xref: /titanic_41/usr/src/uts/common/io/lvm/softpart/sp.c (revision ba7866cd2cbdf574f47d4e38a1301b90744dd677)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Soft partitioning metadevice driver (md_sp).
29  *
30  * This file contains the primary operations of the soft partitioning
31  * metadevice driver.  This includes all routines for normal operation
32  * (open/close/read/write).  Please see mdvar.h for a definition of
33  * metadevice operations vector (md_ops_t).  This driver is loosely
34  * based on the stripe driver (md_stripe).
35  *
36  * All metadevice administration is done through the use of ioctl's.
37  * As such, all administrative routines appear in sp_ioctl.c.
38  *
39  * Soft partitions are represented both in-core and in the metadb with a
40  * unit structure.  The soft partition-specific information in the unit
41  * structure includes the following information:
42  *	- Device information (md_dev64_t & md key) about the device on which
43  *	  the soft partition is built.
44  *	- Soft partition status information.
45  *	- The size of the soft partition and number of extents used to
46  *	  make up that size.
47  *	- An array of exents which define virtual/physical offset
48  *	  mappings and lengths for each extent.
49  *
50  * Typical soft partition operation proceeds as follows:
51  *	- The unit structure is fetched from the metadb and placed into
52  *	  an in-core array (as with other metadevices).  This operation
53  *	  is performed via sp_build_incore( ) and takes place during
54  *	  "snarfing" (when all metadevices are brought in-core at
55  *	  once) and when a new soft partition is created.
56  *	- A soft partition is opened via sp_open( ).  At open time the
57  *	  the soft partition unit structure is verified with the soft
58  *	  partition on-disk structures.  Additionally, the soft partition
59  *	  status is checked (only soft partitions in the OK state may be
60  *	  opened).
61  *	- Soft partition I/O is performed via sp_strategy( ) which relies on
62  *	  a support routine, sp_mapbuf( ), to do most of the work.
63  *	  sp_mapbuf( ) maps a buffer to a particular extent via a binary
64  *	  search of the extent array in the soft partition unit structure.
65  *	  Once a translation has been performed, the I/O is passed down
66  *	  to the next layer, which may be another metadevice or a physical
67  *	  disk.  Since a soft partition may contain multiple, non-contiguous
68  *	  extents, a single I/O may have to be fragmented.
69  *	- Soft partitions are closed using sp_close.
70  *
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/conf.h>
76 #include <sys/file.h>
77 #include <sys/user.h>
78 #include <sys/uio.h>
79 #include <sys/t_lock.h>
80 #include <sys/buf.h>
81 #include <sys/dkio.h>
82 #include <sys/vtoc.h>
83 #include <sys/kmem.h>
84 #include <vm/page.h>
85 #include <sys/cmn_err.h>
86 #include <sys/sysmacros.h>
87 #include <sys/types.h>
88 #include <sys/mkdev.h>
89 #include <sys/stat.h>
90 #include <sys/open.h>
91 #include <sys/lvm/mdvar.h>
92 #include <sys/lvm/md_sp.h>
93 #include <sys/lvm/md_convert.h>
94 #include <sys/lvm/md_notify.h>
95 #include <sys/lvm/md_crc.h>
96 #include <sys/modctl.h>
97 #include <sys/ddi.h>
98 #include <sys/sunddi.h>
99 #include <sys/debug.h>
100 
101 #include <sys/sysevent/eventdefs.h>
102 #include <sys/sysevent/svm.h>
103 
104 md_ops_t		sp_md_ops;
105 #ifndef	lint
106 char			_depends_on[] = "drv/md";
107 md_ops_t		*md_interface_ops = &sp_md_ops;
108 #endif
109 
110 extern unit_t		md_nunits;
111 extern set_t		md_nsets;
112 extern md_set_t		md_set[];
113 
114 extern int		md_status;
115 extern major_t		md_major;
116 extern mdq_anchor_t	md_done_daemon;
117 extern mdq_anchor_t	md_sp_daemon;
118 extern kmutex_t		md_mx;
119 extern kcondvar_t	md_cv;
120 extern md_krwlock_t	md_unit_array_rw;
121 extern clock_t		md_hz;
122 
123 static kmem_cache_t	*sp_parent_cache = NULL;
124 static kmem_cache_t	*sp_child_cache = NULL;
125 static void		sp_send_stat_ok(mp_unit_t *);
126 static void		sp_send_stat_err(mp_unit_t *);
127 
128 /*
129  * FUNCTION:	sp_parent_constructor()
130  * INPUT:	none.
131  * OUTPUT:	ps	- parent save structure initialized.
132  * RETURNS:	void *	- ptr to initialized parent save structure.
133  * PURPOSE:	initialize parent save structure.
134  */
135 /*ARGSUSED1*/
136 static int
137 sp_parent_constructor(void *p, void *d1, int d2)
138 {
139 	mutex_init(&((md_spps_t *)p)->ps_mx,
140 	    NULL, MUTEX_DEFAULT, NULL);
141 	return (0);
142 }
143 
144 static void
145 sp_parent_init(md_spps_t *ps)
146 {
147 	bzero(ps, offsetof(md_spps_t, ps_mx));
148 }
149 
150 /*ARGSUSED1*/
151 static void
152 sp_parent_destructor(void *p, void *d)
153 {
154 	mutex_destroy(&((md_spps_t *)p)->ps_mx);
155 }
156 
157 /*
158  * FUNCTION:	sp_child_constructor()
159  * INPUT:	none.
160  * OUTPUT:	cs	- child save structure initialized.
161  * RETURNS:	void *	- ptr to initialized child save structure.
162  * PURPOSE:	initialize child save structure.
163  */
164 /*ARGSUSED1*/
165 static int
166 sp_child_constructor(void *p, void *d1, int d2)
167 {
168 	bioinit(&((md_spcs_t *)p)->cs_buf);
169 	return (0);
170 }
171 
172 static void
173 sp_child_init(md_spcs_t *cs)
174 {
175 	cs->cs_mdunit = 0;
176 	cs->cs_ps = NULL;
177 	md_bioreset(&cs->cs_buf);
178 }
179 
180 /*ARGSUSED1*/
181 static void
182 sp_child_destructor(void *p, void *d)
183 {
184 	biofini(&((md_spcs_t *)p)->cs_buf);
185 }
186 
187 /*
188  * FUNCTION:	sp_run_queue()
189  * INPUT:	none.
190  * OUTPUT:	none.
191  * RETURNS:	void.
192  * PURPOSE:	run the md_daemon to clean up memory pool.
193  */
194 /*ARGSUSED*/
195 static void
196 sp_run_queue(void *d)
197 {
198 	if (!(md_status & MD_GBL_DAEMONS_LIVE))
199 		md_daemon(1, &md_done_daemon);
200 }
201 
202 
203 /*
204  * FUNCTION:	sp_build_incore()
205  * INPUT:	p		- ptr to unit structure.
206  *		snarfing	- flag to tell us we are snarfing.
207  * OUTPUT:	non.
208  * RETURNS:	int	- 0 (always).
209  * PURPOSE:	place unit structure into in-core unit array (keyed from
210  *		minor number).
211  */
212 int
213 sp_build_incore(void *p, int snarfing)
214 {
215 	mp_unit_t	*un = (mp_unit_t *)p;
216 	minor_t		mnum;
217 	set_t		setno;
218 	md_dev64_t	tmpdev;
219 
220 	mnum = MD_SID(un);
221 
222 	if (MD_UNIT(mnum) != NULL)
223 		return (0);
224 
225 	MD_STATUS(un) = 0;
226 
227 	if (snarfing) {
228 		/*
229 		 * if we are snarfing, we get the device information
230 		 * from the metadb record (using the metadb key for
231 		 * that device).
232 		 */
233 		setno = MD_MIN2SET(mnum);
234 
235 		tmpdev = md_getdevnum(setno, mddb_getsidenum(setno),
236 		    un->un_key, MD_NOTRUST_DEVT);
237 		un->un_dev = tmpdev;
238 	}
239 
240 	/* place various information in the in-core data structures */
241 	md_nblocks_set(mnum, un->c.un_total_blocks);
242 	MD_UNIT(mnum) = un;
243 
244 	return (0);
245 }
246 
247 /*
248  * FUNCTION:	reset_sp()
249  * INPUT:	un		- unit structure to be reset/removed.
250  *		mnum		- minor number to be reset/removed.
251  *		removing	- flag to tell us if we are removing
252  *				  permanently or just reseting in-core
253  *				  structures.
254  * OUTPUT:	none.
255  * RETURNS:	void.
256  * PURPOSE:	used to either simply reset in-core structures or to
257  *		permanently remove metadevices from the metadb.
