xref: /titanic_41/usr/src/uts/common/io/ixgbe/ixgbe_common.c (revision 7d586c73618cfc2856b4ccf6d9aa584131fd17e1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 /* IntelVersion: 1.159 v2008-03-04 */
32 
33 #include "ixgbe_common.h"
34 #include "ixgbe_api.h"
35 
36 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43     u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
49 
50 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
51 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
52 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
54 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
55 
56 /*
57  * ixgbe_init_ops_generic - Inits function ptrs
58  * @hw: pointer to the hardware structure
59  *
60  * Initialize the function pointers.
61  */
62 s32
63 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
64 {
65 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
66 	struct ixgbe_mac_info *mac = &hw->mac;
67 
68 	/* EEPROM */
69 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
70 	eeprom->ops.read = &ixgbe_read_eeprom_generic;
71 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
72 	eeprom->ops.validate_checksum =
73 	    &ixgbe_validate_eeprom_checksum_generic;
74 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
75 
76 	/* MAC */
77 	mac->ops.init_hw = &ixgbe_init_hw_generic;
78 	mac->ops.reset_hw = NULL;
79 	mac->ops.start_hw = &ixgbe_start_hw_generic;
80 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
81 	mac->ops.get_media_type = NULL;
82 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
83 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
84 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
85 	mac->ops.read_analog_reg8 = &ixgbe_read_analog_reg8_generic;
86 	mac->ops.write_analog_reg8 = &ixgbe_write_analog_reg8_generic;
87 
88 	/* LEDs */
89 	mac->ops.led_on = &ixgbe_led_on_generic;
90 	mac->ops.led_off = &ixgbe_led_off_generic;
91 	mac->ops.blink_led_start = NULL;
92 	mac->ops.blink_led_stop = NULL;
93 
94 	/* RAR, Multicast, VLAN */
95 	mac->ops.set_rar = &ixgbe_set_rar_generic;
96 	mac->ops.set_vmdq = NULL;
97 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
98 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
99 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
100 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
101 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
102 	mac->ops.clear_vfta = &ixgbe_clear_vfta_generic;
103 	mac->ops.set_vfta = &ixgbe_set_vfta_generic;
104 
105 	/* Flow Control */
106 	mac->ops.setup_fc = NULL;
107 
108 	/* Link */
109 	mac->ops.get_link_capabilities = NULL;
110 	mac->ops.setup_link = NULL;
111 	mac->ops.setup_link_speed = NULL;
112 	mac->ops.check_link = NULL;
113 
114 	return (IXGBE_SUCCESS);
115 }
116 
117 /*
118  * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
119  * @hw: pointer to hardware structure
120  *
121  * Starts the hardware by filling the bus info structure and media type, clears
122  * all on chip counters, initializes receive address registers, multicast
123  * table, VLAN filter table, calls routine to set up link and flow control
124  * settings, and leaves transmit and receive units disabled and uninitialized
125  */
126 s32
127 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
128 {
129 	u32 ctrl_ext;
130 
131 	/* Set the media type */
132 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
133 
134 	/* Set bus info */
135 	hw->mac.ops.get_bus_info(hw);
136 
137 	/* Identify the PHY */
138 	hw->phy.ops.identify(hw);
139 
140 	/*
141 	 * Store MAC address from RAR0, clear receive address registers, and
142 	 * clear the multicast table
143 	 */
144 	hw->mac.ops.init_rx_addrs(hw);
145 
146 	/* Clear the VLAN filter table */
147 	hw->mac.ops.clear_vfta(hw);
148 
149 	/* Set up link */
150 	hw->mac.ops.setup_link(hw);
151 
152 	/* Clear statistics registers */
153 	hw->mac.ops.clear_hw_cntrs(hw);
154 
155 	/* Set No Snoop Disable */
156 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
157 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
158 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
159 	IXGBE_WRITE_FLUSH(hw);
160 
161 	/* Clear adapter stopped flag */
162 	hw->adapter_stopped = FALSE;
163 
164 	return (IXGBE_SUCCESS);
165 }
166 
167 /*
168  * ixgbe_init_hw_generic - Generic hardware initialization
169  * @hw: pointer to hardware structure
170  *
171  * Initialize the hardware by resetting the hardware, filling the bus info
172  * structure and media type, clears all on chip counters, initializes receive
173  * address registers, multicast table, VLAN filter table, calls routine to set
174  * up link and flow control settings, and leaves transmit and receive units
175  * disabled and uninitialized
176  */
177 s32
178 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
179 {
180 	/* Reset the hardware */
181 	hw->mac.ops.reset_hw(hw);
182 
183 	/* Start the HW */
184 	hw->mac.ops.start_hw(hw);
185 
186 	return (IXGBE_SUCCESS);
187 }
188 
189 /*
190  * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
191  * @hw: pointer to hardware structure
192  *
193  * Clears all hardware statistics counters by reading them from the hardware
194  * Statistics counters are clear on read.
195  */
196 s32
197 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
198 {
199 	u16 i = 0;
200 
201 	(void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
202 	(void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
203 	(void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
204 	(void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
205 	for (i = 0; i < 8; i++)
206 		(void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
207 
208 	(void) IXGBE_READ_REG(hw, IXGBE_MLFC);
209 	(void) IXGBE_READ_REG(hw, IXGBE_MRFC);
210 	(void) IXGBE_READ_REG(hw, IXGBE_RLEC);
211 	(void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
212 	(void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
213 	(void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
214 	(void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
215 
216 	for (i = 0; i < 8; i++) {
217 		(void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
218 		(void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
219 		(void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
220 		(void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
221 	}
222 
223 	(void) IXGBE_READ_REG(hw, IXGBE_PRC64);
224 	(void) IXGBE_READ_REG(hw, IXGBE_PRC127);
225 	(void) IXGBE_READ_REG(hw, IXGBE_PRC255);
226 	(void) IXGBE_READ_REG(hw, IXGBE_PRC511);
227 	(void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
228 	(void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
229 	(void) IXGBE_READ_REG(hw, IXGBE_GPRC);
230 	(void) IXGBE_READ_REG(hw, IXGBE_BPRC);
231 	(void) IXGBE_READ_REG(hw, IXGBE_MPRC);
232 	(void) IXGBE_READ_REG(hw, IXGBE_GPTC);
233 	(void) IXGBE_READ_REG(hw, IXGBE_GORCL);
234 	(void) IXGBE_READ_REG(hw, IXGBE_GORCH);
235 	(void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
236 	(void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
237 	for (i = 0; i < 8; i++)
238 		(void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
239 	(void) IXGBE_READ_REG(hw, IXGBE_RUC);
240 	(void) IXGBE_READ_REG(hw, IXGBE_RFC);
241 	(void) IXGBE_READ_REG(hw, IXGBE_ROC);
242 	(void) IXGBE_READ_REG(hw, IXGBE_RJC);
243 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
244 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
245 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
246 	(void) IXGBE_READ_REG(hw, IXGBE_TORL);
247 	(void) IXGBE_READ_REG(hw, IXGBE_TORH);
248 	(void) IXGBE_READ_REG(hw, IXGBE_TPR);
249 	(void) IXGBE_READ_REG(hw, IXGBE_TPT);
250 	(void) IXGBE_READ_REG(hw, IXGBE_PTC64);
251 	(void) IXGBE_READ_REG(hw, IXGBE_PTC127);
252 	(void) IXGBE_READ_REG(hw, IXGBE_PTC255);
253 	(void) IXGBE_READ_REG(hw, IXGBE_PTC511);
254 	(void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
255 	(void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
256 	(void) IXGBE_READ_REG(hw, IXGBE_MPTC);
257 	(void) IXGBE_READ_REG(hw, IXGBE_BPTC);
258 	for (i = 0; i < 16; i++) {
259 		(void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
260 		(void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
261 		(void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
262 		(void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
263 	}
264 
265 	return (IXGBE_SUCCESS);
266 }
267 
268 /*
269  * ixgbe_read_pba_num - Reads part number from EEPROM
270  * @hw: pointer to hardware structure
271  * @pba_num: stores the part number from the EEPROM
272  *
273  * Reads the part number from the EEPROM.
