xref: /titanic_41/usr/src/uts/common/io/lvm/softpart/sp.c (revision dc20a3024900c47dd2ee44b9707e6df38f7d62a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Soft partitioning metadevice driver (md_sp).
30  *
31  * This file contains the primary operations of the soft partitioning
32  * metadevice driver.  This includes all routines for normal operation
33  * (open/close/read/write).  Please see mdvar.h for a definition of
34  * metadevice operations vector (md_ops_t).  This driver is loosely
35  * based on the stripe driver (md_stripe).
36  *
37  * All metadevice administration is done through the use of ioctl's.
38  * As such, all administrative routines appear in sp_ioctl.c.
39  *
40  * Soft partitions are represented both in-core and in the metadb with a
41  * unit structure.  The soft partition-specific information in the unit
42  * structure includes the following information:
43  *	- Device information (md_dev64_t & md key) about the device on which
44  *	  the soft partition is built.
45  *	- Soft partition status information.
46  *	- The size of the soft partition and number of extents used to
47  *	  make up that size.
48  *	- An array of exents which define virtual/physical offset
49  *	  mappings and lengths for each extent.
50  *
51  * Typical soft partition operation proceeds as follows:
52  *	- The unit structure is fetched from the metadb and placed into
53  *	  an in-core array (as with other metadevices).  This operation
54  *	  is performed via sp_build_incore( ) and takes place during
55  *	  "snarfing" (when all metadevices are brought in-core at
56  *	  once) and when a new soft partition is created.
57  *	- A soft partition is opened via sp_open( ).  At open time the
58  *	  the soft partition unit structure is verified with the soft
59  *	  partition on-disk structures.  Additionally, the soft partition
60  *	  status is checked (only soft partitions in the OK state may be
61  *	  opened).
62  *	- Soft partition I/O is performed via sp_strategy( ) which relies on
63  *	  a support routine, sp_mapbuf( ), to do most of the work.
64  *	  sp_mapbuf( ) maps a buffer to a particular extent via a binary
65  *	  search of the extent array in the soft partition unit structure.
66  *	  Once a translation has been performed, the I/O is passed down
67  *	  to the next layer, which may be another metadevice or a physical
68  *	  disk.  Since a soft partition may contain multiple, non-contiguous
69  *	  extents, a single I/O may have to be fragmented.
70  *	- Soft partitions are closed using sp_close.
71  *
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/conf.h>
77 #include <sys/file.h>
78 #include <sys/user.h>
79 #include <sys/uio.h>
80 #include <sys/t_lock.h>
81 #include <sys/buf.h>
82 #include <sys/dkio.h>
83 #include <sys/vtoc.h>
84 #include <sys/kmem.h>
85 #include <vm/page.h>
86 #include <sys/cmn_err.h>
87 #include <sys/sysmacros.h>
88 #include <sys/types.h>
89 #include <sys/mkdev.h>
90 #include <sys/stat.h>
91 #include <sys/open.h>
92 #include <sys/lvm/mdvar.h>
93 #include <sys/lvm/md_sp.h>
94 #include <sys/lvm/md_convert.h>
95 #include <sys/lvm/md_notify.h>
96 #include <sys/lvm/md_crc.h>
97 #include <sys/modctl.h>
98 #include <sys/ddi.h>
99 #include <sys/sunddi.h>
100 #include <sys/debug.h>
101 
102 #include <sys/sysevent/eventdefs.h>
103 #include <sys/sysevent/svm.h>
104 
105 md_ops_t		sp_md_ops;
106 #ifndef	lint
107 char			_depends_on[] = "drv/md";
108 md_ops_t		*md_interface_ops = &sp_md_ops;
109 #endif
110 
111 extern unit_t		md_nunits;
112 extern set_t		md_nsets;
113 extern md_set_t		md_set[];
114 
115 extern int		md_status;
116 extern major_t		md_major;
117 extern mdq_anchor_t	md_done_daemon;
118 extern mdq_anchor_t	md_sp_daemon;
119 extern kmutex_t		md_mx;
120 extern kcondvar_t	md_cv;
121 extern md_krwlock_t	md_unit_array_rw;
122 
123 static kmem_cache_t	*sp_parent_cache = NULL;
124 static kmem_cache_t	*sp_child_cache = NULL;
125 static void		sp_send_stat_ok(mp_unit_t *);
126 static void		sp_send_stat_err(mp_unit_t *);
127 
128 /*
129  * FUNCTION:	sp_parent_constructor()
130  * INPUT:	none.
131  * OUTPUT:	ps	- parent save structure initialized.
132  * RETURNS:	void *	- ptr to initialized parent save structure.
133  * PURPOSE:	initialize parent save structure.
134  */
135 /*ARGSUSED1*/
136 static int
137 sp_parent_constructor(void *p, void *d1, int d2)
138 {
139 	mutex_init(&((md_spps_t *)p)->ps_mx,
140 	    NULL, MUTEX_DEFAULT, NULL);
141 	return (0);
142 }
143 
144 static void
145 sp_parent_init(md_spps_t *ps)
146 {
147 	bzero(ps, offsetof(md_spps_t, ps_mx));
148 }
149 
150 /*ARGSUSED1*/
151 static void
152 sp_parent_destructor(void *p, void *d)
153 {
154 	mutex_destroy(&((md_spps_t *)p)->ps_mx);
155 }
156 
157 /*
158  * FUNCTION:	sp_child_constructor()
159  * INPUT:	none.
160  * OUTPUT:	cs	- child save structure initialized.
161  * RETURNS:	void *	- ptr to initialized child save structure.
162  * PURPOSE:	initialize child save structure.
163  */
164 /*ARGSUSED1*/
165 static int
166 sp_child_constructor(void *p, void *d1, int d2)
167 {
168 	bioinit(&((md_spcs_t *)p)->cs_buf);
169 	return (0);
170 }
171 
172 static void
173 sp_child_init(md_spcs_t *cs)
174 {
175 	cs->cs_mdunit = 0;
176 	cs->cs_ps = NULL;
177 	md_bioreset(&cs->cs_buf);
178 }
179 
180 /*ARGSUSED1*/
181 static void
182 sp_child_destructor(void *p, void *d)
183 {
184 	biofini(&((md_spcs_t *)p)->cs_buf);
185 }
186 
187 /*
188  * FUNCTION:	sp_run_queue()
189  * INPUT:	none.
190  * OUTPUT:	none.
191  * RETURNS:	void.
192  * PURPOSE:	run the md_daemon to clean up memory pool.
193  */
194 /*ARGSUSED*/
195 static void
196 sp_run_queue(void *d)
197 {
198 	if (!(md_status & MD_GBL_DAEMONS_LIVE))
199 		md_daemon(1, &md_done_daemon);
200 }
201 
202 
203 /*
204  * FUNCTION:	sp_build_incore()
205  * INPUT:	p		- ptr to unit structure.
206  *		snarfing	- flag to tell us we are snarfing.
207  * OUTPUT:	non.
208  * RETURNS:	int	- 0 (always).
209  * PURPOSE:	place unit structure into in-core unit array (keyed from
210  *		minor number).
211  */
212 int
213 sp_build_incore(void *p, int snarfing)
214 {
215 	mp_unit_t	*un = (mp_unit_t *)p;
216 	minor_t		mnum;
217 	set_t		setno;
218 	md_dev64_t	tmpdev;
219 
220 	mnum = MD_SID(un);
221 
222 	if (MD_UNIT(mnum) != NULL)
223 		return (0);
224 
225 	MD_STATUS(un) = 0;
226 
227 	if (snarfing) {
228 		/*
229 		 * if we are snarfing, we get the device information
230 		 * from the metadb record (using the metadb key for
231 		 * that device).
232 		 */
233 		setno = MD_MIN2SET(mnum);
234 
235 		tmpdev = md_getdevnum(setno, mddb_getsidenum(setno),
236 		    un->un_key, MD_NOTRUST_DEVT);
237 		un->un_dev = tmpdev;
238 	}
239 
240 	/* place unit in in-core array */
241 	MD_UNIT(mnum) = un;
242 	return (0);
243 }
244 
245 /*
246  * FUNCTION:	reset_sp()
247  * INPUT:	un		- unit structure to be reset/removed.
248  *		mnum		- minor number to be reset/removed.
249  *		removing	- flag to tell us if we are removing
250  *				  permanently or just reseting in-core
251  *				  structures.
252  * OUTPUT:	none.
253  * RETURNS:	void.
254  * PURPOSE:	used to either simply reset in-core structures or to
255  *		permanently remove metadevices from the metadb.
256  */
257 void
258 reset_sp(mp_unit_t *un, minor_t mnum, int removing)
259 {
260 	sv_dev_t	*sv;
261 	mddb_recid_t	vtoc_id;
262 
263 	/* clean up in-core structures */
264 	md_destroy_unit_incore(mnum, &sp_md_ops);
265 
266 	MD_UNIT(mnum) = NULL;
267 
268 	/*
269 	 * Attempt release of minor node
270 	 */
271 	md_remove_minor_node(mnum);
272 
273 	if (!removing)
274 		return;
275 
276 	/* we are removing the soft partition from the metadb */
277 
278 	/*
279 	 * Save off device information so we can get to
280 	 * it after we do the mddb_deleterec().
