1 /* 2 * CDDL HEADER START 3 * 4 * Copyright(c) 2007-2008 Intel Corporation. All rights reserved. 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at: 10 * http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When using or redistributing this file, you may do so under the 15 * License only. No other modification of this header is permitted. 16 * 17 * If applicable, add the following below this CDDL HEADER, with the 18 * fields enclosed by brackets "[]" replaced with your own identifying 19 * information: Portions Copyright [yyyy] [name of copyright owner] 20 * 21 * CDDL HEADER END 22 */ 23 24 /* 25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 26 * Use is subject to license terms of the CDDL. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #include "igb_sw.h" 32 33 static boolean_t igb_tx(igb_tx_ring_t *, mblk_t *); 34 static int igb_tx_copy(igb_tx_ring_t *, tx_control_block_t *, mblk_t *, 35 uint32_t, boolean_t, boolean_t); 36 static int igb_tx_bind(igb_tx_ring_t *, tx_control_block_t *, mblk_t *, 37 uint32_t); 38 static int igb_tx_fill_ring(igb_tx_ring_t *, link_list_t *, hcksum_context_t *); 39 static void igb_save_desc(tx_control_block_t *, uint64_t, size_t); 40 static tx_control_block_t *igb_get_free_list(igb_tx_ring_t *); 41 42 static void igb_get_hcksum_context(mblk_t *, hcksum_context_t *); 43 static boolean_t igb_check_hcksum_context(igb_tx_ring_t *, hcksum_context_t *); 44 static void igb_fill_hcksum_context(struct e1000_adv_tx_context_desc *, 45 hcksum_context_t *); 46 47 #ifndef IGB_DEBUG 48 #pragma inline(igb_save_desc) 49 #pragma inline(igb_get_hcksum_context) 50 #pragma inline(igb_check_hcksum_context) 51 #pragma inline(igb_fill_hcksum_context) 52 #endif 53 54 /* 55 * igb_m_tx 56 * 57 * The GLDv3 interface to call driver's tx routine to transmit 58 * the mblks. 59 */ 60 mblk_t * 61 igb_m_tx(void *arg, mblk_t *mp) 62 { 63 igb_t *igb = (igb_t *)arg; 64 mblk_t *next; 65 igb_tx_ring_t *tx_ring; 66 67 /* 68 * If the adapter is suspended, or it is not started, or the link 69 * is not up, the mblks are simply dropped. 70 */ 71 if (((igb->igb_state & IGB_SUSPENDED) != 0) || 72 ((igb->igb_state & IGB_STARTED) == 0) || 73 (igb->link_state != LINK_STATE_UP)) { 74 /* Free the mblk chain */ 75 while (mp != NULL) { 76 next = mp->b_next; 77 mp->b_next = NULL; 78 79 freemsg(mp); 80 mp = next; 81 } 82 83 return (NULL); 84 } 85 86 /* 87 * Decide which tx ring is used to transmit the packets. 88 * This needs to be updated later to fit the new interface 89 * of the multiple rings support. 90 */ 91 tx_ring = &igb->tx_rings[0]; 92 93 while (mp != NULL) { 94 next = mp->b_next; 95 mp->b_next = NULL; 96 97 if (!igb_tx(tx_ring, mp)) { 98 mp->b_next = next; 99 break; 100 } 101 102 mp = next; 103 } 104 105 return (mp); 106 } 107 108 /* 109 * igb_tx - Main transmit processing 110 * 111 * Called from igb_m_tx with an mblk ready to transmit. this 112 * routine sets up the transmit descriptors and sends data to 113 * the wire. 114 * 115 * One mblk can consist of several fragments, each fragment 116 * will be processed with different methods based on the size. 117 * For the fragments with size less than the bcopy threshold, 118 * they will be processed by using bcopy; otherwise, they will 119 * be processed by using DMA binding. 120 * 121 * To process the mblk, a tx control block is got from the 122 * free list. One tx control block contains one tx buffer, which 123 * is used to copy mblk fragments' data; and one tx DMA handle, 124 * which is used to bind a mblk fragment with DMA resource. 125 * 126 * Several small mblk fragments can be copied into one tx control 127 * block's buffer, and then the buffer will be transmitted with 128 * one tx descriptor. 129 * 130 * A large fragment only binds with one tx control block's DMA 131 * handle, and it can span several tx descriptors for transmitting. 132 * 133 * So to transmit a packet (mblk), several tx control blocks can 134 * be used. After the processing, those tx control blocks will 135 * be put to the work list. 136 */ 137 static boolean_t 138 igb_tx(igb_tx_ring_t *tx_ring, mblk_t *mp) 139 { 140 igb_t *igb = tx_ring->igb; 141 tx_type_t current_flag, next_flag; 142 uint32_t current_len, next_len; 143 uint32_t desc_total; 144 size_t mbsize; 145 int desc_num; 146 boolean_t copy_done, eop; 147 mblk_t *current_mp, *next_mp, *nmp; 148 tx_control_block_t *tcb; 149 hcksum_context_t hcksum_context, *hcksum; 150 link_list_t pending_list; 151 152 /* Get the mblk size */ 153 mbsize = 0; 154 for (nmp = mp; nmp != NULL; nmp = nmp->b_cont) { 155 mbsize += MBLK_LEN(nmp); 156 } 157 158 /* 159 * If the mblk size exceeds the max frame size, 160 * discard this mblk, and return B_TRUE 161 */ 162 if (mbsize > (igb->max_frame_size - ETHERFCSL)) { 163 freemsg(mp); 164 IGB_DEBUGLOG_0(igb, "igb_tx: packet oversize"); 165 return (B_TRUE); 166 } 167 168 /* 169 * Check and recycle tx descriptors. 