->un_icomp; i < mdr->un_ncomp; i++) { 412 struct ms_comp *mdc; 413 md_dev64_t child_dev; 414 md_unit_t *child_un; 415 416 mdc = &mdcomp[c++]; 417 if (mdc->un_mirror.ms_hs_id != 0) { 418 mdkey_t hs_key; 419 420 hs_key = mdc->un_mirror.ms_hs_key; 421 422 mdc->un_dev = mdc->un_mirror.ms_orig_dev; 423 mdc->un_start_block = 424 mdc->un_mirror.ms_orig_blk; 425 mdc->un_mirror.ms_hs_id = 0; 426 mdc->un_mirror.ms_hs_key = 0; 427 mdc->un_mirror.ms_orig_dev = 0; 428 recids[0] = 0; 429 recids[1] = 0; /* recids[1] filled in below */ 430 recids[2] = 0; 431 (void) md_hot_spare_ifc(HS_FREE, un->un_hsp_id, 432 0, 0, &recids[0], &hs_key, NULL, NULL); 433 mddb_commitrecs_wrapper(recids); 434 } 435 436 /* 437 * check if we've got metadevice below us and 438 * deparent it if we do. 439 * NOTE: currently soft partitions are the 440 * the only metadevices stripes can be 441 * built on top of. 442 */ 443 child_dev = mdc->un_dev; 444 if (md_getmajor(child_dev) == md_major) { 445 child_un = MD_UNIT(md_getminor(child_dev)); 446 md_reset_parent(child_dev); 447 recids[rid++] = MD_RECID(child_un); 448 } 449 450 sv[isv].setno = MD_MIN2SET(mnum); 451 sv[isv++].key = mdc->un_key; 452 } 453 } 454 455 recids[rid++] = un->c.un_record_id; 456 recids[rid] = 0; /* filled in below */ 457 458 /* 459 * Decrement the HSP reference count and 460 * remove the knowledge of the HSP from the unit struct. 461 * This is done atomically to remove a window. 462 */ 463 if (un->un_hsp_id != -1) { 464 (void) md_hot_spare_ifc(HSP_DECREF, un->un_hsp_id, 0, 0, 465 &recids[rid++], NULL, NULL, NULL); 466 un->un_hsp_id = -1; 467 } 468 469 /* set end marker and commit records */ 470 recids[rid] = 0; 471 mddb_commitrecs_wrapper(recids); 472 473 vtoc_id = un->c.un_vtoc_id; 474 475 /* 476 * Remove self from the namespace 477 */ 478 if (un->c.un_revision & MD_FN_META_DEV) { 479 (void) md_rem_selfname(un->c.un_self_id); 480 } 481 482 /* Remove the unit structure */ 483 mddb_deleterec_wrapper(un->c.un_record_id); 484 485 /* Remove the vtoc, if present */ 486 if (vtoc_id) 487 mddb_deleterec_wrapper(vtoc_id); 488 489 SE_NOTIFY(EC_SVM_CONFIG, ESC_SVM_DELETE, SVM_TAG_METADEVICE, 490 MD_MIN2SET(mnum), MD_MIN2UNIT(mnum)); 491 md_rem_names(sv, nsv); 492 kmem_free(sv, sizeof (sv_dev_t) * nsv); 493 kmem_free(recids, sizeof (mddb_recid_t) * (nsv + 3)); 494 } 495 496 static void 497 stripe_error(md_sps_t *ps) 498 { 499 struct buf *pb = ps->ps_bp; 500 mdi_unit_t *ui = ps->ps_ui; 501 md_dev64_t dev = ps->ps_errcomp->un_dev; 502 md_dev64_t md_dev = md_expldev(pb->b_edev); 503 char *str; 504 505 if (pb->b_flags & B_READ) { 506 ps->ps_errcomp->un_mirror.ms_flags |= MDM_S_READERR; 507 str = "read"; 508 } else { 509 ps->ps_errcomp->un_mirror.ms_flags |= MDM_S_WRTERR; 510 str = "write"; 511 } 512 if (!(ps->ps_flags & MD_SPS_DONTFREE)) { 513 if (MUTEX_HELD(&ps->ps_mx)) { 514 mutex_exit(&ps->ps_mx); 515 } 516 } else { 517 ASSERT(panicstr); 518 } 519 SPS_FREE(stripe_parent_cache, ps); 520 pb->b_flags |= B_ERROR; 521 522 md_kstat_done(ui, pb, 0); 523 md_unit_readerexit(ui); 524 md_biodone(pb); 525 526 cmn_err(CE_WARN, "md: %s: %s error on %s", 527 md_shortname(md_getminor(md_dev)), str, 528 md_devname(MD_DEV2SET(md_dev), dev, NULL, 0)); 529 } 530 531 static int 532 stripe_done(struct buf *cb) 533 { 534 struct buf *pb; 535 mdi_unit_t *ui; 536 md_sps_t *ps; 537 md_scs_t *cs; 538 539 /*LINTED*/ 540 cs = (md_scs_t *)((caddr_t)cb - md_stripe_mcs_buf_off); 541 ps = cs->cs_ps; 542 pb = ps->ps_bp; 543 544 mutex_enter(&ps->ps_mx); 545 if (cb->b_flags & B_ERROR) { 546 ps->ps_flags |= MD_SPS_ERROR; 547 pb->b_error = cb->b_error; 548 ps->ps_errcomp = cs->cs_comp; 549 } 550 551 if (cb->b_flags & B_REMAPPED) 552 bp_mapout(cb); 553 554 ps->ps_frags--; 555 if (ps->ps_frags != 0) { 556 mutex_exit(&ps->ps_mx); 557 kmem_cache_free(stripe_child_cache, cs); 558 return (1); 559 } 560 kmem_cache_free(stripe_child_cache, cs); 561 if (ps->ps_flags & MD_SPS_ERROR) { 562 stripe_error(ps); 563 return (1); 564 } 565 ui = ps->ps_ui; 566 if (!(ps->ps_flags & MD_SPS_DONTFREE)) { 567 mutex_exit(&ps->ps_mx); 568 } else { 569 ASSERT(panicstr); 570 } 571 SPS_FREE(stripe_parent_cache, ps); 572 md_kstat_done(ui, pb, 0); 573 md_unit_readerexit(ui); 574 md_biodone(pb); 575 return (0); 576 } 577 578 579 /* 580 * This routine does the mapping from virtual (dev, blkno) of a metapartition 581 * to the real (dev, blkno) of a real disk partition. 582 * It goes to the md_conf[] table to find out the correct real partition 583 * dev and block number for this buffer. 584 * 585 * A single buf request can not go across real disk partition boundary. 