281 	 */
282 	sv = (sv_dev_t *)kmem_alloc(sizeof (sv_dev_t), KM_SLEEP);
283 	sv->setno = MD_MIN2SET(mnum);
284 	sv->key = un->un_key;
285 	vtoc_id = un->c.un_vtoc_id;
286 
287 	/*
288 	 * Remove self from the namespace
289 	 */
290 	if (un->c.un_revision & MD_FN_META_DEV) {
291 		(void) md_rem_selfname(un->c.un_self_id);
292 	}
293 
294 	/* Remove the unit structure */
295 	mddb_deleterec_wrapper(un->c.un_record_id);
296 
297 	if (vtoc_id)
298 		mddb_deleterec_wrapper(vtoc_id);
299 
300 	SE_NOTIFY(EC_SVM_CONFIG, ESC_SVM_DELETE, TAG_METADEVICE,
301 	    MD_MIN2SET(mnum), MD_MIN2UNIT(mnum));
302 
303 	/*
304 	 * remove the underlying device name from the metadb.  if other
305 	 * soft partitions are built on this device, this will simply
306 	 * decrease the reference count for this device.  otherwise the
307 	 * name record for this device will be removed from the metadb.
308 	 */
309 	md_rem_names(sv, 1);
310 	kmem_free(sv, sizeof (sv_dev_t));
311 }
312 
313 /*
314  * FUNCTION:	sp_send_stat_msg
315  * INPUT:	un	- unit reference
316  *		status	- status to be sent to master node
317  *			MD_SP_OK - soft-partition is now OK
318  *			MD_SP_ERR	"	"	 errored
319  * OUTPUT:	none.
320  * RETURNS:	void.
321  * PURPOSE:	send a soft-partition status change to the master node. If the
322  *		message succeeds we simply return. If it fails we panic as the
323  *		cluster-wide view of the metadevices is now inconsistent.
324  * CALLING CONTEXT:
325  *	Blockable. No locks can be held.
326  */
327 static void
328 sp_send_stat_msg(mp_unit_t *un, sp_status_t status)
329 {
330 	md_mn_msg_sp_setstat_t	sp_msg;
331 	md_mn_kresult_t	*kres;
332 	set_t		setno = MD_UN2SET(un);
333 	int		rval;
334 	const char	*str = (status == MD_SP_ERR) ? "MD_SP_ERR" : "MD_SP_OK";
335 
336 	sp_msg.sp_setstat_mnum = MD_SID(un);
337 	sp_msg.sp_setstat_status = status;
338 
339 	kres = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP);
340 
341 	rval = mdmn_ksend_message(setno, MD_MN_MSG_SP_SETSTAT2, MD_MSGF_NO_LOG,
342 	    (char *)&sp_msg, sizeof (sp_msg), kres);
343 
344 	if (!MDMN_KSEND_MSG_OK(rval, kres)) {
345 		mdmn_ksend_show_error(rval, kres, "MD_MN_MSG_SP_SETSTAT2");
346 
347 		/*
348 		 * Panic as we are now in an inconsistent state.
349 		 */
350 
351 		cmn_err(CE_PANIC, "md: %s: %s could not be set on all nodes\n",
352 		    md_shortname(MD_SID(un)), str);
353 	}
354 
355 	kmem_free(kres, sizeof (md_mn_kresult_t));
356 }
357 
358 /*
359  * FUNCTION:	sp_finish_error
360  * INPUT:	ps	- parent save structure for error-ed I/O.
361  *		lock_held	- set if the unit readerlock is held
362  * OUTPUT:	none.
363  * RETURNS:	void.
364  * PURPOSE:	report a driver error
365  */
366 static void
367 sp_finish_error(md_spps_t *ps, int lock_held)
368 {
369 	struct buf	*pb = ps->ps_bp;
370 	mdi_unit_t	*ui = ps->ps_ui;
371 	md_dev64_t	un_dev;			/* underlying device */
372 	md_dev64_t	md_dev = md_expldev(pb->b_edev); /* metadev in error */
373 	char		*str;
374 
375 	un_dev = md_expldev(ps->ps_un->un_dev);
376 	/* set error type */
377 	if (pb->b_flags & B_READ) {
378 		str = "read";
379 	} else {
380 		str = "write";
381 	}
382 
383 
384 	SPPS_FREE(sp_parent_cache, ps);
385 	pb->b_flags |= B_ERROR;
386 
387 	md_kstat_done(ui, pb, 0);
388 
389 	if (lock_held) {
390 		md_unit_readerexit(ui);
391 	}
392 	md_biodone(pb);
393 
394 	cmn_err(CE_WARN, "md: %s: %s error on %s",
395 	    md_shortname(md_getminor(md_dev)), str,
396 	    md_devname(MD_DEV2SET(md_dev), un_dev, NULL, 0));
397 }
398 
399 
400 /*
401  * FUNCTION:	sp_xmit_ok
402  * INPUT:	dq	- daemon queue referencing failing ps structure
403  * OUTPUT:	none.
404  * RETURNS:	void.
405  * PURPOSE:	send a message to the master node in a multi-owner diskset to
406  *		update all attached nodes view of the soft-part to be MD_SP_OK.
407  * CALLING CONTEXT:
408  *	Blockable. No unit lock held.
409  */
410 static void
411 sp_xmit_ok(daemon_queue_t *dq)
412 {
413 	md_spps_t	*ps = (md_spps_t *)dq;
414 
415 	/* Send a MD_MN_MSG_SP_SETSTAT to the master */
416 	sp_send_stat_msg(ps->ps_un, MD_SP_OK);
417 
418 	/*
419 	 * Successfully transmitted error state to all nodes, now release this
420 	 * parent structure.
421 	 */
422 	SPPS_FREE(sp_parent_cache, ps);
423 }
424 
425 /*
426  * FUNCTION:	sp_xmit_error
427  * INPUT:	dq	- daemon queue referencing failing ps structure
428  * OUTPUT:	none.
429  * RETURNS:	void.
430  * PURPOSE:	send a message to the master node in a multi-owner diskset to
431  *		update all attached nodes view of the soft-part to be MD_SP_ERR.
432  * CALLING CONTEXT:
433  *	Blockable. No unit lock held.
434  */
435 static void
436 sp_xmit_error(daemon_queue_t *dq)
437 {
438 	md_spps_t	*ps = (md_spps_t *)dq;
439 
440 	/* Send a MD_MN_MSG_SP_SETSTAT to the master */
441 	sp_send_stat_msg(ps->ps_un, MD_SP_ERR);
442 
443 	/*
444 	 * Successfully transmitted error state to all nodes, now release this
445 	 * parent structure.
446 	 */
447 	SPPS_FREE(sp_parent_cache, ps);
448 }
449 static void
450 sp_send_stat_ok(mp_unit_t *un)
451 {
452 	minor_t		mnum = MD_SID(un);
453 	md_spps_t	*ps;
454 
455 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
456 	sp_parent_init(ps);
457 	ps->ps_un = un;
458 	ps->ps_ui = MDI_UNIT(mnum);
459 
460 	daemon_request(&md_sp_daemon, sp_xmit_ok, (daemon_queue_t *)ps,
461 	REQ_OLD);
462 }
463 
464 static void
465 sp_send_stat_err(mp_unit_t *un)
466 {
467 	minor_t		mnum = MD_SID(un);
468 	md_spps_t	*ps;
469 
470 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
471 	sp_parent_init(ps);
472 	ps->ps_un = un;
473 	ps->ps_ui = MDI_UNIT(mnum);
474 
475 	daemon_request(&md_sp_daemon, sp_xmit_error, (daemon_queue_t *)ps,
476 	REQ_OLD);
477 }
478 
479 
480 /*
481  * FUNCTION:	sp_error()
482  * INPUT:	ps	- parent save structure for error-ed I/O.
483  * OUTPUT:	none.
484  * RETURNS:	void.
485  * PURPOSE:	report a driver error.
486  * CALLING CONTEXT:
487  *	Interrupt - non-blockable
488  */
489 static void
490 sp_error(md_spps_t *ps)
491 {
492 	set_t		setno = MD_UN2SET(ps->ps_un);
493 
494 	/*
495 	 * Drop the mutex associated with this request before (potentially)
496 	 * enqueuing the free onto a separate thread. We have to release the
497 	 * mutex before destroying the parent structure.
498 	 */
499 	if (!(ps->ps_flags & MD_SPPS_DONTFREE)) {
500 		if (MUTEX_HELD(&ps->ps_mx)) {
501 			mutex_exit(&ps->ps_mx);
502 		}
503 	} else {
504 		/*
505 		 * this should only ever happen if we are panicking,
506 		 * since DONTFREE is only set on the parent if panicstr
507 		 * is non-NULL.
