xref: /titanic_41/usr/src/uts/common/io/igb/igb_main.c (revision 94dd93aee32d1616436eb51fb7b58094b9a8d3e8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  */
29 
30 #include "igb_sw.h"
31 
32 static char ident[] = "Intel 1Gb Ethernet";
33 static char igb_version[] = "igb 1.1.18";
34 
35 /*
36  * Local function protoypes
37  */
38 static int igb_register_mac(igb_t *);
39 static int igb_identify_hardware(igb_t *);
40 static int igb_regs_map(igb_t *);
41 static void igb_init_properties(igb_t *);
42 static int igb_init_driver_settings(igb_t *);
43 static void igb_init_locks(igb_t *);
44 static void igb_destroy_locks(igb_t *);
45 static int igb_init_mac_address(igb_t *);
46 static int igb_init(igb_t *);
47 static int igb_init_adapter(igb_t *);
48 static void igb_stop_adapter(igb_t *);
49 static int igb_reset(igb_t *);
50 static void igb_tx_clean(igb_t *);
51 static boolean_t igb_tx_drain(igb_t *);
52 static boolean_t igb_rx_drain(igb_t *);
53 static int igb_alloc_rings(igb_t *);
54 static int igb_alloc_rx_data(igb_t *);
55 static void igb_free_rx_data(igb_t *);
56 static void igb_free_rings(igb_t *);
57 static void igb_setup_rings(igb_t *);
58 static void igb_setup_rx(igb_t *);
59 static void igb_setup_tx(igb_t *);
60 static void igb_setup_rx_ring(igb_rx_ring_t *);
61 static void igb_setup_tx_ring(igb_tx_ring_t *);
62 static void igb_setup_rss(igb_t *);
63 static void igb_setup_mac_rss_classify(igb_t *);
64 static void igb_setup_mac_classify(igb_t *);
65 static void igb_init_unicst(igb_t *);
66 static void igb_setup_multicst(igb_t *);
67 static void igb_get_phy_state(igb_t *);
68 static void igb_param_sync(igb_t *);
69 static void igb_get_conf(igb_t *);
70 static int igb_get_prop(igb_t *, char *, int, int, int);
71 static boolean_t igb_is_link_up(igb_t *);
72 static boolean_t igb_link_check(igb_t *);
73 static void igb_local_timer(void *);
74 static void igb_link_timer(void *);
75 static void igb_arm_watchdog_timer(igb_t *);
76 static void igb_start_watchdog_timer(igb_t *);
77 static void igb_restart_watchdog_timer(igb_t *);
78 static void igb_stop_watchdog_timer(igb_t *);
79 static void igb_start_link_timer(igb_t *);
80 static void igb_stop_link_timer(igb_t *);
81 static void igb_disable_adapter_interrupts(igb_t *);
82 static void igb_enable_adapter_interrupts_82575(igb_t *);
83 static void igb_enable_adapter_interrupts_82576(igb_t *);
84 static void igb_enable_adapter_interrupts_82580(igb_t *);
85 static boolean_t is_valid_mac_addr(uint8_t *);
86 static boolean_t igb_stall_check(igb_t *);
87 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
88 static void igb_set_external_loopback(igb_t *);
89 static void igb_set_internal_phy_loopback(igb_t *);
90 static void igb_set_internal_serdes_loopback(igb_t *);
91 static boolean_t igb_find_mac_address(igb_t *);
92 static int igb_alloc_intrs(igb_t *);
93 static int igb_alloc_intr_handles(igb_t *, int);
94 static int igb_add_intr_handlers(igb_t *);
95 static void igb_rem_intr_handlers(igb_t *);
96 static void igb_rem_intrs(igb_t *);
97 static int igb_enable_intrs(igb_t *);
98 static int igb_disable_intrs(igb_t *);
99 static void igb_setup_msix_82575(igb_t *);