274  */
275 s32
276 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
277 {
278 	s32 ret_val;
279 	u16 data;
280 
281 	DEBUGFUNC("ixgbe_read_pba_num_generic");
282 
283 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
284 	if (ret_val) {
285 		DEBUGOUT("NVM Read Error\n");
286 		return (ret_val);
287 	}
288 	*pba_num = (u32)(data << 16);
289 
290 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
291 	if (ret_val) {
292 		DEBUGOUT("NVM Read Error\n");
293 		return (ret_val);
294 	}
295 	*pba_num |= data;
296 
297 	return (IXGBE_SUCCESS);
298 }
299 
300 /*
301  * ixgbe_get_mac_addr_generic - Generic get MAC address
302  * @hw: pointer to hardware structure
303  * @mac_addr: Adapter MAC address
304  *
305  * Reads the adapter's MAC address from first Receive Address Register (RAR0)
306  * A reset of the adapter must be performed prior to calling this function
307  * in order for the MAC address to have been loaded from the EEPROM into RAR0
308  */
309 s32
310 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
311 {
312 	u32 rar_high;
313 	u32 rar_low;
314 	u16 i;
315 
316 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
317 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
318 
319 	for (i = 0; i < 4; i++)
320 		mac_addr[i] = (u8)(rar_low >> (i*8));
321 
322 	for (i = 0; i < 2; i++)
323 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
324 
325 	return (IXGBE_SUCCESS);
326 }
327 
328 /*
329  * ixgbe_get_bus_info_generic - Generic set PCI bus info
330  * @hw: pointer to hardware structure
331  *
332  * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
333  */
334 s32
335 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
336 {
337 	u16 link_status;
338 
339 	hw->bus.type = ixgbe_bus_type_pci_express;
340 
341 	/* Get the negotiated link width and speed from PCI config space */
342 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
343 
344 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
345 	case IXGBE_PCI_LINK_WIDTH_1:
346 		hw->bus.width = ixgbe_bus_width_pcie_x1;
347 		break;
348 	case IXGBE_PCI_LINK_WIDTH_2:
349 		hw->bus.width = ixgbe_bus_width_pcie_x2;
350 		break;
351 	case IXGBE_PCI_LINK_WIDTH_4:
352 		hw->bus.width = ixgbe_bus_width_pcie_x4;
353 		break;
354 	case IXGBE_PCI_LINK_WIDTH_8:
355 		hw->bus.width = ixgbe_bus_width_pcie_x8;
356 		break;
357 	default:
358 		hw->bus.width = ixgbe_bus_width_unknown;
359 		break;
360 	}
361 
362 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
363 	case IXGBE_PCI_LINK_SPEED_2500:
364 		hw->bus.speed = ixgbe_bus_speed_2500;
365 		break;
366 	case IXGBE_PCI_LINK_SPEED_5000:
367 		hw->bus.speed = ixgbe_bus_speed_5000;
368 		break;
369 	default:
370 		hw->bus.speed = ixgbe_bus_speed_unknown;
371 		break;
372 	}
373 
374 	return (IXGBE_SUCCESS);
375 }
376 
377 /*
378  * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
379  * @hw: pointer to hardware structure
380  *
381  * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
382  * disables transmit and receive units. The adapter_stopped flag is used by
383  * the shared code and drivers to determine if the adapter is in a stopped
384  * state and should not touch the hardware.
385  */
386 s32
387 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
388 {
389 	u32 number_of_queues;
390 	u32 reg_val;
391 	u16 i;
392 
393 	/*
394 	 * Set the adapter_stopped flag so other driver functions stop touching
395 	 * the hardware
396 	 */
397 	hw->adapter_stopped = TRUE;
398 
399 	/* Disable the receive unit */
400 	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
401 	reg_val &= ~(IXGBE_RXCTRL_RXEN);
402 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
403 	IXGBE_WRITE_FLUSH(hw);
404 	msec_delay(2);
405 
406 	/* Clear interrupt mask to stop from interrupts being generated */
407 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
408 
409 	/* Clear any pending interrupts */
410 	(void) IXGBE_READ_REG(hw, IXGBE_EICR);
411 
412 	/* Disable the transmit unit.  Each queue must be disabled. */
413 	number_of_queues = hw->mac.max_tx_queues;
414 	for (i = 0; i < number_of_queues; i++) {
415 		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
416 		if (reg_val & IXGBE_TXDCTL_ENABLE) {
417 			reg_val &= ~IXGBE_TXDCTL_ENABLE;
418 			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
419 		}
420 	}
421 
422 	/*
423 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
424 	 * access and verify no pending requests
425 	 */
426 	if (ixgbe_disable_pcie_master(hw) != IXGBE_SUCCESS) {
427 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
428 	}
429 
430 	return (IXGBE_SUCCESS);
431 }
432 
433 /*
434  * ixgbe_led_on_generic - Turns on the software controllable LEDs.
435  * @hw: pointer to hardware structure
436  * @index: led number to turn on
437  */
438 s32
439 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
440 {
441 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
442 
443 	/* To turn on the LED, set mode to ON. */
444 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
445 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
446 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
447 	IXGBE_WRITE_FLUSH(hw);
448 
449 	return (IXGBE_SUCCESS);
450 }
451 
452 /*
453  * ixgbe_led_off_generic - Turns off the software controllable LEDs.
454  * @hw: pointer to hardware structure
455  * @index: led number to turn off
456  */
457 s32
458 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
459 {
460 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
461 
462 	/* To turn off the LED, set mode to OFF. */
463 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
464 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
465 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
466 	IXGBE_WRITE_FLUSH(hw);
467 
468 	return (IXGBE_SUCCESS);
469 }
470 
471 /*
472  * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
473  * @hw: pointer to hardware structure
474  *
475  * Initializes the EEPROM parameters ixgbe_eeprom_info within the
476  * ixgbe_hw struct in order to set up EEPROM access.