258  */
259 void
260 reset_sp(mp_unit_t *un, minor_t mnum, int removing)
261 {
262 	sv_dev_t	*sv;
263 	mddb_recid_t	vtoc_id;
264 
265 	/* clean up in-core structures */
266 	md_destroy_unit_incore(mnum, &sp_md_ops);
267 
268 	md_nblocks_set(mnum, -1ULL);
269 	MD_UNIT(mnum) = NULL;
270 
271 	/*
272 	 * Attempt release of minor node
273 	 */
274 	md_remove_minor_node(mnum);
275 
276 	if (!removing)
277 		return;
278 
279 	/* we are removing the soft partition from the metadb */
280 
281 	/*
282 	 * Save off device information so we can get to
283 	 * it after we do the mddb_deleterec().
284 	 */
285 	sv = (sv_dev_t *)kmem_alloc(sizeof (sv_dev_t), KM_SLEEP);
286 	sv->setno = MD_MIN2SET(mnum);
287 	sv->key = un->un_key;
288 	vtoc_id = un->c.un_vtoc_id;
289 
290 	/*
291 	 * Remove self from the namespace
292 	 */
293 	if (un->c.un_revision & MD_FN_META_DEV) {
294 		(void) md_rem_selfname(un->c.un_self_id);
295 	}
296 
297 	/* Remove the unit structure */
298 	mddb_deleterec_wrapper(un->c.un_record_id);
299 
300 	if (vtoc_id)
301 		mddb_deleterec_wrapper(vtoc_id);
302 
303 	SE_NOTIFY(EC_SVM_CONFIG, ESC_SVM_DELETE, TAG_METADEVICE,
304 	    MD_MIN2SET(mnum), MD_MIN2UNIT(mnum));
305 
306 	/*
307 	 * remove the underlying device name from the metadb.  if other
308 	 * soft partitions are built on this device, this will simply
309 	 * decrease the reference count for this device.  otherwise the
310 	 * name record for this device will be removed from the metadb.
311 	 */
312 	md_rem_names(sv, 1);
313 	kmem_free(sv, sizeof (sv_dev_t));
314 }
315 
316 /*
317  * FUNCTION:	sp_send_stat_msg
318  * INPUT:	un	- unit reference
319  *		status	- status to be sent to master node
320  *			MD_SP_OK - soft-partition is now OK
321  *			MD_SP_ERR	"	"	 errored
322  * OUTPUT:	none.
323  * RETURNS:	void.
324  * PURPOSE:	send a soft-partition status change to the master node. If the
325  *		message succeeds we simply return. If it fails we panic as the
326  *		cluster-wide view of the metadevices is now inconsistent.
327  * CALLING CONTEXT:
328  *	Blockable. No locks can be held.
329  */
330 static void
331 sp_send_stat_msg(mp_unit_t *un, sp_status_t status)
332 {
333 	md_mn_msg_sp_setstat_t	sp_msg;
334 	md_mn_kresult_t	*kres;
335 	set_t		setno = MD_UN2SET(un);
336 	int		rval;
337 	const char	*str = (status == MD_SP_ERR) ? "MD_SP_ERR" : "MD_SP_OK";
338 	int		nretries = 0;
339 
340 	sp_msg.sp_setstat_mnum = MD_SID(un);
341 	sp_msg.sp_setstat_status = status;
342 
343 	kres = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP);
344 
345 spss_msg:
346 	rval = mdmn_ksend_message(setno, MD_MN_MSG_SP_SETSTAT2, MD_MSGF_NO_LOG,
347 	    0, (char *)&sp_msg, sizeof (sp_msg), kres);
348 
349 	if (!MDMN_KSEND_MSG_OK(rval, kres)) {
350 		mdmn_ksend_show_error(rval, kres, "MD_MN_MSG_SP_SETSTAT2");
351 		/* If we're shutting down already, pause things here. */
352 		if (kres->kmmr_comm_state == MDMNE_RPC_FAIL) {
353 			while (!md_mn_is_commd_present()) {
354 				delay(md_hz);
355 			}
356 			/*
357 			 * commd is available again. Retry the message once.
358 			 * If it fails we panic as the system is in an
359 			 * unexpected state.
360 			 */
361 			if (nretries++ == 0)
362 				goto spss_msg;
363 		}
364 		/*
365 		 * Panic as we are now in an inconsistent state.
366 		 */
367 		cmn_err(CE_PANIC, "md: %s: %s could not be set on all nodes\n",
368 		    md_shortname(MD_SID(un)), str);
369 	}
370 
371 	kmem_free(kres, sizeof (md_mn_kresult_t));
372 }
373 
374 /*
375  * FUNCTION:	sp_finish_error
376  * INPUT:	ps	- parent save structure for error-ed I/O.
377  *		lock_held	- set if the unit readerlock is held
378  * OUTPUT:	none.
379  * RETURNS:	void.
380  * PURPOSE:	report a driver error
381  */
382 static void
383 sp_finish_error(md_spps_t *ps, int lock_held)
384 {
385 	struct buf	*pb = ps->ps_bp;
386 	mdi_unit_t	*ui = ps->ps_ui;
387 	md_dev64_t	un_dev;			/* underlying device */
388 	md_dev64_t	md_dev = md_expldev(pb->b_edev); /* metadev in error */
389 	char		*str;
390 
391 	un_dev = md_expldev(ps->ps_un->un_dev);
392 	/* set error type */
393 	if (pb->b_flags & B_READ) {
394 		str = "read";
395 	} else {
396 		str = "write";
397 	}
398 
399 
400 	SPPS_FREE(sp_parent_cache, ps);
401 	pb->b_flags |= B_ERROR;
402 
403 	md_kstat_done(ui, pb, 0);
404 
405 	if (lock_held) {
406 		md_unit_readerexit(ui);
407 	}
408 	md_biodone(pb);
409 
410 	cmn_err(CE_WARN, "md: %s: %s error on %s",
411 	    md_shortname(md_getminor(md_dev)), str,
412 	    md_devname(MD_DEV2SET(md_dev), un_dev, NULL, 0));
413 }
414 
415 
416 /*
417  * FUNCTION:	sp_xmit_ok
418  * INPUT:	dq	- daemon queue referencing failing ps structure
419  * OUTPUT:	none.
420  * RETURNS:	void.
421  * PURPOSE:	send a message to the master node in a multi-owner diskset to
422  *		update all attached nodes view of the soft-part to be MD_SP_OK.
423  * CALLING CONTEXT:
424  *	Blockable. No unit lock held.
425  */
426 static void
427 sp_xmit_ok(daemon_queue_t *dq)
428 {
429 	md_spps_t	*ps = (md_spps_t *)dq;
430 
431 	/* Send a MD_MN_MSG_SP_SETSTAT to the master */
432 	sp_send_stat_msg(ps->ps_un, MD_SP_OK);
433 
434 	/*
435 	 * Successfully transmitted error state to all nodes, now release this
436 	 * parent structure.
437 	 */
438 	SPPS_FREE(sp_parent_cache, ps);
439 }
440 
441 /*
442  * FUNCTION:	sp_xmit_error
443  * INPUT:	dq	- daemon queue referencing failing ps structure
444  * OUTPUT:	none.
445  * RETURNS:	void.
446  * PURPOSE:	send a message to the master node in a multi-owner diskset to
447  *		update all attached nodes view of the soft-part to be MD_SP_ERR.
448  * CALLING CONTEXT:
449  *	Blockable. No unit lock held.
450  */
451 static void
452 sp_xmit_error(daemon_queue_t *dq)
453 {
454 	md_spps_t	*ps = (md_spps_t *)dq;
455 
456 	/* Send a MD_MN_MSG_SP_SETSTAT to the master */
457 	sp_send_stat_msg(ps->ps_un, MD_SP_ERR);
458 
459 	/*
460 	 * Successfully transmitted error state to all nodes, now release this
461 	 * parent structure.
462 	 */
463 	SPPS_FREE(sp_parent_cache, ps);
464 }
465 static void
466 sp_send_stat_ok(mp_unit_t *un)
467 {
468 	minor_t		mnum = MD_SID(un);
469 	md_spps_t	*ps;
470 
471 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
472 	sp_parent_init(ps);
473 	ps->ps_un = un;
474 	ps->ps_ui = MDI_UNIT(mnum);
475 
476 	daemon_request(&md_sp_daemon, sp_xmit_ok, (daemon_queue_t *)ps,
477 	    REQ_OLD);
478 }
479 
480 static void
481 sp_send_stat_err(mp_unit_t *un)
482 {
483 	minor_t		mnum = MD_SID(un);
484 	md_spps_t	*ps;
485 
486 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
487 	sp_parent_init(ps);
488 	ps->ps_un = un;
489 	ps->ps_ui = MDI_UNIT(mnum);
490 
491 	daemon_request(&md_sp_daemon, sp_xmit_error, (daemon_queue_t *)ps,
492 	    REQ_OLD);
493 }
494 
495 
496 /*
497  * FUNCTION:	sp_error()
498  * INPUT:	ps	- parent save structure for error-ed I/O.
499  * OUTPUT:	none.
500  * RETURNS:	void.
501  * PURPOSE:	report a driver error.