170 * The recycle threshold here should be selected carefully 171 */ 172 if (tx_ring->tbd_free < tx_ring->recycle_thresh) 173 tx_ring->tx_recycle(tx_ring); 174 175 /* 176 * After the recycling, if the tbd_free is less than the 177 * overload_threshold, assert overload, return B_FALSE; 178 * and we need to re-schedule the tx again. 179 */ 180 if (tx_ring->tbd_free < tx_ring->overload_thresh) { 181 tx_ring->reschedule = B_TRUE; 182 IGB_DEBUG_STAT(tx_ring->stat_overload); 183 return (B_FALSE); 184 } 185 186 /* 187 * The pending_list is a linked list that is used to save 188 * the tx control blocks that have packet data processed 189 * but have not put the data to the tx descriptor ring. 190 * It is used to reduce the lock contention of the tx_lock. 191 */ 192 LINK_LIST_INIT(&pending_list); 193 desc_num = 0; 194 desc_total = 0; 195 196 current_mp = mp; 197 current_len = MBLK_LEN(current_mp); 198 /* 199 * Decide which method to use for the first fragment 200 */ 201 current_flag = (current_len <= tx_ring->copy_thresh) ? 202 USE_COPY : USE_DMA; 203 /* 204 * If the mblk includes several contiguous small fragments, 205 * they may be copied into one buffer. This flag is used to 206 * indicate whether there are pending fragments that need to 207 * be copied to the current tx buffer. 208 * 209 * If this flag is B_TRUE, it indicates that a new tx control 210 * block is needed to process the next fragment using either 211 * copy or DMA binding. 212 * 213 * Otherwise, it indicates that the next fragment will be 214 * copied to the current tx buffer that is maintained by the 215 * current tx control block. No new tx control block is needed. 216 */ 217 copy_done = B_TRUE; 218 while (current_mp) { 219 next_mp = current_mp->b_cont; 220 eop = (next_mp == NULL); /* Last fragment of the packet? */ 221 next_len = eop ? 0: MBLK_LEN(next_mp); 222 223 /* 224 * When the current fragment is an empty fragment, if 225 * the next fragment will still be copied to the current 226 * tx buffer, we cannot skip this fragment here. Because 227 * the copy processing is pending for completion. We have 228 * to process this empty fragment in the tx_copy routine. 229 * 230 * If the copy processing is completed or a DMA binding 231 * processing is just completed, we can just skip this 232 * empty fragment. 233 */ 234 if ((current_len == 0) && (copy_done)) { 235 current_mp = next_mp; 236 current_len = next_len; 237 current_flag = (current_len <= tx_ring->copy_thresh) ? 238 USE_COPY : USE_DMA; 239 continue; 240 } 241 242 if (copy_done) { 243 /* 244 * Get a new tx control block from the free list 245 */ 246 tcb = igb_get_free_list(tx_ring); 247 248 if (tcb == NULL) { 249 IGB_DEBUG_STAT(tx_ring->stat_fail_no_tcb); 250 goto tx_failure; 251 } 252 253 /* 254 * Push the tx control block to the pending list 255 * to avoid using lock too early 256 */ 257 LIST_PUSH_TAIL(&pending_list, &tcb->link); 258 } 259 260 if (current_flag == USE_COPY) { 261 /* 262 * Check whether to use bcopy or DMA binding to process 263 * the next fragment, and if using bcopy, whether we 264 * need to continue copying the next fragment into the 265 * current tx buffer. 266 */ 267 ASSERT((tcb->tx_buf.len + current_len) <= 268 tcb->tx_buf.size); 269 270 if (eop) { 271 /* 272 * This is the last fragment of the packet, so 273 * the copy processing will be completed with 274 * this fragment. 275 */ 276 next_flag = USE_NONE; 277 copy_done = B_TRUE; 278 } else if ((tcb->tx_buf.len + current_len + next_len) > 279 tcb->tx_buf.size) { 280 /* 281 * If the next fragment is too large to be 282 * copied to the current tx buffer, we need 283 * to complete the current copy processing. 284 */ 285 next_flag = (next_len > tx_ring->copy_thresh) ? 286 USE_DMA: USE_COPY; 287 copy_done = B_TRUE; 288 } else if (next_len > tx_ring->copy_thresh) { 289 /* 290 * The next fragment needs to be processed with 291 * DMA binding. So the copy prcessing will be 292 * completed with the current fragment. 