xref: /titanic_41/usr/src/uts/common/io/lvm/raid/raid.c (revision 791a814c934fcd4deb13b26c1f116ff283272a0d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * NAME:	raid.c
29  *
30  * DESCRIPTION: Main RAID driver source file containing open, close and I/O
31  *		operations.
32  *
33  * ROUTINES PROVIDED FOR EXTERNAL USE:
34  *  raid_open()			- open the RAID metadevice for access.
35  *  raid_internal_open()	- internal open routine of RAID metdevice.
36  *  md_raid_strategy()		- perform normal I/O operations,
37  *				    such as read and write.
38  *  raid_close()		- close the RAID metadevice.
39  *  raid_internal_close()	- internal close routine of RAID metadevice.
40  *  raid_snarf()		- initialize and clean up MDD records.
41  *  raid_halt()			- reset the RAID metadevice
42  *  raid_line()			- return the line # of this segment
43  *  raid_dcolumn()		- return the data column # of this segment
44  *  raid_pcolumn()		- return the parity column # of this segment
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/conf.h>
50 #include <sys/file.h>
51 #include <sys/user.h>
52 #include <sys/uio.h>
53 #include <sys/t_lock.h>
54 #include <sys/buf.h>
55 #include <sys/dkio.h>
56 #include <sys/vtoc.h>
57 #include <sys/kmem.h>
58 #include <vm/page.h>
59 #include <sys/cmn_err.h>
60 #include <sys/sysmacros.h>
61 #include <sys/types.h>
62 #include <sys/mkdev.h>
63 #include <sys/stat.h>
64 #include <sys/open.h>
65 #include <sys/modctl.h>
66 #include <sys/ddi.h>
67 #include <sys/sunddi.h>
68 #include <sys/debug.h>
69 #include <sys/lvm/md_raid.h>
70 #include <sys/lvm/mdvar.h>
71 #include <sys/lvm/md_convert.h>
72 
73 #include <sys/sysevent/eventdefs.h>
74 #include <sys/sysevent/svm.h>
75 
76 md_ops_t		raid_md_ops;
77 #ifndef lint
78 char			_depends_on[] = "drv/md";
79 md_ops_t		*md_interface_ops = &raid_md_ops;
80 #endif	/* lint */
81 
82 extern unit_t		md_nunits;
83 extern unit_t		md_nsets;
84 extern md_set_t		md_set[];
85 extern int		md_status;
86 extern major_t		md_major;
87 extern mdq_anchor_t	md_done_daemon;
88 extern mdq_anchor_t	md_mstr_daemon;
89 extern int		md_sleep_for_test;
90 extern clock_t		md_hz;
91 
92 extern md_event_queue_t	*md_event_queue;
93 
94 
95 int pchunks		= 16;
96 int phigh		= 1024;
97 int plow		= 128;
98 int cchunks		= 64;
99 int chigh		= 1024;
100 int clow		= 512;
101 int bchunks		= 32;
102 int bhigh		= 256;
103 int blow		= 128;
104 
105 int raid_total_io		= 0;
106 int raid_reads			= 0;
107 int raid_writes			= 0;
108 int raid_no_bpmaps		= 0;
109 int raid_512			= 0;
110 int raid_1024			= 0;
111 int raid_1024_8192		= 0;
112 int raid_8192			= 0;
113 int raid_8192_bigger		= 0;
114 int raid_line_lock_wait	= 0;
115 
116 int data_buffer_waits		= 0;
117 int parity_buffer_waits	= 0;
118 
119 /* writer line locks */
120 int raid_writer_locks		= 0; /* total writer locks */
121 int raid_write_waits		= 0; /* total writer locks that waited */
122 int raid_full_line_writes	= 0; /* total full line writes */
123 int raid_write_queue_length	= 0; /* wait queue length */
124 int raid_max_write_q_length	= 0; /* maximum queue length */
125 int raid_write_locks_active	= 0; /* writer locks at any time */
126 int raid_max_write_locks	= 0; /* maximum writer locks active */
127 
128 /* read line locks */
129 int raid_reader_locks		= 0; /* total reader locks held */
130 int raid_reader_locks_active	= 0; /* reader locks held */
131 int raid_max_reader_locks	= 0; /* maximum reader locks held in run */
132 int raid_read_overlaps		= 0; /* number of times 2 reads hit same line */
133 int raid_read_waits		= 0; /* times a reader waited on writer */
134 
135 /* prewrite stats */
136 int raid_prewrite_waits		= 0; /* number of waits for a pw slot */
137 int raid_pw			= 0; /* number of pw slots in use */
138 int raid_prewrite_max		= 0; /* maximum number of pw slots in use */
139 int raid_pw_invalidates		= 0;
140 
141 static clock_t md_wr_wait	= 0;
142 
143 int nv_available	= 0; /* presence of nv-ram support in device */
144 int nv_prewrite		= 1; /* mark prewrites with nv_available */
145 int nv_parity		= 1; /* mark parity with nv_available */
146 
147 kmem_cache_t	*raid_parent_cache = NULL;
148 kmem_cache_t	*raid_child_cache = NULL;
149 kmem_cache_t	*raid_cbuf_cache = NULL;
150 
151 int			raid_internal_open(minor_t mnum, int flag, int otyp,
152 			    int md_oflags);
153 
154 static void		freebuffers(md_raidcs_t *cs);
155 static int		raid_read(mr_unit_t *un, md_raidcs_t *cs);
156 static void		raid_read_io(mr_unit_t *un, md_raidcs_t *cs);
157 static int		raid_write(mr_unit_t *un, md_raidcs_t *cs);
158 static void		raid_write_io(mr_unit_t *un, md_raidcs_t *cs);
159 static void		raid_stage(md_raidcs_t *cs);
160 static void		raid_enqueue(md_raidcs_t *cs);
161 static diskaddr_t	raid_line(diskaddr_t segment, mr_unit_t *un);
162 uint_t			raid_dcolumn(diskaddr_t segment, mr_unit_t *un);
163 static void		getpbuffer(md_raidcs_t *cs);
164 static void		getdbuffer(md_raidcs_t *cs);
165 static void		raid_done(buf_t *bp);
166 static void		raid_io_startup(mr_unit_t *un);
167 
168 static rus_state_t
169 raid_col2unit(rcs_state_t state, rus_state_t unitstate)
170 {
171 	switch (state) {
172 	case RCS_INIT:
173 		return (RUS_INIT);
174 	case RCS_OKAY:
175 		return (RUS_OKAY);
176 	case RCS_RESYNC:
177 		if (unitstate & RUS_LAST_ERRED)
178 			return (RUS_LAST_ERRED);
179 		else
180 			return (RUS_ERRED);
181 	case RCS_ERRED:
182 		return (RUS_ERRED);
183 	case RCS_LAST_ERRED:
184 		return (RUS_ERRED);
185 	default:
186 		break;
187 	}
188 	panic("raid_col2unit");
189 	/*NOTREACHED*/
190 }
191 
192 void
193 raid_set_state(mr_unit_t *un, int col, rcs_state_t newstate, int force)
194 {
195 
196 	rus_state_t	unitstate, origstate;
197 	rcs_state_t	colstate;
198 	rcs_state_t	orig_colstate;
199 	int		errcnt = 0, okaycnt = 0, resynccnt = 0;
200 	int		i;
201 	char		*devname;
202 
203 	ASSERT(un);
204 	ASSERT(col < un->un_totalcolumncnt);
205 	ASSERT(newstate &
206 	    (RCS_INIT | RCS_INIT_ERRED | RCS_OKAY | RCS_RESYNC | RCS_ERRED |
207 	    RCS_LAST_ERRED | RCS_REGEN));
208 	ASSERT((newstate &
209 	    ~(RCS_INIT | RCS_INIT_ERRED | RCS_OKAY | RCS_RESYNC | RCS_ERRED |
210 	    RCS_LAST_ERRED | RCS_REGEN))
211 	    == 0);
212 
213 	ASSERT(MDI_UNIT(MD_SID(un)) ? UNIT_WRITER_HELD(un) : 1);
214 
215 	unitstate = un->un_state;
216 	origstate = unitstate;
217 
218 	if (force) {
219 		un->un_column[col].un_devstate = newstate;
220 		un->un_state = raid_col2unit(newstate, unitstate);
221 		uniqtime32(&un->un_column[col].un_devtimestamp);
222 		uniqtime32(&un->un_timestamp);
223 		return;
224 	}
225 
226 	ASSERT(un->un_state &
227 	    (RUS_INIT | RUS_OKAY | RUS_ERRED | RUS_DOI | RUS_LAST_ERRED |
228 	    RUS_REGEN));
229 	ASSERT((un->un_state & ~(RUS_INIT |
230 	    RUS_OKAY | RUS_ERRED | RUS_DOI | RUS_LAST_ERRED | RUS_REGEN)) == 0);
231 
232 	if (un->un_column[col].un_devstate == newstate)
233 		return;
234 
235 	if (newstate == RCS_REGEN) {
236 		if (raid_state_cnt(un, RCS_OKAY) != un->un_totalcolumncnt)
237 			return;
238 		un->un_state = RUS_REGEN;
239 		return;
240 	}
241 
242 	orig_colstate = un->un_column[col].un_devstate;
243 
244 	/*
245 	 * if there is another column in the error state then this
246 	 * column should go to the last errored state
247 	 */
248 	for (i = 0; i < un->un_totalcolumncnt; i++) {
249 		if (i == col)
250 			colstate = newstate;
251 		else
252 			colstate = un->un_column[i].un_devstate;
253 		if (colstate & (RCS_ERRED | RCS_LAST_ERRED | RCS_INIT_ERRED))
254 			errcnt++;
255 		if (colstate & RCS_OKAY)
256 			okaycnt++;
257 		if (colstate & RCS_RESYNC)
258 			resynccnt++;
259 	}
260 	ASSERT(resynccnt < 2);
261 
262 	if (okaycnt == un->un_totalcolumncnt)
263 		unitstate = RUS_OKAY;
264 	else if (errcnt > 1) {
265 		unitstate = RUS_LAST_ERRED;
266 		if (newstate & RCS_ERRED)
267 			newstate = RCS_LAST_ERRED;
268 	} else if (errcnt == 1)
269 		if (!(unitstate & RUS_LAST_ERRED))
270 			unitstate = RUS_ERRED;
271 
272 	if (un->un_state == RUS_DOI)
273 		unitstate = RUS_DOI;
274 
275 	un->un_column[col].un_devstate = newstate;
276 	uniqtime32(&un->un_column[col].un_devtimestamp);
277 	/*
278 	 * if there are last errored column being brought back online
279 	 * by open or snarf, then be sure to clear the RUS_LAST_ERRED
280 	 * bit to allow writes.  If there is a real error then the
281 	 * column will go back into last erred.
282 	 */
283 	if ((raid_state_cnt(un, RCS_LAST_ERRED) == 0) &&
284 	    (raid_state_cnt(un, RCS_ERRED) == 1))
285 		unitstate = RUS_ERRED;
286 
287 	un->un_state = unitstate;
288 	uniqtime32(&un->un_timestamp);
289 
290 	if ((! (origstate & (RUS_ERRED|RUS_LAST_ERRED|RUS_DOI))) &&
291 	    (unitstate & (RUS_ERRED|RUS_LAST_ERRED|RUS_DOI))) {
292 		devname = md_devname(MD_UN2SET(un),
293 		    un->un_column[col].un_dev, NULL, 0);
294 
295 		cmn_err(CE_WARN, "md: %s: %s needs maintenance",
296 		    md_shortname(MD_SID(un)), devname);
297 
298 		if (unitstate & RUS_LAST_ERRED) {
299 			cmn_err(CE_WARN, "md: %s: %s last erred",
300 			    md_shortname(MD_SID(un)), devname);
301 
302 		} else if (un->un_column[col].un_devflags &
303 		    MD_RAID_DEV_ISOPEN) {
304 			/*
305 			 * Close the broken device and clear the open flag on
306 			 * it.  We have to check that the device is open,
307 			 * otherwise the first open on it has resulted in the
308 			 * error that is being processed and the actual un_dev
309 			 * will be NODEV64.
310 			 */
311 			md_layered_close(un->un_column[col].un_dev,
312 			    MD_OFLG_NULL);
313 			un->un_column[col].un_devflags &= ~MD_RAID_DEV_ISOPEN;
314 		}
315 	} else if (orig_colstate == RCS_LAST_ERRED && newstate == RCS_ERRED &&
316 	    un->un_column[col].un_devflags & MD_RAID_DEV_ISOPEN) {
317 		/*
318 		 * Similar to logic above except no log messages since we
319 		 * are just transitioning from Last Erred to Erred.
320 		 */
321 		md_layered_close(un->un_column[col].un_dev, MD_OFLG_NULL);
322 		un->un_column[col].un_devflags &= ~MD_RAID_DEV_ISOPEN;
323 	}
324 
325 	/*
326 	 * If a resync has completed, see if there is a Last Erred
327 	 * component that we can change to the Erred state.
328 	 */
329 	if ((orig_colstate == RCS_RESYNC) && (newstate == RCS_OKAY)) {
330 		for (i = 0; i < un->un_totalcolumncnt; i++) {
331 			if (i != col &&
332 			    (un->un_column[i].un_devstate & RCS_LAST_ERRED)) {
333 				raid_set_state(un, i, RCS_ERRED, 0);
334 				break;
335 			}
336 		}
337 	}
338 }
339 
340 /*
341  * NAME:	erred_check_line
342  *
343  * DESCRIPTION: Return the type of write to perform on an erred column based
344  *		upon any resync activity.
345  *
346  *		if a column is being resynced and the write is above the
347  *		resync point may have to write to the target being resynced.
348  *
349  *		Column state may make it impossible to do the write
350  *		in which case RCL_EIO or RCL_ENXIO is returned.
351  *
352  *		If a column cannot be written directly, RCL_ERRED is
353  *		returned and processing should proceed accordingly.
354  *
355  * PARAMETERS:	minor_t		 mnum - minor number identity of metadevice
356  *		md_raidcs_t	 *cs - child save structure
357  *		mr_column_t	 *dcolumn - pointer to data column structure
358  *		mr_column_t	 *pcolumn - pointer to parity column structure
359  *
360  * RETURNS:	RCL_OKAY, RCL_ERRED
361  *
362  * LOCKS:	Expects Line Writer Lock and Unit Resource Lock to be held
363  *		across call.
364  */
365 
366 static int
367 erred_check_line(mr_unit_t *un, md_raidcs_t *cs, mr_column_t *column)
368 {
369 
370 	ASSERT(un != NULL);
371 	ASSERT(cs->cs_flags & MD_RCS_LLOCKD);
372 
373 	if (column->un_devstate & RCS_OKAY)
374 		return (RCL_OKAY);
375 
376 	if (column->un_devstate & RCS_ERRED)
377 		return (RCL_ERRED);  /* do not read from errored disk */
378 
379 	/*
380 	 * for the last errored case their are two considerations.
381 	 * When the last errored column is the only errored column then
382 	 * do treat it like a maintenance column, not doing I/O from
383 	 * it.   When it there are other failures then just attempt
384 	 * to use it.
385 	 */
386 	if (column->un_devstate & RCS_LAST_ERRED)
387 		return (RCL_ERRED);
388 
389 	ASSERT(column->un_devstate & RCS_RESYNC);
390 
391 	/*
392 	 * When a resync from a hotspare is being done (copy resync)
393 	 * then always treat it as an OKAY column, since no regen
394 	 * is required.
395 	 */
396 	if (column->un_devflags & MD_RAID_COPY_RESYNC) {
397 		return (RCL_OKAY);
398 	}
399 
400 	mutex_enter(&un->un_mx);
401 	if (cs->cs_line < un->un_resync_line_index) {
402 		mutex_exit(&un->un_mx);
403 		return (RCL_OKAY);
404 	}
405 	mutex_exit(&un->un_mx);
406 	return (RCL_ERRED);
407 
408 }
409 
410 /*
411  * NAMES:	raid_state_cnt
412  *
413  * DESCRIPTION: counts number of column in a specific state
414  *
415  * PARAMETERS:	md_raid_t *un
416  *		rcs_state state
417  */
418 int
419 raid_state_cnt(mr_unit_t *un, rcs_state_t state)
420 {
421 	int	i, retval = 0;
422 
423 	for (i = 0; i < un->un_totalcolumncnt; i++)
424 		if (un->un_column[i].un_devstate & state)
425 			retval++;
426 	return (retval);
427 }
428 
429 /*
430  * NAMES:	raid_io_overlaps
431  *
432  * DESCRIPTION: checkst for overlap of 2 child save structures
433  *
434  * PARAMETERS:	md_raidcs_t cs1
435  *		md_raidcs_t cs2
436  *
437  * RETURNS:	0 - no overlap
438  *		1 - overlap
439  */
440 int
441 raid_io_overlaps(md_raidcs_t *cs1, md_raidcs_t *cs2)
442 {
443 	if (cs1->cs_blkno > cs2->cs_lastblk)
444 		return (0);
445 	if (cs1->cs_lastblk < cs2->cs_blkno)
446 		return (0);
447 	return (1);
448 }
449 
450 /*
451  * NAMES:	raid_parent_constructor
452  * DESCRIPTION: parent structure constructor routine
453  * PARAMETERS:
454  */
455 /*ARGSUSED1*/
456 static int
457 raid_parent_constructor(void *p, void *d1, int d2)
458 {
459 	mutex_init(&((md_raidps_t *)p)->ps_mx,
460 	    NULL, MUTEX_DEFAULT, NULL);
461 	mutex_init(&((md_raidps_t *)p)->ps_mapin_mx,
462 	    NULL, MUTEX_DEFAULT, NULL);
463 	return (0);
464 }
465 
466 void
467 raid_parent_init(md_raidps_t *ps)
468 {
469 	bzero(ps, offsetof(md_raidps_t, ps_mx));
470 	((md_raidps_t *)ps)->ps_flags = MD_RPS_INUSE;
471 	((md_raidps_t *)ps)->ps_magic = RAID_PSMAGIC;
472 }
473 
474 /*ARGSUSED1*/
475 static void
476 raid_parent_destructor(void *p, void *d)
477 {
478 	mutex_destroy(&((md_raidps_t *)p)->ps_mx);
479 	mutex_destroy(&((md_raidps_t *)p)->ps_mapin_mx);
480 }
481 
482 /*
483  * NAMES:	raid_child_constructor
484  * DESCRIPTION: child structure constructor routine
485  * PARAMETERS:
486  */
487 /*ARGSUSED1*/
488 static int
489 raid_child_constructor(void *p, void *d1, int d2)
490 {
491 	md_raidcs_t	*cs = (md_raidcs_t *)p;
492 	mutex_init(&cs->cs_mx, NULL, MUTEX_DEFAULT, NULL);
493 	bioinit(&cs->cs_dbuf);
494 	bioinit(&cs->cs_pbuf);
495 	bioinit(&cs->cs_hbuf);
496 	return (0);
497 }
498 
499 void
500 raid_child_init(md_raidcs_t *cs)
501 {
502 	bzero(cs, offsetof(md_raidcs_t, cs_mx));
503 
504 	md_bioreset(&cs->cs_dbuf);
505 	md_bioreset(&cs->cs_pbuf);
506 	md_bioreset(&cs->cs_hbuf);
507 
508 	((md_raidcs_t *)cs)->cs_dbuf.b_chain =
509 	    ((md_raidcs_t *)cs)->cs_pbuf.b_chain =
510 	    ((md_raidcs_t *)cs)->cs_hbuf.b_chain =
511 	    (struct buf *)(cs);
512 
513 	cs->cs_magic = RAID_CSMAGIC;
514 	cs->cs_line = MD_DISKADDR_ERROR;
515 	cs->cs_dpwslot = -1;
516 	cs->cs_ppwslot = -1;
517 }
518 
519 /*ARGSUSED1*/
520 static void
521 raid_child_destructor(void *p, void *d)
522 {
523 	biofini(&((md_raidcs_t *)p)->cs_dbuf);
524 	biofini(&((md_raidcs_t *)p)->cs_hbuf);
525 	biofini(&((md_raidcs_t *)p)->cs_pbuf);
526 	mutex_destroy(&((md_raidcs_t *)p)->cs_mx);
527 }
528 
529 /*ARGSUSED1*/
530 static int
531 raid_cbuf_constructor(void *p, void *d1, int d2)
532 {
533 	bioinit(&((md_raidcbuf_t *)p)->cbuf_bp);
534 	return (0);
535 }
536 
537 static void
538 raid_cbuf_init(md_raidcbuf_t *cb)
539 {
540 	bzero(cb, offsetof(md_raidcbuf_t, cbuf_bp));
541 	md_bioreset(&cb->cbuf_bp);
542 	cb->cbuf_magic = RAID_BUFMAGIC;
543 	cb->cbuf_pwslot = -1;
544 	cb->cbuf_flags = CBUF_WRITE;
545 }
546 
547 /*ARGSUSED1*/
548 static void
549 raid_cbuf_destructor(void *p, void *d)
550 {
551 	biofini(&((md_raidcbuf_t *)p)->cbuf_bp);
552 }
553 
554 /*
555  * NAMES:	raid_run_queue
556  * DESCRIPTION: spawn a backend processing daemon for RAID metadevice.
557  * PARAMETERS:
558  */
559 /*ARGSUSED*/
560 static void
561 raid_run_queue(void *d)
562 {
563 	if (!(md_status & MD_GBL_DAEMONS_LIVE))
564 		md_daemon(1, &md_done_daemon);
565 }
566 
567 /*
568  * NAME:	raid_build_pwslot
569  * DESCRIPTION: builds mr_pw_reserve for the column
570  * PARAMETERS:	un is the pointer to the unit structure
571  *		colindex is the column to create the structure for
572  */
573 int
574 raid_build_pw_reservation(mr_unit_t *un, int colindex)
575 {
576 	mr_pw_reserve_t	*pw;
577 	mr_scoreboard_t	*sb;
578 	int		i;
579 
580 	pw = (mr_pw_reserve_t *) kmem_zalloc(sizeof (mr_pw_reserve_t) +
581 	    (sizeof (mr_scoreboard_t) * un->un_pwcnt), KM_SLEEP);
582 	pw->pw_magic = RAID_PWMAGIC;
583 	pw->pw_column = colindex;
584 	pw->pw_free = un->un_pwcnt;
585 	sb = &pw->pw_sb[0];
586 	for (i = 0; i < un->un_pwcnt; i++) {
587 		sb[i].sb_column = colindex;
588 		sb[i].sb_flags = SB_UNUSED;
589 		sb[i].sb_start_blk = 0;
590 		sb[i].sb_last_blk = 0;
591 		sb[i].sb_cs = NULL;
592 	}
593 	un->un_column_ic[colindex].un_pw_reserve = pw;
594 	return (0);
595 }
596 /*
597  * NAME:	raid_free_pw_reservation
598  * DESCRIPTION: RAID metadevice pre-write slot structure destroy routine
599  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
600  *		int colindex  - index of the column whose pre-write slot struct
601  *			is to be destroyed.
