xref: /titanic_41/usr/src/uts/common/io/lvm/softpart/sp.c (revision 5aefb6555731130ca4fd295960123d71f2d21fe8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Soft partitioning metadevice driver (md_sp).
30  *
31  * This file contains the primary operations of the soft partitioning
32  * metadevice driver.  This includes all routines for normal operation
33  * (open/close/read/write).  Please see mdvar.h for a definition of
34  * metadevice operations vector (md_ops_t).  This driver is loosely
35  * based on the stripe driver (md_stripe).
36  *
37  * All metadevice administration is done through the use of ioctl's.
38  * As such, all administrative routines appear in sp_ioctl.c.
39  *
40  * Soft partitions are represented both in-core and in the metadb with a
41  * unit structure.  The soft partition-specific information in the unit
42  * structure includes the following information:
43  *	- Device information (md_dev64_t & md key) about the device on which
44  *	  the soft partition is built.
45  *	- Soft partition status information.
46  *	- The size of the soft partition and number of extents used to
47  *	  make up that size.
48  *	- An array of exents which define virtual/physical offset
49  *	  mappings and lengths for each extent.
50  *
51  * Typical soft partition operation proceeds as follows:
52  *	- The unit structure is fetched from the metadb and placed into
53  *	  an in-core array (as with other metadevices).  This operation
54  *	  is performed via sp_build_incore( ) and takes place during
55  *	  "snarfing" (when all metadevices are brought in-core at
56  *	  once) and when a new soft partition is created.
57  *	- A soft partition is opened via sp_open( ).  At open time the
58  *	  the soft partition unit structure is verified with the soft
59  *	  partition on-disk structures.  Additionally, the soft partition
60  *	  status is checked (only soft partitions in the OK state may be
61  *	  opened).
62  *	- Soft partition I/O is performed via sp_strategy( ) which relies on
63  *	  a support routine, sp_mapbuf( ), to do most of the work.
64  *	  sp_mapbuf( ) maps a buffer to a particular extent via a binary
65  *	  search of the extent array in the soft partition unit structure.
66  *	  Once a translation has been performed, the I/O is passed down
67  *	  to the next layer, which may be another metadevice or a physical
68  *	  disk.  Since a soft partition may contain multiple, non-contiguous
69  *	  extents, a single I/O may have to be fragmented.
70  *	- Soft partitions are closed using sp_close.
71  *
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/conf.h>
77 #include <sys/file.h>
78 #include <sys/user.h>
79 #include <sys/uio.h>
80 #include <sys/t_lock.h>
81 #include <sys/buf.h>
82 #include <sys/dkio.h>
83 #include <sys/vtoc.h>
84 #include <sys/kmem.h>
85 #include <vm/page.h>
86 #include <sys/cmn_err.h>
87 #include <sys/sysmacros.h>
88 #include <sys/types.h>
89 #include <sys/mkdev.h>
90 #include <sys/stat.h>
91 #include <sys/open.h>
92 #include <sys/lvm/mdvar.h>
93 #include <sys/lvm/md_sp.h>
94 #include <sys/lvm/md_convert.h>
95 #include <sys/lvm/md_notify.h>
96 #include <sys/lvm/md_crc.h>
97 #include <sys/modctl.h>
98 #include <sys/ddi.h>
99 #include <sys/sunddi.h>
100 #include <sys/debug.h>
101 
102 #include <sys/sysevent/eventdefs.h>
103 #include <sys/sysevent/svm.h>
104 
105 md_ops_t		sp_md_ops;
106 #ifndef	lint
107 char			_depends_on[] = "drv/md";
108 md_ops_t		*md_interface_ops = &sp_md_ops;
109 #endif
110 
111 extern unit_t		md_nunits;
112 extern set_t		md_nsets;
113 extern md_set_t		md_set[];
114 
115 extern int		md_status;
116 extern major_t		md_major;
117 extern mdq_anchor_t	md_done_daemon;
118 extern mdq_anchor_t	md_sp_daemon;
119 extern kmutex_t		md_mx;
120 extern kcondvar_t	md_cv;
121 extern md_krwlock_t	md_unit_array_rw;
122 
123 static kmem_cache_t	*sp_parent_cache = NULL;
124 static kmem_cache_t	*sp_child_cache = NULL;
125 static void		sp_send_stat_ok(mp_unit_t *);
126 static void		sp_send_stat_err(mp_unit_t *);
127 
128 /*
129  * FUNCTION:	sp_parent_constructor()
130  * INPUT:	none.
131  * OUTPUT:	ps	- parent save structure initialized.
132  * RETURNS:	void *	- ptr to initialized parent save structure.
133  * PURPOSE:	initialize parent save structure.
134  */
135 /*ARGSUSED1*/
136 static int
137 sp_parent_constructor(void *p, void *d1, int d2)
138 {
139 	mutex_init(&((md_spps_t *)p)->ps_mx,
140 	    NULL, MUTEX_DEFAULT, NULL);
141 	return (0);
142 }
143 
144 static void
145 sp_parent_init(md_spps_t *ps)
146 {
147 	bzero(ps, offsetof(md_spps_t, ps_mx));
148 }
149 
150 /*ARGSUSED1*/
151 static void
152 sp_parent_destructor(void *p, void *d)
153 {
154 	mutex_destroy(&((md_spps_t *)p)->ps_mx);
155 }
156 
157 /*
158  * FUNCTION:	sp_child_constructor()
159  * INPUT:	none.
160  * OUTPUT:	cs	- child save structure initialized.
161  * RETURNS:	void *	- ptr to initialized child save structure.
162  * PURPOSE:	initialize child save structure.
163  */
164 /*ARGSUSED1*/
165 static int
166 sp_child_constructor(void *p, void *d1, int d2)
167 {
168 	bioinit(&((md_spcs_t *)p)->cs_buf);
169 	return (0);
170 }
171 
172 static void
173 sp_child_init(md_spcs_t *cs)
174 {
175 	cs->cs_mdunit = 0;
176 	cs->cs_ps = NULL;
177 	md_bioreset(&cs->cs_buf);
178 }
179 
180 /*ARGSUSED1*/
181 static void
182 sp_child_destructor(void *p, void *d)
183 {
184 	biofini(&((md_spcs_t *)p)->cs_buf);
185 }
186 
187 /*
188  * FUNCTION:	sp_run_queue()
189  * INPUT:	none.
190  * OUTPUT:	none.
191  * RETURNS:	void.
192  * PURPOSE:	run the md_daemon to clean up memory pool.
193  */
194 /*ARGSUSED*/
195 static void
196 sp_run_queue(void *d)
197 {
198 	if (!(md_status & MD_GBL_DAEMONS_LIVE))
199 		md_daemon(1, &md_done_daemon);
200 }
201 
202 
203 /*
204  * FUNCTION:	sp_build_incore()
205  * INPUT:	p		- ptr to unit structure.
206  *		snarfing	- flag to tell us we are snarfing.
207  * OUTPUT:	non.
208  * RETURNS:	int	- 0 (always).
209  * PURPOSE:	place unit structure into in-core unit array (keyed from
210  *		minor number).
211  */
212 int
213 sp_build_incore(void *p, int snarfing)
214 {
215 	mp_unit_t	*un = (mp_unit_t *)p;
216 	minor_t		mnum;
217 	set_t		setno;
218 	md_dev64_t	tmpdev;
219 
220 	mnum = MD_SID(un);
221 
222 	if (MD_UNIT(mnum) != NULL)
223 		return (0);
224 
225 	MD_STATUS(un) = 0;
226 
227 	if (snarfing) {
228 		/*
229 		 * if we are snarfing, we get the device information
230 		 * from the metadb record (using the metadb key for
231 		 * that device).
232 		 */
233 		setno = MD_MIN2SET(mnum);
234 
235 		tmpdev = md_getdevnum(setno, mddb_getsidenum(setno),
236 		    un->un_key, MD_NOTRUST_DEVT);
237 		un->un_dev = tmpdev;
238 	}
239 
240 	/* place unit in in-core array */
241 	MD_UNIT(mnum) = un;
242 	return (0);
243 }
244 
245 /*
246  * FUNCTION:	reset_sp()
247  * INPUT:	un		- unit structure to be reset/removed.
248  *		mnum		- minor number to be reset/removed.
249  *		removing	- flag to tell us if we are removing
250  *				  permanently or just reseting in-core
251  *				  structures.
252  * OUTPUT:	none.
253  * RETURNS:	void.
254  * PURPOSE:	used to either simply reset in-core structures or to
255  *		permanently remove metadevices from the metadb.