586 * When the virtual request specified by (dev, blkno) spans more than one 587 * real partition, md_mapbuf will return 1. Then the caller should prepare 588 * another real buf and continue calling md_mapbuf to do the mapping until 589 * it returns 0. 590 * 591 */ 592 593 static int 594 md_mapbuf( 595 ms_unit_t *un, 596 diskaddr_t blkno, 597 u_longlong_t bcount, 598 buf_t *bp, /* if bp==NULL, skip bp updates */ 599 ms_comp_t **mdc) /* if bp==NULL, skip mdc update */ 600 { 601 struct ms_row *mdr; 602 struct ms_comp *mdcomp; 603 diskaddr_t stripe_blk; 604 diskaddr_t fragment, blk_in_row, endblk; 605 offset_t interlace; 606 size_t dev_index; 607 int row_index, more; 608 extern unsigned md_maxphys; 609 /* Work var's when bp==NULL */ 610 u_longlong_t wb_bcount; 611 diskaddr_t wb_blkno; 612 md_dev64_t wb_edev; 613 ms_comp_t *wmdc; 614 615 /* 616 * Do a real calculation to derive the minor device of the 617 * Virtual Disk, which in turn will let us derive the 618 * device/minor of the underlying real device. 619 */ 620 621 622 for (row_index = 0; row_index < un->un_nrows; row_index++) { 623 mdr = &un->un_row[row_index]; 624 if (blkno < mdr->un_cum_blocks) 625 break; 626 } 627 ASSERT(row_index != un->un_nrows); 628 629 mdcomp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 630 631 blk_in_row = blkno - mdr->un_cum_blocks + mdr->un_blocks; 632 endblk = (diskaddr_t)(blkno + howmany(bcount, DEV_BSIZE)); 633 if (mdr->un_ncomp == 1) { /* No striping */ 634 if (endblk > mdr->un_cum_blocks) { 635 wb_bcount = ldbtob(mdr->un_cum_blocks - blkno); 636 if ((row_index + 1) == un->un_nrows) 637 more = 0; 638 else 639 more = 1; 640 } else { 641 wb_bcount = bcount; 642 more = 0; 643 } 644 wmdc = &mdcomp[mdr->un_icomp]; 645 wb_blkno = blk_in_row; 646 } else { /* Have striping */ 647 interlace = mdr->un_interlace; 648 fragment = blk_in_row % interlace; 649 if (bcount > ldbtob(interlace - fragment)) { 650 more = 1; 651 wb_bcount = ldbtob(interlace - fragment); 652 } else { 653 more = 0; 654 wb_bcount = bcount; 655 } 656 657 stripe_blk = blk_in_row / interlace; 658 dev_index = (size_t)(stripe_blk % mdr->un_ncomp); 659 wmdc = &mdcomp[mdr->un_icomp + dev_index]; 660 wb_blkno = (diskaddr_t)(((stripe_blk / mdr->un_ncomp) 661 * interlace) + fragment); 662 } 663 664 wb_blkno += wmdc->un_start_block; 665 wb_edev = wmdc->un_dev; 666 667 /* only break up the I/O if we're not built on another metadevice */ 668 if ((md_getmajor(wb_edev) != md_major) && (wb_bcount > md_maxphys)) { 669 wb_bcount = md_maxphys; 670 more = 1; 671 } 672 if (bp != (buf_t *)NULL) { 673 /* 674 * wb_bcount is limited by md_maxphys which is 'int' 675 */ 676 bp->b_bcount = (size_t)wb_bcount; 677 bp->b_lblkno = wb_blkno; 678 bp->b_edev = md_dev64_to_dev(wb_edev); 679 *mdc = wmdc; 680 } 681 return (more); 682 } 683 684 static void 685 md_stripe_strategy(buf_t *pb, int flag, void *private) 686 { 687 md_sps_t *ps; 688 md_scs_t *cs; 689 int doing_writes; 690 int more; 691 ms_unit_t *un; 692 mdi_unit_t *ui; 693 size_t current_count; 694 diskaddr_t current_blkno; 695 off_t current_offset; 696 buf_t *cb; /* child buf pointer */ 697 set_t setno; 698 699 setno = MD_MIN2SET(getminor(pb->b_edev)); 700 701 /* 702 * When doing IO to a multi owner meta device, check if set is halted. 703 * We do this check without the needed lock held, for performance 704 * reasons. 705 * If an IO just slips through while the set is locked via an 706 * MD_MN_SUSPEND_SET, we don't care about it. 707 * Only check for a suspended set if we are a top-level i/o request 708 * (MD_STR_NOTTOP is cleared in 'flag'). 709 */ 710 if ((md_set[setno].s_status & (MD_SET_HALTED | MD_SET_MNSET)) == 711 (MD_SET_HALTED | MD_SET_MNSET)) { 712 if ((flag & MD_STR_NOTTOP) == 0) { 713 mutex_enter(&md_mx); 714 /* Here we loop until the set is no longer halted */ 715 while (md_set[setno].s_status & MD_SET_HALTED) { 716 cv_wait(&md_cv, &md_mx); 717 } 718 mutex_exit(&md_mx); 719 } 720 } 721 722 ui = MDI_UNIT(getminor(pb->b_edev)); 723 724 md_kstat_waitq_enter(ui); 725 726 un = (ms_unit_t *)md_unit_readerlock(ui); 727 728 if ((flag & MD_NOBLOCK) == 0) { 729 if (md_inc_iocount(setno) != 0) { 730 pb->b_flags |= B_ERROR; 731 pb->b_error = ENXIO; 732 pb->b_resid = pb->b_bcount; 733 md_unit_readerexit(ui); 734 biodone(pb); 735 return; 736 } 737 } else { 738 md_inc_iocount_noblock(setno); 739 } 740 741 if (!(flag & MD_STR_NOTTOP)) { 742 if (md_checkbuf(ui, (md_unit_t *)un, pb) != 0) { 743 md_kstat_waitq_exit(ui); 744 return; 745 } 746 } 747 748 ps = kmem_cache_alloc(stripe_parent_cache, MD_ALLOCFLAGS); 749 stripe_parent_init(ps); 750 751 /* 752 * Save essential information from the original buffhdr 753 * in the md_save structure. 