1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Md - is the meta-disk driver. It sits below the UFS file system 29 * but above the 'real' disk drivers, xy, id, sd etc. 30 * 31 * To the UFS software, md looks like a normal driver, since it has 32 * the normal kinds of entries in the bdevsw and cdevsw arrays. So 33 * UFS accesses md in the usual ways. In particular, the strategy 34 * routine, mdstrategy(), gets called by fbiwrite(), ufs_getapage(), 35 * and ufs_writelbn(). 36 * 37 * Md maintains an array of minor devices (meta-partitions). Each 38 * meta partition stands for a matrix of real partitions, in rows 39 * which are not necessarily of equal length. Md maintains a table, 40 * with one entry for each meta-partition, which lists the rows and 41 * columns of actual partitions, and the job of the strategy routine 42 * is to translate from the meta-partition device and block numbers 43 * known to UFS into the actual partitions' device and block numbers. 44 * 45 * See below, in mdstrategy(), mdreal(), and mddone() for details of 46 * this translation. 47 */ 48 49 /* 50 * Driver for Virtual Disk. 51 */ 52 53 #include <sys/user.h> 54 #include <sys/sysmacros.h> 55 #include <sys/conf.h> 56 #include <sys/stat.h> 57 #include <sys/errno.h> 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/file.h> 61 #include <sys/open.h> 62 #include <sys/dkio.h> 63 #include <sys/vtoc.h> 64 #include <sys/cmn_err.h> 65 #include <sys/ddi.h> 66 #include <sys/sunddi.h> 67 #include <sys/debug.h> 68 #include <sys/utsname.h> 69 #include <sys/lvm/mdvar.h> 70 #include <sys/lvm/md_names.h> 71 #include <sys/lvm/md_mddb.h> 72 #include <sys/lvm/md_sp.h> 73 #include <sys/types.h> 74 #include <sys/kmem.h> 75 #include <sys/cladm.h> 76 #include <sys/priv_names.h> 77 #include <sys/modhash.h> 78 79 #ifndef lint 80 char _depends_on[] = "strmod/rpcmod"; 81 #endif /* lint */ 82 int md_init_debug = 0; /* module binding debug */ 83 84 /* 85 * Tunable to turn off the failfast behavior. 86 */ 87 int md_ff_disable = 0; 88 89 /* 90 * dynamically allocated list of non FF driver names - needs to 91 * be freed when md is detached. 92 */ 93 char **non_ff_drivers = NULL; 94 95 md_krwlock_t md_unit_array_rw; /* protects all unit arrays */ 96 md_krwlock_t nm_lock; /* protects all the name spaces */ 97 98 md_resync_t md_cpr_resync; 99 100 extern char svm_bootpath[]; 101 #define SVM_PSEUDO_STR "/pseudo/md@0:" 102 103 #define VERSION_LENGTH 6 104 #define VERSION "1.0" 105 106 /* 107 * Keep track of possible 'orphan' entries in the name space 108 */ 109 int *md_nm_snarfed = NULL; 110 111 /* 112 * Global tunable giving the percentage of free space left in replica during 113 * conversion of non-devid style replica to devid style replica. 114 */ 115 int md_conv_perc = MDDB_DEVID_CONV_PERC; 116 117 #ifdef DEBUG 118 /* debug code to verify framework exclusion guarantees */ 119 int md_in; 120 kmutex_t md_in_mx; /* used to md global stuff */ 121 #define IN_INIT 0x01 122 #define IN_FINI 0x02 123 #define IN_ATTACH 0x04 124 #define IN_DETACH 0x08 125 #define IN_OPEN 0x10 126 #define MD_SET_IN(x) { \ 127 mutex_enter(&md_in_mx); \ 128 if (md_in) \ 129 debug_enter("MD_SET_IN exclusion lost"); \ 130 if (md_in & x) \ 131 debug_enter("MD_SET_IN already set"); \ 132 md_in |= x; \ 133 mutex_exit(&md_in_mx); \ 134 } 135 136 #define MD_CLR_IN(x) { \ 137 mutex_enter(&md_in_mx); \ 138 if (md_in & ~(x)) \ 139 debug_enter("MD_CLR_IN exclusion lost"); \ 140 if (!(md_in & x)) \ 141 debug_enter("MD_CLR_IN already clr"); \ 142 md_in &= ~x; \ 143 mutex_exit(&md_in_mx); \ 144 } 145 #else /* DEBUG */ 146 #define MD_SET_IN(x) 147 #define MD_CLR_IN(x) 148 #endif /* DEBUG */ 149 hrtime_t savetime1, savetime2; 150 151 152 /* 153 * list things protected by md_mx even if they aren't 154 * used in this file. 155 */ 156 kmutex_t md_mx; /* used to md global stuff */ 157 kcondvar_t md_cv; /* md_status events */ 158 int md_status = 0; /* global status for the meta-driver */ 159 int md_num_daemons = 0; 160 int md_ioctl_cnt = 0; 161 int md_mtioctl_cnt = 0; /* multithreaded ioctl cnt */ 162 uint_t md_mdelay = 10; /* variable so can be patched */ 163 164 int (*mdv_strategy_tstpnt)(buf_t *, int, void*); 165 166 major_t md_major, md_major_targ; 167 168 unit_t md_nunits = MD_MAXUNITS; 169 set_t md_nsets = MD_MAXSETS; 170 int md_nmedh = 0; 171 char *md_med_trans_lst = NULL; 172 md_set_t md_set[MD_MAXSETS]; 173 md_set_io_t md_set_io[MD_MAXSETS]; 174 175 md_krwlock_t hsp_rwlp; /* protects hot_spare_interface */ 176 md_krwlock_t ni_rwlp; /* protects notify_interface */ 177 md_ops_t **md_ops = NULL; 178 ddi_modhandle_t *md_mods = NULL; 179 md_ops_t *md_opslist; 180 clock_t md_hz; 181 md_event_queue_t *md_event_queue = NULL; 182 183 int md_in_upgrade; 184 int md_keep_repl_state; 185 int md_devid_destroy; 186 187 /* for sending messages thru a door to userland */ 188 door_handle_t mdmn_door_handle = NULL; 189 int mdmn_door_did = -1; 190 191 dev_info_t *md_devinfo = NULL; 192 193 md_mn_nodeid_t md_mn_mynode_id = ~0u; /* My node id (for multi-node sets) */ 194 195 static uint_t md_ocnt[OTYPCNT]; 196 197 static int mdinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 198 static int mdattach(dev_info_t *, ddi_attach_cmd_t); 199 static int mddetach(dev_info_t *, ddi_detach_cmd_t); 200 static int mdopen(dev_t *, int, int, cred_t *); 201 static int mdclose(dev_t, int, int, cred_t *); 202 static int mddump(dev_t, caddr_t, daddr_t, int); 203 static int mdread(dev_t, struct uio *, cred_t *); 204 static int mdwrite(dev_t, struct uio *, cred_t *); 205 static int mdaread(dev_t, struct aio_req *, cred_t *); 206 static int mdawrite(dev_t, struct aio_req *, cred_t *); 207 static int mdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 208 static int mdprop_op(dev_t, dev_info_t *, 209 ddi_prop_op_t, int, char *, caddr_t, int *); 210 211 static struct cb_ops md_cb_ops = { 212 mdopen, /* open */ 213 mdclose, /* close */ 214 mdstrategy, /* strategy */ 215 /* print routine -- none yet */ 216 (int(*)(dev_t, char *))nulldev, 217 mddump, /* dump */ 218 mdread, /* read */ 219 mdwrite, /* write */ 220 mdioctl, /* ioctl */ 221 /* devmap */ 222 (int(*)(dev_t, devmap_cookie_t, offset_t, size_t, size_t *, 223 uint_t))nodev, 224 /* mmap */ 225 (int(*)(dev_t, off_t, int))nodev, 226 /* segmap */ 227 (int(*)(dev_t, off_t, struct as *, caddr_t *, off_t, unsigned, 228 unsigned, unsigned, cred_t *))nodev, 229 nochpoll, /* poll */ 230 mdprop_op, /* prop_op */ 231 0, /* streamtab */ 232 (D_64BIT|D_MP|D_NEW), /* driver compatibility flag */ 233 CB_REV, /* cb_ops version */ 234 mdaread, /* aread */ 235 mdawrite, /* awrite */ 236 }; 237 238 static struct dev_ops md_devops = { 239 DEVO_REV, /* dev_ops version */ 240 0, /* device reference count */ 241 mdinfo, /* info routine */ 242 nulldev, /* identify routine */ 243 nulldev, /* probe - not defined */ 244 mdattach, /* attach routine */ 245 mddetach, /* detach routine */ 246 nodev, /* reset - not defined */ 247 &md_cb_ops, /* driver operations */ 248 NULL, /* bus operations */ 249 nodev, /* power management */ 250 ddi_quiesce_not_needed, /* quiesce */ 251 }; 252 253 /* 254 * loadable module wrapper 255 */ 256 #include <sys/modctl.h> 257 258 static struct modldrv modldrv = { 259 &mod_driverops, /* type of module -- a pseudodriver */ 260 "Solaris Volume Manager base module", /* name of the module */ 261 &md_devops, /* driver ops */ 262 }; 263 264 static struct modlinkage modlinkage = { 265 MODREV_1, 266 (void *)&modldrv, 267 NULL 268 }; 269 270 271 /* md_medd.c */ 272 extern void med_init(void); 273 extern void med_fini(void); 274 extern void md_devid_cleanup(set_t, uint_t); 275 276 /* md_names.c */ 277 extern void *lookup_entry(struct nm_next_hdr *, set_t, 278 side_t, mdkey_t, md_dev64_t, int); 279 extern struct nm_next_hdr *get_first_record(set_t, int, int); 280 extern int remove_entry(struct nm_next_hdr *, 281 side_t, mdkey_t, int); 282 283 int md_maxphys = 0; /* maximum io size in bytes */ 284 #define MD_MAXBCOUNT (1024 * 1024) 285 unsigned md_maxbcount = 0; /* maximum physio size in bytes */ 286 287 /* 288 * Some md ioctls trigger io framework device tree operations. An 289 * example is md ioctls that call md_resolve_bydevid(): which uses the 290 * io framework to resolve a devid. Such operations result in acquiring 291 * io framework locks (like ndi_devi_enter() of "/") while holding 292 * driver locks (like md_unit_writerlock()). 293 * 294 * The prop_op(9E) entry point is called from the devinfo driver with 295 * an active ndi_devi_enter of "/". To avoid deadlock, md's prop_op 296 * implementation must avoid taking a lock that is held per above md 297 * ioctl description: i.e. mdprop_op(9E) can't call md_unit_readerlock() 298 * without risking deadlock. 299 * 300 * To service "size" requests without risking deadlock, we maintain a 301 * "mnum->nblocks" sizemap (protected by a short-term global mutex). 302 */ 303 static kmutex_t md_nblocks_mutex; 304 static mod_hash_t *md_nblocksmap; /* mnum -> nblocks */ 305 int md_nblocksmap_size = 512; 306 307 /* 308 * Maintain "mnum->nblocks" sizemap for mdprop_op use: 309 * 310 * Create: any code that establishes a unit's un_total_blocks needs the 311 * following type of call to establish nblocks for mdprop_op(): 312 * md_nblocks_set(mnum, un->c.un_total_blocks);" 313 * NOTE: locate via cscope md_create_minor_node/md_create_unit_incore 314 * ...or "MD_UNIT..*=" 315 * 316 * Change: any code that changes a unit's un_total_blocks needs the 317 * following type of call to sync nblocks for mdprop_op(): 318 * md_nblocks_set(mnum, un->c.un_total_blocks);" 319 * NOTE: locate via cscope for "un_total_blocks[ \t]*=" 320 * 321 * Destroy: any code that deletes a unit needs the following type of call 322 * to sync nblocks for mdprop_op(): 323 * md_nblocks_set(mnum, -1ULL); 324 * NOTE: locate via cscope md_remove_minor_node/md_destroy_unit_incore 325 * ...or "MD_UNIT..*=" 326 */ 327 void 328 md_nblocks_set(minor_t mnum, uint64_t nblocks) 329 { 330 mutex_enter(&md_nblocks_mutex); 331 if (nblocks == -1ULL) 332 (void) mod_hash_destroy(md_nblocksmap, 333 (mod_hash_key_t)(intptr_t)mnum); 334 else 335 (void) mod_hash_replace(md_nblocksmap, 336 (mod_hash_key_t)(intptr_t)mnum, 337 (mod_hash_val_t)(intptr_t)nblocks); 338 mutex_exit(&md_nblocks_mutex); 339 } 340 341 /* get the size of a mnum from "mnum->nblocks" sizemap */ 342 uint64_t 343 md_nblocks_get(minor_t mnum) 344 { 345 mod_hash_val_t hv; 346 347 mutex_enter(&md_nblocks_mutex); 348 if (mod_hash_find(md_nblocksmap, 349 (mod_hash_key_t)(intptr_t)mnum, &hv) == 0) { 350 mutex_exit(&md_nblocks_mutex); 351 return ((uint64_t)(intptr_t)hv); 352 } 353 mutex_exit(&md_nblocks_mutex); 354 return (0); 355 } 356 357 /* allocate/free dynamic space associated with driver globals */ 358 void 359 md_global_alloc_free(int alloc) 360 { 361 set_t s; 362 363 if (alloc) { 364 /* initialize driver global locks */ 365 cv_init(&md_cv, NULL, CV_DEFAULT, NULL); 366 mutex_init(&md_mx, NULL, MUTEX_DEFAULT, NULL); 367 rw_init(&md_unit_array_rw.lock, NULL, RW_DEFAULT, NULL); 368 rw_init(&nm_lock.lock, NULL, RW_DEFAULT, NULL); 369 rw_init(&ni_rwlp.lock, NULL, RW_DRIVER, NULL); 370 rw_init(&hsp_rwlp.lock, NULL, RW_DRIVER, NULL); 371 mutex_init(&md_cpr_resync.md_resync_mutex, NULL, 372 MUTEX_DEFAULT, NULL); 373 mutex_init(&md_nblocks_mutex, NULL, MUTEX_DEFAULT, NULL); 374 375 /* initialize per set driver global locks */ 376 for (s = 0; s < MD_MAXSETS; s++) { 377 /* initialize per set driver globals locks */ 378 mutex_init(&md_set[s].s_dbmx, 379 NULL, MUTEX_DEFAULT, NULL); 380 mutex_init(&md_set_io[s].md_io_mx, 381 NULL, MUTEX_DEFAULT, NULL); 382 cv_init(&md_set_io[s].md_io_cv, 383 NULL, CV_DEFAULT, NULL); 384 } 385 } else { 386 /* destroy per set driver global locks */ 387 for (s = 0; s < MD_MAXSETS; s++) { 388 cv_destroy(&md_set_io[s].md_io_cv); 389 mutex_destroy(&md_set_io[s].md_io_mx); 390 mutex_destroy(&md_set[s].s_dbmx); 391 } 392 393 /* destroy driver global locks */ 394 mutex_destroy(&md_nblocks_mutex); 395 mutex_destroy(&md_cpr_resync.md_resync_mutex); 396 rw_destroy(&hsp_rwlp.lock); 397 rw_destroy(&ni_rwlp.lock); 398 rw_destroy(&nm_lock.lock); 399 rw_destroy(&md_unit_array_rw.lock); 400 mutex_destroy(&md_mx); 401 cv_destroy(&md_cv); 402 } 403 } 404 405 int 406 _init(void) 407 { 408 set_t s; 409 int err; 410 411 MD_SET_IN(IN_INIT); 412 413 /* allocate dynamic space associated with driver globals */ 414 md_global_alloc_free(1); 415 416 /* initialize driver globals */ 417 md_major = ddi_name_to_major("md"); 418 md_hz = drv_usectohz(NUM_USEC_IN_SEC); 419 420 /* initialize tunable globals */ 421 if (md_maxphys == 0) /* maximum io size in bytes */ 422 md_maxphys = maxphys; 423 if (md_maxbcount == 0) /* maximum physio size in bytes */ 424 md_maxbcount = MD_MAXBCOUNT; 425 426 /* initialize per set driver globals */ 427 for (s = 0; s < MD_MAXSETS; s++) 428 md_set_io[s].io_state = MD_SET_ACTIVE; 429 430 /* 431 * NOTE: the framework does not currently guarantee exclusion 432 * between _init and attach after calling mod_install. 433 */ 434 MD_CLR_IN(IN_INIT); 435 if ((err = mod_install(&modlinkage))) { 436 MD_SET_IN(IN_INIT); 437 md_global_alloc_free(0); /* free dynamic space */ 438 MD_CLR_IN(IN_INIT); 439 } 440 return (err); 441 } 442 443 int 444 _fini(void) 445 { 446 int err; 447 448 /* 449 * NOTE: the framework currently does not guarantee exclusion 450 * with attach until after mod_remove returns 0. 