256  */
257 void
258 reset_sp(mp_unit_t *un, minor_t mnum, int removing)
259 {
260 	sv_dev_t	*sv;
261 	mddb_recid_t	vtoc_id;
262 
263 	/* clean up in-core structures */
264 	md_destroy_unit_incore(mnum, &sp_md_ops);
265 
266 	MD_UNIT(mnum) = NULL;
267 
268 	if (!removing)
269 		return;
270 
271 	/* we are removing the soft partition from the metadb */
272 
273 	/*
274 	 * Save off device information so we can get to
275 	 * it after we do the mddb_deleterec().
276 	 */
277 	sv = (sv_dev_t *)kmem_alloc(sizeof (sv_dev_t), KM_SLEEP);
278 	sv->setno = MD_MIN2SET(mnum);
279 	sv->key = un->un_key;
280 	vtoc_id = un->c.un_vtoc_id;
281 
282 	/* Remove the unit structure */
283 	mddb_deleterec_wrapper(un->c.un_record_id);
284 
285 	if (vtoc_id)
286 		mddb_deleterec_wrapper(vtoc_id);
287 
288 	SE_NOTIFY(EC_SVM_CONFIG, ESC_SVM_DELETE, TAG_METADEVICE,
289 	    MD_MIN2SET(mnum), MD_MIN2UNIT(mnum));
290 
291 	/*
292 	 * remove the underlying device name from the metadb.  if other
293 	 * soft partitions are built on this device, this will simply
294 	 * decrease the reference count for this device.  otherwise the
295 	 * name record for this device will be removed from the metadb.
296 	 */
297 	md_rem_names(sv, 1);
298 	kmem_free(sv, sizeof (sv_dev_t));
299 }
300 
301 /*
302  * FUNCTION:	sp_send_stat_msg
303  * INPUT:	un	- unit reference
304  *		status	- status to be sent to master node
305  *			MD_SP_OK - soft-partition is now OK
306  *			MD_SP_ERR	"	"	 errored
307  * OUTPUT:	none.
308  * RETURNS:	void.
309  * PURPOSE:	send a soft-partition status change to the master node. If the
310  *		message succeeds we simply return. If it fails we panic as the
311  *		cluster-wide view of the metadevices is now inconsistent.
312  * CALLING CONTEXT:
313  *	Blockable. No locks can be held.
314  */
315 static void
316 sp_send_stat_msg(mp_unit_t *un, sp_status_t status)
317 {
318 	md_mn_msg_sp_setstat_t	sp_msg;
319 	md_mn_kresult_t	*kres;
320 	set_t		setno = MD_UN2SET(un);
321 	int		rval;
322 	const char	*str = (status == MD_SP_ERR) ? "MD_SP_ERR" : "MD_SP_OK";
323 
324 	sp_msg.sp_setstat_mnum = MD_SID(un);
325 	sp_msg.sp_setstat_status = status;
326 
327 	kres = kmem_alloc(sizeof (md_mn_kresult_t), KM_SLEEP);
328 
329 	rval = mdmn_ksend_message(setno, MD_MN_MSG_SP_SETSTAT2, MD_MSGF_NO_LOG,
330 	    (char *)&sp_msg, sizeof (sp_msg), kres);
331 
332 	if (!MDMN_KSEND_MSG_OK(rval, kres)) {
333 		mdmn_ksend_show_error(rval, kres, "MD_MN_MSG_SP_SETSTAT2");
334 
335 		/*
336 		 * Panic as we are now in an inconsistent state.
337 		 */
338 
339 		cmn_err(CE_PANIC, "md: %s: %s could not be set on all nodes\n",
340 		    md_shortname(MD_SID(un)), str);
341 	}
342 
343 	kmem_free(kres, sizeof (md_mn_kresult_t));
344 }
345 
346 /*
347  * FUNCTION:	sp_finish_error
348  * INPUT:	ps	- parent save structure for error-ed I/O.
349  *		lock_held	- set if the unit readerlock is held
350  * OUTPUT:	none.
351  * RETURNS:	void.
352  * PURPOSE:	report a driver error
353  */
354 static void
355 sp_finish_error(md_spps_t *ps, int lock_held)
356 {
357 	struct buf	*pb = ps->ps_bp;
358 	mdi_unit_t	*ui = ps->ps_ui;
359 	md_dev64_t	un_dev;			/* underlying device */
360 	md_dev64_t	md_dev = md_expldev(pb->b_edev); /* metadev in error */
361 	char		*str;
362 
363 	un_dev = md_expldev(ps->ps_un->un_dev);
364 	/* set error type */
365 	if (pb->b_flags & B_READ) {
366 		str = "read";
367 	} else {
368 		str = "write";
369 	}
370 
371 
372 	SPPS_FREE(sp_parent_cache, ps);
373 	pb->b_flags |= B_ERROR;
374 
375 	md_kstat_done(ui, pb, 0);
376 
377 	if (lock_held) {
378 		md_unit_readerexit(ui);
379 	}
380 	md_biodone(pb);
381 
382 	cmn_err(CE_WARN, "md: %s: %s error on %s",
383 	    md_shortname(md_getminor(md_dev)), str,
384 	    md_devname(MD_DEV2SET(md_dev), un_dev, NULL, 0));
385 }
386 
387 
388 /*
389  * FUNCTION:	sp_xmit_ok
390  * INPUT:	dq	- daemon queue referencing failing ps structure
391  * OUTPUT:	none.
392  * RETURNS:	void.
393  * PURPOSE:	send a message to the master node in a multi-owner diskset to
394  *		update all attached nodes view of the soft-part to be MD_SP_OK.
395  * CALLING CONTEXT:
396  *	Blockable. No unit lock held.
397  */
398 static void
399 sp_xmit_ok(daemon_queue_t *dq)
400 {
401 	md_spps_t	*ps = (md_spps_t *)dq;
402 
403 	/* Send a MD_MN_MSG_SP_SETSTAT to the master */
404 	sp_send_stat_msg(ps->ps_un, MD_SP_OK);
405 
406 	/*
407 	 * Successfully transmitted error state to all nodes, now release this
408 	 * parent structure.
409 	 */
410 	SPPS_FREE(sp_parent_cache, ps);
411 }
412 
413 /*
414  * FUNCTION:	sp_xmit_error
415  * INPUT:	dq	- daemon queue referencing failing ps structure
416  * OUTPUT:	none.
417  * RETURNS:	void.
418  * PURPOSE:	send a message to the master node in a multi-owner diskset to
419  *		update all attached nodes view of the soft-part to be MD_SP_ERR.
420  * CALLING CONTEXT:
421  *	Blockable. No unit lock held.
422  */
423 static void
424 sp_xmit_error(daemon_queue_t *dq)
425 {
426 	md_spps_t	*ps = (md_spps_t *)dq;
427 
428 	/* Send a MD_MN_MSG_SP_SETSTAT to the master */
429 	sp_send_stat_msg(ps->ps_un, MD_SP_ERR);
430 
431 	/*
432 	 * Successfully transmitted error state to all nodes, now release this
433 	 * parent structure.
434 	 */
435 	SPPS_FREE(sp_parent_cache, ps);
436 }
437 static void
438 sp_send_stat_ok(mp_unit_t *un)
439 {
440 	minor_t		mnum = MD_SID(un);
441 	md_spps_t	*ps;
442 
443 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
444 	sp_parent_init(ps);
445 	ps->ps_un = un;
446 	ps->ps_ui = MDI_UNIT(mnum);
447 
448 	daemon_request(&md_sp_daemon, sp_xmit_ok, (daemon_queue_t *)ps,
449 	REQ_OLD);
450 }
451 
452 static void
453 sp_send_stat_err(mp_unit_t *un)
454 {
455 	minor_t		mnum = MD_SID(un);
456 	md_spps_t	*ps;
457 
458 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
459 	sp_parent_init(ps);
460 	ps->ps_un = un;
461 	ps->ps_ui = MDI_UNIT(mnum);
462 
463 	daemon_request(&md_sp_daemon, sp_xmit_error, (daemon_queue_t *)ps,
464 	REQ_OLD);
465 }
466 
467 
468 /*
469  * FUNCTION:	sp_error()
470  * INPUT:	ps	- parent save structure for error-ed I/O.
471  * OUTPUT:	none.
472  * RETURNS:	void.
473  * PURPOSE:	report a driver error.
474  * CALLING CONTEXT:
475  *	Interrupt - non-blockable
476  */
477 static void
478 sp_error(md_spps_t *ps)
479 {
480 	set_t		setno = MD_UN2SET(ps->ps_un);
481 
482 	/*
483 	 * Drop the mutex associated with this request before (potentially)
484 	 * enqueuing the free onto a separate thread. We have to release the
485 	 * mutex before destroying the parent structure.