602  */
603 void
604 raid_free_pw_reservation(mr_unit_t *un, int colindex)
605 {
606 	mr_pw_reserve_t	*pw = un->un_column_ic[colindex].un_pw_reserve;
607 
608 	kmem_free(pw, sizeof (mr_pw_reserve_t) +
609 	    (sizeof (mr_scoreboard_t) * un->un_pwcnt));
610 }
611 
612 /*
613  * NAME:	raid_cancel_pwslot
614  * DESCRIPTION: RAID metadevice write routine
615  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
616  */
617 static void
618 raid_cancel_pwslot(md_raidcs_t *cs)
619 {
620 	mr_unit_t		*un = cs->cs_un;
621 	mr_pw_reserve_t		*pw;
622 	mr_scoreboard_t		*sb;
623 	mr_column_ic_t		*col;
624 	md_raidcbuf_t		*cbuf;
625 	int			broadcast = 0;
626 
627 	if (cs->cs_ps->ps_flags & MD_RPS_READ)
628 		return;
629 	if (cs->cs_dpwslot != -1) {
630 		col = &un->un_column_ic[cs->cs_dcolumn];
631 		pw = col->un_pw_reserve;
632 		sb = &pw->pw_sb[cs->cs_dpwslot];
633 		sb->sb_flags = SB_AVAIL;
634 		if ((pw->pw_free++ == 0) || (un->un_rflags & MD_RFLAG_NEEDPW))
635 			broadcast++;
636 		sb->sb_cs = NULL;
637 	}
638 
639 	if (cs->cs_ppwslot != -1) {
640 		col = &un->un_column_ic[cs->cs_pcolumn];
641 		pw = col->un_pw_reserve;
642 		sb = &pw->pw_sb[cs->cs_ppwslot];
643 		sb->sb_flags = SB_AVAIL;
644 		if ((pw->pw_free++ == 0) || (un->un_rflags & MD_RFLAG_NEEDPW))
645 			broadcast++;
646 		sb->sb_cs = NULL;
647 	}
648 
649 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next) {
650 		if (cbuf->cbuf_pwslot == -1)
651 			continue;
652 		col = &un->un_column_ic[cbuf->cbuf_column];
653 		pw = col->un_pw_reserve;
654 		sb = &pw->pw_sb[cbuf->cbuf_pwslot];
655 		sb->sb_flags = SB_AVAIL;
656 		if ((pw->pw_free++ == 0) || (un->un_rflags & MD_RFLAG_NEEDPW))
657 			broadcast++;
658 		sb->sb_cs = NULL;
659 	}
660 	if (broadcast) {
661 		cv_broadcast(&un->un_cv);
662 		return;
663 	}
664 	mutex_enter(&un->un_mx);
665 	if (un->un_rflags & MD_RFLAG_NEEDPW)
666 		cv_broadcast(&un->un_cv);
667 	mutex_exit(&un->un_mx);
668 }
669 
670 static void
671 raid_free_pwinvalidate(md_raidcs_t *cs)
672 {
673 	md_raidcbuf_t		*cbuf;
674 	md_raidcbuf_t		*cbuf_to_free;
675 	mr_unit_t		*un = cs->cs_un;
676 	mdi_unit_t		*ui = MDI_UNIT(MD_SID(un));
677 	mr_pw_reserve_t		*pw;
678 	mr_scoreboard_t		*sb;
679 	int			broadcast = 0;
680 
681 	cbuf = cs->cs_pw_inval_list;
682 	ASSERT(cbuf);
683 	mutex_enter(&un->un_linlck_mx);
684 	while (cbuf) {
685 		pw = un->un_column_ic[cbuf->cbuf_column].un_pw_reserve;
686 		sb = &pw->pw_sb[0];
687 		ASSERT(sb[cbuf->cbuf_pwslot].sb_flags & SB_INVAL_PEND);
688 		sb[cbuf->cbuf_pwslot].sb_flags = SB_UNUSED;
689 		sb[cbuf->cbuf_pwslot].sb_cs = NULL;
690 		if ((pw->pw_free++ == 0) || (un->un_rflags & MD_RFLAG_NEEDPW))
691 			broadcast++;
692 		cbuf_to_free = cbuf;
693 		cbuf = cbuf->cbuf_next;
694 		kmem_free(cbuf_to_free->cbuf_buffer, dbtob(un->un_iosize));
695 		kmem_cache_free(raid_cbuf_cache, cbuf_to_free);
696 	}
697 	cs->cs_pw_inval_list = (md_raidcbuf_t *)NULL;
698 	/*
699 	 * now that there is a free prewrite slot, check to see if there
700 	 * are any io operations waiting first wake up the raid_io_startup
701 	 * then signal the the processes waiting in raid_write.
702 	 */
703 	if (ui->ui_io_lock->io_list_front)
704 		raid_io_startup(un);
705 	mutex_exit(&un->un_linlck_mx);
706 	if (broadcast) {
707 		cv_broadcast(&un->un_cv);
708 		return;
709 	}
710 	mutex_enter(&un->un_mx);
711 	if (un->un_rflags & MD_RFLAG_NEEDPW)
712 		cv_broadcast(&un->un_cv);
713 	mutex_exit(&un->un_mx);
714 }
715 
716 
717 static int
718 raid_get_pwslot(md_raidcs_t *cs, int column)
719 {
720 	mr_scoreboard_t	*sb;
721 	mr_pw_reserve_t	*pw;
722 	mr_unit_t	*un = cs->cs_un;
723 	diskaddr_t	start_blk = cs->cs_blkno;
724 	diskaddr_t	last_blk = cs->cs_lastblk;
725 	int		i;
726 	int		pwcnt = un->un_pwcnt;
727 	int		avail = -1;
728 	int		use = -1;
729 	int		flags;
730 
731 
732 	/* start with the data column */
733 	pw = cs->cs_un->un_column_ic[column].un_pw_reserve;
734 	sb = &pw->pw_sb[0];
735 	ASSERT(pw->pw_free > 0);
736 	for (i = 0; i < pwcnt; i++) {
737 		flags = sb[i].sb_flags;
738 		if (flags & SB_INVAL_PEND)
739 			continue;
740 
741 		if ((avail == -1) && (flags & (SB_AVAIL | SB_UNUSED)))
742 			avail = i;
743 
744 		if ((start_blk > sb[i].sb_last_blk) ||
745 		    (last_blk < sb[i].sb_start_blk))
746 			continue;
747 
748 		/* OVERLAP */
749 		ASSERT(! (sb[i].sb_flags & SB_INUSE));
750 
751 		/*
752 		 * raid_invalidate_pwslot attempts to zero out prewrite entry
753 		 * in parallel with other disk reads/writes related to current
754 		 * transaction. however cs_frags accounting for this case is
755 		 * broken because raid_write_io resets cs_frags i.e. ignoring
756 		 * that it could have been been set to > 0 value by
757 		 * raid_invalidate_pwslot. While this can be fixed an
758 		 * additional problem is that we don't seem to handle
759 		 * correctly the case of getting a disk error for prewrite
760 		 * entry invalidation.
761 		 * It does not look like we really need
762 		 * to invalidate prewrite slots because raid_replay sorts
763 		 * prewrite id's in ascending order and during recovery the
764 		 * latest prewrite entry for the same block will be replay
765 		 * last. That's why i ifdef'd out the call to
766 		 * raid_invalidate_pwslot. --aguzovsk@east
767 		 */
768 
769 		if (use == -1) {
770 			use = i;
771 		}
772 	}
773 
774 	ASSERT(avail != -1);
775 	pw->pw_free--;
776 	if (use == -1)
777 		use = avail;
778 
779 	ASSERT(! (sb[use].sb_flags & SB_INUSE));
780 	sb[use].sb_flags = SB_INUSE;
781 	sb[use].sb_cs = cs;
782 	sb[use].sb_start_blk = start_blk;
783 	sb[use].sb_last_blk = last_blk;
784 	ASSERT((use >= 0) && (use < un->un_pwcnt));
785 	return (use);
786 }
787 
788 static int
789 raid_check_pw(md_raidcs_t *cs)
790 {
791 
792 	mr_unit_t	*un = cs->cs_un;
793 	int		i;
794 
795 	ASSERT(! (cs->cs_flags & MD_RCS_HAVE_PW_SLOTS));
796 	/*
797 	 * check to be sure there is a prewrite slot available
798 	 * if not just return.
799 	 */
800 	if (cs->cs_flags & MD_RCS_LINE) {
801 		for (i = 0; i < un->un_totalcolumncnt; i++)
802 			if (un->un_column_ic[i].un_pw_reserve->pw_free <= 0)
803 				return (1);
804 		return (0);
805 	}
806 
807 	if (un->un_column_ic[cs->cs_dcolumn].un_pw_reserve->pw_free <= 0)
808 		return (1);
809 	if (un->un_column_ic[cs->cs_pcolumn].un_pw_reserve->pw_free <= 0)
810 		return (1);
811 	return (0);
812 }
813 static int
814 raid_alloc_pwslot(md_raidcs_t *cs)
815 {
816 	mr_unit_t	*un = cs->cs_un;
817 	md_raidcbuf_t	*cbuf;
818 
819 	ASSERT(! (cs->cs_flags & MD_RCS_HAVE_PW_SLOTS));
820 	if (raid_check_pw(cs))
821 		return (1);
822 
823 	mutex_enter(&un->un_mx);
824 	un->un_pwid++;
825 	cs->cs_pwid = un->un_pwid;
826 	mutex_exit(&un->un_mx);
827 
828 	cs->cs_dpwslot = raid_get_pwslot(cs, cs->cs_dcolumn);
829 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next) {
830 		cbuf->cbuf_pwslot = raid_get_pwslot(cs, cbuf->cbuf_column);
831 	}
832 	cs->cs_ppwslot = raid_get_pwslot(cs, cs->cs_pcolumn);
833 
834 	cs->cs_flags |= MD_RCS_HAVE_PW_SLOTS;
835 
836 	return (0);
837 }
838 
839 /*
840  * NAMES:	raid_build_incore
841  * DESCRIPTION: RAID metadevice incore structure building routine
842  * PARAMETERS:	void *p - pointer to a unit structure
843  *		int snarfing - a flag to indicate snarfing is required
844  */
845 int
846 raid_build_incore(void *p, int snarfing)
847 {
848 	mr_unit_t	*un = (mr_unit_t *)p;
849 	minor_t		mnum = MD_SID(un);
850 	mddb_recid_t	hs_recid = 0;
851 	int		i;
852 	int		preserve_flags;
853 	mr_column_t	*column;
854 	int		iosize;
855 	md_dev64_t	hs, dev;
856 	int		resync_cnt = 0, error_cnt = 0;
857 
858 	hs = NODEV64;
859 	dev = NODEV64;
860 
861 	/* clear out bogus pointer incase we return(1) prior to alloc */
862 	un->mr_ic = NULL;
863 
864 	if (MD_STATUS(un) & MD_UN_BEING_RESET) {
865 		mddb_setrecprivate(un->c.un_record_id, MD_PRV_PENDCLEAN);
866 		return (1);
867 	}
868 
869 	if (MD_UNIT(mnum) != NULL)
870 		return (0);
871 
872 	if (snarfing)
873 		MD_STATUS(un) = 0;
874 
875 	un->mr_ic = (mr_unit_ic_t *)kmem_zalloc(sizeof (*un->mr_ic),
876 	    KM_SLEEP);
877 
878 	un->un_column_ic = (mr_column_ic_t *)
879 	    kmem_zalloc(sizeof (mr_column_ic_t) *
880 	    un->un_totalcolumncnt, KM_SLEEP);
881 
882 	for (i = 0; i < un->un_totalcolumncnt; i++) {
883 
884 		column	= &un->un_column[i];
885 		preserve_flags = column->un_devflags &
886 		    (MD_RAID_COPY_RESYNC | MD_RAID_REGEN_RESYNC);
887 		column->un_devflags &=
888 		    ~(MD_RAID_ALT_ISOPEN | MD_RAID_DEV_ISOPEN |
889 		    MD_RAID_WRITE_ALT);
890 		if (raid_build_pw_reservation(un, i) != 0) {
891 			/* could not build pwslot */
892 			return (1);
893 		}
894 
895 		if (snarfing) {
896 			set_t		setno = MD_MIN2SET(mnum);
897 			dev =  md_getdevnum(setno, mddb_getsidenum(setno),
898 			    column->un_orig_key, MD_NOTRUST_DEVT);
899 			/*
900 			 * Comment out instead of remove so we have history
901 			 * In the pre-SVM releases stored devt is used so
902 			 * as long as there is one snarf is always happy
903 			 * even the component is powered off.  This is not
904 			 * the case in current SVM implementation.  NODEV64
905 			 * can be returned and in this case since we resolve
906 			 * the devt at 'open' time (first use of metadevice)
907 			 * we will allow snarf continue.
908 			 *
909 			 * if (dev == NODEV64)
910 			 *	return (1);
911 			 */
912 
913 			/*
914 			 * Setup un_orig_dev from device id info if the device
915 			 * is valid (not NODEV64).
916 			 */
917 			if (dev != NODEV64)
918 				column->un_orig_dev = dev;
919 
920 			if (column->un_devstate & RCS_RESYNC)
921 				resync_cnt++;
922 			if (column->un_devstate & (RCS_ERRED | RCS_LAST_ERRED))
923 				error_cnt++;
924 
925 			if (HOTSPARED(un, i)) {
926 				(void) md_hot_spare_ifc(HS_MKDEV,
927 				    0, 0, 0, &column->un_hs_id, NULL,
928 				    &hs, NULL);
929 				/*
930 				 * Same here
931 				 *
932 				 * if (hs == NODEV64)
933 				 *	return (1);
934 				 */
935 			}
936 
937 			if (HOTSPARED(un, i)) {
938 				if (column->un_devstate &
939 				    (RCS_OKAY | RCS_LAST_ERRED)) {
940 					column->un_dev = hs;
941 					column->un_pwstart =
942 					    column->un_hs_pwstart;
943 					column->un_devstart =
944 					    column->un_hs_devstart;
945 					preserve_flags &=
946 					    ~(MD_RAID_COPY_RESYNC |
947 					    MD_RAID_REGEN_RESYNC);
948 				} else  if (column->un_devstate & RCS_RESYNC) {
949 					/*
950 					 * if previous system was 4.0 set
951 					 * the direction flags
952 					 */
953 					if ((preserve_flags &
954 					    (MD_RAID_COPY_RESYNC |
955 					    MD_RAID_REGEN_RESYNC)) == 0) {
956 						if (column->un_alt_dev !=
957 						    NODEV64)
958 							preserve_flags |=
959 							    MD_RAID_COPY_RESYNC;
960 						else
961 							preserve_flags |=
962 							   MD_RAID_REGEN_RESYNC;
963 					}
964 				}
965 			} else { /* no hot spares */
966 				column->un_dev = dev;
967 				column->un_pwstart = column->un_orig_pwstart;
968 				column->un_devstart = column->un_orig_devstart;
969 				if (column->un_devstate & RCS_RESYNC) {
970 					preserve_flags |= MD_RAID_REGEN_RESYNC;
971 					preserve_flags &= ~MD_RAID_COPY_RESYNC;
972 				}
973 			}
974 			if (! (column->un_devstate & RCS_RESYNC)) {
975 				preserve_flags &=
976 				    ~(MD_RAID_REGEN_RESYNC |
977 				    MD_RAID_COPY_RESYNC);
978 			}
979 
980 			column->un_devflags = preserve_flags;
981 			column->un_alt_dev = NODEV64;
982 			column->un_alt_pwstart = 0;
983 			column->un_alt_devstart = 0;
984 			un->un_resync_line_index = 0;
985 			un->un_resync_index = 0;
986 			un->un_percent_done = 0;
987 		}
988 	}
989 
990 	if (resync_cnt && error_cnt) {
991 		for (i = 0; i < un->un_totalcolumncnt; i++) {
992 			column  = &un->un_column[i];
993 			if (HOTSPARED(un, i) &&
994 			    (column->un_devstate & RCS_RESYNC) &&
995 			    (column->un_devflags & MD_RAID_COPY_RESYNC))
996 				/* hotspare has data */
997 				continue;
998 
999 			if (HOTSPARED(un, i) &&
1000 			    (column->un_devstate & RCS_RESYNC)) {
1001 				/* hotspare does not have data */
1002 				raid_hs_release(HS_FREE, un, &hs_recid, i);
1003 				column->un_dev = column->un_orig_dev;
1004 				column->un_pwstart = column->un_orig_pwstart;
1005 				column->un_devstart = column->un_orig_devstart;
1006 				mddb_setrecprivate(hs_recid, MD_PRV_PENDCOM);
1007 			}
1008 
1009 			if (column->un_devstate & RCS_ERRED)
1010 				column->un_devstate = RCS_LAST_ERRED;
1011 
1012 			if (column->un_devstate & RCS_RESYNC)
1013 				column->un_devstate = RCS_ERRED;
1014 		}
1015 	}
1016 	mddb_setrecprivate(un->c.un_record_id, MD_PRV_PENDCOM);
1017 
1018 	un->un_pwid = 1; /* or some other possible value */
1019 	un->un_magic = RAID_UNMAGIC;
1020 	iosize = un->un_iosize;
1021 	un->un_pbuffer = kmem_alloc(dbtob(iosize), KM_SLEEP);
1022 	un->un_dbuffer = kmem_alloc(dbtob(iosize), KM_SLEEP);
1023 	mutex_init(&un->un_linlck_mx, NULL, MUTEX_DEFAULT, NULL);
1024 	cv_init(&un->un_linlck_cv, NULL, CV_DEFAULT, NULL);
1025 	un->un_linlck_chn = NULL;
1026 
1027 	/* place various information in the in-core data structures */
1028 	md_nblocks_set(mnum, un->c.un_total_blocks);
1029 	MD_UNIT(mnum) = un;
1030 
1031 	return (0);
1032 }
1033 
1034 /*
1035  * NAMES:	reset_raid
1036  * DESCRIPTION: RAID metadevice reset routine
1037  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
1038  *		minor_t mnum - RAID metadevice minor number
1039  *		int removing - a flag to imply removing device name from
1040  *			MDDB database.
1041  */
1042 void
1043 reset_raid(mr_unit_t *un, minor_t mnum, int removing)
1044 {
1045 	int		i, n = 0;
1046 	sv_dev_t	*sv;
1047 	mr_column_t	*column;
1048 	int		column_cnt = un->un_totalcolumncnt;
1049 	mddb_recid_t	*recids, vtoc_id;
1050 	int		hserr;
1051 
1052 	ASSERT((MDI_UNIT(mnum)->ui_io_lock->io_list_front == NULL) &&
1053 	    (MDI_UNIT(mnum)->ui_io_lock->io_list_back == NULL));
1054 
1055 	md_destroy_unit_incore(mnum, &raid_md_ops);
1056 
1057 	md_nblocks_set(mnum, -1ULL);
1058 	MD_UNIT(mnum) = NULL;
1059 
1060 	if (un->un_pbuffer) {
1061 		kmem_free(un->un_pbuffer, dbtob(un->un_iosize));
1062 		un->un_pbuffer = NULL;
1063 	}
1064 	if (un->un_dbuffer) {
1065 		kmem_free(un->un_dbuffer, dbtob(un->un_iosize));
1066 		un->un_dbuffer = NULL;
1067 	}
1068 
1069 	/* free all pre-write slots created during build incore */
1070 	for (i = 0; i < un->un_totalcolumncnt; i++)
1071 		raid_free_pw_reservation(un, i);
1072 
1073 	kmem_free(un->un_column_ic, sizeof (mr_column_ic_t) *
1074 	    un->un_totalcolumncnt);
1075 
1076 	kmem_free(un->mr_ic, sizeof (*un->mr_ic));
1077 
1078 	/*
1079 	 * Attempt release of its minor node
1080 	 */
1081 	md_remove_minor_node(mnum);
1082 
1083 	if (!removing)
1084 		return;
1085 
1086 	sv = (sv_dev_t *)kmem_zalloc((column_cnt + 1) * sizeof (sv_dev_t),
1087 	    KM_SLEEP);
1088 
1089 	recids = (mddb_recid_t *)
1090 	    kmem_zalloc((column_cnt + 2) * sizeof (mddb_recid_t), KM_SLEEP);
1091 
1092 	for (i = 0; i < column_cnt; i++) {
1093 		md_unit_t	*comp_un;
1094 		md_dev64_t	comp_dev;
1095 
1096 		column = &un->un_column[i];
1097 		sv[i].setno = MD_MIN2SET(mnum);
1098 		sv[i].key = column->un_orig_key;
1099 		if (HOTSPARED(un, i)) {
1100 			if (column->un_devstate & (RCS_ERRED | RCS_LAST_ERRED))
1101 				hserr = HS_BAD;
1102 			else
1103 				hserr = HS_FREE;
1104 			raid_hs_release(hserr, un, &recids[n++], i);
1105 		}
1106 		/*
1107 		 * deparent any metadevices.
1108 		 * NOTE: currently soft partitions are the only metadevices
1109 		 * allowed in RAID metadevices.
1110 		 */
1111 		comp_dev = column->un_dev;
1112 		if (md_getmajor(comp_dev) == md_major) {
1113 			comp_un = MD_UNIT(md_getminor(comp_dev));
1114 			recids[n++] = MD_RECID(comp_un);
1115 			md_reset_parent(comp_dev);
1116 		}
1117 	}
1118 	/* decrement the reference count of the old hsp */
1119 	if (un->un_hsp_id != -1)
1120 		(void) md_hot_spare_ifc(HSP_DECREF, un->un_hsp_id, 0, 0,
1121 		    &recids[n++], NULL, NULL, NULL);
1122 	recids[n] = 0;
1123 	MD_STATUS(un) |= MD_UN_BEING_RESET;
1124 	vtoc_id = un->c.un_vtoc_id;
1125 
1126 	raid_commit(un, recids);
1127 
1128 	/*
1129 	 * Remove self from the namespace
1130 	 */
1131 	if (un->c.un_revision & MD_FN_META_DEV) {
1132 		(void) md_rem_selfname(un->c.un_self_id);
1133 	}
1134 
1135 	/* Remove the unit structure */
1136 	mddb_deleterec_wrapper(un->c.un_record_id);
1137 
1138 	/* Remove the vtoc, if present */
1139 	if (vtoc_id)
1140 		mddb_deleterec_wrapper(vtoc_id);
1141 	md_rem_names(sv, column_cnt);
1142 	kmem_free(sv, (column_cnt + 1) * sizeof (sv_dev_t));
1143 	kmem_free(recids, (column_cnt + 2) * sizeof (mddb_recid_t));
1144 
1145 	SE_NOTIFY(EC_SVM_CONFIG, ESC_SVM_DELETE, SVM_TAG_METADEVICE,
1146 	    MD_MIN2SET(mnum), mnum);
1147 }
1148 
1149 /*
1150  * NAMES:	raid_error_parent
1151  * DESCRIPTION: mark a parent structure in error
1152  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1153  *		int	error - error value to set
1154  * NOTE:	(TBR) - this routine currently is not in use.
1155  */
1156 static void
1157 raid_error_parent(md_raidps_t *ps, int error)
1158 {
1159 	mutex_enter(&ps->ps_mx);
1160 	ps->ps_flags |= MD_RPS_ERROR;
1161 	ps->ps_error = error;
1162 	mutex_exit(&ps->ps_mx);
1163 }
1164 
1165 /*
1166  * The following defines tell raid_free_parent
1167  *	RFP_RLS_LOCK		release the unit reader lock when done.