451 */ 452 if ((err = mod_remove(&modlinkage))) 453 return (err); 454 455 MD_SET_IN(IN_FINI); 456 md_global_alloc_free(0); /* free dynamic space */ 457 MD_CLR_IN(IN_FINI); 458 return (err); 459 } 460 461 int 462 _info(struct modinfo *modinfop) 463 { 464 return (mod_info(&modlinkage, modinfop)); 465 } 466 467 /* ARGSUSED */ 468 static int 469 mdattach(dev_info_t *dip, ddi_attach_cmd_t cmd) 470 { 471 int len; 472 unit_t i; 473 size_t sz; 474 char ver[VERSION_LENGTH]; 475 char **maj_str_array; 476 char *str, *str2; 477 478 MD_SET_IN(IN_ATTACH); 479 md_in_upgrade = 0; 480 md_keep_repl_state = 0; 481 md_devid_destroy = 0; 482 483 if (cmd != DDI_ATTACH) { 484 MD_CLR_IN(IN_ATTACH); 485 return (DDI_FAILURE); 486 } 487 488 if (md_devinfo != NULL) { 489 MD_CLR_IN(IN_ATTACH); 490 return (DDI_FAILURE); 491 } 492 493 mddb_init(); 494 495 if (md_start_daemons(TRUE)) { 496 MD_CLR_IN(IN_ATTACH); 497 mddb_unload(); /* undo mddb_init() allocations */ 498 return (DDI_FAILURE); 499 } 500 501 /* clear the halted state */ 502 md_clr_status(MD_GBL_HALTED); 503 504 /* see if the diagnostic switch is on */ 505 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 506 DDI_PROP_DONTPASS, "md_init_debug", 0)) 507 md_init_debug++; 508 509 /* see if the failfast disable switch is on */ 510 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 511 DDI_PROP_DONTPASS, "md_ff_disable", 0)) 512 md_ff_disable++; 513 514 /* try and get the md_nmedh property */ 515 md_nmedh = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 516 DDI_PROP_DONTPASS, "md_nmedh", MED_DEF_HOSTS); 517 if ((md_nmedh <= 0) || (md_nmedh > MED_MAX_HOSTS)) 518 md_nmedh = MED_DEF_HOSTS; 519 520 /* try and get the md_med_trans_lst property */ 521 len = 0; 522 if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN, 523 0, "md_med_trans_lst", NULL, &len) != DDI_PROP_SUCCESS || 524 len == 0) { 525 md_med_trans_lst = md_strdup("tcp"); 526 } else { 527 md_med_trans_lst = kmem_zalloc((size_t)len, KM_SLEEP); 528 if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_BUF, 529 0, "md_med_trans_lst", md_med_trans_lst, &len) != 530 DDI_PROP_SUCCESS) { 531 kmem_free(md_med_trans_lst, (size_t)len); 532 md_med_trans_lst = md_strdup("tcp"); 533 } 534 } 535 536 /* 537 * Must initialize the internal data structures before the 538 * any possible calls to 'goto attach_failure' as _fini 539 * routine references them. 540 */ 541 med_init(); 542 543 md_ops = (md_ops_t **)kmem_zalloc( 544 sizeof (md_ops_t *) * MD_NOPS, KM_SLEEP); 545 md_mods = (ddi_modhandle_t *)kmem_zalloc( 546 sizeof (ddi_modhandle_t) * MD_NOPS, KM_SLEEP); 547 548 /* try and get the md_xlate property */ 549 /* Should we only do this if upgrade? */ 550 len = sizeof (char) * 5; 551 if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_BUF, 552 0, "md_xlate_ver", ver, &len) == DDI_PROP_SUCCESS) { 553 if (strcmp(ver, VERSION) == 0) { 554 len = 0; 555 if (ddi_prop_op(DDI_DEV_T_ANY, dip, 556 PROP_LEN_AND_VAL_ALLOC, 0, "md_xlate", 557 (caddr_t)&md_tuple_table, &len) != 558 DDI_PROP_SUCCESS) { 559 if (md_init_debug) 560 cmn_err(CE_WARN, 561 "md_xlate ddi_prop_op failed"); 562 goto attach_failure; 563 } else { 564 md_tuple_length = 565 len/(2 * ((int)sizeof (dev32_t))); 566 md_in_upgrade = 1; 567 } 568 569 /* Get target's name to major table */ 570 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, 571 dip, DDI_PROP_DONTPASS, 572 "md_targ_nm_table", &maj_str_array, 573 &md_majortab_len) != DDI_PROP_SUCCESS) { 574 md_majortab_len = 0; 575 if (md_init_debug) 576 cmn_err(CE_WARN, "md_targ_nm_table " 577 "ddi_prop_lookup_string_array " 578 "failed"); 579 goto attach_failure; 580 } 581 582 md_major_tuple_table = 583 (struct md_xlate_major_table *) 584 kmem_zalloc(md_majortab_len * 585 sizeof (struct md_xlate_major_table), KM_SLEEP); 586 587 for (i = 0; i < md_majortab_len; i++) { 588 /* Getting major name */ 589 str = strchr(maj_str_array[i], ' '); 590 if (str == NULL) 591 continue; 592 *str = '\0'; 593 md_major_tuple_table[i].drv_name = 594 md_strdup(maj_str_array[i]); 595 596 /* Simplified atoi to get major number */ 597 str2 = str + 1; 598 md_major_tuple_table[i].targ_maj = 0; 599 while ((*str2 >= '0') && (*str2 <= '9')) { 600 md_major_tuple_table[i].targ_maj *= 10; 601 md_major_tuple_table[i].targ_maj += 602 *str2++ - '0'; 603 } 604 *str = ' '; 605 } 606 ddi_prop_free((void *)maj_str_array); 607 } else { 608 if (md_init_debug) 609 cmn_err(CE_WARN, "md_xlate_ver is incorrect"); 610 goto attach_failure; 611 } 612 } 613 614 /* 615 * Check for properties: 616 * md_keep_repl_state and md_devid_destroy 617 * and set globals if these exist. 618 */ 619 md_keep_repl_state = ddi_getprop(DDI_DEV_T_ANY, dip, 620 0, "md_keep_repl_state", 0); 621 622 md_devid_destroy = ddi_getprop(DDI_DEV_T_ANY, dip, 623 0, "md_devid_destroy", 0); 624 625 if (MD_UPGRADE) 626 md_major_targ = md_targ_name_to_major("md"); 627 else 628 md_major_targ = 0; 629 630 /* allocate admin device node */ 631 if (ddi_create_priv_minor_node(dip, "admin", S_IFCHR, 632 MD_ADM_MINOR, DDI_PSEUDO, 0, NULL, PRIV_SYS_CONFIG, 0640)) 633 goto attach_failure; 634 635 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 636 DDI_KERNEL_IOCTL, NULL, 0) != DDI_SUCCESS) 637 goto attach_failure; 638 639 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 640 "ddi-abrwrite-supported", 1) != DDI_SUCCESS) 641 goto attach_failure; 642 643 /* these could have been cleared by a detach */ 644 md_nunits = MD_MAXUNITS; 645 md_nsets = MD_MAXSETS; 646 647 sz = sizeof (void *) * MD_MAXUNITS; 648 if (md_set[0].s_un == NULL) 649 md_set[0].s_un = kmem_zalloc(sz, KM_SLEEP); 650 if (md_set[0].s_ui == NULL) 651 md_set[0].s_ui = kmem_zalloc(sz, KM_SLEEP); 652 653 md_devinfo = dip; 654 655 /* 656 * Only allocate device node for root mirror metadevice. 657 * Don't pre-allocate unnecessary device nodes (thus slowing down a 658 * boot when we attach). 659 * We can't read the mddbs in attach. The mddbs will be read 660 * by metainit during the boot process when it is doing the 661 * auto-take processing and any other minor nodes will be 662 * allocated at that point. 663 * 664 * There are two scenarios to be aware of here: 665 * 1) when we are booting from a mirrored root we need the root 666 * metadevice to exist very early (during vfs_mountroot processing) 667 * 2) we need all of the nodes to be created so that any mnttab entries 668 * will succeed (handled by metainit reading the mddb during boot). 669 */ 670 if (strncmp(SVM_PSEUDO_STR, svm_bootpath, sizeof (SVM_PSEUDO_STR) - 1) 671 == 0) { 672 char *p; 673 int mnum = 0; 674 675 /* 676 * The svm_bootpath string looks something like 677 * /pseudo/md@0:0,150,blk where 150 is the minor number 678 * in this example so we need to set the pointer p onto 679 * the first digit of the minor number and convert it 680 * from ascii. 681 */ 682 for (p = svm_bootpath + sizeof (SVM_PSEUDO_STR) + 1; 683 *p >= '0' && *p <= '9'; p++) { 684 mnum *= 10; 685 mnum += *p - '0'; 686 } 687 688 if (md_create_minor_node(0, mnum)) { 689 kmem_free(md_set[0].s_un, sz); 690 kmem_free(md_set[0].s_ui, sz); 691 goto attach_failure; 692 } 693 } 694 695 /* create the hash to store the meta device sizes */ 696 md_nblocksmap = mod_hash_create_idhash("md_nblocksmap", 697 md_nblocksmap_size, mod_hash_null_valdtor); 698 699 MD_CLR_IN(IN_ATTACH); 700 return (DDI_SUCCESS); 701 702 attach_failure: 703 /* 704 * Use our own detach routine to toss any stuff we allocated above. 