502  * CALLING CONTEXT:
503  *	Interrupt - non-blockable
504  */
505 static void
506 sp_error(md_spps_t *ps)
507 {
508 	set_t		setno = MD_UN2SET(ps->ps_un);
509 
510 	/*
511 	 * Drop the mutex associated with this request before (potentially)
512 	 * enqueuing the free onto a separate thread. We have to release the
513 	 * mutex before destroying the parent structure.
514 	 */
515 	if (!(ps->ps_flags & MD_SPPS_DONTFREE)) {
516 		if (MUTEX_HELD(&ps->ps_mx)) {
517 			mutex_exit(&ps->ps_mx);
518 		}
519 	} else {
520 		/*
521 		 * this should only ever happen if we are panicking,
522 		 * since DONTFREE is only set on the parent if panicstr
523 		 * is non-NULL.
524 		 */
525 		ASSERT(panicstr);
526 	}
527 
528 	/*
529 	 * For a multi-owner set we need to send a message to the master so that
530 	 * all nodes get the errored status when we first encounter it. To avoid
531 	 * deadlocking when multiple soft-partitions encounter an error on one
532 	 * physical unit we drop the unit readerlock before enqueueing the
533 	 * request. That way we can service any messages that require a
534 	 * writerlock to be held. Additionally, to avoid deadlocking when at
535 	 * the bottom of a metadevice stack and a higher level mirror has
536 	 * multiple requests outstanding on this soft-part, we clone the ps
537 	 * that failed and pass the error back up the stack to release the
538 	 * reference that this i/o may have in the higher-level metadevice.
539 	 * The other nodes in the cluster just have to modify the soft-part
540 	 * status and we do not need to block the i/o completion for this.
541 	 */
542 	if (MD_MNSET_SETNO(setno)) {
543 		md_spps_t	*err_ps;
544 		err_ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
545 		sp_parent_init(err_ps);
546 
547 		err_ps->ps_un = ps->ps_un;
548 		err_ps->ps_ui = ps->ps_ui;
549 
550 		md_unit_readerexit(ps->ps_ui);
551 
552 		daemon_request(&md_sp_daemon, sp_xmit_error,
553 		    (daemon_queue_t *)err_ps, REQ_OLD);
554 
555 		sp_finish_error(ps, 0);
556 
557 		return;
558 	} else {
559 		ps->ps_un->un_status = MD_SP_ERR;
560 	}
561 
562 	/* Flag the error */
563 	sp_finish_error(ps, 1);
564 
565 }
566 
567 /*
568  * FUNCTION:	sp_mapbuf()
569  * INPUT:	un	- unit structure for soft partition we are doing
570  *			  I/O on.
571  *		voff	- virtual offset in soft partition to map.
572  *		bcount	- # of blocks in the I/O.
573  * OUTPUT:	bp	- translated buffer to be passed down to next layer.
574  * RETURNS:	1	- request must be fragmented, more work to do,
575  *		0	- request satisified, no more work to do
576  *		-1	- error
577  * PURPOSE:	Map the the virtual offset in the soft partition (passed
578  *		in via voff) to the "physical" offset on whatever the soft
579  *		partition is built on top of.  We do this by doing a binary
580  *		search of the extent array in the soft partition unit
581  *		structure.  Once the current extent is found, we do the
582  *		translation, determine if the I/O will cross extent
583  *		boundaries (if so, we have to fragment the I/O), then
584  *		fill in the buf structure to be passed down to the next layer.
585  */
586 static int
587 sp_mapbuf(
588 	mp_unit_t	*un,
589 	sp_ext_offset_t	voff,
590 	sp_ext_length_t	bcount,
591 	buf_t		*bp
592 )
593 {
594 	int		lo, mid, hi, found, more;
595 	size_t		new_bcount;
596 	sp_ext_offset_t new_blkno;
597 	sp_ext_offset_t	new_offset;
598 	sp_ext_offset_t	ext_endblk;
599 	md_dev64_t	new_edev;
600 	extern unsigned	md_maxphys;
601 
602 	found = 0;
603 	lo = 0;
604 	hi = un->un_numexts - 1;
605 
606 	/*
607 	 * do a binary search to find the extent that contains the
608 	 * starting offset.  after this loop, mid contains the index
609 	 * of the correct extent.
610 	 */
611 	while (lo <= hi && !found) {
612 		mid = (lo + hi) / 2;
613 		/* is the starting offset contained within the mid-ext? */
614 		if (voff >= un->un_ext[mid].un_voff &&
615 		    voff < un->un_ext[mid].un_voff + un->un_ext[mid].un_len)
616 			found = 1;
617 		else if (voff < un->un_ext[mid].un_voff)
618 			hi = mid - 1;
619 		else /* voff > un->un_ext[mid].un_voff + un->un_ext[mid].len */
620 			lo = mid + 1;
621 	}
622 
623 	if (!found) {
624 		cmn_err(CE_WARN, "sp_mapbuf: invalid offset %llu.\n", voff);
625 		return (-1);
626 	}
627 
628 	/* translate to underlying physical offset/device */
629 	new_offset = voff - un->un_ext[mid].un_voff;
630 	new_blkno = un->un_ext[mid].un_poff + new_offset;
631 	new_edev = un->un_dev;
632 
633 	/* determine if we need to break the I/O into fragments */
634 	ext_endblk = un->un_ext[mid].un_voff + un->un_ext[mid].un_len;
635 	if (voff + btodb(bcount) > ext_endblk) {
636 		new_bcount = dbtob(ext_endblk - voff);
637 		more = 1;
638 	} else {
639 		new_bcount = bcount;
640 		more = 0;
641 	}
642 
643 	/* only break up the I/O if we're not built on another metadevice */
644 	if ((md_getmajor(new_edev) != md_major) && (new_bcount > md_maxphys)) {
645 		new_bcount = md_maxphys;
646 		more = 1;
647 	}
648 	if (bp != (buf_t *)NULL) {
649 		/* do bp updates */
650 		bp->b_bcount = new_bcount;
651 		bp->b_lblkno = new_blkno;
652 		bp->b_edev = md_dev64_to_dev(new_edev);
653 	}
654 	return (more);
655 }
656 
657 /*
658  * FUNCTION:	sp_validate()
659  * INPUT:	un	- unit structure to be validated.
660  * OUTPUT:	none.
661  * RETURNS:	0	- soft partition ok.
662  *		-1	- error.
663  * PURPOSE:	called on open to sanity check the soft partition.  In
664  *		order to open a soft partition:
665  *		- it must have at least one extent
666  *		- the extent info in core and on disk must match
667  *		- it may not be in an intermediate state (which would
668  *		  imply that a two-phase commit was interrupted)
669  *
670  *		If the extent checking fails (B_ERROR returned from the read
671  *		strategy call) _and_ we're a multi-owner diskset, we send a
672  *		message to the master so that all nodes inherit the same view
673  *		of the soft partition.
674  *		If we are checking a soft-part that is marked as in error, and
675  *		we can actually read and validate the watermarks we send a
676  *		message to clear the error to the master node.
677  */
678 static int
679 sp_validate(mp_unit_t *un)
680 {
681 	uint_t		ext;
682 	struct buf	*buf;
683 	sp_ext_length_t	len;
684 	mp_watermark_t	*wm;
685 	set_t		setno;
686 	int		reset_error = 0;
687 
688 	setno = MD_UN2SET(un);
689 
690 	/* sanity check unit structure components ?? */
691 	if (un->un_status != MD_SP_OK) {
692 		if (un->un_status != MD_SP_ERR) {
693 			cmn_err(CE_WARN, "md: %s: open failed, soft partition "
694 			    "status is %u.",
695 			    md_shortname(MD_SID(un)),
696 			    un->un_status);
697 			return (-1);
698 		} else {
699 			cmn_err(CE_WARN, "md: %s: open of soft partition "
700 			    "in Errored state.",
701 			    md_shortname(MD_SID(un)));
702 			reset_error = 1;
703 		}
704 	}
705 
706 	if (un->un_numexts == 0) {
707 		cmn_err(CE_WARN, "md: %s: open failed, soft partition does "
708 		    "not have any extents.", md_shortname(MD_SID(un)));
709 		return (-1);
710 	}
711 
712 	len = 0LL;
713 	for (ext = 0; ext < un->un_numexts; ext++) {
714 
715 		/* tally extent lengths to check total size */
716 		len += un->un_ext[ext].un_len;
717 
718 		/* allocate buffer for watermark */
719 		buf = getrbuf(KM_SLEEP);
720 
721 		/* read watermark */
722 		buf->b_flags = B_READ;
723 		buf->b_edev = md_dev64_to_dev(un->un_dev);
724 		buf->b_iodone = NULL;
725 		buf->b_proc = NULL;
726 		buf->b_bcount = sizeof (mp_watermark_t);
727 		buf->b_lblkno = un->un_ext[ext].un_poff - 1;
728 		buf->b_bufsize = sizeof (mp_watermark_t);
729 		buf->b_un.b_addr = kmem_alloc(sizeof (mp_watermark_t),
730 		    KM_SLEEP);
731 
732 		/*
733 		 * make the call non-blocking so that it is not affected
734 		 * by a set take.