293 */ 294 next_flag = USE_DMA; 295 copy_done = B_TRUE; 296 } else { 297 /* 298 * Continue to copy the next fragment to the 299 * current tx buffer. 300 */ 301 next_flag = USE_COPY; 302 copy_done = B_FALSE; 303 } 304 305 desc_num = igb_tx_copy(tx_ring, tcb, current_mp, 306 current_len, copy_done, eop); 307 } else { 308 /* 309 * Check whether to use bcopy or DMA binding to process 310 * the next fragment. 311 */ 312 next_flag = (next_len > tx_ring->copy_thresh) ? 313 USE_DMA: USE_COPY; 314 ASSERT(copy_done == B_TRUE); 315 316 desc_num = igb_tx_bind(tx_ring, tcb, current_mp, 317 current_len); 318 } 319 320 if (desc_num > 0) 321 desc_total += desc_num; 322 else if (desc_num < 0) 323 goto tx_failure; 324 325 current_mp = next_mp; 326 current_len = next_len; 327 current_flag = next_flag; 328 } 329 330 /* 331 * Attach the mblk to the last tx control block 332 */ 333 ASSERT(tcb); 334 ASSERT(tcb->mp == NULL); 335 tcb->mp = mp; 336 337 if (igb->tx_hcksum_enable) { 338 /* 339 * Retrieve checksum context information from the mblk that will 340 * be used to decide whether/how to fill the context descriptor. 341 */ 342 hcksum = &hcksum_context; 343 igb_get_hcksum_context(mp, hcksum); 344 } else { 345 hcksum = NULL; 346 } 347 348 /* 349 * Before fill the tx descriptor ring with the data, we need to 350 * ensure there are adequate free descriptors for transmit 351 * (including one context descriptor). 352 */ 353 if (tx_ring->tbd_free < (desc_total + 1)) { 354 tx_ring->tx_recycle(tx_ring); 355 } 356 357 mutex_enter(&tx_ring->tx_lock); 358 359 /* 360 * If the number of free tx descriptors is not enough for transmit 361 * then return failure. 362 * 363 * Note: we must put this check under the mutex protection to 364 * ensure the correctness when multiple threads access it in 365 * parallel. 366 */ 367 if (tx_ring->tbd_free < (desc_total + 1)) { 368 IGB_DEBUG_STAT(tx_ring->stat_fail_no_tbd); 369 mutex_exit(&tx_ring->tx_lock); 370 goto tx_failure; 371 } 372 373 desc_num = igb_tx_fill_ring(tx_ring, &pending_list, hcksum); 374 375 ASSERT((desc_num == desc_total) || (desc_num == (desc_total + 1))); 376 377 mutex_exit(&tx_ring->tx_lock); 378 379 return (B_TRUE); 380 381 tx_failure: 382 /* 383 * Discard the mblk and free the used resources 384 */ 385 tcb = (tx_control_block_t *)LIST_GET_HEAD(&pending_list); 386 while (tcb) { 387 tcb->mp = NULL; 388 389 igb_free_tcb(tcb); 390 391 tcb = (tx_control_block_t *) 392 LIST_GET_NEXT(&pending_list, &tcb->link); 393 } 394 395 /* 396 * Return the tx control blocks in the pending list to the free list. 397 */ 398 igb_put_free_list(tx_ring, &pending_list); 399 400 /* Transmit failed, do not drop the mblk, rechedule the transmit */ 401 tx_ring->reschedule = B_TRUE; 402 403 return (B_FALSE); 404 } 405 406 /* 407 * igb_tx_copy 408 * 409 * Copy the mblk fragment to the pre-allocated tx buffer 410 */ 411 static int 412 igb_tx_copy(igb_tx_ring_t *tx_ring, tx_control_block_t *tcb, mblk_t *mp, 413 uint32_t len, boolean_t copy_done, boolean_t eop) 414 { 415 dma_buffer_t *tx_buf; 416 uint32_t desc_num; 417 _NOTE(ARGUNUSED(tx_ring)); 418 419 tx_buf = &tcb->tx_buf; 420 421 /* 422 * Copy the packet data of the mblk fragment into the 423 * pre-allocated tx buffer, which is maintained by the 424 * tx control block. 425 * 426 * Several mblk fragments can be copied into one tx buffer. 427 * The destination address of the current copied fragment in 428 * the tx buffer is next to the end of the previous copied 429 * fragment. 430 */ 431 if (len > 0) { 432 bcopy(mp->b_rptr, tx_buf->address + tx_buf->len, len); 433 434 tx_buf->len += len; 435 tcb->frag_num++; 436 } 437 438 desc_num = 0; 439 440 /* 441 * If it is the last fragment copied to the current tx buffer, 442 * in other words, if there's no remaining fragment or the remaining 443 * fragment requires a new tx control block to process, we need to 444 * complete the current copy processing by syncing up the current 445 * DMA buffer and saving the descriptor data. 446 */ 447 if (copy_done) { 448 /* 449 * For the packet smaller than 64 bytes, we need to 450 * pad it to 60 bytes. The NIC hardware will add 4 451 * bytes of CRC. 452 */ 453 if (eop && (tx_buf->len < ETHERMIN)) { 454 bzero(tx_buf->address + tx_buf->len, 455 ETHERMIN - tx_buf->len); 456 tx_buf->len = ETHERMIN; 457 } 458 459 /* 460 * Sync the DMA buffer of the packet data 461 */ 462 DMA_SYNC(tx_buf, DDI_DMA_SYNC_FORDEV); 463 464 tcb->tx_type = USE_COPY; 465 466 /* 467 * Save the address and length to the private data structure 468 * of the tx control block, which will be used to fill the 469 * tx descriptor ring after all the fragments are processed. 