754 */ 755 ps->ps_un = un; 756 ps->ps_ui = ui; 757 ps->ps_bp = pb; 758 ps->ps_addr = pb->b_un.b_addr; 759 760 if ((pb->b_flags & B_READ) == 0) 761 doing_writes = 1; 762 else 763 doing_writes = 0; 764 765 766 current_count = pb->b_bcount; 767 current_blkno = pb->b_lblkno; 768 current_offset = 0; 769 770 if (!(flag & MD_STR_NOTTOP) && panicstr) 771 ps->ps_flags |= MD_SPS_DONTFREE; 772 773 md_kstat_waitq_to_runq(ui); 774 775 ps->ps_frags++; 776 do { 777 cs = kmem_cache_alloc(stripe_child_cache, MD_ALLOCFLAGS); 778 stripe_child_init(cs); 779 cb = &cs->cs_buf; 780 cs->cs_ps = ps; 781 more = md_mapbuf(un, current_blkno, current_count, cb, 782 &cs->cs_comp); 783 784 cb = md_bioclone(pb, current_offset, cb->b_bcount, cb->b_edev, 785 cb->b_lblkno, stripe_done, cb, KM_NOSLEEP); 786 /* 787 * Do these calculations now, 788 * so that we pickup a valid b_bcount from the chld_bp. 789 */ 790 current_offset += cb->b_bcount; 791 current_count -= cb->b_bcount; 792 current_blkno += (diskaddr_t)(lbtodb(cb->b_bcount)); 793 794 if (more) { 795 mutex_enter(&ps->ps_mx); 796 ps->ps_frags++; 797 mutex_exit(&ps->ps_mx); 798 } 799 800 if (doing_writes && 801 cs->cs_comp->un_mirror.ms_flags & MDM_S_NOWRITE) { 802 (void) stripe_done(cb); 803 continue; 804 } 805 md_call_strategy(cb, flag, private); 806 } while (more); 807 808 if (!(flag & MD_STR_NOTTOP) && panicstr) { 809 while (!(ps->ps_flags & MD_SPS_DONE)) { 810 md_daemon(1, &md_done_daemon); 811 drv_usecwait(10); 812 } 813 kmem_cache_free(stripe_parent_cache, ps); 814 } 815 } 816 817 static int 818 stripe_snarf(md_snarfcmd_t cmd, set_t setno) 819 { 820 ms_unit_t *un; 821 mddb_recid_t recid; 822 int gotsomething; 823 int all_stripes_gotten; 824 mddb_type_t typ1; 825 mddb_de_ic_t *dep; 826 mddb_rb32_t *rbp; 827 size_t newreqsize; 828 ms_unit_t *big_un; 829 ms_unit32_od_t *small_un; 830 831 832 if (cmd == MD_SNARF_CLEANUP) 833 return (0); 834 835 all_stripes_gotten = 1; 836 gotsomething = 0; 837 838 typ1 = (mddb_type_t)md_getshared_key(setno, 839 stripe_md_ops.md_driver.md_drivername); 840 recid = mddb_makerecid(setno, 0); 841 842 while ((recid = mddb_getnextrec(recid, typ1, 0)) > 0) { 843 if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) 844 continue; 845 846 dep = mddb_getrecdep(recid); 847 dep->de_flags = MDDB_F_STRIPE; 848 rbp = dep->de_rb; 849 850 switch (rbp->rb_revision) { 851 case MDDB_REV_RB: 852 case MDDB_REV_RBFN: 853 if ((rbp->rb_private & MD_PRV_CONVD) == 0) { 854 /* 855 * This means, we have an old and small record 856 * and this record hasn't already been 857 * converted. Before we create an incore 858 * metadevice from this we have to convert it to 859 * a big record. 860 */ 861 small_un = 862 (ms_unit32_od_t *)mddb_getrecaddr(recid); 863 newreqsize = get_big_stripe_req_size(small_un, 864 COMPLETE_STRUCTURE); 865 big_un = (ms_unit_t *)kmem_zalloc(newreqsize, 866 KM_SLEEP); 867 stripe_convert((caddr_t)small_un, 868 (caddr_t)big_un, SMALL_2_BIG); 869 kmem_free(small_un, dep->de_reqsize); 870 dep->de_rb_userdata = big_un; 871 dep->de_reqsize = newreqsize; 872 un = big_un; 873 rbp->rb_private |= MD_PRV_CONVD; 874 } else { 875 /* Small device had already been converted */ 876 un = (ms_unit_t *)mddb_getrecaddr(recid); 877 } 878 un->c.un_revision &= ~MD_64BIT_META_DEV; 879 break; 880 case MDDB_REV_RB64: 881 case MDDB_REV_RB64FN: 882 /* Big device */ 883 un = (ms_unit_t *)mddb_getrecaddr(recid); 884 un->c.un_revision |= MD_64BIT_META_DEV; 885 un->c.un_flag |= MD_EFILABEL; 886 break; 887 } 888 MDDB_NOTE_FN(rbp->rb_revision, un->c.un_revision); 889 890 /* Create minor node for snarfed unit. */ 891 (void) md_create_minor_node(MD_MIN2SET(MD_SID(un)), MD_SID(un)); 892 893 if (MD_UNIT(MD_SID(un)) != NULL) { 894 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 895 continue; 896 } 897 all_stripes_gotten = 0; 898 if (stripe_build_incore((void *)un, 1) == 0) { 899 mddb_setrecprivate(recid, MD_PRV_GOTIT); 900 md_create_unit_incore(MD_SID(un), &stripe_md_ops, 0); 901 gotsomething = 1; 902 } 903 } 904 905 if (!all_stripes_gotten) 906 return (gotsomething); 907 908 recid = mddb_makerecid(setno, 0); 909 while ((recid = mddb_getnextrec(recid, typ1, 0)) > 0) 910 if (!