1168  *	RFP_DECR_PWFRAGS	decrement ps_pwfrags
1169  *	RFP_DECR_FRAGS		decrement ps_frags
1170  *	RFP_DECR_READFRAGS	read keeps FRAGS and PWFRAGS in lockstep
1171  */
1172 #define	RFP_RLS_LOCK		0x00001
1173 #define	RFP_DECR_PWFRAGS	0x00002
1174 #define	RFP_DECR_FRAGS		0x00004
1175 #define	RFP_DECR_READFRAGS	(RFP_DECR_PWFRAGS | RFP_DECR_FRAGS)
1176 
1177 /*
1178  * NAMES:	raid_free_parent
1179  * DESCRIPTION: free a parent structure
1180  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1181  *		int	todo - indicates what needs to be done
1182  */
1183 static void
1184 raid_free_parent(md_raidps_t *ps, int todo)
1185 {
1186 	mdi_unit_t	*ui = ps->ps_ui;
1187 
1188 	ASSERT(ps->ps_magic == RAID_PSMAGIC);
1189 	ASSERT(ps->ps_flags & MD_RPS_INUSE);
1190 	mutex_enter(&ps->ps_mx);
1191 	if (todo & RFP_DECR_PWFRAGS) {
1192 		ASSERT(ps->ps_pwfrags);
1193 		ps->ps_pwfrags--;
1194 		if (ps->ps_pwfrags == 0 && (! (ps->ps_flags & MD_RPS_IODONE))) {
1195 			if (ps->ps_flags & MD_RPS_ERROR) {
1196 				ps->ps_bp->b_flags |= B_ERROR;
1197 				ps->ps_bp->b_error = ps->ps_error;
1198 			}
1199 			md_kstat_done(ui, ps->ps_bp, 0);
1200 			biodone(ps->ps_bp);
1201 			ps->ps_flags |= MD_RPS_IODONE;
1202 		}
1203 	}
1204 
1205 	if (todo & RFP_DECR_FRAGS) {
1206 		ASSERT(ps->ps_frags);
1207 		ps->ps_frags--;
1208 	}
1209 
1210 	if (ps->ps_frags != 0) {
1211 		mutex_exit(&ps->ps_mx);
1212 		return;
1213 	}
1214 
1215 	ASSERT((ps->ps_frags == 0) && (ps->ps_pwfrags == 0));
1216 	mutex_exit(&ps->ps_mx);
1217 
1218 	if (todo & RFP_RLS_LOCK)
1219 		md_io_readerexit(ui);
1220 
1221 	if (panicstr) {
1222 		ps->ps_flags |= MD_RPS_DONE;
1223 		return;
1224 	}
1225 
1226 	if (ps->ps_flags & MD_RPS_HSREQ)
1227 		(void) raid_hotspares();
1228 
1229 	ASSERT(todo & RFP_RLS_LOCK);
1230 	ps->ps_flags &= ~MD_RPS_INUSE;
1231 
1232 	md_dec_iocount(MD_MIN2SET(ps->ps_un->c.un_self_id));
1233 
1234 	kmem_cache_free(raid_parent_cache, ps);
1235 }
1236 
1237 /*
1238  * NAMES:	raid_free_child
1239  * DESCRIPTION: free a parent structure
1240  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1241  *		int drop_locks	- 0 for no locks held
1242  * NOTE:	(TBR) - this routine currently is not in use.
1243  */
1244 static void
1245 raid_free_child(md_raidcs_t *cs, int drop_locks)
1246 {
1247 	mr_unit_t	*un = cs->cs_un;
1248 	md_raidcbuf_t	*cbuf, *cbuf1;
1249 
1250 	if (cs->cs_pw_inval_list)
1251 		raid_free_pwinvalidate(cs);
1252 
1253 	if (drop_locks) {
1254 		ASSERT(cs->cs_flags & MD_RCS_LLOCKD &&
1255 		    (cs->cs_flags & (MD_RCS_READER | MD_RCS_WRITER)));
1256 		md_unit_readerexit(MDI_UNIT(MD_SID(un)));
1257 		raid_line_exit(cs);
1258 	} else {
1259 		ASSERT(!(cs->cs_flags & MD_RCS_LLOCKD));
1260 	}
1261 
1262 	freebuffers(cs);
1263 	cbuf = cs->cs_buflist;
1264 	while (cbuf) {
1265 		cbuf1 = cbuf->cbuf_next;
1266 		kmem_cache_free(raid_cbuf_cache, cbuf);
1267 		cbuf = cbuf1;
1268 	}
1269 	if (cs->cs_dbuf.b_flags & B_REMAPPED)
1270 		bp_mapout(&cs->cs_dbuf);
1271 	kmem_cache_free(raid_child_cache, cs);
1272 }
1273 
1274 /*
1275  * NAME:	raid_regen_parity
1276  *
1277  * DESCRIPTION:	This routine is used to regenerate the parity blocks
1278  *		for the entire raid device.  It is called from
1279  *		both the regen thread and the IO path.
1280  *
1281  *		On error the entire device is marked as in error by
1282  *		placing the erroring device in error and all other
1283  *		devices in last_errored.
1284  *
1285  * PARAMETERS:	md_raidcs_t	*cs
1286  */
1287 void
1288 raid_regen_parity(md_raidcs_t *cs)
1289 {
1290 	mr_unit_t	*un = cs->cs_un;
1291 	mdi_unit_t	*ui = MDI_UNIT(un->c.un_self_id);
1292 	caddr_t		buffer;
1293 	caddr_t		parity_buffer;
1294 	buf_t		*bp;
1295 	uint_t		*dbuf, *pbuf;
1296 	uint_t		colcnt = un->un_totalcolumncnt;
1297 	int		column;
1298 	int		parity_column = cs->cs_pcolumn;
1299 	size_t		bcount;
1300 	int		j;
1301 
1302 	/*
1303 	 * This routine uses the data and parity buffers allocated to a
1304 	 * write.  In the case of a read the buffers are allocated and
1305 	 * freed at the end.
1306 	 */
1307 
1308 	ASSERT(IO_READER_HELD(un));
1309 	ASSERT(cs->cs_flags & MD_RCS_LLOCKD);
1310 	ASSERT(UNIT_READER_HELD(un));
1311 
1312 	if (raid_state_cnt(un, RCS_OKAY) != colcnt)
1313 		return;
1314 
1315 	if (cs->cs_flags & MD_RCS_READER) {
1316 		getpbuffer(cs);
1317 		getdbuffer(cs);
1318 	}
1319 	ASSERT(cs->cs_dbuffer && cs->cs_pbuffer);
1320 	bcount = cs->cs_bcount;
1321 	buffer = cs->cs_dbuffer;
1322 	parity_buffer = cs->cs_pbuffer;
1323 	bzero(parity_buffer, bcount);
1324 	bp = &cs->cs_dbuf;
1325 	for (column = 0; column < colcnt; column++) {
1326 		if (column == parity_column)
1327 			continue;
1328 		reset_buf(bp, B_READ | B_BUSY, bcount);
1329 		bp->b_un.b_addr = buffer;
1330 		bp->b_edev = md_dev64_to_dev(un->un_column[column].un_dev);
1331 		bp->b_lblkno = cs->cs_blkno + un->un_column[column].un_devstart;
1332 		bp->b_bcount = bcount;
1333 		bp->b_bufsize = bcount;
1334 		(void) md_call_strategy(bp, MD_STR_NOTTOP, NULL);
1335 		if (biowait(bp))
1336 			goto bail;
1337 		pbuf = (uint_t *)(void *)parity_buffer;
1338 		dbuf = (uint_t *)(void *)buffer;
1339 		for (j = 0; j < (bcount / (sizeof (uint_t))); j++) {
1340 			*pbuf = *pbuf ^ *dbuf;
1341 			pbuf++;
1342 			dbuf++;
1343 		}
1344 	}
1345 
1346 	reset_buf(bp, B_WRITE | B_BUSY, cs->cs_bcount);
1347 	bp->b_un.b_addr = parity_buffer;
1348 	bp->b_edev = md_dev64_to_dev(un->un_column[parity_column].un_dev);
1349 	bp->b_lblkno = cs->cs_blkno + un->un_column[parity_column].un_devstart;
1350 	bp->b_bcount = bcount;
1351 	bp->b_bufsize = bcount;
1352 	(void) md_call_strategy(bp, MD_STR_NOTTOP, NULL);
1353 	if (biowait(bp))
1354 		goto bail;
1355 
1356 	if (cs->cs_flags & MD_RCS_READER) {
1357 		freebuffers(cs);
1358 		cs->cs_pbuffer = NULL;
1359 		cs->cs_dbuffer = NULL;
1360 	}
1361 	bp->b_chain = (struct buf *)cs;
1362 	return;
1363 bail:
1364 	if (cs->cs_flags & MD_RCS_READER) {
1365 		freebuffers(cs);
1366 		cs->cs_pbuffer = NULL;
1367 		cs->cs_dbuffer = NULL;
1368 	}
1369 	md_unit_readerexit(ui);
1370 	un = md_unit_writerlock(ui);
1371 	raid_set_state(un, column, RCS_ERRED, 0);
1372 	for (column = 0; column < colcnt; column++)
1373 		raid_set_state(un, column, RCS_ERRED, 0);
1374 	raid_commit(un, NULL);
1375 	md_unit_writerexit(ui);
1376 	un = md_unit_readerlock(ui);
1377 	bp->b_chain = (struct buf *)cs;
1378 }
1379 
1380 /*
1381  * NAMES:	raid_error_state
1382  * DESCRIPTION: check unit and column states' impact on I/O error
1383  *		NOTE:	the state now may not be the state when the
1384  *			I/O completed due to race conditions.
1385  * PARAMETERS:	mr_unit_t *un - pointer to raid unit structure
1386  *		md_raidcs_t *cs - pointer to child structure
1387  *		buf_t	  *bp - pointer to buffer structure
1388  */
1389 static int
1390 raid_error_state(mr_unit_t *un, buf_t *bp)
1391 {
1392 	int		column;
1393 	int		i;
1394 
1395 	ASSERT(IO_READER_HELD(un));
1396 	ASSERT(UNIT_WRITER_HELD(un));
1397 
1398 	column = -1;
1399 	for (i = 0; i < un->un_totalcolumncnt; i++) {
1400 		if (un->un_column[i].un_dev == md_expldev(bp->b_edev)) {
1401 			column = i;
1402 			break;
1403 		}
1404 		if (un->un_column[i].un_alt_dev == md_expldev(bp->b_edev)) {
1405 			column = i;
1406 			break;
1407 		}
1408 	}
1409 
1410 	/* in case a replace snuck in while waiting on unit writer lock */
1411 
1412 	if (column == -1) {
1413 		return (0);
1414 	}
1415 
1416 	(void) raid_set_state(un, column, RCS_ERRED, 0);
1417 	ASSERT(un->un_state & (RUS_ERRED | RUS_LAST_ERRED));
1418 
1419 	raid_commit(un, NULL);
1420 	if (un->un_state & RUS_ERRED) {
1421 		SE_NOTIFY(EC_SVM_STATE, ESC_SVM_ERRED, SVM_TAG_METADEVICE,
1422 		    MD_UN2SET(un), MD_SID(un));
1423 	} else if (un->un_state & RUS_LAST_ERRED) {
1424 		SE_NOTIFY(EC_SVM_STATE, ESC_SVM_LASTERRED, SVM_TAG_METADEVICE,
1425 		    MD_UN2SET(un), MD_SID(un));
1426 	}
1427 
1428 	return (EIO);
1429 }
1430 
1431 /*
1432  * NAME:	raid_mapin_buf
1433  * DESCRIPTION:	wait for the input buffer header to be maped in
1434  * PARAMETERS:	md_raidps_t *ps
1435  */
1436 static void
1437 raid_mapin_buf(md_raidcs_t *cs)
1438 {
1439 	md_raidps_t	*ps = cs->cs_ps;
1440 
1441 	/*
1442 	 * check to see if the buffer is maped.  If all is ok return the
1443 	 * offset of the data and return.  Since it is expensive to grab
1444 	 * a mutex this is only done if the mapin is not complete.
1445 	 * Once the mutex is aquired it is possible that the mapin was
1446 	 * not done so recheck and if necessary do the mapin.
1447 	 */
1448 	if (ps->ps_mapin > 0) {
1449 		cs->cs_addr = ps->ps_addr + cs->cs_offset;
1450 		return;
1451 	}
1452 	mutex_enter(&ps->ps_mapin_mx);
1453 	if (ps->ps_mapin > 0) {
1454 		cs->cs_addr = ps->ps_addr + cs->cs_offset;
1455 		mutex_exit(&ps->ps_mapin_mx);
1456 		return;
1457 	}
1458 	bp_mapin(ps->ps_bp);
1459 	/*
1460 	 * get the new b_addr out of the parent since bp_mapin just changed it
1461 	 */
1462 	ps->ps_addr = ps->ps_bp->b_un.b_addr;
1463 	cs->cs_addr = ps->ps_addr + cs->cs_offset;
1464 	ps->ps_mapin++;
1465 	mutex_exit(&ps->ps_mapin_mx);
1466 }
1467 
1468 /*
1469  * NAMES:	raid_read_no_retry
1470  * DESCRIPTION: I/O retry routine for a RAID metadevice read
1471  *		read failed attempting to regenerate the data,
1472  *		no retry possible, error occured in raid_raidregenloop().
1473  * PARAMETERS:	mr_unit_t   *un - pointer to raid unit structure
1474  *		md_raidcs_t *cs - pointer to child structure
1475  */
1476 /*ARGSUSED*/
1477 static void
1478 raid_read_no_retry(mr_unit_t *un, md_raidcs_t *cs)
1479 {
1480 	md_raidps_t	*ps = cs->cs_ps;
1481 
1482 	raid_error_parent(ps, EIO);
1483 	raid_free_child(cs, 1);
1484 
1485 	/* decrement readfrags */
1486 	raid_free_parent(ps, RFP_DECR_READFRAGS | RFP_RLS_LOCK);
1487 }
1488 
1489 /*
1490  * NAMES:	raid_read_retry
1491  * DESCRIPTION: I/O retry routine for a RAID metadevice read
1492  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1493  */
1494 static void
1495 raid_read_retry(mr_unit_t *un, md_raidcs_t *cs)
1496 {
1497 	/* re-initialize the buf_t structure for raid_read() */
1498 	cs->cs_dbuf.b_chain = (struct buf *)cs;
1499 	cs->cs_dbuf.b_back = &cs->cs_dbuf;
1500 	cs->cs_dbuf.b_forw = &cs->cs_dbuf;
1501 	cs->cs_dbuf.b_flags = B_BUSY;	/* initialize flags */
1502 	cs->cs_dbuf.b_error = 0;	/* initialize error */
1503 	cs->cs_dbuf.b_offset = -1;
1504 	/* Initialize semaphores */
1505 	sema_init(&cs->cs_dbuf.b_io, 0, NULL,
1506 	    SEMA_DEFAULT, NULL);
1507 	sema_init(&cs->cs_dbuf.b_sem, 0, NULL,
1508 	    SEMA_DEFAULT, NULL);
1509 
1510 	cs->cs_pbuf.b_chain = (struct buf *)cs;
1511 	cs->cs_pbuf.b_back = &cs->cs_pbuf;
1512 	cs->cs_pbuf.b_forw = &cs->cs_pbuf;
1513 	cs->cs_pbuf.b_flags = B_BUSY;	/* initialize flags */
1514 	cs->cs_pbuf.b_error = 0;	/* initialize error */
1515 	cs->cs_pbuf.b_offset = -1;
1516 	sema_init(&cs->cs_pbuf.b_io, 0, NULL,
1517 	    SEMA_DEFAULT, NULL);
1518 	sema_init(&cs->cs_pbuf.b_sem, 0, NULL,
1519 	    SEMA_DEFAULT, NULL);
1520 
1521 	cs->cs_flags &= ~MD_RCS_ERROR;	/* reset child error flag */
1522 	cs->cs_flags |= MD_RCS_RECOVERY;  /* set RECOVERY flag */
1523 
1524 	/*
1525 	 * re-scheduling I/O with raid_read_io() is simpler. basically,
1526 	 * raid_read_io() is invoked again with same child structure.
1527 	 * (NOTE: we aren`t supposed to do any error recovery when an I/O
1528 	 * error occured in raid_raidregenloop().
1529 	 */
1530 	raid_mapin_buf(cs);
1531 	raid_read_io(un, cs);
1532 }
1533 
1534 /*
1535  * NAMES:	raid_rderr
1536  * DESCRIPTION: I/O error handling routine for a RAID metadevice read
1537  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1538  * LOCKS:	must obtain unit writer lock while calling raid_error_state
1539  *		since a unit or column state transition may take place.
1540  *		must obtain unit reader lock to retry I/O.
1541  */
1542 /*ARGSUSED*/
1543 static void
1544 raid_rderr(md_raidcs_t *cs)
1545 {
1546 	md_raidps_t	*ps;
1547 	mdi_unit_t	*ui;
1548 	mr_unit_t	*un;
1549 	int		error = 0;
1550 
1551 	ps = cs->cs_ps;
1552 	ui = ps->ps_ui;
1553 	un = (mr_unit_t *)md_unit_writerlock(ui);
1554 	ASSERT(un != 0);
1555 
1556 	if (cs->cs_dbuf.b_flags & B_ERROR)
1557 		error = raid_error_state(un, &cs->cs_dbuf);
1558 	if (cs->cs_pbuf.b_flags & B_ERROR)
1559 		error |= raid_error_state(un, &cs->cs_pbuf);
1560 
1561 	md_unit_writerexit(ui);
1562 
1563 	ps->ps_flags |= MD_RPS_HSREQ;
1564 
1565 	un = (mr_unit_t *)md_unit_readerlock(ui);
1566 	ASSERT(un != 0);
1567 	/* now attempt the appropriate retry routine */
1568 	(*(cs->cs_retry_call))(un, cs);
1569 }
1570 
1571 
1572 /*
1573  * NAMES:	raid_read_error
1574  * DESCRIPTION: I/O error handling routine for a RAID metadevice read
1575  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1576  */
1577 /*ARGSUSED*/
1578 static void
1579 raid_read_error(md_raidcs_t *cs)
1580 {
1581 	md_raidps_t	*ps;
1582 	mdi_unit_t	*ui;
1583 	mr_unit_t	*un;
1584 	set_t		setno;
1585 
1586 	ps = cs->cs_ps;
1587 	ui = ps->ps_ui;
1588 	un = cs->cs_un;
1589 
1590 	setno = MD_UN2SET(un);
1591 
1592 	if ((cs->cs_dbuf.b_flags & B_ERROR) &&
1593 	    (COLUMN_STATE(un, cs->cs_dcolumn) != RCS_ERRED) &&
1594 	    (COLUMN_STATE(un, cs->cs_dcolumn) != RCS_LAST_ERRED))
1595 		cmn_err(CE_WARN, "md %s: read error on %s",
1596 		    md_shortname(MD_SID(un)),
1597 		    md_devname(setno, md_expldev(cs->cs_dbuf.b_edev), NULL, 0));
1598 
1599 	if ((cs->cs_pbuf.b_flags & B_ERROR) &&
1600 	    (COLUMN_STATE(un, cs->cs_pcolumn) != RCS_ERRED) &&
1601 	    (COLUMN_STATE(un, cs->cs_pcolumn) != RCS_LAST_ERRED))
1602 		cmn_err(CE_WARN, "md %s: read error on %s",
1603 		    md_shortname(MD_SID(un)),
1604 		    md_devname(setno, md_expldev(cs->cs_pbuf.b_edev), NULL, 0));
1605 
1606 	md_unit_readerexit(ui);
1607 
1608 	ASSERT(cs->cs_frags == 0);
1609 
1610 	/* now schedule processing for possible state change */
1611 	daemon_request(&md_mstr_daemon, raid_rderr,
1612 	    (daemon_queue_t *)cs, REQ_OLD);
1613 
1614 }
1615 
1616 /*
1617  * NAMES:	getdbuffer
1618  * DESCRIPTION: data buffer allocation for a child structure
1619  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1620  *
1621  * NOTE: always get dbuffer before pbuffer
1622  *	 and get both buffers before pwslot
1623  *	 otherwise a deadlock could be introduced.
1624  */
1625 static void
1626 getdbuffer(md_raidcs_t *cs)
1627 {
1628 	mr_unit_t	*un;
1629 
1630 	cs->cs_dbuffer = kmem_alloc(cs->cs_bcount + DEV_BSIZE, KM_NOSLEEP);
1631 	if (cs->cs_dbuffer != NULL)
1632 		return;
1633 	un = cs->cs_ps->ps_un;
1634 	mutex_enter(&un->un_mx);
1635 	while (un->un_dbuffer == NULL) {
1636 		STAT_INC(data_buffer_waits);
1637 		un->un_rflags |= MD_RFLAG_NEEDBUF;
1638 		cv_wait(&un->un_cv, &un->un_mx);
1639 	}
1640 	cs->cs_dbuffer = un->un_dbuffer;
1641 	cs->cs_flags |= MD_RCS_UNDBUF;
1642 	un->un_dbuffer = NULL;
1643 	mutex_exit(&un->un_mx);
1644 }
1645 
1646 /*
1647  * NAMES:	getpbuffer
1648  * DESCRIPTION: parity buffer allocation for a child structure
1649  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1650  *
1651  * NOTE: always get dbuffer before pbuffer
1652  *	 and get both buffers before pwslot
1653  *	 otherwise a deadlock could be introduced.
1654  */
1655 static void
1656 getpbuffer(md_raidcs_t *cs)
1657 {
1658 	mr_unit_t *un;
1659 
1660 	cs->cs_pbuffer = kmem_alloc(cs->cs_bcount + DEV_BSIZE, KM_NOSLEEP);
1661 	if (cs->cs_pbuffer != NULL)
1662 		return;
1663 	un = cs->cs_ps->ps_un;
1664 	mutex_enter(&un->un_mx);
1665 	while (un->un_pbuffer == NULL) {
1666 		STAT_INC(parity_buffer_waits);
1667 		un->un_rflags |= MD_RFLAG_NEEDBUF;
1668 		cv_wait(&un->un_cv, &un->un_mx);
1669 	}
1670 	cs->cs_pbuffer = un->un_pbuffer;
1671 	cs->cs_flags |= MD_RCS_UNPBUF;
1672 	un->un_pbuffer = NULL;
1673 	mutex_exit(&un->un_mx);
1674 }
1675 static void
1676 getresources(md_raidcs_t *cs)
1677 {
1678 	md_raidcbuf_t	*cbuf;
1679 	/*
1680 	 * NOTE: always get dbuffer before pbuffer
1681 	 *	 and get both buffers before pwslot
1682 	 *	 otherwise a deadlock could be introduced.