477  */
478 s32
479 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
480 {
481 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
482 	u32 eec;
483 	u16 eeprom_size;
484 
485 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
486 		eeprom->type = ixgbe_eeprom_none;
487 
488 		/*
489 		 * Check for EEPROM present first.
490 		 * If not present leave as none
491 		 */
492 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
493 		if (eec & IXGBE_EEC_PRES) {
494 			eeprom->type = ixgbe_eeprom_spi;
495 
496 			/*
497 			 * SPI EEPROM is assumed here.  This code would need to
498 			 * change if a future EEPROM is not SPI.
499 			 */
500 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
501 			    IXGBE_EEC_SIZE_SHIFT);
502 			eeprom->word_size = 1 << (eeprom_size +
503 			    IXGBE_EEPROM_WORD_SIZE_SHIFT);
504 		}
505 
506 		if (eec & IXGBE_EEC_ADDR_SIZE)
507 			eeprom->address_bits = 16;
508 		else
509 			eeprom->address_bits = 8;
510 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
511 		    "%d\n", eeprom->type, eeprom->word_size,
512 		    eeprom->address_bits);
513 	}
514 
515 	return (IXGBE_SUCCESS);
516 }
517 
518 /*
519  * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
520  * @hw: pointer to hardware structure
521  * @offset: offset within the EEPROM to be written to
522  * @data: 16 bit word to be written to the EEPROM
523  *
524  * If ixgbe_eeprom_update_checksum is not called after this function, the
525  * EEPROM will most likely contain an invalid checksum.
526  */
527 s32
528 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
529 {
530 	s32 status;
531 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
532 
533 	hw->eeprom.ops.init_params(hw);
534 
535 	if (offset >= hw->eeprom.word_size) {
536 		status = IXGBE_ERR_EEPROM;
537 		goto out;
538 	}
539 
540 	/* Prepare the EEPROM for writing  */
541 	status = ixgbe_acquire_eeprom(hw);
542 
543 	if (status == IXGBE_SUCCESS) {
544 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
545 			ixgbe_release_eeprom(hw);
546 			status = IXGBE_ERR_EEPROM;
547 		}
548 	}
549 
550 	if (status == IXGBE_SUCCESS) {
551 		ixgbe_standby_eeprom(hw);
552 
553 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
554 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
555 		    IXGBE_EEPROM_OPCODE_BITS);
556 
557 		ixgbe_standby_eeprom(hw);
558 
559 		/*
560 		 * Some SPI eeproms use the 8th address bit embedded in the
561 		 * opcode
562 		 */
563 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
564 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
565 
566 		/* Send the Write command (8-bit opcode + addr) */
567 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
568 		    IXGBE_EEPROM_OPCODE_BITS);
569 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
570 		    hw->eeprom.address_bits);
571 
572 		/* Send the data */
573 		data = (data >> 8) | (data << 8);
574 		ixgbe_shift_out_eeprom_bits(hw, data, 16);
575 		ixgbe_standby_eeprom(hw);
576 
577 		msec_delay(10);
578 
579 		/* Done with writing - release the EEPROM */
580 		ixgbe_release_eeprom(hw);
581 	}
582 
583 out:
584 	return (status);
585 }
586 
587 /*
588  * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
589  * @hw: pointer to hardware structure
590  * @offset: offset within the EEPROM to be read
591  * @data: read 16 bit value from EEPROM
592  *
593  * Reads 16 bit value from EEPROM through bit-bang method
594  */
595 s32
596 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
597 	u16 *data)
598 {
599 	s32 status;
600 	u16 word_in;
601 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
602 
603 	hw->eeprom.ops.init_params(hw);
604 
605 	if (offset >= hw->eeprom.word_size) {
606 		status = IXGBE_ERR_EEPROM;
607 		goto out;
608 	}
609 
610 	/* Prepare the EEPROM for reading  */
611 	status = ixgbe_acquire_eeprom(hw);
612 
613 	if (status == IXGBE_SUCCESS) {
614 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
615 			ixgbe_release_eeprom(hw);
616 			status = IXGBE_ERR_EEPROM;
617 		}
618 	}
619 
620 	if (status == IXGBE_SUCCESS) {
621 		ixgbe_standby_eeprom(hw);
622 
623 		/*
624 		 * Some SPI eeproms use the 8th address bit embedded in the
625 		 * opcode
626 		 */
627 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
628 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
629 
630 		/* Send the READ command (opcode + addr) */
631 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
632 		    IXGBE_EEPROM_OPCODE_BITS);
633 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
634 		    hw->eeprom.address_bits);
635 
636 		/* Read the data. */
637 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
638 		*data = (word_in >> 8) | (word_in << 8);
639 
640 		/* End this read operation */
641 		ixgbe_release_eeprom(hw);
642 	}
643 
644 out:
645 	return (status);
646 }
647 
648 /*
649  * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
650  * @hw: pointer to hardware structure
651  * @offset: offset of  word in the EEPROM to read
652  * @data: word read from the EEPROM
653  *
654  * Reads a 16 bit word from the EEPROM using the EERD register.
655  */
656 s32
657 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
658 {
659 	u32 eerd;
660 	s32 status;
661 
662 	hw->eeprom.ops.init_params(hw);
663 
664 	if (offset >= hw->eeprom.word_size) {
665 		status = IXGBE_ERR_EEPROM;
666 		goto out;
667 	}
668 
669 	eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
670 	    IXGBE_EEPROM_READ_REG_START;
671 
672 	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
673 	status = ixgbe_poll_eeprom_eerd_done(hw);
674 
675 	if (status == IXGBE_SUCCESS)
676 		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
677 		    IXGBE_EEPROM_READ_REG_DATA);
678 	else
679 		DEBUGOUT("Eeprom read timed out\n");
680 
681 out:
682 	return (status);
683 }
684 
685 /*
686  * ixgbe_poll_eeprom_eerd_done - Poll EERD status
687  * @hw: pointer to hardware structure
688  *
689  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
690  */
691 static s32
692 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
693 {
694 	u32 i;
695 	u32 reg;
696 	s32 status = IXGBE_ERR_EEPROM;
697 
698 	for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
699 		reg = IXGBE_READ_REG(hw, IXGBE_EERD);
700 		if (reg & IXGBE_EEPROM_READ_REG_DONE) {
701 			status = IXGBE_SUCCESS;
702 			break;
703 		}
704 		usec_delay(5);
705 	}
706 	return (status);
707 }
708 
709 /*
710  * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
711  * @hw: pointer to hardware structure
712  *
713  * Prepares EEPROM for access using bit-bang method. This function should
714  * be called before issuing a command to the EEPROM.