(mddb_getrecprivate(recid) & MD_PRV_GOTIT)) 911 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 912 913 return (0); 914 } 915 916 static int 917 stripe_halt(md_haltcmd_t cmd, set_t setno) 918 { 919 int i; 920 mdi_unit_t *ui; 921 minor_t mnum; 922 923 if (cmd == MD_HALT_CLOSE) 924 return (0); 925 926 if (cmd == MD_HALT_OPEN) 927 return (0); 928 929 if (cmd == MD_HALT_UNLOAD) 930 return (0); 931 932 if (cmd == MD_HALT_CHECK) { 933 for (i = 0; i < md_nunits; i++) { 934 mnum = MD_MKMIN(setno, i); 935 if ((ui = MDI_UNIT(mnum)) == NULL) 936 continue; 937 if (ui->ui_opsindex != stripe_md_ops.md_selfindex) 938 continue; 939 if (md_unit_isopen(ui)) 940 return (1); 941 } 942 return (0); 943 } 944 945 if (cmd != MD_HALT_DOIT) 946 return (1); 947 948 for (i = 0; i < md_nunits; i++) { 949 mnum = MD_MKMIN(setno, i); 950 if ((ui = MDI_UNIT(mnum)) == NULL) 951 continue; 952 if (ui->ui_opsindex != stripe_md_ops.md_selfindex) 953 continue; 954 reset_stripe((ms_unit_t *)MD_UNIT(mnum), mnum, 0); 955 } 956 957 return (0); 958 } 959 960 /*ARGSUSED3*/ 961 static int 962 stripe_open(dev_t *dev, int flag, int otyp, cred_t *cred_p, int md_oflags) 963 { 964 minor_t mnum = getminor(*dev); 965 mdi_unit_t *ui = MDI_UNIT(mnum); 966 ms_unit_t *un; 967 int err = 0; 968 set_t setno; 969 970 /* 971 * When doing an open of a multi owner metadevice, check to see if this 972 * node is a starting node and if a reconfig cycle is underway. 973 * If so, the system isn't sufficiently set up enough to handle the 974 * open (which involves I/O during sp_validate), so fail with ENXIO. 975 */ 976 setno = MD_MIN2SET(mnum); 977 if ((md_set[setno].s_status & (MD_SET_MNSET | MD_SET_MN_START_RC)) == 978 (MD_SET_MNSET | MD_SET_MN_START_RC)) { 979 return (ENXIO); 980 } 981 982 /* single thread */ 983 un = (ms_unit_t *)md_unit_openclose_enter(ui); 984 985 /* open devices, if necessary */ 986 if (! md_unit_isopen(ui) || (md_oflags & MD_OFLG_PROBEDEV)) { 987 if ((err = stripe_open_all_devs(un, md_oflags)) != 0) { 988 goto out; 989 } 990 } 991 992 /* count open */ 993 if ((err = md_unit_incopen(mnum, flag, otyp)) != 0) 994 goto out; 995 996 /* unlock, return success */ 997 out: 998 md_unit_openclose_exit(ui); 999 return (err); 1000 } 1001 1002 /*ARGSUSED1*/ 1003 static int 1004 stripe_close( 1005 dev_t dev, 1006 int flag, 1007 int otyp, 1008 cred_t *cred_p, 1009 int md_cflags 1010 ) 1011 { 1012 minor_t mnum = getminor(dev); 1013 mdi_unit_t *ui = MDI_UNIT(mnum); 1014 ms_unit_t *un; 1015 int err = 0; 1016 1017 /* single thread */ 1018 un = (ms_unit_t *)md_unit_openclose_enter(ui); 1019 1020 /* count closed */ 1021 if ((err = md_unit_decopen(mnum, otyp)) != 0) 1022 goto out; 1023 1024 /* close devices, if necessary */ 1025 if (! md_unit_isopen(ui) || (md_cflags & MD_OFLG_PROBEDEV)) { 1026 stripe_close_all_devs(un, md_cflags); 1027 } 1028 1029 /* unlock, return success */ 1030 out: 1031 md_unit_openclose_exit(ui); 1032 return (err); 1033 } 1034 1035 1036 static struct buf dumpbuf; 1037 1038 /* 1039 * This routine dumps memory to the disk. It assumes that the memory has 1040 * already been mapped into mainbus space. It is called at disk interrupt 1041 * priority when the system is in trouble. 1042 * 1043 */ 1044 static int 1045 stripe_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 1046 { 1047 ms_unit_t *un; 1048 buf_t *bp; 1049 ms_comp_t *mdc; 1050 u_longlong_t nb; 1051 diskaddr_t mapblk; 1052 int result; 1053 int more; 1054 int saveresult = 0; 1055 1056 /* 1057 * Don't need to grab the unit lock. 1058 * Cause nothing else is suppose to be happenning. 1059 * Also dump is not suppose to sleep. 1060 */ 1061 un = (ms_unit_t *)MD_UNIT(getminor(dev)); 1062 1063 if ((diskaddr_t)blkno >= un->c.un_total_blocks) 1064 return (EINVAL); 1065 1066 if ((diskaddr_t)blkno + nblk > un->c.un_total_blocks) 1067 return (EINVAL); 1068 1069 bp = &dumpbuf; 1070 nb = ldbtob(nblk); 1071 do { 1072 bzero((caddr_t)bp, sizeof (*bp)); 1073 more = md_mapbuf(un, (diskaddr_t)blkno, nb, bp, &mdc); 1074 nblk = btodb(bp->b_bcount); 1075 mapblk = bp->b_lblkno; 1076 if (!(mdc->un_mirror.ms_flags & MDM_S_NOWRITE)) { 1077 /* 1078 * bdev_dump() is currently only able to take 1079 * 32 bit wide blkno's. 1080 */ 1081 result = bdev_dump(bp->b_edev, addr, (daddr_t)mapblk, 1082 nblk); 1083 if (result) 1084 saveresult = result; 1085 } 1086 1087 nb -= bp->b_bcount; 1088 addr += bp->b_bcount; 1089 blkno += nblk; 1090 } while (more); 1091 1092 return (saveresult); 1093 } 1094 1095 /*ARGSUSED*/ 1096 static intptr_t 1097 stripe_shared_by_blk( 1098 md_dev64_t dev, 1099 void *junk, 1100 diskaddr_t blkno, 1101 u_longlong_t *cnt) 1102 { 1103 ms_unit_t *un; 1104 buf_t bp; 1105 ms_comp_t *comp; 1106 1107 un = MD_UNIT(md_getminor(dev)); 1108 (void) md_mapbuf(un, blkno, ldbtob(*cnt), &bp, &comp); 1109 *cnt = (u_longlong_t)lbtodb(bp.b_bcount); 1110 return ((intptr_t)&comp->un_mirror); 1111 } 1112 1113 /* 1114 * stripe_block_count_skip_size() returns the following values 1115 * so that the logical to physical block mappings can 1116 * be calculated without intimate knowledge of the underpinnings. 