1683 	 */
1684 	getdbuffer(cs);
1685 	getpbuffer(cs);
1686 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next)
1687 		cbuf->cbuf_buffer =
1688 		    kmem_alloc(cs->cs_bcount + DEV_BSIZE, KM_SLEEP);
1689 }
1690 /*
1691  * NAMES:	freebuffers
1692  * DESCRIPTION: child structure buffer freeing routine
1693  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1694  */
1695 static void
1696 freebuffers(md_raidcs_t *cs)
1697 {
1698 	mr_unit_t	*un;
1699 	md_raidcbuf_t	*cbuf;
1700 
1701 	/* free buffers used for full line write */
1702 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next) {
1703 		if (cbuf->cbuf_buffer == NULL)
1704 			continue;
1705 		kmem_free(cbuf->cbuf_buffer, cbuf->cbuf_bcount + DEV_BSIZE);
1706 		cbuf->cbuf_buffer = NULL;
1707 		cbuf->cbuf_bcount = 0;
1708 	}
1709 
1710 	if (cs->cs_flags & (MD_RCS_UNDBUF | MD_RCS_UNPBUF)) {
1711 		un = cs->cs_un;
1712 		mutex_enter(&un->un_mx);
1713 	}
1714 	if (cs->cs_dbuffer) {
1715 		if (cs->cs_flags & MD_RCS_UNDBUF)
1716 			un->un_dbuffer = cs->cs_dbuffer;
1717 		else
1718 			kmem_free(cs->cs_dbuffer, cs->cs_bcount + DEV_BSIZE);
1719 	}
1720 	if (cs->cs_pbuffer) {
1721 		if (cs->cs_flags & MD_RCS_UNPBUF)
1722 			un->un_pbuffer = cs->cs_pbuffer;
1723 		else
1724 			kmem_free(cs->cs_pbuffer, cs->cs_bcount + DEV_BSIZE);
1725 	}
1726 	if (cs->cs_flags & (MD_RCS_UNDBUF | MD_RCS_UNPBUF)) {
1727 		un->un_rflags &= ~MD_RFLAG_NEEDBUF;
1728 		cv_broadcast(&un->un_cv);
1729 		mutex_exit(&un->un_mx);
1730 	}
1731 }
1732 
1733 /*
1734  * NAMES:	raid_line_reader_lock, raid_line_writer_lock
1735  * DESCRIPTION: RAID metadevice line reader and writer lock routines
1736  *		data column # and parity column #.
1737  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
1738  */
1739 
1740 void
1741 raid_line_reader_lock(md_raidcs_t *cs, int resync_thread)
1742 {
1743 	mr_unit_t	*un;
1744 	md_raidcs_t	*cs1;
1745 
1746 	ASSERT(cs->cs_line != MD_DISKADDR_ERROR);
1747 	un = cs->cs_un;
1748 	cs->cs_flags |= MD_RCS_READER;
1749 	STAT_CHECK(raid_line_lock_wait, MUTEX_HELD(&un->un_linlck_mx));
1750 	if (!panicstr)
1751 		mutex_enter(&un->un_linlck_mx);
1752 	cs1 = un->un_linlck_chn;
1753 	while (cs1 != NULL) {
1754 		for (cs1 = un->un_linlck_chn; cs1; cs1 = cs1->cs_linlck_next)
1755 			if (raid_io_overlaps(cs, cs1) == 1)
1756 				if (cs1->cs_flags & MD_RCS_WRITER)
1757 					break;
1758 
1759 		if (cs1 != NULL) {
1760 			if (panicstr)
1761 				panic("md; raid line write lock held");
1762 			un->un_linlck_flg = 1;
1763 			cv_wait(&un->un_linlck_cv, &un->un_linlck_mx);
1764 			STAT_INC(raid_read_waits);
1765 		}
1766 	}
1767 	STAT_MAX(raid_max_reader_locks, raid_reader_locks_active);
1768 	STAT_INC(raid_reader_locks);
1769 	cs1 = un->un_linlck_chn;
1770 	if (cs1 != NULL)
1771 		cs1->cs_linlck_prev = cs;
1772 	cs->cs_linlck_next = cs1;
1773 	cs->cs_linlck_prev = NULL;
1774 	un->un_linlck_chn = cs;
1775 	cs->cs_flags |= MD_RCS_LLOCKD;
1776 	if (resync_thread) {
1777 		diskaddr_t lastblk = cs->cs_blkno + cs->cs_blkcnt - 1;
1778 		diskaddr_t line = (lastblk + 1) / un->un_segsize;
1779 		ASSERT(raid_state_cnt(un, RCS_RESYNC));
1780 		mutex_enter(&un->un_mx);
1781 		un->un_resync_line_index = line;
1782 		mutex_exit(&un->un_mx);
1783 	}
1784 	if (!panicstr)
1785 		mutex_exit(&un->un_linlck_mx);
1786 }
1787 
1788 int
1789 raid_line_writer_lock(md_raidcs_t *cs, int lock)
1790 {
1791 	mr_unit_t	*un;
1792 	md_raidcs_t	*cs1;
1793 
1794 	ASSERT(cs->cs_line != MD_DISKADDR_ERROR);
1795 	cs->cs_flags |= MD_RCS_WRITER;
1796 	un = cs->cs_ps->ps_un;
1797 
1798 	STAT_CHECK(raid_line_lock_wait, MUTEX_HELD(&un->un_linlck_mx));
1799 	if (lock && !panicstr)
1800 		mutex_enter(&un->un_linlck_mx);
1801 	ASSERT(MUTEX_HELD(&un->un_linlck_mx));
1802 
1803 	cs1 = un->un_linlck_chn;
1804 	for (cs1 = un->un_linlck_chn; cs1; cs1 = cs1->cs_linlck_next)
1805 		if (raid_io_overlaps(cs, cs1))
1806 			break;
1807 
1808 	if (cs1 != NULL) {
1809 		if (panicstr)
1810 			panic("md: line writer lock inaccessible");
1811 		goto no_lock_exit;
1812 	}
1813 
1814 	if (raid_alloc_pwslot(cs)) {
1815 		if (panicstr)
1816 			panic("md: no prewrite slots");
1817 		STAT_INC(raid_prewrite_waits);
1818 		goto no_lock_exit;
1819 	}
1820 
1821 	cs1 = un->un_linlck_chn;
1822 	if (cs1 != NULL)
1823 		cs1->cs_linlck_prev = cs;
1824 	cs->cs_linlck_next = cs1;
1825 	cs->cs_linlck_prev = NULL;
1826 	un->un_linlck_chn = cs;
1827 	cs->cs_flags |= MD_RCS_LLOCKD;
1828 	cs->cs_flags &= ~MD_RCS_WAITING;
1829 	STAT_INC(raid_writer_locks);
1830 	STAT_MAX(raid_max_write_locks, raid_write_locks_active);
1831 	if (lock && !panicstr)
1832 		mutex_exit(&un->un_linlck_mx);
1833 	return (0);
1834 
1835 no_lock_exit:
1836 	/* if this is already queued then do not requeue it */
1837 	ASSERT(! (cs->cs_flags & MD_RCS_LLOCKD));
1838 	if (!lock || (cs->cs_flags & MD_RCS_WAITING))
1839 		return (1);
1840 	cs->cs_flags |= MD_RCS_WAITING;
1841 	cs->cs_un = un;
1842 	raid_enqueue(cs);
1843 	if (lock && !panicstr)
1844 		mutex_exit(&un->un_linlck_mx);
1845 	return (1);
1846 }
1847 
1848 static void
1849 raid_startio(md_raidcs_t *cs)
1850 {
1851 	mdi_unit_t	*ui = cs->cs_ps->ps_ui;
1852 	mr_unit_t	*un = cs->cs_un;
1853 
1854 	un = md_unit_readerlock(ui);
1855 	raid_write_io(un, cs);
1856 }
1857 
1858 void
1859 raid_io_startup(mr_unit_t *un)
1860 {
1861 	md_raidcs_t	*waiting_list, *cs1;
1862 	md_raidcs_t	*previous = NULL, *next = NULL;
1863 	mdi_unit_t	*ui =  MDI_UNIT(un->c.un_self_id);
1864 	kmutex_t	*io_list_mutex = &ui->ui_io_lock->io_list_mutex;
1865 
1866 	ASSERT(MUTEX_HELD(&un->un_linlck_mx));
1867 	mutex_enter(io_list_mutex);
1868 
1869 	/*
1870 	 * check to be sure there are no reader locks outstanding.  If
1871 	 * there are not then pass on the writer lock.
1872 	 */
1873 	waiting_list = ui->ui_io_lock->io_list_front;
1874 	while (waiting_list) {
1875 		ASSERT(waiting_list->cs_flags & MD_RCS_WAITING);
1876 		ASSERT(! (waiting_list->cs_flags & MD_RCS_LLOCKD));
1877 		for (cs1 = un->un_linlck_chn; cs1; cs1 = cs1->cs_linlck_next)
1878 			if (raid_io_overlaps(waiting_list, cs1) == 1)
1879 				break;
1880 		/*
1881 		 * there was an IOs that overlaps this io so go onto
1882 		 * the next io in the waiting list
1883 		 */
1884 		if (cs1) {
1885 			previous = waiting_list;
1886 			waiting_list = waiting_list->cs_linlck_next;
1887 			continue;
1888 		}
1889 
1890 		/*
1891 		 * There are no IOs that overlap this, so remove it from
1892 		 * the waiting queue, and start it
1893 		 */
1894 
1895 		if (raid_check_pw(waiting_list)) {
1896 			ASSERT(waiting_list->cs_flags & MD_RCS_WAITING);
1897 			previous = waiting_list;
1898 			waiting_list = waiting_list->cs_linlck_next;
1899 			continue;
1900 		}
1901 		ASSERT(waiting_list->cs_flags & MD_RCS_WAITING);
1902 
1903 		next = waiting_list->cs_linlck_next;
1904 		if (previous)
1905 			previous->cs_linlck_next = next;
1906 		else
1907 			ui->ui_io_lock->io_list_front = next;
1908 
1909 		if (ui->ui_io_lock->io_list_front == NULL)
1910 			ui->ui_io_lock->io_list_back = NULL;
1911 
1912 		if (ui->ui_io_lock->io_list_back == waiting_list)
1913 			ui->ui_io_lock->io_list_back = previous;
1914 
1915 		waiting_list->cs_linlck_next = NULL;
1916 		waiting_list->cs_flags &= ~MD_RCS_WAITING;
1917 		STAT_DEC(raid_write_queue_length);
1918 		if (raid_line_writer_lock(waiting_list, 0))
1919 			panic("region locking corrupted");
1920 
1921 		ASSERT(waiting_list->cs_flags & MD_RCS_LLOCKD);
1922 		daemon_request(&md_mstr_daemon, raid_startio,
1923 		    (daemon_queue_t *)waiting_list, REQ_OLD);
1924 		waiting_list = next;
1925 
1926 	}
1927 	mutex_exit(io_list_mutex);
1928 }
1929 
1930 void
1931 raid_line_exit(md_raidcs_t *cs)
1932 {
1933 	mr_unit_t	*un;
1934 
1935 	un = cs->cs_ps->ps_un;
1936 	STAT_CHECK(raid_line_lock_wait, MUTEX_HELD(&un->un_linlck_mx));
1937 	mutex_enter(&un->un_linlck_mx);
1938 	if (cs->cs_flags & MD_RCS_READER)
1939 		STAT_DEC(raid_reader_locks_active);
1940 	else
1941 		STAT_DEC(raid_write_locks_active);
1942 
1943 	if (cs->cs_linlck_prev)
1944 		cs->cs_linlck_prev->cs_linlck_next = cs->cs_linlck_next;
1945 	else
1946 		un->un_linlck_chn = cs->cs_linlck_next;
1947 	if (cs->cs_linlck_next)
1948 		cs->cs_linlck_next->cs_linlck_prev = cs->cs_linlck_prev;
1949 
1950 	cs->cs_flags &= ~MD_RCS_LLOCKD;
1951 
1952 	if (un->un_linlck_flg)
1953 		cv_broadcast(&un->un_linlck_cv);
1954 
1955 	un->un_linlck_flg = 0;
1956 	cs->cs_line = MD_DISKADDR_ERROR;
1957 
1958 	raid_cancel_pwslot(cs);
1959 	/*
1960 	 * now that the lock is droped go ahead and see if there are any
1961 	 * other writes that can be started up
1962 	 */
1963 	raid_io_startup(un);
1964 
1965 	mutex_exit(&un->un_linlck_mx);
1966 }
1967 
1968 /*
1969  * NAMES:	raid_line, raid_pcolumn, raid_dcolumn
1970  * DESCRIPTION: RAID metadevice APIs for mapping segment # to line #,
1971  *		data column # and parity column #.
1972  * PARAMETERS:	int segment - segment number
1973  *		mr_unit_t *un - pointer to an unit structure
1974  * RETURNS:	raid_line returns line #
1975  *		raid_dcolumn returns data column #
1976  *		raid_pcolumn returns parity column #
1977  */
1978 static diskaddr_t
1979 raid_line(diskaddr_t segment, mr_unit_t *un)
1980 {
1981 	diskaddr_t	adj_seg;
1982 	diskaddr_t	line;
1983 	diskaddr_t	max_orig_segment;
1984 
1985 	max_orig_segment = (un->un_origcolumncnt - 1) * un->un_segsincolumn;
1986 	if (segment >= max_orig_segment) {
1987 		adj_seg = segment - max_orig_segment;
1988 		line = adj_seg % un->un_segsincolumn;
1989 	} else {
1990 		line = segment / (un->un_origcolumncnt - 1);
1991 	}
1992 	return (line);
1993 }
1994 
1995 uint_t
1996 raid_dcolumn(diskaddr_t segment, mr_unit_t *un)
1997 {
1998 	diskaddr_t	adj_seg;
1999 	diskaddr_t	line;
2000 	diskaddr_t	max_orig_segment;
2001 	uint_t		column;
2002 
2003 	max_orig_segment = (un->un_origcolumncnt - 1) * un->un_segsincolumn;
2004 	if (segment >= max_orig_segment) {
2005 		adj_seg = segment - max_orig_segment;
2006 		column = un->un_origcolumncnt  +
2007 		    (uint_t)(adj_seg / un->un_segsincolumn);
2008 	} else {
2009 		line = segment / (un->un_origcolumncnt - 1);
2010 		column = (uint_t)((segment %
2011 		    (un->un_origcolumncnt - 1) + line) % un->un_origcolumncnt);
2012 	}
2013 	return (column);
2014 }
2015 
2016 uint_t
2017 raid_pcolumn(diskaddr_t segment, mr_unit_t *un)
2018 {
2019 	diskaddr_t	adj_seg;
2020 	diskaddr_t	line;
2021 	diskaddr_t	max_orig_segment;
2022 	uint_t		column;
2023 
2024 	max_orig_segment = (un->un_origcolumncnt - 1) * un->un_segsincolumn;
2025 	if (segment >= max_orig_segment) {
2026 		adj_seg = segment - max_orig_segment;
2027 		line = adj_seg % un->un_segsincolumn;
2028 	} else {
2029 		line = segment / (un->un_origcolumncnt - 1);
2030 	}
2031 	column = (uint_t)((line + (un->un_origcolumncnt - 1)) %
2032 	    un->un_origcolumncnt);
2033 	return (column);
2034 }
2035 
2036 
2037 /*
2038  * Is called in raid_iosetup to probe each column to insure
2039  * that all the columns are in 'okay' state and meet the
2040  * 'full line' requirement.  If any column is in error,
2041  * we don't want to enable the 'full line' flag.  Previously,
2042  * we would do so and disable it only when a error is
2043  * detected after the first 'full line' io which is too late
2044  * and leads to the potential data corruption.
2045  */
2046 static int
2047 raid_check_cols(mr_unit_t *un)
2048 {
2049 	buf_t		bp;
2050 	char		*buf;
2051 	mr_column_t	*colptr;
2052 	minor_t		mnum = MD_SID(un);
2053 	int		i;
2054 	int		err = 0;
2055 
2056 	buf = kmem_zalloc((uint_t)DEV_BSIZE, KM_SLEEP);
2057 
2058 	for (i = 0; i < un->un_totalcolumncnt; i++) {
2059 		md_dev64_t tmpdev;
2060 
2061 		colptr = &un->un_column[i];
2062 
2063 		tmpdev = colptr->un_dev;
2064 		/*
2065 		 * Open by device id
2066 		 * If this device is hotspared
2067 		 * use the hotspare key
2068 		 */
2069 		tmpdev = md_resolve_bydevid(mnum, tmpdev, HOTSPARED(un, i) ?
2070 		    colptr->un_hs_key : colptr->un_orig_key);
2071 
2072 		if (tmpdev == NODEV64) {
2073 			err = 1;
2074 			break;
2075 		}
2076 
2077 		colptr->un_dev = tmpdev;
2078 
2079 		bzero((caddr_t)&bp, sizeof (buf_t));
2080 		bp.b_back = &bp;
2081 		bp.b_forw = &bp;
2082 		bp.b_flags = (B_READ | B_BUSY);
2083 		sema_init(&bp.b_io, 0, NULL,
2084 		    SEMA_DEFAULT, NULL);
2085 		sema_init(&bp.b_sem, 0, NULL,
2086 		    SEMA_DEFAULT, NULL);
2087 		bp.b_edev = md_dev64_to_dev(colptr->un_dev);
2088 		bp.b_lblkno = colptr->un_pwstart;
2089 		bp.b_bcount = DEV_BSIZE;
2090 		bp.b_bufsize = DEV_BSIZE;
2091 		bp.b_un.b_addr = (caddr_t)buf;
2092 		(void) md_call_strategy(&bp, 0, NULL);
2093 		if (biowait(&bp)) {
2094 			err = 1;
2095 			break;
2096 		}
2097 	}
2098 
2099 	kmem_free(buf, DEV_BSIZE);
2100 	return (err);
2101 }
2102 
2103 /*
2104  * NAME:	raid_iosetup
2105  * DESCRIPTION: RAID metadevice specific I/O set up routine which does
2106  *		all the necessary calculations to determine the location
2107  *		of the segement for the I/O.
2108  * PARAMETERS:	mr_unit_t *un - unit number of RAID metadevice
2109  *		diskaddr_t	blkno - block number of the I/O attempt
2110  *		size_t		blkcnt - block count for this I/O
2111  *		md_raidcs_t *cs - child structure for each segmented I/O
2112  *
2113  * NOTE:	The following is an example of a raid disk layer out:
2114  *
2115  *		Total Column = 5
2116  *		Original Column = 4
2117  *		Segment Per Column = 10
2118  *
2119  *			Col#0	Col#1	Col#2	Col#3	Col#4	Col#5	Col#6
2120  *		-------------------------------------------------------------
2121  *		line#0	Seg#0	Seg#1	Seg#2	Parity	Seg#30	Seg#40
2122  *		line#1	Parity	Seg#3	Seg#4	Seg#5	Seg#31
2123  *		line#2	Seg#8	Parity	Seg#6	Seg#7	Seg#32
2124  *		line#3	Seg#10	Seg#11	Parity	Seg#9	Seg#33
2125  *		line#4	Seg#12	Seg#13	Seg#14	Parity	Seg#34
2126  *		line#5	Parity	Seg#15	Seg#16	Seg#17	Seg#35
2127  *		line#6	Seg#20	Parity	Seg#18	Seg#19	Seg#36
2128  *		line#7	Seg#22	Seg#23	Parity	Seg#21	Seg#37
2129  *		line#8	Seg#24	Seg#25	Seg#26	Parity	Seg#38
2130  *		line#9	Parity	Seg#27	Seg#28	Seg#29	Seg#39
2131  */
2132 static size_t
2133 raid_iosetup(
2134 	mr_unit_t	*un,
2135 	diskaddr_t	blkno,
2136 	size_t		blkcnt,
2137 	md_raidcs_t	*cs
2138 )
2139 {
2140 	diskaddr_t	segment;
2141 	diskaddr_t	segstart;
2142 	diskaddr_t	segoff;
2143 	size_t		leftover;
2144 	diskaddr_t	line;
2145 	uint_t		iosize;
2146 	uint_t		colcnt;
2147 
2148 	/* caculate the segment# and offset for the block */
2149 	segment = blkno / un->un_segsize;
2150 	segstart = segment * un->un_segsize;
2151 	segoff = blkno - segstart;
2152 	iosize = un->un_iosize - 1;
2153 	colcnt = un->un_totalcolumncnt - 1;
2154 	line = raid_line(segment, un);
2155 	cs->cs_dcolumn = raid_dcolumn(segment, un);
2156 	cs->cs_pcolumn = raid_pcolumn(segment, un);
2157 	cs->cs_dflags = un->un_column[cs->cs_dcolumn].un_devflags;
2158 	cs->cs_pflags = un->un_column[cs->cs_pcolumn].un_devflags;
2159 	cs->cs_line = line;
2160 
2161 	if ((cs->cs_ps->ps_flags & MD_RPS_WRITE) &&
2162 	    (UNIT_STATE(un) & RCS_OKAY) &&
2163 	    (segoff == 0) &&
2164 	    (un->un_totalcolumncnt == un->un_origcolumncnt) &&
2165 	    (un->un_segsize < un->un_iosize) &&
2166 	    (un->un_iosize <= un->un_maxio) &&
2167 	    (blkno == line * un->un_segsize * colcnt) &&
2168 	    (blkcnt >= ((un->un_totalcolumncnt -1) * un->un_segsize)) &&
2169 	    (raid_state_cnt(un, RCS_OKAY) == un->un_origcolumncnt) &&
2170 	    (raid_check_cols(un) == 0)) {
2171 
2172 		md_raidcbuf_t	**cbufp;
2173 		md_raidcbuf_t	*cbuf;
2174 		int		i, j;
2175 
2176 		STAT_INC(raid_full_line_writes);
2177 		leftover = blkcnt - (un->un_segsize * colcnt);
2178 		ASSERT(blkcnt >= (un->un_segsize * colcnt));
2179 		cs->cs_blkno = line * un->un_segsize;
2180 		cs->cs_blkcnt = un->un_segsize;
2181 		cs->cs_lastblk = cs->cs_blkno + cs->cs_blkcnt - 1;
2182 		cs->cs_bcount = dbtob(cs->cs_blkcnt);
2183 		cs->cs_flags |= MD_RCS_LINE;
2184 
2185 		cbufp = &cs->cs_buflist;
2186 		for (i = 0; i < un->un_totalcolumncnt; i++) {
2187 			j = cs->cs_dcolumn + i;
2188 			j = j % un->un_totalcolumncnt;
2189 
2190 			if ((j == cs->cs_dcolumn) || (j == cs->cs_pcolumn))
2191 				continue;
2192 			cbuf = kmem_cache_alloc(raid_cbuf_cache,
2193 			    MD_ALLOCFLAGS);
2194 			raid_cbuf_init(cbuf);
2195 			cbuf->cbuf_un = cs->cs_un;
2196 			cbuf->cbuf_ps = cs->cs_ps;
2197 			cbuf->cbuf_column = j;
2198 			cbuf->cbuf_bcount = dbtob(un->un_segsize);
2199 			*cbufp = cbuf;
2200 			cbufp = &cbuf->cbuf_next;
2201 		}
2202 		return (leftover);
2203 	}
2204 
2205 	leftover = blkcnt - (un->un_segsize - segoff);
2206 	if (blkcnt > (un->un_segsize - segoff))
2207 		blkcnt -= leftover;
2208 	else
2209 		leftover = 0;
2210 
2211 	if (blkcnt > (size_t)iosize) {
2212 		leftover += (blkcnt - iosize);
2213 		blkcnt = iosize;
2214 	}
2215 
2216 	/* calculate the line# and column# for the segment */
2217 	cs->cs_flags &= ~MD_RCS_LINE;
2218 	cs->cs_blkno = line * un->un_segsize + segoff;
2219 	cs->cs_blkcnt = (uint_t)blkcnt;
2220 	cs->cs_lastblk = cs->cs_blkno + cs->cs_blkcnt - 1;
2221 	cs->cs_bcount = dbtob((uint_t)blkcnt);
2222 	return (leftover);
2223 }
2224 
2225 /*
2226  * NAME:	raid_done
2227  * DESCRIPTION: RAID metadevice I/O done interrupt routine
2228  * PARAMETERS:	struct buf *bp - pointer to a buffer structure
2229  */
2230 static void
2231 raid_done(struct buf *bp)
2232 {
2233 	md_raidcs_t	*cs;
2234 	int		flags, frags;
2235 
2236 	sema_v(&bp->b_io);
2237 	cs = (md_raidcs_t *)bp->b_chain;
2238 
2239 	ASSERT(cs != NULL);
2240 
2241 	mutex_enter(&cs->cs_mx);
2242 	if (bp->b_flags & B_ERROR) {
2243 		cs->cs_flags |= MD_RCS_ERROR;
2244 		cs->cs_flags &= ~(MD_RCS_ISCALL);
2245 	}
2246 
2247 	flags = cs->cs_flags;
2248 	frags = --cs->cs_frags;
2249 	mutex_exit(&cs->cs_mx);
2250 	if (frags != 0) {
2251 		return;
2252 	}
2253 
2254 	if (flags & MD_RCS_ERROR) {
2255 		if (cs->cs_error_call) {
2256 			daemon_request(&md_done_daemon, cs->cs_error_call,
2257 			    (daemon_queue_t *)cs, REQ_OLD);
2258 		}
2259 		return;
2260 	}
2261 
2262 	if (flags & MD_RCS_ISCALL) {
2263 		cs->cs_flags &= ~(MD_RCS_ISCALL);
2264 		(*(cs->cs_call))(cs);
2265 		return;
2266 	}
2267 	daemon_request(&md_done_daemon, cs->cs_call,
2268 	    (daemon_queue_t *)cs, REQ_OLD);
2269 }
2270 /*
2271  * the flag RIO_EXTRA is used when dealing with a column in the process
2272  * of being resynced. During the resync, writes may have to take place
2273  * on both the original component and a hotspare component.