508 		 */
509 		ASSERT(panicstr);
510 	}
511 
512 	/*
513 	 * For a multi-owner set we need to send a message to the master so that
514 	 * all nodes get the errored status when we first encounter it. To avoid
515 	 * deadlocking when multiple soft-partitions encounter an error on one
516 	 * physical unit we drop the unit readerlock before enqueueing the
517 	 * request. That way we can service any messages that require a
518 	 * writerlock to be held. Additionally, to avoid deadlocking when at
519 	 * the bottom of a metadevice stack and a higher level mirror has
520 	 * multiple requests outstanding on this soft-part, we clone the ps
521 	 * that failed and pass the error back up the stack to release the
522 	 * reference that this i/o may have in the higher-level metadevice.
523 	 * The other nodes in the cluster just have to modify the soft-part
524 	 * status and we do not need to block the i/o completion for this.
525 	 */
526 	if (MD_MNSET_SETNO(setno)) {
527 		md_spps_t	*err_ps;
528 		err_ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
529 		sp_parent_init(err_ps);
530 
531 		err_ps->ps_un = ps->ps_un;
532 		err_ps->ps_ui = ps->ps_ui;
533 
534 		md_unit_readerexit(ps->ps_ui);
535 
536 		daemon_request(&md_sp_daemon, sp_xmit_error,
537 		    (daemon_queue_t *)err_ps, REQ_OLD);
538 
539 		sp_finish_error(ps, 0);
540 
541 		return;
542 	} else {
543 		ps->ps_un->un_status = MD_SP_ERR;
544 	}
545 
546 	/* Flag the error */
547 	sp_finish_error(ps, 1);
548 
549 }
550 
551 /*
552  * FUNCTION:	sp_mapbuf()
553  * INPUT:	un	- unit structure for soft partition we are doing
554  *			  I/O on.
555  *		voff	- virtual offset in soft partition to map.
556  *		bcount	- # of blocks in the I/O.
557  * OUTPUT:	bp	- translated buffer to be passed down to next layer.
558  * RETURNS:	1	- request must be fragmented, more work to do,
559  *		0	- request satisified, no more work to do
560  *		-1	- error
561  * PURPOSE:	Map the the virtual offset in the soft partition (passed
562  *		in via voff) to the "physical" offset on whatever the soft
563  *		partition is built on top of.  We do this by doing a binary
564  *		search of the extent array in the soft partition unit
565  *		structure.  Once the current extent is found, we do the
566  *		translation, determine if the I/O will cross extent
567  *		boundaries (if so, we have to fragment the I/O), then
568  *		fill in the buf structure to be passed down to the next layer.
569  */
570 static int
571 sp_mapbuf(
572 	mp_unit_t	*un,
573 	sp_ext_offset_t	voff,
574 	sp_ext_length_t	bcount,
575 	buf_t		*bp
576 )
577 {
578 	int		lo, mid, hi, found, more;
579 	size_t		new_bcount;
580 	sp_ext_offset_t new_blkno;
581 	sp_ext_offset_t	new_offset;
582 	sp_ext_offset_t	ext_endblk;
583 	md_dev64_t	new_edev;
584 	extern unsigned	md_maxphys;
585 
586 	found = 0;
587 	lo = 0;
588 	hi = un->un_numexts - 1;
589 
590 	/*
591 	 * do a binary search to find the extent that contains the
592 	 * starting offset.  after this loop, mid contains the index
593 	 * of the correct extent.
594 	 */
595 	while (lo <= hi && !found) {
596 		mid = (lo + hi) / 2;
597 		/* is the starting offset contained within the mid-ext? */
598 		if (voff >= un->un_ext[mid].un_voff &&
599 		    voff < un->un_ext[mid].un_voff + un->un_ext[mid].un_len)
600 			found = 1;
601 		else if (voff < un->un_ext[mid].un_voff)
602 			hi = mid - 1;
603 		else /* voff > un->un_ext[mid].un_voff + un->un_ext[mid].len */
604 			lo = mid + 1;
605 	}
606 
607 	if (!found) {
608 		cmn_err(CE_WARN, "sp_mapbuf: invalid offset %llu.\n", voff);
609 		return (-1);
610 	}
611 
612 	/* translate to underlying physical offset/device */
613 	new_offset = voff - un->un_ext[mid].un_voff;
614 	new_blkno = un->un_ext[mid].un_poff + new_offset;
615 	new_edev = un->un_dev;
616 
617 	/* determine if we need to break the I/O into fragments */
618 	ext_endblk = un->un_ext[mid].un_voff + un->un_ext[mid].un_len;
619 	if (voff + btodb(bcount) > ext_endblk) {
620 		new_bcount = dbtob(ext_endblk - voff);
621 		more = 1;
622 	} else {
623 		new_bcount = bcount;
624 		more = 0;
625 	}
626 
627 	/* only break up the I/O if we're not built on another metadevice */
628 	if ((md_getmajor(new_edev) != md_major) && (new_bcount > md_maxphys)) {
629 		new_bcount = md_maxphys;
630 		more = 1;
631 	}
632 	if (bp != (buf_t *)NULL) {
633 		/* do bp updates */
634 		bp->b_bcount = new_bcount;
635 		bp->b_lblkno = new_blkno;
636 		bp->b_edev = md_dev64_to_dev(new_edev);
637 	}
638 	return (more);
639 }
640 
641 /*
642  * FUNCTION:	sp_validate()
643  * INPUT:	un	- unit structure to be validated.
644  * OUTPUT:	none.
645  * RETURNS:	0	- soft partition ok.
646  *		-1	- error.
647  * PURPOSE:	called on open to sanity check the soft partition.  In
648  *		order to open a soft partition:
649  *		- it must have at least one extent
650  *		- the extent info in core and on disk must match
651  *		- it may not be in an intermediate state (which would
652  *		  imply that a two-phase commit was interrupted)
653  *
654  *		If the extent checking fails (B_ERROR returned from the read
655  *		strategy call) _and_ we're a multi-owner diskset, we send a
656  *		message to the master so that all nodes inherit the same view
657  *		of the soft partition.
658  *		If we are checking a soft-part that is marked as in error, and
659  *		we can actually read and validate the watermarks we send a
660  *		message to clear the error to the master node.
661  */
662 static int
663 sp_validate(mp_unit_t *un)
664 {
665 	uint_t		ext;
666 	struct buf	*buf;
667 	sp_ext_length_t	len;
668 	mp_watermark_t	*wm;
669 	set_t		setno;
670 	int		reset_error = 0;
671 
672 	setno = MD_UN2SET(un);
673 
674 	/* sanity check unit structure components ?? */
675 	if (un->un_status != MD_SP_OK) {
676 		if (un->un_status != MD_SP_ERR) {
677 			cmn_err(CE_WARN, "md: %s: open failed, soft partition "
678 			    "status is %u.",
679 			    md_shortname(MD_SID(un)),
680 			    un->un_status);
681 			return (-1);
682 		} else {
683 			cmn_err(CE_WARN, "md: %s: open of soft partition "
684 			    "in Errored state.",
685 			    md_shortname(MD_SID(un)));
686 			reset_error = 1;
687 		}
688 	}
689 
690 	if (un->un_numexts == 0) {
691 		cmn_err(CE_WARN, "md: %s: open failed, soft partition does "
692 		    "not have any extents.", md_shortname(MD_SID(un)));
693 		return (-1);
694 	}
695 
696 	len = 0LL;
697 	for (ext = 0; ext < un->un_numexts; ext++) {
698 
699 		/* tally extent lengths to check total size */
700 		len += un->un_ext[ext].un_len;
701 
702 		/* allocate buffer for watermark */
703 		buf = getrbuf(KM_SLEEP);
704 
705 		/* read watermark */
706 		buf->b_flags = B_READ;
707 		buf->b_edev = md_dev64_to_dev(un->un_dev);
708 		buf->b_iodone = NULL;
709 		buf->b_proc = NULL;
710 		buf->b_bcount = sizeof (mp_watermark_t);
711 		buf->b_lblkno = un->un_ext[ext].un_poff - 1;
712 		buf->b_bufsize = sizeof (mp_watermark_t);
713 		buf->b_un.b_addr = kmem_alloc(sizeof (mp_watermark_t),
714 		    KM_SLEEP);
715 
716 		/*
717 		 * make the call non-blocking so that it is not affected
718 		 * by a set take.
719 		 */
720 		md_call_strategy(buf, MD_STR_MAPPED|MD_NOBLOCK, NULL);
721 		(void) biowait(buf);
722 
723 		if (buf->b_flags & B_ERROR) {
724 			cmn_err(CE_WARN, "md: %s: open failed, could not "
725 			    "read watermark at block %llu for extent %u, "
726 			    "error %d.", md_shortname(MD_SID(un)),
727 			    buf->b_lblkno, ext, buf->b_error);
728 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
729 			freerbuf(buf);
730 
731 			/*
732 			 * If we're a multi-owner diskset we send a message
733 			 * indicating that this soft-part has an invalid
734 			 * extent to the master node. This ensures a consistent
735 			 * view of the soft-part across the cluster.