735 		 */
736 		md_call_strategy(buf, MD_STR_MAPPED|MD_NOBLOCK, NULL);
737 		(void) biowait(buf);
738 
739 		if (buf->b_flags & B_ERROR) {
740 			cmn_err(CE_WARN, "md: %s: open failed, could not "
741 			    "read watermark at block %llu for extent %u, "
742 			    "error %d.", md_shortname(MD_SID(un)),
743 			    buf->b_lblkno, ext, buf->b_error);
744 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
745 			freerbuf(buf);
746 
747 			/*
748 			 * If we're a multi-owner diskset we send a message
749 			 * indicating that this soft-part has an invalid
750 			 * extent to the master node. This ensures a consistent
751 			 * view of the soft-part across the cluster.
752 			 */
753 			if (MD_MNSET_SETNO(setno)) {
754 				sp_send_stat_err(un);
755 			}
756 			return (-1);
757 		}
758 
759 		wm = (mp_watermark_t *)buf->b_un.b_addr;
760 
761 		/* make sure the checksum is correct first */
762 		if (crcchk((uchar_t *)wm, (uint_t *)&wm->wm_checksum,
763 		    (uint_t)sizeof (mp_watermark_t), (uchar_t *)NULL)) {
764 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
765 			    "at block %llu for extent %u does not have a "
766 			    "valid checksum 0x%08x.", md_shortname(MD_SID(un)),
767 			    buf->b_lblkno, ext, wm->wm_checksum);
768 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
769 			freerbuf(buf);
770 			return (-1);
771 		}
772 
773 		if (wm->wm_magic != MD_SP_MAGIC) {
774 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
775 			    "at block %llu for extent %u does not have a "
776 			    "valid watermark magic number, expected 0x%x, "
777 			    "found 0x%x.", md_shortname(MD_SID(un)),
778 			    buf->b_lblkno, ext, MD_SP_MAGIC, wm->wm_magic);
779 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
780 			freerbuf(buf);
781 			return (-1);
782 		}
783 
784 		/* make sure sequence number matches the current extent */
785 		if (wm->wm_seq != ext) {
786 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
787 			    "at block %llu for extent %u has invalid "
788 			    "sequence number %u.", md_shortname(MD_SID(un)),
789 			    buf->b_lblkno, ext, wm->wm_seq);
790 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
791 			freerbuf(buf);
792 			return (-1);
793 		}
794 
795 		/* make sure watermark length matches unit structure */
796 		if (wm->wm_length != un->un_ext[ext].un_len) {
797 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
798 			    "at block %llu for extent %u has inconsistent "
799 			    "length, expected %llu, found %llu.",
800 			    md_shortname(MD_SID(un)), buf->b_lblkno,
801 			    ext, un->un_ext[ext].un_len,
802 			    (u_longlong_t)wm->wm_length);
803 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
804 			freerbuf(buf);
805 			return (-1);
806 		}
807 
808 		/*
809 		 * make sure the type is a valid soft partition and not
810 		 * a free extent or the end.
811 		 */
812 		if (wm->wm_type != EXTTYP_ALLOC) {
813 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
814 			    "at block %llu for extent %u is not marked "
815 			    "as in-use, type = %u.", md_shortname(MD_SID(un)),
816 			    buf->b_lblkno, ext, wm->wm_type);
817 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
818 			freerbuf(buf);
819 			return (-1);
820 		}
821 		/* free up buffer */
822 		kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
823 		freerbuf(buf);
824 	}
825 
826 	if (len != un->un_length) {
827 		cmn_err(CE_WARN, "md: %s: open failed, computed length "
828 		    "%llu != expected length %llu.", md_shortname(MD_SID(un)),
829 		    len, un->un_length);
830 		return (-1);
831 	}
832 
833 	/*
834 	 * If we're a multi-owner set _and_ reset_error is set, we should clear
835 	 * the error condition on all nodes in the set. Use SP_SETSTAT2 with
836 	 * MD_SP_OK.
837 	 */
838 	if (MD_MNSET_SETNO(setno) && reset_error) {
839 		sp_send_stat_ok(un);
840 	}
841 	return (0);
842 }
843 
844 /*
845  * FUNCTION:	sp_done()
846  * INPUT:	child_buf	- buffer attached to child save structure.
847  *				  this is the buffer on which I/O has just
848  *				  completed.
849  * OUTPUT:	none.
850  * RETURNS:	0	- success.
851  *		1	- error.
852  * PURPOSE:	called on I/O completion.
853  */
854 static int
855 sp_done(struct buf *child_buf)
856 {
857 	struct buf	*parent_buf;
858 	mdi_unit_t	*ui;
859 	md_spps_t	*ps;
860 	md_spcs_t	*cs;
861 
862 	/* find the child save structure to which this buffer belongs */
863 	cs = (md_spcs_t *)((caddr_t)child_buf -
864 	    (sizeof (md_spcs_t) - sizeof (buf_t)));
865 	/* now get the parent save structure */
866 	ps = cs->cs_ps;
867 	parent_buf = ps->ps_bp;
868 
869 	mutex_enter(&ps->ps_mx);
870 	/* pass any errors back up to the parent */
871 	if (child_buf->b_flags & B_ERROR) {
872 		ps->ps_flags |= MD_SPPS_ERROR;
873 		parent_buf->b_error = child_buf->b_error;
874 	}
875 	/* mapout, if needed */
876 	if (child_buf->b_flags & B_REMAPPED)
877 		bp_mapout(child_buf);
878 
879 	ps->ps_frags--;
880 	if (ps->ps_frags != 0) {
881 		/*
882 		 * if this parent has more children, we just free the
883 		 * child and return.
884 		 */
885 		kmem_cache_free(sp_child_cache, cs);
886 		mutex_exit(&ps->ps_mx);
887 		return (1);
888 	}
889 	/* there are no more children */
890 	kmem_cache_free(sp_child_cache, cs);
891 	if (ps->ps_flags & MD_SPPS_ERROR) {
892 		sp_error(ps);
893 		return (1);
894 	}
895 	ui = ps->ps_ui;
896 	if (!(ps->ps_flags & MD_SPPS_DONTFREE)) {
897 		mutex_exit(&ps->ps_mx);
898 	} else {
899 		/*
900 		 * this should only ever happen if we are panicking,
901 		 * since DONTFREE is only set on the parent if panicstr
902 		 * is non-NULL.
903 		 */
904 		ASSERT(panicstr);
905 	}
906 	SPPS_FREE(sp_parent_cache, ps);
907 	md_kstat_done(ui, parent_buf, 0);
908 	md_unit_readerexit(ui);
909 	md_biodone(parent_buf);
910 	return (0);
911 }
912 
913 /*
914  * FUNCTION:	md_sp_strategy()
915  * INPUT:	parent_buf	- parent buffer
916  *		flag		- flags
917  *		private		- private data
918  * OUTPUT:	none.
919  * RETURNS:	void.
920  * PURPOSE:	Soft partitioning I/O strategy.  Performs the main work
921  *		needed to do I/O to a soft partition.  The basic
922  *		algorithm is as follows:
923  *			- Allocate a child save structure to keep track
924  *			  of the I/O we are going to pass down.
925  *			- Map the I/O to the correct extent in the soft
926  *			  partition (see sp_mapbuf()).
927  *			- bioclone() the buffer and pass it down the
928  *			  stack using md_call_strategy.
929  *			- If the I/O needs to split across extents,
930  *			  repeat the above steps until all fragments
931  *			  are finished.
932  */
933 static void
934 md_sp_strategy(buf_t *parent_buf, int flag, void *private)
935 {
936 	md_spps_t	*ps;
937 	md_spcs_t	*cs;
938 	int		more;
939 	mp_unit_t	*un;
940 	mdi_unit_t	*ui;
941 	size_t		current_count;
942 	off_t		current_offset;
943 	sp_ext_offset_t	current_blkno;
944 	buf_t		*child_buf;
945 	set_t		setno = MD_MIN2SET(getminor(parent_buf->b_edev));
946 	int		strat_flag = flag;
947 
948 	/*
949 	 * When doing IO to a multi owner meta device, check if set is halted.
950 	 * We do this check without the needed lock held, for performance
951 	 * reasons.
952 	 * If an IO just slips through while the set is locked via an
953 	 * MD_MN_SUSPEND_SET, we don't care about it.