470 */ 471 igb_save_desc(tcb, tx_buf->dma_address, tx_buf->len); 472 desc_num++; 473 } 474 475 return (desc_num); 476 } 477 478 /* 479 * igb_tx_bind 480 * 481 * Bind the mblk fragment with DMA 482 */ 483 static int 484 igb_tx_bind(igb_tx_ring_t *tx_ring, tx_control_block_t *tcb, mblk_t *mp, 485 uint32_t len) 486 { 487 int status, i; 488 ddi_dma_cookie_t dma_cookie; 489 uint_t ncookies; 490 int desc_num; 491 492 /* 493 * Use DMA binding to process the mblk fragment 494 */ 495 status = ddi_dma_addr_bind_handle(tcb->tx_dma_handle, NULL, 496 (caddr_t)mp->b_rptr, len, 497 DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, 498 0, &dma_cookie, &ncookies); 499 500 if (status != DDI_DMA_MAPPED) { 501 IGB_DEBUG_STAT(tx_ring->stat_fail_dma_bind); 502 return (-1); 503 } 504 505 tcb->frag_num++; 506 tcb->tx_type = USE_DMA; 507 /* 508 * Each fragment can span several cookies. One cookie will have 509 * one tx descriptor to transmit. 510 */ 511 desc_num = 0; 512 for (i = ncookies; i > 0; i--) { 513 /* 514 * Save the address and length to the private data structure 515 * of the tx control block, which will be used to fill the 516 * tx descriptor ring after all the fragments are processed. 517 */ 518 igb_save_desc(tcb, 519 dma_cookie.dmac_laddress, 520 dma_cookie.dmac_size); 521 522 desc_num++; 523 524 if (i > 1) 525 ddi_dma_nextcookie(tcb->tx_dma_handle, &dma_cookie); 526 } 527 528 return (desc_num); 529 } 530 531 /* 532 * igb_get_hcksum_context 533 * 534 * Get the hcksum context information from the mblk 535 */ 536 static void 537 igb_get_hcksum_context(mblk_t *mp, hcksum_context_t *hcksum) 538 { 539 uint32_t start; 540 uint32_t flags; 541 uint32_t len; 542 uint32_t size; 543 uint32_t offset; 544 unsigned char *pos; 545 ushort_t etype; 546 uint32_t mac_hdr_len; 547 uint32_t l4_proto; 548 549 ASSERT(mp != NULL); 550 551 hcksum_retrieve(mp, NULL, NULL, &start, NULL, NULL, NULL, &flags); 552 553 hcksum->hcksum_flags = flags; 554 555 if (flags == 0) 556 return; 557 558 etype = 0; 559 mac_hdr_len = 0; 560 l4_proto = 0; 561 562 /* 563 * Firstly get the position of the ether_type/ether_tpid. 564 * Here we don't assume the ether (VLAN) header is fully included 565 * in one mblk fragment, so we go thourgh the fragments to parse 566 * the ether type. 567 */ 568 size = len = MBLK_LEN(mp); 569 offset = offsetof(struct ether_header, ether_type); 570 while (size <= offset) { 571 mp = mp->b_cont; 572 ASSERT(mp != NULL); 573 len = MBLK_LEN(mp); 574 size += len; 575 } 576 pos = mp->b_rptr + offset + len - size; 577 578 etype = ntohs(*(ushort_t *)(uintptr_t)pos); 579 if (etype == ETHERTYPE_VLAN) { 580 /* 581 * Get the position of the ether_type in VLAN header 582 */ 583 offset = offsetof(struct ether_vlan_header, ether_type); 584 while (size <= offset) { 585 mp = mp->b_cont; 586 ASSERT(mp != NULL); 587 len = MBLK_LEN(mp); 588 size += len; 589 } 590 pos = mp->b_rptr + offset + len - size; 591 592 etype = ntohs(*(ushort_t *)(uintptr_t)pos); 593 mac_hdr_len = sizeof (struct ether_vlan_header); 594 } else { 595 mac_hdr_len = sizeof (struct ether_header); 596 } 597 598 /* 599 * Here we don't assume the IP(V6) header is fully included in 600 * one mblk fragment, so we go thourgh the fragments to parse 601 * the protocol type. 602 */ 603 switch (etype) { 604 case ETHERTYPE_IP: 605 offset = offsetof(ipha_t, ipha_protocol) + mac_hdr_len; 606 while (size <= offset) { 607 mp = mp->b_cont; 608 ASSERT(mp != NULL); 609 len = MBLK_LEN(mp); 610 size += len; 611 } 612 pos = mp->b_rptr + offset + len - size; 613 614 l4_proto = *(uint8_t *)pos; 615 break; 616 case ETHERTYPE_IPV6: 617 offset = offsetof(ip6_t, ip6_nxt) + mac_hdr_len; 618 while (size <= offset) { 619 mp = mp->b_cont; 620 ASSERT(mp != NULL); 621 len = MBLK_LEN(mp); 622 size += len; 623 } 624 pos = mp->b_rptr + offset + len - size; 625 626 l4_proto = *(uint8_t *)pos; 627 break; 628 default: 629 /* Unrecoverable error */ 630 IGB_DEBUGLOG_0(NULL, "Ether type error with tx hcksum"); 631 return; 632 } 633 634 hcksum->mac_hdr_len = mac_hdr_len; 635 hcksum->ip_hdr_len = start; 636 hcksum->l4_proto = l4_proto; 637 } 638 639 /* 640 * igb_check_hcksum_context 641 * 642 * Check if a new context descriptor is needed 643 */ 644 static boolean_t 645 igb_check_hcksum_context(igb_tx_ring_t *tx_ring, hcksum_context_t *hcksum) 646 { 647 hcksum_context_t *last; 648 649 if (hcksum == NULL) 650 return (B_FALSE); 651 652 /* 653 * Compare the checksum data retrieved from the mblk and the 654 * stored checksum data of the last context descriptor. The data 655 * need to be checked are: 656 * hcksum_flags 657 * l4_proto 658 * mac_hdr_len 659 * ip_hdr_len 660 * Either one of the above data is changed, a new context descriptor 661 * will be needed. 