1117 * 1118 * block - first logical block number of the device. 1119 * block = [ # of blocks before THE row ] + 1120 * [ # of blocks in THE row before the component ] 1121 * count - # of segments (interlaced size). 1122 * skip - # of logical blocks between segments, or delta to 1123 * get to next segment 1124 * size - interlace size used for the block, count, skip. 1125 */ 1126 /*ARGSUSED*/ 1127 static intptr_t 1128 stripe_block_count_skip_size( 1129 md_dev64_t dev, 1130 void *junk, 1131 int ci, 1132 diskaddr_t *block, 1133 size_t *count, 1134 u_longlong_t *skip, 1135 u_longlong_t *size) 1136 { 1137 ms_unit_t *un; 1138 int row; 1139 struct ms_row *mdr; 1140 int cmpcount = 0; 1141 1142 un = MD_UNIT(md_getminor(dev)); 1143 1144 for (row = 0; row < un->un_nrows; row++) { 1145 mdr = &un->un_row[row]; 1146 if ((mdr->un_ncomp + cmpcount) > ci) 1147 break; 1148 cmpcount += mdr->un_ncomp; 1149 } 1150 ASSERT(row != un->un_nrows); 1151 1152 /* 1153 * Concatenations are always contiguous blocks, 1154 * you cannot depend on the interlace being a usable 1155 * value (except for stripes). 1156 */ 1157 if (mdr->un_ncomp == 1) { /* Concats */ 1158 *block = mdr->un_cum_blocks - mdr->un_blocks; 1159 *count = 1; 1160 *skip = 0; 1161 *size = mdr->un_blocks; 1162 } else { /* Stripes */ 1163 *block = (mdr->un_cum_blocks - mdr->un_blocks) + 1164 ((ci - cmpcount) * mdr->un_interlace); 1165 *count = (size_t)(mdr->un_blocks / (mdr->un_interlace 1166 * mdr->un_ncomp)); 1167 *skip = (mdr->un_interlace * mdr->un_ncomp) - mdr->un_interlace; 1168 *size = mdr->un_interlace; 1169 } 1170 1171 return (0); 1172 } 1173 1174 /*ARGSUSED*/ 1175 static intptr_t 1176 stripe_shared_by_indx(md_dev64_t dev, void *junk, int indx) 1177 { 1178 ms_unit_t *un; 1179 ms_comp_t *comp; 1180 1181 un = MD_UNIT(md_getminor(dev)); 1182 comp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 1183 comp += indx; 1184 return ((intptr_t)&comp->un_mirror); 1185 } 1186 1187 /*ARGSUSED*/ 1188 intptr_t 1189 stripe_component_count(md_dev64_t dev, void *junk) 1190 { 1191 /* 1192 * See comments for stripe_get_dev 1193 */ 1194 1195 ms_unit_t *un; 1196 int count = 0; 1197 int row; 1198 1199 un = MD_UNIT(md_getminor(dev)); 1200 for (row = 0; row < un->un_nrows; row++) 1201 count += un->un_row[row].un_ncomp; 1202 return (count); 1203 } 1204 1205 /*ARGSUSED*/ 1206 intptr_t 1207 stripe_get_dev(md_dev64_t dev, void *junk, int indx, ms_cd_info_t *cd) 1208 { 1209 /* 1210 * It should be noted that stripe_replace in stripe_ioctl.c calls this 1211 * routine using makedevice(0, minor) for the first argument. 1212 * 1213 * If this routine at some point in the future needs to use the major 1214 * number stripe_replace must be changed. 1215 */ 1216 1217 ms_unit_t *un; 1218 ms_comp_t *comp; 1219 md_dev64_t tmpdev; 1220 1221 un = MD_UNIT(md_getminor(dev)); 1222 comp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 1223 comp += indx; 1224 tmpdev = comp->un_dev; 1225 /* 1226 * Try to resolve devt again if NODEV64 1227 * Check if this comp is hotspared and if it is 1228 * then use key for hotspare 1229 */ 1230 if (tmpdev == NODEV64) { 1231 tmpdev = md_resolve_bydevid(md_getminor(dev), tmpdev, 1232 comp->un_mirror.ms_hs_id ? 1233 comp->un_mirror.ms_hs_key : 1234 comp->un_key); 1235 comp->un_dev = tmpdev; 1236 } 1237 1238 cd->cd_dev = comp->un_dev; 1239 cd->cd_orig_dev = comp->un_mirror.ms_orig_dev; 1240 return (0); 1241 } 1242 1243 /*ARGSUSED*/ 1244 void 1245 stripe_replace_done(md_dev64_t dev, sv_dev_t *sv) 1246 { 1247 /* 1248 * See comments for stripe_get_dev 1249 */ 1250 1251 minor_t mnum = md_getminor(dev); 1252 1253 if (sv != NULL) { 1254 md_rem_names(sv, 1); 1255 kmem_free(sv, sizeof (sv_dev_t)); 1256 } 1257 1258 md_unit_writerexit(MDI_UNIT(mnum)); 1259 } 1260 1261 /*ARGSUSED*/ 1262 intptr_t 1263 stripe_replace_dev(md_dev64_t dev, void *junk, int ci, ms_new_dev_t *nd, 1264 mddb_recid_t *recids, int nrecids, void (**replace_done)(), 1265 void **replace_data) 1266 { 1267 minor_t mnum; 1268 ms_unit_t *un; 1269 mdi_unit_t *ui; 1270 ms_comp_t *comp; 1271 diskaddr_t dev_size; 1272 int row; 1273 int ncomps = 0; 1274 int cmpcount = 0; 1275 int rid = 0; 1276 struct ms_row *mdr; 1277 sv_dev_t *sv = NULL; 1278 mddb_recid_t hs_id = 0; 1279 set_t setno; 1280 side_t side; 1281 md_dev64_t this_dev; 1282 1283 mnum = md_getminor(dev); 1284 ui = MDI_UNIT(mnum); 1285 setno = MD_MIN2SET(mnum); 1286 side = mddb_getsidenum(setno); 1287 1288 un = md_unit_writerlock(ui); 1289 1290 *replace_data = NULL; 1291 comp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 1292 1293 comp += ci; 1294 1295 /* 1296 * Count the number of components 1297 */ 1298 for (row = 0; row < un->un_nrows; row++) { 1299 struct ms_row *mdr = &un->un_row[row]; 1300 ncomps += mdr->un_ncomp; 1301 } 1302 1303 recids[0] = 0; 1304 /* 1305 * No need of checking size of new device, 1306 * when hotsparing (it has already been done), or 1307 * when enabling the device. 