486 	 */
487 	if (!(ps->ps_flags & MD_SPPS_DONTFREE)) {
488 		if (MUTEX_HELD(&ps->ps_mx)) {
489 			mutex_exit(&ps->ps_mx);
490 		}
491 	} else {
492 		/*
493 		 * this should only ever happen if we are panicking,
494 		 * since DONTFREE is only set on the parent if panicstr
495 		 * is non-NULL.
496 		 */
497 		ASSERT(panicstr);
498 	}
499 
500 	/*
501 	 * For a multi-owner set we need to send a message to the master so that
502 	 * all nodes get the errored status when we first encounter it. To avoid
503 	 * deadlocking when multiple soft-partitions encounter an error on one
504 	 * physical unit we drop the unit readerlock before enqueueing the
505 	 * request. That way we can service any messages that require a
506 	 * writerlock to be held. Additionally, to avoid deadlocking when at
507 	 * the bottom of a metadevice stack and a higher level mirror has
508 	 * multiple requests outstanding on this soft-part, we clone the ps
509 	 * that failed and pass the error back up the stack to release the
510 	 * reference that this i/o may have in the higher-level metadevice.
511 	 * The other nodes in the cluster just have to modify the soft-part
512 	 * status and we do not need to block the i/o completion for this.
513 	 */
514 	if (MD_MNSET_SETNO(setno)) {
515 		md_spps_t	*err_ps;
516 		err_ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
517 		sp_parent_init(err_ps);
518 
519 		err_ps->ps_un = ps->ps_un;
520 		err_ps->ps_ui = ps->ps_ui;
521 
522 		md_unit_readerexit(ps->ps_ui);
523 
524 		daemon_request(&md_sp_daemon, sp_xmit_error,
525 		    (daemon_queue_t *)err_ps, REQ_OLD);
526 
527 		sp_finish_error(ps, 0);
528 
529 		return;
530 	} else {
531 		ps->ps_un->un_status = MD_SP_ERR;
532 	}
533 
534 	/* Flag the error */
535 	sp_finish_error(ps, 1);
536 
537 }
538 
539 /*
540  * FUNCTION:	sp_mapbuf()
541  * INPUT:	un	- unit structure for soft partition we are doing
542  *			  I/O on.
543  *		voff	- virtual offset in soft partition to map.
544  *		bcount	- # of blocks in the I/O.
545  * OUTPUT:	bp	- translated buffer to be passed down to next layer.
546  * RETURNS:	1	- request must be fragmented, more work to do,
547  *		0	- request satisified, no more work to do
548  *		-1	- error
549  * PURPOSE:	Map the the virtual offset in the soft partition (passed
550  *		in via voff) to the "physical" offset on whatever the soft
551  *		partition is built on top of.  We do this by doing a binary
552  *		search of the extent array in the soft partition unit
553  *		structure.  Once the current extent is found, we do the
554  *		translation, determine if the I/O will cross extent
555  *		boundaries (if so, we have to fragment the I/O), then
556  *		fill in the buf structure to be passed down to the next layer.
557  */
558 static int
559 sp_mapbuf(
560 	mp_unit_t	*un,
561 	sp_ext_offset_t	voff,
562 	sp_ext_length_t	bcount,
563 	buf_t		*bp
564 )
565 {
566 	int		lo, mid, hi, found, more;
567 	size_t		new_bcount;
568 	sp_ext_offset_t new_blkno;
569 	sp_ext_offset_t	new_offset;
570 	sp_ext_offset_t	ext_endblk;
571 	md_dev64_t	new_edev;
572 	extern unsigned	md_maxphys;
573 
574 	found = 0;
575 	lo = 0;
576 	hi = un->un_numexts - 1;
577 
578 	/*
579 	 * do a binary search to find the extent that contains the
580 	 * starting offset.  after this loop, mid contains the index
581 	 * of the correct extent.
582 	 */
583 	while (lo <= hi && !found) {
584 		mid = (lo + hi) / 2;
585 		/* is the starting offset contained within the mid-ext? */
586 		if (voff >= un->un_ext[mid].un_voff &&
587 		    voff < un->un_ext[mid].un_voff + un->un_ext[mid].un_len)
588 			found = 1;
589 		else if (voff < un->un_ext[mid].un_voff)
590 			hi = mid - 1;
591 		else /* voff > un->un_ext[mid].un_voff + un->un_ext[mid].len */
592 			lo = mid + 1;
593 	}
594 
595 	if (!found) {
596 		cmn_err(CE_WARN, "sp_mapbuf: invalid offset %llu.\n", voff);
597 		return (-1);
598 	}
599 
600 	/* translate to underlying physical offset/device */
601 	new_offset = voff - un->un_ext[mid].un_voff;
602 	new_blkno = un->un_ext[mid].un_poff + new_offset;
603 	new_edev = un->un_dev;
604 
605 	/* determine if we need to break the I/O into fragments */
606 	ext_endblk = un->un_ext[mid].un_voff + un->un_ext[mid].un_len;
607 	if (voff + btodb(bcount) > ext_endblk) {
608 		new_bcount = dbtob(ext_endblk - voff);
609 		more = 1;
610 	} else {
611 		new_bcount = bcount;
612 		more = 0;
613 	}
614 
615 	/* only break up the I/O if we're not built on another metadevice */
616 	if ((md_getmajor(new_edev) != md_major) && (new_bcount > md_maxphys)) {
617 		new_bcount = md_maxphys;
618 		more = 1;
619 	}
620 	if (bp != (buf_t *)NULL) {
621 		/* do bp updates */
622 		bp->b_bcount = new_bcount;
623 		bp->b_lblkno = new_blkno;
624 		bp->b_edev = md_dev64_to_dev(new_edev);
625 	}
626 	return (more);
627 }
628 
629 /*
630  * FUNCTION:	sp_validate()
631  * INPUT:	un	- unit structure to be validated.
632  * OUTPUT:	none.
633  * RETURNS:	0	- soft partition ok.
634  *		-1	- error.
635  * PURPOSE:	called on open to sanity check the soft partition.  In
636  *		order to open a soft partition:
637  *		- it must have at least one extent
638  *		- the extent info in core and on disk must match
639  *		- it may not be in an intermediate state (which would
640  *		  imply that a two-phase commit was interrupted)
641  *
642  *		If the extent checking fails (B_ERROR returned from the read
643  *		strategy call) _and_ we're a multi-owner diskset, we send a
644  *		message to the master so that all nodes inherit the same view
645  *		of the soft partition.
646  *		If we are checking a soft-part that is marked as in error, and
647  *		we can actually read and validate the watermarks we send a
648  *		message to clear the error to the master node.
649  */
650 static int
651 sp_validate(mp_unit_t *un)
652 {
653 	uint_t		ext;
654 	struct buf	*buf;
655 	sp_ext_length_t	len;
656 	mp_watermark_t	*wm;
657 	set_t		setno;
658 	int		reset_error = 0;
659 
660 	setno = MD_UN2SET(un);
661 
662 	/* sanity check unit structure components ?? */
663 	if (un->un_status != MD_SP_OK) {
664 		if (un->un_status != MD_SP_ERR) {
665 			cmn_err(CE_WARN, "md: %s: open failed, soft partition "
666 			    "status is %u.",
667 			    md_shortname(MD_SID(un)),
668 			    un->un_status);
669 			return (-1);
670 		} else {
671 			cmn_err(CE_WARN, "md: %s: open of soft partition "
672 			    "in Errored state.",
673 			    md_shortname(MD_SID(un)));
674 			reset_error = 1;
675 		}
676 	}
677 
678 	if (un->un_numexts == 0) {
679 		cmn_err(CE_WARN, "md: %s: open failed, soft partition does "
680 		    "not have any extents.", md_shortname(MD_SID(un)));
681 		return (-1);
682 	}
683 
684 	len = 0LL;
685 	for (ext = 0; ext < un->un_numexts; ext++) {
686 
687 		/* tally extent lengths to check total size */
688 		len += un->un_ext[ext].un_len;
689 
690 		/* allocate buffer for watermark */
691 		buf = getrbuf(KM_SLEEP);
692 
693 		/* read watermark */
694 		buf->b_flags = B_READ;
695 		buf->b_edev = md_dev64_to_dev(un->un_dev);
696 		buf->b_iodone = NULL;
697 		buf->b_proc = NULL;
698 		buf->b_bcount = sizeof (mp_watermark_t);
699 		buf->b_lblkno = un->un_ext[ext].un_poff - 1;
700 		buf->b_bufsize = sizeof (mp_watermark_t);
701 		buf->b_un.b_addr = kmem_alloc(sizeof (mp_watermark_t),
702 		    KM_SLEEP);
703 
704 		/*
705 		 * make the call non-blocking so that it is not affected
706 		 * by a set take.