715  */
716 static s32
717 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
718 {
719 	s32 status = IXGBE_SUCCESS;
720 	u32 eec;
721 	u32 i;
722 
723 	if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != IXGBE_SUCCESS)
724 		status = IXGBE_ERR_SWFW_SYNC;
725 
726 	if (status == IXGBE_SUCCESS) {
727 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
728 
729 		/* Request EEPROM Access */
730 		eec |= IXGBE_EEC_REQ;
731 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
732 
733 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
734 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
735 			if (eec & IXGBE_EEC_GNT)
736 				break;
737 			usec_delay(5);
738 		}
739 
740 		/* Release if grant not acquired */
741 		if (!(eec & IXGBE_EEC_GNT)) {
742 			eec &= ~IXGBE_EEC_REQ;
743 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
744 			DEBUGOUT("Could not acquire EEPROM grant\n");
745 
746 			ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
747 			status = IXGBE_ERR_EEPROM;
748 		}
749 	}
750 
751 	/* Setup EEPROM for Read/Write */
752 	if (status == IXGBE_SUCCESS) {
753 		/* Clear CS and SK */
754 		eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
755 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
756 		IXGBE_WRITE_FLUSH(hw);
757 		usec_delay(1);
758 	}
759 	return (status);
760 }
761 
762 /*
763  * ixgbe_get_eeprom_semaphore - Get hardware semaphore
764  * @hw: pointer to hardware structure
765  *
766  * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
767  */
768 static s32
769 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
770 {
771 	s32 status = IXGBE_ERR_EEPROM;
772 	u32 timeout;
773 	u32 i;
774 	u32 swsm;
775 
776 	/* Set timeout value based on size of EEPROM */
777 	timeout = hw->eeprom.word_size + 1;
778 
779 	/* Get SMBI software semaphore between device drivers first */
780 	for (i = 0; i < timeout; i++) {
781 		/*
782 		 * If the SMBI bit is 0 when we read it, then the bit will be
783 		 * set and we have the semaphore
784 		 */
785 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
786 		if (!(swsm & IXGBE_SWSM_SMBI)) {
787 			status = IXGBE_SUCCESS;
788 			break;
789 		}
790 		msec_delay(1);
791 	}
792 
793 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
794 	if (status == IXGBE_SUCCESS) {
795 		for (i = 0; i < timeout; i++) {
796 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
797 
798 			/* Set the SW EEPROM semaphore bit to request access */
799 			swsm |= IXGBE_SWSM_SWESMBI;
800 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
801 
802 			/*
803 			 * If we set the bit successfully then we got the
804 			 * semaphore.
805 			 */
806 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
807 			if (swsm & IXGBE_SWSM_SWESMBI)
808 				break;
809 
810 			usec_delay(50);
811 		}
812 
813 		/*
814 		 * Release semaphores and return error if SW EEPROM semaphore
815 		 * was not granted because we don't have access to the EEPROM
816 		 */
817 		if (i >= timeout) {
818 			DEBUGOUT("Driver can't access the Eeprom - Semaphore "
819 			    "not granted.\n");
820 			ixgbe_release_eeprom_semaphore(hw);
821 			status = IXGBE_ERR_EEPROM;
822 		}
823 	}
824 
825 	return (status);
826 }
827 
828 /*
829  * ixgbe_release_eeprom_semaphore - Release hardware semaphore
830  * @hw: pointer to hardware structure
831  *
832  * This function clears hardware semaphore bits.
833  */
834 static void
835 ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
836 {
837 	u32 swsm;
838 
839 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
840 
841 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
842 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
843 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
844 	IXGBE_WRITE_FLUSH(hw);
845 }
846 
847 /*
848  * ixgbe_ready_eeprom - Polls for EEPROM ready
849  * @hw: pointer to hardware structure
850  */
851 static s32
852 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
853 {
854 	s32 status = IXGBE_SUCCESS;
855 	u16 i;
856 	u8 spi_stat_reg;
857 
858 	/*
859 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
860 	 * EEPROM will signal that the command has been completed by clearing
861 	 * bit 0 of the internal status register.  If it's not cleared within
862 	 * 5 milliseconds, then error out.
863 	 */
864 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
865 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
866 		    IXGBE_EEPROM_OPCODE_BITS);
867 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
868 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
869 			break;
870 
871 		usec_delay(5);
872 		ixgbe_standby_eeprom(hw);
873 	};
874 
875 	/*
876 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
877 	 * devices (and only 0-5mSec on 5V devices)
878 	 */
879 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
880 		DEBUGOUT("SPI EEPROM Status error\n");
881 		status = IXGBE_ERR_EEPROM;
882 	}
883 
884 	return (status);
885 }
886 
887 /*
888  * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
889  * @hw: pointer to hardware structure
890  */
891 static void
892 ixgbe_standby_eeprom(struct ixgbe_hw *hw)
893 {
894 	u32 eec;
895 
896 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
897 
898 	/* Toggle CS to flush commands */
899 	eec |= IXGBE_EEC_CS;
900 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
901 	IXGBE_WRITE_FLUSH(hw);
902 	usec_delay(1);
903 	eec &= ~IXGBE_EEC_CS;
904 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
905 	IXGBE_WRITE_FLUSH(hw);
906 	usec_delay(1);
907 }
908 
909 /*
910  * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
911  * @hw: pointer to hardware structure
912  * @data: data to send to the EEPROM
913  * @count: number of bits to shift out
914  */
915 static void
916 ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
917     u16 count)
918 {
919 	u32 eec;
920 	u32 mask;
921 	u32 i;
922 
923 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
924 
925 	/*
926 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
927 	 * one bit at a time.  Determine the starting bit based on count
928 	 */
929 	mask = 0x01 << (count - 1);
930 
931 	for (i = 0; i < count; i++) {
932 		/*
933 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
934 		 * "1", and then raising and then lowering the clock (the SK
935 		 * bit controls the clock input to the EEPROM).  A "0" is
936 		 * shifted out to the EEPROM by setting "DI" to "0" and then
937 		 * raising and then lowering the clock.
938 		 */
939 		if (data & mask)
940 			eec |= IXGBE_EEC_DI;
941 		else
942 			eec &= ~IXGBE_EEC_DI;
943 
944 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
945 		IXGBE_WRITE_FLUSH(hw);
946 
947 		usec_delay(1);
948 
949 		ixgbe_raise_eeprom_clk(hw, &eec);
950 		ixgbe_lower_eeprom_clk(hw, &eec);
951 
952 		/*
953 		 * Shift mask to signify next bit of data to shift in to the
954 		 * EEPROM
955 		 */
956 		mask = mask >> 1;
957 	};
958 
959 	/* We leave the "DI" bit set to "0" when we leave this routine. */
960 	eec &= ~IXGBE_EEC_DI;
961 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
962 	IXGBE_WRITE_FLUSH(hw);
963 }
964 
965 /*
966  * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
967  * @hw: pointer to hardware structure
968  */
969 static u16
970 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
971 {
972 	u32 eec;
973 	u32 i;
974 	u16 data = 0;
975 
976 	/*
977 	 * In order to read a register from the EEPROM, we need to shift
978 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
979 	 * the clock input to the EEPROM (setting the SK bit), and then reading
980 	 * the value of the "DO" bit.  During this "shifting in" process the
981 	 * "DI" bit should always be clear.
