xref: /titanic_41/usr/src/uts/common/io/ixgbe/ixgbe_common.c (revision 5e2c3ae0c70f6eb4a42ae670882aabac983cb5f1)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2012, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.14 2012/07/05 20:51:44 jfv Exp $*/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_api.h"
38 
39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 					u16 count);
46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
53 					 u16 *san_mac_offset);
54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					      u16 words, u16 *data);
58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
59 						 u16 offset);
60 
61 /**
62  *  ixgbe_init_ops_generic - Inits function ptrs
63  *  @hw: pointer to the hardware structure
64  *
65  *  Initialize the function pointers.
66  **/
67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
68 {
69 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
70 	struct ixgbe_mac_info *mac = &hw->mac;
71 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
72 
73 	DEBUGFUNC("ixgbe_init_ops_generic");
74 
75 	/* EEPROM */
76 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
77 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
78 	if (eec & IXGBE_EEC_PRES) {
79 		eeprom->ops.read = &ixgbe_read_eerd_generic;
80 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
81 	} else {
82 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
83 		eeprom->ops.read_buffer =
84 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
85 	}
86 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
87 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
88 	eeprom->ops.validate_checksum =
89 				      &ixgbe_validate_eeprom_checksum_generic;
90 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
91 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
92 
93 	/* MAC */
94 	mac->ops.init_hw = &ixgbe_init_hw_generic;
95 	mac->ops.reset_hw = NULL;
96 	mac->ops.start_hw = &ixgbe_start_hw_generic;
97 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
98 	mac->ops.get_media_type = NULL;
99 	mac->ops.get_supported_physical_layer = NULL;
100 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
101 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
102 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
103 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
104 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
105 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
106 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
107 
108 	/* LEDs */
109 	mac->ops.led_on = &ixgbe_led_on_generic;
110 	mac->ops.led_off = &ixgbe_led_off_generic;
111 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
112 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
113 
114 	/* RAR, Multicast, VLAN */
115 	mac->ops.set_rar = &ixgbe_set_rar_generic;
116 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
117 	mac->ops.insert_mac_addr = NULL;
118 	mac->ops.set_vmdq = NULL;
119 	mac->ops.clear_vmdq = NULL;
120 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
121 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
122 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
123 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
124 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
125 	mac->ops.clear_vfta = NULL;
126 	mac->ops.set_vfta = NULL;
127 	mac->ops.set_vlvf = NULL;
128 	mac->ops.init_uta_tables = NULL;
129 
130 	/* Flow Control */
131 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
132 
133 	/* Link */
134 	mac->ops.get_link_capabilities = NULL;
135 	mac->ops.setup_link = NULL;
136 	mac->ops.check_link = NULL;
137 
138 	return IXGBE_SUCCESS;
139 }
140 
141 /**
142  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
143  *  control
144  *  @hw: pointer to hardware structure
145  *
146  *  There are several phys that do not support autoneg flow control. This
147  *  function check the device id to see if the associated phy supports
148  *  autoneg flow control.
149  **/
150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
151 {
152 
153 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
154 
155 	switch (hw->device_id) {
156 	case IXGBE_DEV_ID_X540T:
157 	case IXGBE_DEV_ID_X540T1:
158 		return IXGBE_SUCCESS;
159 	case IXGBE_DEV_ID_82599_T3_LOM:
160 		return IXGBE_SUCCESS;
161 	default:
162 		return IXGBE_ERR_FC_NOT_SUPPORTED;
163 	}
164 }
165 
166 /**
167  *  ixgbe_setup_fc - Set up flow control
168  *  @hw: pointer to hardware structure
169  *
170  *  Called at init time to set up flow control.
171  **/
172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
173 {
174 	s32 ret_val = IXGBE_SUCCESS;
175 	u32 reg = 0, reg_bp = 0;
176 	u16 reg_cu = 0;
177 
178 	DEBUGFUNC("ixgbe_setup_fc");
179 
180 	/*
181 	 * Validate the requested mode.  Strict IEEE mode does not allow
182 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
183 	 */
184 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
185 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
186 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
187 		goto out;
188 	}
189 
190 	/*
191 	 * 10gig parts do not have a word in the EEPROM to determine the
192 	 * default flow control setting, so we explicitly set it to full.
193 	 */
194 	if (hw->fc.requested_mode == ixgbe_fc_default)
195 		hw->fc.requested_mode = ixgbe_fc_full;
196 
197 	/*
198 	 * Set up the 1G and 10G flow control advertisement registers so the
199 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
200 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
201 	 */
202 	switch (hw->phy.media_type) {
203 	case ixgbe_media_type_fiber:
204 	case ixgbe_media_type_backplane:
205 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
206 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
207 		break;
208 	case ixgbe_media_type_copper:
209 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
210 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
211 		break;
212 	default:
213 		break;
214 	}
215 
216 	/*
217 	 * The possible values of fc.requested_mode are:
218 	 * 0: Flow control is completely disabled
219 	 * 1: Rx flow control is enabled (we can receive pause frames,
220 	 *    but not send pause frames).
221 	 * 2: Tx flow control is enabled (we can send pause frames but
222 	 *    we do not support receiving pause frames).
223 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
224 	 * other: Invalid.
225 	 */
226 	switch (hw->fc.requested_mode) {
227 	case ixgbe_fc_none:
228 		/* Flow control completely disabled by software override. */
229 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
230 		if (hw->phy.media_type == ixgbe_media_type_backplane)
231 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
232 				    IXGBE_AUTOC_ASM_PAUSE);
233 		else if (hw->phy.media_type == ixgbe_media_type_copper)
234 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
235 		break;
236 	case ixgbe_fc_tx_pause:
237 		/*
238 		 * Tx Flow control is enabled, and Rx Flow control is
239 		 * disabled by software override.
240 		 */
241 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
242 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
243 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
244 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
245 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
246 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
247 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
248 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
249 		}
250 		break;
251 	case ixgbe_fc_rx_pause:
252 		/*
253 		 * Rx Flow control is enabled and Tx Flow control is
254 		 * disabled by software override. Since there really
255 		 * isn't a way to advertise that we are capable of RX
256 		 * Pause ONLY, we will advertise that we support both
257 		 * symmetric and asymmetric Rx PAUSE, as such we fall
258 		 * through to the fc_full statement.  Later, we will
259 		 * disable the adapter's ability to send PAUSE frames.
260 		 */
261 	case ixgbe_fc_full:
262 		/* Flow control (both Rx and Tx) is enabled by SW override. */
263 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
264 		if (hw->phy.media_type == ixgbe_media_type_backplane)
265 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
266 				  IXGBE_AUTOC_ASM_PAUSE;
267 		else if (hw->phy.media_type == ixgbe_media_type_copper)
268 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
269 		break;
270 	default:
271 		DEBUGOUT("Flow control param set incorrectly\n");
272 		ret_val = IXGBE_ERR_CONFIG;
273 		goto out;
274 	}
275 
276 	if (hw->mac.type != ixgbe_mac_X540) {
277 		/*
278 		 * Enable auto-negotiation between the MAC & PHY;
279 		 * the MAC will advertise clause 37 flow control.
280 		 */
281 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
282 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
283 
284 		/* Disable AN timeout */
285 		if (hw->fc.strict_ieee)
286 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
287 
288 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
289 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
290 	}
291 
292 	/*
293 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
294 	 * and copper. There is no need to set the PCS1GCTL register.
295 	 *
296 	 */
297 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
298 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
299 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
300 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
301 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
302 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
303 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
304 	}
305 
306 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
307 out:
308 	return ret_val;
309 }
310 
311 /**
312  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
313  *  @hw: pointer to hardware structure
314  *
315  *  Starts the hardware by filling the bus info structure and media type, clears
316  *  all on chip counters, initializes receive address registers, multicast
317  *  table, VLAN filter table, calls routine to set up link and flow control
318  *  settings, and leaves transmit and receive units disabled and uninitialized
319  **/
320 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
321 {
322 	s32 ret_val;
323 	u32 ctrl_ext;
324 
325 	DEBUGFUNC("ixgbe_start_hw_generic");
326 
327 	/* Set the media type */
328 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
329 
330 	/* PHY ops initialization must be done in reset_hw() */
331 
332 	/* Clear the VLAN filter table */
333 	hw->mac.ops.clear_vfta(hw);
334 
335 	/* Clear statistics registers */
336 	hw->mac.ops.clear_hw_cntrs(hw);
337 
338 	/* Set No Snoop Disable */
339 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
340 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
341 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
342 	IXGBE_WRITE_FLUSH(hw);
343 
344 	/* Setup flow control */
345 	ret_val = ixgbe_setup_fc(hw);
346 	if (ret_val != IXGBE_SUCCESS)
347 		goto out;
348 
349 	/* Clear adapter stopped flag */
350 	hw->adapter_stopped = FALSE;
351 
352 out:
353 	return ret_val;
354 }
355 
356 /**
357  *  ixgbe_start_hw_gen2 - Init sequence for common device family
358  *  @hw: pointer to hw structure
359  *
360  * Performs the init sequence common to the second generation
361  * of 10 GbE devices.
362  * Devices in the second generation:
363  *     82599
364  *     X540
365  **/
366 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
367 {
368 	u32 i;
369 	u32 regval;
370 
371 	/* Clear the rate limiters */
372 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
373 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
374 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
375 	}
376 	IXGBE_WRITE_FLUSH(hw);
377 
378 	/* Disable relaxed ordering */
379 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
380 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
381 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
382 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
383 	}
384 
385 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
386 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
387 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
388 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
389 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
390 	}
391 
392 	return IXGBE_SUCCESS;
393 }
394 
395 /**
396  *  ixgbe_init_hw_generic - Generic hardware initialization
397  *  @hw: pointer to hardware structure
398  *
399  *  Initialize the hardware by resetting the hardware, filling the bus info
400  *  structure and media type, clears all on chip counters, initializes receive
401  *  address registers, multicast table, VLAN filter table, calls routine to set
402  *  up link and flow control settings, and leaves transmit and receive units
403  *  disabled and uninitialized
404  **/
405 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
406 {
407 	s32 status;
408 
409 	DEBUGFUNC("ixgbe_init_hw_generic");
410 
411 	/* Reset the hardware */
412 	status = hw->mac.ops.reset_hw(hw);
413 
414 	if (status == IXGBE_SUCCESS) {
415 		/* Start the HW */
416 		status = hw->mac.ops.start_hw(hw);
417 	}
418 
419 	return status;
420 }
421 
422 /**
423  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
424  *  @hw: pointer to hardware structure
425  *
426  *  Clears all hardware statistics counters by reading them from the hardware
427  *  Statistics counters are clear on read.
428  **/
429 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
430 {
431 	u16 i = 0;
432 
433 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
434 
435 	(void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
436 	(void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
437 	(void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
438 	(void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
439 	for (i = 0; i < 8; i++)
440 		(void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
441 
442 	(void) IXGBE_READ_REG(hw, IXGBE_MLFC);
443 	(void) IXGBE_READ_REG(hw, IXGBE_MRFC);
444 	(void) IXGBE_READ_REG(hw, IXGBE_RLEC);
445 	(void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
446 	(void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
447 	if (hw->mac.type >= ixgbe_mac_82599EB) {
448 		(void) IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
449 		(void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
450 	} else {
451 		(void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
452 		(void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
453 	}
454 
455 	for (i = 0; i < 8; i++) {
456 		(void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
457 		(void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
458 		if (hw->mac.type >= ixgbe_mac_82599EB) {
459 			(void) IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
460 			(void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
461 		} else {
462 			(void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
463 			(void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
464 		}
465 	}
466 	if (hw->mac.type >= ixgbe_mac_82599EB)
467 		for (i = 0; i < 8; i++)
468 			(void) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
469 	(void) IXGBE_READ_REG(hw, IXGBE_PRC64);
470 	(void) IXGBE_READ_REG(hw, IXGBE_PRC127);
471 	(void) IXGBE_READ_REG(hw, IXGBE_PRC255);
472 	(void) IXGBE_READ_REG(hw, IXGBE_PRC511);
473 	(void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
474 	(void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
475 	(void) IXGBE_READ_REG(hw, IXGBE_GPRC);
476 	(void) IXGBE_READ_REG(hw, IXGBE_BPRC);
477 	(void) IXGBE_READ_REG(hw, IXGBE_MPRC);
478 	(void) IXGBE_READ_REG(hw, IXGBE_GPTC);
479 	(void) IXGBE_READ_REG(hw, IXGBE_GORCL);
480 	(void) IXGBE_READ_REG(hw, IXGBE_GORCH);
481 	(void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
482 	(void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
483 	if (hw->mac.type == ixgbe_mac_82598EB)
484 		for (i = 0; i < 8; i++)
485 			(void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
486 	(void) IXGBE_READ_REG(hw, IXGBE_RUC);
487 	(void) IXGBE_READ_REG(hw, IXGBE_RFC);
488 	(void) IXGBE_READ_REG(hw, IXGBE_ROC);
489 	(void) IXGBE_READ_REG(hw, IXGBE_RJC);
490 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
491 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
492 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
493 	(void) IXGBE_READ_REG(hw, IXGBE_TORL);
494 	(void) IXGBE_READ_REG(hw, IXGBE_TORH);
495 	(void) IXGBE_READ_REG(hw, IXGBE_TPR);
496 	(void) IXGBE_READ_REG(hw, IXGBE_TPT);
497 	(void) IXGBE_READ_REG(hw, IXGBE_PTC64);
498 	(void) IXGBE_READ_REG(hw, IXGBE_PTC127);
499 	(void) IXGBE_READ_REG(hw, IXGBE_PTC255);
500 	(void) IXGBE_READ_REG(hw, IXGBE_PTC511);
501 	(void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
502 	(void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
503 	(void) IXGBE_READ_REG(hw, IXGBE_MPTC);
504 	(void) IXGBE_READ_REG(hw, IXGBE_BPTC);
505 	for (i = 0; i < 16; i++) {
506 		(void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
507 		(void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
508 		if (hw->mac.type >= ixgbe_mac_82599EB) {
509 			(void) IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
510 			(void) IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
511 			(void) IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
512 			(void) IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
513 			(void) IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
514 		} else {
515 			(void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
516 			(void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
517 		}
518 	}
519 
520 	if (hw->mac.type == ixgbe_mac_X540) {
521 		if (hw->phy.id == 0)
522 			(void) ixgbe_identify_phy(hw);
523 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
524 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
525 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
526 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
527 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
528 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
529 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
530 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
531 	}
532 
533 	return IXGBE_SUCCESS;
534 }
535 
536 /**
537  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
538  *  @hw: pointer to hardware structure
539  *  @pba_num: stores the part number string from the EEPROM
540  *  @pba_num_size: part number string buffer length
541  *
542  *  Reads the part number string from the EEPROM.