707 		 */
708 		md_call_strategy(buf, MD_STR_MAPPED|MD_NOBLOCK, NULL);
709 		(void) biowait(buf);
710 
711 		if (buf->b_flags & B_ERROR) {
712 			cmn_err(CE_WARN, "md: %s: open failed, could not "
713 			    "read watermark at block %llu for extent %u, "
714 			    "error %d.", md_shortname(MD_SID(un)),
715 			    buf->b_lblkno, ext, buf->b_error);
716 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
717 			freerbuf(buf);
718 
719 			/*
720 			 * If we're a multi-owner diskset we send a message
721 			 * indicating that this soft-part has an invalid
722 			 * extent to the master node. This ensures a consistent
723 			 * view of the soft-part across the cluster.
724 			 */
725 			if (MD_MNSET_SETNO(setno)) {
726 				sp_send_stat_err(un);
727 			}
728 			return (-1);
729 		}
730 
731 		wm = (mp_watermark_t *)buf->b_un.b_addr;
732 
733 		/* make sure the checksum is correct first */
734 		if (crcchk((uchar_t *)wm, (uint_t *)&wm->wm_checksum,
735 		    (uint_t)sizeof (mp_watermark_t), (uchar_t *)NULL)) {
736 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
737 			    "at block %llu for extent %u does not have a "
738 			    "valid checksum 0x%08x.", md_shortname(MD_SID(un)),
739 			    buf->b_lblkno, ext, wm->wm_checksum);
740 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
741 			freerbuf(buf);
742 			return (-1);
743 		}
744 
745 		if (wm->wm_magic != MD_SP_MAGIC) {
746 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
747 			    "at block %llu for extent %u does not have a "
748 			    "valid watermark magic number, expected 0x%x, "
749 			    "found 0x%x.", md_shortname(MD_SID(un)),
750 			    buf->b_lblkno, ext, MD_SP_MAGIC, wm->wm_magic);
751 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
752 			freerbuf(buf);
753 			return (-1);
754 		}
755 
756 		/* make sure sequence number matches the current extent */
757 		if (wm->wm_seq != ext) {
758 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
759 			    "at block %llu for extent %u has invalid "
760 			    "sequence number %u.", md_shortname(MD_SID(un)),
761 			    buf->b_lblkno, ext, wm->wm_seq);
762 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
763 			freerbuf(buf);
764 			return (-1);
765 		}
766 
767 		/* make sure watermark length matches unit structure */
768 		if (wm->wm_length != un->un_ext[ext].un_len) {
769 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
770 			    "at block %llu for extent %u has inconsistent "
771 			    "length, expected %llu, found %llu.",
772 			    md_shortname(MD_SID(un)), buf->b_lblkno,
773 			    ext, un->un_ext[ext].un_len,
774 			    (u_longlong_t)wm->wm_length);
775 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
776 			freerbuf(buf);
777 			return (-1);
778 		}
779 
780 		/*
781 		 * make sure the type is a valid soft partition and not
782 		 * a free extent or the end.
783 		 */
784 		if (wm->wm_type != EXTTYP_ALLOC) {
785 			cmn_err(CE_WARN, "md: %s: open failed, watermark "
786 			    "at block %llu for extent %u is not marked "
787 			    "as in-use, type = %u.", md_shortname(MD_SID(un)),
788 			    buf->b_lblkno, ext, wm->wm_type);
789 			kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
790 			freerbuf(buf);
791 			return (-1);
792 		}
793 		/* free up buffer */
794 		kmem_free(buf->b_un.b_addr, sizeof (mp_watermark_t));
795 		freerbuf(buf);
796 	}
797 
798 	if (len != un->un_length) {
799 		cmn_err(CE_WARN, "md: %s: open failed, computed length "
800 		    "%llu != expected length %llu.", md_shortname(MD_SID(un)),
801 		    len, un->un_length);
802 		return (-1);
803 	}
804 
805 	/*
806 	 * If we're a multi-owner set _and_ reset_error is set, we should clear
807 	 * the error condition on all nodes in the set. Use SP_SETSTAT2 with
808 	 * MD_SP_OK.
809 	 */
810 	if (MD_MNSET_SETNO(setno) && reset_error) {
811 		sp_send_stat_ok(un);
812 	}
813 	return (0);
814 }
815 
816 /*
817  * FUNCTION:	sp_done()
818  * INPUT:	child_buf	- buffer attached to child save structure.
819  *				  this is the buffer on which I/O has just
820  *				  completed.
821  * OUTPUT:	none.
822  * RETURNS:	0	- success.
823  *		1	- error.
824  * PURPOSE:	called on I/O completion.
825  */
826 static int
827 sp_done(struct buf *child_buf)
828 {
829 	struct buf	*parent_buf;
830 	mdi_unit_t	*ui;
831 	md_spps_t	*ps;
832 	md_spcs_t	*cs;
833 
834 	/* find the child save structure to which this buffer belongs */
835 	cs = (md_spcs_t *)((caddr_t)child_buf -
836 	    (sizeof (md_spcs_t) - sizeof (buf_t)));
837 	/* now get the parent save structure */
838 	ps = cs->cs_ps;
839 	parent_buf = ps->ps_bp;
840 
841 	mutex_enter(&ps->ps_mx);
842 	/* pass any errors back up to the parent */
843 	if (child_buf->b_flags & B_ERROR) {
844 		ps->ps_flags |= MD_SPPS_ERROR;
845 		parent_buf->b_error = child_buf->b_error;
846 	}
847 	/* mapout, if needed */
848 	if (child_buf->b_flags & B_REMAPPED)
849 		bp_mapout(child_buf);
850 
851 	ps->ps_frags--;
852 	if (ps->ps_frags != 0) {
853 		/*
854 		 * if this parent has more children, we just free the
855 		 * child and return.
856 		 */
857 		kmem_cache_free(sp_child_cache, cs);
858 		mutex_exit(&ps->ps_mx);
859 		return (1);
860 	}
861 	/* there are no more children */
862 	kmem_cache_free(sp_child_cache, cs);
863 	if (ps->ps_flags & MD_SPPS_ERROR) {
864 		sp_error(ps);
865 		return (1);
866 	}
867 	ui = ps->ps_ui;
868 	if (!(ps->ps_flags & MD_SPPS_DONTFREE)) {
869 		mutex_exit(&ps->ps_mx);
870 	} else {
871 		/*
872 		 * this should only ever happen if we are panicking,
873 		 * since DONTFREE is only set on the parent if panicstr
874 		 * is non-NULL.
875 		 */
876 		ASSERT(panicstr);
877 	}
878 	SPPS_FREE(sp_parent_cache, ps);
879 	md_kstat_done(ui, parent_buf, 0);
880 	md_unit_readerexit(ui);
881 	md_biodone(parent_buf);
882 	return (0);
883 }
884 
885 /*
886  * FUNCTION:	md_sp_strategy()
887  * INPUT:	parent_buf	- parent buffer
888  *		flag		- flags
889  *		private		- private data
890  * OUTPUT:	none.
891  * RETURNS:	void.
892  * PURPOSE:	Soft partitioning I/O strategy.  Performs the main work
893  *		needed to do I/O to a soft partition.  The basic
894  *		algorithm is as follows:
895  *			- Allocate a child save structure to keep track
896  *			  of the I/O we are going to pass down.
897  *			- Map the I/O to the correct extent in the soft
898  *			  partition (see sp_mapbuf()).
899  *			- bioclone() the buffer and pass it down the
900  *			  stack using md_call_strategy.
901  *			- If the I/O needs to split across extents,
902  *			  repeat the above steps until all fragments
903  *			  are finished.
904  */
905 static void
906 md_sp_strategy(buf_t *parent_buf, int flag, void *private)
907 {
908 	md_spps_t	*ps;
909 	md_spcs_t	*cs;
910 	int		more;
911 	mp_unit_t	*un;
912 	mdi_unit_t	*ui;
913 	size_t		current_count;
914 	off_t		current_offset;
915 	sp_ext_offset_t	current_blkno;
916 	buf_t		*child_buf;
917 	set_t		setno = MD_MIN2SET(getminor(parent_buf->b_edev));
918 	int		strat_flag = flag;
919 
920 	/*
921 	 * When doing IO to a multi owner meta device, check if set is halted.
922 	 * We do this check without the needed lock held, for performance
923 	 * reasons.
924 	 * If an IO just slips through while the set is locked via an
925 	 * MD_MN_SUSPEND_SET, we don't care about it.