954 	 * Only check for suspension if we are a top-level i/o request
955 	 * (MD_STR_NOTTOP is cleared in 'flag');
956 	 */
957 	if ((md_set[setno].s_status & (MD_SET_HALTED | MD_SET_MNSET)) ==
958 	    (MD_SET_HALTED | MD_SET_MNSET)) {
959 		if ((flag & MD_STR_NOTTOP) == 0) {
960 			mutex_enter(&md_mx);
961 			/* Here we loop until the set is no longer halted */
962 			while (md_set[setno].s_status & MD_SET_HALTED) {
963 				cv_wait(&md_cv, &md_mx);
964 			}
965 			mutex_exit(&md_mx);
966 		}
967 	}
968 
969 	ui = MDI_UNIT(getminor(parent_buf->b_edev));
970 
971 	md_kstat_waitq_enter(ui);
972 
973 	un = (mp_unit_t *)md_unit_readerlock(ui);
974 
975 	if ((flag & MD_NOBLOCK) == 0) {
976 		if (md_inc_iocount(setno) != 0) {
977 			parent_buf->b_flags |= B_ERROR;
978 			parent_buf->b_error = ENXIO;
979 			parent_buf->b_resid = parent_buf->b_bcount;
980 			md_kstat_waitq_exit(ui);
981 			md_unit_readerexit(ui);
982 			biodone(parent_buf);
983 			return;
984 		}
985 	} else {
986 		md_inc_iocount_noblock(setno);
987 	}
988 
989 	if (!(flag & MD_STR_NOTTOP)) {
990 		if (md_checkbuf(ui, (md_unit_t *)un, parent_buf) != 0) {
991 			md_kstat_waitq_exit(ui);
992 			return;
993 		}
994 	}
995 
996 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
997 	sp_parent_init(ps);
998 
999 	/*
1000 	 * Save essential information from the original buffhdr
1001 	 * in the parent.
1002 	 */
1003 	ps->ps_un = un;
1004 	ps->ps_ui = ui;
1005 	ps->ps_bp = parent_buf;
1006 	ps->ps_addr = parent_buf->b_un.b_addr;
1007 
1008 	current_count = parent_buf->b_bcount;
1009 	current_blkno = (sp_ext_offset_t)parent_buf->b_blkno;
1010 	current_offset  = 0;
1011 
1012 	/*
1013 	 * if we are at the top and we are panicking,
1014 	 * we don't free in order to save state.
1015 	 */
1016 	if (!(flag & MD_STR_NOTTOP) && (panicstr != NULL))
1017 		ps->ps_flags |= MD_SPPS_DONTFREE;
1018 
1019 	md_kstat_waitq_to_runq(ui);
1020 
1021 	ps->ps_frags++;
1022 
1023 	/*
1024 	 * Mark this i/o as MD_STR_ABR if we've had ABR enabled on this
1025 	 * metadevice.
1026 	 */
1027 	if (ui->ui_tstate & MD_ABR_CAP)
1028 		strat_flag |= MD_STR_ABR;
1029 
1030 	/*
1031 	 * this loop does the main work of an I/O.  we allocate a
1032 	 * a child save for each buf, do the logical to physical
1033 	 * mapping, decide if we need to frag the I/O, clone the
1034 	 * new I/O to pass down the stack.  repeat until we've
1035 	 * taken care of the entire buf that was passed to us.
1036 	 */
1037 	do {
1038 		cs = kmem_cache_alloc(sp_child_cache, MD_ALLOCFLAGS);
1039 		sp_child_init(cs);
1040 		child_buf = &cs->cs_buf;
1041 		cs->cs_ps = ps;
1042 
1043 		more = sp_mapbuf(un, current_blkno, current_count, child_buf);
1044 		if (more == -1) {
1045 			parent_buf->b_flags |= B_ERROR;
1046 			parent_buf->b_error = EIO;
1047 			md_kstat_done(ui, parent_buf, 0);
1048 			md_unit_readerexit(ui);
1049 			md_biodone(parent_buf);
1050 			kmem_cache_free(sp_parent_cache, ps);
1051 			return;
1052 		}
1053 
1054 		child_buf = md_bioclone(parent_buf, current_offset,
1055 		    child_buf->b_bcount, child_buf->b_edev,
1056 		    child_buf->b_blkno, sp_done, child_buf,
1057 		    KM_NOSLEEP);
1058 		/* calculate new offset, counts, etc... */
1059 		current_offset += child_buf->b_bcount;
1060 		current_count -=  child_buf->b_bcount;
1061 		current_blkno +=  (sp_ext_offset_t)(btodb(child_buf->b_bcount));
1062 
1063 		if (more) {
1064 			mutex_enter(&ps->ps_mx);
1065 			ps->ps_frags++;
1066 			mutex_exit(&ps->ps_mx);
1067 		}
1068 
1069 		md_call_strategy(child_buf, strat_flag, private);
1070 	} while (more);
1071 
1072 	if (!(flag & MD_STR_NOTTOP) && (panicstr != NULL)) {
1073 		while (!(ps->ps_flags & MD_SPPS_DONE)) {
1074 			md_daemon(1, &md_done_daemon);
1075 		}
1076 		kmem_cache_free(sp_parent_cache, ps);
1077 	}
1078 }
1079 
1080 /*
1081  * FUNCTION:	sp_directed_read()
1082  * INPUT:	mnum	- minor number
1083  *		vdr	- vol_directed_rd_t from user
1084  *		mode	- access mode for copying data out.
1085  * OUTPUT:	none.
1086  * RETURNS:	0	- success
1087  *		Exxxxx	- failure error-code
1088  * PURPOSE:	Construct the necessary sub-device i/o requests to perform the
1089  *		directed read as requested by the user. This is essentially the
1090  *		same as md_sp_strategy() with the exception being that the
1091  *		underlying 'md_call_strategy' is replaced with an ioctl call.
1092  */
1093 int
1094 sp_directed_read(minor_t mnum, vol_directed_rd_t *vdr, int mode)
1095 {
1096 	md_spps_t	*ps;
1097 	md_spcs_t	*cs;
1098 	int		more;
1099 	mp_unit_t	*un;
1100 	mdi_unit_t	*ui;
1101 	size_t		current_count;
1102 	off_t		current_offset;
1103 	sp_ext_offset_t	current_blkno;
1104 	buf_t		*child_buf, *parent_buf;
1105 	void		*kbuffer;
1106 	vol_directed_rd_t	cvdr;
1107 	caddr_t		userbuf;
1108 	offset_t	useroff;
1109 	int		ret = 0;
1110 
1111 	ui = MDI_UNIT(mnum);
1112 
1113 	md_kstat_waitq_enter(ui);
1114 
1115 	bzero(&cvdr, sizeof (cvdr));
1116 
1117 	un = (mp_unit_t *)md_unit_readerlock(ui);
1118 
1119 	/*
1120 	 * Construct a parent_buf header which reflects the user-supplied
1121 	 * request.
1122 	 */
1123 
1124 	kbuffer = kmem_alloc(vdr->vdr_nbytes, KM_NOSLEEP);
1125 	if (kbuffer == NULL) {
1126 		vdr->vdr_flags |= DKV_DMR_ERROR;
1127 		md_kstat_waitq_exit(ui);
1128 		md_unit_readerexit(ui);
1129 		return (ENOMEM);
1130 	}
1131 
1132 	parent_buf = getrbuf(KM_NOSLEEP);
1133 	if (parent_buf == NULL) {
1134 		vdr->vdr_flags |= DKV_DMR_ERROR;
1135 		md_kstat_waitq_exit(ui);
1136 		md_unit_readerexit(ui);
1137 		kmem_free(kbuffer, vdr->vdr_nbytes);
1138 		return (ENOMEM);
1139 	}
1140 	parent_buf->b_un.b_addr = kbuffer;
1141 	parent_buf->b_flags = B_READ;
1142 	parent_buf->b_bcount = vdr->vdr_nbytes;
1143 	parent_buf->b_lblkno = lbtodb(vdr->vdr_offset);
1144 	parent_buf->b_edev = un->un_dev;
1145 
1146 
1147 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
1148 	sp_parent_init(ps);
1149 
1150 	/*
1151 	 * Save essential information from the original buffhdr
1152 	 * in the parent.
1153 	 */
1154 	ps->ps_un = un;
1155 	ps->ps_ui = ui;
1156 	ps->ps_bp = parent_buf;
1157 	ps->ps_addr = parent_buf->b_un.b_addr;
1158 
1159 	current_count = parent_buf->b_bcount;
1160 	current_blkno = (sp_ext_offset_t)parent_buf->b_lblkno;
1161 	current_offset  = 0;
1162 
1163 	md_kstat_waitq_to_runq(ui);
1164 
1165 	ps->ps_frags++;
1166 	vdr->vdr_bytesread = 0;
1167 
1168 	/*
1169 	 * this loop does the main work of an I/O.  we allocate a
1170 	 * a child save for each buf, do the logical to physical
1171 	 * mapping, decide if we need to frag the I/O, clone the
1172 	 * new I/O to pass down the stack.  repeat until we've
1173 	 * taken care of the entire buf that was passed to us.