543  **/
544 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
545 				  u32 pba_num_size)
546 {
547 	s32 ret_val;
548 	u16 data;
549 	u16 pba_ptr;
550 	u16 offset;
551 	u16 length;
552 
553 	DEBUGFUNC("ixgbe_read_pba_string_generic");
554 
555 	if (pba_num == NULL) {
556 		DEBUGOUT("PBA string buffer was null\n");
557 		return IXGBE_ERR_INVALID_ARGUMENT;
558 	}
559 
560 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
561 	if (ret_val) {
562 		DEBUGOUT("NVM Read Error\n");
563 		return ret_val;
564 	}
565 
566 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
567 	if (ret_val) {
568 		DEBUGOUT("NVM Read Error\n");
569 		return ret_val;
570 	}
571 
572 	/*
573 	 * if data is not ptr guard the PBA must be in legacy format which
574 	 * means pba_ptr is actually our second data word for the PBA number
575 	 * and we can decode it into an ascii string
576 	 */
577 	if (data != IXGBE_PBANUM_PTR_GUARD) {
578 		DEBUGOUT("NVM PBA number is not stored as string\n");
579 
580 		/* we will need 11 characters to store the PBA */
581 		if (pba_num_size < 11) {
582 			DEBUGOUT("PBA string buffer too small\n");
583 			return IXGBE_ERR_NO_SPACE;
584 		}
585 
586 		/* extract hex string from data and pba_ptr */
587 		pba_num[0] = (data >> 12) & 0xF;
588 		pba_num[1] = (data >> 8) & 0xF;
589 		pba_num[2] = (data >> 4) & 0xF;
590 		pba_num[3] = data & 0xF;
591 		pba_num[4] = (pba_ptr >> 12) & 0xF;
592 		pba_num[5] = (pba_ptr >> 8) & 0xF;
593 		pba_num[6] = '-';
594 		pba_num[7] = 0;
595 		pba_num[8] = (pba_ptr >> 4) & 0xF;
596 		pba_num[9] = pba_ptr & 0xF;
597 
598 		/* put a null character on the end of our string */
599 		pba_num[10] = '\0';
600 
601 		/* switch all the data but the '-' to hex char */
602 		for (offset = 0; offset < 10; offset++) {
603 			if (pba_num[offset] < 0xA)
604 				pba_num[offset] += '0';
605 			else if (pba_num[offset] < 0x10)
606 				pba_num[offset] += 'A' - 0xA;
607 		}
608 
609 		return IXGBE_SUCCESS;
610 	}
611 
612 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
613 	if (ret_val) {
614 		DEBUGOUT("NVM Read Error\n");
615 		return ret_val;
616 	}
617 
618 	if (length == 0xFFFF || length == 0) {
619 		DEBUGOUT("NVM PBA number section invalid length\n");
620 		return IXGBE_ERR_PBA_SECTION;
621 	}
622 
623 	/* check if pba_num buffer is big enough */
624 	if (pba_num_size  < (((u32)length * 2) - 1)) {
625 		DEBUGOUT("PBA string buffer too small\n");
626 		return IXGBE_ERR_NO_SPACE;
627 	}
628 
629 	/* trim pba length from start of string */
630 	pba_ptr++;
631 	length--;
632 
633 	for (offset = 0; offset < length; offset++) {
634 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
635 		if (ret_val) {
636 			DEBUGOUT("NVM Read Error\n");
637 			return ret_val;
638 		}
639 		pba_num[offset * 2] = (u8)(data >> 8);
640 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
641 	}
642 	pba_num[offset * 2] = '\0';
643 
644 	return IXGBE_SUCCESS;
645 }
646 
647 /**
648  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
649  *  @hw: pointer to hardware structure
650  *  @pba_num: stores the part number from the EEPROM
651  *
652  *  Reads the part number from the EEPROM.
653  **/
654 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
655 {
656 	s32 ret_val;
657 	u16 data;
658 
659 	DEBUGFUNC("ixgbe_read_pba_num_generic");
660 
661 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
662 	if (ret_val) {
663 		DEBUGOUT("NVM Read Error\n");
664 		return ret_val;
665 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
666 		DEBUGOUT("NVM Not supported\n");
667 		return IXGBE_NOT_IMPLEMENTED;
668 	}
669 	*pba_num = (u32)(data << 16);
670 
671 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
672 	if (ret_val) {
673 		DEBUGOUT("NVM Read Error\n");
674 		return ret_val;
675 	}
676 	*pba_num |= data;
677 
678 	return IXGBE_SUCCESS;
679 }
680 
681 /**
682  *  ixgbe_get_mac_addr_generic - Generic get MAC address
683  *  @hw: pointer to hardware structure
684  *  @mac_addr: Adapter MAC address
685  *
686  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
687  *  A reset of the adapter must be performed prior to calling this function
688  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
689  **/
690 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
691 {
692 	u32 rar_high;
693 	u32 rar_low;
694 	u16 i;
695 
696 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
697 
698 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
699 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
700 
701 	for (i = 0; i < 4; i++)
702 		mac_addr[i] = (u8)(rar_low >> (i*8));
703 
704 	for (i = 0; i < 2; i++)
705 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
706 
707 	return IXGBE_SUCCESS;
708 }
709 
710 /**
711  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
712  *  @hw: pointer to hardware structure
713  *
714  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
715  **/
716 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
717 {
718 	struct ixgbe_mac_info *mac = &hw->mac;
719 	u16 link_status;
720 
721 	DEBUGFUNC("ixgbe_get_bus_info_generic");
722 
723 	hw->bus.type = ixgbe_bus_type_pci_express;
724 
725 	/* Get the negotiated link width and speed from PCI config space */
726 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
727 
728 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
729 	case IXGBE_PCI_LINK_WIDTH_1:
730 		hw->bus.width = ixgbe_bus_width_pcie_x1;
731 		break;
732 	case IXGBE_PCI_LINK_WIDTH_2:
733 		hw->bus.width = ixgbe_bus_width_pcie_x2;
734 		break;
735 	case IXGBE_PCI_LINK_WIDTH_4:
736 		hw->bus.width = ixgbe_bus_width_pcie_x4;
737 		break;
738 	case IXGBE_PCI_LINK_WIDTH_8:
739 		hw->bus.width = ixgbe_bus_width_pcie_x8;
740 		break;
741 	default:
742 		hw->bus.width = ixgbe_bus_width_unknown;
743 		break;
744 	}
745 
746 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
747 	case IXGBE_PCI_LINK_SPEED_2500:
748 		hw->bus.speed = ixgbe_bus_speed_2500;
749 		break;
750 	case IXGBE_PCI_LINK_SPEED_5000:
751 		hw->bus.speed = ixgbe_bus_speed_5000;
752 		break;
753 	case IXGBE_PCI_LINK_SPEED_8000:
754 		hw->bus.speed = ixgbe_bus_speed_8000;
755 		break;
756 	default:
757 		hw->bus.speed = ixgbe_bus_speed_unknown;
758 		break;
759 	}
760 
761 	mac->ops.set_lan_id(hw);
762 
763 	return IXGBE_SUCCESS;
764 }
765 
766 /**
767  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
768  *  @hw: pointer to the HW structure
769  *
770  *  Determines the LAN function id by reading memory-mapped registers
771  *  and swaps the port value if requested.
772  **/
773 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
774 {
775 	struct ixgbe_bus_info *bus = &hw->bus;
776 	u32 reg;
777 
778 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
779 
780 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
781 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
782 	bus->lan_id = bus->func;
783 
784 	/* check for a port swap */
785 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
786 	if (reg & IXGBE_FACTPS_LFS)
787 		bus->func ^= 0x1;
788 }
789 
790 /**
791  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
792  *  @hw: pointer to hardware structure
793  *
794  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
795  *  disables transmit and receive units. The adapter_stopped flag is used by
796  *  the shared code and drivers to determine if the adapter is in a stopped
797  *  state and should not touch the hardware.
798  **/
799 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
800 {
801 	u32 reg_val;
802 	u16 i;
803 
804 	DEBUGFUNC("ixgbe_stop_adapter_generic");
805 
806 	/*
807 	 * Set the adapter_stopped flag so other driver functions stop touching
808 	 * the hardware
809 	 */
810 	hw->adapter_stopped = TRUE;
811 
812 	/* Disable the receive unit */
813 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
814 
815 	/* Clear interrupt mask to stop interrupts from being generated */
816 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
817 
818 	/* Clear any pending interrupts, flush previous writes */
819 	(void) IXGBE_READ_REG(hw, IXGBE_EICR);
820 
821 	/* Disable the transmit unit.  Each queue must be disabled. */
822 	for (i = 0; i < hw->mac.max_tx_queues; i++)
823 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
824 
825 	/* Disable the receive unit by stopping each queue */
826 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
827 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
828 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
829 		reg_val |= IXGBE_RXDCTL_SWFLSH;
830 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
831 	}
832 
833 	/* flush all queues disables */
834 	IXGBE_WRITE_FLUSH(hw);
835 	msec_delay(2);
836 
837 	/*
838 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
839 	 * access and verify no pending requests
840 	 */
841 	return ixgbe_disable_pcie_master(hw);
842 }
843 
844 /**
845  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
846  *  @hw: pointer to hardware structure
847  *  @index: led number to turn on
848  **/
849 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
850 {
851 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
852 
853 	DEBUGFUNC("ixgbe_led_on_generic");
854 
855 	/* To turn on the LED, set mode to ON. */
856 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
857 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
858 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
859 	IXGBE_WRITE_FLUSH(hw);
860 
861 	return IXGBE_SUCCESS;
862 }
863 
864 /**
865  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
866  *  @hw: pointer to hardware structure
867  *  @index: led number to turn off
868  **/
869 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
870 {
871 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
872 
873 	DEBUGFUNC("ixgbe_led_off_generic");
874 
875 	/* To turn off the LED, set mode to OFF. */
876 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
877 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
878 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
879 	IXGBE_WRITE_FLUSH(hw);
880 
881 	return IXGBE_SUCCESS;
882 }
883 
884 /**
885  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
886  *  @hw: pointer to hardware structure
887  *
888  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
889  *  ixgbe_hw struct in order to set up EEPROM access.
890  **/
891 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
892 {
893 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
894 	u32 eec;
895 	u16 eeprom_size;
896 
897 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
898 
899 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
900 		eeprom->type = ixgbe_eeprom_none;
901 		/* Set default semaphore delay to 10ms which is a well
902 		 * tested value */
903 		eeprom->semaphore_delay = 10;
904 		/* Clear EEPROM page size, it will be initialized as needed */
905 		eeprom->word_page_size = 0;
906 
907 		/*
908 		 * Check for EEPROM present first.
909 		 * If not present leave as none
910 		 */
911 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
912 		if (eec & IXGBE_EEC_PRES) {
913 			eeprom->type = ixgbe_eeprom_spi;
914 
915 			/*
916 			 * SPI EEPROM is assumed here.  This code would need to
917 			 * change if a future EEPROM is not SPI.
918 			 */
919 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
920 					    IXGBE_EEC_SIZE_SHIFT);
921 			eeprom->word_size = 1 << (eeprom_size +
922 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
923 		}
924 
925 		if (eec & IXGBE_EEC_ADDR_SIZE)
926 			eeprom->address_bits = 16;
927 		else
928 			eeprom->address_bits = 8;
929 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
930 			  "%d\n", eeprom->type, eeprom->word_size,
931 			  eeprom->address_bits);
932 	}
933 
934 	return IXGBE_SUCCESS;
935 }
936 
937 /**
938  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
939  *  @hw: pointer to hardware structure
940  *  @offset: offset within the EEPROM to write
941  *  @words: number of word(s)
942  *  @data: 16 bit word(s) to write to EEPROM
943  *
944  *  Reads 16 bit word(s) from EEPROM through bit-bang method
945  **/
946 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
947 					       u16 words, u16 *data)
948 {
949 	s32 status = IXGBE_SUCCESS;
950 	u16 i, count;
951 
952 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
953 
954 	hw->eeprom.ops.init_params(hw);
955 
956 	if (words == 0) {
957 		status = IXGBE_ERR_INVALID_ARGUMENT;
958 		goto out;
959 	}
960 
961 	if (offset + words > hw->eeprom.word_size) {
962 		status = IXGBE_ERR_EEPROM;
963 		goto out;
964 	}
965 
966 	/*
967 	 * The EEPROM page size cannot be queried from the chip. We do lazy
968 	 * initialization. It is worth to do that when we write large buffer.
969 	 */
970 	if ((hw->eeprom.word_page_size == 0) &&
971 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
972 		status = ixgbe_detect_eeprom_page_size_generic(hw, offset);
973 	if (status != IXGBE_SUCCESS)
974 		goto out;
975 
976 	/*
977 	 * We cannot hold synchronization semaphores for too long
978 	 * to avoid other entity starvation. However it is more efficient
979 	 * to read in bursts than synchronizing access for each word.
980 	 */
981 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
982 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
983 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
984 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
985 							    count, &data[i]);
986 
987 		if (status != IXGBE_SUCCESS)
988 			break;
989 	}
990 
991 out:
992 	return status;
993 }
994 
995 /**
996  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
997  *  @hw: pointer to hardware structure
998  *  @offset: offset within the EEPROM to be written to
999  *  @words: number of word(s)
1000  *  @data: 16 bit word(s) to be written to the EEPROM
1001  *
1002  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1003  *  EEPROM will most likely contain an invalid checksum.