2274  */
2275 #define	RIO_DATA	0x00100		/* use data buffer & data column */
2276 #define	RIO_PARITY	0x00200		/* use parity buffer & parity column */
2277 #define	RIO_WRITE	0x00400		/* issue a write */
2278 #define	RIO_READ	0x00800		/* issue a read */
2279 #define	RIO_PWIO	0x01000		/* do the I/O to the prewrite entry */
2280 #define	RIO_ALT		0x02000		/* do write to alternate device */
2281 #define	RIO_EXTRA	0x04000		/* use extra buffer */
2282 
2283 #define	RIO_COLMASK	0x000ff
2284 
2285 #define	RIO_PREWRITE	RIO_WRITE | RIO_PWIO
2286 
2287 /*
2288  * NAME:	raidio
2289  * DESCRIPTION: RAID metadevice write routine
2290  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
2291  */
2292 static void
2293 raidio(md_raidcs_t *cs, int flags)
2294 {
2295 	buf_t		*bp;
2296 	int		column;
2297 	int		flag;
2298 	void		*private;
2299 	mr_unit_t	*un;
2300 	int		iosize;
2301 	diskaddr_t	pwstart;
2302 	diskaddr_t	devstart;
2303 	md_dev64_t	dev;
2304 
2305 	un = cs->cs_un;
2306 
2307 	ASSERT(IO_READER_HELD(un));
2308 	ASSERT(UNIT_READER_HELD(un));
2309 
2310 	if (flags & RIO_DATA) {
2311 		if (flags & RIO_EXTRA)
2312 			bp = &cs->cs_hbuf;
2313 		else
2314 			bp = &cs->cs_dbuf;
2315 		bp->b_un.b_addr = cs->cs_dbuffer;
2316 		column = cs->cs_dcolumn;
2317 	} else {
2318 		if (flags & RIO_EXTRA)
2319 			bp = &cs->cs_hbuf;
2320 		else
2321 			bp = &cs->cs_pbuf;
2322 		bp->b_un.b_addr = cs->cs_pbuffer;
2323 		column = cs->cs_pcolumn;
2324 	}
2325 	if (flags & RIO_COLMASK)
2326 		column = (flags & RIO_COLMASK) - 1;
2327 
2328 	bp->b_bcount = cs->cs_bcount;
2329 	bp->b_bufsize = cs->cs_bcount;
2330 	iosize = un->un_iosize;
2331 
2332 	/* check if the hotspared device will be used */
2333 	if (flags & RIO_ALT && (flags & RIO_WRITE)) {
2334 		pwstart = un->un_column[column].un_alt_pwstart;
2335 		devstart = un->un_column[column].un_alt_devstart;
2336 		dev = un->un_column[column].un_alt_dev;
2337 	} else {
2338 		pwstart = un->un_column[column].un_pwstart;
2339 		devstart = un->un_column[column].un_devstart;
2340 		dev = un->un_column[column].un_dev;
2341 	}
2342 
2343 	/* if not writing to log skip log header */
2344 	if ((flags & RIO_PWIO) == 0) {
2345 		bp->b_lblkno = devstart + cs->cs_blkno;
2346 		bp->b_un.b_addr += DEV_BSIZE;
2347 	} else {
2348 		bp->b_bcount += DEV_BSIZE;
2349 		bp->b_bufsize = bp->b_bcount;
2350 		if (flags & RIO_DATA) {
2351 			bp->b_lblkno = cs->cs_dpwslot * iosize + pwstart;
2352 		} else { /* not DATA -> PARITY */
2353 			bp->b_lblkno = cs->cs_ppwslot * iosize + pwstart;
2354 		}
2355 	}
2356 
2357 	bp->b_flags &= ~(B_READ | B_WRITE | B_ERROR | nv_available);
2358 	bp->b_flags |= B_BUSY;
2359 	if (flags & RIO_READ) {
2360 		bp->b_flags |= B_READ;
2361 	} else {
2362 		bp->b_flags |= B_WRITE;
2363 		if ((nv_available && nv_parity && (flags & RIO_PARITY)) ||
2364 		    (nv_available && nv_prewrite && (flags & RIO_PWIO)))
2365 			bp->b_flags |= nv_available;
2366 	}
2367 	bp->b_iodone = (int (*)())raid_done;
2368 	bp->b_edev = md_dev64_to_dev(dev);
2369 
2370 	ASSERT((bp->b_edev != 0) && (bp->b_edev != NODEV));
2371 
2372 	private = cs->cs_strategy_private;
2373 	flag = cs->cs_strategy_flag;
2374 
2375 	md_call_strategy(bp, flag, private);
2376 }
2377 
2378 /*
2379  * NAME:	genstandardparity
2380  * DESCRIPTION: This routine
2381  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
2382  */
2383 static void
2384 genstandardparity(md_raidcs_t *cs)
2385 {
2386 	uint_t		*dbuf, *pbuf;
2387 	size_t		wordcnt;
2388 	uint_t		dsum = 0;
2389 	uint_t		psum = 0;
2390 
2391 	ASSERT((cs->cs_bcount & 0x3) == 0);
2392 
2393 	wordcnt = cs->cs_bcount / sizeof (uint_t);
2394 
2395 	dbuf = (uint_t *)(void *)(cs->cs_dbuffer + DEV_BSIZE);
2396 	pbuf = (uint_t *)(void *)(cs->cs_pbuffer + DEV_BSIZE);
2397 
2398 	/* Word aligned */
2399 	if (((uintptr_t)cs->cs_addr & 0x3) == 0) {
2400 		uint_t	*uwbuf = (uint_t *)(void *)(cs->cs_addr);
2401 		uint_t	uval;
2402 
2403 		while (wordcnt--) {
2404 			uval = *uwbuf++;
2405 			psum ^= (*pbuf = ((*pbuf ^ *dbuf) ^ uval));
2406 			++pbuf;
2407 			*dbuf = uval;
2408 			dsum ^= uval;
2409 			++dbuf;
2410 		}
2411 	} else {
2412 		uchar_t	*ubbuf = (uchar_t *)(cs->cs_addr);
2413 		union {
2414 			uint_t	wb;
2415 			uchar_t	bb[4];
2416 		} cb;
2417 
2418 		while (wordcnt--) {
2419 			cb.bb[0] = *ubbuf++;
2420 			cb.bb[1] = *ubbuf++;
2421 			cb.bb[2] = *ubbuf++;
2422 			cb.bb[3] = *ubbuf++;
2423 			psum ^= (*pbuf = ((*pbuf ^ *dbuf) ^ cb.wb));
2424 			++pbuf;
2425 			*dbuf = cb.wb;
2426 			dsum ^= cb.wb;
2427 			++dbuf;
2428 		}
2429 	}
2430 
2431 	RAID_FILLIN_RPW(cs->cs_dbuffer, cs->cs_un, dsum, cs->cs_pcolumn,
2432 	    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
2433 	    2, cs->cs_dcolumn, RAID_PWMAGIC);
2434 
2435 	RAID_FILLIN_RPW(cs->cs_pbuffer, cs->cs_un, psum, cs->cs_dcolumn,
2436 	    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
2437 	    2, cs->cs_pcolumn, RAID_PWMAGIC);
2438 }
2439 
2440 static void
2441 genlineparity(md_raidcs_t *cs)
2442 {
2443 
2444 	mr_unit_t	*un = cs->cs_un;
2445 	md_raidcbuf_t	*cbuf;
2446 	uint_t		*pbuf, *dbuf;
2447 	uint_t		*uwbuf;
2448 	uchar_t		*ubbuf;
2449 	size_t		wordcnt;
2450 	uint_t		psum = 0, dsum = 0;
2451 	size_t		count = un->un_segsize * DEV_BSIZE;
2452 	uint_t		col;
2453 	buf_t		*bp;
2454 
2455 	ASSERT((cs->cs_bcount & 0x3) == 0);
2456 
2457 	pbuf = (uint_t *)(void *)(cs->cs_pbuffer + DEV_BSIZE);
2458 	dbuf = (uint_t *)(void *)(cs->cs_dbuffer + DEV_BSIZE);
2459 	uwbuf = (uint_t *)(void *)(cs->cs_addr);
2460 	ubbuf = (uchar_t *)(void *)(cs->cs_addr);
2461 
2462 	wordcnt = count / sizeof (uint_t);
2463 
2464 	/* Word aligned */
2465 	if (((uintptr_t)cs->cs_addr & 0x3) == 0) {
2466 		uint_t	 uval;
2467 
2468 		while (wordcnt--) {
2469 			uval = *uwbuf++;
2470 			*dbuf = uval;
2471 			*pbuf = uval;
2472 			dsum ^= uval;
2473 			++pbuf;
2474 			++dbuf;
2475 		}
2476 	} else {
2477 		union {
2478 			uint_t	wb;
2479 			uchar_t	bb[4];
2480 		} cb;
2481 
2482 		while (wordcnt--) {
2483 			cb.bb[0] = *ubbuf++;
2484 			cb.bb[1] = *ubbuf++;
2485 			cb.bb[2] = *ubbuf++;
2486 			cb.bb[3] = *ubbuf++;
2487 			*dbuf = cb.wb;
2488 			*pbuf = cb.wb;
2489 			dsum ^= cb.wb;
2490 			++pbuf;
2491 			++dbuf;
2492 		}
2493 	}
2494 
2495 	RAID_FILLIN_RPW(cs->cs_dbuffer, un, dsum, cs->cs_pcolumn,
2496 	    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
2497 	    un->un_totalcolumncnt, cs->cs_dcolumn, RAID_PWMAGIC);
2498 
2499 	raidio(cs, RIO_PREWRITE | RIO_DATA);
2500 
2501 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next) {
2502 
2503 		dsum = 0;
2504 		pbuf = (uint_t *)(void *)(cs->cs_pbuffer + DEV_BSIZE);
2505 		dbuf = (uint_t *)(void *)(cbuf->cbuf_buffer + DEV_BSIZE);
2506 
2507 		wordcnt = count / sizeof (uint_t);
2508 
2509 		col = cbuf->cbuf_column;
2510 
2511 		/* Word aligned */
2512 		if (((uintptr_t)cs->cs_addr & 0x3) == 0) {
2513 			uint_t	uval;
2514 
2515 			/*
2516 			 * Only calculate psum when working on the last
2517 			 * data buffer.
2518 			 */
2519 			if (cbuf->cbuf_next == NULL) {
2520 				psum = 0;
2521 				while (wordcnt--) {
2522 					uval = *uwbuf++;
2523 					*dbuf = uval;
2524 					psum ^= (*pbuf ^= uval);
2525 					dsum ^= uval;
2526 					++dbuf;
2527 					++pbuf;
2528 				}
2529 			} else {
2530 				while (wordcnt--) {
2531 					uval = *uwbuf++;
2532 					*dbuf = uval;
2533 					*pbuf ^= uval;
2534 					dsum ^= uval;
2535 					++dbuf;
2536 					++pbuf;
2537 				}
2538 			}
2539 		} else {
2540 			union {
2541 				uint_t	wb;
2542 				uchar_t	bb[4];
2543 			} cb;
2544 
2545 			/*
2546 			 * Only calculate psum when working on the last
2547 			 * data buffer.
2548 			 */
2549 			if (cbuf->cbuf_next == NULL) {
2550 				psum = 0;
2551 				while (wordcnt--) {
2552 					cb.bb[0] = *ubbuf++;
2553 					cb.bb[1] = *ubbuf++;
2554 					cb.bb[2] = *ubbuf++;
2555 					cb.bb[3] = *ubbuf++;
2556 					*dbuf = cb.wb;
2557 					psum ^= (*pbuf ^= cb.wb);
2558 					dsum ^= cb.wb;
2559 					++dbuf;
2560 					++pbuf;
2561 				}
2562 			} else {
2563 				while (wordcnt--) {
2564 					cb.bb[0] = *ubbuf++;
2565 					cb.bb[1] = *ubbuf++;
2566 					cb.bb[2] = *ubbuf++;
2567 					cb.bb[3] = *ubbuf++;
2568 					*dbuf = cb.wb;
2569 					*pbuf ^= cb.wb;
2570 					dsum ^= cb.wb;
2571 					++dbuf;
2572 					++pbuf;
2573 				}
2574 			}
2575 		}
2576 		RAID_FILLIN_RPW(cbuf->cbuf_buffer, un, dsum, cs->cs_pcolumn,
2577 		    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
2578 		    un->un_totalcolumncnt, col, RAID_PWMAGIC);
2579 
2580 		/*
2581 		 * fill in buffer for write to prewrite area
2582 		 */
2583 		bp = &cbuf->cbuf_bp;
2584 		bp->b_un.b_addr = cbuf->cbuf_buffer;
2585 		bp->b_bcount = cbuf->cbuf_bcount + DEV_BSIZE;
2586 		bp->b_bufsize = bp->b_bcount;
2587 		bp->b_lblkno = (cbuf->cbuf_pwslot * un->un_iosize) +
2588 		    un->un_column[col].un_pwstart;
2589 		bp->b_flags = B_WRITE | B_BUSY;
2590 		if (nv_available && nv_prewrite)
2591 			bp->b_flags |= nv_available;
2592 		bp->b_iodone = (int (*)())raid_done;
2593 		bp->b_edev = md_dev64_to_dev(un->un_column[col].un_dev);
2594 		bp->b_chain = (struct buf *)cs;
2595 		md_call_strategy(bp,
2596 		    cs->cs_strategy_flag, cs->cs_strategy_private);
2597 	}
2598 
2599 	RAID_FILLIN_RPW(cs->cs_pbuffer, un, psum, cs->cs_dcolumn,
2600 	    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
2601 	    un->un_totalcolumncnt, cs->cs_pcolumn, RAID_PWMAGIC);
2602 
2603 	raidio(cs, RIO_PREWRITE | RIO_PARITY);
2604 }
2605 
2606 /*
2607  * NAME:	raid_readregenloop
2608  * DESCRIPTION: RAID metadevice write routine
2609  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
2610  */
2611 static void
2612 raid_readregenloop(md_raidcs_t *cs)
2613 {
2614 	mr_unit_t	*un;
2615 	md_raidps_t	*ps;
2616 	uint_t		*dbuf;
2617 	uint_t		*pbuf;
2618 	size_t		wordcnt;
2619 
2620 	un = cs->cs_un;
2621 
2622 	/*
2623 	 * XOR the parity with data bytes, must skip the
2624 	 * pre-write entry header in all data/parity buffers
2625 	 */
2626 	wordcnt = cs->cs_bcount / sizeof (uint_t);
2627 	dbuf = (uint_t *)(void *)(cs->cs_dbuffer + DEV_BSIZE);
2628 	pbuf = (uint_t *)(void *)(cs->cs_pbuffer + DEV_BSIZE);
2629 	while (wordcnt--)
2630 		*dbuf++ ^= *pbuf++;
2631 
2632 	/* bump up the loop count */
2633 	cs->cs_loop++;
2634 
2635 	/* skip the errored component */
2636 	if (cs->cs_loop == cs->cs_dcolumn)
2637 		cs->cs_loop++;
2638 
2639 	if (cs->cs_loop != un->un_totalcolumncnt) {
2640 		cs->cs_frags = 1;
2641 		raidio(cs, RIO_PARITY | RIO_READ | (cs->cs_loop + 1));
2642 		return;
2643 	}
2644 	/* reaching the end sof loop */
2645 	ps = cs->cs_ps;
2646 	bcopy(cs->cs_dbuffer + DEV_BSIZE, cs->cs_addr, cs->cs_bcount);
2647 	raid_free_child(cs, 1);
2648 
2649 	/* decrement readfrags */
2650 	raid_free_parent(ps, RFP_DECR_READFRAGS | RFP_RLS_LOCK);
2651 }
2652 
2653 /*
2654  * NAME:	raid_read_io
2655  * DESCRIPTION: RAID metadevice read I/O routine
2656  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
2657  *		md_raidcs_t *cs - pointer to a child structure
2658  */
2659 static void
2660 raid_read_io(mr_unit_t *un, md_raidcs_t *cs)
2661 {
2662 	int	flag;
2663 	void	*private;
2664 	buf_t	*bp;
2665 	buf_t	*pb = cs->cs_ps->ps_bp;
2666 	mr_column_t	*column;
2667 
2668 	flag = cs->cs_strategy_flag;
2669 	private = cs->cs_strategy_private;
2670 	column = &un->un_column[cs->cs_dcolumn];
2671 
2672 	/*
2673 	 * The component to be read is good, simply set up bp structure
2674 	 * and call low level md routine doing the read.
2675 	 */
2676 
2677 	if (COLUMN_ISOKAY(un, cs->cs_dcolumn) ||
2678 	    (COLUMN_ISLASTERR(un, cs->cs_dcolumn) &&
2679 	    (cs->cs_flags & MD_RCS_RECOVERY) == 0)) {
2680 		dev_t ddi_dev; /* needed for bioclone, so not md_dev64_t */
2681 		ddi_dev = md_dev64_to_dev(column->un_dev);
2682 
2683 		bp = &cs->cs_dbuf;
2684 		bp = md_bioclone(pb, cs->cs_offset, cs->cs_bcount, ddi_dev,
2685 		    column->un_devstart + cs->cs_blkno,
2686 		    (int (*)())raid_done, bp, KM_NOSLEEP);
2687 
2688 		bp->b_chain = (buf_t *)cs;
2689 
2690 		cs->cs_frags = 1;
2691 		cs->cs_error_call = raid_read_error;
2692 		cs->cs_retry_call = raid_read_retry;
2693 		cs->cs_flags |= MD_RCS_ISCALL;
2694 		cs->cs_stage = RAID_READ_DONE;
2695 		cs->cs_call = raid_stage;
2696 
2697 		ASSERT(bp->b_edev != 0);
2698 
2699 		md_call_strategy(bp, flag, private);
2700 		return;
2701 	}
2702 
2703 	/*
2704 	 * The component to be read is bad, have to go through
2705 	 * raid specific method to read data from other members.
2706 	 */
2707 	cs->cs_loop = 0;
2708 	/*
2709 	 * NOTE: always get dbuffer before pbuffer
2710 	 *	 and get both buffers before pwslot
2711 	 *	 otherwise a deadlock could be introduced.
2712 	 */
2713 	raid_mapin_buf(cs);
2714 	getdbuffer(cs);
2715 	getpbuffer(cs);
2716 	if (cs->cs_loop == cs->cs_dcolumn)
2717 		cs->cs_loop++;
2718 
2719 	/* zero out data buffer for use as a data sink */
2720 	bzero(cs->cs_dbuffer + DEV_BSIZE, cs->cs_bcount);
2721 	cs->cs_stage = RAID_NONE;
2722 	cs->cs_call = raid_readregenloop;
2723 	cs->cs_error_call = raid_read_error;
2724 	cs->cs_retry_call = raid_read_no_retry;
2725 	cs->cs_frags = 1;
2726 
2727 	/* use parity buffer to read other columns */
2728 	raidio(cs, RIO_PARITY | RIO_READ | (cs->cs_loop + 1));
2729 }
2730 
2731 /*
2732  * NAME:	raid_read
2733  * DESCRIPTION: RAID metadevice write routine
2734  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
2735  *		md_raidcs_t *cs - pointer to a child structure
2736  */
2737 static int
2738 raid_read(mr_unit_t *un, md_raidcs_t *cs)
2739 {
2740 	int		error = 0;
2741 	md_raidps_t	*ps;
2742 	mdi_unit_t	*ui;
2743 	minor_t		mnum;
2744 
2745 	ASSERT(IO_READER_HELD(un));
2746 	ps = cs->cs_ps;
2747 	ui = ps->ps_ui;
2748 	raid_line_reader_lock(cs, 0);
2749 	un = (mr_unit_t *)md_unit_readerlock(ui);
2750 	ASSERT(UNIT_STATE(un) != RUS_INIT);
2751 	mnum = MD_SID(un);
2752 	cs->cs_un = un;
2753 
2754 	/* make sure the read doesn't go beyond the end of the column */
2755 	if (cs->cs_blkno + cs->cs_blkcnt >
2756 	    un->un_segsize * un->un_segsincolumn) {
2757 		error = ENXIO;
2758 	}
2759 	if (error)
2760 		goto rerror;
2761 
2762 	if (un->un_state & RUS_REGEN) {
2763 		raid_regen_parity(cs);
2764 		un = MD_UNIT(mnum);
2765 		cs->cs_un = un;
2766 	}
2767 
2768 	raid_read_io(un, cs);
2769 	return (0);
2770 
2771 rerror:
2772 	raid_error_parent(ps, error);
2773 	raid_free_child(cs, 1);
2774 	/* decrement readfrags */
2775 	raid_free_parent(ps, RFP_DECR_READFRAGS | RFP_RLS_LOCK);
2776 	return (0);
2777 }
2778 
2779 /*
2780  * NAME:	raid_write_err_retry
2781  * DESCRIPTION: RAID metadevice write retry routine
2782  *		write was for parity or data only;
2783  *		complete write with error, no recovery possible
2784  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
2785  *		md_raidcs_t *cs - pointer to a child structure
2786  */
2787 /*ARGSUSED*/
2788 static void
2789 raid_write_err_retry(mr_unit_t *un, md_raidcs_t *cs)
2790 {
2791 	md_raidps_t	*ps = cs->cs_ps;
2792 	int		flags = RFP_DECR_FRAGS | RFP_RLS_LOCK;
2793 
2794 	/* decrement pwfrags if needed, and frags */
2795 	if (!(cs->cs_flags & MD_RCS_PWDONE))
2796 		flags |= RFP_DECR_PWFRAGS;
2797 	raid_error_parent(ps, EIO);
2798 	raid_free_child(cs, 1);
2799 	raid_free_parent(ps, flags);
2800 }
2801 
2802 /*
2803  * NAME:	raid_write_err_retry
2804  * DESCRIPTION: RAID metadevice write retry routine
2805  *		 write is too far along to retry and parent
2806  *		 has already been signaled with iodone.