1174 	 */
1175 	do {
1176 		cs = kmem_cache_alloc(sp_child_cache, MD_ALLOCFLAGS);
1177 		sp_child_init(cs);
1178 		child_buf = &cs->cs_buf;
1179 		cs->cs_ps = ps;
1180 
1181 		more = sp_mapbuf(un, current_blkno, current_count, child_buf);
1182 		if (more == -1) {
1183 			ret = EIO;
1184 			vdr->vdr_flags |= DKV_DMR_SHORT;
1185 			kmem_cache_free(sp_child_cache, cs);
1186 			goto err_out;
1187 		}
1188 
1189 		cvdr.vdr_flags = vdr->vdr_flags;
1190 		cvdr.vdr_side = vdr->vdr_side;
1191 		cvdr.vdr_nbytes = child_buf->b_bcount;
1192 		cvdr.vdr_offset = ldbtob(child_buf->b_lblkno);
1193 		/* Work out where we are in the allocated buffer */
1194 		useroff = (offset_t)(uintptr_t)kbuffer;
1195 		useroff = useroff + (offset_t)current_offset;
1196 		cvdr.vdr_data = (void *)(uintptr_t)useroff;
1197 		child_buf = md_bioclone(parent_buf, current_offset,
1198 		    child_buf->b_bcount, child_buf->b_edev,
1199 		    child_buf->b_blkno, NULL,
1200 		    child_buf, KM_NOSLEEP);
1201 		/* calculate new offset, counts, etc... */
1202 		current_offset += child_buf->b_bcount;
1203 		current_count -=  child_buf->b_bcount;
1204 		current_blkno +=  (sp_ext_offset_t)(btodb(child_buf->b_bcount));
1205 
1206 		if (more) {
1207 			mutex_enter(&ps->ps_mx);
1208 			ps->ps_frags++;
1209 			mutex_exit(&ps->ps_mx);
1210 		}
1211 
1212 		ret = md_call_ioctl(child_buf->b_edev, DKIOCDMR, &cvdr,
1213 		    (mode | FKIOCTL), NULL);
1214 
1215 		/*
1216 		 * Free the child structure as we've finished with it.
1217 		 * Normally this would be done by sp_done() but we're just
1218 		 * using md_bioclone() to segment the transfer and we never
1219 		 * issue a strategy request so the iodone will not be called.
1220 		 */
1221 		kmem_cache_free(sp_child_cache, cs);
1222 		if (ret == 0) {
1223 			/* copyout the returned data to vdr_data + offset */
1224 			userbuf = (caddr_t)kbuffer;
1225 			userbuf += (caddr_t)(cvdr.vdr_data) - (caddr_t)kbuffer;
1226 			if (ddi_copyout(userbuf, vdr->vdr_data,
1227 			    cvdr.vdr_bytesread, mode)) {
1228 				ret = EFAULT;
1229 				goto err_out;
1230 			}
1231 			vdr->vdr_bytesread += cvdr.vdr_bytesread;
1232 		} else {
1233 			goto err_out;
1234 		}
1235 	} while (more);
1236 
1237 	/*
1238 	 * Update the user-supplied vol_directed_rd_t structure with the
1239 	 * contents of the last issued child request.
1240 	 */
1241 	vdr->vdr_flags = cvdr.vdr_flags;
1242 	vdr->vdr_side = cvdr.vdr_side;
1243 	bcopy(cvdr.vdr_side_name, vdr->vdr_side_name, VOL_SIDENAME);
1244 
1245 err_out:
1246 	if (ret != 0) {
1247 		vdr->vdr_flags |= DKV_DMR_ERROR;
1248 	}
1249 	if (vdr->vdr_bytesread != vdr->vdr_nbytes) {
1250 		vdr->vdr_flags |= DKV_DMR_SHORT;
1251 	}
1252 	kmem_cache_free(sp_parent_cache, ps);
1253 	kmem_free(kbuffer, vdr->vdr_nbytes);
1254 	freerbuf(parent_buf);
1255 	md_unit_readerexit(ui);
1256 	return (ret);
1257 }
1258 
1259 /*
1260  * FUNCTION:	sp_snarf()
1261  * INPUT:	cmd	- snarf cmd.
1262  *		setno	- set number.
1263  * OUTPUT:	none.
1264  * RETURNS:	1	- soft partitions were snarfed.
1265  *		0	- no soft partitions were snarfed.
1266  * PURPOSE:	Snarf soft partition metadb records into their in-core
1267  *		structures.  This routine is called at "snarf time" when
1268  *		md loads and gets all metadevices records into memory.
1269  *		The basic algorithm is simply to walk the soft partition
1270  *		records in the metadb and call the soft partitioning
1271  *		build_incore routine to set up the in-core structures.
1272  */
1273 static int
1274 sp_snarf(md_snarfcmd_t cmd, set_t setno)
1275 {
1276 	mp_unit_t	*un;
1277 	mddb_recid_t	recid;
1278 	int		gotsomething;
1279 	int		all_sp_gotten;
1280 	mddb_type_t	rec_type;
1281 	mddb_de_ic_t	*dep;
1282 	mddb_rb32_t	*rbp;
1283 	mp_unit_t	*big_un;
1284 	mp_unit32_od_t	*small_un;
1285 	size_t		newreqsize;
1286 
1287 
1288 	if (cmd == MD_SNARF_CLEANUP)
1289 		return (0);
1290 
1291 	all_sp_gotten = 1;
1292 	gotsomething = 0;
1293 
1294 	/* get the record type */
1295 	rec_type = (mddb_type_t)md_getshared_key(setno,
1296 	    sp_md_ops.md_driver.md_drivername);
1297 	recid = mddb_makerecid(setno, 0);
1298 
1299 	/*
1300 	 * walk soft partition records in the metadb and call
1301 	 * sp_build_incore to build in-core structures.
1302 	 */
1303 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0) {
1304 		/* if we've already gotten this record, go to the next one */
1305 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
1306 			continue;
1307 
1308 
1309 		dep = mddb_getrecdep(recid);
1310 		dep->de_flags = MDDB_F_SOFTPART;
1311 		rbp = dep->de_rb;
1312 
1313 		switch (rbp->rb_revision) {
1314 		case MDDB_REV_RB:
1315 		case MDDB_REV_RBFN:
1316 			if ((rbp->rb_private & MD_PRV_CONVD) == 0) {
1317 				/*
1318 				 * This means, we have an old and small record.
1319 				 * And this record hasn't already been converted
1320 				 * :-o before we create an incore metadevice
1321 				 * from this we have to convert it to a big
1322 				 * record.
1323 				 */
1324 				small_un =
1325 				    (mp_unit32_od_t *)mddb_getrecaddr(recid);
1326 				newreqsize = sizeof (mp_unit_t) +
1327 				    ((small_un->un_numexts - 1) *
1328 				    sizeof (struct mp_ext));
1329 				big_un = (mp_unit_t *)kmem_zalloc(newreqsize,
1330 				    KM_SLEEP);
1331 				softpart_convert((caddr_t)small_un,
1332 				    (caddr_t)big_un, SMALL_2_BIG);
1333 				kmem_free(small_un, dep->de_reqsize);
1334 				dep->de_rb_userdata = big_un;
1335 				dep->de_reqsize = newreqsize;
1336 				rbp->rb_private |= MD_PRV_CONVD;
1337 				un = big_un;
1338 			} else {
1339 				/* Record has already been converted */
1340 				un = (mp_unit_t *)mddb_getrecaddr(recid);
1341 			}
1342 			un->c.un_revision &= ~MD_64BIT_META_DEV;
1343 			break;
1344 		case MDDB_REV_RB64:
1345 		case MDDB_REV_RB64FN:
1346 			/* Large device */
1347 			un = (mp_unit_t *)mddb_getrecaddr(recid);
1348 			un->c.un_revision |= MD_64BIT_META_DEV;
1349 			un->c.un_flag |= MD_EFILABEL;
1350 			break;
1351 		}
1352 		MDDB_NOTE_FN(rbp->rb_revision, un->c.un_revision);
1353 
1354 		/*
1355 		 * Create minor node for snarfed entry.
1356 		 */
1357 		(void) md_create_minor_node(MD_MIN2SET(MD_SID(un)), MD_SID(un));
1358 
1359 		if (MD_UNIT(MD_SID(un)) != NULL) {
1360 			/* unit is already in-core */
1361 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
1362 			continue;
1363 		}
1364 		all_sp_gotten = 0;
1365 		if (sp_build_incore((void *)un, 1) == 0) {
1366 			mddb_setrecprivate(recid, MD_PRV_GOTIT);
1367 			md_create_unit_incore(MD_SID(un), &sp_md_ops, 0);
1368 			gotsomething = 1;
1369 		}
1370 	}
1371 
1372 	if (!all_sp_gotten)
1373 		return (gotsomething);
1374 	/* double-check records */
1375 	recid = mddb_makerecid(setno, 0);
1376 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0)
1377 		if (!(mddb_getrecprivate(recid) & MD_PRV_GOTIT))
1378 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
1379 
1380 	return (0);
1381 }
1382 
1383 /*
1384  * FUNCTION:	sp_halt()
1385  * INPUT:	cmd	- halt cmd.
1386  *		setno	- set number.
1387  * RETURNS:	0	- success.
1388  *		1	- err.
1389  * PURPOSE:	Perform driver halt operations.  As with stripe, we
1390  *		support MD_HALT_CHECK and MD_HALT_DOIT.  The first
1391  *		does a check to see if halting can be done safely
1392  *		(no open soft partitions), the second cleans up and
1393  *		shuts down the driver.