736 			 */
737 			if (MD_MNSET_SETNO(setno)) {
738 				sp_send_stat_err(un);
739 			}
740 			return (-1);
741 		}
742 
743 		wm = (mp_watermark_t *)buf->b_un.b_addr;
744 
745 		/* make sure the checksum is correct first */
746 		if (crcchk((uchar_t *)wm, (uint_t *)&wm->wm_checksum,
747 		    (uint_t)sizeof (mp_watermark_t), (uchar_t *)NULL)) {
748 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
749 			    "at block %llu for extent %u does not have a "
750 			    "valid checksum 0x%08x.", md_shortname(MD_SID(un)),
751 			    buf->b_lblkno, ext, wm->wm_checksum);
752 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
753 			freerbuf(buf);
754 			return (-1);
755 		}
756 
757 		if (wm->wm_magic != MD_SP_MAGIC) {
758 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
759 			    "at block %llu for extent %u does not have a "
760 			    "valid watermark magic number, expected 0x%x, "
761 			    "found 0x%x.", md_shortname(MD_SID(un)),
762 			    buf->b_lblkno, ext, MD_SP_MAGIC, wm->wm_magic);
763 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
764 			freerbuf(buf);
765 			return (-1);
766 		}
767 
768 		/* make sure sequence number matches the current extent */
769 		if (wm->wm_seq != ext) {
770 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
771 			    "at block %llu for extent %u has invalid "
772 			    "sequence number %u.", md_shortname(MD_SID(un)),
773 			    buf->b_lblkno, ext, wm->wm_seq);
774 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
775 			freerbuf(buf);
776 			return (-1);
777 		}
778 
779 		/* make sure watermark length matches unit structure */
780 		if (wm->wm_length != un->un_ext[ext].un_len) {
781 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
782 			    "at block %llu for extent %u has inconsistent "
783 			    "length, expected %llu, found %llu.",
784 			    md_shortname(MD_SID(un)), buf->b_lblkno,
785 			    ext, un->un_ext[ext].un_len,
786 			    (u_longlong_t)wm->wm_length);
787 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
788 			freerbuf(buf);
789 			return (-1);
790 		}
791 
792 		/*
793 		 * make sure the type is a valid soft partition and not
794 		 * a free extent or the end.
795 		 */
796 		if (wm->wm_type != EXTTYP_ALLOC) {
797 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
798 			    "at block %llu for extent %u is not marked "
799 			    "as in-use, type = %u.", md_shortname(MD_SID(un)),
800 			    buf->b_lblkno, ext, wm->wm_type);
801 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
802 			freerbuf(buf);
803 			return (-1);
804 		}
805 		/* free up buffer */
806 		kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
807 		freerbuf(buf);
808 	}
809 
810 	if (len != un->un_length) {
811 		cmn_err(CE_WARN, "md: %s: open failed, computed length "
812 		    "%llu != expected length %llu.", md_shortname(MD_SID(un)),
813 		    len, un->un_length);
814 		return (-1);
815 	}
816 
817 	/*
818 	 * If we're a multi-owner set _and_ reset_error is set, we should clear
819 	 * the error condition on all nodes in the set. Use SP_SETSTAT2 with
820 	 * MD_SP_OK.
821 	 */
822 	if (MD_MNSET_SETNO(setno) && reset_error) {
823 		sp_send_stat_ok(un);
824 	}
825 	return (0);
826 }
827 
828 /*
829  * FUNCTION:	sp_done()
830  * INPUT:	child_buf	- buffer attached to child save structure.
831  *				  this is the buffer on which I/O has just
832  *				  completed.
833  * OUTPUT:	none.
834  * RETURNS:	0	- success.
835  *		1	- error.
836  * PURPOSE:	called on I/O completion.
837  */
838 static int
839 sp_done(struct buf *child_buf)
840 {
841 	struct buf	*parent_buf;
842 	mdi_unit_t	*ui;
843 	md_spps_t	*ps;
844 	md_spcs_t	*cs;
845 
846 	/* find the child save structure to which this buffer belongs */
847 	cs = (md_spcs_t *)((caddr_t)child_buf -
848 	    (sizeof (md_spcs_t) - sizeof (buf_t)));
849 	/* now get the parent save structure */
850 	ps = cs->cs_ps;
851 	parent_buf = ps->ps_bp;
852 
853 	mutex_enter(&ps->ps_mx);
854 	/* pass any errors back up to the parent */
855 	if (child_buf->b_flags & B_ERROR) {
856 		ps->ps_flags |= MD_SPPS_ERROR;
857 		parent_buf->b_error = child_buf->b_error;
858 	}
859 	/* mapout, if needed */
860 	if (child_buf->b_flags & B_REMAPPED)
861 		bp_mapout(child_buf);
862 
863 	ps->ps_frags--;
864 	if (ps->ps_frags != 0) {
865 		/*
866 		 * if this parent has more children, we just free the
867 		 * child and return.
868 		 */
869 		kmem_cache_free(sp_child_cache, cs);
870 		mutex_exit(&ps->ps_mx);
871 		return (1);
872 	}
873 	/* there are no more children */
874 	kmem_cache_free(sp_child_cache, cs);
875 	if (ps->ps_flags & MD_SPPS_ERROR) {
876 		sp_error(ps);
877 		return (1);
878 	}
879 	ui = ps->ps_ui;
880 	if (!(ps->ps_flags & MD_SPPS_DONTFREE)) {
881 		mutex_exit(&ps->ps_mx);
882 	} else {
883 		/*
884 		 * this should only ever happen if we are panicking,
885 		 * since DONTFREE is only set on the parent if panicstr
886 		 * is non-NULL.
887 		 */
888 		ASSERT(panicstr);
889 	}
890 	SPPS_FREE(sp_parent_cache, ps);
891 	md_kstat_done(ui, parent_buf, 0);
892 	md_unit_readerexit(ui);
893 	md_biodone(parent_buf);
894 	return (0);
895 }
896 
897 /*
898  * FUNCTION:	md_sp_strategy()
899  * INPUT:	parent_buf	- parent buffer
900  *		flag		- flags
901  *		private		- private data
902  * OUTPUT:	none.
903  * RETURNS:	void.
904  * PURPOSE:	Soft partitioning I/O strategy.  Performs the main work
905  *		needed to do I/O to a soft partition.  The basic
906  *		algorithm is as follows:
907  *			- Allocate a child save structure to keep track
908  *			  of the I/O we are going to pass down.
909  *			- Map the I/O to the correct extent in the soft
910  *			  partition (see sp_mapbuf()).
911  *			- bioclone() the buffer and pass it down the
912  *			  stack using md_call_strategy.
913  *			- If the I/O needs to split across extents,
914  *			  repeat the above steps until all fragments
915  *			  are finished.
916  */
917 static void
918 md_sp_strategy(buf_t *parent_buf, int flag, void *private)
919 {
920 	md_spps_t	*ps;
921 	md_spcs_t	*cs;
922 	int		more;
923 	mp_unit_t	*un;
924 	mdi_unit_t	*ui;
925 	size_t		current_count;
926 	off_t		current_offset;
927 	sp_ext_offset_t	current_blkno;
928 	buf_t		*child_buf;
929 	set_t		setno = MD_MIN2SET(getminor(parent_buf->b_edev));
930 	int		strat_flag = flag;
931 
932 	/*
933 	 * When doing IO to a multi owner meta device, check if set is halted.
934 	 * We do this check without the needed lock held, for performance
935 	 * reasons.
936 	 * If an IO just slips through while the set is locked via an
937 	 * MD_MN_SUSPEND_SET, we don't care about it.
938 	 * Only check for suspension if we are a top-level i/o request
939 	 * (MD_STR_NOTTOP is cleared in 'flag');
940 	 */
941 	if ((md_set[setno].s_status & (MD_SET_HALTED | MD_SET_MNSET)) ==
942 	    (MD_SET_HALTED | MD_SET_MNSET)) {
943 		if ((flag & MD_STR_NOTTOP) == 0) {
944 			mutex_enter(&md_mx);
945 			/* Here we loop until the set is no longer halted */
946 			while (md_set[setno].s_status & MD_SET_HALTED) {
947 				cv_wait(&md_cv, &md_mx);
948 			}
949 			mutex_exit(&md_mx);
950 		}
951 	}
952 
953 	ui = MDI_UNIT(getminor(parent_buf->b_edev));
954 
955 	md_kstat_waitq_enter(ui);
956 
957 	un = (mp_unit_t *)md_unit_readerlock(ui);
958 
959 	if ((flag & MD_NOBLOCK) == 0) {
960 		if (md_inc_iocount(setno) != 0) {
961 			parent_buf->b_flags |= B_ERROR;
962 			parent_buf->b_error = ENXIO;
963 			parent_buf->b_resid = parent_buf->b_bcount;
964 			md_kstat_waitq_exit(ui);
965 			md_unit_readerexit(ui);
966 			biodone(parent_buf);
967 			return;
968 		}
969 	} else {
970 		md_inc_iocount_noblock(setno);
971 	}
972 
973 	if (!(flag & MD_STR_NOTTOP)) {
974 		if (md_checkbuf(ui, (md_unit_t *)un, parent_buf) != 0) {
975 			md_kstat_waitq_exit(ui);
976 			return;
977 		}
978 	}
979 
980 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
981 	sp_parent_init(ps);
982 
983 	/*
984 	 * Save essential information from the original buffhdr
985 	 * in the parent.