2807  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
2808  *		md_raidcs_t *cs - pointer to a child structure
2809  */
2810 /*ARGSUSED*/
2811 static void
2812 raid_write_no_retry(mr_unit_t *un, md_raidcs_t *cs)
2813 {
2814 	md_raidps_t	*ps = cs->cs_ps;
2815 	int		flags = RFP_DECR_FRAGS | RFP_RLS_LOCK;
2816 
2817 	/* decrement pwfrags if needed, and frags */
2818 	if (!(cs->cs_flags & MD_RCS_PWDONE))
2819 		flags |= RFP_DECR_PWFRAGS;
2820 	raid_free_child(cs, 1);
2821 	raid_free_parent(ps, flags);
2822 }
2823 
2824 /*
2825  * NAME:	raid_write_retry
2826  * DESCRIPTION: RAID metadevice write retry routine
2827  * PARAMETERS:	mr_unit_t *un - pointer to a unit structure
2828  *		md_raidcs_t *cs - pointer to a child structure
2829  */
2830 static void
2831 raid_write_retry(mr_unit_t *un, md_raidcs_t *cs)
2832 {
2833 	md_raidps_t	*ps;
2834 
2835 	ps = cs->cs_ps;
2836 
2837 	/* re-initialize the buf_t structure for raid_write() */
2838 	cs->cs_dbuf.b_chain = (struct buf *)cs;
2839 	cs->cs_dbuf.b_back = &cs->cs_dbuf;
2840 	cs->cs_dbuf.b_forw = &cs->cs_dbuf;
2841 	cs->cs_dbuf.b_flags = B_BUSY;	/* initialize flags */
2842 	cs->cs_dbuf.b_error = 0;	/* initialize error */
2843 	cs->cs_dbuf.b_offset = -1;
2844 	/* Initialize semaphores */
2845 	sema_init(&cs->cs_dbuf.b_io, 0, NULL,
2846 	    SEMA_DEFAULT, NULL);
2847 	sema_init(&cs->cs_dbuf.b_sem, 0, NULL,
2848 	    SEMA_DEFAULT, NULL);
2849 
2850 	cs->cs_pbuf.b_chain = (struct buf *)cs;
2851 	cs->cs_pbuf.b_back = &cs->cs_pbuf;
2852 	cs->cs_pbuf.b_forw = &cs->cs_pbuf;
2853 	cs->cs_pbuf.b_flags = B_BUSY;	/* initialize flags */
2854 	cs->cs_pbuf.b_error = 0;	/* initialize error */
2855 	cs->cs_pbuf.b_offset = -1;
2856 	sema_init(&cs->cs_pbuf.b_io, 0, NULL,
2857 	    SEMA_DEFAULT, NULL);
2858 	sema_init(&cs->cs_pbuf.b_sem, 0, NULL,
2859 	    SEMA_DEFAULT, NULL);
2860 
2861 	cs->cs_hbuf.b_chain = (struct buf *)cs;
2862 	cs->cs_hbuf.b_back = &cs->cs_hbuf;
2863 	cs->cs_hbuf.b_forw = &cs->cs_hbuf;
2864 	cs->cs_hbuf.b_flags = B_BUSY;	/* initialize flags */
2865 	cs->cs_hbuf.b_error = 0;	/* initialize error */
2866 	cs->cs_hbuf.b_offset = -1;
2867 	sema_init(&cs->cs_hbuf.b_io, 0, NULL,
2868 	    SEMA_DEFAULT, NULL);
2869 	sema_init(&cs->cs_hbuf.b_sem, 0, NULL,
2870 	    SEMA_DEFAULT, NULL);
2871 
2872 	cs->cs_flags &= ~(MD_RCS_ERROR);
2873 	/*
2874 	 * If we have already done'ed the i/o but have done prewrite
2875 	 * on this child, then reset PWDONE flag and bump pwfrags before
2876 	 * restarting i/o.
2877 	 * If pwfrags is zero, we have already 'iodone'd the i/o so
2878 	 * leave things alone.  We don't want to re-'done' it.
2879 	 */
2880 	mutex_enter(&ps->ps_mx);
2881 	if (cs->cs_flags & MD_RCS_PWDONE) {
2882 		cs->cs_flags &= ~MD_RCS_PWDONE;
2883 		ps->ps_pwfrags++;
2884 	}
2885 	mutex_exit(&ps->ps_mx);
2886 	raid_write_io(un, cs);
2887 }
2888 
2889 /*
2890  * NAME:	raid_wrerr
2891  * DESCRIPTION: RAID metadevice write routine
2892  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
2893  * LOCKS:	must obtain unit writer lock while calling raid_error_state
2894  *		since a unit or column state transition may take place.
2895  *		must obtain unit reader lock to retry I/O.
2896  */
2897 static void
2898 raid_wrerr(md_raidcs_t *cs)
2899 {
2900 	md_raidps_t	*ps;
2901 	mdi_unit_t	*ui;
2902 	mr_unit_t	*un;
2903 	md_raidcbuf_t	*cbuf;
2904 
2905 	ps = cs->cs_ps;
2906 	ui = ps->ps_ui;
2907 
2908 	un = (mr_unit_t *)md_unit_writerlock(ui);
2909 	ASSERT(un != 0);
2910 
2911 	if (cs->cs_dbuf.b_flags & B_ERROR)
2912 		(void) raid_error_state(un, &cs->cs_dbuf);
2913 	if (cs->cs_pbuf.b_flags & B_ERROR)
2914 		(void) raid_error_state(un, &cs->cs_pbuf);
2915 	if (cs->cs_hbuf.b_flags & B_ERROR)
2916 		(void) raid_error_state(un, &cs->cs_hbuf);
2917 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next)
2918 		if (cbuf->cbuf_bp.b_flags & B_ERROR)
2919 			(void) raid_error_state(un, &cbuf->cbuf_bp);
2920 
2921 	md_unit_writerexit(ui);
2922 
2923 	ps->ps_flags |= MD_RPS_HSREQ;
2924 
2925 	un = (mr_unit_t *)md_unit_readerlock(ui);
2926 
2927 	/* now attempt the appropriate retry routine */
2928 	(*(cs->cs_retry_call))(un, cs);
2929 }
2930 /*
2931  * NAMES:	raid_write_error
2932  * DESCRIPTION: I/O error handling routine for a RAID metadevice write
2933  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
2934  */
2935 /*ARGSUSED*/
2936 static void
2937 raid_write_error(md_raidcs_t *cs)
2938 {
2939 	md_raidps_t	*ps;
2940 	mdi_unit_t	*ui;
2941 	mr_unit_t	*un;
2942 	md_raidcbuf_t	*cbuf;
2943 	set_t		setno;
2944 
2945 	ps = cs->cs_ps;
2946 	ui = ps->ps_ui;
2947 	un = cs->cs_un;
2948 
2949 	setno = MD_UN2SET(un);
2950 
2951 	/*
2952 	 * locate each buf that is in error on this io and then
2953 	 * output an error message
2954 	 */
2955 	if ((cs->cs_dbuf.b_flags & B_ERROR) &&
2956 	    (COLUMN_STATE(un, cs->cs_dcolumn) != RCS_ERRED) &&
2957 	    (COLUMN_STATE(un, cs->cs_dcolumn) != RCS_LAST_ERRED))
2958 		cmn_err(CE_WARN, "md %s: write error on %s",
2959 		    md_shortname(MD_SID(un)),
2960 		    md_devname(setno, md_expldev(cs->cs_dbuf.b_edev), NULL, 0));
2961 
2962 	if ((cs->cs_pbuf.b_flags & B_ERROR) &&
2963 	    (COLUMN_STATE(un, cs->cs_pcolumn) != RCS_ERRED) &&
2964 	    (COLUMN_STATE(un, cs->cs_pcolumn) != RCS_LAST_ERRED))
2965 		cmn_err(CE_WARN, "md %s: write error on %s",
2966 		    md_shortname(MD_SID(un)),
2967 		    md_devname(setno, md_expldev(cs->cs_pbuf.b_edev), NULL, 0));
2968 
2969 	for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next)
2970 		if ((cbuf->cbuf_bp.b_flags & B_ERROR) &&
2971 		    (COLUMN_STATE(un, cbuf->cbuf_column) != RCS_ERRED) &&
2972 		    (COLUMN_STATE(un, cbuf->cbuf_column) != RCS_LAST_ERRED))
2973 			cmn_err(CE_WARN, "md %s: write error on %s",
2974 			    md_shortname(MD_SID(un)),
2975 			    md_devname(setno, md_expldev(cbuf->cbuf_bp.b_edev),
2976 			    NULL, 0));
2977 
2978 	md_unit_readerexit(ui);
2979 
2980 	ASSERT(cs->cs_frags == 0);
2981 
2982 	/* now schedule processing for possible state change */
2983 	daemon_request(&md_mstr_daemon, raid_wrerr,
2984 	    (daemon_queue_t *)cs, REQ_OLD);
2985 
2986 }
2987 
2988 /*
2989  * NAME:	raid_write_ponly
2990  * DESCRIPTION: RAID metadevice write routine
2991  *		in the case where only the parity column can be written
2992  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
2993  */
2994 static void
2995 raid_write_ponly(md_raidcs_t *cs)
2996 {
2997 	md_raidps_t	*ps;
2998 	mr_unit_t	*un = cs->cs_un;
2999 
3000 	ps = cs->cs_ps;
3001 	/* decrement pwfrags if needed, but not frags */
3002 	ASSERT(!(cs->cs_flags & MD_RCS_PWDONE));
3003 	raid_free_parent(ps, RFP_DECR_PWFRAGS);
3004 	cs->cs_flags |= MD_RCS_PWDONE;
3005 	cs->cs_frags = 1;
3006 	cs->cs_stage = RAID_WRITE_PONLY_DONE;
3007 	cs->cs_call = raid_stage;
3008 	cs->cs_error_call = raid_write_error;
3009 	cs->cs_retry_call = raid_write_no_retry;
3010 	if (WRITE_ALT(un, cs->cs_pcolumn)) {
3011 		cs->cs_frags++;
3012 		raidio(cs, RIO_ALT | RIO_EXTRA | RIO_PARITY | RIO_WRITE);
3013 	}
3014 	raidio(cs, RIO_PARITY | RIO_WRITE);
3015 }
3016 
3017 /*
3018  * NAME:	raid_write_ploop
3019  * DESCRIPTION: RAID metadevice write routine, constructs parity from
3020  *		data in other columns.
3021  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
3022  */
3023 static void
3024 raid_write_ploop(md_raidcs_t *cs)
3025 {
3026 	mr_unit_t *un = cs->cs_un;
3027 	uint_t *dbuf;
3028 	uint_t *pbuf;
3029 	size_t wordcnt;
3030 	uint_t psum = 0;
3031 
3032 	wordcnt = cs->cs_bcount / sizeof (uint_t);
3033 	dbuf = (uint_t *)(void *)(cs->cs_dbuffer + DEV_BSIZE);
3034 	pbuf = (uint_t *)(void *)(cs->cs_pbuffer + DEV_BSIZE);
3035 	while (wordcnt--)
3036 		*pbuf++ ^= *dbuf++;
3037 	cs->cs_loop++;
3038 
3039 	/*
3040 	 * build parity from scratch using new data,
3041 	 * skip reading the data and parity columns.
3042 	 */
3043 	while (cs->cs_loop == cs->cs_dcolumn || cs->cs_loop == cs->cs_pcolumn)
3044 		cs->cs_loop++;
3045 
3046 	if (cs->cs_loop != un->un_totalcolumncnt) {
3047 		cs->cs_frags = 1;
3048 		raidio(cs, RIO_DATA | RIO_READ | (cs->cs_loop + 1));
3049 		return;
3050 	}
3051 
3052 	/* construct checksum for parity buffer */
3053 	wordcnt = cs->cs_bcount / sizeof (uint_t);
3054 	pbuf = (uint_t *)(void *)(cs->cs_pbuffer + DEV_BSIZE);
3055 	while (wordcnt--) {
3056 		psum ^= *pbuf;
3057 		pbuf++;
3058 	}
3059 	RAID_FILLIN_RPW(cs->cs_pbuffer, un, psum, -1,
3060 	    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
3061 	    1, cs->cs_pcolumn, RAID_PWMAGIC);
3062 
3063 	cs->cs_stage = RAID_NONE;
3064 	cs->cs_call = raid_write_ponly;
3065 	cs->cs_error_call = raid_write_error;
3066 	cs->cs_retry_call = raid_write_err_retry;
3067 	cs->cs_frags = 1;
3068 	if (WRITE_ALT(un, cs->cs_pcolumn)) {
3069 		cs->cs_frags++;
3070 		raidio(cs, RIO_ALT | RIO_EXTRA | RIO_PARITY | RIO_PREWRITE);
3071 	}
3072 	raidio(cs, RIO_PARITY | RIO_PREWRITE);
3073 }
3074 
3075 /*
3076  * NAME:	raid_write_donly
3077  * DESCRIPTION: RAID metadevice write routine
3078  *		Completed writing data to prewrite entry
3079  *		in the case where only the data column can be written
3080  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
3081  */
3082 static void
3083 raid_write_donly(md_raidcs_t *cs)
3084 {
3085 	md_raidps_t	*ps;
3086 	mr_unit_t	*un = cs->cs_un;
3087 
3088 	ps = cs->cs_ps;
3089 	/* WARNING: don't release unit reader lock here... */
3090 	/* decrement pwfrags if needed, but not frags */
3091 	ASSERT(!(cs->cs_flags & MD_RCS_PWDONE));
3092 	raid_free_parent(ps, RFP_DECR_PWFRAGS);
3093 	cs->cs_flags |= MD_RCS_PWDONE;
3094 	cs->cs_frags = 1;
3095 	cs->cs_stage = RAID_WRITE_DONLY_DONE;
3096 	cs->cs_call = raid_stage;
3097 	cs->cs_error_call = raid_write_error;
3098 	cs->cs_retry_call = raid_write_err_retry;
3099 	if (WRITE_ALT(un, cs->cs_dcolumn)) {
3100 		cs->cs_frags++;
3101 		raidio(cs, RIO_ALT | RIO_EXTRA | RIO_DATA | RIO_WRITE);
3102 	}
3103 	raidio(cs, RIO_DATA | RIO_WRITE);
3104 }
3105 
3106 /*
3107  * NAME:	raid_write_got_old
3108  * DESCRIPTION: RAID metadevice write routine
3109  *		completed read of old data and old parity
3110  * PARAMETERS:	md_raidcs_t *cs - pointer to a child structure
3111  */
3112 static void
3113 raid_write_got_old(md_raidcs_t *cs)
3114 {
3115 	mr_unit_t *un = cs->cs_un;
3116 
3117 	ASSERT(IO_READER_HELD(cs->cs_un));
3118 	ASSERT(UNIT_READER_HELD(cs->cs_un));
3119 
3120 	raid_mapin_buf(cs);
3121 	genstandardparity(cs);
3122 	cs->cs_frags = 2;
3123 	cs->cs_call = raid_stage;
3124 	cs->cs_stage = RAID_PREWRITE_DONE;
3125 	cs->cs_error_call = raid_write_error;
3126 	cs->cs_retry_call = raid_write_retry;
3127 
3128 	if (WRITE_ALT(un, cs->cs_dcolumn)) {
3129 		cs->cs_frags++;
3130 		raidio(cs, RIO_ALT | RIO_EXTRA | RIO_DATA | RIO_PREWRITE);
3131 	}
3132 
3133 	if (WRITE_ALT(un, cs->cs_pcolumn)) {
3134 		cs->cs_frags++;
3135 		raidio(cs, RIO_ALT | RIO_EXTRA | RIO_PARITY | RIO_PREWRITE);
3136 	}
3137 	ASSERT(cs->cs_frags < 4);
3138 	raidio(cs,  RIO_DATA | RIO_PREWRITE);
3139 	raidio(cs,  RIO_PARITY | RIO_PREWRITE);
3140 }
3141 
3142 /*
3143  * NAME:	raid_write_io
3144  * DESCRIPTION: RAID metadevice write I/O routine
3145  * PARAMETERS:	mr_unit_t *un -  pointer to a unit structure
3146  *		md_raidcs_t *cs - pointer to a child structure
3147  */
3148 
3149 /*ARGSUSED*/
3150 static void
3151 raid_write_io(mr_unit_t *un, md_raidcs_t *cs)
3152 {
3153 	md_raidps_t	*ps = cs->cs_ps;
3154 	uint_t		*dbuf;
3155 	uint_t		*ubuf;
3156 	size_t		wordcnt;
3157 	uint_t		dsum = 0;
3158 	int		pcheck;
3159 	int		dcheck;
3160 
3161 	ASSERT((un->un_column[cs->cs_pcolumn].un_devstate &
3162 	    RCS_INIT) == 0);
3163 	ASSERT((un->un_column[cs->cs_dcolumn].un_devstate &
3164 	    RCS_INIT) == 0);
3165 	ASSERT(IO_READER_HELD(un));
3166 	ASSERT(UNIT_READER_HELD(un));
3167 	ASSERT(cs->cs_flags & MD_RCS_HAVE_PW_SLOTS);
3168 	if (cs->cs_flags & MD_RCS_LINE) {
3169 
3170 		mr_unit_t	*un = cs->cs_un;
3171 
3172 		ASSERT(un->un_origcolumncnt == un->un_totalcolumncnt);
3173 		raid_mapin_buf(cs);
3174 		cs->cs_frags = un->un_origcolumncnt;
3175 		cs->cs_call = raid_stage;
3176 		cs->cs_error_call = raid_write_error;
3177 		cs->cs_retry_call = raid_write_no_retry;
3178 		cs->cs_stage = RAID_LINE_PWDONE;
3179 		genlineparity(cs);
3180 		return;
3181 	}
3182 
3183 	pcheck = erred_check_line(un, cs, &un->un_column[cs->cs_pcolumn]);
3184 	dcheck = erred_check_line(un, cs, &un->un_column[cs->cs_dcolumn]);
3185 	cs->cs_resync_check = pcheck << RCL_PARITY_OFFSET || dcheck;
3186 
3187 	if (pcheck == RCL_ERRED && dcheck == RCL_ERRED) {
3188 		int err = EIO;
3189 
3190 		if ((un->un_column[cs->cs_pcolumn].un_devstate ==
3191 		    RCS_LAST_ERRED) ||
3192 		    (un->un_column[cs->cs_dcolumn].un_devstate ==
3193 		    RCS_LAST_ERRED))
3194 			err = ENXIO;
3195 		raid_error_parent(ps, err);
3196 		ASSERT(!(cs->cs_flags & MD_RCS_PWDONE));
3197 		raid_free_child(cs, 1);
3198 		raid_free_parent(ps,  RFP_DECR_FRAGS
3199 		    | RFP_RLS_LOCK | RFP_DECR_PWFRAGS);
3200 		return;
3201 	}
3202 
3203 	if (pcheck & RCL_ERRED) {
3204 		/*
3205 		 * handle case of only having data drive
3206 		 */
3207 		raid_mapin_buf(cs);
3208 		wordcnt = cs->cs_bcount / sizeof (uint_t);
3209 
3210 		dbuf = (uint_t *)(void *)(cs->cs_dbuffer + DEV_BSIZE);
3211 		ubuf = (uint_t *)(void *)(cs->cs_addr);
3212 
3213 		while (wordcnt--) {
3214 			*dbuf = *ubuf;
3215 			dsum ^= *ubuf;
3216 			dbuf++;
3217 			ubuf++;
3218 		}
3219 		RAID_FILLIN_RPW(cs->cs_dbuffer, un, dsum, -1,
3220 		    cs->cs_blkno, cs->cs_blkcnt, cs->cs_pwid,
3221 		    1, cs->cs_dcolumn, RAID_PWMAGIC);
3222 		cs->cs_frags = 1;
3223 		cs->cs_stage = RAID_NONE;
3224 		cs->cs_call = raid_write_donly;
3225 		cs->cs_error_call = raid_write_error;
3226 		cs->cs_retry_call = raid_write_err_retry;
3227 		if (WRITE_ALT(un, cs->cs_dcolumn)) {
3228 			cs->cs_frags++;
3229 			raidio(cs, RIO_DATA | RIO_ALT | RIO_EXTRA |
3230 			    RIO_PREWRITE);
3231 		}
3232 		raidio(cs, RIO_DATA | RIO_PREWRITE);
3233 		return;
3234 	}
3235 
3236 	if (dcheck & RCL_ERRED) {
3237 		/*
3238 		 * handle case of only having parity drive
3239 		 * build parity from scratch using new data,
3240 		 * skip reading the data and parity columns.
3241 		 */
3242 		raid_mapin_buf(cs);
3243 		cs->cs_loop = 0;
3244 		while (cs->cs_loop == cs->cs_dcolumn ||
3245 		    cs->cs_loop == cs->cs_pcolumn)
3246 			cs->cs_loop++;
3247 
3248 		/* copy new data in to begin building parity */
3249 		bcopy(cs->cs_addr, cs->cs_pbuffer + DEV_BSIZE, cs->cs_bcount);
3250 		cs->cs_stage = RAID_NONE;
3251 		cs->cs_call = raid_write_ploop;
3252 		cs->cs_error_call = raid_write_error;
3253 		cs->cs_retry_call = raid_write_err_retry;
3254 		cs->cs_frags = 1;
3255 		raidio(cs, RIO_DATA | RIO_READ | (cs->cs_loop + 1));
3256 		return;
3257 	}
3258 	/*
3259 	 * handle normal cases
3260 	 * read old data and old parity
3261 	 */
3262 	cs->cs_frags = 2;
3263 	cs->cs_stage = RAID_NONE;
3264 	cs->cs_call = raid_write_got_old;
3265 	cs->cs_error_call = raid_write_error;
3266 	cs->cs_retry_call = raid_write_retry;
3267 	ASSERT(ps->ps_magic == RAID_PSMAGIC);
3268 	raidio(cs, RIO_DATA | RIO_READ);
3269 	raidio(cs, RIO_PARITY | RIO_READ);
3270 }
3271 
3272 static void
3273 raid_enqueue(md_raidcs_t *cs)
3274 {
3275 	mdi_unit_t	*ui = cs->cs_ps->ps_ui;
3276 	kmutex_t	*io_list_mutex = &ui->ui_io_lock->io_list_mutex;
3277 	md_raidcs_t	*cs1;
3278 
3279 	mutex_enter(io_list_mutex);
3280 	ASSERT(! (cs->cs_flags & MD_RCS_LLOCKD));
3281 	if (ui->ui_io_lock->io_list_front == NULL) {
3282 		ui->ui_io_lock->io_list_front = cs;
3283 		ui->ui_io_lock->io_list_back = cs;
3284 	} else {
3285 		cs1 = ui->ui_io_lock->io_list_back;
3286 		cs1->cs_linlck_next = cs;
3287 		ui->ui_io_lock->io_list_back = cs;
3288 	}
3289 	STAT_INC(raid_write_waits);
3290 	STAT_MAX(raid_max_write_q_length, raid_write_queue_length);
3291 	cs->cs_linlck_next = NULL;
3292 	mutex_exit(io_list_mutex);
3293 }
3294 
3295 /*
3296  * NAME:	raid_write
3297  * DESCRIPTION: RAID metadevice write routine
3298  * PARAMETERS:	mr_unit_t *un -  pointer to a unit structure
3299  *		md_raidcs_t *cs - pointer to a child structure
3300  */
3301 
3302 /*ARGSUSED*/
3303 static int
3304 raid_write(mr_unit_t *un, md_raidcs_t *cs)
3305 {
3306 	int		error = 0;
3307 	md_raidps_t	*ps;
3308 	mdi_unit_t	*ui;
3309 	minor_t		mnum;
3310 	clock_t		timeout;
3311 
3312 	ASSERT(IO_READER_HELD(un));
3313 	ps = cs->cs_ps;
3314 	ui = ps->ps_ui;
3315 
3316 	ASSERT(UNIT_STATE(un) != RUS_INIT);
3317 	if (UNIT_STATE(un) == RUS_LAST_ERRED)
3318 		error = EIO;
3319 
3320 	/* make sure the write doesn't go beyond the column */
3321 	if (cs->cs_blkno + cs->cs_blkcnt > un->un_segsize * un->un_segsincolumn)
3322 		error = ENXIO;
3323 	if (error)
3324 		goto werror;
3325 
3326 	getresources(cs);
3327 
3328 	/*
3329 	 * this is an advisory loop that keeps the waiting lists short
3330 	 * to reduce cpu time.  Since there is a race introduced by not
3331 	 * aquiring all the correct mutexes, use a cv_timedwait to be
3332 	 * sure the write always will wake up and start.