1394  */
1395 static int
1396 sp_halt(md_haltcmd_t cmd, set_t setno)
1397 {
1398 	int		i;
1399 	mdi_unit_t	*ui;
1400 	minor_t		mnum;
1401 
1402 	if (cmd == MD_HALT_CLOSE)
1403 		return (0);
1404 
1405 	if (cmd == MD_HALT_OPEN)
1406 		return (0);
1407 
1408 	if (cmd == MD_HALT_UNLOAD)
1409 		return (0);
1410 
1411 	if (cmd == MD_HALT_CHECK) {
1412 		for (i = 0; i < md_nunits; i++) {
1413 			mnum = MD_MKMIN(setno, i);
1414 			if ((ui = MDI_UNIT(mnum)) == NULL)
1415 				continue;
1416 			if (ui->ui_opsindex != sp_md_ops.md_selfindex)
1417 				continue;
1418 			if (md_unit_isopen(ui))
1419 				return (1);
1420 		}
1421 		return (0);
1422 	}
1423 
1424 	if (cmd != MD_HALT_DOIT)
1425 		return (1);
1426 
1427 	for (i = 0; i < md_nunits; i++) {
1428 		mnum = MD_MKMIN(setno, i);
1429 		if ((ui = MDI_UNIT(mnum)) == NULL)
1430 			continue;
1431 		if (ui->ui_opsindex != sp_md_ops.md_selfindex)
1432 			continue;
1433 		reset_sp((mp_unit_t *)MD_UNIT(mnum), mnum, 0);
1434 	}
1435 
1436 	return (0);
1437 }
1438 
1439 /*
1440  * FUNCTION:	sp_open_dev()
1441  * INPUT:	un	- unit structure.
1442  *		oflags	- open flags.
1443  * OUTPUT:	none.
1444  * RETURNS:	0		- success.
1445  *		non-zero	- err.
1446  * PURPOSE:	open underlying device via md_layered_open.
1447  */
1448 static int
1449 sp_open_dev(mp_unit_t *un, int oflags)
1450 {
1451 	minor_t		mnum = MD_SID(un);
1452 	int		err;
1453 	md_dev64_t	tmpdev;
1454 	set_t		setno = MD_MIN2SET(MD_SID(un));
1455 	side_t		side = mddb_getsidenum(setno);
1456 
1457 	tmpdev = un->un_dev;
1458 	/*
1459 	 * Do the open by device id if underlying is regular
1460 	 */
1461 	if ((md_getmajor(tmpdev) != md_major) &&
1462 	    md_devid_found(setno, side, un->un_key) == 1) {
1463 		tmpdev = md_resolve_bydevid(mnum, tmpdev, un->un_key);
1464 	}
1465 	err = md_layered_open(mnum, &tmpdev, oflags);
1466 	un->un_dev = tmpdev;
1467 
1468 	if (err)
1469 		return (ENXIO);
1470 
1471 	return (0);
1472 }
1473 
1474 /*
1475  * FUNCTION:	sp_open()
1476  * INPUT:	dev		- device to open.
1477  *		flag		- pass-through flag.
1478  *		otyp		- pass-through open type.
1479  *		cred_p		- credentials.
1480  *		md_oflags	- open flags.
1481  * OUTPUT:	none.
1482  * RETURNS:	0		- success.
1483  *		non-zero	- err.
1484  * PURPOSE:	open a soft partition.
1485  */
1486 /* ARGSUSED */
1487 static int
1488 sp_open(
1489 	dev_t		*dev,
1490 	int		flag,
1491 	int		otyp,
1492 	cred_t		*cred_p,
1493 	int		md_oflags
1494 )
1495 {
1496 	minor_t		mnum = getminor(*dev);
1497 	mdi_unit_t	*ui = MDI_UNIT(mnum);
1498 	mp_unit_t	*un;
1499 	int		err = 0;
1500 	set_t		setno;
1501 
1502 	/*
1503 	 * When doing an open of a multi owner metadevice, check to see if this
1504 	 * node is a starting node and if a reconfig cycle is underway.
1505 	 * If so, the system isn't sufficiently set up enough to handle the
1506 	 * open (which involves I/O during sp_validate), so fail with ENXIO.
1507 	 */
1508 	setno = MD_MIN2SET(mnum);
1509 	if ((md_set[setno].s_status & (MD_SET_MNSET | MD_SET_MN_START_RC)) ==
1510 	    (MD_SET_MNSET | MD_SET_MN_START_RC)) {
1511 			return (ENXIO);
1512 	}
1513 
1514 	/* grab necessary locks */
1515 	un = (mp_unit_t *)md_unit_openclose_enter(ui);
1516 	setno = MD_UN2SET(un);
1517 
1518 	/* open underlying device, if necessary */
1519 	if (! md_unit_isopen(ui) || (md_oflags & MD_OFLG_PROBEDEV)) {
1520 		if ((err = sp_open_dev(un, md_oflags)) != 0)
1521 			goto out;
1522 
1523 		if (MD_MNSET_SETNO(setno)) {
1524 			/* For probe, don't incur the overhead of validate */
1525 			if (!(md_oflags & MD_OFLG_PROBEDEV)) {
1526 				/*
1527 				 * Don't call sp_validate while
1528 				 * unit_openclose lock is held.  So, actually
1529 				 * open the device, drop openclose lock,
1530 				 * call sp_validate, reacquire openclose lock,
1531 				 * and close the device.  If sp_validate
1532 				 * succeeds, then device will be re-opened.
1533 				 */
1534 				if ((err = md_unit_incopen(mnum, flag,
1535 				    otyp)) != 0)
1536 					goto out;
1537 
1538 				mutex_enter(&ui->ui_mx);
1539 				ui->ui_lock |= MD_UL_OPENINPROGRESS;
1540 				mutex_exit(&ui->ui_mx);
1541 				md_unit_openclose_exit(ui);
1542 				if (otyp != OTYP_LYR)
1543 					rw_exit(&md_unit_array_rw.lock);
1544 
1545 				err = sp_validate(un);
1546 
1547 				if (otyp != OTYP_LYR)
1548 					rw_enter(&md_unit_array_rw.lock,
1549 					    RW_READER);
1550 				(void) md_unit_openclose_enter(ui);
1551 				(void) md_unit_decopen(mnum, otyp);
1552 				mutex_enter(&ui->ui_mx);
1553 				ui->ui_lock &= ~MD_UL_OPENINPROGRESS;
1554 				cv_broadcast(&ui->ui_cv);
1555 				mutex_exit(&ui->ui_mx);
1556 				/*
1557 				 * Should be in the same state as before
1558 				 * the sp_validate.
1559 				 */
1560 				if (err != 0) {
1561 					/* close the device opened above */
1562 					md_layered_close(un->un_dev, md_oflags);
1563 					err = EIO;
1564 					goto out;
1565 				}
1566 			}
1567 			/*
1568 			 * As we're a multi-owner metadevice we need to ensure
1569 			 * that all nodes have the same idea of the status.
1570 			 * sp_validate() will mark the device as errored (if
1571 			 * it cannot read the watermark) or ok (if it was
1572 			 * previously errored but the watermark is now valid).
1573 			 * This code-path is only entered on the non-probe open
1574 			 * so we will maintain the errored state during a probe
1575 			 * call. This means the sys-admin must metarecover -m
1576 			 * to reset the soft-partition error.
1577 			 */
1578 		} else {
1579 			/* For probe, don't incur the overhead of validate */
1580 			if (!(md_oflags & MD_OFLG_PROBEDEV) &&
1581 			    (err = sp_validate(un)) != 0) {
1582 				/* close the device opened above */
1583 				md_layered_close(un->un_dev, md_oflags);
1584 				err = EIO;
1585 				goto out;
1586 			} else {
1587 				/*
1588 				 * we succeeded in validating the on disk
1589 				 * format versus the in core, so reset the
1590 				 * status if it's in error
1591 				 */
1592 				if (un->un_status == MD_SP_ERR) {
1593 					un->un_status = MD_SP_OK;
1594 				}
1595 			}
1596 		}
1597 	}
1598 
1599 	/* count open */
1600 	if ((err = md_unit_incopen(mnum, flag, otyp)) != 0)
1601 		goto out;
1602 
1603 out:
1604 	md_unit_openclose_exit(ui);
1605 	return (err);
1606 }
1607 
1608 /*
1609  * FUNCTION:	sp_close()
1610  * INPUT:	dev		- device to close.
1611  *		flag		- pass-through flag.
1612  *		otyp		- pass-through type.
1613  *		cred_p		- credentials.
1614  *		md_cflags	- close flags.
1615  * OUTPUT:	none.
1616  * RETURNS:	0		- success.
1617  *		non-zero	- err.
1618  * PURPOSE:	close a soft paritition.