662 */ 663 last = &tx_ring->hcksum_context; 664 665 if (hcksum->hcksum_flags != 0) { 666 if ((hcksum->hcksum_flags != last->hcksum_flags) || 667 (hcksum->l4_proto != last->l4_proto) || 668 (hcksum->mac_hdr_len != last->mac_hdr_len) || 669 (hcksum->ip_hdr_len != last->ip_hdr_len)) { 670 671 return (B_TRUE); 672 } 673 } 674 675 return (B_FALSE); 676 } 677 678 /* 679 * igb_fill_hcksum_context 680 * 681 * Fill the context descriptor with hardware checksum informations 682 */ 683 static void 684 igb_fill_hcksum_context(struct e1000_adv_tx_context_desc *ctx_tbd, 685 hcksum_context_t *hcksum) 686 { 687 /* 688 * Fill the context descriptor with the checksum 689 * context information we've got 690 */ 691 ctx_tbd->vlan_macip_lens = hcksum->ip_hdr_len; 692 ctx_tbd->vlan_macip_lens |= hcksum->mac_hdr_len << 693 E1000_ADVTXD_MACLEN_SHIFT; 694 695 ctx_tbd->type_tucmd_mlhl = 696 E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 697 698 if (hcksum->hcksum_flags & HCK_IPV4_HDRCKSUM) 699 ctx_tbd->type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; 700 701 if (hcksum->hcksum_flags & HCK_PARTIALCKSUM) { 702 switch (hcksum->l4_proto) { 703 case IPPROTO_TCP: 704 ctx_tbd->type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; 705 break; 706 case IPPROTO_UDP: 707 /* 708 * We don't have to explicitly set: 709 * ctx_tbd->type_tucmd_mlhl |= 710 * E1000_ADVTXD_TUCMD_L4T_UDP; 711 * Because E1000_ADVTXD_TUCMD_L4T_UDP == 0b 712 */ 713 break; 714 default: 715 /* Unrecoverable error */ 716 IGB_DEBUGLOG_0(NULL, "L4 type error with tx hcksum"); 717 break; 718 } 719 } 720 721 ctx_tbd->seqnum_seed = 0; 722 ctx_tbd->mss_l4len_idx = 0; 723 } 724 725 /* 726 * igb_tx_fill_ring 727 * 728 * Fill the tx descriptor ring with the data 729 */ 730 static int 731 igb_tx_fill_ring(igb_tx_ring_t *tx_ring, link_list_t *pending_list, 732 hcksum_context_t *hcksum) 733 { 734 struct e1000_hw *hw = &tx_ring->igb->hw; 735 boolean_t load_context; 736 uint32_t index, tcb_index, desc_num; 737 union e1000_adv_tx_desc *tbd, *first_tbd; 738 tx_control_block_t *tcb, *first_tcb; 739 uint32_t hcksum_flags; 740 int i; 741 742 ASSERT(mutex_owned(&tx_ring->tx_lock)); 743 744 tbd = NULL; 745 first_tbd = NULL; 746 first_tcb = NULL; 747 desc_num = 0; 748 hcksum_flags = 0; 749 load_context = B_FALSE; 750 751 /* 752 * Get the index of the first tx descriptor that will be filled, 753 * and the index of the first work list item that will be attached 754 * with the first used tx control block in the pending list. 755 * Note: the two indexes are the same. 756 */ 757 index = tx_ring->tbd_tail; 758 tcb_index = tx_ring->tbd_tail; 759 760 if (hcksum != NULL) { 761 hcksum_flags = hcksum->hcksum_flags; 762 763 /* 764 * Check if a new context descriptor is needed for this packet 765 */ 766 load_context = igb_check_hcksum_context(tx_ring, hcksum); 767 if (load_context) { 768 first_tcb = (tx_control_block_t *) 769 LIST_GET_HEAD(pending_list); 770 tbd = &tx_ring->tbd_ring[index]; 771 772 /* 773 * Fill the context descriptor with the 774 * hardware checksum offload informations. 775 */ 776 igb_fill_hcksum_context( 777 (struct e1000_adv_tx_context_desc *)tbd, hcksum); 778 779 index = NEXT_INDEX(index, 1, tx_ring->ring_size); 780 desc_num++; 781 782 /* 783 * Store the checksum context data if 784 * a new context descriptor is added 785 */ 786 tx_ring->hcksum_context = *hcksum; 787 } 788 } 789 790 first_tbd = &tx_ring->tbd_ring[index]; 791 792 /* 793 * Fill tx data descriptors with the data saved in the pending list. 794 * The tx control blocks in the pending list are added to the work list 795 * at the same time. 796 * 797 * The work list is strictly 1:1 corresponding to the descriptor ring. 798 * One item of the work list corresponds to one tx descriptor. Because 799 * one tx control block can span multiple tx descriptors, the tx 800 * control block will be added to the first work list item that 801 * corresponds to the first tx descriptor generated from that tx 802 * control block. 