3333 	 */
3334 	while (raid_check_pw(cs)) {
3335 		mutex_enter(&un->un_mx);
3336 		(void) drv_getparm(LBOLT, &timeout);
3337 		timeout += md_wr_wait;
3338 		un->un_rflags |= MD_RFLAG_NEEDPW;
3339 		STAT_INC(raid_prewrite_waits);
3340 		(void) cv_timedwait(&un->un_cv, &un->un_mx, timeout);
3341 		un->un_rflags &= ~MD_RFLAG_NEEDPW;
3342 		mutex_exit(&un->un_mx);
3343 	}
3344 
3345 	if (raid_line_writer_lock(cs, 1))
3346 		return (0);
3347 
3348 	un = (mr_unit_t *)md_unit_readerlock(ui);
3349 	cs->cs_un = un;
3350 	mnum = MD_SID(un);
3351 
3352 	if (un->un_state & RUS_REGEN) {
3353 		raid_regen_parity(cs);
3354 		un = MD_UNIT(mnum);
3355 		cs->cs_un = un;
3356 	}
3357 
3358 	raid_write_io(un, cs);
3359 	return (0);
3360 werror:
3361 	/* aquire unit reader lock sinc raid_free_child always drops it */
3362 	raid_error_parent(ps, error);
3363 	raid_free_child(cs, 0);
3364 	/* decrement both pwfrags and frags */
3365 	raid_free_parent(ps, RFP_DECR_PWFRAGS | RFP_DECR_FRAGS | RFP_RLS_LOCK);
3366 	return (0);
3367 }
3368 
3369 
3370 /*
3371  * NAMES:	raid_stage
3372  * DESCRIPTION: post-processing routine for a RAID metadevice
3373  * PARAMETERS:	md_raidcs_t *cs - pointer to child structure
3374  */
3375 static void
3376 raid_stage(md_raidcs_t *cs)
3377 {
3378 	md_raidps_t	*ps = cs->cs_ps;
3379 	mr_unit_t	*un = cs->cs_un;
3380 	md_raidcbuf_t	*cbuf;
3381 	buf_t		*bp;
3382 	void		*private;
3383 	int		flag;
3384 
3385 	switch (cs->cs_stage) {
3386 	case RAID_READ_DONE:
3387 		raid_free_child(cs, 1);
3388 		/* decrement readfrags */
3389 		raid_free_parent(ps, RFP_DECR_READFRAGS | RFP_RLS_LOCK);
3390 		return;
3391 
3392 	case RAID_WRITE_DONE:
3393 	case RAID_WRITE_PONLY_DONE:
3394 	case RAID_WRITE_DONLY_DONE:
3395 		/*
3396 		 *  Completed writing real parity and/or data.
3397 		 */
3398 		ASSERT(cs->cs_flags & MD_RCS_PWDONE);
3399 		raid_free_child(cs, 1);
3400 		/* decrement frags but not pwfrags */
3401 		raid_free_parent(ps, RFP_DECR_FRAGS | RFP_RLS_LOCK);
3402 		return;
3403 
3404 	case RAID_PREWRITE_DONE:
3405 		/*
3406 		 * completed writing data and parity to prewrite entries
3407 		 */
3408 		/*
3409 		 * WARNING: don't release unit reader lock here..
3410 		 * decrement pwfrags but not frags
3411 		 */
3412 		raid_free_parent(ps, RFP_DECR_PWFRAGS);
3413 		cs->cs_flags |= MD_RCS_PWDONE;
3414 		cs->cs_frags = 2;
3415 		cs->cs_stage = RAID_WRITE_DONE;
3416 		cs->cs_call = raid_stage;
3417 		cs->cs_error_call = raid_write_error;
3418 		cs->cs_retry_call = raid_write_no_retry;
3419 		if (WRITE_ALT(un, cs->cs_pcolumn)) {
3420 			cs->cs_frags++;
3421 			raidio(cs, RIO_ALT | RIO_EXTRA | RIO_PARITY |
3422 			    RIO_WRITE);
3423 		}
3424 		if (WRITE_ALT(un, cs->cs_dcolumn)) {
3425 			cs->cs_frags++;
3426 			raidio(cs, RIO_ALT | RIO_EXTRA | RIO_DATA | RIO_WRITE);
3427 		}
3428 		ASSERT(cs->cs_frags < 4);
3429 		raidio(cs, RIO_DATA | RIO_WRITE);
3430 		raidio(cs, RIO_PARITY | RIO_WRITE);
3431 		if (cs->cs_pw_inval_list) {
3432 			raid_free_pwinvalidate(cs);
3433 		}
3434 		return;
3435 
3436 	case RAID_LINE_PWDONE:
3437 		ASSERT(cs->cs_frags == 0);
3438 		raid_free_parent(ps, RFP_DECR_PWFRAGS);
3439 		cs->cs_flags |= MD_RCS_PWDONE;
3440 		cs->cs_frags = un->un_origcolumncnt;
3441 		cs->cs_call = raid_stage;
3442 		cs->cs_error_call = raid_write_error;
3443 		cs->cs_retry_call = raid_write_no_retry;
3444 		cs->cs_stage = RAID_WRITE_DONE;
3445 		for (cbuf = cs->cs_buflist; cbuf; cbuf = cbuf->cbuf_next) {
3446 			/*
3447 			 * fill in buffer for write to prewrite area
3448 			 */
3449 			bp = &cbuf->cbuf_bp;
3450 			bp->b_back = bp;
3451 			bp->b_forw = bp;
3452 			bp->b_un.b_addr = cbuf->cbuf_buffer + DEV_BSIZE;
3453 			bp->b_bcount = cbuf->cbuf_bcount;
3454 			bp->b_bufsize = cbuf->cbuf_bcount;
3455 			bp->b_lblkno =
3456 			    un->un_column[cbuf->cbuf_column].un_devstart +
3457 			    cs->cs_blkno;
3458 			bp->b_flags &= ~(B_READ | B_WRITE | B_ERROR);
3459 			bp->b_flags &= ~nv_available;
3460 			bp->b_flags |= B_WRITE | B_BUSY;
3461 			bp->b_iodone = (int (*)())raid_done;
3462 			bp->b_edev = md_dev64_to_dev(
3463 			    un->un_column[cbuf->cbuf_column].un_dev);
3464 			bp->b_chain = (struct buf *)cs;
3465 			private = cs->cs_strategy_private;
3466 			flag = cs->cs_strategy_flag;
3467 			md_call_strategy(bp, flag, private);
3468 		}
3469 		raidio(cs, RIO_DATA | RIO_WRITE);
3470 		raidio(cs, RIO_PARITY | RIO_WRITE);
3471 		if (cs->cs_pw_inval_list) {
3472 			raid_free_pwinvalidate(cs);
3473 		}
3474 		return;
3475 
3476 	default:
3477 		ASSERT(0);
3478 		break;
3479 	}
3480 }
3481 /*
3482  * NAME:	md_raid_strategy
3483  * DESCRIPTION: RAID metadevice I/O oprations entry point.
3484  * PARAMETERS:	buf_t	  *pb - pointer to a user I/O buffer
3485  *		int	 flag - metadevice specific flag
3486  *		void *private - carry over flag ??
3487  *
3488  */
3489 
3490 void
3491 md_raid_strategy(buf_t *pb, int flag, void *private)
3492 {
3493 	md_raidps_t	*ps;
3494 	md_raidcs_t	*cs;
3495 	int		doing_writes;
3496 	int		err;
3497 	mr_unit_t	*un;
3498 	mdi_unit_t	*ui;
3499 	size_t		count;
3500 	diskaddr_t	blkno;
3501 	caddr_t		addr;
3502 	off_t		offset;
3503 	int		colcnt;
3504 	minor_t		mnum;
3505 	set_t		setno;
3506 
3507 	ui = MDI_UNIT(getminor(pb->b_edev));
3508 	md_kstat_waitq_enter(ui);
3509 	un = (mr_unit_t *)md_io_readerlock(ui);
3510 	setno = MD_MIN2SET(getminor(pb->b_edev));
3511 
3512 	if ((flag & MD_NOBLOCK) == 0) {
3513 		if (md_inc_iocount(setno) != 0) {
3514 			pb->b_flags |= B_ERROR;
3515 			pb->b_error = ENXIO;
3516 			pb->b_resid = pb->b_bcount;
3517 			md_kstat_waitq_exit(ui);
3518 			md_io_readerexit(ui);
3519 			biodone(pb);
3520 			return;
3521 		}
3522 	} else {
3523 		md_inc_iocount_noblock(setno);
3524 	}
3525 
3526 	mnum = MD_SID(un);
3527 	colcnt = un->un_totalcolumncnt - 1;
3528 	count = pb->b_bcount;
3529 
3530 	STAT_CHECK(raid_512, count == 512);
3531 	STAT_CHECK(raid_1024, count == 1024);
3532 	STAT_CHECK(raid_1024_8192, count > 1024 && count < 8192);
3533 	STAT_CHECK(raid_8192, count == 8192);
3534 	STAT_CHECK(raid_8192_bigger, count > 8192);
3535 
3536 	(void *) md_unit_readerlock(ui);
3537 	if (!(flag & MD_STR_NOTTOP)) {
3538 		err = md_checkbuf(ui, (md_unit_t *)un, pb); /* check and map */
3539 		if (err != 0) {
3540 			md_kstat_waitq_exit(ui);
3541 			md_io_readerexit(ui);
3542 			return;
3543 		}
3544 	}
3545 	md_unit_readerexit(ui);
3546 
3547 	STAT_INC(raid_total_io);
3548 
3549 	/* allocate a parent structure for the user I/O */
3550 	ps = kmem_cache_alloc(raid_parent_cache, MD_ALLOCFLAGS);
3551 	raid_parent_init(ps);
3552 
3553 	/*
3554 	 * Save essential information from the original buffhdr
3555 	 * in the md_save structure.
3556 	 */
3557 	ps->ps_un = un;
3558 	ps->ps_ui = ui;
3559 	ps->ps_bp = pb;
3560 	ps->ps_addr = pb->b_un.b_addr;
3561 
3562 	if ((pb->b_flags & B_READ) == 0) {
3563 		ps->ps_flags |= MD_RPS_WRITE;
3564 		doing_writes = 1;
3565 		STAT_INC(raid_writes);
3566 	} else {
3567 		ps->ps_flags |= MD_RPS_READ;
3568 		doing_writes = 0;
3569 		STAT_INC(raid_reads);
3570 	}
3571 
3572 	count = lbtodb(pb->b_bcount);	/* transfer count (in blocks) */
3573 	blkno = pb->b_lblkno;		/* block number on device */
3574 	addr  = 0;
3575 	offset = 0;
3576 	ps->ps_pwfrags = 1;
3577 	ps->ps_frags = 1;
3578 	md_kstat_waitq_to_runq(ui);
3579 
3580 	do {
3581 		cs = kmem_cache_alloc(raid_child_cache, MD_ALLOCFLAGS);
3582 		raid_child_init(cs);
3583 		cs->cs_ps = ps;
3584 		cs->cs_un = un;
3585 		cs->cs_mdunit = mnum;
3586 		cs->cs_strategy_flag = flag;
3587 		cs->cs_strategy_private = private;
3588 		cs->cs_addr = addr;
3589 		cs->cs_offset = offset;
3590 		count = raid_iosetup(un, blkno, count, cs);
3591 		if (cs->cs_flags & MD_RCS_LINE) {
3592 			blkno += (cs->cs_blkcnt * colcnt);
3593 			offset += (cs->cs_bcount * colcnt);
3594 		} else {
3595 			blkno +=  cs->cs_blkcnt;
3596 			offset += cs->cs_bcount;
3597 		}
3598 		/* for each cs bump up the ps_pwfrags and ps_frags fields */
3599 		if (count) {
3600 			mutex_enter(&ps->ps_mx);
3601 			ps->ps_pwfrags++;
3602 			ps->ps_frags++;
3603 			mutex_exit(&ps->ps_mx);
3604 			if (doing_writes)
3605 				(void) raid_write(un, cs);
3606 			else
3607 				(void) raid_read(un, cs);
3608 		}
3609 	} while (count);
3610 	if (doing_writes) {
3611 		(void) raid_write(un, cs);
3612 	} else
3613 		(void) raid_read(un, cs);
3614 
3615 	if (! (flag & MD_STR_NOTTOP) && panicstr) {
3616 		while (! (ps->ps_flags & MD_RPS_DONE)) {
3617 			md_daemon(1, &md_done_daemon);
3618 			drv_usecwait(10);
3619 		}
3620 		kmem_cache_free(raid_parent_cache, ps);
3621 	}
3622 }
3623 
3624 /*
3625  * NAMES:	raid_snarf
3626  * DESCRIPTION: RAID metadevice SNARF entry point
3627  * PARAMETERS:	md_snarfcmd_t cmd,
3628  *		set_t setno
3629  * RETURNS:
3630  */
3631 static int
3632 raid_snarf(md_snarfcmd_t cmd, set_t setno)
3633 {
3634 	mr_unit_t	*un;
3635 	mddb_recid_t	recid;
3636 	int		gotsomething;
3637 	int		all_raid_gotten;
3638 	mddb_type_t	typ1;
3639 	uint_t		ncol;
3640 	mddb_de_ic_t	*dep;
3641 	mddb_rb32_t	*rbp;
3642 	size_t		newreqsize;
3643 	mr_unit_t	*big_un;
3644 	mr_unit32_od_t	*small_un;
3645 
3646 
3647 	if (cmd == MD_SNARF_CLEANUP)
3648 		return (0);
3649 
3650 	all_raid_gotten = 1;
3651 	gotsomething = 0;
3652 	typ1 = (mddb_type_t)md_getshared_key(setno,
3653 	    raid_md_ops.md_driver.md_drivername);
3654 	recid = mddb_makerecid(setno, 0);
3655 
3656 	while ((recid = mddb_getnextrec(recid, typ1, 0)) > 0) {
3657 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) {
3658 			continue;
3659 		}
3660 
3661 		dep = mddb_getrecdep(recid);
3662 		dep->de_flags = MDDB_F_RAID;
3663 		rbp = dep->de_rb;
3664 		switch (rbp->rb_revision) {
3665 		case MDDB_REV_RB:
3666 		case MDDB_REV_RBFN:
3667 			if ((rbp->rb_private & MD_PRV_CONVD) == 0) {
3668 				/*
3669 				 * This means, we have an old and small record
3670 				 * and this record hasn't already been
3671 				 * converted.  Before we create an incore
3672 				 * metadevice from this we have to convert it to
3673 				 * a big record.
3674 				 */
3675 				small_un =
3676 				    (mr_unit32_od_t *)mddb_getrecaddr(recid);
3677 				ncol = small_un->un_totalcolumncnt;
3678 				newreqsize = sizeof (mr_unit_t) +
3679 				    ((ncol - 1) * sizeof (mr_column_t));
3680 				big_un = (mr_unit_t *)kmem_zalloc(newreqsize,
3681 				    KM_SLEEP);
3682 				raid_convert((caddr_t)small_un, (caddr_t)big_un,
3683 				    SMALL_2_BIG);
3684 				kmem_free(small_un, dep->de_reqsize);
3685 				dep->de_rb_userdata = big_un;
3686 				dep->de_reqsize = newreqsize;
3687 				un = big_un;
3688 				rbp->rb_private |= MD_PRV_CONVD;
3689 			} else {
3690 				/*
3691 				 * Record has already been converted.  Just
3692 				 * get its address.
3693 				 */
3694 				un = (mr_unit_t *)mddb_getrecaddr(recid);
3695 			}
3696 			un->c.un_revision &= ~MD_64BIT_META_DEV;
3697 			break;
3698 		case MDDB_REV_RB64:
3699 		case MDDB_REV_RB64FN:
3700 			/* Big device */
3701 			un = (mr_unit_t *)mddb_getrecaddr(recid);
3702 			un->c.un_revision |= MD_64BIT_META_DEV;
3703 			un->c.un_flag |= MD_EFILABEL;
3704 			break;
3705 		}
3706 		MDDB_NOTE_FN(rbp->rb_revision, un->c.un_revision);
3707 
3708 		/*
3709 		 * Create minor device node for snarfed entry.
3710 		 */
3711 		(void) md_create_minor_node(MD_MIN2SET(MD_SID(un)), MD_SID(un));
3712 
3713 		if (MD_UNIT(MD_SID(un)) != NULL) {
3714 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
3715 			continue;
3716 		}
3717 		all_raid_gotten = 0;
3718 		if (raid_build_incore((void *)un, 1) == 0) {
3719 			mddb_setrecprivate(recid, MD_PRV_GOTIT);
3720 			md_create_unit_incore(MD_SID(un), &raid_md_ops, 1);
3721 			gotsomething = 1;
3722 		} else if (un->mr_ic) {
3723 			kmem_free(un->un_column_ic, sizeof (mr_column_ic_t) *
3724 			    un->un_totalcolumncnt);
3725 			kmem_free(un->mr_ic, sizeof (*un->mr_ic));
3726 		}
3727 	}
3728 
3729 	if (!all_raid_gotten) {
3730 		return (gotsomething);
3731 	}
3732 
3733 	recid = mddb_makerecid(setno, 0);
3734 	while ((recid = mddb_getnextrec(recid, typ1, 0)) > 0)
3735 		if (!(mddb_getrecprivate(recid) & MD_PRV_GOTIT))
3736 			mddb_setrecprivate(recid, MD_PRV_PENDDEL);
3737 
3738 	return (0);
3739 }
3740 
3741 /*
3742  * NAMES:	raid_halt
3743  * DESCRIPTION: RAID metadevice HALT entry point
3744  * PARAMETERS:	md_haltcmd_t cmd -
3745  *		set_t	setno -
3746  * RETURNS:
3747  */
3748 static int
3749 raid_halt(md_haltcmd_t cmd, set_t setno)
3750 {
3751 	set_t		i;
3752 	mdi_unit_t	*ui;
3753 	minor_t		mnum;
3754 
3755 	if (cmd == MD_HALT_CLOSE)
3756 		return (0);
3757 
3758 	if (cmd == MD_HALT_OPEN)
3759 		return (0);
3760 
3761 	if (cmd == MD_HALT_UNLOAD)
3762 		return (0);
3763 
3764 	if (cmd == MD_HALT_CHECK) {
3765 		for (i = 0; i < md_nunits; i++) {
3766 			mnum = MD_MKMIN(setno, i);
3767 			if ((ui = MDI_UNIT(mnum)) == NULL)
3768 				continue;
3769 			if (ui->ui_opsindex != raid_md_ops.md_selfindex)
3770 				continue;
3771 			if (md_unit_isopen(ui))
3772 				return (1);
3773 		}
3774 		return (0);
3775 	}
3776 
3777 	if (cmd != MD_HALT_DOIT)
3778 		return (1);
3779 
3780 	for (i = 0; i < md_nunits; i++) {
3781 		mnum = MD_MKMIN(setno, i);
3782 		if ((ui = MDI_UNIT(mnum)) == NULL)
3783 			continue;
3784 		if (ui->ui_opsindex != raid_md_ops.md_selfindex)
3785 			continue;
3786 		reset_raid((mr_unit_t *)MD_UNIT(mnum), mnum, 0);
3787 	}
3788 	return (0);
3789 }
3790 
3791 /*
3792  * NAMES:	raid_close_all_devs
3793  * DESCRIPTION: Close all the devices of the unit.
3794  * PARAMETERS:	mr_unit_t *un - pointer to unit structure
3795  * RETURNS:
3796  */
3797 void
3798 raid_close_all_devs(mr_unit_t *un, int init_pw, int md_cflags)
3799 {
3800 	int		i;
3801 	mr_column_t	*device;
3802 
3803 	for (i = 0; i < un->un_totalcolumncnt; i++) {
3804 		device = &un->un_column[i];
3805 		if (device->un_devflags & MD_RAID_DEV_ISOPEN) {
3806 			ASSERT((device->un_dev != (md_dev64_t)0) &&
3807 			    (device->un_dev != NODEV64));
3808 			if ((device->un_devstate & RCS_OKAY) && init_pw)
3809 				(void) init_pw_area(un, device->un_dev,
3810 				    device->un_pwstart, i);
3811 			md_layered_close(device->un_dev, md_cflags);
3812 			device->un_devflags &= ~MD_RAID_DEV_ISOPEN;
3813 		}
3814 	}
3815 }
3816 
3817 /*
3818  * NAMES:	raid_open_all_devs
3819  * DESCRIPTION: Open all the components (columns) of the device unit.
3820  * PARAMETERS:	mr_unit_t *un - pointer to unit structure
3821  * RETURNS:
3822  */
3823 static int
3824 raid_open_all_devs(mr_unit_t *un, int md_oflags)
3825 {
3826 	minor_t		mnum = MD_SID(un);
3827 	int		i;
3828 	int		not_opened = 0;
3829 	int		commit = 0;
3830 	int		col = -1;
3831 	mr_column_t	*device;
3832 	set_t		setno = MD_MIN2SET(MD_SID(un));
3833 	side_t		side = mddb_getsidenum(setno);
3834 	mdkey_t		key;
3835 	mdi_unit_t	*ui = MDI_UNIT(mnum);
3836 
3837 	ui->ui_tstate &= ~MD_INACCESSIBLE;
3838 
3839 	for (i = 0; i < un->un_totalcolumncnt; i++) {
3840 		md_dev64_t tmpdev;
3841 
3842 		device = &un->un_column[i];
3843 
3844 		if (COLUMN_STATE(un, i) & RCS_ERRED) {
3845 			not_opened++;
3846 			continue;
3847 		}
3848 
3849 		if (device->un_devflags & MD_RAID_DEV_ISOPEN)
3850 			continue;
3851 
3852 		tmpdev = device->un_dev;
3853 		/*
3854 		 * Open by device id
3855 		 */
3856 		key = HOTSPARED(un, i) ?