986 	 */
987 	ps->ps_un = un;
988 	ps->ps_ui = ui;
989 	ps->ps_bp = parent_buf;
990 	ps->ps_addr = parent_buf->b_un.b_addr;
991 
992 	current_count = parent_buf->b_bcount;
993 	current_blkno = (sp_ext_offset_t)parent_buf->b_blkno;
994 	current_offset  = 0;
995 
996 	/*
997 	 * if we are at the top and we are panicking,
998 	 * we don't free in order to save state.
999 	 */
1000 	if (!(flag & MD_STR_NOTTOP) && (panicstr != NULL))
1001 		ps->ps_flags |= MD_SPPS_DONTFREE;
1002 
1003 	md_kstat_waitq_to_runq(ui);
1004 
1005 	ps->ps_frags++;
1006 
1007 	/*
1008 	 * Mark this i/o as MD_STR_ABR if we've had ABR enabled on this
1009 	 * metadevice.
1010 	 */
1011 	if (ui->ui_tstate & MD_ABR_CAP)
1012 		strat_flag |= MD_STR_ABR;
1013 
1014 	/*
1015 	 * this loop does the main work of an I/O.  we allocate a
1016 	 * a child save for each buf, do the logical to physical
1017 	 * mapping, decide if we need to frag the I/O, clone the
1018 	 * new I/O to pass down the stack.  repeat until we've
1019 	 * taken care of the entire buf that was passed to us.
1020 	 */
1021 	do {
1022 		cs = kmem_cache_alloc(sp_child_cache, MD_ALLOCFLAGS);
1023 		sp_child_init(cs);
1024 		child_buf = &cs->cs_buf;
1025 		cs->cs_ps = ps;
1026 
1027 		more = sp_mapbuf(un, current_blkno, current_count, child_buf);
1028 		if (more == -1) {
1029 			parent_buf->b_flags |= B_ERROR;
1030 			parent_buf->b_error = EIO;
1031 			md_kstat_done(ui, parent_buf, 0);
1032 			md_unit_readerexit(ui);
1033 			md_biodone(parent_buf);
1034 			kmem_cache_free(sp_parent_cache, ps);
1035 			return;
1036 		}
1037 
1038 		child_buf = md_bioclone(parent_buf, current_offset,
1039 					child_buf->b_bcount, child_buf->b_edev,
1040 					child_buf->b_blkno, sp_done, child_buf,
1041 					KM_NOSLEEP);
1042 		/* calculate new offset, counts, etc... */
1043 		current_offset += child_buf->b_bcount;
1044 		current_count -=  child_buf->b_bcount;
1045 		current_blkno +=  (sp_ext_offset_t)(btodb(child_buf->b_bcount));
1046 
1047 		if (more) {
1048 			mutex_enter(&ps->ps_mx);
1049 			ps->ps_frags++;
1050 			mutex_exit(&ps->ps_mx);
1051 		}
1052 
1053 		md_call_strategy(child_buf, strat_flag, private);
1054 	} while (more);
1055 
1056 	if (!(flag & MD_STR_NOTTOP) && (panicstr != NULL)) {
1057 		while (!(ps->ps_flags & MD_SPPS_DONE)) {
1058 			md_daemon(1, &md_done_daemon);
1059 		}
1060 		kmem_cache_free(sp_parent_cache, ps);
1061 	}
1062 }
1063 
1064 /*
1065  * FUNCTION:	sp_directed_read()
1066  * INPUT:	mnum	- minor number
1067  *		vdr	- vol_directed_rd_t from user
1068  *		mode	- access mode for copying data out.
1069  * OUTPUT:	none.
1070  * RETURNS:	0	- success
1071  *		Exxxxx	- failure error-code
1072  * PURPOSE:	Construct the necessary sub-device i/o requests to perform the
1073  *		directed read as requested by the user. This is essentially the
1074  *		same as md_sp_strategy() with the exception being that the
1075  *		underlying 'md_call_strategy' is replaced with an ioctl call.
1076  */
1077 int
1078 sp_directed_read(minor_t mnum, vol_directed_rd_t *vdr, int mode)
1079 {
1080 	md_spps_t	*ps;
1081 	md_spcs_t	*cs;
1082 	int		more;
1083 	mp_unit_t	*un;
1084 	mdi_unit_t	*ui;
1085 	size_t		current_count;
1086 	off_t		current_offset;
1087 	sp_ext_offset_t	current_blkno;
1088 	buf_t		*child_buf, *parent_buf;
1089 	void		*kbuffer;
1090 	vol_directed_rd_t	cvdr;
1091 	caddr_t		userbuf;
1092 	offset_t	useroff;
1093 	int		ret = 0;
1094 
1095 	ui = MDI_UNIT(mnum);
1096 
1097 	md_kstat_waitq_enter(ui);
1098 
1099 	bzero(&cvdr, sizeof (cvdr));
1100 
1101 	un = (mp_unit_t *)md_unit_readerlock(ui);
1102 
1103 	/*
1104 	 * Construct a parent_buf header which reflects the user-supplied
1105 	 * request.
1106 	 */
1107 
1108 	kbuffer = kmem_alloc(vdr->vdr_nbytes, KM_NOSLEEP);
1109 	if (kbuffer == NULL) {
1110 		vdr->vdr_flags |= DKV_DMR_ERROR;
1111 		md_kstat_waitq_exit(ui);
1112 		md_unit_readerexit(ui);
1113 		return (ENOMEM);
1114 	}
1115 
1116 	parent_buf = getrbuf(KM_NOSLEEP);
1117 	if (parent_buf == NULL) {
1118 		vdr->vdr_flags |= DKV_DMR_ERROR;
1119 		md_kstat_waitq_exit(ui);
1120 		md_unit_readerexit(ui);
1121 		kmem_free(kbuffer, vdr->vdr_nbytes);
1122 		return (ENOMEM);
1123 	}
1124 	parent_buf->b_un.b_addr = kbuffer;
1125 	parent_buf->b_flags = B_READ;
1126 	parent_buf->b_bcount = vdr->vdr_nbytes;
1127 	parent_buf->b_lblkno = lbtodb(vdr->vdr_offset);
1128 	parent_buf->b_edev = un->un_dev;
1129 
1130 
1131 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
1132 	sp_parent_init(ps);
1133 
1134 	/*
1135 	 * Save essential information from the original buffhdr
1136 	 * in the parent.
1137 	 */
1138 	ps->ps_un = un;
1139 	ps->ps_ui = ui;
1140 	ps->ps_bp = parent_buf;
1141 	ps->ps_addr = parent_buf->b_un.b_addr;
1142 
1143 	current_count = parent_buf->b_bcount;
1144 	current_blkno = (sp_ext_offset_t)parent_buf->b_lblkno;
1145 	current_offset  = 0;
1146 
1147 	md_kstat_waitq_to_runq(ui);
1148 
1149 	ps->ps_frags++;
1150 	vdr->vdr_bytesread = 0;
1151 
1152 	/*
1153 	 * this loop does the main work of an I/O.  we allocate a
1154 	 * a child save for each buf, do the logical to physical
1155 	 * mapping, decide if we need to frag the I/O, clone the
1156 	 * new I/O to pass down the stack.  repeat until we've
1157 	 * taken care of the entire buf that was passed to us.