1004  **/
1005 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1006 					      u16 words, u16 *data)
1007 {
1008 	s32 status;
1009 	u16 word;
1010 	u16 page_size;
1011 	u16 i;
1012 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1013 
1014 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1015 
1016 	/* Prepare the EEPROM for writing  */
1017 	status = ixgbe_acquire_eeprom(hw);
1018 
1019 	if (status == IXGBE_SUCCESS) {
1020 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1021 			ixgbe_release_eeprom(hw);
1022 			status = IXGBE_ERR_EEPROM;
1023 		}
1024 	}
1025 
1026 	if (status == IXGBE_SUCCESS) {
1027 		for (i = 0; i < words; i++) {
1028 			ixgbe_standby_eeprom(hw);
1029 
1030 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1031 			ixgbe_shift_out_eeprom_bits(hw,
1032 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1033 						   IXGBE_EEPROM_OPCODE_BITS);
1034 
1035 			ixgbe_standby_eeprom(hw);
1036 
1037 			/*
1038 			 * Some SPI eeproms use the 8th address bit embedded
1039 			 * in the opcode
1040 			 */
1041 			if ((hw->eeprom.address_bits == 8) &&
1042 			    ((offset + i) >= 128))
1043 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1044 
1045 			/* Send the Write command (8-bit opcode + addr) */
1046 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1047 						    IXGBE_EEPROM_OPCODE_BITS);
1048 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1049 						    hw->eeprom.address_bits);
1050 
1051 			page_size = hw->eeprom.word_page_size;
1052 
1053 			/* Send the data in burst via SPI*/
1054 			do {
1055 				word = data[i];
1056 				word = (word >> 8) | (word << 8);
1057 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1058 
1059 				if (page_size == 0)
1060 					break;
1061 
1062 				/* do not wrap around page */
1063 				if (((offset + i) & (page_size - 1)) ==
1064 				    (page_size - 1))
1065 					break;
1066 			} while (++i < words);
1067 
1068 			ixgbe_standby_eeprom(hw);
1069 			msec_delay(10);
1070 		}
1071 		/* Done with writing - release the EEPROM */
1072 		ixgbe_release_eeprom(hw);
1073 	}
1074 
1075 	return status;
1076 }
1077 
1078 /**
1079  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset within the EEPROM to be written to
1082  *  @data: 16 bit word to be written to the EEPROM
1083  *
1084  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1085  *  EEPROM will most likely contain an invalid checksum.
1086  **/
1087 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1088 {
1089 	s32 status;
1090 
1091 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1092 
1093 	hw->eeprom.ops.init_params(hw);
1094 
1095 	if (offset >= hw->eeprom.word_size) {
1096 		status = IXGBE_ERR_EEPROM;
1097 		goto out;
1098 	}
1099 
1100 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1101 
1102 out:
1103 	return status;
1104 }
1105 
1106 /**
1107  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1108  *  @hw: pointer to hardware structure
1109  *  @offset: offset within the EEPROM to be read
1110  *  @data: read 16 bit words(s) from EEPROM
1111  *  @words: number of word(s)
1112  *
1113  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1114  **/
1115 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1116 					      u16 words, u16 *data)
1117 {
1118 	s32 status = IXGBE_SUCCESS;
1119 	u16 i, count;
1120 
1121 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1122 
1123 	hw->eeprom.ops.init_params(hw);
1124 
1125 	if (words == 0) {
1126 		status = IXGBE_ERR_INVALID_ARGUMENT;
1127 		goto out;
1128 	}
1129 
1130 	if (offset + words > hw->eeprom.word_size) {
1131 		status = IXGBE_ERR_EEPROM;
1132 		goto out;
1133 	}
1134 
1135 	/*
1136 	 * We cannot hold synchronization semaphores for too long
1137 	 * to avoid other entity starvation. However it is more efficient
1138 	 * to read in bursts than synchronizing access for each word.
1139 	 */
1140 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1141 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1142 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1143 
1144 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1145 							   count, &data[i]);
1146 
1147 		if (status != IXGBE_SUCCESS)
1148 			break;
1149 	}
1150 
1151 out:
1152 	return status;
1153 }
1154 
1155 /**
1156  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1157  *  @hw: pointer to hardware structure
1158  *  @offset: offset within the EEPROM to be read
1159  *  @words: number of word(s)
1160  *  @data: read 16 bit word(s) from EEPROM
1161  *
1162  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1163  **/
1164 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1165 					     u16 words, u16 *data)
1166 {
1167 	s32 status;
1168 	u16 word_in;
1169 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1170 	u16 i;
1171 
1172 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1173 
1174 	/* Prepare the EEPROM for reading  */
1175 	status = ixgbe_acquire_eeprom(hw);
1176 
1177 	if (status == IXGBE_SUCCESS) {
1178 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1179 			ixgbe_release_eeprom(hw);
1180 			status = IXGBE_ERR_EEPROM;
1181 		}
1182 	}
1183 
1184 	if (status == IXGBE_SUCCESS) {
1185 		for (i = 0; i < words; i++) {
1186 			ixgbe_standby_eeprom(hw);
1187 			/*
1188 			 * Some SPI eeproms use the 8th address bit embedded
1189 			 * in the opcode
1190 			 */
1191 			if ((hw->eeprom.address_bits == 8) &&
1192 			    ((offset + i) >= 128))
1193 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1194 
1195 			/* Send the READ command (opcode + addr) */
1196 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1197 						    IXGBE_EEPROM_OPCODE_BITS);
1198 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1199 						    hw->eeprom.address_bits);
1200 
1201 			/* Read the data. */
1202 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1203 			data[i] = (word_in >> 8) | (word_in << 8);
1204 		}
1205 
1206 		/* End this read operation */
1207 		ixgbe_release_eeprom(hw);
1208 	}
1209 
1210 	return status;
1211 }
1212 
1213 /**
1214  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1215  *  @hw: pointer to hardware structure
1216  *  @offset: offset within the EEPROM to be read
1217  *  @data: read 16 bit value from EEPROM
1218  *
1219  *  Reads 16 bit value from EEPROM through bit-bang method
1220  **/
1221 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1222 				       u16 *data)
1223 {
1224 	s32 status;
1225 
1226 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1227 
1228 	hw->eeprom.ops.init_params(hw);
1229 
1230 	if (offset >= hw->eeprom.word_size) {
1231 		status = IXGBE_ERR_EEPROM;
1232 		goto out;
1233 	}
1234 
1235 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1236 
1237 out:
1238 	return status;
1239 }
1240 
1241 /**
1242  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1243  *  @hw: pointer to hardware structure
1244  *  @offset: offset of word in the EEPROM to read
1245  *  @words: number of word(s)
1246  *  @data: 16 bit word(s) from the EEPROM
1247  *
1248  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1249  **/
1250 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1251 				   u16 words, u16 *data)
1252 {
1253 	u32 eerd;
1254 	s32 status = IXGBE_SUCCESS;
1255 	u32 i;
1256 
1257 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1258 
1259 	hw->eeprom.ops.init_params(hw);
1260 
1261 	if (words == 0) {
1262 		status = IXGBE_ERR_INVALID_ARGUMENT;
1263 		goto out;
1264 	}
1265 
1266 	if (offset >= hw->eeprom.word_size) {
1267 		status = IXGBE_ERR_EEPROM;
1268 		goto out;
1269 	}
1270 
1271 	for (i = 0; i < words; i++) {
1272 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1273 		       IXGBE_EEPROM_RW_REG_START;
1274 
1275 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1276 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1277 
1278 		if (status == IXGBE_SUCCESS) {
1279 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1280 				   IXGBE_EEPROM_RW_REG_DATA);
1281 		} else {
1282 			DEBUGOUT("Eeprom read timed out\n");
1283 			goto out;
1284 		}
1285 	}
1286 out:
1287 	return status;
1288 }
1289 
1290 /**
1291  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1292  *  @hw: pointer to hardware structure
1293  *  @offset: offset within the EEPROM to be used as a scratch pad
1294  *
1295  *  Discover EEPROM page size by writing marching data at given offset.
1296  *  This function is called only when we are writing a new large buffer
1297  *  at given offset so the data would be overwritten anyway.
1298  **/
1299 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1300 						 u16 offset)
1301 {
1302 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1303 	s32 status = IXGBE_SUCCESS;
1304 	u16 i;
1305 
1306 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1307 
1308 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1309 		data[i] = i;
1310 
1311 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1312 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1313 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1314 	hw->eeprom.word_page_size = 0;
1315 	if (status != IXGBE_SUCCESS)
1316 		goto out;
1317 
1318 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1319 	if (status != IXGBE_SUCCESS)
1320 		goto out;
1321 
1322 	/*
1323 	 * When writing in burst more than the actual page size
1324 	 * EEPROM address wraps around current page.
1325 	 */
1326 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1327 
1328 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1329 		  hw->eeprom.word_page_size);
1330 out:
1331 	return status;
1332 }
1333 
1334 /**
1335  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1336  *  @hw: pointer to hardware structure
1337  *  @offset: offset of  word in the EEPROM to read
1338  *  @data: word read from the EEPROM
1339  *
1340  *  Reads a 16 bit word from the EEPROM using the EERD register.
1341  **/
1342 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1343 {
1344 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1345 }
1346 
1347 /**
1348  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1349  *  @hw: pointer to hardware structure
1350  *  @offset: offset of  word in the EEPROM to write
1351  *  @words: number of word(s)
1352  *  @data: word(s) write to the EEPROM
1353  *
1354  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1355  **/
1356 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1357 				    u16 words, u16 *data)
1358 {
1359 	u32 eewr;
1360 	s32 status = IXGBE_SUCCESS;
1361 	u16 i;
1362 
1363 	DEBUGFUNC("ixgbe_write_eewr_generic");
1364 
1365 	hw->eeprom.ops.init_params(hw);
1366 
1367 	if (words == 0) {
1368 		status = IXGBE_ERR_INVALID_ARGUMENT;
1369 		goto out;
1370 	}
1371 
1372 	if (offset >= hw->eeprom.word_size) {
1373 		status = IXGBE_ERR_EEPROM;
1374 		goto out;
1375 	}
1376 
1377 	for (i = 0; i < words; i++) {
1378 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1379 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1380 			IXGBE_EEPROM_RW_REG_START;
1381 
1382 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1383 		if (status != IXGBE_SUCCESS) {
1384 			DEBUGOUT("Eeprom write EEWR timed out\n");
1385 			goto out;
1386 		}
1387 
1388 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1389 
1390 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1391 		if (status != IXGBE_SUCCESS) {
1392 			DEBUGOUT("Eeprom write EEWR timed out\n");
1393 			goto out;
1394 		}
1395 	}
1396 
1397 out:
1398 	return status;
1399 }
1400 
1401 /**
1402  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1403  *  @hw: pointer to hardware structure
1404  *  @offset: offset of  word in the EEPROM to write
1405  *  @data: word write to the EEPROM
1406  *
1407  *  Write a 16 bit word to the EEPROM using the EEWR register.
1408  **/
1409 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1410 {
1411 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1412 }
1413 
1414 /**
1415  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1416  *  @hw: pointer to hardware structure
1417  *  @ee_reg: EEPROM flag for polling
1418  *
1419  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1420  *  read or write is done respectively.
1421  **/
1422 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1423 {
1424 	u32 i;
1425 	u32 reg;
1426 	s32 status = IXGBE_ERR_EEPROM;
1427 
1428 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1429 
1430 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1431 		if (ee_reg == IXGBE_NVM_POLL_READ)
1432 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1433 		else
1434 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1435 
1436 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1437 			status = IXGBE_SUCCESS;
1438 			break;
1439 		}
1440 		usec_delay(5);
1441 	}
1442 	return status;
1443 }
1444 
1445 /**
1446  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1447  *  @hw: pointer to hardware structure
1448  *
1449  *  Prepares EEPROM for access using bit-bang method. This function should
1450  *  be called before issuing a command to the EEPROM.
1451  **/
1452 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1453 {
1454 	s32 status = IXGBE_SUCCESS;
1455 	u32 eec;
1456 	u32 i;
1457 
1458 	DEBUGFUNC("ixgbe_acquire_eeprom");
1459 
1460 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1461 	    != IXGBE_SUCCESS)
1462 		status = IXGBE_ERR_SWFW_SYNC;
1463 
1464 	if (status == IXGBE_SUCCESS) {
1465 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466 
1467 		/* Request EEPROM Access */
1468 		eec |= IXGBE_EEC_REQ;
1469 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470 
1471 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1472 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1473 			if (eec & IXGBE_EEC_GNT)
1474 				break;
1475 			usec_delay(5);
1476 		}
1477 
1478 		/* Release if grant not acquired */
1479 		if (!(eec & IXGBE_EEC_GNT)) {
1480 			eec &= ~IXGBE_EEC_REQ;
1481 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482 			DEBUGOUT("Could not acquire EEPROM grant\n");
1483 
1484 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1485 			status = IXGBE_ERR_EEPROM;
1486 		}
1487 
1488 		/* Setup EEPROM for Read/Write */
1489 		if (status == IXGBE_SUCCESS) {
1490 			/* Clear CS and SK */
1491 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1492 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1493 			IXGBE_WRITE_FLUSH(hw);
1494 			usec_delay(1);
1495 		}
1496 	}
1497 	return status;
1498 }
1499 
1500 /**
1501  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1502  *  @hw: pointer to hardware structure
1503  *
1504  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1505  **/
1506 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1507 {
1508 	s32 status = IXGBE_ERR_EEPROM;
1509 	u32 timeout = 2000;
1510 	u32 i;
1511 	u32 swsm;
1512 
1513 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1514 
1515 
1516 	/* Get SMBI software semaphore between device drivers first */
1517 	for (i = 0; i < timeout; i++) {
1518 		/*
1519 		 * If the SMBI bit is 0 when we read it, then the bit will be
1520 		 * set and we have the semaphore
1521 		 */
1522 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1523 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1524 			status = IXGBE_SUCCESS;
1525 			break;
1526 		}
1527 		usec_delay(50);
1528 	}
1529 
1530 	if (i == timeout) {
1531 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1532 			 "not granted.\n");
1533 		/*
1534 		 * this release is particularly important because our attempts
1535 		 * above to get the semaphore may have succeeded, and if there
1536 		 * was a timeout, we should unconditionally clear the semaphore
1537 		 * bits to free the driver to make progress
1538 		 */
1539 		ixgbe_release_eeprom_semaphore(hw);
1540 
1541 		usec_delay(50);
1542 		/*
1543 		 * one last try
1544 		 * If the SMBI bit is 0 when we read it, then the bit will be
1545 		 * set and we have the semaphore
1546 		 */
1547 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1548 		if (!(swsm & IXGBE_SWSM_SMBI))
1549 			status = IXGBE_SUCCESS;
1550 	}
1551 
1552 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1553 	if (status == IXGBE_SUCCESS) {
1554 		for (i = 0; i < timeout; i++) {
1555 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1556 
1557 			/* Set the SW EEPROM semaphore bit to request access */
1558 			swsm |= IXGBE_SWSM_SWESMBI;
1559 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1560 
1561 			/*
1562 			 * If we set the bit successfully then we got the
1563 			 * semaphore.