803 */ 804 tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list); 805 while (tcb != NULL) { 806 807 for (i = 0; i < tcb->desc_num; i++) { 808 tbd = &tx_ring->tbd_ring[index]; 809 810 tbd->read.buffer_addr = tcb->desc[i].address; 811 tbd->read.cmd_type_len = tcb->desc[i].length; 812 813 tbd->read.cmd_type_len |= E1000_ADVTXD_DCMD_RS | 814 E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_DATA; 815 816 tbd->read.olinfo_status = 0; 817 818 index = NEXT_INDEX(index, 1, tx_ring->ring_size); 819 desc_num++; 820 } 821 822 if (first_tcb != NULL) { 823 /* 824 * Count the checksum context descriptor for 825 * the first tx control block. 826 */ 827 first_tcb->desc_num++; 828 first_tcb = NULL; 829 } 830 831 /* 832 * Add the tx control block to the work list 833 */ 834 ASSERT(tx_ring->work_list[tcb_index] == NULL); 835 tx_ring->work_list[tcb_index] = tcb; 836 837 tcb_index = index; 838 tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list); 839 } 840 841 /* 842 * The Insert Ethernet CRC (IFCS) bit and the checksum fields are only 843 * valid in the first descriptor of the packet. 844 */ 845 ASSERT(first_tbd != NULL); 846 first_tbd->read.cmd_type_len |= E1000_ADVTXD_DCMD_IFCS; 847 848 /* Set hardware checksum bits */ 849 if (hcksum_flags != 0) { 850 if (hcksum_flags & HCK_IPV4_HDRCKSUM) 851 first_tbd->read.olinfo_status |= 852 E1000_TXD_POPTS_IXSM << 8; 853 if (hcksum_flags & HCK_PARTIALCKSUM) 854 first_tbd->read.olinfo_status |= 855 E1000_TXD_POPTS_TXSM << 8; 856 } 857 858 /* 859 * The last descriptor of packet needs End Of Packet (EOP), 860 * and Report Status (RS) bits set 861 */ 862 ASSERT(tbd != NULL); 863 tbd->read.cmd_type_len |= 864 E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS; 865 866 /* 867 * Sync the DMA buffer of the tx descriptor ring 868 */ 869 DMA_SYNC(&tx_ring->tbd_area, DDI_DMA_SYNC_FORDEV); 870 871 /* 872 * Update the number of the free tx descriptors. 873 * The mutual exclusion between the transmission and the recycling 874 * (for the tx descriptor ring and the work list) is implemented 875 * with the atomic operation on the number of the free tx descriptors. 876 * 877 * Note: we should always decrement the counter tbd_free before 878 * advancing the hardware TDT pointer to avoid the race condition - 879 * before the counter tbd_free is decremented, the transmit of the 880 * tx descriptors has done and the counter tbd_free is increased by 881 * the tx recycling. 882 */ 883 i = igb_atomic_reserve(&tx_ring->tbd_free, desc_num); 884 ASSERT(i >= 0); 885 886 tx_ring->tbd_tail = index; 887 888 /* 889 * Advance the hardware TDT pointer of the tx descriptor ring 890 */ 891 E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), index); 892 893 return (desc_num); 894 } 895 896 /* 897 * igb_save_desc 898 * 899 * Save the address/length pair to the private array 900 * of the tx control block. The address/length pairs 901 * will be filled into the tx descriptor ring later. 902 */ 903 static void 904 igb_save_desc(tx_control_block_t *tcb, uint64_t address, size_t length) 905 { 906 sw_desc_t *desc; 907 908 desc = &tcb->desc[tcb->desc_num]; 909 desc->address = address; 910 desc->length = length; 911 912 tcb->desc_num++; 913 } 914 915 /* 916 * igb_tx_recycle_legacy 917 * 918 * Recycle the tx descriptors and tx control blocks. 919 * 920 * The work list is traversed to check if the corresponding 921 * tx descriptors have been transmitted. If so, the resources 922 * bound to the tx control blocks will be freed, and those 923 * tx control blocks will be returned to the free list. 924 */ 925 uint32_t 926 igb_tx_recycle_legacy(igb_tx_ring_t *tx_ring) 927 { 928 uint32_t index, last_index; 929 int desc_num; 930 boolean_t desc_done; 931 tx_control_block_t *tcb; 932 link_list_t pending_list; 933 934 /* 935 * The mutex_tryenter() is used to avoid unnecessary 936 * lock contention. 937 */ 938 if (mutex_tryenter(&tx_ring->recycle_lock) == 0) 939 return (0); 940 941 ASSERT(tx_ring->tbd_free <= tx_ring->ring_size); 942 943 if (tx_ring->tbd_free == tx_ring->ring_size) { 944 tx_ring->recycle_fail = 0; 945 tx_ring->stall_watchdog = 0; 946 mutex_exit(&tx_ring->recycle_lock); 947 return (0); 948 } 949 950 /* 951 * Sync the DMA buffer of the tx descriptor ring 952 */ 953 DMA_SYNC(&tx_ring->tbd_area, DDI_DMA_SYNC_FORKERNEL); 954 955 LINK_LIST_INIT(&pending_list); 956 desc_num = 0; 957 index = tx_ring->tbd_head; /* Index of next tbd/tcb to recycle */ 958 959 tcb = tx_ring->work_list[index]; 960 ASSERT(tcb != NULL); 961 962 desc_done = B_TRUE; 963 while (desc_done && (tcb != NULL)) { 964 965 /* 966 * Get the last tx descriptor of the tx control block. 