1158 	 */
1159 	do {
1160 		cs = kmem_cache_alloc(sp_child_cache, MD_ALLOCFLAGS);
1161 		sp_child_init(cs);
1162 		child_buf = &cs->cs_buf;
1163 		cs->cs_ps = ps;
1164 
1165 		more = sp_mapbuf(un, current_blkno, current_count, child_buf);
1166 		if (more == -1) {
1167 			ret = EIO;
1168 			vdr->vdr_flags |= DKV_DMR_SHORT;
1169 			kmem_cache_free(sp_child_cache, cs);
1170 			goto err_out;
1171 		}
1172 
1173 		cvdr.vdr_flags = vdr->vdr_flags;
1174 		cvdr.vdr_side = vdr->vdr_side;
1175 		cvdr.vdr_nbytes = child_buf->b_bcount;
1176 		cvdr.vdr_offset = ldbtob(child_buf->b_lblkno);
1177 		/* Work out where we are in the allocated buffer */
1178 		useroff = (offset_t)(uintptr_t)kbuffer;
1179 		useroff = useroff + (offset_t)current_offset;
1180 		cvdr.vdr_data = (void *)(uintptr_t)useroff;
1181 		child_buf = md_bioclone(parent_buf, current_offset,
1182 					child_buf->b_bcount, child_buf->b_edev,
1183 					child_buf->b_blkno, NULL,
1184 					child_buf, KM_NOSLEEP);
1185 		/* calculate new offset, counts, etc... */
1186 		current_offset += child_buf->b_bcount;
1187 		current_count -=  child_buf->b_bcount;
1188 		current_blkno +=  (sp_ext_offset_t)(btodb(child_buf->b_bcount));
1189 
1190 		if (more) {
1191 			mutex_enter(&ps->ps_mx);
1192 			ps->ps_frags++;
1193 			mutex_exit(&ps->ps_mx);
1194 		}
1195 
1196 		ret = md_call_ioctl(child_buf->b_edev, DKIOCDMR, &cvdr,
1197 		    (mode | FKIOCTL), NULL);
1198 
1199 		/*
1200 		 * Free the child structure as we've finished with it.
1201 		 * Normally this would be done by sp_done() but we're just
1202 		 * using md_bioclone() to segment the transfer and we never
1203 		 * issue a strategy request so the iodone will not be called.
1204 		 */
1205 		kmem_cache_free(sp_child_cache, cs);
1206 		if (ret == 0) {
1207 			/* copyout the returned data to vdr_data + offset */
1208 			userbuf = (caddr_t)kbuffer;
1209 			userbuf += (caddr_t)(cvdr.vdr_data) - (caddr_t)kbuffer;
1210 			if (ddi_copyout(userbuf, vdr->vdr_data,
1211 			    cvdr.vdr_bytesread, mode)) {
1212 				ret = EFAULT;
1213 				goto err_out;
1214 			}
1215 			vdr->vdr_bytesread += cvdr.vdr_bytesread;
1216 		} else {
1217 			goto err_out;
1218 		}
1219 	} while (more);
1220 
1221 	/*
1222 	 * Update the user-supplied vol_directed_rd_t structure with the
1223 	 * contents of the last issued child request.
1224 	 */
1225 	vdr->vdr_flags = cvdr.vdr_flags;
1226 	vdr->vdr_side = cvdr.vdr_side;
1227 	bcopy(cvdr.vdr_side_name, vdr->vdr_side_name, VOL_SIDENAME);
1228 
1229 err_out:
1230 	if (ret != 0) {
1231 		vdr->vdr_flags |= DKV_DMR_ERROR;
1232 	}
1233 	if (vdr->vdr_bytesread != vdr->vdr_nbytes) {
1234 		vdr->vdr_flags |= DKV_DMR_SHORT;
1235 	}
1236 	kmem_cache_free(sp_parent_cache, ps);
1237 	kmem_free(kbuffer, vdr->vdr_nbytes);
1238 	freerbuf(parent_buf);
1239 	md_unit_readerexit(ui);
1240 	return (ret);
1241 }
1242 
1243 /*
1244  * FUNCTION:	sp_snarf()
1245  * INPUT:	cmd	- snarf cmd.
1246  *		setno	- set number.
1247  * OUTPUT:	none.
1248  * RETURNS:	1	- soft partitions were snarfed.
1249  *		0	- no soft partitions were snarfed.
1250  * PURPOSE:	Snarf soft partition metadb records into their in-core
1251  *		structures.  This routine is called at "snarf time" when
1252  *		md loads and gets all metadevices records into memory.
1253  *		The basic algorithm is simply to walk the soft partition
1254  *		records in the metadb and call the soft partitioning
1255  *		build_incore routine to set up the in-core structures.
1256  */
1257 static int
1258 sp_snarf(md_snarfcmd_t cmd, set_t setno)
1259 {
1260 	mp_unit_t	*un;
1261 	mddb_recid_t	recid;
1262 	int		gotsomething;
1263 	int		all_sp_gotten;
1264 	mddb_type_t	rec_type;
1265 	mddb_de_ic_t	*dep;
1266 	mddb_rb32_t	*rbp;
1267 	mp_unit_t	*big_un;
1268 	mp_unit32_od_t	*small_un;
1269 	size_t		newreqsize;
1270 
1271 
1272 	if (cmd == MD_SNARF_CLEANUP)
1273 		return (0);
1274 
1275 	all_sp_gotten = 1;
1276 	gotsomething = 0;
1277 
1278 	/* get the record type */
1279 	rec_type = (mddb_type_t)md_getshared_key(setno,
1280 	    sp_md_ops.md_driver.md_drivername);
1281 	recid = mddb_makerecid(setno, 0);
1282 
1283 	/*
1284 	 * walk soft partition records in the metadb and call
1285 	 * sp_build_incore to build in-core structures.
1286 	 */
1287 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0) {
1288 		/* if we've already gotten this record, go to the next one */
1289 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
1290 			continue;
1291 
1292 
1293 		dep = mddb_getrecdep(recid);
1294 		dep->de_flags = MDDB_F_SOFTPART;
1295 		rbp = dep->de_rb;
1296 
1297 		switch (rbp->rb_revision) {
1298 		case MDDB_REV_RB:
1299 		case MDDB_REV_RBFN:
1300 			if ((rbp->rb_private & MD_PRV_CONVD) == 0) {
1301 				/*
1302 				 * This means, we have an old and small record.
1303 				 * And this record hasn't already been converted
1304 				 * :-o before we create an incore metadevice
1305 				 * from this we have to convert it to a big
1306 				 * record.
1307 				 */
1308 				small_un =
1309 				    (mp_unit32_od_t *)mddb_getrecaddr(recid);
1310 				newreqsize = sizeof (mp_unit_t) +
1311 						((small_un->un_numexts - 1) *
1312 						sizeof (struct mp_ext));
1313 				big_un = (mp_unit_t *)kmem_zalloc(newreqsize,
1314 					KM_SLEEP);
1315 				softpart_convert((caddr_t)small_un,
1316 					(caddr_t)big_un, SMALL_2_BIG);
1317 				kmem_free(small_un, dep->de_reqsize);
1318 				dep->de_rb_userdata = big_un;
1319 				dep->de_reqsize = newreqsize;
1320 				rbp->rb_private |= MD_PRV_CONVD;
1321 				un = big_un;
1322 			} else {
1323 				/* Record has already been converted */
1324 				un = (mp_unit_t *)mddb_getrecaddr(recid);
1325 			}
1326 			un->c.un_revision &= ~MD_64BIT_META_DEV;
1327 			break;
1328 		case MDDB_REV_RB64:
1329 		case MDDB_REV_RB64FN:
1330 			/* Large device */
1331 			un = (mp_unit_t *)mddb_getrecaddr(recid);
1332 			un->c.un_revision |= MD_64BIT_META_DEV;
1333 			un->c.un_flag |= MD_EFILABEL;
1334 			break;
1335 		}
1336 		MDDB_NOTE_FN(rbp->rb_revision, un->c.un_revision);
1337 
1338 		/*
1339 		 * Create minor node for snarfed entry.
1340 		 */
1341 		(void) md_create_minor_node(MD_MIN2SET(MD_SID(un)), MD_SID(un));
1342 
1343 		if (MD_UNIT(MD_SID(un)) != NULL) {
1344 			/* unit is already in-core */
1345 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
1346 			continue;
1347 		}
1348 		all_sp_gotten = 0;
1349 		if (sp_build_incore((void *)un, 1) == 0) {
1350 			mddb_setrecprivate(recid, MD_PRV_GOTIT);
1351 			md_create_unit_incore(MD_SID(un), &sp_md_ops, 0);
1352 			gotsomething = 1;
1353 		}
1354 	}
1355 
1356 	if (!all_sp_gotten)
1357 		return (gotsomething);
1358 	/* double-check records */
1359 	recid = mddb_makerecid(setno, 0);
1360 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0)
1361 		if (!(mddb_getrecprivate(recid) & MD_PRV_GOTIT))
1362 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
1363 
1364 	return (0);
1365 }
1366 
1367 /*
1368  * FUNCTION:	sp_halt()
1369  * INPUT:	cmd	- halt cmd.
1370  *		setno	- set number.
1371  * RETURNS:	0	- success.
1372  *		1	- err.
1373  * PURPOSE:	Perform driver halt operations.  As with stripe, we
1374  *		support MD_HALT_CHECK and MD_HALT_DOIT.  The first
1375  *		does a check to see if halting can be done safely
1376  *		(no open soft partitions), the second cleans up and
1377  *		shuts down the driver.