1564 			 */
1565 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1566 			if (swsm & IXGBE_SWSM_SWESMBI)
1567 				break;
1568 
1569 			usec_delay(50);
1570 		}
1571 
1572 		/*
1573 		 * Release semaphores and return error if SW EEPROM semaphore
1574 		 * was not granted because we don't have access to the EEPROM
1575 		 */
1576 		if (i >= timeout) {
1577 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
1578 				 "not granted.\n");
1579 			ixgbe_release_eeprom_semaphore(hw);
1580 			status = IXGBE_ERR_EEPROM;
1581 		}
1582 	} else {
1583 		DEBUGOUT("Software semaphore SMBI between device drivers "
1584 			 "not granted.\n");
1585 	}
1586 
1587 	return status;
1588 }
1589 
1590 /**
1591  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1592  *  @hw: pointer to hardware structure
1593  *
1594  *  This function clears hardware semaphore bits.
1595  **/
1596 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1597 {
1598 	u32 swsm;
1599 
1600 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1601 
1602 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1603 
1604 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1605 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1606 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1607 	IXGBE_WRITE_FLUSH(hw);
1608 }
1609 
1610 /**
1611  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1612  *  @hw: pointer to hardware structure
1613  **/
1614 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1615 {
1616 	s32 status = IXGBE_SUCCESS;
1617 	u16 i;
1618 	u8 spi_stat_reg;
1619 
1620 	DEBUGFUNC("ixgbe_ready_eeprom");
1621 
1622 	/*
1623 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1624 	 * EEPROM will signal that the command has been completed by clearing
1625 	 * bit 0 of the internal status register.  If it's not cleared within
1626 	 * 5 milliseconds, then error out.
1627 	 */
1628 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1629 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1630 					    IXGBE_EEPROM_OPCODE_BITS);
1631 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1632 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1633 			break;
1634 
1635 		usec_delay(5);
1636 		ixgbe_standby_eeprom(hw);
1637 	};
1638 
1639 	/*
1640 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1641 	 * devices (and only 0-5mSec on 5V devices)
1642 	 */
1643 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1644 		DEBUGOUT("SPI EEPROM Status error\n");
1645 		status = IXGBE_ERR_EEPROM;
1646 	}
1647 
1648 	return status;
1649 }
1650 
1651 /**
1652  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1653  *  @hw: pointer to hardware structure
1654  **/
1655 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1656 {
1657 	u32 eec;
1658 
1659 	DEBUGFUNC("ixgbe_standby_eeprom");
1660 
1661 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1662 
1663 	/* Toggle CS to flush commands */
1664 	eec |= IXGBE_EEC_CS;
1665 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1666 	IXGBE_WRITE_FLUSH(hw);
1667 	usec_delay(1);
1668 	eec &= ~IXGBE_EEC_CS;
1669 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1670 	IXGBE_WRITE_FLUSH(hw);
1671 	usec_delay(1);
1672 }
1673 
1674 /**
1675  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1676  *  @hw: pointer to hardware structure
1677  *  @data: data to send to the EEPROM
1678  *  @count: number of bits to shift out
1679  **/
1680 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1681 					u16 count)
1682 {
1683 	u32 eec;
1684 	u32 mask;
1685 	u32 i;
1686 
1687 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1688 
1689 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1690 
1691 	/*
1692 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1693 	 * one bit at a time.  Determine the starting bit based on count
1694 	 */
1695 	mask = 0x01 << (count - 1);
1696 
1697 	for (i = 0; i < count; i++) {
1698 		/*
1699 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1700 		 * "1", and then raising and then lowering the clock (the SK
1701 		 * bit controls the clock input to the EEPROM).  A "0" is
1702 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1703 		 * raising and then lowering the clock.
1704 		 */
1705 		if (data & mask)
1706 			eec |= IXGBE_EEC_DI;
1707 		else
1708 			eec &= ~IXGBE_EEC_DI;
1709 
1710 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1711 		IXGBE_WRITE_FLUSH(hw);
1712 
1713 		usec_delay(1);
1714 
1715 		ixgbe_raise_eeprom_clk(hw, &eec);
1716 		ixgbe_lower_eeprom_clk(hw, &eec);
1717 
1718 		/*
1719 		 * Shift mask to signify next bit of data to shift in to the
1720 		 * EEPROM
1721 		 */
1722 		mask = mask >> 1;
1723 	};
1724 
1725 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1726 	eec &= ~IXGBE_EEC_DI;
1727 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1728 	IXGBE_WRITE_FLUSH(hw);
1729 }
1730 
1731 /**
1732  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1733  *  @hw: pointer to hardware structure
1734  **/
1735 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1736 {
1737 	u32 eec;
1738 	u32 i;
1739 	u16 data = 0;
1740 
1741 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1742 
1743 	/*
1744 	 * In order to read a register from the EEPROM, we need to shift
1745 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1746 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1747 	 * the value of the "DO" bit.  During this "shifting in" process the
1748 	 * "DI" bit should always be clear.
1749 	 */
1750 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1751 
1752 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1753 
1754 	for (i = 0; i < count; i++) {
1755 		data = data << 1;
1756 		ixgbe_raise_eeprom_clk(hw, &eec);
1757 
1758 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1759 
1760 		eec &= ~(IXGBE_EEC_DI);
1761 		if (eec & IXGBE_EEC_DO)
1762 			data |= 1;
1763 
1764 		ixgbe_lower_eeprom_clk(hw, &eec);
1765 	}
1766 
1767 	return data;
1768 }
1769 
1770 /**
1771  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1772  *  @hw: pointer to hardware structure
1773  *  @eec: EEC register's current value
1774  **/
1775 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1776 {
1777 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
1778 
1779 	/*
1780 	 * Raise the clock input to the EEPROM
1781 	 * (setting the SK bit), then delay
1782 	 */
1783 	*eec = *eec | IXGBE_EEC_SK;
1784 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1785 	IXGBE_WRITE_FLUSH(hw);
1786 	usec_delay(1);
1787 }
1788 
1789 /**
1790  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1791  *  @hw: pointer to hardware structure
1792  *  @eecd: EECD's current value
1793  **/
1794 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1795 {
1796 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
1797 
1798 	/*
1799 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1800 	 * delay
1801 	 */
1802 	*eec = *eec & ~IXGBE_EEC_SK;
1803 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1804 	IXGBE_WRITE_FLUSH(hw);
1805 	usec_delay(1);
1806 }
1807 
1808 /**
1809  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1810  *  @hw: pointer to hardware structure
1811  **/
1812 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1813 {
1814 	u32 eec;
1815 
1816 	DEBUGFUNC("ixgbe_release_eeprom");
1817 
1818 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1819 
1820 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1821 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1822 
1823 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1824 	IXGBE_WRITE_FLUSH(hw);
1825 
1826 	usec_delay(1);
1827 
1828 	/* Stop requesting EEPROM access */
1829 	eec &= ~IXGBE_EEC_REQ;
1830 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1831 
1832 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1833 
1834 	/* Delay before attempt to obtain semaphore again to allow FW access */
1835 	msec_delay(hw->eeprom.semaphore_delay);
1836 }
1837 
1838 /**
1839  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1840  *  @hw: pointer to hardware structure
1841  **/
1842 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1843 {
1844 	u16 i;
1845 	u16 j;
1846 	u16 checksum = 0;
1847 	u16 length = 0;
1848 	u16 pointer = 0;
1849 	u16 word = 0;
1850 
1851 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1852 
1853 	/* Include 0x0-0x3F in the checksum */
1854 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1855 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1856 			DEBUGOUT("EEPROM read failed\n");
1857 			break;
1858 		}
1859 		checksum += word;
1860 	}
1861 
1862 	/* Include all data from pointers except for the fw pointer */
1863 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1864 		hw->eeprom.ops.read(hw, i, &pointer);
1865 
1866 		/* Make sure the pointer seems valid */
1867 		if (pointer != 0xFFFF && pointer != 0) {
1868 			hw->eeprom.ops.read(hw, pointer, &length);
1869 
1870 			if (length != 0xFFFF && length != 0) {
1871 				for (j = pointer+1; j <= pointer+length; j++) {
1872 					hw->eeprom.ops.read(hw, j, &word);
1873 					checksum += word;
1874 				}
1875 			}
1876 		}
1877 	}
1878 
1879 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1880 
1881 	return checksum;
1882 }
1883 
1884 /**
1885  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1886  *  @hw: pointer to hardware structure
1887  *  @checksum_val: calculated checksum
1888  *
1889  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1890  *  caller does not need checksum_val, the value can be NULL.
1891  **/
1892 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1893 					   u16 *checksum_val)
1894 {
1895 	s32 status;
1896 	u16 checksum;
1897 	u16 read_checksum = 0;
1898 
1899 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1900 
1901 	/*
1902 	 * Read the first word from the EEPROM. If this times out or fails, do
1903 	 * not continue or we could be in for a very long wait while every
1904 	 * EEPROM read fails
1905 	 */
1906 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1907 
1908 	if (status == IXGBE_SUCCESS) {
1909 		checksum = hw->eeprom.ops.calc_checksum(hw);
1910 
1911 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1912 
1913 		/*
1914 		 * Verify read checksum from EEPROM is the same as
1915 		 * calculated checksum
1916 		 */
1917 		if (read_checksum != checksum)
1918 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1919 
1920 		/* If the user cares, return the calculated checksum */
1921 		if (checksum_val)
1922 			*checksum_val = checksum;
1923 	} else {
1924 		DEBUGOUT("EEPROM read failed\n");
1925 	}
1926 
1927 	return status;
1928 }
1929 
1930 /**
1931  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1932  *  @hw: pointer to hardware structure
1933  **/
1934 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1935 {
1936 	s32 status;
1937 	u16 checksum;
1938 
1939 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1940 
1941 	/*
1942 	 * Read the first word from the EEPROM. If this times out or fails, do
1943 	 * not continue or we could be in for a very long wait while every
1944 	 * EEPROM read fails
1945 	 */
1946 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1947 
1948 	if (status == IXGBE_SUCCESS) {
1949 		checksum = hw->eeprom.ops.calc_checksum(hw);
1950 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1951 					      checksum);
1952 	} else {
1953 		DEBUGOUT("EEPROM read failed\n");
1954 	}
1955 
1956 	return status;
1957 }
1958 
1959 /**
1960  *  ixgbe_validate_mac_addr - Validate MAC address
1961  *  @mac_addr: pointer to MAC address.
1962  *
1963  *  Tests a MAC address to ensure it is a valid Individual Address
1964  **/
1965 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1966 {
1967 	s32 status = IXGBE_SUCCESS;
1968 
1969 	DEBUGFUNC("ixgbe_validate_mac_addr");
1970 
1971 	/* Make sure it is not a multicast address */
1972 	if (IXGBE_IS_MULTICAST(mac_addr)) {
1973 		DEBUGOUT("MAC address is multicast\n");
1974 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1975 	/* Not a broadcast address */
1976 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
1977 		DEBUGOUT("MAC address is broadcast\n");
1978 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1979 	/* Reject the zero address */
1980 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1981 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1982 		DEBUGOUT("MAC address is all zeros\n");
1983 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1984 	}
1985 	return status;
1986 }
1987 
1988 /**
1989  *  ixgbe_set_rar_generic - Set Rx address register
1990  *  @hw: pointer to hardware structure
1991  *  @index: Receive address register to write
1992  *  @addr: Address to put into receive address register
1993  *  @vmdq: VMDq "set" or "pool" index
1994  *  @enable_addr: set flag that address is active
1995  *
1996  *  Puts an ethernet address into a receive address register.
1997  **/
1998 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1999 			  u32 enable_addr)
2000 {
2001 	u32 rar_low, rar_high;
2002 	u32 rar_entries = hw->mac.num_rar_entries;
2003 
2004 	DEBUGFUNC("ixgbe_set_rar_generic");
2005 
2006 	/* Make sure we are using a valid rar index range */
2007 	if (index >= rar_entries) {
2008 		DEBUGOUT1("RAR index %d is out of range.\n", index);
2009 		return IXGBE_ERR_INVALID_ARGUMENT;
2010 	}
2011 
2012 	/* setup VMDq pool selection before this RAR gets enabled */
2013 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2014 
2015 	/*
2016 	 * HW expects these in little endian so we reverse the byte
2017 	 * order from network order (big endian) to little endian
2018 	 */
2019 	rar_low = ((u32)addr[0] |
2020 		   ((u32)addr[1] << 8) |
2021 		   ((u32)addr[2] << 16) |
2022 		   ((u32)addr[3] << 24));
2023 	/*
2024 	 * Some parts put the VMDq setting in the extra RAH bits,
2025 	 * so save everything except the lower 16 bits that hold part
2026 	 * of the address and the address valid bit.
2027 	 */
2028 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2029 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2030 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2031 
2032 	if (enable_addr != 0)
2033 		rar_high |= IXGBE_RAH_AV;
2034 
2035 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2036 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2037 
2038 	return IXGBE_SUCCESS;
2039 }
2040 
2041 /**
2042  *  ixgbe_clear_rar_generic - Remove Rx address register
2043  *  @hw: pointer to hardware structure
2044  *  @index: Receive address register to write
2045  *
2046  *  Clears an ethernet address from a receive address register.
2047  **/
2048 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2049 {
2050 	u32 rar_high;
2051 	u32 rar_entries = hw->mac.num_rar_entries;
2052 
2053 	DEBUGFUNC("ixgbe_clear_rar_generic");
2054 
2055 	/* Make sure we are using a valid rar index range */
2056 	if (index >= rar_entries) {
2057 		DEBUGOUT1("RAR index %d is out of range.\n", index);
2058 		return IXGBE_ERR_INVALID_ARGUMENT;
2059 	}
2060 
2061 	/*
2062 	 * Some parts put the VMDq setting in the extra RAH bits,
2063 	 * so save everything except the lower 16 bits that hold part
2064 	 * of the address and the address valid bit.
2065 	 */
2066 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2067 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2068 
2069 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2070 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2071 
2072 	/* clear VMDq pool/queue selection for this RAR */
2073 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2074 
2075 	return IXGBE_SUCCESS;
2076 }
2077 
2078 /**
2079  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2080  *  @hw: pointer to hardware structure
2081  *
2082  *  Places the MAC address in receive address register 0 and clears the rest
2083  *  of the receive address registers. Clears the multicast table. Assumes
2084  *  the receiver is in reset when the routine is called.