926 	 * Only check for suspension if we are a top-level i/o request
927 	 * (MD_STR_NOTTOP is cleared in 'flag');
928 	 */
929 	if ((md_set[setno].s_status & (MD_SET_HALTED | MD_SET_MNSET)) ==
930 	    (MD_SET_HALTED | MD_SET_MNSET)) {
931 		if ((flag & MD_STR_NOTTOP) == 0) {
932 			mutex_enter(&md_mx);
933 			/* Here we loop until the set is no longer halted */
934 			while (md_set[setno].s_status & MD_SET_HALTED) {
935 				cv_wait(&md_cv, &md_mx);
936 			}
937 			mutex_exit(&md_mx);
938 		}
939 	}
940 
941 	ui = MDI_UNIT(getminor(parent_buf->b_edev));
942 
943 	md_kstat_waitq_enter(ui);
944 
945 	un = (mp_unit_t *)md_unit_readerlock(ui);
946 
947 	if ((flag & MD_NOBLOCK) == 0) {
948 		if (md_inc_iocount(setno) != 0) {
949 			parent_buf->b_flags |= B_ERROR;
950 			parent_buf->b_error = ENXIO;
951 			parent_buf->b_resid = parent_buf->b_bcount;
952 			md_unit_readerexit(ui);
953 			biodone(parent_buf);
954 			return;
955 		}
956 	} else {
957 		md_inc_iocount_noblock(setno);
958 	}
959 
960 	if (!(flag & MD_STR_NOTTOP)) {
961 		if (md_checkbuf(ui, (md_unit_t *)un, parent_buf) != 0) {
962 			md_kstat_waitq_exit(ui);
963 			return;
964 		}
965 	}
966 
967 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
968 	sp_parent_init(ps);
969 
970 	/*
971 	 * Save essential information from the original buffhdr
972 	 * in the parent.
973 	 */
974 	ps->ps_un = un;
975 	ps->ps_ui = ui;
976 	ps->ps_bp = parent_buf;
977 	ps->ps_addr = parent_buf->b_un.b_addr;
978 
979 	current_count = parent_buf->b_bcount;
980 	current_blkno = (sp_ext_offset_t)parent_buf->b_blkno;
981 	current_offset  = 0;
982 
983 	/*
984 	 * if we are at the top and we are panicking,
985 	 * we don't free in order to save state.
986 	 */
987 	if (!(flag & MD_STR_NOTTOP) && (panicstr != NULL))
988 		ps->ps_flags |= MD_SPPS_DONTFREE;
989 
990 	md_kstat_waitq_to_runq(ui);
991 
992 	ps->ps_frags++;
993 
994 	/*
995 	 * Mark this i/o as MD_STR_ABR if we've had ABR enabled on this
996 	 * metadevice.
997 	 */
998 	if (ui->ui_tstate & MD_ABR_CAP)
999 		strat_flag |= MD_STR_ABR;
1000 
1001 	/*
1002 	 * this loop does the main work of an I/O.  we allocate a
1003 	 * a child save for each buf, do the logical to physical
1004 	 * mapping, decide if we need to frag the I/O, clone the
1005 	 * new I/O to pass down the stack.  repeat until we've
1006 	 * taken care of the entire buf that was passed to us.
1007 	 */
1008 	do {
1009 		cs = kmem_cache_alloc(sp_child_cache, MD_ALLOCFLAGS);
1010 		sp_child_init(cs);
1011 		child_buf = &cs->cs_buf;
1012 		cs->cs_ps = ps;
1013 
1014 		more = sp_mapbuf(un, current_blkno, current_count, child_buf);
1015 		if (more == -1) {
1016 			parent_buf->b_flags |= B_ERROR;
1017 			parent_buf->b_error = EIO;
1018 			md_kstat_done(ui, parent_buf, 0);
1019 			md_unit_readerexit(ui);
1020 			md_biodone(parent_buf);
1021 			kmem_cache_free(sp_parent_cache, ps);
1022 			return;
1023 		}
1024 
1025 		child_buf = md_bioclone(parent_buf, current_offset,
1026 					child_buf->b_bcount, child_buf->b_edev,
1027 					child_buf->b_blkno, sp_done, child_buf,
1028 					KM_NOSLEEP);
1029 		/* calculate new offset, counts, etc... */
1030 		current_offset += child_buf->b_bcount;
1031 		current_count -=  child_buf->b_bcount;
1032 		current_blkno +=  (sp_ext_offset_t)(btodb(child_buf->b_bcount));
1033 
1034 		if (more) {
1035 			mutex_enter(&ps->ps_mx);
1036 			ps->ps_frags++;
1037 			mutex_exit(&ps->ps_mx);
1038 		}
1039 
1040 		md_call_strategy(child_buf, strat_flag, private);
1041 	} while (more);
1042 
1043 	if (!(flag & MD_STR_NOTTOP) && (panicstr != NULL)) {
1044 		while (!(ps->ps_flags & MD_SPPS_DONE)) {
1045 			md_daemon(1, &md_done_daemon);
1046 		}
1047 		kmem_cache_free(sp_parent_cache, ps);
1048 	}
1049 }
1050 
1051 /*
1052  * FUNCTION:	sp_directed_read()
1053  * INPUT:	mnum	- minor number
1054  *		vdr	- vol_directed_rd_t from user
1055  *		mode	- access mode for copying data out.
1056  * OUTPUT:	none.
1057  * RETURNS:	0	- success
1058  *		Exxxxx	- failure error-code
1059  * PURPOSE:	Construct the necessary sub-device i/o requests to perform the
1060  *		directed read as requested by the user. This is essentially the
1061  *		same as md_sp_strategy() with the exception being that the
1062  *		underlying 'md_call_strategy' is replaced with an ioctl call.
1063  */
1064 int
1065 sp_directed_read(minor_t mnum, vol_directed_rd_t *vdr, int mode)
1066 {
1067 	md_spps_t	*ps;
1068 	md_spcs_t	*cs;
1069 	int		more;
1070 	mp_unit_t	*un;
1071 	mdi_unit_t	*ui;
1072 	size_t		current_count;
1073 	off_t		current_offset;
1074 	sp_ext_offset_t	current_blkno;
1075 	buf_t		*child_buf, *parent_buf;
1076 	void		*kbuffer;
1077 	vol_directed_rd_t	cvdr;
1078 	caddr_t		userbuf;
1079 	offset_t	useroff;
1080 	int		ret = 0;
1081 
1082 	ui = MDI_UNIT(mnum);
1083 
1084 	md_kstat_waitq_enter(ui);
1085 
1086 	bzero(&cvdr, sizeof (cvdr));
1087 
1088 	un = (mp_unit_t *)md_unit_readerlock(ui);
1089 
1090 	/*
1091 	 * Construct a parent_buf header which reflects the user-supplied
1092 	 * request.
1093 	 */
1094 
1095 	kbuffer = kmem_alloc(vdr->vdr_nbytes, KM_NOSLEEP);
1096 	if (kbuffer == NULL) {
1097 		vdr->vdr_flags |= DKV_DMR_ERROR;
1098 		md_unit_readerexit(ui);
1099 		return (ENOMEM);
1100 	}
1101 
1102 	parent_buf = getrbuf(KM_NOSLEEP);
1103 	if (parent_buf == NULL) {
1104 		vdr->vdr_flags |= DKV_DMR_ERROR;
1105 		md_unit_readerexit(ui);
1106 		kmem_free(kbuffer, vdr->vdr_nbytes);
1107 		return (ENOMEM);
1108 	}
1109 	parent_buf->b_un.b_addr = kbuffer;
1110 	parent_buf->b_flags = B_READ;
1111 	parent_buf->b_bcount = vdr->vdr_nbytes;
1112 	parent_buf->b_lblkno = lbtodb(vdr->vdr_offset);
1113 	parent_buf->b_edev = un->un_dev;
1114 
1115 
1116 	ps = kmem_cache_alloc(sp_parent_cache, MD_ALLOCFLAGS);
1117 	sp_parent_init(ps);
1118 
1119 	/*
1120 	 * Save essential information from the original buffhdr
1121 	 * in the parent.
1122 	 */
1123 	ps->ps_un = un;
1124 	ps->ps_ui = ui;
1125 	ps->ps_bp = parent_buf;
1126 	ps->ps_addr = parent_buf->b_un.b_addr;
1127 
1128 	current_count = parent_buf->b_bcount;
1129 	current_blkno = (sp_ext_offset_t)parent_buf->b_lblkno;
1130 	current_offset  = 0;
1131 
1132 	ps->ps_frags++;
1133 	vdr->vdr_bytesread = 0;
1134 
1135 	/*
1136 	 * this loop does the main work of an I/O.  we allocate a
1137 	 * a child save for each buf, do the logical to physical
1138 	 * mapping, decide if we need to frag the I/O, clone the
1139 	 * new I/O to pass down the stack.  repeat until we've
1140 	 * taken care of the entire buf that was passed to us.