1378  */
1379 static int
1380 sp_halt(md_haltcmd_t cmd, set_t setno)
1381 {
1382 	int		i;
1383 	mdi_unit_t	*ui;
1384 	minor_t		mnum;
1385 
1386 	if (cmd == MD_HALT_CLOSE)
1387 		return (0);
1388 
1389 	if (cmd == MD_HALT_OPEN)
1390 		return (0);
1391 
1392 	if (cmd == MD_HALT_UNLOAD)
1393 		return (0);
1394 
1395 	if (cmd == MD_HALT_CHECK) {
1396 		for (i = 0; i < md_nunits; i++) {
1397 			mnum = MD_MKMIN(setno, i);
1398 			if ((ui = MDI_UNIT(mnum)) == NULL)
1399 				continue;
1400 			if (ui->ui_opsindex != sp_md_ops.md_selfindex)
1401 				continue;
1402 			if (md_unit_isopen(ui))
1403 				return (1);
1404 		}
1405 		return (0);
1406 	}
1407 
1408 	if (cmd != MD_HALT_DOIT)
1409 		return (1);
1410 
1411 	for (i = 0; i < md_nunits; i++) {
1412 		mnum = MD_MKMIN(setno, i);
1413 		if ((ui = MDI_UNIT(mnum)) == NULL)
1414 			continue;
1415 		if (ui->ui_opsindex != sp_md_ops.md_selfindex)
1416 			continue;
1417 		reset_sp((mp_unit_t *)MD_UNIT(mnum), mnum, 0);
1418 	}
1419 
1420 	return (0);
1421 }
1422 
1423 /*
1424  * FUNCTION:	sp_open_dev()
1425  * INPUT:	un	- unit structure.
1426  *		oflags	- open flags.
1427  * OUTPUT:	none.
1428  * RETURNS:	0		- success.
1429  *		non-zero	- err.
1430  * PURPOSE:	open underlying device via md_layered_open.
1431  */
1432 static int
1433 sp_open_dev(mp_unit_t *un, int oflags)
1434 {
1435 	minor_t		mnum = MD_SID(un);
1436 	int		err;
1437 	md_dev64_t	tmpdev;
1438 	set_t		setno = MD_MIN2SET(MD_SID(un));
1439 	side_t		side = mddb_getsidenum(setno);
1440 
1441 	tmpdev = un->un_dev;
1442 	/*
1443 	 * Do the open by device id if underlying is regular
1444 	 */
1445 	if ((md_getmajor(tmpdev) != md_major) &&
1446 		md_devid_found(setno, side, un->un_key) == 1) {
1447 		tmpdev = md_resolve_bydevid(mnum, tmpdev, un->un_key);
1448 	}
1449 	err = md_layered_open(mnum, &tmpdev, oflags);
1450 	un->un_dev = tmpdev;
1451 
1452 	if (err)
1453 		return (ENXIO);
1454 
1455 	return (0);
1456 }
1457 
1458 /*
1459  * FUNCTION:	sp_open()
1460  * INPUT:	dev		- device to open.
1461  *		flag		- pass-through flag.
1462  *		otyp		- pass-through open type.
1463  *		cred_p		- credentials.
1464  *		md_oflags	- open flags.
1465  * OUTPUT:	none.
1466  * RETURNS:	0		- success.
1467  *		non-zero	- err.
1468  * PURPOSE:	open a soft partition.
1469  */
1470 /* ARGSUSED */
1471 static int
1472 sp_open(
1473 	dev_t		*dev,
1474 	int		flag,
1475 	int		otyp,
1476 	cred_t		*cred_p,
1477 	int		md_oflags
1478 )
1479 {
1480 	minor_t		mnum = getminor(*dev);
1481 	mdi_unit_t	*ui = MDI_UNIT(mnum);
1482 	mp_unit_t	*un;
1483 	int		err = 0;
1484 	set_t		setno;
1485 
1486 	/*
1487 	 * When doing an open of a multi owner metadevice, check to see if this
1488 	 * node is a starting node and if a reconfig cycle is underway.
1489 	 * If so, the system isn't sufficiently set up enough to handle the
1490 	 * open (which involves I/O during sp_validate), so fail with ENXIO.
1491 	 */
1492 	setno = MD_MIN2SET(mnum);
1493 	if ((md_set[setno].s_status & (MD_SET_MNSET | MD_SET_MN_START_RC)) ==
1494 	    (MD_SET_MNSET | MD_SET_MN_START_RC)) {
1495 			return (ENXIO);
1496 	}
1497 
1498 	/* grab necessary locks */
1499 	un = (mp_unit_t *)md_unit_openclose_enter(ui);
1500 	setno = MD_UN2SET(un);
1501 
1502 	/* open underlying device, if necessary */
1503 	if (! md_unit_isopen(ui) || (md_oflags & MD_OFLG_PROBEDEV)) {
1504 		if ((err = sp_open_dev(un, md_oflags)) != 0)
1505 			goto out;
1506 
1507 		if (MD_MNSET_SETNO(setno)) {
1508 			/* For probe, don't incur the overhead of validate */
1509 			if (!(md_oflags & MD_OFLG_PROBEDEV)) {
1510 				/*
1511 				 * Don't call sp_validate while
1512 				 * unit_openclose lock is held.  So, actually
1513 				 * open the device, drop openclose lock,
1514 				 * call sp_validate, reacquire openclose lock,
1515 				 * and close the device.  If sp_validate
1516 				 * succeeds, then device will be re-opened.
1517 				 */
1518 				if ((err = md_unit_incopen(mnum, flag,
1519 				    otyp)) != 0)
1520 					goto out;
1521 
1522 				mutex_enter(&ui->ui_mx);
1523 				ui->ui_lock |= MD_UL_OPENINPROGRESS;
1524 				mutex_exit(&ui->ui_mx);
1525 				md_unit_openclose_exit(ui);
1526 				if (otyp != OTYP_LYR)
1527 					rw_exit(&md_unit_array_rw.lock);
1528 
1529 				err = sp_validate(un);
1530 
1531 				if (otyp != OTYP_LYR)
1532 					rw_enter(&md_unit_array_rw.lock,
1533 					    RW_READER);
1534 				(void) md_unit_openclose_enter(ui);
1535 				(void) md_unit_decopen(mnum, otyp);
1536 				mutex_enter(&ui->ui_mx);
1537 				ui->ui_lock &= ~MD_UL_OPENINPROGRESS;
1538 				cv_broadcast(&ui->ui_cv);
1539 				mutex_exit(&ui->ui_mx);
1540 				/*
1541 				 * Should be in the same state as before
1542 				 * the sp_validate.
1543 				 */
1544 				if (err != 0) {
1545 					/* close the device opened above */
1546 					md_layered_close(un->un_dev, md_oflags);
1547 					err = EIO;
1548 					goto out;
1549 				}
1550 			}
1551 			/*
1552 			 * As we're a multi-owner metadevice we need to ensure
1553 			 * that all nodes have the same idea of the status.
1554 			 * sp_validate() will mark the device as errored (if
1555 			 * it cannot read the watermark) or ok (if it was
1556 			 * previously errored but the watermark is now valid).
1557 			 * This code-path is only entered on the non-probe open
1558 			 * so we will maintain the errored state during a probe
1559 			 * call. This means the sys-admin must metarecover -m
1560 			 * to reset the soft-partition error.
1561 			 */
1562 		} else {
1563 			/* For probe, don't incur the overhead of validate */
1564 			if (!(md_oflags & MD_OFLG_PROBEDEV) &&
1565 			    (err = sp_validate(un)) != 0) {
1566 				/* close the device opened above */
1567 				md_layered_close(un->un_dev, md_oflags);
1568 				err = EIO;
1569 				goto out;
1570 			} else {
1571 				/*
1572 				 * we succeeded in validating the on disk
1573 				 * format versus the in core, so reset the
1574 				 * status if it's in error
1575 				 */
1576 				if (un->un_status == MD_SP_ERR) {
1577 					un->un_status = MD_SP_OK;
1578 				}
1579 			}
1580 		}
1581 	}
1582 
1583 	/* count open */
1584 	if ((err = md_unit_incopen(mnum, flag, otyp)) != 0)
1585 		goto out;
1586 
1587 out:
1588 	md_unit_openclose_exit(ui);
1589 	return (err);
1590 }
1591 
1592 /*
1593  * FUNCTION:	sp_close()
1594  * INPUT:	dev		- device to close.
1595  *		flag		- pass-through flag.
1596  *		otyp		- pass-through type.
1597  *		cred_p		- credentials.
1598  *		md_cflags	- close flags.
1599  * OUTPUT:	none.
1600  * RETURNS:	0		- success.
1601  *		non-zero	- err.
1602  * PURPOSE:	close a soft paritition.