2085  **/
2086 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2087 {
2088 	u32 i;
2089 	u32 rar_entries = hw->mac.num_rar_entries;
2090 
2091 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2092 
2093 	/*
2094 	 * If the current mac address is valid, assume it is a software override
2095 	 * to the permanent address.
2096 	 * Otherwise, use the permanent address from the eeprom.
2097 	 */
2098 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2099 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2100 		/* Get the MAC address from the RAR0 for later reference */
2101 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2102 
2103 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2104 			  hw->mac.addr[0], hw->mac.addr[1],
2105 			  hw->mac.addr[2]);
2106 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2107 			  hw->mac.addr[4], hw->mac.addr[5]);
2108 	} else {
2109 		/* Setup the receive address. */
2110 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2111 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2112 			  hw->mac.addr[0], hw->mac.addr[1],
2113 			  hw->mac.addr[2]);
2114 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2115 			  hw->mac.addr[4], hw->mac.addr[5]);
2116 
2117 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2118 
2119 		/* clear VMDq pool/queue selection for RAR 0 */
2120 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2121 	}
2122 	hw->addr_ctrl.overflow_promisc = 0;
2123 
2124 	hw->addr_ctrl.rar_used_count = 1;
2125 
2126 	/* Zero out the other receive addresses. */
2127 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2128 	for (i = 1; i < rar_entries; i++) {
2129 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2130 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2131 	}
2132 
2133 	/* Clear the MTA */
2134 	hw->addr_ctrl.mta_in_use = 0;
2135 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2136 
2137 	DEBUGOUT(" Clearing MTA\n");
2138 	for (i = 0; i < hw->mac.mcft_size; i++)
2139 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2140 
2141 	/* Should always be IXGBE_SUCCESS. */
2142 	return ixgbe_init_uta_tables(hw);
2143 }
2144 
2145 /**
2146  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2147  *  @hw: pointer to hardware structure
2148  *  @addr: new address
2149  *
2150  *  Adds it to unused receive address register or goes into promiscuous mode.
2151  **/
2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2153 {
2154 	u32 rar_entries = hw->mac.num_rar_entries;
2155 	u32 rar;
2156 
2157 	DEBUGFUNC("ixgbe_add_uc_addr");
2158 
2159 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2160 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2161 
2162 	/*
2163 	 * Place this address in the RAR if there is room,
2164 	 * else put the controller into promiscuous mode
2165 	 */
2166 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2167 		rar = hw->addr_ctrl.rar_used_count;
2168 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2169 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2170 		hw->addr_ctrl.rar_used_count++;
2171 	} else {
2172 		hw->addr_ctrl.overflow_promisc++;
2173 	}
2174 
2175 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2176 }
2177 
2178 /**
2179  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2180  *  @hw: pointer to hardware structure
2181  *  @addr_list: the list of new addresses
2182  *  @addr_count: number of addresses
2183  *  @next: iterator function to walk the address list
2184  *
2185  *  The given list replaces any existing list.  Clears the secondary addrs from
2186  *  receive address registers.  Uses unused receive address registers for the
2187  *  first secondary addresses, and falls back to promiscuous mode as needed.
2188  *
2189  *  Drivers using secondary unicast addresses must set user_set_promisc when
2190  *  manually putting the device into promiscuous mode.
2191  **/
2192 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2193 				      u32 addr_count, ixgbe_mc_addr_itr next)
2194 {
2195 	u8 *addr;
2196 	u32 i;
2197 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2198 	u32 uc_addr_in_use;
2199 	u32 fctrl;
2200 	u32 vmdq;
2201 
2202 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2203 
2204 	/*
2205 	 * Clear accounting of old secondary address list,
2206 	 * don't count RAR[0]
2207 	 */
2208 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2209 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2210 	hw->addr_ctrl.overflow_promisc = 0;
2211 
2212 	/* Zero out the other receive addresses */
2213 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2214 	for (i = 0; i < uc_addr_in_use; i++) {
2215 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2216 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2217 	}
2218 
2219 	/* Add the new addresses */
2220 	for (i = 0; i < addr_count; i++) {
2221 		DEBUGOUT(" Adding the secondary addresses:\n");
2222 		addr = next(hw, &addr_list, &vmdq);
2223 		ixgbe_add_uc_addr(hw, addr, vmdq);
2224 	}
2225 
2226 	if (hw->addr_ctrl.overflow_promisc) {
2227 		/* enable promisc if not already in overflow or set by user */
2228 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2229 			DEBUGOUT(" Entering address overflow promisc mode\n");
2230 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2231 			fctrl |= IXGBE_FCTRL_UPE;
2232 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2233 		}
2234 	} else {
2235 		/* only disable if set by overflow, not by user */
2236 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2237 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2238 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2239 			fctrl &= ~IXGBE_FCTRL_UPE;
2240 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2241 		}
2242 	}
2243 
2244 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2245 	return IXGBE_SUCCESS;
2246 }
2247 
2248 /**
2249  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2250  *  @hw: pointer to hardware structure
2251  *  @mc_addr: the multicast address
2252  *
2253  *  Extracts the 12 bits, from a multicast address, to determine which
2254  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2255  *  incoming rx multicast addresses, to determine the bit-vector to check in
2256  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2257  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2258  *  to mc_filter_type.
2259  **/
2260 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2261 {
2262 	u32 vector = 0;
2263 
2264 	DEBUGFUNC("ixgbe_mta_vector");
2265 
2266 	switch (hw->mac.mc_filter_type) {
2267 	case 0:   /* use bits [47:36] of the address */
2268 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2269 		break;
2270 	case 1:   /* use bits [46:35] of the address */
2271 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2272 		break;
2273 	case 2:   /* use bits [45:34] of the address */
2274 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2275 		break;
2276 	case 3:   /* use bits [43:32] of the address */
2277 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2278 		break;
2279 	default:  /* Invalid mc_filter_type */
2280 		DEBUGOUT("MC filter type param set incorrectly\n");
2281 		ASSERT(0);
2282 		break;
2283 	}
2284 
2285 	/* vector can only be 12-bits or boundary will be exceeded */
2286 	vector &= 0xFFF;
2287 	return vector;
2288 }
2289 
2290 /**
2291  *  ixgbe_set_mta - Set bit-vector in multicast table
2292  *  @hw: pointer to hardware structure
2293  *  @hash_value: Multicast address hash value
2294  *
2295  *  Sets the bit-vector in the multicast table.
2296  **/
2297 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2298 {
2299 	u32 vector;
2300 	u32 vector_bit;
2301 	u32 vector_reg;
2302 
2303 	DEBUGFUNC("ixgbe_set_mta");
2304 
2305 	hw->addr_ctrl.mta_in_use++;
2306 
2307 	vector = ixgbe_mta_vector(hw, mc_addr);
2308 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2309 
2310 	/*
2311 	 * The MTA is a register array of 128 32-bit registers. It is treated
2312 	 * like an array of 4096 bits.  We want to set bit
2313 	 * BitArray[vector_value]. So we figure out what register the bit is
2314 	 * in, read it, OR in the new bit, then write back the new value.  The
2315 	 * register is determined by the upper 7 bits of the vector value and
2316 	 * the bit within that register are determined by the lower 5 bits of
2317 	 * the value.
2318 	 */
2319 	vector_reg = (vector >> 5) & 0x7F;
2320 	vector_bit = vector & 0x1F;
2321 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2322 }
2323 
2324 /**
2325  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2326  *  @hw: pointer to hardware structure
2327  *  @mc_addr_list: the list of new multicast addresses
2328  *  @mc_addr_count: number of addresses
2329  *  @next: iterator function to walk the multicast address list
2330  *  @clear: flag, when set clears the table beforehand
2331  *
2332  *  When the clear flag is set, the given list replaces any existing list.
2333  *  Hashes the given addresses into the multicast table.
2334  **/
2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2336 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2337 				      bool clear)
2338 {
2339 	u32 i;
2340 	u32 vmdq;
2341 
2342 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2343 
2344 	/*
2345 	 * Set the new number of MC addresses that we are being requested to
2346 	 * use.
2347 	 */
2348 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2349 	hw->addr_ctrl.mta_in_use = 0;
2350 
2351 	/* Clear mta_shadow */
2352 	if (clear) {
2353 		DEBUGOUT(" Clearing MTA\n");
2354 		(void) memset(&hw->mac.mta_shadow, 0,
2355 		    sizeof(hw->mac.mta_shadow));
2356 	}
2357 
2358 	/* Update mta_shadow */
2359 	for (i = 0; i < mc_addr_count; i++) {
2360 		DEBUGOUT(" Adding the multicast addresses:\n");
2361 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2362 	}
2363 
2364 	/* Enable mta */
2365 	for (i = 0; i < hw->mac.mcft_size; i++)
2366 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2367 				      hw->mac.mta_shadow[i]);
2368 
2369 	if (hw->addr_ctrl.mta_in_use > 0)
2370 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2371 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2372 
2373 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2374 	return IXGBE_SUCCESS;
2375 }
2376 
2377 /**
2378  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2379  *  @hw: pointer to hardware structure
2380  *
2381  *  Enables multicast address in RAR and the use of the multicast hash table.
2382  **/
2383 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2384 {
2385 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2386 
2387 	DEBUGFUNC("ixgbe_enable_mc_generic");
2388 
2389 	if (a->mta_in_use > 0)
2390 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2391 				hw->mac.mc_filter_type);
2392 
2393 	return IXGBE_SUCCESS;
2394 }
2395 
2396 /**
2397  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2398  *  @hw: pointer to hardware structure
2399  *
2400  *  Disables multicast address in RAR and the use of the multicast hash table.
2401  **/
2402 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2403 {
2404 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2405 
2406 	DEBUGFUNC("ixgbe_disable_mc_generic");
2407 
2408 	if (a->mta_in_use > 0)
2409 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2410 
2411 	return IXGBE_SUCCESS;
2412 }
2413 
2414 /**
2415  *  ixgbe_fc_enable_generic - Enable flow control
2416  *  @hw: pointer to hardware structure
2417  *
2418  *  Enable flow control according to the current settings.
2419  **/
2420 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2421 {
2422 	s32 ret_val = IXGBE_SUCCESS;
2423 	u32 mflcn_reg, fccfg_reg;
2424 	u32 reg;
2425 	u32 fcrtl, fcrth;
2426 	int i;
2427 
2428 	DEBUGFUNC("ixgbe_fc_enable_generic");
2429 
2430 	/* Validate the water mark configuration */
2431 	if (!hw->fc.pause_time) {
2432 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2433 		goto out;
2434 	}
2435 
2436 	/* Low water mark of zero causes XOFF floods */
2437 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2438 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2439 		    hw->fc.high_water[i]) {
2440 			if (!hw->fc.low_water[i] ||
2441 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2442 				DEBUGOUT("Invalid water mark configuration\n");
2443 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2444 				goto out;
2445 			}
2446 		}
2447 	}
2448 
2449 	/* Negotiate the fc mode to use */
2450 	ixgbe_fc_autoneg(hw);
2451 
2452 	/* Disable any previous flow control settings */
2453 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2454 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2455 
2456 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2457 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2458 
2459 	/*
2460 	 * The possible values of fc.current_mode are:
2461 	 * 0: Flow control is completely disabled
2462 	 * 1: Rx flow control is enabled (we can receive pause frames,
2463 	 *    but not send pause frames).
2464 	 * 2: Tx flow control is enabled (we can send pause frames but
2465 	 *    we do not support receiving pause frames).
2466 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2467 	 * other: Invalid.
2468 	 */
2469 	switch (hw->fc.current_mode) {
2470 	case ixgbe_fc_none:
2471 		/*
2472 		 * Flow control is disabled by software override or autoneg.
2473 		 * The code below will actually disable it in the HW.
2474 		 */
2475 		break;
2476 	case ixgbe_fc_rx_pause:
2477 		/*
2478 		 * Rx Flow control is enabled and Tx Flow control is
2479 		 * disabled by software override. Since there really
2480 		 * isn't a way to advertise that we are capable of RX
2481 		 * Pause ONLY, we will advertise that we support both
2482 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2483 		 * disable the adapter's ability to send PAUSE frames.
2484 		 */
2485 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2486 		break;
2487 	case ixgbe_fc_tx_pause:
2488 		/*
2489 		 * Tx Flow control is enabled, and Rx Flow control is
2490 		 * disabled by software override.
2491 		 */
2492 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2493 		break;
2494 	case ixgbe_fc_full:
2495 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2496 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2497 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2498 		break;
2499 	default:
2500 		DEBUGOUT("Flow control param set incorrectly\n");
2501 		ret_val = IXGBE_ERR_CONFIG;
2502 		goto out;
2503 	}
2504 
2505 	/* Set 802.3x based flow control settings. */
2506 	mflcn_reg |= IXGBE_MFLCN_DPF;
2507 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2508 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2509 
2510 
2511 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2512 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2513 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2514 		    hw->fc.high_water[i]) {
2515 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2516 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2517 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2518 		} else {
2519 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2520 			/*
2521 			 * In order to prevent Tx hangs when the internal Tx
2522 			 * switch is enabled we must set the high water mark
2523 			 * to the maximum FCRTH value.  This allows the Tx
2524 			 * switch to function even under heavy Rx workloads.
2525 			 */
2526 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2527 		}
2528 
2529 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2530 	}
2531 
2532 	/* Configure pause time (2 TCs per register) */
2533 	reg = hw->fc.pause_time * 0x00010001;
2534 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2535 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2536 
2537 	/* Configure flow control refresh threshold value */
2538 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2539 
2540 out:
2541 	return ret_val;
2542 }
2543 
2544 /**
2545  *  ixgbe_negotiate_fc - Negotiate flow control
2546  *  @hw: pointer to hardware structure
2547  *  @adv_reg: flow control advertised settings
2548  *  @lp_reg: link partner's flow control settings
2549  *  @adv_sym: symmetric pause bit in advertisement
2550  *  @adv_asm: asymmetric pause bit in advertisement
2551  *  @lp_sym: symmetric pause bit in link partner advertisement
2552  *  @lp_asm: asymmetric pause bit in link partner advertisement
2553  *
2554  *  Find the intersection between advertised settings and link partner's
2555  *  advertised settings
2556  **/
2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2558 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2559 {
2560 	if ((!(adv_reg)) ||  (!(lp_reg)))
2561 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2562 
2563 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2564 		/*
2565 		 * Now we need to check if the user selected Rx ONLY
2566 		 * of pause frames.  In this case, we had to advertise
2567 		 * FULL flow control because we could not advertise RX
2568 		 * ONLY. Hence, we must now check to see if we need to
2569 		 * turn OFF the TRANSMISSION of PAUSE frames.