1141 	 */
1142 	do {
1143 		cs = kmem_cache_alloc(sp_child_cache, MD_ALLOCFLAGS);
1144 		sp_child_init(cs);
1145 		child_buf = &cs->cs_buf;
1146 		cs->cs_ps = ps;
1147 
1148 		more = sp_mapbuf(un, current_blkno, current_count, child_buf);
1149 		if (more == -1) {
1150 			ret = EIO;
1151 			vdr->vdr_flags |= DKV_DMR_SHORT;
1152 			kmem_cache_free(sp_child_cache, cs);
1153 			goto err_out;
1154 		}
1155 
1156 		cvdr.vdr_flags = vdr->vdr_flags;
1157 		cvdr.vdr_side = vdr->vdr_side;
1158 		cvdr.vdr_nbytes = child_buf->b_bcount;
1159 		cvdr.vdr_offset = ldbtob(child_buf->b_lblkno);
1160 		/* Work out where we are in the allocated buffer */
1161 		useroff = (offset_t)(uintptr_t)kbuffer;
1162 		useroff = useroff + (offset_t)current_offset;
1163 		cvdr.vdr_data = (void *)(uintptr_t)useroff;
1164 		child_buf = md_bioclone(parent_buf, current_offset,
1165 					child_buf->b_bcount, child_buf->b_edev,
1166 					child_buf->b_blkno, NULL,
1167 					child_buf, KM_NOSLEEP);
1168 		/* calculate new offset, counts, etc... */
1169 		current_offset += child_buf->b_bcount;
1170 		current_count -=  child_buf->b_bcount;
1171 		current_blkno +=  (sp_ext_offset_t)(btodb(child_buf->b_bcount));
1172 
1173 		if (more) {
1174 			mutex_enter(&ps->ps_mx);
1175 			ps->ps_frags++;
1176 			mutex_exit(&ps->ps_mx);
1177 		}
1178 
1179 		ret = md_call_ioctl(child_buf->b_edev, DKIOCDMR, &cvdr,
1180 		    (mode | FKIOCTL), NULL);
1181 
1182 		/*
1183 		 * Free the child structure as we've finished with it.
1184 		 * Normally this would be done by sp_done() but we're just
1185 		 * using md_bioclone() to segment the transfer and we never
1186 		 * issue a strategy request so the iodone will not be called.
1187 		 */
1188 		kmem_cache_free(sp_child_cache, cs);
1189 		if (ret == 0) {
1190 			/* copyout the returned data to vdr_data + offset */
1191 			userbuf = (caddr_t)kbuffer;
1192 			userbuf += (caddr_t)(cvdr.vdr_data) - (caddr_t)kbuffer;
1193 			if (ddi_copyout(userbuf, vdr->vdr_data,
1194 			    cvdr.vdr_bytesread, mode)) {
1195 				ret = EFAULT;
1196 				goto err_out;
1197 			}
1198 			vdr->vdr_bytesread += cvdr.vdr_bytesread;
1199 		} else {
1200 			goto err_out;
1201 		}
1202 	} while (more);
1203 
1204 	/*
1205 	 * Update the user-supplied vol_directed_rd_t structure with the
1206 	 * contents of the last issued child request.
1207 	 */
1208 	vdr->vdr_flags = cvdr.vdr_flags;
1209 	vdr->vdr_side = cvdr.vdr_side;
1210 	bcopy(cvdr.vdr_side_name, vdr->vdr_side_name, VOL_SIDENAME);
1211 
1212 err_out:
1213 	if (ret != 0) {
1214 		vdr->vdr_flags |= DKV_DMR_ERROR;
1215 	}
1216 	if (vdr->vdr_bytesread != vdr->vdr_nbytes) {
1217 		vdr->vdr_flags |= DKV_DMR_SHORT;
1218 	}
1219 	kmem_cache_free(sp_parent_cache, ps);
1220 	kmem_free(kbuffer, vdr->vdr_nbytes);
1221 	freerbuf(parent_buf);
1222 	md_unit_readerexit(ui);
1223 	return (ret);
1224 }
1225 
1226 /*
1227  * FUNCTION:	sp_snarf()
1228  * INPUT:	cmd	- snarf cmd.
1229  *		setno	- set number.
1230  * OUTPUT:	none.
1231  * RETURNS:	1	- soft partitions were snarfed.
1232  *		0	- no soft partitions were snarfed.
1233  * PURPOSE:	Snarf soft partition metadb records into their in-core
1234  *		structures.  This routine is called at "snarf time" when
1235  *		md loads and gets all metadevices records into memory.
1236  *		The basic algorithm is simply to walk the soft partition
1237  *		records in the metadb and call the soft partitioning
1238  *		build_incore routine to set up the in-core structures.
1239  */
1240 static int
1241 sp_snarf(md_snarfcmd_t cmd, set_t setno)
1242 {
1243 	mp_unit_t	*un;
1244 	mddb_recid_t	recid;
1245 	int		gotsomething;
1246 	int		all_sp_gotten;
1247 	mddb_type_t	rec_type;
1248 	mddb_de_ic_t	*dep;
1249 	mddb_rb32_t	*rbp;
1250 	mp_unit_t	*big_un;
1251 	mp_unit32_od_t	*small_un;
1252 	size_t		newreqsize;
1253 
1254 
1255 	if (cmd == MD_SNARF_CLEANUP)
1256 		return (0);
1257 
1258 	all_sp_gotten = 1;
1259 	gotsomething = 0;
1260 
1261 	/* get the record type */
1262 	rec_type = (mddb_type_t)md_getshared_key(setno,
1263 	    sp_md_ops.md_driver.md_drivername);
1264 	recid = mddb_makerecid(setno, 0);
1265 
1266 	/*
1267 	 * walk soft partition records in the metadb and call
1268 	 * sp_build_incore to build in-core structures.
1269 	 */
1270 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0) {
1271 		/* if we've already gotten this record, go to the next one */
1272 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
1273 			continue;
1274 
1275 
1276 		dep = mddb_getrecdep(recid);
1277 		dep->de_flags = MDDB_F_SOFTPART;
1278 		rbp = dep->de_rb;
1279 
1280 		if ((rbp->rb_revision == MDDB_REV_RB) &&
1281 		    ((rbp->rb_private & MD_PRV_CONVD) == 0)) {
1282 			/*
1283 			 * This means, we have an old and small record.
1284 			 * And this record hasn't already been converted :-o
1285 			 * before we create an incore metadevice from this
1286 			 * we have to convert it to a big record.
1287 			 */
1288 			small_un = (mp_unit32_od_t *)mddb_getrecaddr(recid);
1289 			newreqsize = sizeof (mp_unit_t) +
1290 					((small_un->un_numexts - 1) *
1291 					sizeof (struct mp_ext));
1292 			big_un = (mp_unit_t *)kmem_zalloc(newreqsize, KM_SLEEP);
1293 			softpart_convert((caddr_t)small_un, (caddr_t)big_un,
1294 			    SMALL_2_BIG);
1295 			kmem_free(small_un, dep->de_reqsize);
1296 			dep->de_rb_userdata = big_un;
1297 			dep->de_reqsize = newreqsize;
1298 			rbp->rb_private |= MD_PRV_CONVD;
1299 			un = big_un;
1300 		} else {
1301 			/* Large device */
1302 			un = (mp_unit_t *)mddb_getrecaddr(recid);
1303 		}
1304 
1305 		/* Set revision and flag accordingly */
1306 		if (rbp->rb_revision == MDDB_REV_RB) {
1307 			un->c.un_revision = MD_32BIT_META_DEV;
1308 		} else {
1309 			un->c.un_revision = MD_64BIT_META_DEV;
1310 			un->c.un_flag |= MD_EFILABEL;
1311 		}
1312 
1313 		/*
1314 		 * Create minor node for snarfed entry.
1315 		 */
1316 		(void) md_create_minor_node(MD_MIN2SET(MD_SID(un)), MD_SID(un));
1317 
1318 		if (MD_UNIT(MD_SID(un)) != NULL) {
1319 			/* unit is already in-core */
1320 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
1321 			continue;
1322 		}
1323 		all_sp_gotten = 0;
1324 		if (sp_build_incore((void *)un, 1) == 0) {
1325 			mddb_setrecprivate(recid, MD_PRV_GOTIT);
1326 			md_create_unit_incore(MD_SID(un), &sp_md_ops, 0);
1327 			gotsomething = 1;
1328 		}
1329 	}
1330 
1331 	if (!all_sp_gotten)
1332 		return (gotsomething);
1333 	/* double-check records */
1334 	recid = mddb_makerecid(setno, 0);
1335 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0)
1336 		if (!(mddb_getrecprivate(recid) & MD_PRV_GOTIT))
1337 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
1338 
1339 	return (0);
1340 }
1341 
1342 /*
1343  * FUNCTION:	sp_halt()
1344  * INPUT:	cmd	- halt cmd.
1345  *		setno	- set number.
1346  * RETURNS:	0	- success.
1347  *		1	- err.