982 	 */
983 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
984 
985 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
986 
987 	for (i = 0; i < count; i++) {
988 		data = data << 1;
989 		ixgbe_raise_eeprom_clk(hw, &eec);
990 
991 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
992 
993 		eec &= ~(IXGBE_EEC_DI);
994 		if (eec & IXGBE_EEC_DO)
995 			data |= 1;
996 
997 		ixgbe_lower_eeprom_clk(hw, &eec);
998 	}
999 
1000 	return (data);
1001 }
1002 
1003 /*
1004  * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1005  * @hw: pointer to hardware structure
1006  * @eec: EEC register's current value
1007  */
1008 static void
1009 ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1010 {
1011 	/*
1012 	 * Raise the clock input to the EEPROM
1013 	 * (setting the SK bit), then delay
1014 	 */
1015 	*eec = *eec | IXGBE_EEC_SK;
1016 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1017 	IXGBE_WRITE_FLUSH(hw);
1018 	usec_delay(1);
1019 }
1020 
1021 /*
1022  * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1023  * @hw: pointer to hardware structure
1024  * @eecd: EECD's current value
1025  */
1026 static void
1027 ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1028 {
1029 	/*
1030 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1031 	 * delay
1032 	 */
1033 	*eec = *eec & ~IXGBE_EEC_SK;
1034 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1035 	IXGBE_WRITE_FLUSH(hw);
1036 	usec_delay(1);
1037 }
1038 
1039 /*
1040  * ixgbe_release_eeprom - Release EEPROM, release semaphores
1041  * @hw: pointer to hardware structure
1042  */
1043 static void
1044 ixgbe_release_eeprom(struct ixgbe_hw *hw)
1045 {
1046 	u32 eec;
1047 
1048 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1049 
1050 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1051 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1052 
1053 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1054 	IXGBE_WRITE_FLUSH(hw);
1055 
1056 	usec_delay(1);
1057 
1058 	/* Stop requesting EEPROM access */
1059 	eec &= ~IXGBE_EEC_REQ;
1060 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1061 
1062 	ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1063 }
1064 
1065 /*
1066  * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1067  * @hw: pointer to hardware structure
1068  */
1069 static u16
1070 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
1071 {
1072 	u16 i;
1073 	u16 j;
1074 	u16 checksum = 0;
1075 	u16 length = 0;
1076 	u16 pointer = 0;
1077 	u16 word = 0;
1078 
1079 	/* Include 0x0-0x3F in the checksum */
1080 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1081 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1082 			DEBUGOUT("EEPROM read failed\n");
1083 			break;
1084 		}
1085 		checksum += word;
1086 	}
1087 
1088 	/* Include all data from pointers except for the fw pointer */
1089 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1090 		hw->eeprom.ops.read(hw, i, &pointer);
1091 
1092 		/* Make sure the pointer seems valid */
1093 		if (pointer != 0xFFFF && pointer != 0) {
1094 			hw->eeprom.ops.read(hw, pointer, &length);
1095 
1096 			if (length != 0xFFFF && length != 0) {
1097 				for (j = pointer+1; j <= pointer+length; j++) {
1098 					hw->eeprom.ops.read(hw, j, &word);
1099 					checksum += word;
1100 				}
1101 			}
1102 		}
1103 	}
1104 
1105 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1106 
1107 	return (checksum);
1108 }
1109 
1110 /*
1111  * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1112  * @hw: pointer to hardware structure
1113  * @checksum_val: calculated checksum
1114  *
1115  * Performs checksum calculation and validates the EEPROM checksum.  If the
1116  * caller does not need checksum_val, the value can be NULL.
1117  */
1118 s32
1119 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1120     u16 *checksum_val)
1121 {
1122 	s32 status;
1123 	u16 checksum;
1124 	u16 read_checksum = 0;
1125 
1126 	/*
1127 	 * Read the first word from the EEPROM. If this times out or fails, do
1128 	 * not continue or we could be in for a very long wait while every
1129 	 * EEPROM read fails
1130 	 */
1131 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1132 
1133 	if (status == IXGBE_SUCCESS) {
1134 		checksum = ixgbe_calc_eeprom_checksum(hw);
1135 
1136 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1137 
1138 		/*
1139 		 * Verify read checksum from EEPROM is the same as
1140 		 * calculated checksum
1141 		 */
1142 		if (read_checksum != checksum)
1143 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1144 
1145 		/* If the user cares, return the calculated checksum */
1146 		if (checksum_val)
1147 			*checksum_val = checksum;
1148 	} else {
1149 		DEBUGOUT("EEPROM read failed\n");
1150 	}
1151 
1152 	return (status);
1153 }
1154 
1155 /*
1156  * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1157  * @hw: pointer to hardware structure
1158  */
1159 s32
1160 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1161 {
1162 	s32 status;
1163 	u16 checksum;
1164 
1165 	/*
1166 	 * Read the first word from the EEPROM. If this times out or fails, do
1167 	 * not continue or we could be in for a very long wait while every
1168 	 * EEPROM read fails
1169 	 */
1170 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1171 
1172 	if (status == IXGBE_SUCCESS) {
1173 		checksum = ixgbe_calc_eeprom_checksum(hw);
1174 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1175 		    checksum);
1176 	} else {
1177 		DEBUGOUT("EEPROM read failed\n");
1178 	}
1179 
1180 	return (status);
1181 }
1182 
1183 /*
1184  * ixgbe_validate_mac_addr - Validate MAC address
1185  * @mac_addr: pointer to MAC address.
1186  *
1187  * Tests a MAC address to ensure it is a valid Individual Address
1188  */
1189 s32
1190 ixgbe_validate_mac_addr(u8 *mac_addr)
1191 {
1192 	s32 status = IXGBE_SUCCESS;
1193 
1194 	/* Make sure it is not a multicast address */
1195 	if (IXGBE_IS_MULTICAST(mac_addr)) {
1196 		DEBUGOUT("MAC address is multicast\n");
1197 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1198 	/* Not a broadcast address */
1199 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
1200 		DEBUGOUT("MAC address is broadcast\n");
1201 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1202 	/* Reject the zero address */
1203 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1204 	    mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1205 		DEBUGOUT("MAC address is all zeros\n");
1206 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1207 	}
1208 	return (status);
1209 }
1210 
1211 /*
1212  * ixgbe_set_rar_generic - Set Rx address register
1213  * @hw: pointer to hardware structure
1214  * @index: Receive address register to write
1215  * @addr: Address to put into receive address register
1216  * @vmdq: VMDq "set" or "pool" index
1217  * @enable_addr: set flag that address is active
1218  *
1219  * Puts an ethernet address into a receive address register.