1308 */ 1309 if ((nd != NULL) && (nd->nd_hs_id == 0)) { 1310 for (row = 0; row < un->un_nrows; row++) { 1311 mdr = &un->un_row[row]; 1312 if ((mdr->un_ncomp + cmpcount) > ci) 1313 break; 1314 cmpcount += mdr->un_ncomp; 1315 } 1316 ASSERT(row != un->un_nrows); 1317 1318 /* Concatenations have a ncomp = 1 */ 1319 dev_size = mdr->un_blocks / mdr->un_ncomp; 1320 1321 /* 1322 * now check to see if new comp can be used in 1323 * place of old comp 1324 */ 1325 if ((un->c.un_flag & MD_LABELED) && (ci == 0) && 1326 nd->nd_labeled) 1327 nd->nd_start_blk = 0; 1328 else 1329 nd->nd_nblks -= nd->nd_start_blk; 1330 1331 if (dev_size > nd->nd_nblks) { 1332 md_unit_writerexit(ui); 1333 return (MDE_COMP_TOO_SMALL); 1334 } 1335 1336 sv = (sv_dev_t *)kmem_alloc(sizeof (sv_dev_t), KM_SLEEP); 1337 sv->setno = MD_MIN2SET(mnum); 1338 sv->key = comp->un_key; 1339 } 1340 1341 /* 1342 * Close this component. 1343 */ 1344 if (comp->un_mirror.ms_flags & MDM_S_ISOPEN) { 1345 md_layered_close(comp->un_dev, MD_OFLG_NULL); 1346 comp->un_mirror.ms_flags &= ~MDM_S_ISOPEN; 1347 } 1348 1349 /* 1350 * If the component is hotspared, return to the pool. 1351 */ 1352 if (comp->un_mirror.ms_hs_id != 0) { 1353 hs_cmds_t cmd; 1354 mdkey_t hs_key; 1355 1356 hs_key = comp->un_mirror.ms_hs_key; 1357 comp->un_dev = comp->un_mirror.ms_orig_dev; 1358 comp->un_start_block = comp->un_mirror.ms_orig_blk; 1359 comp->un_mirror.ms_hs_key = 0; 1360 comp->un_mirror.ms_hs_id = 0; 1361 comp->un_mirror.ms_orig_dev = 0; 1362 1363 cmd = HS_FREE; 1364 if ((comp->un_mirror.ms_state != CS_OKAY) && 1365 (comp->un_mirror.ms_state != CS_RESYNC)) 1366 cmd = HS_BAD; 1367 (void) md_hot_spare_ifc(cmd, un->un_hsp_id, 0, 0, &hs_id, 1368 &hs_key, NULL, NULL); 1369 } 1370 1371 /* 1372 * Open by device id; for enable (indicated by a NULL 1373 * nd pointer), use the existing component info. For 1374 * replace, use the new device. 1375 */ 1376 if (nd == NULL) { 1377 this_dev = md_resolve_bydevid(mnum, comp->un_dev, comp->un_key); 1378 /* 1379 * If someone replaced a new disk in the same slot 1380 * we get NODEV64 since old device id cannot be 1381 * resolved. The new devt is obtained from the 1382 * mddb since devt is going to be unchanged for the 1383 * enable case. No need to check for multiple 1384 * keys here because the caller (comp_replace) 1385 * has already sanity checked it for us. 1386 */ 1387 if (this_dev == NODEV64) { 1388 this_dev = md_getdevnum(setno, side, comp->un_key, 1389 MD_TRUST_DEVT); 1390 } 1391 } else { 1392 /* 1393 * If this is a hotspare, save the original dev_t for later 1394 * use. If this has occured during boot then the value of 1395 * comp->un_dev will be NODEV64 because of the failure to look 1396 * up the devid of the device. 1397 */ 1398 if (nd->nd_hs_id != 0) 1399 comp->un_mirror.ms_orig_dev = comp->un_dev; 1400 this_dev = md_resolve_bydevid(mnum, nd->nd_dev, nd->nd_key); 1401 } 1402 1403 comp->un_dev = this_dev; 1404 1405 /* 1406 * Now open the new device if required. Note for a single component 1407 * stripe it will not be open - leave this for the mirror driver to 1408 * deal with. 1409 */ 1410 if (md_unit_isopen(ui)) { 1411 if (md_layered_open(mnum, &this_dev, MD_OFLG_NULL)) { 1412 mddb_recid_t ids[3]; 1413 1414 ids[0] = un->c.un_record_id; 1415 ids[1] = hs_id; 1416 ids[2] = 0; 1417 mddb_commitrecs_wrapper(ids); 1418 if ((nd != NULL) && (nd->nd_hs_id != 0)) { 1419 /* 1420 * Revert back to the original device. 1421 */ 1422 comp->un_dev = comp->un_mirror.ms_orig_dev; 1423 1424 cmn_err(CE_WARN, 1425 "md: %s: open error of hotspare %s", 1426 md_shortname(mnum), 1427 md_devname(MD_MIN2SET(mnum), nd->nd_dev, 1428 NULL, 0)); 1429 SE_NOTIFY(EC_SVM_STATE, ESC_SVM_OPEN_FAIL, 1430 SVM_TAG_HS, MD_MIN2SET(mnum), nd->nd_dev); 1431 } 1432 md_unit_writerexit(ui); 1433 return (MDE_COMP_OPEN_ERR); 1434 } 1435 if (nd != NULL) 1436 nd->nd_dev = this_dev; 1437 1438 comp->un_mirror.ms_flags |= MDM_S_ISOPEN; 1439 } 1440 1441 if (nd == NULL) { 1442 recids[0] = un->c.un_record_id; 1443 recids[1] = hs_id; 1444 recids[2] = 0; 1445 *replace_done = stripe_replace_done; 1446 return (0); 1447 } 1448 1449 /* if hot sparing this device */ 1450 if (nd->nd_hs_id != 0) { 1451 char devname[MD_MAX_CTDLEN]; 1452 char hs_devname[MD_MAX_CTDLEN]; 1453 set_t setno; 