705 * NOTE: detach will call md_halt to free the mddb_init allocations. 706 */ 707 MD_CLR_IN(IN_ATTACH); 708 if (mddetach(dip, DDI_DETACH) != DDI_SUCCESS) 709 cmn_err(CE_WARN, "detach from attach failed"); 710 return (DDI_FAILURE); 711 } 712 713 /* ARGSUSED */ 714 static int 715 mddetach(dev_info_t *dip, ddi_detach_cmd_t cmd) 716 { 717 extern int check_active_locators(); 718 set_t s; 719 size_t sz; 720 int len; 721 722 MD_SET_IN(IN_DETACH); 723 724 /* check command */ 725 if (cmd != DDI_DETACH) { 726 MD_CLR_IN(IN_DETACH); 727 return (DDI_FAILURE); 728 } 729 730 /* 731 * if we have not already halted yet we have no active config 732 * then automatically initiate a halt so we can detach. 733 */ 734 if (!(md_get_status() & MD_GBL_HALTED)) { 735 if (check_active_locators() == 0) { 736 /* 737 * NOTE: a successful md_halt will have done the 738 * mddb_unload to free allocations done in mddb_init 739 */ 740 if (md_halt(MD_NO_GBL_LOCKS_HELD)) { 741 cmn_err(CE_NOTE, "md:detach: " 742 "Could not halt Solaris Volume Manager"); 743 MD_CLR_IN(IN_DETACH); 744 return (DDI_FAILURE); 745 } 746 } 747 748 /* fail detach if we have not halted */ 749 if (!(md_get_status() & MD_GBL_HALTED)) { 750 MD_CLR_IN(IN_DETACH); 751 return (DDI_FAILURE); 752 } 753 } 754 755 /* must be in halted state, this will be cleared on next attach */ 756 ASSERT(md_get_status() & MD_GBL_HALTED); 757 758 /* cleanup attach allocations and initializations */ 759 md_major_targ = 0; 760 761 sz = sizeof (void *) * md_nunits; 762 for (s = 0; s < md_nsets; s++) { 763 if (md_set[s].s_un != NULL) { 764 kmem_free(md_set[s].s_un, sz); 765 md_set[s].s_un = NULL; 766 } 767 768 if (md_set[s].s_ui != NULL) { 769 kmem_free(md_set[s].s_ui, sz); 770 md_set[s].s_ui = NULL; 771 } 772 } 773 md_nunits = 0; 774 md_nsets = 0; 775 md_nmedh = 0; 776 777 if (non_ff_drivers != NULL) { 778 int i; 779 780 for (i = 0; non_ff_drivers[i] != NULL; i++) 781 kmem_free(non_ff_drivers[i], 782 strlen(non_ff_drivers[i]) + 1); 783 784 /* free i+1 entries because there is a null entry at list end */ 785 kmem_free(non_ff_drivers, (i + 1) * sizeof (char *)); 786 non_ff_drivers = NULL; 787 } 788 789 if (md_med_trans_lst != NULL) { 790 kmem_free(md_med_trans_lst, strlen(md_med_trans_lst) + 1); 791 md_med_trans_lst = NULL; 792 } 793 794 if (md_mods != NULL) { 795 kmem_free(md_mods, sizeof (ddi_modhandle_t) * MD_NOPS); 796 md_mods = NULL; 797 } 798 799 if (md_ops != NULL) { 800 kmem_free(md_ops, sizeof (md_ops_t *) * MD_NOPS); 801 md_ops = NULL; 802 } 803 804 if (MD_UPGRADE) { 805 len = md_tuple_length * (2 * ((int)sizeof (dev32_t))); 806 md_in_upgrade = 0; 807 md_xlate_free(len); 808 md_majortab_free(); 809 } 810 811 /* 812 * Undo what we did in mdattach, freeing resources 813 * and removing things we installed. The system 814 * framework guarantees we are not active with this devinfo 815 * node in any other entry points at this time. 816 */ 817 ddi_prop_remove_all(dip); 818 ddi_remove_minor_node(dip, NULL); 819 820 med_fini(); 821 822 mod_hash_destroy_idhash(md_nblocksmap); 823 824 md_devinfo = NULL; 825 826 MD_CLR_IN(IN_DETACH); 827 return (DDI_SUCCESS); 828 } 829 830 831 /* 832 * Given the device number return the devinfo pointer 833 * given to md via md_attach 834 */ 835 /*ARGSUSED*/ 836 static int 837 mdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 838 { 839 int error = DDI_FAILURE; 840 841 switch (infocmd) { 842 case DDI_INFO_DEVT2DEVINFO: 843 if (md_devinfo) { 844 *result = (void *)md_devinfo; 845 error = DDI_SUCCESS; 846 } 847 break; 848 849 case DDI_INFO_DEVT2INSTANCE: 850 *result = (void *)0; 851 error = DDI_SUCCESS; 852 break; 853 } 854 return (error); 855 } 856 857 /* 858 * property operation routine. return the number of blocks for the partition 859 * in question or forward the request to the property facilities. 860 */ 861 static int 862 mdprop_op( 863 dev_t dev, /* device number associated with device */ 864 dev_info_t *dip, /* device info struct for this device */ 865 ddi_prop_op_t prop_op, /* property operator */ 866 int mod_flags, /* property flags */ 867 char *name, /* name of property */ 868 caddr_t valuep, /* where to put property value */ 869 int *lengthp) /* put length of property here */ 870 { 871 return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags, 872 name, valuep, lengthp, md_nblocks_get(getminor(dev)))); 873 } 874 875 static void 876 snarf_user_data(set_t setno) 877 { 878 mddb_recid_t recid; 879 mddb_recstatus_t status; 880 881 recid = mddb_makerecid(setno, 0); 882 while ((recid = mddb_getnextrec(recid, MDDB_USER, 0)) > 0) { 883 if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) 884 continue; 885 886 status = mddb_getrecstatus(recid); 887 if (status == MDDB_STALE) 888 continue; 889 890 if (status == MDDB_NODATA) { 891 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 892 continue; 893 } 894 895 ASSERT(status == MDDB_OK); 896 897 mddb_setrecprivate(recid, MD_PRV_GOTIT); 898 } 899 } 900 901 static void 902 md_print_block_usage(mddb_set_t *s, uint_t blks) 903 { 904 uint_t ib; 905 int li; 906 mddb_mb_ic_t *mbip; 907 uint_t max_blk_needed; 908 mddb_lb_t *lbp; 909 mddb_sidelocator_t *slp; 910 int drv_index; 911 md_splitname sn; 912 char *name; 913 char *suffix; 914 size_t prefixlen; 915 size_t suffixlen; 916 int alloc_sz; 917 918 919 max_blk_needed = s->s_totalblkcnt - s->s_freeblkcnt + blks; 920 921 cmn_err(CE_WARN, "Blocks in Metadevice State Database: %d\n" 922 " Additional Blocks Needed: %d\n\n" 923 " Increase size of following replicas for\n" 924 " device relocatability by deleting listed\n" 925 " replica and re-adding replica with\n" 926 " increased size (see metadb(1M)):\n" 927 " Replica Increase By", 928 s->s_totalblkcnt, (blks - s->s_freeblkcnt)); 929 930 lbp = s->s_lbp; 931 932 for (li = 0; li < lbp->lb_loccnt; li++) { 933 if (lbp->lb_locators[li].l_flags & MDDB_F_DELETED) 934 continue; 935 ib = 0; 936 for (mbip = s->s_mbiarray[li]; mbip != NULL; 937 mbip = mbip->mbi_next) { 938 ib += (uint_t)mbip->mbi_mddb_mb.mb_blkcnt; 939 } 940 if (ib == 0) 941 continue; 942 if (ib < max_blk_needed) { 943 slp = &lbp->lb_sidelocators[s->s_sideno][li]; 944 drv_index = slp->l_drvnm_index; 945 mddb_locatorblock2splitname(s->s_lnp, li, s->s_sideno, 946 &sn); 947 prefixlen = SPN_PREFIX(&sn).pre_len; 948 suffixlen = SPN_SUFFIX(&sn).suf_len; 949 alloc_sz = (int)(prefixlen + suffixlen + 2); 950 name = (char *)kmem_alloc(alloc_sz, KM_SLEEP); 951 (void) strncpy(name, SPN_PREFIX(&sn).pre_data, 952 prefixlen); 953 name[prefixlen] = '/'; 954 suffix = name + (prefixlen + 1); 955 (void) strncpy(suffix, SPN_SUFFIX(&sn).suf_data, 956 suffixlen); 957 name[prefixlen + suffixlen + 1] = '\0'; 958 cmn_err(CE_WARN, 959 " %s (%s:%d:%d) %d blocks", 960 name, lbp->lb_drvnm[drv_index].dn_data, 961 slp->l_mnum, lbp->lb_locators[li].l_blkno, 962 (max_blk_needed - ib)); 963 kmem_free(name, alloc_sz); 964 } 965 } 966 } 967 968 /* 969 * md_create_minor_node: 970 * Create the minor device for the given set and un_self_id. 971 * 972 * Input: 973 * setno - set number 974 * mnum - selfID of unit 975 * 976 * Output: 977 * None. 978 * 979 * Returns 0 for success, 1 for failure. 