2570 		 */
2571 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2572 			hw->fc.current_mode = ixgbe_fc_full;
2573 			DEBUGOUT("Flow Control = FULL.\n");
2574 		} else {
2575 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2576 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2577 		}
2578 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2579 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2580 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2581 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2582 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2583 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2584 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2585 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2586 	} else {
2587 		hw->fc.current_mode = ixgbe_fc_none;
2588 		DEBUGOUT("Flow Control = NONE.\n");
2589 	}
2590 	return IXGBE_SUCCESS;
2591 }
2592 
2593 /**
2594  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2595  *  @hw: pointer to hardware structure
2596  *
2597  *  Enable flow control according on 1 gig fiber.
2598  **/
2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2600 {
2601 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2602 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2603 
2604 	/*
2605 	 * On multispeed fiber at 1g, bail out if
2606 	 * - link is up but AN did not complete, or if
2607 	 * - link is up and AN completed but timed out
2608 	 */
2609 
2610 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2611 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2612 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2613 		goto out;
2614 
2615 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2616 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2617 
2618 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2619 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2620 				      IXGBE_PCS1GANA_ASM_PAUSE,
2621 				      IXGBE_PCS1GANA_SYM_PAUSE,
2622 				      IXGBE_PCS1GANA_ASM_PAUSE);
2623 
2624 out:
2625 	return ret_val;
2626 }
2627 
2628 /**
2629  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2630  *  @hw: pointer to hardware structure
2631  *
2632  *  Enable flow control according to IEEE clause 37.
2633  **/
2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2635 {
2636 	u32 links2, anlp1_reg, autoc_reg, links;
2637 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2638 
2639 	/*
2640 	 * On backplane, bail out if
2641 	 * - backplane autoneg was not completed, or if
2642 	 * - we are 82599 and link partner is not AN enabled
2643 	 */
2644 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2645 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2646 		goto out;
2647 
2648 	if (hw->mac.type == ixgbe_mac_82599EB) {
2649 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2650 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2651 			goto out;
2652 	}
2653 	/*
2654 	 * Read the 10g AN autoc and LP ability registers and resolve
2655 	 * local flow control settings accordingly
2656 	 */
2657 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2658 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2659 
2660 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2661 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2662 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2663 
2664 out:
2665 	return ret_val;
2666 }
2667 
2668 /**
2669  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2670  *  @hw: pointer to hardware structure
2671  *
2672  *  Enable flow control according to IEEE clause 37.
2673  **/
2674 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2675 {
2676 	u16 technology_ability_reg = 0;
2677 	u16 lp_technology_ability_reg = 0;
2678 
2679 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2680 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2681 			     &technology_ability_reg);
2682 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2683 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2684 			     &lp_technology_ability_reg);
2685 
2686 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2687 				  (u32)lp_technology_ability_reg,
2688 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2689 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2690 }
2691 
2692 /**
2693  *  ixgbe_fc_autoneg - Configure flow control
2694  *  @hw: pointer to hardware structure
2695  *
2696  *  Compares our advertised flow control capabilities to those advertised by
2697  *  our link partner, and determines the proper flow control mode to use.
2698  **/
2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2700 {
2701 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2702 	ixgbe_link_speed speed;
2703 	bool link_up;
2704 
2705 	DEBUGFUNC("ixgbe_fc_autoneg");
2706 
2707 	/*
2708 	 * AN should have completed when the cable was plugged in.
2709 	 * Look for reasons to bail out.  Bail out if:
2710 	 * - FC autoneg is disabled, or if
2711 	 * - link is not up.
2712 	 */
2713 	if (hw->fc.disable_fc_autoneg)
2714 		goto out;
2715 
2716 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2717 	if (!link_up)
2718 		goto out;
2719 
2720 	switch (hw->phy.media_type) {
2721 	/* Autoneg flow control on fiber adapters */
2722 	case ixgbe_media_type_fiber:
2723 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2724 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2725 		break;
2726 
2727 	/* Autoneg flow control on backplane adapters */
2728 	case ixgbe_media_type_backplane:
2729 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2730 		break;
2731 
2732 	/* Autoneg flow control on copper adapters */
2733 	case ixgbe_media_type_copper:
2734 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2735 			ret_val = ixgbe_fc_autoneg_copper(hw);
2736 		break;
2737 
2738 	default:
2739 		break;
2740 	}
2741 
2742 out:
2743 	if (ret_val == IXGBE_SUCCESS) {
2744 		hw->fc.fc_was_autonegged = TRUE;
2745 	} else {
2746 		hw->fc.fc_was_autonegged = FALSE;
2747 		hw->fc.current_mode = hw->fc.requested_mode;
2748 	}
2749 }
2750 
2751 /**
2752  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2753  *  @hw: pointer to hardware structure
2754  *
2755  *  Disables PCI-Express master access and verifies there are no pending
2756  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2757  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2758  *  is returned signifying master requests disabled.
2759  **/
2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2761 {
2762 	s32 status = IXGBE_SUCCESS;
2763 	u32 i;
2764 
2765 	DEBUGFUNC("ixgbe_disable_pcie_master");
2766 
2767 	/* Always set this bit to ensure any future transactions are blocked */
2768 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2769 
2770 	/* Exit if master requets are blocked */
2771 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2772 		goto out;
2773 
2774 	/* Poll for master request bit to clear */
2775 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2776 		usec_delay(100);
2777 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2778 			goto out;
2779 	}
2780 
2781 	/*
2782 	 * Two consecutive resets are required via CTRL.RST per datasheet
2783 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2784 	 * of this need.  The first reset prevents new master requests from
2785 	 * being issued by our device.  We then must wait 1usec or more for any
2786 	 * remaining completions from the PCIe bus to trickle in, and then reset
2787 	 * again to clear out any effects they may have had on our device.
2788 	 */
2789 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2790 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2791 
2792 	/*
2793 	 * Before proceeding, make sure that the PCIe block does not have
2794 	 * transactions pending.
2795 	 */
2796 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2797 		usec_delay(100);
2798 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2799 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2800 			goto out;
2801 	}
2802 
2803 	DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2804 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2805 
2806 out:
2807 	return status;
2808 }
2809 
2810 /**
2811  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2812  *  @hw: pointer to hardware structure
2813  *  @mask: Mask to specify which semaphore to acquire
2814  *
2815  *  Acquires the SWFW semaphore through the GSSR register for the specified
2816  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2817  **/
2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2819 {
2820 	u32 gssr;
2821 	u32 swmask = mask;
2822 	u32 fwmask = mask << 5;
2823 	s32 timeout = 200;
2824 
2825 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
2826 
2827 	while (timeout) {
2828 		/*
2829 		 * SW EEPROM semaphore bit is used for access to all
2830 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2831 		 */
2832 		if (ixgbe_get_eeprom_semaphore(hw))
2833 			return IXGBE_ERR_SWFW_SYNC;
2834 
2835 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2836 		if (!(gssr & (fwmask | swmask)))
2837 			break;
2838 
2839 		/*
2840 		 * Firmware currently using resource (fwmask) or other software
2841 		 * thread currently using resource (swmask)
2842 		 */
2843 		ixgbe_release_eeprom_semaphore(hw);
2844 		msec_delay(5);
2845 		timeout--;
2846 	}
2847 
2848 	if (!timeout) {
2849 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2850 		return IXGBE_ERR_SWFW_SYNC;
2851 	}
2852 
2853 	gssr |= swmask;
2854 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2855 
2856 	ixgbe_release_eeprom_semaphore(hw);
2857 	return IXGBE_SUCCESS;
2858 }
2859 
2860 /**
2861  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2862  *  @hw: pointer to hardware structure
2863  *  @mask: Mask to specify which semaphore to release
2864  *
2865  *  Releases the SWFW semaphore through the GSSR register for the specified
2866  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2867  **/
2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2869 {
2870 	u32 gssr;
2871 	u32 swmask = mask;
2872 
2873 	DEBUGFUNC("ixgbe_release_swfw_sync");
2874 
2875 	(void) ixgbe_get_eeprom_semaphore(hw);
2876 
2877 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2878 	gssr &= ~swmask;
2879 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2880 
2881 	ixgbe_release_eeprom_semaphore(hw);
2882 }
2883 
2884 /**
2885  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2886  *  @hw: pointer to hardware structure
2887  *
2888  *  Stops the receive data path and waits for the HW to internally empty
2889  *  the Rx security block
2890  **/
2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2892 {
2893 #define IXGBE_MAX_SECRX_POLL 40
2894 
2895 	int i;
2896 	int secrxreg;
2897 
2898 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
2899 
2900 
2901 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2902 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2903 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2904 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2905 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2906 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2907 			break;
2908 		else
2909 			/* Use interrupt-safe sleep just in case */
2910 			usec_delay(1000);
2911 	}
2912 
2913 	/* For informational purposes only */
2914 	if (i >= IXGBE_MAX_SECRX_POLL)
2915 		DEBUGOUT("Rx unit being enabled before security "
2916 			 "path fully disabled.  Continuing with init.\n");
2917 
2918 	return IXGBE_SUCCESS;
2919 }
2920 
2921 /**
2922  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2923  *  @hw: pointer to hardware structure
2924  *
2925  *  Enables the receive data path.
2926  **/
2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2928 {
2929 	int secrxreg;
2930 
2931 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2932 
2933 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2934 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2935 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2936 	IXGBE_WRITE_FLUSH(hw);
2937 
2938 	return IXGBE_SUCCESS;
2939 }
2940 
2941 /**
2942  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2943  *  @hw: pointer to hardware structure
2944  *  @regval: register value to write to RXCTRL
2945  *
2946  *  Enables the Rx DMA unit
2947  **/
2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2949 {
2950 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2951 
2952 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2953 
2954 	return IXGBE_SUCCESS;
2955 }
2956 
2957 /**
2958  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2959  *  @hw: pointer to hardware structure
2960  *  @index: led number to blink
2961  **/
2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2963 {
2964 	ixgbe_link_speed speed = 0;
2965 	bool link_up = 0;
2966 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2968 
2969 	DEBUGFUNC("ixgbe_blink_led_start_generic");
2970 
2971 	/*
2972 	 * Link must be up to auto-blink the LEDs;
2973 	 * Force it if link is down.
2974 	 */
2975 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2976 
2977 	if (!link_up) {
2978 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2979 		autoc_reg |= IXGBE_AUTOC_FLU;
2980 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2981 		IXGBE_WRITE_FLUSH(hw);
2982 		msec_delay(10);
2983 	}
2984 
2985 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2986 	led_reg |= IXGBE_LED_BLINK(index);
2987 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2988 	IXGBE_WRITE_FLUSH(hw);
2989 
2990 	return IXGBE_SUCCESS;
2991 }
2992 
2993 /**
2994  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2995  *  @hw: pointer to hardware structure
2996  *  @index: led number to stop blinking
2997  **/
2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2999 {
3000 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3001 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3002 
3003 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3004 
3005 
3006 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3007 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3008 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3009 
3010 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3011 	led_reg &= ~IXGBE_LED_BLINK(index);
3012 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3013 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3014 	IXGBE_WRITE_FLUSH(hw);
3015 
3016 	return IXGBE_SUCCESS;
3017 }
3018 
3019 /**
3020  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3021  *  @hw: pointer to hardware structure
3022  *  @san_mac_offset: SAN MAC address offset
3023  *
3024  *  This function will read the EEPROM location for the SAN MAC address
3025  *  pointer, and returns the value at that location.  This is used in both
3026  *  get and set mac_addr routines.
3027  **/
3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3029 					 u16 *san_mac_offset)
3030 {
3031 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3032 
3033 	/*
3034 	 * First read the EEPROM pointer to see if the MAC addresses are
3035 	 * available.
3036 	 */
3037 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3038 
3039 	return IXGBE_SUCCESS;
3040 }
3041 
3042 /**
3043  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3044  *  @hw: pointer to hardware structure
3045  *  @san_mac_addr: SAN MAC address
3046  *
3047  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3048  *  per-port, so set_lan_id() must be called before reading the addresses.
3049  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3050  *  upon for non-SFP connections, so we must call it here.
3051  **/
3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3053 {
3054 	u16 san_mac_data, san_mac_offset;
3055 	u8 i;
3056 
3057 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3058 
3059 	/*
3060 	 * First read the EEPROM pointer to see if the MAC addresses are
3061 	 * available.  If they're not, no point in calling set_lan_id() here.
3062 	 */
3063 	(void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3064 
3065 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3066 		/*
3067 		 * No addresses available in this EEPROM.  It's not an
3068 		 * error though, so just wipe the local address and return.
3069 		 */
3070 		for (i = 0; i < 6; i++)
3071 			san_mac_addr[i] = 0xFF;
3072 
3073 		goto san_mac_addr_out;
3074 	}
3075 
3076 	/* make sure we know which port we need to program */
3077 	hw->mac.ops.set_lan_id(hw);
3078 	/* apply the port offset to the address offset */
3079 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3080 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3081 	for (i = 0; i < 3; i++) {
3082 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3083 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3084 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3085 		san_mac_offset++;
3086 	}
3087 
3088 san_mac_addr_out:
3089 	return IXGBE_SUCCESS;
3090 }
3091 
3092 /**
3093  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3094  *  @hw: pointer to hardware structure
3095  *  @san_mac_addr: SAN MAC address
3096  *
3097  *  Write a SAN MAC address to the EEPROM.
3098  **/
3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3100 {
3101 	s32 status = IXGBE_SUCCESS;
3102 	u16 san_mac_data, san_mac_offset;
3103 	u8 i;
3104 
3105 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3106 
3107 	/* Look for SAN mac address pointer.  If not defined, return */
3108 	(void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3109 
3110 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3111 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3112 		goto san_mac_addr_out;
3113 	}
3114 
3115 	/* Make sure we know which port we need to write */
3116 	hw->mac.ops.set_lan_id(hw);
3117 	/* Apply the port offset to the address offset */
3118 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3119 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3120 
3121 	for (i = 0; i < 3; i++) {
3122 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3123 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3124 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3125 		san_mac_offset++;
3126 	}
3127 
3128 san_mac_addr_out:
3129 	return status;
3130 }
3131 
3132 /**
3133  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3134  *  @hw: pointer to hardware structure
3135  *
3136  *  Read PCIe configuration space, and get the MSI-X vector count from
3137  *  the capabilities table.