967 * If the last tx descriptor is done, it is done with 968 * all the tx descriptors of the tx control block. 969 * Then the tx control block and all the corresponding 970 * tx descriptors can be recycled. 971 */ 972 last_index = NEXT_INDEX(index, tcb->desc_num - 1, 973 tx_ring->ring_size); 974 975 /* 976 * Check if the Descriptor Done bit is set 977 */ 978 desc_done = tx_ring->tbd_ring[last_index].wb.status & 979 E1000_TXD_STAT_DD; 980 if (desc_done) { 981 /* 982 * Strip off the tx control block from the work list, 983 * and add it to the pending list. 984 */ 985 tx_ring->work_list[index] = NULL; 986 LIST_PUSH_TAIL(&pending_list, &tcb->link); 987 988 /* 989 * Count the total number of the tx descriptors recycled 990 */ 991 desc_num += tcb->desc_num; 992 993 /* 994 * Advance the index of the tx descriptor ring 995 */ 996 index = NEXT_INDEX(last_index, 1, tx_ring->ring_size); 997 998 tcb = tx_ring->work_list[index]; 999 } 1000 } 1001 1002 /* 1003 * If no tx descriptors are recycled, no need to do more processing 1004 */ 1005 if (desc_num == 0) { 1006 tx_ring->recycle_fail++; 1007 mutex_exit(&tx_ring->recycle_lock); 1008 return (0); 1009 } 1010 1011 tx_ring->recycle_fail = 0; 1012 tx_ring->stall_watchdog = 0; 1013 1014 /* 1015 * Update the head index of the tx descriptor ring 1016 */ 1017 tx_ring->tbd_head = index; 1018 1019 /* 1020 * Update the number of the free tx descriptors with atomic operations 1021 */ 1022 atomic_add_32(&tx_ring->tbd_free, desc_num); 1023 1024 mutex_exit(&tx_ring->recycle_lock); 1025 1026 /* 1027 * Free the resources used by the tx control blocks 1028 * in the pending list 1029 */ 1030 tcb = (tx_control_block_t *)LIST_GET_HEAD(&pending_list); 1031 while (tcb != NULL) { 1032 /* 1033 * Release the resources occupied by the tx control block 1034 */ 1035 igb_free_tcb(tcb); 1036 1037 tcb = (tx_control_block_t *) 1038 LIST_GET_NEXT(&pending_list, &tcb->link); 1039 } 1040 1041 /* 1042 * Add the tx control blocks in the pending list to the free list. 1043 */ 1044 igb_put_free_list(tx_ring, &pending_list); 1045 1046 return (desc_num); 1047 } 1048 1049 /* 1050 * igb_tx_recycle_head_wb 1051 * 1052 * Check the head write-back, and recycle all the transmitted 1053 * tx descriptors and tx control blocks. 1054 */ 1055 uint32_t 1056 igb_tx_recycle_head_wb(igb_tx_ring_t *tx_ring) 1057 { 1058 uint32_t index; 1059 uint32_t head_wb; 1060 int desc_num; 1061 tx_control_block_t *tcb; 1062 link_list_t pending_list; 1063 1064 /* 1065 * The mutex_tryenter() is used to avoid unnecessary 1066 * lock contention. 1067 */ 1068 if (mutex_tryenter(&tx_ring->recycle_lock) == 0) 1069 return (0); 1070 1071 ASSERT(tx_ring->tbd_free <= tx_ring->ring_size); 1072 1073 if (tx_ring->tbd_free == tx_ring->ring_size) { 1074 tx_ring->recycle_fail = 0; 1075 tx_ring->stall_watchdog = 0; 1076 mutex_exit(&tx_ring->recycle_lock); 1077 return (0); 1078 } 1079 1080 /* 1081 * Sync the DMA buffer of the tx descriptor ring 1082 * 1083 * Note: For head write-back mode, the tx descriptors will not 1084 * be written back, but the head write-back value is stored at 1085 * the last extra tbd at the end of the DMA area, we still need 1086 * to sync the head write-back value for kernel. 1087 * 1088 * DMA_SYNC(&tx_ring->tbd_area, DDI_DMA_SYNC_FORKERNEL); 1089 */ 1090 (void) ddi_dma_sync(tx_ring->tbd_area.dma_handle, 1091 sizeof (union e1000_adv_tx_desc) * tx_ring->ring_size, 1092 sizeof (uint32_t), 1093 DDI_DMA_SYNC_FORKERNEL); 1094 1095 LINK_LIST_INIT(&pending_list); 1096 desc_num = 0; 1097 index = tx_ring->tbd_head; /* Next index to clean */ 1098 1099 /* 1100 * Get the value of head write-back 1101 */ 1102 head_wb = *tx_ring->tbd_head_wb; 1103 while (index != head_wb) { 1104 tcb = tx_ring->work_list[index]; 1105 ASSERT(tcb != NULL); 1106 1107 if (OFFSET(index, head_wb, tx_ring->ring_size) < 1108 tcb->desc_num) { 1109 /* 1110 * The current tx control block is not 1111 * completely transmitted, stop recycling 1112 */ 1113 break; 1114 } 1115 1116 /* 1117 * Strip off the tx control block from the work list, 1118 * and add it to the pending list. 1119 */ 1120 tx_ring->work_list[index] = NULL; 1121 LIST_PUSH_TAIL(&pending_list, &tcb->link); 1122 1123 /* 1124 * Advance the index of the tx descriptor ring 1125 */ 1126 index = NEXT_INDEX(index, tcb->desc_num, tx_ring->ring_size); 1127 1128 /* 1129 * Count the total number of the tx descriptors recycled 1130 */ 1131 desc_num += tcb->desc_num; 1132 } 1133 1134 /* 1135 * If no tx descriptors are recycled, no need to do more processing 1136 */ 1137 if (desc_num == 0) { 1138 tx_ring->recycle_fail++; 1139 mutex_exit(&tx_ring->recycle_lock); 1140 return (0); 1141 } 1142 1143 tx_ring->recycle_fail = 0; 1144 tx_ring->stall_watchdog = 0; 1145 1146 /* 1147 * Update the head index of the tx descriptor ring 1148 */ 1149 tx_ring->tbd_head = index; 1150 1151 /* 1152 * Update the number of the free tx descriptors with atomic operations 1153 */ 1154 atomic_add_32(&tx_ring->tbd_free, desc_num); 1155 1156 mutex_exit(&tx_ring->recycle_lock); 1157 1158 /* 1159 * Free the resources used by the tx control blocks 1160 * in the pending list 1161 */ 1162 tcb = (tx_control_block_t *)LIST_GET_HEAD(&pending_list); 1163 while (tcb) { 1164 /* 1165 * Release the resources occupied by the tx control block 1166 */ 1167 igb_free_tcb(tcb); 1168 1169 tcb = (tx_control_block_t *) 1170 LIST_GET_NEXT(&pending_list, &tcb->link); 1171 } 1172 1173 /* 1174 * Add the tx control blocks in the pending list to the free list. 1175 */ 1176 igb_put_free_list(tx_ring, &pending_list); 1177 1178 return (desc_num); 1179 } 1180 1181 /* 1182 * igb_free_tcb - free up the tx control block 1183 * 1184 * Free the resources of the tx control block, including 1185 * unbind the previously bound DMA handle, and reset other 1186 * control fields. 1187 */ 1188 void 1189 igb_free_tcb(tx_control_block_t *tcb) 1190 { 1191 switch (tcb->tx_type) { 1192 case USE_COPY: 1193 /* 1194 * Reset the buffer length that is used for copy 1195 */ 1196 tcb->tx_buf.len = 0; 1197 break; 1198 case USE_DMA: 1199 /* 1200 * Release the DMA resource that is used for 1201 * DMA binding. 1202 */ 1203 (void) ddi_dma_unbind_handle(tcb->tx_dma_handle); 1204 break; 1205 default: 1206 break; 1207 } 1208 1209 /* 1210 * Free the mblk 1211 */ 1212 if (tcb->mp != NULL) { 1213 freemsg(tcb->mp); 1214 tcb->mp = NULL; 1215 } 1216 1217 tcb->tx_type = USE_NONE; 1218 tcb->frag_num = 0; 1219 tcb->desc_num = 0; 1220 } 1221 1222 /* 1223 * igb_get_free_list - Get a free tx control block from the free list 1224 * 1225 * The atomic operation on the number of the available tx control block 1226 * in the free list is used to keep this routine mutual exclusive with 1227 * the routine igb_put_check_list. 1228 */ 1229 static tx_control_block_t * 1230 igb_get_free_list(igb_tx_ring_t *tx_ring) 1231 { 1232 tx_control_block_t *tcb; 1233 1234 /* 1235 * Check and update the number of the free tx control block 1236 * in the free list. 1237 */ 1238 if (igb_atomic_reserve(&tx_ring->tcb_free, 1) < 0) 1239 return (NULL); 1240 1241 mutex_enter(&tx_ring->tcb_head_lock); 1242 1243 tcb = tx_ring->free_list[tx_ring->tcb_head]; 1244 ASSERT(tcb != NULL); 1245 tx_ring->free_list[tx_ring->tcb_head] = NULL; 1246 tx_ring->tcb_head = NEXT_INDEX(tx_ring->tcb_head, 1, 1247 tx_ring->free_list_size); 1248 1249 mutex_exit(&tx_ring->tcb_head_lock); 1250 1251 return (tcb); 1252 } 1253 1254 /* 1255 * igb_put_free_list 1256 * 1257 * Put a list of used tx control blocks back to the free list 1258 * 1259 * A mutex is used here to ensure the serialization. The mutual exclusion 1260 * between igb_get_free_list and igb_put_free_list is implemented with 1261 * the atomic operation on the counter tcb_free. 1262 */ 1263 void 1264 igb_put_free_list(igb_tx_ring_t *tx_ring, link_list_t *pending_list) 1265 { 1266 uint32_t index; 1267 int tcb_num; 1268 tx_control_block_t *tcb; 1269 1270 mutex_enter(&tx_ring->tcb_tail_lock); 1271 1272 index = tx_ring->tcb_tail; 1273 1274 tcb_num = 0; 1275 tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list); 1276 while (tcb != NULL) { 1277 ASSERT(tx_ring->free_list[index] == NULL); 1278 tx_ring->free_list[index] = tcb; 1279 1280 tcb_num++; 1281 1282 index = NEXT_INDEX(index, 1, tx_ring->free_list_size); 1283 1284 tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list); 1285 } 1286 1287 tx_ring->tcb_tail = index; 1288 1289 /* 1290 * Update the number of the free tx control block 1291 * in the free list. This operation must be placed 1292 * under the protection of the lock. 1293 */ 1294 atomic_add_32(&tx_ring->tcb_free, tcb_num); 1295 1296 mutex_exit(&tx_ring->tcb_tail_lock); 1297 } 1298