1454 1455 comp->un_mirror.ms_hs_id = nd->nd_hs_id; 1456 comp->un_mirror.ms_hs_key = nd->nd_key; 1457 1458 comp->un_mirror.ms_orig_blk = comp->un_start_block; 1459 1460 setno = MD_MIN2SET(mnum); 1461 1462 (void) md_devname(setno, comp->un_mirror.ms_orig_dev, devname, 1463 sizeof (devname)); 1464 (void) md_devname(setno, nd->nd_dev, hs_devname, 1465 sizeof (hs_devname)); 1466 1467 cmn_err(CE_NOTE, "md: %s: hotspared device %s with %s", 1468 md_shortname(mnum), devname, hs_devname); 1469 1470 } else { /* replacing the device */ 1471 comp->un_key = nd->nd_key; 1472 *replace_data = (void *)sv; 1473 1474 /* 1475 * For the old device, make sure to reset the parent 1476 * if it's a metadevice. 1477 */ 1478 if (md_getmajor(comp->un_dev) == md_major) { 1479 minor_t comp_mnum = md_getminor(comp->un_dev); 1480 md_unit_t *comp_un = MD_UNIT(comp_mnum); 1481 1482 md_reset_parent(comp->un_dev); 1483 recids[rid++] = MD_RECID(comp_un); 1484 } 1485 } 1486 1487 comp->un_dev = nd->nd_dev; 1488 comp->un_start_block = nd->nd_start_blk; 1489 1490 /* 1491 * For the new device, make sure to set the parent if it's a 1492 * metadevice. 1493 * 1494 * If we ever support using metadevices as hot spares, this 1495 * will need to be tested, and possibly moved into the 1496 * preceding "else" clause, immediately following the parent 1497 * reset block. For now, it's convenient to leave it here and 1498 * only compress nd->nd_dev once. 1499 */ 1500 if (md_getmajor(comp->un_dev) == md_major) { 1501 minor_t comp_mnum = md_getminor(comp->un_dev); 1502 md_unit_t *comp_un = MD_UNIT(comp_mnum); 1503 1504 md_set_parent(comp->un_dev, MD_SID(un)); 1505 recids[rid++] = MD_RECID(comp_un); 1506 } 1507 1508 recids[rid++] = un->c.un_record_id; 1509 recids[rid++] = hs_id; 1510 recids[rid] = 0; 1511 *replace_done = stripe_replace_done; 1512 return (0); 1513 } 1514 1515 /*ARGSUSED*/ 1516 static intptr_t 1517 stripe_hotspare_dev( 1518 md_dev64_t dev, 1519 void *junk, 1520 int ci, 1521 mddb_recid_t *recids, 1522 int nrecids, 1523 void (**replace_done)(), 1524 void **replace_data) 1525 { 1526 ms_unit_t *un; 1527 mdi_unit_t *ui; 1528 ms_comp_t *comp; 1529 int row; 1530 struct ms_row *mdr; 1531 ms_new_dev_t nd; 1532 int err; 1533 int i; 1534 minor_t mnum; 1535 set_t setno; 1536 int cmpcount = 0; 1537 1538 mnum = md_getminor(dev); 1539 ui = MDI_UNIT(mnum); 1540 un = MD_UNIT(mnum); 1541 setno = MD_MIN2SET(mnum); 1542 1543 if (md_get_setstatus(setno) & MD_SET_STALE) 1544 return (1); 1545 1546 if (un->un_hsp_id == -1) 1547 return (1); 1548 1549 for (row = 0; row < un->un_nrows; row++) { 1550 mdr = &un->un_row[row]; 1551 if ((mdr->un_ncomp + cmpcount) > ci) 1552 break; 1553 cmpcount += mdr->un_ncomp; 1554 } 1555 ASSERT(row != un->un_nrows); 1556 1557 comp = (struct ms_comp *)((void *)&((char *)un)[un->un_ocomp]); 1558 comp += ci; 1559 /* Concatenations have a ncomp = 1 */ 1560 nd.nd_nblks = mdr->un_blocks / mdr->un_ncomp; 1561 1562 if ((un->c.un_flag & MD_LABELED) && (ci == 0)) 1563 nd.nd_labeled = 1; 1564 else 1565 nd.nd_labeled = 0; 1566 1567 again: 1568 err = md_hot_spare_ifc(HS_GET, un->un_hsp_id, nd.nd_nblks, 1569 nd.nd_labeled, &nd.nd_hs_id, &nd.nd_key, &nd.nd_dev, 1570 &nd.nd_start_blk); 1571 1572 if (err) { 1573 if (!stripe_replace_dev(dev, junk, ci, NULL, recids, nrecids, 1574 replace_done, replace_data)) { 1575 mddb_commitrecs_wrapper(recids); 1576 md_unit_writerexit(ui); 1577 } 1578 recids[0] = 0; 1579 return (1); 1580 } 1581 1582 if (stripe_replace_dev(dev, junk, ci, &nd, recids, nrecids, 1583 replace_done, replace_data)) { 1584 1585 (void) md_hot_spare_ifc(HS_BAD, un->un_hsp_id, 0, 0, 1586 &nd.nd_hs_id, &nd.nd_key, NULL, NULL); 1587 mddb_commitrec_wrapper(nd.nd_hs_id); 1588 goto again; 1589 } 1590 1591 /* Leave a slot for the null recid */ 1592 for (i = 0; i < (nrecids - 1); i++) { 1593 if (recids[i] == 0) { 1594 recids[i++] = nd.nd_hs_id; 1595 recids[i] = 0; 1596 } 1597 } 1598 return (0); 1599 } 1600 1601 static int 1602 stripe_imp_set( 1603 set_t setno 1604 ) 1605 { 1606 1607 mddb_recid_t recid; 1608 int i, row, c, gotsomething; 1609 mddb_type_t typ1; 1610 mddb_de_ic_t *dep; 1611 mddb_rb32_t *rbp; 1612 ms_unit32_od_t *un32; 1613 ms_unit_t *un64; 1614 md_dev64_t self_devt; 1615 minor_t *self_id; /* minor needs to be updated */ 1616 md_parent_t *parent_id; /* parent needs to be updated */ 1617 mddb_recid_t *record_id; /* record id needs to be updated */ 1618 mddb_recid_t *hsp_id; 1619 ms_comp32_od_t *comp32; 1620 ms_comp_t *comp64; 1621 1622 1623 gotsomething = 0; 1624 1625 typ1 = (mddb_type_t)md_getshared_key(setno, 1626 stripe_md_ops.md_driver.md_drivername); 1627 recid = mddb_makerecid(setno, 0); 1628 1629 while ((recid = mddb_getnextrec(recid, typ1, 0)) > 0) { 1630 if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) 1631 continue; 1632 1633 dep = mddb_getrecdep(recid); 1634 rbp = dep->de_rb; 1635 1636 switch (rbp->rb_revision) { 1637 case MDDB_REV_RB: 1638 case MDDB_REV_RBFN: 1639 /* 1640 * Small device 1641 */ 1642 un32 = (ms_unit32_od_t *)mddb_getrecaddr(recid); 1643 self_id = &(un32->c.un_self_id); 1644 parent_id = &(un32->c.un_parent); 1645 record_id = &(un32->c.un_record_id); 1646 hsp_id = &(un32->un_hsp_id); 1647 1648 comp32 = (ms_comp32_od_t *)((void *)&((char *)un32) 1649 [un32->un_ocomp]); 1650 for (row = 0; row < un32->un_nrows; row++) { 1651 struct ms_row32_od *mdr = &un32->un_row[row]; 1652 for (i = 0, c = mdr->un_icomp; 1653 i < mdr->un_ncomp; i++) { 1654 ms_comp32_od_t *mdc; 1655 mdc = &comp32[c++]; 1656 1657 if (!md_update_minor(setno, mddb_getsidenum 1658 (setno), mdc->un_key)) 1659 goto out; 1660 1661 if (mdc->un_mirror.ms_hs_id != 0) 1662 mdc->un_mirror.ms_hs_id = MAKERECID( 1663 setno, mdc->un_mirror.ms_hs_id); 1664 } 1665 } 1666 break; 1667 case MDDB_REV_RB64: 1668 case MDDB_REV_RB64FN: 1669 un64 = (ms_unit_t *)mddb_getrecaddr(recid); 1670 self_id = &(un64->c.un_self_id); 1671 parent_id = &(un64->c.un_parent); 1672 record_id = &(un64->c.un_record_id); 1673 hsp_id = &(un64->un_hsp_id); 1674 1675 comp64 = (ms_comp_t *)((void *)&((char *)un64) 1676 [un64->un_ocomp]); 1677 for (row = 0; row < un64->un_nrows; row++) { 1678 struct ms_row *mdr = &un64->un_row[row]; 1679 for (i = 0, c = mdr->un_icomp; 1680 i < mdr->un_ncomp; i++) { 1681 ms_comp_t *mdc; 1682 mdc = &comp64[c++]; 1683 1684 if (!md_update_minor(setno, mddb_getsidenum 1685 (setno), mdc->un_key)) 1686 goto out; 1687 1688 if (mdc->un_mirror.ms_hs_id != 0) 1689 mdc->un_mirror.ms_hs_id = MAKERECID( 1690 setno, mdc->un_mirror.ms_hs_id); 1691 } 1692 } 1693 break; 1694 } 1695 1696 /* 1697 * If this is a top level and a friendly name metadevice, 1698 * update its minor in the namespace. 1699 */ 1700 if ((*parent_id == MD_NO_PARENT) && 1701 ((rbp->rb_revision == MDDB_REV_RBFN) || 1702 (rbp->rb_revision == MDDB_REV_RB64FN))) { 1703 1704 self_devt = md_makedevice(md_major, *self_id); 1705 if (!md_update_top_device_minor(setno, 1706 mddb_getsidenum(setno), self_devt)) 1707 goto out; 1708 } 1709 1710 /* 1711 * Update unit with the imported setno 1712 * 1713 */ 1714 mddb_setrecprivate(recid, MD_PRV_GOTIT); 1715 1716 *self_id = MD_MKMIN(setno, MD_MIN2UNIT(*self_id)); 1717 1718 if (*hsp_id != -1) 1719 *hsp_id = MAKERECID(setno, DBID(*hsp_id)); 1720 1721 if (*parent_id != MD_NO_PARENT) 1722 *parent_id = MD_MKMIN(setno, MD_MIN2UNIT(*parent_id)); 1723 *record_id = MAKERECID(setno, DBID(*record_id)); 1724 1725 gotsomething = 1; 1726 } 1727 1728 out: 1729 return (gotsomething); 1730 } 1731 1732 static md_named_services_t stripe_named_services[] = { 1733 {stripe_shared_by_blk, "shared by blk" }, 1734 {stripe_shared_by_indx, "shared by indx" }, 1735 {stripe_component_count, "get component count" }, 1736 {stripe_block_count_skip_size, "get block count skip size" }, 1737 {stripe_get_dev, "get device" }, 1738 {stripe_replace_dev, "replace device" }, 1739 {stripe_hotspare_dev, "hotspare device" }, 1740 {stripe_rename_check, MDRNM_CHECK }, 1741 {NULL, 0} 1742 }; 1743 1744 md_ops_t stripe_md_ops = { 1745 stripe_open, /* open */ 1746 stripe_close, /* close */ 1747 md_stripe_strategy, /* strategy */ 1748 NULL, /* print */ 1749 stripe_dump, /* dump */ 1750 NULL, /* read */ 1751 NULL, /* write */ 1752 md_stripe_ioctl, /* stripe_ioctl, */ 1753 stripe_snarf, /* stripe_snarf */ 1754 stripe_halt, /* stripe_halt */ 1755 NULL, /* aread */ 1756 NULL, /* awrite */ 1757 stripe_imp_set, /* import set */ 1758 stripe_named_services 1759 }; 1760 1761 static void 1762 init_init() 1763 { 1764 md_stripe_mcs_buf_off = sizeof (md_scs_t) - sizeof (buf_t); 1765 1766 stripe_parent_cache = kmem_cache_create("md_stripe_parent", 1767 sizeof (md_sps_t), 0, stripe_parent_constructor, 1768 stripe_parent_destructor, stripe_run_queue, NULL, NULL, 1769 0); 1770 stripe_child_cache = kmem_cache_create("md_stripe_child", 1771 sizeof (md_scs_t) - sizeof (buf_t) + biosize(), 0, 1772 stripe_child_constructor, stripe_child_destructor, 1773 stripe_run_queue, NULL, NULL, 0); 1774 } 1775 1776 static void 1777 fini_uninit() 1778 { 1779 kmem_cache_destroy(stripe_parent_cache); 1780 kmem_cache_destroy(stripe_child_cache); 1781 stripe_parent_cache = stripe_child_cache = NULL; 1782 } 1783 1784 /* define the module linkage */ 1785 MD_PLUGIN_MISC_MODULE("stripes module %I%", init_init(), fini_uninit()) 1786