3138  **/
3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3140 {
3141 	u16 msix_count = 1;
3142 	u16 max_msix_count;
3143 	u16 pcie_offset;
3144 
3145 	switch (hw->mac.type) {
3146 	case ixgbe_mac_82598EB:
3147 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3148 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3149 		break;
3150 	case ixgbe_mac_82599EB:
3151 	case ixgbe_mac_X540:
3152 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3153 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3154 		break;
3155 	default:
3156 		return msix_count;
3157 	}
3158 
3159 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3160 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3161 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3162 
3163 	/* MSI-X count is zero-based in HW */
3164 	msix_count++;
3165 
3166 	if (msix_count > max_msix_count)
3167 		msix_count = max_msix_count;
3168 
3169 	return msix_count;
3170 }
3171 
3172 /**
3173  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3174  *  @hw: pointer to hardware structure
3175  *  @addr: Address to put into receive address register
3176  *  @vmdq: VMDq pool to assign
3177  *
3178  *  Puts an ethernet address into a receive address register, or
3179  *  finds the rar that it is aleady in; adds to the pool list
3180  **/
3181 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3182 {
3183 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3184 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3185 	u32 rar;
3186 	u32 rar_low, rar_high;
3187 	u32 addr_low, addr_high;
3188 
3189 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3190 
3191 	/* swap bytes for HW little endian */
3192 	addr_low  = addr[0] | (addr[1] << 8)
3193 			    | (addr[2] << 16)
3194 			    | (addr[3] << 24);
3195 	addr_high = addr[4] | (addr[5] << 8);
3196 
3197 	/*
3198 	 * Either find the mac_id in rar or find the first empty space.
3199 	 * rar_highwater points to just after the highest currently used
3200 	 * rar in order to shorten the search.  It grows when we add a new
3201 	 * rar to the top.
3202 	 */
3203 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3204 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3205 
3206 		if (((IXGBE_RAH_AV & rar_high) == 0)
3207 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3208 			first_empty_rar = rar;
3209 		} else if ((rar_high & 0xFFFF) == addr_high) {
3210 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3211 			if (rar_low == addr_low)
3212 				break;    /* found it already in the rars */
3213 		}
3214 	}
3215 
3216 	if (rar < hw->mac.rar_highwater) {
3217 		/* already there so just add to the pool bits */
3218 		(void) ixgbe_set_vmdq(hw, rar, vmdq);
3219 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3220 		/* stick it into first empty RAR slot we found */
3221 		rar = first_empty_rar;
3222 		(void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3223 	} else if (rar == hw->mac.rar_highwater) {
3224 		/* add it to the top of the list and inc the highwater mark */
3225 		(void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3226 		hw->mac.rar_highwater++;
3227 	} else if (rar >= hw->mac.num_rar_entries) {
3228 		return IXGBE_ERR_INVALID_MAC_ADDR;
3229 	}
3230 
3231 	/*
3232 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3233 	 * remains cleared to be sure default pool packets will get delivered
3234 	 */
3235 	if (rar == 0)
3236 		(void) ixgbe_clear_vmdq(hw, rar, 0);
3237 
3238 	return rar;
3239 }
3240 
3241 /**
3242  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3243  *  @hw: pointer to hardware struct
3244  *  @rar: receive address register index to disassociate
3245  *  @vmdq: VMDq pool index to remove from the rar
3246  **/
3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3248 {
3249 	u32 mpsar_lo, mpsar_hi;
3250 	u32 rar_entries = hw->mac.num_rar_entries;
3251 
3252 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3253 
3254 	/* Make sure we are using a valid rar index range */
3255 	if (rar >= rar_entries) {
3256 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
3257 		return IXGBE_ERR_INVALID_ARGUMENT;
3258 	}
3259 
3260 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3261 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3262 
3263 	if (!mpsar_lo && !mpsar_hi)
3264 		goto done;
3265 
3266 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3267 		if (mpsar_lo) {
3268 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3269 			mpsar_lo = 0;
3270 		}
3271 		if (mpsar_hi) {
3272 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3273 			mpsar_hi = 0;
3274 		}
3275 	} else if (vmdq < 32) {
3276 		mpsar_lo &= ~(1 << vmdq);
3277 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3278 	} else {
3279 		mpsar_hi &= ~(1 << (vmdq - 32));
3280 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3281 	}
3282 
3283 	/* was that the last pool using this rar? */
3284 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3285 		hw->mac.ops.clear_rar(hw, rar);
3286 done:
3287 	return IXGBE_SUCCESS;
3288 }
3289 
3290 /**
3291  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3292  *  @hw: pointer to hardware struct
3293  *  @rar: receive address register index to associate with a VMDq index
3294  *  @vmdq: VMDq pool index
3295  **/
3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3297 {
3298 	u32 mpsar;
3299 	u32 rar_entries = hw->mac.num_rar_entries;
3300 
3301 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3302 
3303 	/* Make sure we are using a valid rar index range */
3304 	if (rar >= rar_entries) {
3305 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
3306 		return IXGBE_ERR_INVALID_ARGUMENT;
3307 	}
3308 
3309 	if (vmdq < 32) {
3310 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3311 		mpsar |= 1 << vmdq;
3312 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3313 	} else {
3314 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3315 		mpsar |= 1 << (vmdq - 32);
3316 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3317 	}
3318 	return IXGBE_SUCCESS;
3319 }
3320 
3321 /**
3322  *  This function should only be involved in the IOV mode.
3323  *  In IOV mode, Default pool is next pool after the number of
3324  *  VFs advertized and not 0.
3325  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3326  *
3327  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3328  *  @hw: pointer to hardware struct
3329  *  @vmdq: VMDq pool index
3330  **/
3331 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3332 {
3333 	u32 rar = hw->mac.san_mac_rar_index;
3334 
3335 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3336 
3337 	if (vmdq < 32) {
3338 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3339 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3340 	} else {
3341 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3342 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3343 	}
3344 
3345 	return IXGBE_SUCCESS;
3346 }
3347 
3348 /**
3349  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3350  *  @hw: pointer to hardware structure
3351  **/
3352 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3353 {
3354 	int i;
3355 
3356 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3357 	DEBUGOUT(" Clearing UTA\n");
3358 
3359 	for (i = 0; i < 128; i++)
3360 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3361 
3362 	return IXGBE_SUCCESS;
3363 }
3364 
3365 /**
3366  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3367  *  @hw: pointer to hardware structure
3368  *  @vlan: VLAN id to write to VLAN filter
3369  *
3370  *  return the VLVF index where this VLAN id should be placed
3371  *
3372  **/
3373 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3374 {
3375 	u32 bits = 0;
3376 	u32 first_empty_slot = 0;
3377 	s32 regindex;
3378 
3379 	/* short cut the special case */
3380 	if (vlan == 0)
3381 		return 0;
3382 
3383 	/*
3384 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3385 	  * slot found along the way
3386 	  */
3387 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3388 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3389 		if (!bits && !(first_empty_slot))
3390 			first_empty_slot = regindex;
3391 		else if ((bits & 0x0FFF) == vlan)
3392 			break;
3393 	}
3394 
3395 	/*
3396 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3397 	  * in the VLVF. Else use the first empty VLVF register for this
3398 	  * vlan id.
3399 	  */
3400 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3401 		if (first_empty_slot)
3402 			regindex = first_empty_slot;
3403 		else {
3404 			DEBUGOUT("No space in VLVF.\n");
3405 			regindex = IXGBE_ERR_NO_SPACE;
3406 		}
3407 	}
3408 
3409 	return regindex;
3410 }
3411 
3412 /**
3413  *  ixgbe_set_vfta_generic - Set VLAN filter table
3414  *  @hw: pointer to hardware structure
3415  *  @vlan: VLAN id to write to VLAN filter
3416  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3417  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3418  *
3419  *  Turn on/off specified VLAN in the VLAN filter table.
3420  **/
3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3422 			   bool vlan_on)
3423 {
3424 	s32 regindex;
3425 	u32 bitindex;
3426 	u32 vfta;
3427 	u32 targetbit;
3428 	s32 ret_val = IXGBE_SUCCESS;
3429 	bool vfta_changed = FALSE;
3430 
3431 	DEBUGFUNC("ixgbe_set_vfta_generic");
3432 
3433 	if (vlan > 4095)
3434 		return IXGBE_ERR_PARAM;
3435 
3436 	/*
3437 	 * this is a 2 part operation - first the VFTA, then the
3438 	 * VLVF and VLVFB if VT Mode is set
3439 	 * We don't write the VFTA until we know the VLVF part succeeded.
3440 	 */
3441 
3442 	/* Part 1
3443 	 * The VFTA is a bitstring made up of 128 32-bit registers
3444 	 * that enable the particular VLAN id, much like the MTA:
3445 	 *    bits[11-5]: which register
3446 	 *    bits[4-0]:  which bit in the register
3447 	 */
3448 	regindex = (vlan >> 5) & 0x7F;
3449 	bitindex = vlan & 0x1F;
3450 	targetbit = (1 << bitindex);
3451 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3452 
3453 	if (vlan_on) {
3454 		if (!(vfta & targetbit)) {
3455 			vfta |= targetbit;
3456 			vfta_changed = TRUE;
3457 		}
3458 	} else {
3459 		if ((vfta & targetbit)) {
3460 			vfta &= ~targetbit;
3461 			vfta_changed = TRUE;
3462 		}
3463 	}
3464 
3465 	/* Part 2
3466 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3467 	 */
3468 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3469 					 &vfta_changed);
3470 	if (ret_val != IXGBE_SUCCESS)
3471 		return ret_val;
3472 
3473 	if (vfta_changed)
3474 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3475 
3476 	return IXGBE_SUCCESS;
3477 }
3478 
3479 /**
3480  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3481  *  @hw: pointer to hardware structure
3482  *  @vlan: VLAN id to write to VLAN filter
3483  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3484  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3485  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3486  *                 should be changed
3487  *
3488  *  Turn on/off specified bit in VLVF table.
3489  **/
3490 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3491 			    bool vlan_on, bool *vfta_changed)
3492 {
3493 	u32 vt;
3494 
3495 	DEBUGFUNC("ixgbe_set_vlvf_generic");
3496 
3497 	if (vlan > 4095)
3498 		return IXGBE_ERR_PARAM;
3499 
3500 	/* If VT Mode is set
3501 	 *   Either vlan_on
3502 	 *     make sure the vlan is in VLVF
3503 	 *     set the vind bit in the matching VLVFB
3504 	 *   Or !vlan_on
3505 	 *     clear the pool bit and possibly the vind
3506 	 */
3507 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3508 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3509 		s32 vlvf_index;
3510 		u32 bits;
3511 
3512 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3513 		if (vlvf_index < 0)
3514 			return vlvf_index;
3515 
3516 		if (vlan_on) {
3517 			/* set the pool bit */
3518 			if (vind < 32) {
3519 				bits = IXGBE_READ_REG(hw,
3520 						IXGBE_VLVFB(vlvf_index * 2));
3521 				bits |= (1 << vind);
3522 				IXGBE_WRITE_REG(hw,
3523 						IXGBE_VLVFB(vlvf_index * 2),
3524 						bits);
3525 			} else {
3526 				bits = IXGBE_READ_REG(hw,
3527 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3528 				bits |= (1 << (vind - 32));
3529 				IXGBE_WRITE_REG(hw,
3530 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3531 					bits);
3532 			}
3533 		} else {
3534 			/* clear the pool bit */
3535 			if (vind < 32) {
3536 				bits = IXGBE_READ_REG(hw,
3537 						IXGBE_VLVFB(vlvf_index * 2));
3538 				bits &= ~(1 << vind);
3539 				IXGBE_WRITE_REG(hw,
3540 						IXGBE_VLVFB(vlvf_index * 2),
3541 						bits);
3542 				bits |= IXGBE_READ_REG(hw,
3543 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3544 			} else {
3545 				bits = IXGBE_READ_REG(hw,
3546 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3547 				bits &= ~(1 << (vind - 32));
3548 				IXGBE_WRITE_REG(hw,
3549 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3550 					bits);
3551 				bits |= IXGBE_READ_REG(hw,
3552 						IXGBE_VLVFB(vlvf_index * 2));
3553 			}
3554 		}
3555 
3556 		/*
3557 		 * If there are still bits set in the VLVFB registers
3558 		 * for the VLAN ID indicated we need to see if the
3559 		 * caller is requesting that we clear the VFTA entry bit.
3560 		 * If the caller has requested that we clear the VFTA
3561 		 * entry bit but there are still pools/VFs using this VLAN
3562 		 * ID entry then ignore the request.  We're not worried
3563 		 * about the case where we're turning the VFTA VLAN ID
3564 		 * entry bit on, only when requested to turn it off as
3565 		 * there may be multiple pools and/or VFs using the
3566 		 * VLAN ID entry.  In that case we cannot clear the
3567 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3568 		 * been cleared.  This will be indicated by "bits" being
3569 		 * zero.
3570 		 */
3571 		if (bits) {
3572 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3573 					(IXGBE_VLVF_VIEN | vlan));
3574 			if ((!vlan_on) && (vfta_changed != NULL)) {
3575 				/* someone wants to clear the vfta entry
3576 				 * but some pools/VFs are still using it.