980 * 981 * Side-effects: 982 * None. 983 */ 984 int 985 md_create_minor_node(set_t setno, minor_t mnum) 986 { 987 char name[20]; 988 989 /* Check for valid arguments */ 990 if (setno >= MD_MAXSETS || MD_MIN2UNIT(mnum) >= MD_MAXUNITS) 991 return (1); 992 993 (void) snprintf(name, 20, "%u,%u,blk", 994 (unsigned)setno, (unsigned)MD_MIN2UNIT(mnum)); 995 996 if (ddi_create_minor_node(md_devinfo, name, S_IFBLK, 997 MD_MKMIN(setno, mnum), DDI_PSEUDO, 0)) 998 return (1); 999 1000 (void) snprintf(name, 20, "%u,%u,raw", 1001 (unsigned)setno, (unsigned)MD_MIN2UNIT(mnum)); 1002 1003 if (ddi_create_minor_node(md_devinfo, name, S_IFCHR, 1004 MD_MKMIN(setno, mnum), DDI_PSEUDO, 0)) 1005 return (1); 1006 1007 return (0); 1008 } 1009 1010 /* 1011 * For a given key check if it is an orphaned record. 1012 * The following conditions are used to determine an orphan. 1013 * 1. The device associated with that key is not a metadevice. 1014 * 2. If DEVID_STYLE then the physical device does not have a device Id 1015 * associated with it. 1016 * 1017 * If a key does not have an entry in the devid namespace it could be 1018 * a device that does not support device ids. Hence the record is not 1019 * deleted. 1020 */ 1021 1022 static int 1023 md_verify_orphaned_record(set_t setno, mdkey_t key) 1024 { 1025 md_dev64_t odev; /* orphaned dev */ 1026 mddb_set_t *s; 1027 side_t side = 0; 1028 struct nm_next_hdr *did_nh = NULL; 1029 1030 s = (mddb_set_t *)md_set[setno].s_db; 1031 if ((did_nh = get_first_record(setno, 1, (NM_DEVID | NM_NOTSHARED))) 1032 == NULL) 1033 return (0); 1034 /* 1035 * If devid style is set then get the dev_t using MD_NOTRUST_DEVT 1036 */ 1037 if (s->s_lbp->lb_flags & MDDB_DEVID_STYLE) { 1038 odev = md_getdevnum(setno, side, key, MD_NOTRUST_DEVT); 1039 if ((odev == NODEV64) || (md_getmajor(odev) == md_major)) 1040 return (0); 1041 if (lookup_entry(did_nh, setno, side, key, odev, NM_DEVID) == 1042 NULL) 1043 return (1); 1044 } 1045 return (0); 1046 } 1047 1048 int 1049 md_snarf_db_set(set_t setno, md_error_t *ep) 1050 { 1051 int err = 0; 1052 int i; 1053 mddb_recid_t recid; 1054 mddb_type_t drvrid; 1055 mddb_recstatus_t status; 1056 md_ops_t *ops; 1057 uint_t privat; 1058 mddb_set_t *s; 1059 uint_t cvt_blks; 1060 struct nm_next_hdr *nh; 1061 mdkey_t key = MD_KEYWILD; 1062 side_t side = 0; 1063 int size; 1064 int devid_flag; 1065 int retval; 1066 uint_t un; 1067 int un_next_set = 0; 1068 1069 md_haltsnarf_enter(setno); 1070 1071 mutex_enter(&md_mx); 1072 if (md_set[setno].s_status & MD_SET_SNARFED) { 1073 mutex_exit(&md_mx); 1074 md_haltsnarf_exit(setno); 1075 return (0); 1076 } 1077 mutex_exit(&md_mx); 1078 1079 if (! (md_get_status() & MD_GBL_DAEMONS_LIVE)) { 1080 if (md_start_daemons(TRUE)) { 1081 if (ep != NULL) 1082 (void) mdsyserror(ep, ENXIO); 1083 err = -1; 1084 goto out; 1085 } 1086 } 1087 1088 1089 /* 1090 * Load the devid name space if it exists 1091 */ 1092 (void) md_load_namespace(setno, NULL, NM_DEVID); 1093 if (!md_load_namespace(setno, ep, 0L)) { 1094 /* 1095 * Unload the devid namespace 1096 */ 1097 (void) md_unload_namespace(setno, NM_DEVID); 1098 err = -1; 1099 goto out; 1100 } 1101 1102 /* 1103 * If replica is in non-devid state, convert if: 1104 * - not in probe during upgrade (md_keep_repl_state = 0) 1105 * - enough space available in replica 1106 * - local set 1107 * - not a multi-node diskset 1108 * - clustering is not present (for non-local set) 1109 */ 1110 s = (mddb_set_t *)md_set[setno].s_db; 1111 devid_flag = 0; 1112 if (!(s->s_lbp->lb_flags & MDDB_DEVID_STYLE) && !md_keep_repl_state) 1113 devid_flag = 1; 1114 if (cluster_bootflags & CLUSTER_CONFIGURED) 1115 if (setno != MD_LOCAL_SET) 1116 devid_flag = 0; 1117 if (MD_MNSET_SETNO(setno)) 1118 devid_flag = 0; 1119 if ((md_devid_destroy == 1) && (md_keep_repl_state == 1)) 1120 devid_flag = 0; 1121 1122 /* 1123 * if we weren't devid style before and md_keep_repl_state=1 1124 * we need to stay non-devid 1125 */ 1126 if ((md_keep_repl_state == 1) && 1127 ((s->s_lbp->lb_flags & MDDB_DEVID_STYLE) == 0)) 1128 devid_flag = 0; 1129 if (devid_flag) { 1130 /* 1131 * Determine number of free blocks needed to convert 1132 * entire replica to device id format - locator blocks 1133 * and namespace. 1134 */ 1135 cvt_blks = 0; 1136 if (mddb_lb_did_convert(s, 0, &cvt_blks) != 0) { 1137 if (ep != NULL) 1138 (void) mdsyserror(ep, EIO); 1139 err = -1; 1140 goto out; 1141 1142 } 1143 cvt_blks += md_nm_did_chkspace(setno); 1144 1145 /* add MDDB_DEVID_CONV_PERC% */ 1146 if ((md_conv_perc > 0) && (md_conv_perc <= 100)) { 1147 cvt_blks = cvt_blks * (100 + md_conv_perc) / 100; 1148 } 1149 1150 if (cvt_blks <= s->s_freeblkcnt) { 1151 if (mddb_lb_did_convert(s, 1, &cvt_blks) != 0) { 1152 if (ep != NULL) 1153 (void) mdsyserror(ep, EIO); 1154 err = -1; 1155 goto out; 1156 } 1157 1158 } else { 1159 /* 1160 * Print message that replica can't be converted for 1161 * lack of space. No failure - just continue to 1162 * run without device ids. 1163 */ 1164 cmn_err(CE_WARN, 1165 "Unable to add Solaris Volume Manager device " 1166 "relocation data.\n" 1167 " To use device relocation feature:\n" 1168 " - Increase size of listed replicas\n" 1169 " - Reboot"); 1170 md_print_block_usage(s, cvt_blks); 1171 cmn_err(CE_WARN, 1172 "Loading set without device relocation data.\n" 1173 " Solaris Volume Manager disk movement " 1174 "not tracked in local set."); 1175 } 1176 } 1177 1178 /* 1179 * go through and load any modules referenced in 1180 * data base 1181 */ 1182 recid = mddb_makerecid(setno, 0); 1183 while ((recid = mddb_getnextrec(recid, MDDB_ALL, 0)) > 0) { 1184 status = mddb_getrecstatus(recid); 1185 if (status == MDDB_STALE) { 1186 if (! (md_get_setstatus(setno) & MD_SET_STALE)) { 1187 md_set_setstatus(setno, MD_SET_STALE); 1188 cmn_err(CE_WARN, 1189 "md: state database is stale"); 1190 } 1191 } else if (status == MDDB_NODATA) { 1192 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 1193 continue; 1194 } 1195 drvrid = mddb_getrectype1(recid); 1196 if (drvrid < MDDB_FIRST_MODID) 1197 continue; 1198 if (md_loadsubmod(setno, md_getshared_name(setno, drvrid), 1199 drvrid) < 0) { 1200 cmn_err(CE_NOTE, "md: could not load misc/%s", 1201 md_getshared_name(setno, drvrid)); 1202 } 1203 } 1204 1205 if (recid < 0) 1206 goto out; 1207 1208 snarf_user_data(setno); 1209 1210 /* 1211 * Initialize the md_nm_snarfed array 1212 * this array is indexed by the key and 1213 * is set by md_getdevnum during the snarf time 1214 */ 1215 if ((nh = get_first_record(setno, 0, NM_NOTSHARED)) != NULL) { 1216 size = (int)((((struct nm_rec_hdr *)nh->nmn_record)-> 1217 r_next_key) * (sizeof (int))); 1218 md_nm_snarfed = (int *)kmem_zalloc(size, KM_SLEEP); 1219 } 1220 1221 /* 1222 * go through and snarf until nothing gets added 1223 */ 1224 do { 1225 i = 0; 1226 for (ops = md_opslist; ops != NULL; ops = ops->md_next) { 1227 if (ops->md_snarf != NULL) { 1228 retval = ops->md_snarf(MD_SNARF_DOIT, setno); 1229 if (retval == -1) { 1230 err = -1; 1231 /* Don't know the failed unit */ 1232 (void) mdmderror(ep, MDE_RR_ALLOC_ERROR, 1233 0); 1234 (void) md_halt_set(setno, MD_HALT_ALL); 1235 (void) mddb_unload_set(setno); 1236 md_haltsnarf_exit(setno); 1237 return (err); 1238 } else { 1239 i += retval; 1240 } 1241 } 1242 } 1243 } while (i); 1244 1245 /* 1246 * Set the first available slot and availability 1247 */ 1248 md_set[setno].s_un_avail = 0; 1249 for (un = 0; un < MD_MAXUNITS; un++) { 1250 if (md_set[setno].s_un[un] != NULL) { 1251 continue; 1252 } else { 1253 if (!un_next_set) { 1254 md_set[setno].s_un_next = un; 1255 un_next_set = 1; 1256 } 1257 md_set[setno].s_un_avail++; 1258 } 1259 } 1260 1261 md_set_setstatus(setno, MD_SET_SNARFED); 1262 1263 recid = mddb_makerecid(setno, 0); 1264 while ((recid = mddb_getnextrec(recid, MDDB_ALL, 0)) > 0) { 1265 privat = mddb_getrecprivate(recid); 1266 if (privat & MD_PRV_COMMIT) { 1267 if (mddb_commitrec(recid)) { 1268 if (!(md_get_setstatus(setno) & MD_SET_STALE)) { 1269 md_set_setstatus(setno, MD_SET_STALE); 1270 cmn_err(CE_WARN, 1271 "md: state database is stale"); 1272 } 1273 } 1274 mddb_setrecprivate(recid, MD_PRV_GOTIT); 1275 } 1276 } 1277 1278 /* Deletes must happen after all the commits */ 1279 recid = mddb_makerecid(setno, 0); 1280 while ((recid = mddb_getnextrec(recid, MDDB_ALL, 0)) > 0) { 1281 privat = mddb_getrecprivate(recid); 1282 if (privat & MD_PRV_DELETE) { 1283 if (mddb_deleterec(recid)) { 1284 if (!(md_get_setstatus(setno) & MD_SET_STALE)) { 1285 md_set_setstatus(setno, MD_SET_STALE); 1286 cmn_err(CE_WARN, 1287 "md: state database is stale"); 1288 } 1289 mddb_setrecprivate(recid, MD_PRV_GOTIT); 1290 } 1291 recid = mddb_makerecid(setno, 0); 1292 } 1293 } 1294 1295 /* 1296 * go through and clean up records until nothing gets cleaned up. 1297 */ 1298 do { 1299 i = 0; 1300 for (ops = md_opslist; ops != NULL; ops = ops->md_next) 1301 if (ops->md_snarf != NULL) 1302 i += ops->md_snarf(MD_SNARF_CLEANUP, setno); 1303 } while (i); 1304 1305 if (md_nm_snarfed != NULL && 1306 !(md_get_setstatus(setno) & MD_SET_STALE)) { 1307 /* 1308 * go thru and cleanup the namespace and the device id 1309 * name space 1310 */ 1311 for (key = 1; 1312 key < ((struct nm_rec_hdr *)nh->nmn_record)->r_next_key; 1313 key++) { 1314 /* 1315 * Is the entry an 'orphan'? 1316 */ 1317 if (lookup_entry(nh, setno, side, key, NODEV64, 0L) != 1318 NULL) { 1319 /* 1320 * If the value is not set then apparently 1321 * it is not part of the current configuration, 1322 * remove it this can happen when system panic 1323 * between the primary name space update and 1324 * the device id name space update 1325 */ 1326 if (md_nm_snarfed[key] == 0) { 1327 if (md_verify_orphaned_record(setno, 1328 key) == 1) 1329 (void) remove_entry(nh, 1330 side, key, 0L); 1331 } 1332 } 1333 } 1334 } 1335 1336 if (md_nm_snarfed != NULL) { 1337 /* 1338 * Done and free the memory 1339 */ 1340 kmem_free(md_nm_snarfed, size); 1341 md_nm_snarfed = NULL; 1342 } 1343 1344 if (s->s_lbp->lb_flags & MDDB_DEVID_STYLE && 1345 !(md_get_setstatus(setno) & MD_SET_STALE)) { 1346 /* 1347 * if the destroy flag has been set and 1348 * the MD_SET_DIDCLUP bit is not set in 1349 * the set's status field, cleanup the 1350 * entire device id namespace 1351 */ 1352 if (md_devid_destroy && 1353 !(md_get_setstatus(setno) & MD_SET_DIDCLUP)) { 1354 (void) md_devid_cleanup(setno, 1); 1355 md_set_setstatus(setno, MD_SET_DIDCLUP); 1356 } else 1357 (void) md_devid_cleanup(setno, 0); 1358 } 1359 1360 /* 1361 * clear single threading on snarf, return success or error 1362 */ 1363 out: 1364 md_haltsnarf_exit(setno); 1365 return (err); 1366 } 1367 1368 void 1369 get_minfo(struct dk_minfo *info, minor_t mnum) 1370 { 1371 md_unit_t *un; 1372 mdi_unit_t *ui; 1373 1374 info->dki_capacity = 0; 1375 info->dki_lbsize = 0; 1376 info->dki_media_type = 0; 1377 1378 if ((ui = MDI_UNIT(mnum)) == NULL) { 1379 return; 1380 } 1381 un = (md_unit_t *)md_unit_readerlock(ui); 1382 info->dki_capacity = un->c.un_total_blocks; 1383 md_unit_readerexit(ui); 1384 info->dki_lbsize = DEV_BSIZE; 1385 info->dki_media_type = DK_UNKNOWN; 1386 } 1387 1388 1389 void 1390 get_info(struct dk_cinfo *info, minor_t mnum) 1391 { 1392 /* 1393 * Controller Information 1394 */ 1395 info->dki_ctype = DKC_MD; 1396 info->dki_cnum = ddi_get_instance(ddi_get_parent(md_devinfo)); 1397 (void) strcpy(info->dki_cname, 1398 ddi_get_name(ddi_get_parent(md_devinfo))); 1399 /* 1400 * Unit Information 1401 */ 1402 info->dki_unit = mnum; 1403 info->dki_slave = 0; 1404 (void) strcpy(info->dki_dname, ddi_driver_name(md_devinfo)); 1405 info->dki_flags = 0; 1406 info->dki_partition = 0; 1407 info->dki_maxtransfer = (ushort_t)(md_maxphys / DEV_BSIZE); 1408 1409 /* 1410 * We can't get from here to there yet 1411 */ 1412 info->dki_addr = 0; 1413 info->dki_space = 0; 1414 info->dki_prio = 0; 1415 info->dki_vec = 0; 1416 } 1417 1418 /* 1419 * open admin device 1420 */ 1421 static int 1422 mdadminopen( 1423 int flag, 1424 int otyp) 1425 { 1426 int err = 0; 1427 1428 /* single thread */ 1429 mutex_enter(&md_mx); 1430 1431 /* check type and flags */ 1432 if ((otyp != OTYP_CHR) && (otyp != OTYP_LYR)) { 1433 err = EINVAL; 1434 goto out; 1435 } 1436 if (((flag & FEXCL) && (md_status & MD_GBL_OPEN)) || 1437 (md_status & MD_GBL_EXCL)) { 1438 err = EBUSY; 1439 goto out; 1440 } 1441 1442 /* count and flag open */ 1443 md_ocnt[otyp]++; 1444 md_status |= MD_GBL_OPEN; 1445 if (flag & FEXCL) 1446 md_status |= MD_GBL_EXCL; 1447 1448 /* unlock return success */ 1449 out: 1450 mutex_exit(&md_mx); 1451 return (err); 1452 } 1453 1454 /* 1455 * open entry point 1456 */ 1457 static int 1458 mdopen( 1459 dev_t *dev, 1460 int flag, 1461 int otyp, 1462 cred_t *cred_p) 1463 { 1464 minor_t mnum = getminor(*dev); 1465 unit_t unit = MD_MIN2UNIT(mnum); 1466 set_t setno = MD_MIN2SET(mnum); 1467 mdi_unit_t *ui = NULL; 1468 int err = 0; 1469 md_parent_t parent; 1470 1471 /* dispatch admin device opens */ 1472 if (mnum == MD_ADM_MINOR) 1473 return (mdadminopen(flag, otyp)); 1474 1475 /* lock, check status */ 1476 rw_enter(&md_unit_array_rw.lock, RW_READER); 1477 1478 tryagain: 1479 if (md_get_status() & MD_GBL_HALTED) { 1480 err = ENODEV; 1481 goto out; 1482 } 1483 1484 /* check minor */ 1485 if ((setno >= md_nsets) || (unit >= md_nunits)) { 1486 err = ENXIO; 1487 goto out; 1488 } 1489 1490 /* make sure we're snarfed */ 1491 if ((md_get_setstatus(MD_LOCAL_SET) & MD_SET_SNARFED) == 0) { 1492 if (md_snarf_db_set(MD_LOCAL_SET, NULL) != 0) { 1493 err = ENODEV; 1494 goto out; 1495 } 1496 } 1497 if ((md_get_setstatus(setno) & MD_SET_SNARFED) == 0) { 1498 err = ENODEV; 1499 goto out; 1500 } 1501 1502 /* check unit */ 1503 if ((ui = MDI_UNIT(mnum)) == NULL) { 1504 err = ENXIO; 1505 goto out; 1506 } 1507 1508 /* 1509 * The softpart open routine may do an I/O during the open, in 1510 * which case the open routine will set the OPENINPROGRESS flag 1511 * and drop all locks during the I/O. If this thread sees 1512 * the OPENINPROGRESS flag set, if should wait until the flag 1513 * is reset before calling the driver's open routine. It must 1514 * also revalidate the world after it grabs the unit_array lock 1515 * since the set may have been released or the metadevice cleared 1516 * during the sleep. 