1603  */
1604 /* ARGSUSED */
1605 static int
1606 sp_close(
1607 	dev_t		dev,
1608 	int		flag,
1609 	int		otyp,
1610 	cred_t		*cred_p,
1611 	int		md_cflags
1612 )
1613 {
1614 	minor_t		mnum = getminor(dev);
1615 	mdi_unit_t	*ui = MDI_UNIT(mnum);
1616 	mp_unit_t	*un;
1617 	int		err = 0;
1618 
1619 	/* grab necessary locks */
1620 	un = (mp_unit_t *)md_unit_openclose_enter(ui);
1621 
1622 	/* count closed */
1623 	if ((err = md_unit_decopen(mnum, otyp)) != 0)
1624 		goto out;
1625 
1626 	/* close devices, if necessary */
1627 	if (! md_unit_isopen(ui) || (md_cflags & MD_OFLG_PROBEDEV)) {
1628 		md_layered_close(un->un_dev, md_cflags);
1629 	}
1630 
1631 	/*
1632 	 * If a MN set and transient capabilities (eg ABR/DMR) are set,
1633 	 * clear these capabilities if this is the last close in
1634 	 * the cluster
1635 	 */
1636 	if (MD_MNSET_SETNO(MD_UN2SET(un)) &&
1637 	    (ui->ui_tstate & MD_ABR_CAP)) {
1638 		md_unit_openclose_exit(ui);
1639 		mdmn_clear_all_capabilities(mnum);
1640 		return (0);
1641 	}
1642 	/* unlock, return success */
1643 out:
1644 	md_unit_openclose_exit(ui);
1645 	return (err);
1646 }
1647 
1648 
1649 /* used in sp_dump routine */
1650 static struct buf dumpbuf;
1651 
1652 /*
1653  * FUNCTION:	sp_dump()
1654  * INPUT:	dev	- device to dump to.
1655  *		addr	- address to dump.
1656  *		blkno	- blkno on device.
1657  *		nblk	- number of blocks to dump.
1658  * OUTPUT:	none.
1659  * RETURNS:	result from bdev_dump.
1660  * PURPOSE:  This routine dumps memory to the disk.  It assumes that
1661  *           the memory has already been mapped into mainbus space.
1662  *           It is called at disk interrupt priority when the system
1663  *           is in trouble.
1664  *           NOTE: this function is defined using 32-bit arguments,
1665  *           but soft partitioning is internally 64-bit.  Arguments
1666  *           are casted where appropriate.
1667  */
1668 static int
1669 sp_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1670 {
1671 	mp_unit_t	*un;
1672 	buf_t		*bp;
1673 	sp_ext_length_t	nb;
1674 	daddr_t		mapblk;
1675 	int		result;
1676 	int		more;
1677 	int		saveresult = 0;
1678 
1679 	/*
1680 	 * Don't need to grab the unit lock.
1681 	 * Cause nothing else is supposed to be happenning.
1682 	 * Also dump is not supposed to sleep.
1683 	 */
1684 	un = (mp_unit_t *)MD_UNIT(getminor(dev));
1685 
1686 	if ((diskaddr_t)blkno >= un->c.un_total_blocks)
1687 		return (EINVAL);
1688 
1689 	if (((diskaddr_t)blkno + nblk) > un->c.un_total_blocks)
1690 		return (EINVAL);
1691 
1692 	bp = &dumpbuf;
1693 	nb = (sp_ext_length_t)dbtob(nblk);
1694 	do {
1695 		bzero((caddr_t)bp, sizeof (*bp));
1696 		more = sp_mapbuf(un, (sp_ext_offset_t)blkno, nb, bp);
1697 		nblk = (int)(btodb(bp->b_bcount));
1698 		mapblk = bp->b_blkno;
1699 		result = bdev_dump(bp->b_edev, addr, mapblk, nblk);
1700 		if (result)
1701 			saveresult = result;
1702 
1703 		nb -= bp->b_bcount;
1704 		addr += bp->b_bcount;
1705 		blkno += nblk;
1706 	} while (more);
1707 
1708 	return (saveresult);
1709 }
1710 
1711 static int
1712 sp_imp_set(
1713 	set_t	setno
1714 )
1715 {
1716 	mddb_recid_t	recid;
1717 	int		gotsomething;
1718 	mddb_type_t	rec_type;
1719 	mddb_de_ic_t	*dep;
1720 	mddb_rb32_t	*rbp;
1721 	mp_unit_t	*un64;
1722 	mp_unit32_od_t	*un32;
1723 	md_dev64_t	self_devt;
1724 	minor_t		*self_id;	/* minor needs to be updated */
1725 	md_parent_t	*parent_id;	/* parent needs to be updated */
1726 	mddb_recid_t	*record_id;	/* record id needs to be updated */
1727 
1728 	gotsomething = 0;
1729 
1730 	rec_type = (mddb_type_t)md_getshared_key(setno,
1731 		sp_md_ops.md_driver.md_drivername);
1732 	recid = mddb_makerecid(setno, 0);
1733 
1734 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0) {
1735 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
1736 			continue;
1737 
1738 		dep = mddb_getrecdep(recid);
1739 		rbp = dep->de_rb;
1740 
1741 		switch (rbp->rb_revision) {
1742 		case MDDB_REV_RB:
1743 		case MDDB_REV_RBFN:
1744 			/*
1745 			 * Small device
1746 			 */
1747 			un32 = (mp_unit32_od_t *)mddb_getrecaddr(recid);
1748 			self_id = &(un32->c.un_self_id);
1749 			parent_id = &(un32->c.un_parent);
1750 			record_id = &(un32->c.un_record_id);
1751 
1752 			if (!md_update_minor(setno, mddb_getsidenum
1753 				(setno), un32->un_key))
1754 				goto out;
1755 			break;
1756 
1757 		case MDDB_REV_RB64:
1758 		case MDDB_REV_RB64FN:
1759 			un64 = (mp_unit_t *)mddb_getrecaddr(recid);
1760 			self_id = &(un64->c.un_self_id);
1761 			parent_id = &(un64->c.un_parent);
1762 			record_id = &(un64->c.un_record_id);
1763 
1764 			if (!md_update_minor(setno, mddb_getsidenum
1765 				(setno), un64->un_key))
1766 				goto out;
1767 			break;
1768 		}
1769 
1770 		/*
1771 		 * If this is a top level and a friendly name metadevice,
1772 		 * update its minor in the namespace.
1773 		 */
1774 		if ((*parent_id == MD_NO_PARENT) &&
1775 		    ((rbp->rb_revision == MDDB_REV_RBFN) ||
1776 		    (rbp->rb_revision == MDDB_REV_RB64FN))) {
1777 
1778 			self_devt = md_makedevice(md_major, *self_id);
1779 			if (!md_update_top_device_minor(setno,
1780 			    mddb_getsidenum(setno), self_devt))
1781 				goto out;
1782 		}
1783 
1784 		/*
1785 		 * Update unit with the imported setno
1786 		 *
1787 		 */
1788 		mddb_setrecprivate(recid, MD_PRV_GOTIT);
1789 
1790 		*self_id = MD_MKMIN(setno, MD_MIN2UNIT(*self_id));
1791 		if (*parent_id != MD_NO_PARENT)
1792 			*parent_id = MD_MKMIN(setno, MD_MIN2UNIT(*parent_id));
1793 		*record_id = MAKERECID(setno, DBID(*record_id));
1794 
1795 		gotsomething = 1;
1796 	}
1797 
1798 out:
1799 	return (gotsomething);
1800 }
1801 
1802 static md_named_services_t sp_named_services[] = {
1803 	{NULL,					0}
1804 };
1805 
1806 md_ops_t sp_md_ops = {
1807 	sp_open,		/* open */
1808 	sp_close,		/* close */
1809 	md_sp_strategy,		/* strategy */
1810 	NULL,			/* print */
1811 	sp_dump,		/* dump */
1812 	NULL,			/* read */
1813 	NULL,			/* write */
1814 	md_sp_ioctl,		/* ioctl, */
1815 	sp_snarf,		/* snarf */
1816 	sp_halt,		/* halt */
1817 	NULL,			/* aread */
1818 	NULL,			/* awrite */
1819 	sp_imp_set,		/* import set */
1820 	sp_named_services
1821 };
1822 
1823 static void
1824 init_init()
1825 {
1826 	sp_parent_cache = kmem_cache_create("md_softpart_parent",
1827 	    sizeof (md_spps_t), 0, sp_parent_constructor,
1828 	    sp_parent_destructor, sp_run_queue, NULL, NULL, 0);
1829 	sp_child_cache = kmem_cache_create("md_softpart_child",
1830 	    sizeof (md_spcs_t) - sizeof (buf_t) + biosize(), 0,
1831 	    sp_child_constructor, sp_child_destructor, sp_run_queue,
1832 	    NULL, NULL, 0);
1833 }
1834 
1835 static void
1836 fini_uninit()
1837 {
1838 	kmem_cache_destroy(sp_parent_cache);
1839 	kmem_cache_destroy(sp_child_cache);
1840 	sp_parent_cache = sp_child_cache = NULL;
1841 }
1842 
1843 /* define the module linkage */
1844 MD_PLUGIN_MISC_MODULE("soft partition module", init_init(), fini_uninit())
1845