1220  */
1221 s32
1222 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1223     u32 enable_addr)
1224 {
1225 	u32 rar_low, rar_high;
1226 	u32 rar_entries = hw->mac.num_rar_entries;
1227 
1228 	/* setup VMDq pool selection before this RAR gets enabled */
1229 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1230 
1231 	/* Make sure we are using a valid rar index range */
1232 	if (index < rar_entries) {
1233 		/*
1234 		 * HW expects these in little endian so we reverse the byte
1235 		 * order from network order (big endian) to little endian
1236 		 */
1237 		rar_low = ((u32)addr[0] |
1238 		    ((u32)addr[1] << 8) |
1239 		    ((u32)addr[2] << 16) |
1240 		    ((u32)addr[3] << 24));
1241 		/*
1242 		 * Some parts put the VMDq setting in the extra RAH bits,
1243 		 * so save everything except the lower 16 bits that hold part
1244 		 * of the address and the address valid bit.
1245 		 */
1246 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1247 		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1248 		rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1249 
1250 		if (enable_addr != 0)
1251 			rar_high |= IXGBE_RAH_AV;
1252 
1253 		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1254 		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1255 	} else {
1256 		DEBUGOUT("Current RAR index is out of range.");
1257 	}
1258 
1259 	return (IXGBE_SUCCESS);
1260 }
1261 
1262 /*
1263  * ixgbe_enable_rar - Enable Rx address register
1264  * @hw: pointer to hardware structure
1265  * @index: index into the RAR table
1266  *
1267  * Enables the select receive address register.
1268  */
1269 static void
1270 ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1271 {
1272 	u32 rar_high;
1273 
1274 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1275 	rar_high |= IXGBE_RAH_AV;
1276 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1277 }
1278 
1279 /*
1280  * ixgbe_disable_rar - Disable Rx address register
1281  * @hw: pointer to hardware structure
1282  * @index: index into the RAR table
1283  *
1284  * Disables the select receive address register.
1285  */
1286 static void
1287 ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1288 {
1289 	u32 rar_high;
1290 
1291 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1292 	rar_high &= (~IXGBE_RAH_AV);
1293 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1294 }
1295 
1296 /*
1297  * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1298  * @hw: pointer to hardware structure
1299  *
1300  * Places the MAC address in receive address register 0 and clears the rest
1301  * of the receive address registers. Clears the multicast table. Assumes
1302  * the receiver is in reset when the routine is called.
1303  */
1304 s32
1305 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1306 {
1307 	u32 i;
1308 	u32 rar_entries = hw->mac.num_rar_entries;
1309 
1310 	/*
1311 	 * If the current mac address is valid, assume it is a software override
1312 	 * to the permanent address.
1313 	 * Otherwise, use the permanent address from the eeprom.
1314 	 */
1315 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1316 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1317 		/* Get the MAC address from the RAR0 for later reference */
1318 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1319 
1320 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1321 		    hw->mac.addr[0], hw->mac.addr[1],
1322 		    hw->mac.addr[2]);
1323 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1324 		    hw->mac.addr[4], hw->mac.addr[5]);
1325 	} else {
1326 		/* Setup the receive address. */
1327 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
1328 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
1329 		    hw->mac.addr[0], hw->mac.addr[1],
1330 		    hw->mac.addr[2]);
1331 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1332 		    hw->mac.addr[4], hw->mac.addr[5]);
1333 
1334 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1335 	}
1336 	hw->addr_ctrl.overflow_promisc = 0;
1337 
1338 	hw->addr_ctrl.rar_used_count = 1;
1339 
1340 	/* Zero out the other receive addresses. */
1341 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
1342 	for (i = 1; i < rar_entries; i++) {
1343 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1344 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1345 	}
1346 
1347 	/* Clear the MTA */
1348 	hw->addr_ctrl.mc_addr_in_rar_count = 0;
1349 	hw->addr_ctrl.mta_in_use = 0;
1350 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1351 
1352 	DEBUGOUT(" Clearing MTA\n");
1353 	for (i = 0; i < hw->mac.mcft_size; i++)
1354 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1355 
1356 	return (IXGBE_SUCCESS);
1357 }
1358 
1359 /*
1360  * ixgbe_add_uc_addr - Adds a secondary unicast address.
1361  * @hw: pointer to hardware structure
1362  * @addr: new address
1363  *
1364  * Adds it to unused receive address register or goes into promiscuous mode.
1365  */
1366 void
1367 ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1368 {
1369 	u32 rar_entries = hw->mac.num_rar_entries;
1370 	u32 rar;
1371 
1372 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1373 	    addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1374 
1375 	/*
1376 	 * Place this address in the RAR if there is room,
1377 	 * else put the controller into promiscuous mode
1378 	 */
1379 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
1380 		rar = hw->addr_ctrl.rar_used_count -
1381 		    hw->addr_ctrl.mc_addr_in_rar_count;
1382 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1383 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
1384 		hw->addr_ctrl.rar_used_count++;
1385 	} else {
1386 		hw->addr_ctrl.overflow_promisc++;
1387 	}
1388 
1389 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
1390 }
1391 
1392 /*
1393  * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1394  * @hw: pointer to hardware structure
1395  * @addr_list: the list of new addresses
1396  * @addr_count: number of addresses
1397  * @next: iterator function to walk the address list
1398  *
1399  * The given list replaces any existing list.  Clears the secondary addrs from
1400  * receive address registers.  Uses unused receive address registers for the
1401  * first secondary addresses, and falls back to promiscuous mode as needed.
1402  *
1403  * Drivers using secondary unicast addresses must set user_set_promisc when
1404  * manually putting the device into promiscuous mode.
1405  */
1406 s32
1407 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1408     u32 addr_count, ixgbe_mc_addr_itr next)
1409 {
1410 	u8 *addr;
1411 	u32 i;
1412 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1413 	u32 uc_addr_in_use;
1414 	u32 fctrl;
1415 	u32 vmdq;
1416 
1417 	/*
1418 	 * Clear accounting of old secondary address list,
1419 	 * don't count RAR[0]
1420 	 */
1421 	uc_addr_in_use = hw->addr_ctrl.rar_used_count -
1422 	    hw->addr_ctrl.mc_addr_in_rar_count - 1;
1423 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1424 	hw->addr_ctrl.overflow_promisc = 0;
1425 
1426 	/* Zero out the other receive addresses */
1427 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use);
1428 	for (i = 1; i <= uc_addr_in_use; i++) {
1429 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1430 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1431 	}
1432 
1433 	/* Add the new addresses */
1434 	for (i = 0; i < addr_count; i++) {
1435 		DEBUGOUT(" Adding the secondary addresses:\n");
1436 		addr = next(hw, &addr_list, &vmdq);
1437 		ixgbe_add_uc_addr(hw, addr, vmdq);
1438 	}
1439 
1440 	if (hw->addr_ctrl.overflow_promisc) {
1441 		/* enable promisc if not already in overflow or set by user */
1442 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1443 			DEBUGOUT(" Entering address overflow promisc mode\n");
1444 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1445 			fctrl |= IXGBE_FCTRL_UPE;
1446 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1447 		}
1448 	} else {
1449 		/* only disable if set by overflow, not by user */
1450 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1451 			DEBUGOUT(" Leaving address overflow promisc mode\n");
1452 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1453 			fctrl &= ~IXGBE_FCTRL_UPE;
1454 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1455 		}
1456 	}
1457 
1458 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
1459 	return (IXGBE_SUCCESS);
1460 }
1461 
1462 /*
1463  * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1464  * @hw: pointer to hardware structure
1465  * @mc_addr: the multicast address
1466  *
1467  * Extracts the 12 bits, from a multicast address, to determine which
1468  * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1469  * incoming rx multicast addresses, to determine the bit-vector to check in
1470  * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1471  * by the MO field of the MCSTCTRL. The MO field is set during initialization
1472  * to mc_filter_type.