1517 */ 1518 if (MD_MNSET_SETNO(setno)) { 1519 mutex_enter(&ui->ui_mx); 1520 if (ui->ui_lock & MD_UL_OPENINPROGRESS) { 1521 rw_exit(&md_unit_array_rw.lock); 1522 cv_wait(&ui->ui_cv, &ui->ui_mx); 1523 rw_enter(&md_unit_array_rw.lock, RW_READER); 1524 mutex_exit(&ui->ui_mx); 1525 goto tryagain; 1526 } 1527 mutex_exit(&ui->ui_mx); 1528 } 1529 1530 /* Test if device is openable */ 1531 if ((ui->ui_tstate & MD_NOTOPENABLE) != 0) { 1532 err = ENXIO; 1533 goto out; 1534 } 1535 1536 /* don't allow opens w/WRITE flag if stale */ 1537 if ((flag & FWRITE) && (md_get_setstatus(setno) & MD_SET_STALE)) { 1538 err = EROFS; 1539 goto out; 1540 } 1541 1542 /* don't allow writes to subdevices */ 1543 parent = md_get_parent(md_expldev(*dev)); 1544 if ((flag & FWRITE) && MD_HAS_PARENT(parent)) { 1545 err = EROFS; 1546 goto out; 1547 } 1548 1549 /* open underlying driver */ 1550 if (md_ops[ui->ui_opsindex]->md_open != NULL) { 1551 if ((err = (*md_ops[ui->ui_opsindex]->md_open) 1552 (dev, flag, otyp, cred_p, 0)) != 0) 1553 goto out; 1554 } 1555 1556 /* or do it ourselves */ 1557 else { 1558 /* single thread */ 1559 (void) md_unit_openclose_enter(ui); 1560 err = md_unit_incopen(mnum, flag, otyp); 1561 md_unit_openclose_exit(ui); 1562 if (err != 0) 1563 goto out; 1564 } 1565 1566 /* unlock, return status */ 1567 out: 1568 rw_exit(&md_unit_array_rw.lock); 1569 return (err); 1570 } 1571 1572 /* 1573 * close admin device 1574 */ 1575 static int 1576 mdadminclose( 1577 int otyp) 1578 { 1579 int i; 1580 int err = 0; 1581 1582 /* single thread */ 1583 mutex_enter(&md_mx); 1584 1585 /* check type and flags */ 1586 if ((otyp < 0) || (otyp >= OTYPCNT)) { 1587 err = EINVAL; 1588 goto out; 1589 } else if (md_ocnt[otyp] == 0) { 1590 err = ENXIO; 1591 goto out; 1592 } 1593 1594 /* count and flag closed */ 1595 if (otyp == OTYP_LYR) 1596 md_ocnt[otyp]--; 1597 else 1598 md_ocnt[otyp] = 0; 1599 md_status &= ~MD_GBL_OPEN; 1600 for (i = 0; (i < OTYPCNT); ++i) 1601 if (md_ocnt[i] != 0) 1602 md_status |= MD_GBL_OPEN; 1603 if (! (md_status & MD_GBL_OPEN)) 1604 md_status &= ~MD_GBL_EXCL; 1605 1606 /* unlock return success */ 1607 out: 1608 mutex_exit(&md_mx); 1609 return (err); 1610 } 1611 1612 /* 1613 * close entry point 1614 */ 1615 static int 1616 mdclose( 1617 dev_t dev, 1618 int flag, 1619 int otyp, 1620 cred_t *cred_p) 1621 { 1622 minor_t mnum = getminor(dev); 1623 set_t setno = MD_MIN2SET(mnum); 1624 unit_t unit = MD_MIN2UNIT(mnum); 1625 mdi_unit_t *ui = NULL; 1626 int err = 0; 1627 1628 /* dispatch admin device closes */ 1629 if (mnum == MD_ADM_MINOR) 1630 return (mdadminclose(otyp)); 1631 1632 /* check minor */ 1633 if ((setno >= md_nsets) || (unit >= md_nunits) || 1634 ((ui = MDI_UNIT(mnum)) == NULL)) { 1635 err = ENXIO; 1636 goto out; 1637 } 1638 1639 /* close underlying driver */ 1640 if (md_ops[ui->ui_opsindex]->md_close != NULL) { 1641 if ((err = (*md_ops[ui->ui_opsindex]->md_close) 1642 (dev, flag, otyp, cred_p, 0)) != 0) 1643 goto out; 1644 } 1645 1646 /* or do it ourselves */ 1647 else { 1648 /* single thread */ 1649 (void) md_unit_openclose_enter(ui); 1650 err = md_unit_decopen(mnum, otyp); 1651 md_unit_openclose_exit(ui); 1652 if (err != 0) 1653 goto out; 1654 } 1655 1656 /* return success */ 1657 out: 1658 return (err); 1659 } 1660 1661 1662 /* 1663 * This routine performs raw read operations. It is called from the 1664 * device switch at normal priority. 1665 * 1666 * The main catch is that the *uio struct which is passed to us may 1667 * specify a read which spans two buffers, which would be contiguous 1668 * on a single partition, but not on a striped partition. This will 1669 * be handled by mdstrategy. 1670 */ 1671 /*ARGSUSED*/ 1672 static int 1673 mdread(dev_t dev, struct uio *uio, cred_t *credp) 1674 { 1675 minor_t mnum; 1676 mdi_unit_t *ui; 1677 int error; 1678 1679 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1680 (MD_MIN2SET(mnum) >= md_nsets) || 1681 (MD_MIN2UNIT(mnum) >= md_nunits) || 1682 ((ui = MDI_UNIT(mnum)) == NULL)) 1683 return (ENXIO); 1684 1685 if (md_ops[ui->ui_opsindex]->md_read != NULL) 1686 return ((*md_ops[ui->ui_opsindex]->md_read) 1687 (dev, uio, credp)); 1688 1689 if ((error = md_chk_uio(uio)) != 0) 1690 return (error); 1691 1692 return (physio(mdstrategy, NULL, dev, B_READ, md_minphys, uio)); 1693 } 1694 1695 /* 1696 * This routine performs async raw read operations. It is called from the 1697 * device switch at normal priority. 1698 * 1699 * The main catch is that the *aio struct which is passed to us may 1700 * specify a read which spans two buffers, which would be contiguous 1701 * on a single partition, but not on a striped partition. This will 1702 * be handled by mdstrategy. 1703 */ 1704 /*ARGSUSED*/ 1705 static int 1706 mdaread(dev_t dev, struct aio_req *aio, cred_t *credp) 1707 { 1708 minor_t mnum; 1709 mdi_unit_t *ui; 1710 int error; 1711 1712 1713 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1714 (MD_MIN2SET(mnum) >= md_nsets) || 1715 (MD_MIN2UNIT(mnum) >= md_nunits) || 1716 ((ui = MDI_UNIT(mnum)) == NULL)) 1717 return (ENXIO); 1718 1719 if (md_ops[ui->ui_opsindex]->md_aread != NULL) 1720 return ((*md_ops[ui->ui_opsindex]->md_aread) 1721 (dev, aio, credp)); 1722 1723 if ((error = md_chk_uio(aio->aio_uio)) != 0) 1724 return (error); 1725 1726 return (aphysio(mdstrategy, anocancel, dev, B_READ, md_minphys, aio)); 1727 } 1728 1729 /* 1730 * This routine performs raw write operations. It is called from the 1731 * device switch at normal priority. 1732 * 1733 * The main catch is that the *uio struct which is passed to us may 1734 * specify a write which spans two buffers, which would be contiguous 1735 * on a single partition, but not on a striped partition. This is 1736 * handled by mdstrategy. 1737 * 1738 */ 1739 /*ARGSUSED*/ 1740 static int 1741 mdwrite(dev_t dev, struct uio *uio, cred_t *credp) 1742 { 1743 minor_t mnum; 1744 mdi_unit_t *ui; 1745 int error; 1746 1747 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1748 (MD_MIN2SET(mnum) >= md_nsets) || 1749 (MD_MIN2UNIT(mnum) >= md_nunits) || 1750 ((ui = MDI_UNIT(mnum)) == NULL)) 1751 return (ENXIO); 1752 1753 if (md_ops[ui->ui_opsindex]->md_write != NULL) 1754 return ((*md_ops[ui->ui_opsindex]->md_write) 1755 (dev, uio, credp)); 1756 1757 if ((error = md_chk_uio(uio)) != 0) 1758 return (error); 1759 1760 return (physio(mdstrategy, NULL, dev, B_WRITE, md_minphys, uio)); 1761 } 1762 1763 /* 1764 * This routine performs async raw write operations. It is called from the 1765 * device switch at normal priority. 