1348  * PURPOSE:	Perform driver halt operations.  As with stripe, we
1349  *		support MD_HALT_CHECK and MD_HALT_DOIT.  The first
1350  *		does a check to see if halting can be done safely
1351  *		(no open soft partitions), the second cleans up and
1352  *		shuts down the driver.
1353  */
1354 static int
1355 sp_halt(md_haltcmd_t cmd, set_t setno)
1356 {
1357 	int		i;
1358 	mdi_unit_t	*ui;
1359 	minor_t		mnum;
1360 
1361 	if (cmd == MD_HALT_CLOSE)
1362 		return (0);
1363 
1364 	if (cmd == MD_HALT_OPEN)
1365 		return (0);
1366 
1367 	if (cmd == MD_HALT_UNLOAD)
1368 		return (0);
1369 
1370 	if (cmd == MD_HALT_CHECK) {
1371 		for (i = 0; i < md_nunits; i++) {
1372 			mnum = MD_MKMIN(setno, i);
1373 			if ((ui = MDI_UNIT(mnum)) == NULL)
1374 				continue;
1375 			if (ui->ui_opsindex != sp_md_ops.md_selfindex)
1376 				continue;
1377 			if (md_unit_isopen(ui))
1378 				return (1);
1379 		}
1380 		return (0);
1381 	}
1382 
1383 	if (cmd != MD_HALT_DOIT)
1384 		return (1);
1385 
1386 	for (i = 0; i < md_nunits; i++) {
1387 		mnum = MD_MKMIN(setno, i);
1388 		if ((ui = MDI_UNIT(mnum)) == NULL)
1389 			continue;
1390 		if (ui->ui_opsindex != sp_md_ops.md_selfindex)
1391 			continue;
1392 		reset_sp((mp_unit_t *)MD_UNIT(mnum), mnum, 0);
1393 	}
1394 
1395 	return (0);
1396 }
1397 
1398 /*
1399  * FUNCTION:	sp_open_dev()
1400  * INPUT:	un	- unit structure.
1401  *		oflags	- open flags.
1402  * OUTPUT:	none.
1403  * RETURNS:	0		- success.
1404  *		non-zero	- err.
1405  * PURPOSE:	open underlying device via md_layered_open.
1406  */
1407 static int
1408 sp_open_dev(mp_unit_t *un, int oflags)
1409 {
1410 	minor_t		mnum = MD_SID(un);
1411 	int		err;
1412 	md_dev64_t	tmpdev;
1413 	set_t		setno = MD_MIN2SET(MD_SID(un));
1414 	side_t		side = mddb_getsidenum(setno);
1415 
1416 	tmpdev = un->un_dev;
1417 	/*
1418 	 * Do the open by device id if underlying is regular
1419 	 */
1420 	if ((md_getmajor(tmpdev) != md_major) &&
1421 		md_devid_found(setno, side, un->un_key) == 1) {
1422 		tmpdev = md_resolve_bydevid(mnum, tmpdev, un->un_key);
1423 	}
1424 	err = md_layered_open(mnum, &tmpdev, oflags);
1425 	un->un_dev = tmpdev;
1426 
1427 	if (err)
1428 		return (ENXIO);
1429 
1430 	return (0);
1431 }
1432 
1433 /*
1434  * FUNCTION:	sp_open()
1435  * INPUT:	dev		- device to open.
1436  *		flag		- pass-through flag.
1437  *		otyp		- pass-through open type.
1438  *		cred_p		- credentials.
1439  *		md_oflags	- open flags.
1440  * OUTPUT:	none.
1441  * RETURNS:	0		- success.
1442  *		non-zero	- err.
1443  * PURPOSE:	open a soft partition.
1444  */
1445 /* ARGSUSED */
1446 static int
1447 sp_open(
1448 	dev_t		*dev,
1449 	int		flag,
1450 	int		otyp,
1451 	cred_t		*cred_p,
1452 	int		md_oflags
1453 )
1454 {
1455 	minor_t		mnum = getminor(*dev);
1456 	mdi_unit_t	*ui = MDI_UNIT(mnum);
1457 	mp_unit_t	*un;
1458 	int		err = 0;
1459 	set_t		setno;
1460 
1461 	/*
1462 	 * When doing an open of a multi owner metadevice, check to see if this
1463 	 * node is a starting node and if a reconfig cycle is underway.
1464 	 * If so, the system isn't sufficiently set up enough to handle the
1465 	 * open (which involves I/O during sp_validate), so fail with ENXIO.
1466 	 */
1467 	setno = MD_MIN2SET(mnum);
1468 	if ((md_set[setno].s_status & (MD_SET_MNSET | MD_SET_MN_START_RC)) ==
1469 	    (MD_SET_MNSET | MD_SET_MN_START_RC)) {
1470 			return (ENXIO);
1471 	}
1472 
1473 	/* grab necessary locks */
1474 	un = (mp_unit_t *)md_unit_openclose_enter(ui);
1475 	setno = MD_UN2SET(un);
1476 
1477 	/* open underlying device, if necessary */
1478 	if (! md_unit_isopen(ui) || (md_oflags & MD_OFLG_PROBEDEV)) {
1479 		if ((err = sp_open_dev(un, md_oflags)) != 0)
1480 			goto out;
1481 
1482 		if (MD_MNSET_SETNO(setno)) {
1483 			/* For probe, don't incur the overhead of validate */
1484 			if (!(md_oflags & MD_OFLG_PROBEDEV)) {
1485 				/*
1486 				 * Don't call sp_validate while
1487 				 * unit_openclose lock is held.  So, actually
1488 				 * open the device, drop openclose lock,
1489 				 * call sp_validate, reacquire openclose lock,
1490 				 * and close the device.  If sp_validate
1491 				 * succeeds, then device will be re-opened.
1492 				 */
1493 				if ((err = md_unit_incopen(mnum, flag,
1494 				    otyp)) != 0)
1495 					goto out;
1496 
1497 				mutex_enter(&ui->ui_mx);
1498 				ui->ui_lock |= MD_UL_OPENINPROGRESS;
1499 				mutex_exit(&ui->ui_mx);
1500 				md_unit_openclose_exit(ui);
1501 				if (otyp != OTYP_LYR)
1502 					rw_exit(&md_unit_array_rw.lock);
1503 
1504 				err = sp_validate(un);
1505 
1506 				if (otyp != OTYP_LYR)
1507 					rw_enter(&md_unit_array_rw.lock,
1508 					    RW_READER);
1509 				(void) md_unit_openclose_enter(ui);
1510 				(void) md_unit_decopen(mnum, otyp);
1511 				mutex_enter(&ui->ui_mx);
1512 				ui->ui_lock &= ~MD_UL_OPENINPROGRESS;
1513 				cv_broadcast(&ui->ui_cv);
1514 				mutex_exit(&ui->ui_mx);
1515 				/*
1516 				 * Should be in the same state as before
1517 				 * the sp_validate.
1518 				 */
1519 				if (err != 0) {
1520 					/* close the device opened above */
1521 					md_layered_close(un->un_dev, md_oflags);
1522 					err = EIO;
1523 					goto out;
1524 				}
1525 			}
1526 			/*
1527 			 * As we're a multi-owner metadevice we need to ensure
1528 			 * that all nodes have the same idea of the status.
1529 			 * sp_validate() will mark the device as errored (if
1530 			 * it cannot read the watermark) or ok (if it was
1531 			 * previously errored but the watermark is now valid).
1532 			 * This code-path is only entered on the non-probe open
1533 			 * so we will maintain the errored state during a probe
1534 			 * call. This means the sys-admin must metarecover -m
1535 			 * to reset the soft-partition error.
1536 			 */
1537 		} else {
1538 			/* For probe, don't incur the overhead of validate */
1539 			if (!(md_oflags & MD_OFLG_PROBEDEV) &&
1540 			    (err = sp_validate(un)) != 0) {
1541 				/* close the device opened above */
1542 				md_layered_close(un->un_dev, md_oflags);
1543 				err = EIO;
1544 				goto out;
1545 			} else {
1546 				/*
1547 				 * we succeeded in validating the on disk
1548 				 * format versus the in core, so reset the
1549 				 * status if it's in error
1550 				 */
1551 				if (un->un_status == MD_SP_ERR) {
1552 					un->un_status = MD_SP_OK;
1553 				}
1554 			}
1555 		}
1556 	}
1557 
1558 	/* count open */
1559 	if ((err = md_unit_incopen(mnum, flag, otyp)) != 0)
1560 		goto out;
1561 
1562 out:
1563 	md_unit_openclose_exit(ui);
1564 	return (err);
1565 }
1566 
1567 /*
1568  * FUNCTION:	sp_close()
1569  * INPUT:	dev		- device to close.
1570  *		flag		- pass-through flag.
1571  *		otyp		- pass-through type.