1473  */
1474 static s32
1475 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1476 {
1477 	u32 vector = 0;
1478 
1479 	switch (hw->mac.mc_filter_type) {
1480 	case 0:   /* use bits [47:36] of the address */
1481 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1482 		break;
1483 	case 1:   /* use bits [46:35] of the address */
1484 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1485 		break;
1486 	case 2:   /* use bits [45:34] of the address */
1487 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1488 		break;
1489 	case 3:   /* use bits [43:32] of the address */
1490 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1491 		break;
1492 	default:  /* Invalid mc_filter_type */
1493 		DEBUGOUT("MC filter type param set incorrectly\n");
1494 		ASSERT(0);
1495 		break;
1496 	}
1497 
1498 	/* vector can only be 12-bits or boundary will be exceeded */
1499 	vector &= 0xFFF;
1500 	return (vector);
1501 }
1502 
1503 /*
1504  * ixgbe_set_mta - Set bit-vector in multicast table
1505  * @hw: pointer to hardware structure
1506  * @hash_value: Multicast address hash value
1507  *
1508  * Sets the bit-vector in the multicast table.
1509  */
1510 void
1511 ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1512 {
1513 	u32 vector;
1514 	u32 vector_bit;
1515 	u32 vector_reg;
1516 	u32 mta_reg;
1517 
1518 	hw->addr_ctrl.mta_in_use++;
1519 
1520 	vector = ixgbe_mta_vector(hw, mc_addr);
1521 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
1522 
1523 	/*
1524 	 * The MTA is a register array of 128 32-bit registers. It is treated
1525 	 * like an array of 4096 bits.  We want to set bit
1526 	 * BitArray[vector_value]. So we figure out what register the bit is
1527 	 * in, read it, OR in the new bit, then write back the new value.  The
1528 	 * register is determined by the upper 7 bits of the vector value and
1529 	 * the bit within that register are determined by the lower 5 bits of
1530 	 * the value.
1531 	 */
1532 	vector_reg = (vector >> 5) & 0x7F;
1533 	vector_bit = vector & 0x1F;
1534 	mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1535 	mta_reg |= (1 << vector_bit);
1536 	IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1537 }
1538 
1539 /*
1540  * ixgbe_add_mc_addr - Adds a multicast address.
1541  * @hw: pointer to hardware structure
1542  * @mc_addr: new multicast address
1543  *
1544  * Adds it to unused receive address register or to the multicast table.
1545  */
1546 void
1547 ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
1548 {
1549 	DEBUGOUT6(" MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
1550 	    mc_addr[0], mc_addr[1], mc_addr[2],
1551 	    mc_addr[3], mc_addr[4], mc_addr[5]);
1552 
1553 	ixgbe_set_mta(hw, mc_addr);
1554 
1555 	DEBUGOUT("ixgbe_add_mc_addr Complete\n");
1556 }
1557 
1558 /*
1559  * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1560  * @hw: pointer to hardware structure
1561  * @mc_addr_list: the list of new multicast addresses
1562  * @mc_addr_count: number of addresses
1563  * @next: iterator function to walk the multicast address list
1564  *
1565  * The given list replaces any existing list. Clears the MC addrs from receive
1566  * address registers and the multicast table. Uses unused receive address
1567  * registers for the first multicast addresses, and hashes the rest into the
1568  * multicast table.
1569  */
1570 s32
1571 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1572     u32 mc_addr_count, ixgbe_mc_addr_itr next)
1573 {
1574 	u32 i;
1575 	u32 vmdq;
1576 
1577 	/*
1578 	 * Set the new number of MC addresses that we are being requested to
1579 	 * use.
1580 	 */
1581 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1582 	hw->addr_ctrl.mta_in_use = 0;
1583 
1584 	/* Clear the MTA */
1585 	DEBUGOUT(" Clearing MTA\n");
1586 	for (i = 0; i < hw->mac.mcft_size; i++)
1587 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1588 
1589 	/* Add the new addresses */
1590 	for (i = 0; i < mc_addr_count; i++) {
1591 		DEBUGOUT(" Adding the multicast addresses:\n");
1592 		ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
1593 	}
1594 
1595 	/* Enable mta */
1596 	if (hw->addr_ctrl.mta_in_use > 0)
1597 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1598 		    IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1599 
1600 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
1601 	return (IXGBE_SUCCESS);
1602 }
1603 
1604 /*
1605  * ixgbe_enable_mc_generic - Enable multicast address in RAR
1606  * @hw: pointer to hardware structure
1607  *
1608  * Enables multicast address in RAR and the use of the multicast hash table.
1609  */
1610 s32
1611 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1612 {
1613 	u32 i;
1614 	u32 rar_entries = hw->mac.num_rar_entries;
1615 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1616 
1617 	if (a->mc_addr_in_rar_count > 0)
1618 		for (i = (rar_entries - a->mc_addr_in_rar_count);
1619 		    i < rar_entries; i++)
1620 			ixgbe_enable_rar(hw, i);
1621 
1622 	if (a->mta_in_use > 0)
1623 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1624 		    hw->mac.mc_filter_type);
1625 
1626 	return (IXGBE_SUCCESS);
1627 }
1628 
1629 /*
1630  * ixgbe_disable_mc_generic - Disable multicast address in RAR
1631  * @hw: pointer to hardware structure
1632  *
1633  * Disables multicast address in RAR and the use of the multicast hash table.