1766 * 1767 * The main catch is that the *aio struct which is passed to us may 1768 * specify a write which spans two buffers, which would be contiguous 1769 * on a single partition, but not on a striped partition. This is 1770 * handled by mdstrategy. 1771 * 1772 */ 1773 /*ARGSUSED*/ 1774 static int 1775 mdawrite(dev_t dev, struct aio_req *aio, cred_t *credp) 1776 { 1777 minor_t mnum; 1778 mdi_unit_t *ui; 1779 int error; 1780 1781 1782 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1783 (MD_MIN2SET(mnum) >= md_nsets) || 1784 (MD_MIN2UNIT(mnum) >= md_nunits) || 1785 ((ui = MDI_UNIT(mnum)) == NULL)) 1786 return (ENXIO); 1787 1788 if (md_ops[ui->ui_opsindex]->md_awrite != NULL) 1789 return ((*md_ops[ui->ui_opsindex]->md_awrite) 1790 (dev, aio, credp)); 1791 1792 if ((error = md_chk_uio(aio->aio_uio)) != 0) 1793 return (error); 1794 1795 return (aphysio(mdstrategy, anocancel, dev, B_WRITE, md_minphys, aio)); 1796 } 1797 1798 int 1799 mdstrategy(struct buf *bp) 1800 { 1801 minor_t mnum; 1802 mdi_unit_t *ui; 1803 1804 ASSERT((bp->b_flags & B_DONE) == 0); 1805 1806 if (panicstr) 1807 md_clr_status(MD_GBL_DAEMONS_LIVE); 1808 1809 if (((mnum = getminor(bp->b_edev)) == MD_ADM_MINOR) || 1810 (MD_MIN2SET(mnum) >= md_nsets) || 1811 (MD_MIN2UNIT(mnum) >= md_nunits) || 1812 ((ui = MDI_UNIT(mnum)) == NULL)) { 1813 bp->b_flags |= B_ERROR; 1814 bp->b_error = ENXIO; 1815 bp->b_resid = bp->b_bcount; 1816 biodone(bp); 1817 return (0); 1818 } 1819 1820 bp->b_flags &= ~(B_ERROR | B_DONE); 1821 if (md_ops[ui->ui_opsindex]->md_strategy != NULL) { 1822 (*md_ops[ui->ui_opsindex]->md_strategy) (bp, 0, NULL); 1823 } else { 1824 (void) errdone(ui, bp, ENXIO); 1825 } 1826 return (0); 1827 } 1828 1829 /* 1830 * Return true if the ioctl is allowed to be multithreaded. 1831 * All the ioctls with MN are sent only from the message handlers through 1832 * rpc.mdcommd, which (via it's own locking mechanism) takes care that not two 1833 * ioctl for the same metadevice are issued at the same time. 1834 * So we are safe here. 1835 * The other ioctls do not mess with any metadevice structures and therefor 1836 * are harmless too, if called multiple times at the same time. 1837 */ 1838 static boolean_t 1839 is_mt_ioctl(int cmd) { 1840 1841 switch (cmd) { 1842 case MD_IOCGUNIQMSGID: 1843 case MD_IOCGVERSION: 1844 case MD_IOCISOPEN: 1845 case MD_MN_SET_MM_OWNER: 1846 case MD_MN_SET_STATE: 1847 case MD_MN_SUSPEND_WRITES: 1848 case MD_MN_ALLOCATE_HOTSPARE: 1849 case MD_MN_SET_SETFLAGS: 1850 case MD_MN_GET_SETFLAGS: 1851 case MD_MN_MDDB_OPTRECFIX: 1852 case MD_MN_MDDB_PARSE: 1853 case MD_MN_MDDB_BLOCK: 1854 case MD_MN_DB_USERREQ: 1855 case MD_IOC_SPSTATUS: 1856 case MD_MN_COMMD_ERR: 1857 case MD_MN_SET_COMMD_RUNNING: 1858 case MD_MN_RESYNC: 1859 case MD_MN_SETSYNC: 1860 case MD_MN_POKE_HOTSPARES: 1861 case MD_MN_RR_DIRTY: 1862 case MD_MN_RR_CLEAN: 1863 case MD_MN_IOC_SPUPDATEWM: 1864 return (1); 1865 default: 1866 return (0); 1867 } 1868 } 1869 1870 /* 1871 * This routine implements the ioctl calls for the Virtual Disk System. 1872 * It is called from the device switch at normal priority. 1873 */ 1874 /* ARGSUSED */ 1875 static int 1876 mdioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *cred_p, 1877 int *rval_p) 1878 { 1879 minor_t mnum = getminor(dev); 1880 mdi_unit_t *ui; 1881 IOLOCK lock; 1882 int err; 1883 1884 /* 1885 * For multinode disksets number of ioctls are allowed to be 1886 * multithreaded. 1887 * A fundamental assumption made in this implementation is that 1888 * ioctls either do not interact with other md structures or the 1889 * ioctl to the admin device can only occur if the metadevice 1890 * device is open. i.e. avoid a race between metaclear and the 1891 * progress of a multithreaded ioctl. 1892 */ 1893 1894 if (!is_mt_ioctl(cmd) && md_ioctl_lock_enter() == EINTR) { 1895 return (EINTR); 1896 } 1897 1898 /* 1899 * initialize lock tracker 1900 */ 1901 IOLOCK_INIT(&lock); 1902 1903 /* Flag to indicate that MD_GBL_IOCTL_LOCK is not acquired */ 1904 1905 if (is_mt_ioctl(cmd)) { 1906 /* increment the md_mtioctl_cnt */ 1907 mutex_enter(&md_mx); 1908 md_mtioctl_cnt++; 1909 mutex_exit(&md_mx); 1910 lock.l_flags |= MD_MT_IOCTL; 1911 } 1912 1913 /* 1914 * this has been added to prevent notification from re-snarfing 1915 * so metaunload will work. It may interfere with other modules 1916 * halt process. 1917 */ 1918 if (md_get_status() & (MD_GBL_HALTED | MD_GBL_DAEMONS_DIE)) 1919 return (IOLOCK_RETURN(ENXIO, &lock)); 1920 1921 /* 1922 * admin device ioctls 1923 */ 1924 if (mnum == MD_ADM_MINOR) { 1925 err = md_admin_ioctl(md_expldev(dev), cmd, (void *) data, 1926 mode, &lock); 1927 } 1928 1929 /* 1930 * metadevice ioctls 1931 */ 1932 else if ((MD_MIN2SET(mnum) >= md_nsets) || 1933 (MD_MIN2UNIT(mnum) >= md_nunits) || 1934 ((ui = MDI_UNIT(mnum)) == NULL)) { 1935 err = ENXIO; 1936 } else if (md_ops[ui->ui_opsindex]->md_ioctl == NULL) { 1937 err = ENOTTY; 1938 } else { 1939 err = (*md_ops[ui->ui_opsindex]->md_ioctl) 1940 (dev, cmd, (void *) data, mode, &lock); 1941 } 1942 1943 /* 1944 * drop any locks we grabbed 1945 */ 1946 return (IOLOCK_RETURN_IOCTLEND(err, &lock)); 1947 } 1948 1949 static int 1950 mddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 1951 { 1952 minor_t mnum; 1953 set_t setno; 1954 mdi_unit_t *ui; 1955 1956 if ((mnum = getminor(dev)) == MD_ADM_MINOR) 1957 return (ENXIO); 1958 1959 setno = MD_MIN2SET(mnum); 1960 1961 if ((setno >= md_nsets) || (MD_MIN2UNIT(mnum) >= md_nunits) || 1962 ((ui = MDI_UNIT(mnum)) == NULL)) 1963 return (ENXIO); 1964 1965 1966 if ((md_get_setstatus(setno) & MD_SET_SNARFED) == 0) 1967 return (ENXIO); 1968 1969 if (md_ops[ui->ui_opsindex]->md_dump != NULL) 1970 return ((*md_ops[ui->ui_opsindex]->md_dump) 1971 (dev, addr, blkno, nblk)); 1972 1973 return (ENXIO); 1974 } 1975 1976 /* 1977 * Metadevice unit number dispatcher 1978 * When this routine is called it will scan the 1979 * incore unit array and return the avail slot 1980 * hence the unit number to the caller 1981 * 1982 * Return -1 if there is nothing available 1983 */ 1984 unit_t 1985 md_get_nextunit(set_t setno) 1986 { 1987 unit_t un, start; 1988 1989 /* 1990 * If nothing available 1991 */ 1992 if (md_set[setno].s_un_avail == 0) { 1993 return (MD_UNITBAD); 1994 } 1995 1996 mutex_enter(&md_mx); 1997 start = un = md_set[setno].s_un_next; 1998 1999 /* LINTED: E_CONSTANT_CONDITION */ 2000 while (1) { 2001 if (md_set[setno].s_un[un] == NULL) { 2002 /* 2003 * Advance the starting index for the next 2004 * md_get_nextunit call 2005 */ 2006 if (un == MD_MAXUNITS - 1) { 2007 md_set[setno].s_un_next = 0; 2008 } else { 2009 md_set[setno].s_un_next = un + 1; 2010 } 2011 break; 2012 } 2013 2014 un = ((un == MD_MAXUNITS - 1) ? 0 : un + 1); 2015 2016 if (un == start) { 2017 un = MD_UNITBAD; 2018 break; 2019 } 2020 2021 } 2022 2023 mutex_exit(&md_mx); 2024 return (un); 2025 } 2026