1572  *		cred_p		- credentials.
1573  *		md_cflags	- close flags.
1574  * OUTPUT:	none.
1575  * RETURNS:	0		- success.
1576  *		non-zero	- err.
1577  * PURPOSE:	close a soft paritition.
1578  */
1579 /* ARGSUSED */
1580 static int
1581 sp_close(
1582 	dev_t		dev,
1583 	int		flag,
1584 	int		otyp,
1585 	cred_t		*cred_p,
1586 	int		md_cflags
1587 )
1588 {
1589 	minor_t		mnum = getminor(dev);
1590 	mdi_unit_t	*ui = MDI_UNIT(mnum);
1591 	mp_unit_t	*un;
1592 	int		err = 0;
1593 
1594 	/* grab necessary locks */
1595 	un = (mp_unit_t *)md_unit_openclose_enter(ui);
1596 
1597 	/* count closed */
1598 	if ((err = md_unit_decopen(mnum, otyp)) != 0)
1599 		goto out;
1600 
1601 	/* close devices, if necessary */
1602 	if (! md_unit_isopen(ui) || (md_cflags & MD_OFLG_PROBEDEV)) {
1603 		md_layered_close(un->un_dev, md_cflags);
1604 	}
1605 
1606 	/*
1607 	 * If a MN set and transient capabilities (eg ABR/DMR) are set,
1608 	 * clear these capabilities if this is the last close in
1609 	 * the cluster
1610 	 */
1611 	if (MD_MNSET_SETNO(MD_UN2SET(un)) &&
1612 	    (ui->ui_tstate & MD_ABR_CAP)) {
1613 		md_unit_openclose_exit(ui);
1614 		mdmn_clear_all_capabilities(mnum);
1615 		return (0);
1616 	}
1617 	/* unlock, return success */
1618 out:
1619 	md_unit_openclose_exit(ui);
1620 	return (err);
1621 }
1622 
1623 
1624 /* used in sp_dump routine */
1625 static struct buf dumpbuf;
1626 
1627 /*
1628  * FUNCTION:	sp_dump()
1629  * INPUT:	dev	- device to dump to.
1630  *		addr	- address to dump.
1631  *		blkno	- blkno on device.
1632  *		nblk	- number of blocks to dump.
1633  * OUTPUT:	none.
1634  * RETURNS:	result from bdev_dump.
1635  * PURPOSE:  This routine dumps memory to the disk.  It assumes that
1636  *           the memory has already been mapped into mainbus space.
1637  *           It is called at disk interrupt priority when the system
1638  *           is in trouble.
1639  *           NOTE: this function is defined using 32-bit arguments,
1640  *           but soft partitioning is internally 64-bit.  Arguments
1641  *           are casted where appropriate.
1642  */
1643 static int
1644 sp_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1645 {
1646 	mp_unit_t	*un;
1647 	buf_t		*bp;
1648 	sp_ext_length_t	nb;
1649 	daddr_t		mapblk;
1650 	int		result;
1651 	int		more;
1652 	int		saveresult = 0;
1653 
1654 	/*
1655 	 * Don't need to grab the unit lock.
1656 	 * Cause nothing else is supposed to be happenning.
1657 	 * Also dump is not supposed to sleep.
1658 	 */
1659 	un = (mp_unit_t *)MD_UNIT(getminor(dev));
1660 
1661 	if ((diskaddr_t)blkno >= un->c.un_total_blocks)
1662 		return (EINVAL);
1663 
1664 	if (((diskaddr_t)blkno + nblk) > un->c.un_total_blocks)
1665 		return (EINVAL);
1666 
1667 	bp = &dumpbuf;
1668 	nb = (sp_ext_length_t)dbtob(nblk);
1669 	do {
1670 		bzero((caddr_t)bp, sizeof (*bp));
1671 		more = sp_mapbuf(un, (sp_ext_offset_t)blkno, nb, bp);
1672 		nblk = (int)(btodb(bp->b_bcount));
1673 		mapblk = bp->b_blkno;
1674 		result = bdev_dump(bp->b_edev, addr, mapblk, nblk);
1675 		if (result)
1676 			saveresult = result;
1677 
1678 		nb -= bp->b_bcount;
1679 		addr += bp->b_bcount;
1680 		blkno += nblk;
1681 	} while (more);
1682 
1683 	return (saveresult);
1684 }
1685 
1686 static int
1687 sp_imp_set(
1688 	set_t	setno
1689 )
1690 {
1691 	mddb_recid_t	recid;
1692 	int		gotsomething;
1693 	mddb_type_t	rec_type;
1694 	mddb_de_ic_t	*dep;
1695 	mddb_rb32_t	*rbp;
1696 	mp_unit_t	*un64;
1697 	mp_unit32_od_t	*un32;
1698 	minor_t		*self_id;	/* minor needs to be updated */
1699 	md_parent_t	*parent_id;	/* parent needs to be updated */
1700 	mddb_recid_t	*record_id;	/* record id needs to be updated */
1701 
1702 	gotsomething = 0;
1703 
1704 	rec_type = (mddb_type_t)md_getshared_key(setno,
1705 		sp_md_ops.md_driver.md_drivername);
1706 	recid = mddb_makerecid(setno, 0);
1707 
1708 	while ((recid = mddb_getnextrec(recid, rec_type, 0)) > 0) {
1709 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
1710 			continue;
1711 
1712 		dep = mddb_getrecdep(recid);
1713 		rbp = dep->de_rb;
1714 
1715 		if (rbp->rb_revision == MDDB_REV_RB) {
1716 			/*
1717 			 * Small device
1718 			 */
1719 			un32 = (mp_unit32_od_t *)mddb_getrecaddr(recid);
1720 			self_id = &(un32->c.un_self_id);
1721 			parent_id = &(un32->c.un_parent);
1722 			record_id = &(un32->c.un_record_id);
1723 
1724 			if (!md_update_minor(setno, mddb_getsidenum
1725 				(setno), un32->un_key))
1726 				goto out;
1727 		} else {
1728 			un64 = (mp_unit_t *)mddb_getrecaddr(recid);
1729 			self_id = &(un64->c.un_self_id);
1730 			parent_id = &(un64->c.un_parent);
1731 			record_id = &(un64->c.un_record_id);
1732 
1733 			if (!md_update_minor(setno, mddb_getsidenum
1734 				(setno), un64->un_key))
1735 				goto out;
1736 		}
1737 
1738 		/*
1739 		 * Update unit with the imported setno
1740 		 *
1741 		 */
1742 		mddb_setrecprivate(recid, MD_PRV_GOTIT);
1743 
1744 		*self_id = MD_MKMIN(setno, MD_MIN2UNIT(*self_id));
1745 		if (*parent_id != MD_NO_PARENT)
1746 			*parent_id = MD_MKMIN(setno, MD_MIN2UNIT(*parent_id));
1747 		*record_id = MAKERECID(setno, DBID(*record_id));
1748 
1749 		gotsomething = 1;
1750 	}
1751 
1752 out:
1753 	return (gotsomething);
1754 }
1755 
1756 static md_named_services_t sp_named_services[] = {
1757 	{NULL,					0}
1758 };
1759 
1760 md_ops_t sp_md_ops = {
1761 	sp_open,		/* open */
1762 	sp_close,		/* close */
1763 	md_sp_strategy,		/* strategy */
1764 	NULL,			/* print */
1765 	sp_dump,		/* dump */
1766 	NULL,			/* read */
1767 	NULL,			/* write */
1768 	md_sp_ioctl,		/* ioctl, */
1769 	sp_snarf,		/* snarf */
1770 	sp_halt,		/* halt */
1771 	NULL,			/* aread */
1772 	NULL,			/* awrite */
1773 	sp_imp_set,		/* import set */
1774 	sp_named_services
1775 };
1776 
1777 static void
1778 init_init()
1779 {
1780 	sp_parent_cache = kmem_cache_create("md_softpart_parent",
1781 	    sizeof (md_spps_t), 0, sp_parent_constructor,
1782 	    sp_parent_destructor, sp_run_queue, NULL, NULL, 0);
1783 	sp_child_cache = kmem_cache_create("md_softpart_child",
1784 	    sizeof (md_spcs_t) - sizeof (buf_t) + biosize(), 0,
1785 	    sp_child_constructor, sp_child_destructor, sp_run_queue,
1786 	    NULL, NULL, 0);
1787 }
1788 
1789 static void
1790 fini_uninit()
1791 {
1792 	kmem_cache_destroy(sp_parent_cache);
1793 	kmem_cache_destroy(sp_child_cache);
1794 	sp_parent_cache = sp_child_cache = NULL;
1795 }
1796 
1797 /* define the module linkage */
1798 MD_PLUGIN_MISC_MODULE("soft partition module %I%", init_init(), fini_uninit())
1799