1634  */
1635 s32
1636 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1637 {
1638 	u32 i;
1639 	u32 rar_entries = hw->mac.num_rar_entries;
1640 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1641 
1642 	if (a->mc_addr_in_rar_count > 0)
1643 		for (i = (rar_entries - a->mc_addr_in_rar_count);
1644 		    i < rar_entries; i++)
1645 			ixgbe_disable_rar(hw, i);
1646 
1647 	if (a->mta_in_use > 0)
1648 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1649 
1650 	return (IXGBE_SUCCESS);
1651 }
1652 
1653 /*
1654  * ixgbe_clear_vfta_generic - Clear VLAN filter table
1655  * @hw: pointer to hardware structure
1656  *
1657  * Clears the VLAN filer table, and the VMDq index associated with the filter
1658  */
1659 s32
1660 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
1661 {
1662 	u32 offset;
1663 	u32 vlanbyte;
1664 
1665 	for (offset = 0; offset < hw->mac.vft_size; offset++)
1666 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
1667 
1668 	for (vlanbyte = 0; vlanbyte < 4; vlanbyte++)
1669 		for (offset = 0; offset < hw->mac.vft_size; offset++)
1670 			IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(vlanbyte, offset),
1671 			    0);
1672 
1673 	return (IXGBE_SUCCESS);
1674 }
1675 
1676 /*
1677  * ixgbe_set_vfta_generic - Set VLAN filter table
1678  * @hw: pointer to hardware structure
1679  * @vlan: VLAN id to write to VLAN filter
1680  * @vind: VMDq output index that maps queue to VLAN id in VFTA
1681  * @vlan_on: boolean flag to turn on/off VLAN in VFTA
1682  *
1683  * Turn on/off specified VLAN in the VLAN filter table.
1684  */
1685 s32
1686 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
1687     bool vlan_on)
1688 {
1689 	u32 VftaIndex;
1690 	u32 BitOffset;
1691 	u32 VftaReg;
1692 	u32 VftaByte;
1693 
1694 	/* Determine 32-bit word position in array */
1695 	VftaIndex = (vlan >> 5) & 0x7F;   /* upper seven bits */
1696 
1697 	/* Determine the location of the (VMD) queue index */
1698 	VftaByte =  ((vlan >> 3) & 0x03); /* bits (4:3) indicating byte array */
1699 	BitOffset = (vlan & 0x7) << 2;    /* lower 3 bits indicate nibble */
1700 
1701 	/* Set the nibble for VMD queue index */
1702 	VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex));
1703 	VftaReg &= (~(0x0F << BitOffset));
1704 	VftaReg |= (vind << BitOffset);
1705 	IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex), VftaReg);
1706 
1707 	/* Determine the location of the bit for this VLAN id */
1708 	BitOffset = vlan & 0x1F;   /* lower five bits */
1709 
1710 	VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTA(VftaIndex));
1711 	if (vlan_on)
1712 		/* Turn on this VLAN id */
1713 		VftaReg |= (1 << BitOffset);
1714 	else
1715 		/* Turn off this VLAN id */
1716 		VftaReg &= ~(1 << BitOffset);
1717 	IXGBE_WRITE_REG(hw, IXGBE_VFTA(VftaIndex), VftaReg);
1718 
1719 	return (IXGBE_SUCCESS);
1720 }
1721 
1722 /*
1723  * ixgbe_disable_pcie_master - Disable PCI-express master access
1724  * @hw: pointer to hardware structure
1725  *
1726  * Disables PCI-Express master access and verifies there are no pending
1727  * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1728  * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
1729  * is returned signifying master requests disabled.
1730  */
1731 s32
1732 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1733 {
1734 	u32 ctrl;
1735 	s32 i;
1736 	s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1737 
1738 	ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
1739 	ctrl |= IXGBE_CTRL_GIO_DIS;
1740 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
1741 
1742 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1743 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1744 			status = IXGBE_SUCCESS;
1745 			break;
1746 		}
1747 		usec_delay(100);
1748 	}
1749 
1750 	return (status);
1751 }
1752 
1753 
1754 /*
1755  * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1756  * @hw: pointer to hardware structure
1757  * @mask: Mask to specify which semaphore to acquire
1758  *
1759  * Acquires the SWFW semaphore thought the GSSR register for the specified
1760  * function (CSR, PHY0, PHY1, EEPROM, Flash)
1761  */
1762 s32
1763 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1764 {
1765 	u32 gssr;
1766 	u32 swmask = mask;
1767 	u32 fwmask = mask << 5;
1768 	s32 timeout = 200;
1769 
1770 	while (timeout) {
1771 		if (ixgbe_get_eeprom_semaphore(hw))
1772 			return (-IXGBE_ERR_SWFW_SYNC);
1773 
1774 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1775 		if (!(gssr & (fwmask | swmask)))
1776 			break;
1777 
1778 		/*
1779 		 * Firmware currently using resource (fwmask) or other software
1780 		 * thread currently using resource (swmask)
1781 		 */
1782 		ixgbe_release_eeprom_semaphore(hw);
1783 		msec_delay(5);
1784 		timeout--;
1785 	}
1786 
1787 	if (!timeout) {
1788 		DEBUGOUT("Driver can't access resource, GSSR timeout.\n");
1789 		return (-IXGBE_ERR_SWFW_SYNC);
1790 	}
1791 
1792 	gssr |= swmask;
1793 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1794 
1795 	ixgbe_release_eeprom_semaphore(hw);
1796 	return (IXGBE_SUCCESS);
1797 }
1798 
1799 /*
1800  * ixgbe_release_swfw_sync - Release SWFW semaphore
1801  * @hw: pointer to hardware structure
1802  * @mask: Mask to specify which semaphore to release
1803  *
1804  * Releases the SWFW semaphore thought the GSSR register for the specified
1805  * function (CSR, PHY0, PHY1, EEPROM, Flash)
1806  */
1807 void
1808 ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1809 {
1810 	u32 gssr;
1811 	u32 swmask = mask;
1812 
1813 	(void) ixgbe_get_eeprom_semaphore(hw);
1814 
1815 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1816 	gssr &= ~swmask;
1817 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1818 
1819 	ixgbe_release_eeprom_semaphore(hw);
1820 }
1821 
1822 /*
1823  * ixgbe_read_analog_reg8_generic - Reads 8 bit Atlas analog register
1824  * @hw: pointer to hardware structure
1825  * @reg: analog register to read
1826  * @val: read value
1827  *
1828  * Performs read operation to Atlas analog register specified.
1829  */
1830 s32
1831 ixgbe_read_analog_reg8_generic(struct ixgbe_hw *hw, u32 reg, u8 *val)
1832 {
1833 	u32  atlas_ctl;
1834 
1835 	IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL,
1836 	    IXGBE_ATLASCTL_WRITE_CMD | (reg << 8));
1837 	IXGBE_WRITE_FLUSH(hw);
1838 	usec_delay(10);
1839 	atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL);
1840 	*val = (u8)atlas_ctl;
1841 
1842 	return (IXGBE_SUCCESS);
1843 }
1844 
1845 /*
1846  * ixgbe_write_analog_reg8_generic - Writes 8 bit Atlas analog register
1847  * @hw: pointer to hardware structure
1848  * @reg: atlas register to write
1849  * @val: value to write
1850  *
1851  * Performs write operation to Atlas analog register specified.
1852  */
1853 s32
1854 ixgbe_write_analog_reg8_generic(struct ixgbe_hw *hw, u32 reg, u8 val)
1855 {
1856 	u32  atlas_ctl;
1857 
1858 	atlas_ctl = (reg << 8) | val;
1859 	IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl);
1860 	IXGBE_WRITE_FLUSH(hw);
1861 	usec_delay(10);
1862 
1863 	return (IXGBE_SUCCESS);
1864 }
1865