3857 		    device->un_hs_key : device->un_orig_key;
3858 		if ((md_getmajor(tmpdev) != md_major) &&
3859 		    md_devid_found(setno, side, key) == 1) {
3860 			tmpdev = md_resolve_bydevid(mnum, tmpdev, key);
3861 		}
3862 		if (md_layered_open(mnum, &tmpdev, md_oflags)) {
3863 			device->un_dev = tmpdev;
3864 			not_opened++;
3865 			continue;
3866 		}
3867 		device->un_dev = tmpdev;
3868 		device->un_devflags |= MD_RAID_DEV_ISOPEN;
3869 	}
3870 
3871 	/* if open errors and errored devices are 1 then device can run */
3872 	if (not_opened > 1) {
3873 		cmn_err(CE_WARN,
3874 		    "md: %s failed to open. open error on %s\n",
3875 		    md_shortname(MD_SID(un)),
3876 		    md_devname(MD_UN2SET(un), device->un_orig_dev, NULL, 0));
3877 
3878 		ui->ui_tstate |= MD_INACCESSIBLE;
3879 
3880 		SE_NOTIFY(EC_SVM_STATE, ESC_SVM_OPEN_FAIL, SVM_TAG_METADEVICE,
3881 		    MD_UN2SET(un), MD_SID(un));
3882 
3883 		return (not_opened > 1);
3884 	}
3885 
3886 	for (i = 0; i < un->un_totalcolumncnt; i++) {
3887 		device = &un->un_column[i];
3888 		if (device->un_devflags & MD_RAID_DEV_ISOPEN) {
3889 			if (device->un_devstate & RCS_LAST_ERRED) {
3890 			/*
3891 			 * At this point in time there is a possibility
3892 			 * that errors were the result of a controller
3893 			 * failure with more than a single column on it
3894 			 * so clear out last errored columns and let errors
3895 			 * re-occur is necessary.
3896 			 */
3897 				raid_set_state(un, i, RCS_OKAY, 0);
3898 				commit++;
3899 			}
3900 			continue;
3901 		}
3902 		ASSERT(col == -1);
3903 		col = i;
3904 	}
3905 
3906 	if (col != -1) {
3907 		raid_set_state(un, col, RCS_ERRED, 0);
3908 		commit++;
3909 	}
3910 
3911 	if (commit)
3912 		raid_commit(un, NULL);
3913 
3914 	if (col != -1) {
3915 		if (COLUMN_STATE(un, col) & RCS_ERRED) {
3916 			SE_NOTIFY(EC_SVM_STATE, ESC_SVM_ERRED,
3917 			    SVM_TAG_METADEVICE, MD_UN2SET(un), MD_SID(un));
3918 		} else if (COLUMN_STATE(un, col) & RCS_LAST_ERRED) {
3919 			SE_NOTIFY(EC_SVM_STATE, ESC_SVM_LASTERRED,
3920 			    SVM_TAG_METADEVICE, MD_UN2SET(un), MD_SID(un));
3921 		}
3922 	}
3923 
3924 	return (0);
3925 }
3926 
3927 /*
3928  * NAMES:	raid_internal_open
3929  * DESCRIPTION: Do the actual RAID open
3930  * PARAMETERS:	minor_t mnum - minor number of the RAID device
3931  *		int flag -
3932  *		int otyp -
3933  *		int md_oflags - RAID open flags
3934  * RETURNS:	0 if successful, nonzero otherwise
3935  */
3936 int
3937 raid_internal_open(minor_t mnum, int flag, int otyp, int md_oflags)
3938 {
3939 	mr_unit_t	*un;
3940 	mdi_unit_t	*ui;
3941 	int		err = 0;
3942 	int		replay_error = 0;
3943 
3944 	ui = MDI_UNIT(mnum);
3945 	ASSERT(ui != NULL);
3946 
3947 	un = (mr_unit_t *)md_unit_openclose_enter(ui);
3948 	/*
3949 	 * this MUST be checked before md_unit_isopen is checked.
3950 	 * raid_init_columns sets md_unit_isopen to block reset, halt.
3951 	 */
3952 	if ((UNIT_STATE(un) & (RUS_INIT | RUS_DOI)) &&
3953 	    !(md_oflags & MD_OFLG_ISINIT)) {
3954 		md_unit_openclose_exit(ui);
3955 		return (EAGAIN);
3956 	}
3957 
3958 	if ((md_oflags & MD_OFLG_ISINIT) || md_unit_isopen(ui)) {
3959 		err = md_unit_incopen(mnum, flag, otyp);
3960 		goto out;
3961 	}
3962 
3963 	md_unit_readerexit(ui);
3964 
3965 	un = (mr_unit_t *)md_unit_writerlock(ui);
3966 	if (raid_open_all_devs(un, md_oflags) == 0) {
3967 		if ((err = md_unit_incopen(mnum, flag, otyp)) != 0) {
3968 			md_unit_writerexit(ui);
3969 			un = (mr_unit_t *)md_unit_readerlock(ui);
3970 			raid_close_all_devs(un, 0, md_oflags);
3971 			goto out;
3972 		}
3973 	} else {
3974 		/*
3975 		 * if this unit contains more than two errored components
3976 		 * should return error and close all opened devices
3977 		 */
3978 
3979 		md_unit_writerexit(ui);
3980 		un = (mr_unit_t *)md_unit_readerlock(ui);
3981 		raid_close_all_devs(un, 0, md_oflags);
3982 		md_unit_openclose_exit(ui);
3983 		SE_NOTIFY(EC_SVM_STATE, ESC_SVM_OPEN_FAIL, SVM_TAG_METADEVICE,
3984 		    MD_UN2SET(un), MD_SID(un));
3985 		return (ENXIO);
3986 	}
3987 
3988 	if (!(MD_STATUS(un) & MD_UN_REPLAYED)) {
3989 		replay_error = raid_replay(un);
3990 		MD_STATUS(un) |= MD_UN_REPLAYED;
3991 	}
3992 
3993 	md_unit_writerexit(ui);
3994 	un = (mr_unit_t *)md_unit_readerlock(ui);
3995 
3996 	if ((replay_error == RAID_RPLY_READONLY) &&
3997 	    ((flag & (FREAD | FWRITE)) == FREAD)) {
3998 		md_unit_openclose_exit(ui);
3999 		return (0);
4000 	}
4001 
4002 	/* allocate hotspare if possible */
4003 	(void) raid_hotspares();
4004 
4005 
4006 out:
4007 	md_unit_openclose_exit(ui);
4008 	return (err);
4009 }
4010 /*
4011  * NAMES:	raid_open
4012  * DESCRIPTION: RAID metadevice OPEN entry point
4013  * PARAMETERS:	dev_t dev -
4014  *		int flag -
4015  *		int otyp -
4016  *		cred_t * cred_p -
4017  *		int md_oflags -
4018  * RETURNS:
4019  */
4020 /*ARGSUSED1*/
4021 static int
4022 raid_open(dev_t *dev, int flag, int otyp, cred_t *cred_p, int md_oflags)
4023 {
4024 	int		error = 0;
4025 
4026 	if (error = raid_internal_open(getminor(*dev), flag, otyp, md_oflags)) {
4027 		return (error);
4028 	}
4029 	return (0);
4030 }
4031 
4032 /*
4033  * NAMES:	raid_internal_close
4034  * DESCRIPTION: RAID metadevice CLOSE actual implementation
4035  * PARAMETERS:	minor_t - minor number of the RAID device
4036  *		int otyp -
4037  *		int init_pw -
4038  *		int md_cflags - RAID close flags
4039  * RETURNS:	0 if successful, nonzero otherwise
4040  */
4041 /*ARGSUSED*/
4042 int
4043 raid_internal_close(minor_t mnum, int otyp, int init_pw, int md_cflags)
4044 {
4045 	mdi_unit_t	*ui = MDI_UNIT(mnum);
4046 	mr_unit_t	*un;
4047 	int		err = 0;
4048 
4049 	/* single thread */
4050 	un = (mr_unit_t *)md_unit_openclose_enter(ui);
4051 
4052 	/* count closed */
4053 	if ((err = md_unit_decopen(mnum, otyp)) != 0)
4054 		goto out;
4055 	/* close devices, if necessary */
4056 	if (! md_unit_isopen(ui) || (md_cflags & MD_OFLG_PROBEDEV)) {
4057 		raid_close_all_devs(un, init_pw, md_cflags);
4058 	}
4059 
4060 	/* unlock, return success */
4061 out:
4062 	md_unit_openclose_exit(ui);
4063 	return (err);
4064 }
4065 
4066 /*
4067  * NAMES:	raid_close
4068  * DESCRIPTION: RAID metadevice close entry point
4069  * PARAMETERS:	dev_t dev -
4070  *		int flag -
4071  *		int otyp -
4072  *		cred_t * cred_p -
4073  *		int md_oflags -
4074  * RETURNS:
4075  */
4076 /*ARGSUSED1*/
4077 static int
4078 raid_close(dev_t dev, int flag, int otyp, cred_t *cred_p, int md_cflags)
4079 {
4080 	int retval;
4081 
4082 	(void) md_io_writerlock(MDI_UNIT(getminor(dev)));
4083 	retval = raid_internal_close(getminor(dev), otyp, 1, md_cflags);
4084 	(void) md_io_writerexit(MDI_UNIT(getminor(dev)));
4085 	return (retval);
4086 }
4087 
4088 /*
4089  * raid_probe_close_all_devs
4090  */
4091 void
4092 raid_probe_close_all_devs(mr_unit_t *un)
4093 {
4094 	int		i;
4095 	mr_column_t	*device;
4096 
4097 	for (i = 0; i < un->un_totalcolumncnt; i++) {
4098 		device = &un->un_column[i];
4099 
4100 		if (device->un_devflags & MD_RAID_DEV_PROBEOPEN) {
4101 			md_layered_close(device->un_dev,
4102 			    MD_OFLG_PROBEDEV);
4103 			device->un_devflags &= ~MD_RAID_DEV_PROBEOPEN;
4104 		}
4105 	}
4106 }
4107 /*
4108  * Raid_probe_dev:
4109  *
4110  * On entry the unit writerlock is held
4111  */
4112 static int
4113 raid_probe_dev(mdi_unit_t *ui, minor_t mnum)
4114 {
4115 	mr_unit_t	*un;
4116 	int		i;
4117 	int		not_opened = 0;
4118 	int		commit = 0;
4119 	int		col = -1;
4120 	mr_column_t	*device;
4121 	int		md_devopen = 0;
4122 
4123 	if (md_unit_isopen(ui))
4124 		md_devopen++;
4125 
4126 	un = MD_UNIT(mnum);
4127 	/*
4128 	 * If the state has been set to LAST_ERRED because
4129 	 * of an error when the raid device was open at some
4130 	 * point in the past, don't probe. We really don't want
4131 	 * to reset the state in this case.
4132 	 */
4133 	if (UNIT_STATE(un) == RUS_LAST_ERRED)
4134 		return (0);
4135 
4136 	ui->ui_tstate &= ~MD_INACCESSIBLE;
4137 
4138 	for (i = 0; i < un->un_totalcolumncnt; i++) {
4139 		md_dev64_t tmpdev;
4140 
4141 		device = &un->un_column[i];
4142 		if (COLUMN_STATE(un, i) & RCS_ERRED) {
4143 			not_opened++;
4144 			continue;
4145 		}
4146 
4147 		tmpdev = device->un_dev;
4148 		/*
4149 		 * Currently the flags passed are not needed since
4150 		 * there cannot be an underlying metadevice. However
4151 		 * they are kept here for consistency.
4152 		 *
4153 		 * Open by device id
4154 		 */
4155 		tmpdev = md_resolve_bydevid(mnum, tmpdev, HOTSPARED(un, i)?
4156 		    device->un_hs_key : device->un_orig_key);
4157 		if (md_layered_open(mnum, &tmpdev,
4158 		    MD_OFLG_CONT_ERRS | MD_OFLG_PROBEDEV)) {
4159 			device->un_dev = tmpdev;
4160 			not_opened++;
4161 			continue;
4162 		}
4163 		device->un_dev = tmpdev;
4164 
4165 		device->un_devflags |= MD_RAID_DEV_PROBEOPEN;
4166 	}
4167 
4168 	/*
4169 	 * The code below is careful on setting the LAST_ERRED state.
4170 	 *
4171 	 * If open errors and exactly one device has failed we can run.
4172 	 * If more then one device fails we have to figure out when to set
4173 	 * LAST_ERRED state.  The rationale is to avoid unnecessary resyncs
4174 	 * since they are painful and time consuming.
4175 	 *
4176 	 * When more than one component/column fails there are 2 scenerios.
4177 	 *
4178 	 * 1. Metadevice has NOT been opened: In this case, the behavior
4179 	 *    mimics the open symantics. ie. Only the first failed device
4180 	 *    is ERRED and LAST_ERRED is not set.
4181 	 *
4182 	 * 2. Metadevice has been opened: Here the read/write sematics are
4183 	 *    followed. The first failed devicce is ERRED and on the next
4184 	 *    failed device LAST_ERRED is set.
4185 	 */
4186 
4187 	if (not_opened > 1 && !md_devopen) {
4188 		cmn_err(CE_WARN,
4189 		    "md: %s failed to open. open error on %s\n",
4190 		    md_shortname(MD_SID(un)),
4191 		    md_devname(MD_UN2SET(un), device->un_orig_dev, NULL, 0));
4192 		SE_NOTIFY(EC_SVM_STATE, ESC_SVM_OPEN_FAIL, SVM_TAG_METADEVICE,
4193 		    MD_UN2SET(un), MD_SID(un));
4194 		raid_probe_close_all_devs(un);
4195 		ui->ui_tstate |= MD_INACCESSIBLE;
4196 		return (not_opened > 1);
4197 	}
4198 
4199 	if (!md_devopen) {
4200 		for (i = 0; i < un->un_totalcolumncnt; i++) {
4201 			device = &un->un_column[i];
4202 			if (device->un_devflags & MD_RAID_DEV_PROBEOPEN) {
4203 				if (device->un_devstate & RCS_LAST_ERRED) {
4204 					/*
4205 					 * At this point in time there is a
4206 					 * possibility that errors were the
4207 					 * result of a controller failure with
4208 					 * more than a single column on it so
4209 					 * clear out last errored columns and
4210 					 * let errors re-occur is necessary.
4211 					 */
4212 					raid_set_state(un, i, RCS_OKAY, 0);
4213 					commit++;
4214 					}
4215 				continue;
4216 			}
4217 			ASSERT(col == -1);
4218 			/*
4219 			 * note if multiple devices are failing then only
4220 			 * the last one is marked as error
4221 			 */
4222 			col = i;
4223 		}
4224 
4225 		if (col != -1) {
4226 			raid_set_state(un, col, RCS_ERRED, 0);
4227 			commit++;
4228 		}
4229 
4230 	} else {
4231 		for (i = 0; i < un->un_totalcolumncnt; i++) {
4232 			device = &un->un_column[i];
4233 
4234 			/* if we have LAST_ERRED go ahead and commit. */
4235 			if (un->un_state & RUS_LAST_ERRED)
4236 				break;
4237 			/*
4238 			 * could not open the component
4239 			 */
4240 
4241 			if (!(device->un_devflags & MD_RAID_DEV_PROBEOPEN)) {
4242 				col = i;
4243 				raid_set_state(un, col, RCS_ERRED, 0);
4244 				commit++;
4245 			}
4246 		}
4247 	}
4248 
4249 	if (commit)
4250 		raid_commit(un, NULL);
4251 
4252 	if (col != -1) {
4253 		if (COLUMN_STATE(un, col) & RCS_ERRED) {
4254 			SE_NOTIFY(EC_SVM_STATE, ESC_SVM_ERRED,
4255 			    SVM_TAG_METADEVICE, MD_UN2SET(un), MD_SID(un));
4256 		} else if (COLUMN_STATE(un, col) & RCS_LAST_ERRED) {
4257 			SE_NOTIFY(EC_SVM_STATE, ESC_SVM_LASTERRED,
4258 			    SVM_TAG_METADEVICE, MD_UN2SET(un), MD_SID(un));
4259 		}
4260 	}
4261 
4262 	raid_probe_close_all_devs(un);
4263 	return (0);
4264 }
4265 
4266 static int
4267 raid_imp_set(
4268 	set_t	setno
4269 )
4270 {
4271 	mddb_recid_t    recid;
4272 	int		i, gotsomething;
4273 	mddb_type_t	typ1;
4274 	mddb_de_ic_t	*dep;
4275 	mddb_rb32_t	*rbp;
4276 	mr_unit_t	*un64;
4277 	mr_unit32_od_t	*un32;
4278 	md_dev64_t	self_devt;
4279 	minor_t		*self_id;	/* minor needs to be updated */
4280 	md_parent_t	*parent_id;	/* parent needs to be updated */
4281 	mddb_recid_t	*record_id;	 /* record id needs to be updated */
4282 	hsp_t		*hsp_id;
4283 
4284 	gotsomething = 0;
4285 
4286 	typ1 = (mddb_type_t)md_getshared_key(setno,
4287 	    raid_md_ops.md_driver.md_drivername);
4288 	recid = mddb_makerecid(setno, 0);
4289 
4290 	while ((recid = mddb_getnextrec(recid, typ1, 0)) > 0) {
4291 		if (mddb_getrecprivate(recid) & MD_PRV_GOTIT)
4292 			continue;
4293 
4294 		dep = mddb_getrecdep(recid);
4295 		rbp = dep->de_rb;
4296 
4297 		switch (rbp->rb_revision) {
4298 		case MDDB_REV_RB:
4299 		case MDDB_REV_RBFN:
4300 			/*
4301 			 * Small device
4302 			 */
4303 			un32 = (mr_unit32_od_t *)mddb_getrecaddr(recid);
4304 			self_id = &(un32->c.un_self_id);
4305 			parent_id = &(un32->c.un_parent);
4306 			record_id = &(un32->c.un_record_id);
4307 			hsp_id = &(un32->un_hsp_id);
4308 
4309 			for (i = 0; i < un32->un_totalcolumncnt; i++) {
4310 				mr_column32_od_t *device;
4311 
4312 				device = &un32->un_column[i];
4313 				if (!md_update_minor(setno, mddb_getsidenum
4314 				    (setno), device->un_orig_key))
4315 					goto out;
4316 
4317 				if (device->un_hs_id != 0)
4318 					device->un_hs_id =
4319 					    MAKERECID(setno, device->un_hs_id);
4320 			}
4321 			break;
4322 		case MDDB_REV_RB64:
4323 		case MDDB_REV_RB64FN:
4324 			un64 = (mr_unit_t *)mddb_getrecaddr(recid);
4325 			self_id = &(un64->c.un_self_id);
4326 			parent_id = &(un64->c.un_parent);
4327 			record_id = &(un64->c.un_record_id);
4328 			hsp_id = &(un64->un_hsp_id);
4329 
4330 			for (i = 0; i < un64->un_totalcolumncnt; i++) {
4331 				mr_column_t	*device;
4332 
4333 				device = &un64->un_column[i];
4334 				if (!md_update_minor(setno, mddb_getsidenum
4335 				    (setno), device->un_orig_key))
4336 					goto out;
4337 
4338 				if (device->un_hs_id != 0)
4339 					device->un_hs_id =
4340 					    MAKERECID(setno, device->un_hs_id);
4341 			}
4342 			break;
4343 		}
4344 
4345 		/*
4346 		 * If this is a top level and a friendly name metadevice,
4347 		 * update its minor in the namespace.
4348 		 */
4349 		if ((*parent_id == MD_NO_PARENT) &&
4350 		    ((rbp->rb_revision == MDDB_REV_RBFN) ||
4351 		    (rbp->rb_revision == MDDB_REV_RB64FN))) {
4352 
4353 			self_devt = md_makedevice(md_major, *self_id);
4354 			if (!md_update_top_device_minor(setno,
4355 			    mddb_getsidenum(setno), self_devt))
4356 				goto out;
4357 		}
4358 
4359 		/*
4360 		 * Update unit with the imported setno
4361 		 */
4362 		mddb_setrecprivate(recid, MD_PRV_GOTIT);
4363 
4364 		*self_id = MD_MKMIN(setno, MD_MIN2UNIT(*self_id));
4365 
4366 		if (*hsp_id != -1)
4367 			*hsp_id = MAKERECID(setno, DBID(*hsp_id));
4368 
4369 		if (*parent_id != MD_NO_PARENT)
4370 			*parent_id = MD_MKMIN(setno, MD_MIN2UNIT(*parent_id));
4371 		*record_id = MAKERECID(setno, DBID(*record_id));
4372 		gotsomething = 1;
4373 	}
4374 
4375 out:
4376 	return (gotsomething);
4377 }
4378 
4379 static md_named_services_t raid_named_services[] = {
4380 	{raid_hotspares,			"poke hotspares"	},
4381 	{raid_rename_check,			MDRNM_CHECK		},
4382 	{raid_rename_lock,			MDRNM_LOCK		},
4383 	{(intptr_t (*)()) raid_rename_unlock,	MDRNM_UNLOCK		},
4384 	{(intptr_t (*)()) raid_probe_dev,	"probe open test"	},
4385 	{NULL,					0			}
4386 };
4387 
4388 md_ops_t raid_md_ops = {
4389 	raid_open,		/* open */
4390 	raid_close,		/* close */
4391 	md_raid_strategy,	/* strategy */
4392 	NULL,			/* print */
4393 	NULL,			/* dump */
4394 	NULL,			/* read */
4395 	NULL,			/* write */
4396 	md_raid_ioctl,		/* ioctl, */
4397 	raid_snarf,		/* raid_snarf */
4398 	raid_halt,		/* raid_halt */
4399 	NULL,			/* aread */
4400 	NULL,			/* awrite */
4401 	raid_imp_set,		/* import set */
4402 	raid_named_services
4403 };
4404 
4405 static void
4406 init_init()
4407 {
4408 	/* default to a second */
4409 	if (md_wr_wait == 0)
4410 		md_wr_wait = md_hz >> 1;
4411 
4412 	raid_parent_cache = kmem_cache_create("md_raid_parent",
4413 	    sizeof (md_raidps_t), 0, raid_parent_constructor,
4414 	    raid_parent_destructor, raid_run_queue, NULL, NULL, 0);
4415 	raid_child_cache = kmem_cache_create("md_raid_child",
4416 	    sizeof (md_raidcs_t) - sizeof (buf_t) + biosize(), 0,
4417 	    raid_child_constructor, raid_child_destructor,
4418 	    raid_run_queue, NULL, NULL, 0);
4419 	raid_cbuf_cache = kmem_cache_create("md_raid_cbufs",
4420 	    sizeof (md_raidcbuf_t), 0, raid_cbuf_constructor,
4421 	    raid_cbuf_destructor, raid_run_queue, NULL, NULL, 0);
4422 }
4423 
4424 static void
4425 fini_uninit()
4426 {
4427 	kmem_cache_destroy(raid_parent_cache);
4428 	kmem_cache_destroy(raid_child_cache);
4429 	kmem_cache_destroy(raid_cbuf_cache);
4430 	raid_parent_cache = raid_child_cache = raid_cbuf_cache = NULL;
4431 }
4432 
4433 /* define the module linkage */
4434 MD_PLUGIN_MISC_MODULE("raid module", init_init(), fini_uninit())
4435