3577 				 * Ignore it. */
3578 				*vfta_changed = FALSE;
3579 			}
3580 		} else
3581 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3582 	}
3583 
3584 	return IXGBE_SUCCESS;
3585 }
3586 
3587 /**
3588  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3589  *  @hw: pointer to hardware structure
3590  *
3591  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3592  **/
3593 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3594 {
3595 	u32 offset;
3596 
3597 	DEBUGFUNC("ixgbe_clear_vfta_generic");
3598 
3599 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3600 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3601 
3602 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3603 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3604 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3605 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3606 	}
3607 
3608 	return IXGBE_SUCCESS;
3609 }
3610 
3611 /**
3612  *  ixgbe_check_mac_link_generic - Determine link and speed status
3613  *  @hw: pointer to hardware structure
3614  *  @speed: pointer to link speed
3615  *  @link_up: TRUE when link is up
3616  *  @link_up_wait_to_complete: bool used to wait for link up or not
3617  *
3618  *  Reads the links register to determine if link is up and the current speed
3619  **/
3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3621 				 bool *link_up, bool link_up_wait_to_complete)
3622 {
3623 	u32 links_reg, links_orig;
3624 	u32 i;
3625 
3626 	DEBUGFUNC("ixgbe_check_mac_link_generic");
3627 
3628 	/* clear the old state */
3629 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3630 
3631 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3632 
3633 	if (links_orig != links_reg) {
3634 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
3635 			  links_orig, links_reg);
3636 	}
3637 
3638 	if (link_up_wait_to_complete) {
3639 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3640 			if (links_reg & IXGBE_LINKS_UP) {
3641 				*link_up = TRUE;
3642 				break;
3643 			} else {
3644 				*link_up = FALSE;
3645 			}
3646 			msec_delay(100);
3647 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3648 		}
3649 	} else {
3650 		if (links_reg & IXGBE_LINKS_UP)
3651 			*link_up = TRUE;
3652 		else
3653 			*link_up = FALSE;
3654 	}
3655 
3656 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3657 	    IXGBE_LINKS_SPEED_10G_82599)
3658 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3659 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3660 		 IXGBE_LINKS_SPEED_1G_82599)
3661 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3662 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3663 		 IXGBE_LINKS_SPEED_100_82599)
3664 		*speed = IXGBE_LINK_SPEED_100_FULL;
3665 	else
3666 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3667 
3668 	return IXGBE_SUCCESS;
3669 }
3670 
3671 /**
3672  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3673  *  the EEPROM
3674  *  @hw: pointer to hardware structure
3675  *  @wwnn_prefix: the alternative WWNN prefix
3676  *  @wwpn_prefix: the alternative WWPN prefix
3677  *
3678  *  This function will read the EEPROM from the alternative SAN MAC address
3679  *  block to check the support for the alternative WWNN/WWPN prefix support.
3680  **/
3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3682 				 u16 *wwpn_prefix)
3683 {
3684 	u16 offset, caps;
3685 	u16 alt_san_mac_blk_offset;
3686 
3687 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3688 
3689 	/* clear output first */
3690 	*wwnn_prefix = 0xFFFF;
3691 	*wwpn_prefix = 0xFFFF;
3692 
3693 	/* check if alternative SAN MAC is supported */
3694 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3695 			    &alt_san_mac_blk_offset);
3696 
3697 	if ((alt_san_mac_blk_offset == 0) ||
3698 	    (alt_san_mac_blk_offset == 0xFFFF))
3699 		goto wwn_prefix_out;
3700 
3701 	/* check capability in alternative san mac address block */
3702 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3703 	hw->eeprom.ops.read(hw, offset, &caps);
3704 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3705 		goto wwn_prefix_out;
3706 
3707 	/* get the corresponding prefix for WWNN/WWPN */
3708 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3709 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3710 
3711 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3712 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3713 
3714 wwn_prefix_out:
3715 	return IXGBE_SUCCESS;
3716 }
3717 
3718 /**
3719  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3720  *  @hw: pointer to hardware structure
3721  *  @bs: the fcoe boot status
3722  *
3723  *  This function will read the FCOE boot status from the iSCSI FCOE block
3724  **/
3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3726 {
3727 	u16 offset, caps, flags;
3728 	s32 status;
3729 
3730 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3731 
3732 	/* clear output first */
3733 	*bs = ixgbe_fcoe_bootstatus_unavailable;
3734 
3735 	/* check if FCOE IBA block is present */
3736 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3737 	status = hw->eeprom.ops.read(hw, offset, &caps);
3738 	if (status != IXGBE_SUCCESS)
3739 		goto out;
3740 
3741 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3742 		goto out;
3743 
3744 	/* check if iSCSI FCOE block is populated */
3745 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3746 	if (status != IXGBE_SUCCESS)
3747 		goto out;
3748 
3749 	if ((offset == 0) || (offset == 0xFFFF))
3750 		goto out;
3751 
3752 	/* read fcoe flags in iSCSI FCOE block */
3753 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3754 	status = hw->eeprom.ops.read(hw, offset, &flags);
3755 	if (status != IXGBE_SUCCESS)
3756 		goto out;
3757 
3758 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3759 		*bs = ixgbe_fcoe_bootstatus_enabled;
3760 	else
3761 		*bs = ixgbe_fcoe_bootstatus_disabled;
3762 
3763 out:
3764 	return status;
3765 }
3766 
3767 /**
3768  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3769  *  @hw: pointer to hardware structure
3770  *  @enable: enable or disable switch for anti-spoofing
3771  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3772  *
3773  **/
3774 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3775 {
3776 	int j;
3777 	int pf_target_reg = pf >> 3;
3778 	int pf_target_shift = pf % 8;
3779 	u32 pfvfspoof = 0;
3780 
3781 	if (hw->mac.type == ixgbe_mac_82598EB)
3782 		return;
3783 
3784 	if (enable)
3785 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3786 
3787 	/*
3788 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3789 	 * MAC anti-spoof enables in each register array element.
3790 	 */
3791 	for (j = 0; j < pf_target_reg; j++)
3792 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3793 
3794 	/*
3795 	 * The PF should be allowed to spoof so that it can support
3796 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3797 	 */
3798 	pfvfspoof &= (1 << pf_target_shift) - 1;
3799 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3800 
3801 	/*
3802 	 * Remaining pools belong to the PF so they do not need to have
3803 	 * anti-spoofing enabled.
3804 	 */
3805 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3806 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3807 }
3808 
3809 /**
3810  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3811  *  @hw: pointer to hardware structure
3812  *  @enable: enable or disable switch for VLAN anti-spoofing
3813  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3814  *
3815  **/
3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3817 {
3818 	int vf_target_reg = vf >> 3;
3819 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3820 	u32 pfvfspoof;
3821 
3822 	if (hw->mac.type == ixgbe_mac_82598EB)
3823 		return;
3824 
3825 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3826 	if (enable)
3827 		pfvfspoof |= (1 << vf_target_shift);
3828 	else
3829 		pfvfspoof &= ~(1 << vf_target_shift);
3830 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3831 }
3832 
3833 /**
3834  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3835  *  @hw: pointer to hardware structure
3836  *  @device_caps: the EEPROM word with the extra device capabilities
3837  *
3838  *  This function will read the EEPROM location for the device capabilities,
3839  *  and return the word through device_caps.
3840  **/
3841 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3842 {
3843 	DEBUGFUNC("ixgbe_get_device_caps_generic");
3844 
3845 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3846 
3847 	return IXGBE_SUCCESS;
3848 }
3849 
3850 /**
3851  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3852  *  @hw: pointer to hardware structure
3853  *
3854  **/
3855 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3856 {
3857 	u32 regval;
3858 	u32 i;
3859 
3860 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3861 
3862 	/* Enable relaxed ordering */
3863 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
3864 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3865 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3866 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3867 	}
3868 
3869 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
3870 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3871 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3872 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3873 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3874 	}
3875 
3876 }
3877 
3878 /**
3879  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3880  *  @buffer: pointer to EEPROM
3881  *  @length: size of EEPROM to calculate a checksum for
3882  *  Calculates the checksum for some buffer on a specified length.  The
3883  *  checksum calculated is returned.
3884  **/
3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3886 {
3887 	u32 i;
3888 	u8 sum = 0;
3889 
3890 	DEBUGFUNC("ixgbe_calculate_checksum");
3891 
3892 	if (!buffer)
3893 		return 0;
3894 
3895 	for (i = 0; i < length; i++)
3896 		sum += buffer[i];
3897 
3898 	return (u8) (0 - sum);
3899 }
3900 
3901 /**
3902  *  ixgbe_host_interface_command - Issue command to manageability block
3903  *  @hw: pointer to the HW structure
3904  *  @buffer: contains the command to write and where the return status will
3905  *   be placed
3906  *  @length: length of buffer, must be multiple of 4 bytes
3907  *
3908  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
3909  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3910  **/
3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3912 					u32 length)
3913 {
3914 	u32 hicr, i, bi;
3915 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3916 	u8 buf_len, dword_len;
3917 
3918 	s32 ret_val = IXGBE_SUCCESS;
3919 
3920 	DEBUGFUNC("ixgbe_host_interface_command");
3921 
3922 	if (length == 0 || length & 0x3 ||
3923 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3924 		DEBUGOUT("Buffer length failure.\n");
3925 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3926 		goto out;
3927 	}
3928 
3929 	/* Check that the host interface is enabled. */
3930 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3931 	if ((hicr & IXGBE_HICR_EN) == 0) {
3932 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3933 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3934 		goto out;
3935 	}
3936 
3937 	/* Calculate length in DWORDs */
3938 	dword_len = length >> 2;
3939 
3940 	/*
3941 	 * The device driver writes the relevant command block
3942 	 * into the ram area.
3943 	 */
3944 	for (i = 0; i < dword_len; i++)
3945 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3946 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
3947 
3948 	/* Setting this bit tells the ARC that a new command is pending. */
3949 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3950 
3951 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3952 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3953 		if (!(hicr & IXGBE_HICR_C))
3954 			break;
3955 		msec_delay(1);
3956 	}
3957 
3958 	/* Check command successful completion. */
3959 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3960 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3961 		DEBUGOUT("Command has failed with no status valid.\n");
3962 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3963 		goto out;
3964 	}
3965 
3966 	/* Calculate length in DWORDs */
3967 	dword_len = hdr_size >> 2;
3968 
3969 	/* first pull in the header so we know the buffer length */
3970 	for (bi = 0; bi < dword_len; bi++) {
3971 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3972 		buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3973 	}
3974 
3975 	/* If there is any thing in data position pull it in */
3976 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3977 	if (buf_len == 0)
3978 		goto out;
3979 
3980 	if (length < (buf_len + hdr_size)) {
3981 		DEBUGOUT("Buffer not large enough for reply message.\n");
3982 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3983 		goto out;
3984 	}
3985 
3986 	/* Calculate length in DWORDs, add 3 for odd lengths */
3987 	dword_len = (buf_len + 3) >> 2;
3988 
3989 	/* Pull in the rest of the buffer (bi is where we left off)*/
3990 	for (; bi <= dword_len; bi++) {
3991 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3992 		buffer[bi] = IXGBE_LE32_TO_CPUS(buffer[bi]);
3993 	}
3994 
3995 out:
3996 	return ret_val;
3997 }
3998 
3999 /**
4000  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4001  *  @hw: pointer to the HW structure
4002  *  @maj: driver version major number
4003  *  @min: driver version minor number
4004  *  @build: driver version build number
4005  *  @sub: driver version sub build number
4006  *
4007  *  Sends driver version number to firmware through the manageability
4008  *  block.  On success return IXGBE_SUCCESS
4009  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4010  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4011  **/
4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4013 				 u8 build, u8 sub)
4014 {
4015 	struct ixgbe_hic_drv_info fw_cmd;
4016 	int i;
4017 	s32 ret_val = IXGBE_SUCCESS;
4018 
4019 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4020 
4021 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4022 	    != IXGBE_SUCCESS) {
4023 		ret_val = IXGBE_ERR_SWFW_SYNC;
4024 		goto out;
4025 	}
4026 
4027 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4028 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4029 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4030 	fw_cmd.port_num = (u8)hw->bus.func;
4031 	fw_cmd.ver_maj = maj;
4032 	fw_cmd.ver_min = min;
4033 	fw_cmd.ver_build = build;
4034 	fw_cmd.ver_sub = sub;
4035 	fw_cmd.hdr.checksum = 0;
4036 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4037 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4038 	fw_cmd.pad = 0;
4039 	fw_cmd.pad2 = 0;
4040 
4041 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4042 		/* LINTED */
4043 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4044 						       sizeof(fw_cmd));
4045 		if (ret_val != IXGBE_SUCCESS)
4046 			continue;
4047 
4048 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4049 		    FW_CEM_RESP_STATUS_SUCCESS)
4050 			ret_val = IXGBE_SUCCESS;
4051 		else
4052 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4053 
4054 		break;
4055 	}
4056 
4057 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4058 out:
4059 	return ret_val;
4060 }
4061 
4062 /**
4063  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4064  * @hw: pointer to hardware structure
4065  * @num_pb: number of packet buffers to allocate
4066  * @headroom: reserve n KB of headroom
4067  * @strategy: packet buffer allocation strategy
4068  **/
4069 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4070 			     int strategy)
4071 {
4072 	u32 pbsize = hw->mac.rx_pb_size;
4073 	int i = 0;
4074 	u32 rxpktsize, txpktsize, txpbthresh;
4075 
4076 	/* Reserve headroom */
4077 	pbsize -= headroom;
4078 
4079 	if (!num_pb)
4080 		num_pb = 1;
4081 
4082 	/* Divide remaining packet buffer space amongst the number of packet
4083 	 * buffers requested using supplied strategy.
4084 	 */
4085 	switch (strategy) {
4086 	case PBA_STRATEGY_WEIGHTED:
4087 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4088 		 * buffer with 5/8 of the packet buffer space.
4089 		 */
4090 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4091 		pbsize -= rxpktsize * (num_pb / 2);
4092 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4093 		for (; i < (num_pb / 2); i++)
4094 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4095 		/* Fall through to configure remaining packet buffers */
4096 		/* FALLTHRU */
4097 	case PBA_STRATEGY_EQUAL:
4098 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4099 		for (; i < num_pb; i++)
4100 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4101 		break;
4102 	default:
4103 		break;
4104 	}
4105 
4106 	/* Only support an equally distributed Tx packet buffer strategy. */
4107 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4108 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4109 	for (i = 0; i < num_pb; i++) {
4110 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4111 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4112 	}
4113 
4114 	/* Clear unused TCs, if any, to zero buffer size*/
4115 	for (; i < IXGBE_MAX_PB; i++) {
4116 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4117 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4118 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4119 	}
4120 }
4121 
4122 /**
4123  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4124  * @hw: pointer to the hardware structure
4125  *
4126  * The 82599 and x540 MACs can experience issues if TX work is still pending
4127  * when a reset occurs.  This function prevents this by flushing the PCIe
4128  * buffers on the system.
4129  **/
4130 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4131 {
4132 	u32 gcr_ext, hlreg0;
4133 
4134 	/*
4135 	 * If double reset is not requested then all transactions should
4136 	 * already be clear and as such there is no work to do
4137 	 */
4138 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4139 		return;
4140 
4141 	/*
4142 	 * Set loopback enable to prevent any transmits from being sent
4143 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4144 	 * has already been cleared.
4145 	 */
4146 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4147 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4148 
4149 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4150 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4151 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4152 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4153 
4154 	/* Flush all writes and allow 20usec for all transactions to clear */
4155 	IXGBE_WRITE_FLUSH(hw);
4156 	usec_delay(20);
4157 
4158 	/* restore previous register values */
4159 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4160 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4161 }
4162 
4163