1619  */
1620 /* ARGSUSED */
1621 static int
1622 sp_close(
1623 	dev_t		dev,
1624 	int		flag,
1625 	int		otyp,
1626 	cred_t		*cred_p,
1627 	int		md_cflags
1628 )
1629 {
1630 	minor_t		mnum = getminor(dev);
1631 	mdi_unit_t	*ui = MDI_UNIT(mnum);
1632 	mp_unit_t	*un;
1633 	int		err = 0;
1634 
1635 	/* grab necessary locks */
1636 	un = (mp_unit_t *)md_unit_openclose_enter(ui);
1637 
1638 	/* count closed */
1639 	if ((err = md_unit_decopen(mnum, otyp)) != 0)
1640 		goto out;
1641 
1642 	/* close devices, if necessary */
1643 	if (! md_unit_isopen(ui) || (md_cflags & MD_OFLG_PROBEDEV)) {
1644 		md_layered_close(un->un_dev, md_cflags);
1645 	}
1646 
1647 	/*
1648 	 * If a MN set and transient capabilities (eg ABR/DMR) are set,
1649 	 * clear these capabilities if this is the last close in
1650 	 * the cluster
1651 	 */
1652 	if (MD_MNSET_SETNO(MD_UN2SET(un)) &&
1653 	    (ui->ui_tstate & MD_ABR_CAP)) {
1654 		md_unit_openclose_exit(ui);
1655 		mdmn_clear_all_capabilities(mnum);
1656 		return (0);
1657 	}
1658 	/* unlock, return success */
1659 out:
1660 	md_unit_openclose_exit(ui);
1661 	return (err);
1662 }
1663 
1664 
1665 /* used in sp_dump routine */
1666 static struct buf dumpbuf;
1667 
1668 /*
1669  * FUNCTION:	sp_dump()
1670  * INPUT:	dev	- device to dump to.
1671  *		addr	- address to dump.
1672  *		blkno	- blkno on device.
1673  *		nblk	- number of blocks to dump.
1674  * OUTPUT:	none.
1675  * RETURNS:	result from bdev_dump.
1676  * PURPOSE:  This routine dumps memory to the disk.  It assumes that
1677  *           the memory has already been mapped into mainbus space.
1678  *           It is called at disk interrupt priority when the system
1679  *           is in trouble.
1680  *           NOTE: this function is defined using 32-bit arguments,
1681  *           but soft partitioning is internally 64-bit.  Arguments
1682  *           are casted where appropriate.
1683  */
1684 static int
1685 sp_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1686 {
1687 	mp_unit_t	*un;
1688 	buf_t		*bp;
1689 	sp_ext_length_t	nb;
1690 	daddr_t		mapblk;
1691 	int		result;
1692 	int		more;
1693 	int		saveresult = 0;
1694 
1695 	/*
1696 	 * Don't need to grab the unit lock.
1697 	 * Cause nothing else is supposed to be happenning.
1698 	 * Also dump is not supposed to sleep.
1699 	 */
1700 	un = (mp_unit_t *)MD_UNIT(getminor(dev));
1701 
1702 	if ((diskaddr_t)blkno >= un->c.un_total_blocks)
1703 		return (EINVAL);
1704 
1705 	if (((diskaddr_t)blkno + nblk) > un->c.un_total_blocks)
1706 		return (EINVAL);
1707 
1708 	bp = &dumpbuf;
1709 	nb = (sp_ext_length_t)dbtob(nblk);
1710 	do {
1711 		bzero((caddr_t)bp, sizeof (*bp));
1712 		more = sp_mapbuf(un, (sp_ext_offset_t)blkno, nb, bp);
1713 		nblk = (int)(btodb(bp->b_bcount));
1714 		mapblk = bp->b_blkno;
1715 		result = bdev_dump(bp->b_edev, addr, mapblk, nblk);
1716 		if (result)
1717 			saveresult = result;
1718 
1719 		nb -= bp->b_bcount;
1720 		addr += bp->b_bcount;
1721 		blkno += nblk;
1722 	} while (more);
1723 
1724 	return (saveresult);
1725 }
1726 
1727 static int
1728 sp_imp_set(
1729 	set_t	setno
1730 )
1731 {
1732 	mddb_recid_t	recid;
1733 	int		gotsomething;
1734 	mddb_type_t	rec_type;
1735 	mddb_de_ic_t	*dep;
1736 	mddb_rb32_t	*rbp;
1737 	mp_unit_t	*un64;
1738 	mp_unit32_od_t	*un32;
1739 	md_dev64_t	self_devt;
1740 	minor_t		*self_id;	/* minor needs to be updated */
1741 	md_parent_t	*parent_id;	/* parent needs to be updated */
1742 	mddb_recid_t	*record_id;	/* record id needs to be updated */
1743 
1744 	gotsomething = 0;
1745 
1746 	rec_type = (mddb_type_t)md_getshared_key(setno,
1747 	    sp_md_ops.md_driver.md_drivername);
1748 	recid = mddb_makerecid(setno, 0);
1749 
1750 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0) {
1751 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
1752 			continue;
1753 
1754 		dep = mddb_getrecdep(recid);
1755 		rbp = dep->de_rb;
1756 
1757 		switch (rbp->rb_revision) {
1758 		case MDDB_REV_RB:
1759 		case MDDB_REV_RBFN:
1760 			/*
1761 			 * Small device
1762 			 */
1763 			un32 = (mp_unit32_od_t *)mddb_getrecaddr(recid);
1764 			self_id = &(un32->c.un_self_id);
1765 			parent_id = &(un32->c.un_parent);
1766 			record_id = &(un32->c.un_record_id);
1767 
1768 			if (!md_update_minor(setno, mddb_getsidenum
1769 			    (setno), un32->un_key))
1770 				goto out;
1771 			break;
1772 
1773 		case MDDB_REV_RB64:
1774 		case MDDB_REV_RB64FN:
1775 			un64 = (mp_unit_t *)mddb_getrecaddr(recid);
1776 			self_id = &(un64->c.un_self_id);
1777 			parent_id = &(un64->c.un_parent);
1778 			record_id = &(un64->c.un_record_id);
1779 
1780 			if (!md_update_minor(setno, mddb_getsidenum
1781 			    (setno), un64->un_key))
1782 				goto out;
1783 			break;
1784 		}
1785 
1786 		/*
1787 		 * If this is a top level and a friendly name metadevice,
1788 		 * update its minor in the namespace.
1789 		 */
1790 		if ((*parent_id == MD_NO_PARENT) &&
1791 		    ((rbp->rb_revision == MDDB_REV_RBFN) ||
1792 		    (rbp->rb_revision == MDDB_REV_RB64FN))) {
1793 
1794 			self_devt = md_makedevice(md_major, *self_id);
1795 			if (!md_update_top_device_minor(setno,
1796 			    mddb_getsidenum(setno), self_devt))
1797 				goto out;
1798 		}
1799 
1800 		/*
1801 		 * Update unit with the imported setno
1802 		 *
1803 		 */
1804 		mddb_setrecprivate(recid, MD_PRV_GOTIT);
1805 
1806 		*self_id = MD_MKMIN(setno, MD_MIN2UNIT(*self_id));
1807 		if (*parent_id != MD_NO_PARENT)
1808 			*parent_id = MD_MKMIN(setno, MD_MIN2UNIT(*parent_id));
1809 		*record_id = MAKERECID(setno, DBID(*record_id));
1810 
1811 		gotsomething = 1;
1812 	}
1813 
1814 out:
1815 	return (gotsomething);
1816 }
1817 
1818 static md_named_services_t sp_named_services[] = {
1819 	{NULL,					0}
1820 };
1821 
1822 md_ops_t sp_md_ops = {
1823 	sp_open,		/* open */
1824 	sp_close,		/* close */
1825 	md_sp_strategy,		/* strategy */
1826 	NULL,			/* print */
1827 	sp_dump,		/* dump */
1828 	NULL,			/* read */
1829 	NULL,			/* write */
1830 	md_sp_ioctl,		/* ioctl, */
1831 	sp_snarf,		/* snarf */
1832 	sp_halt,		/* halt */
1833 	NULL,			/* aread */
1834 	NULL,			/* awrite */
1835 	sp_imp_set,		/* import set */
1836 	sp_named_services
1837 };
1838 
1839 static void
1840 init_init()
1841 {
1842 	sp_parent_cache = kmem_cache_create("md_softpart_parent",
1843 	    sizeof (md_spps_t), 0, sp_parent_constructor,
1844 	    sp_parent_destructor, sp_run_queue, NULL, NULL, 0);
1845 	sp_child_cache = kmem_cache_create("md_softpart_child",
1846 	    sizeof (md_spcs_t) - sizeof (buf_t) + biosize(), 0,
1847 	    sp_child_constructor, sp_child_destructor, sp_run_queue,
1848 	    NULL, NULL, 0);
1849 }
1850 
1851 static void
1852 fini_uninit()
1853 {
1854 	kmem_cache_destroy(sp_parent_cache);
1855 	kmem_cache_destroy(sp_child_cache);
1856 	sp_parent_cache = sp_child_cache = NULL;
1857 }
1858 
1859 /* define the module linkage */
1860 MD_PLUGIN_MISC_MODULE("soft partition module", init_init(), fini_uninit())
1861