100 static void igb_setup_msix_82576(igb_t *);
101 static void igb_setup_msix_82580(igb_t *);
102 static uint_t igb_intr_legacy(void *, void *);
103 static uint_t igb_intr_msi(void *, void *);
104 static uint_t igb_intr_rx(void *, void *);
105 static uint_t igb_intr_tx(void *, void *);
106 static uint_t igb_intr_tx_other(void *, void *);
107 static void igb_intr_rx_work(igb_rx_ring_t *);
108 static void igb_intr_tx_work(igb_tx_ring_t *);
109 static void igb_intr_link_work(igb_t *);
110 static void igb_get_driver_control(struct e1000_hw *);
111 static void igb_release_driver_control(struct e1000_hw *);
112 
113 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
114 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
115 static int igb_resume(dev_info_t *);
116 static int igb_suspend(dev_info_t *);
117 static int igb_quiesce(dev_info_t *);
118 static void igb_unconfigure(dev_info_t *, igb_t *);
119 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
120     const void *);
121 static void igb_fm_init(igb_t *);
122 static void igb_fm_fini(igb_t *);
123 static void igb_release_multicast(igb_t *);
124 
125 char *igb_priv_props[] = {
126 	"_tx_copy_thresh",
127 	"_tx_recycle_thresh",
128 	"_tx_overload_thresh",
129 	"_tx_resched_thresh",
130 	"_rx_copy_thresh",
131 	"_rx_limit_per_intr",
132 	"_intr_throttling",
133 	"_adv_pause_cap",
134 	"_adv_asym_pause_cap",
135 	NULL
136 };
137 
138 static struct cb_ops igb_cb_ops = {
139 	nulldev,		/* cb_open */
140 	nulldev,		/* cb_close */
141 	nodev,			/* cb_strategy */
142 	nodev,			/* cb_print */
143 	nodev,			/* cb_dump */
144 	nodev,			/* cb_read */
145 	nodev,			/* cb_write */
146 	nodev,			/* cb_ioctl */
147 	nodev,			/* cb_devmap */
148 	nodev,			/* cb_mmap */
149 	nodev,			/* cb_segmap */
150 	nochpoll,		/* cb_chpoll */
151 	ddi_prop_op,		/* cb_prop_op */
152 	NULL,			/* cb_stream */
153 	D_MP | D_HOTPLUG,	/* cb_flag */
154 	CB_REV,			/* cb_rev */
155 	nodev,			/* cb_aread */
156 	nodev			/* cb_awrite */
157 };
158 
159 static struct dev_ops igb_dev_ops = {
160 	DEVO_REV,		/* devo_rev */
161 	0,			/* devo_refcnt */
162 	NULL,			/* devo_getinfo */
163 	nulldev,		/* devo_identify */
164 	nulldev,		/* devo_probe */
165 	igb_attach,		/* devo_attach */
166 	igb_detach,		/* devo_detach */
167 	nodev,			/* devo_reset */
168 	&igb_cb_ops,		/* devo_cb_ops */
169 	NULL,			/* devo_bus_ops */
170 	ddi_power,		/* devo_power */
171 	igb_quiesce,	/* devo_quiesce */
172 };
173 
174 static struct modldrv igb_modldrv = {
175 	&mod_driverops,		/* Type of module.  This one is a driver */
176 	ident,			/* Discription string */
177 	&igb_dev_ops,		/* driver ops */
178 };
179 
180 static struct modlinkage igb_modlinkage = {
181 	MODREV_1, &igb_modldrv, NULL
182 };
183 
184 /* Access attributes for register mapping */
185 ddi_device_acc_attr_t igb_regs_acc_attr = {
186 	DDI_DEVICE_ATTR_V1,
187 	DDI_STRUCTURE_LE_ACC,
188 	DDI_STRICTORDER_ACC,
189 	DDI_FLAGERR_ACC
190 };
191 
192 #define	IGB_M_CALLBACK_FLAGS \
193 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
194 
195 static mac_callbacks_t igb_m_callbacks = {
196 	IGB_M_CALLBACK_FLAGS,
197 	igb_m_stat,
198 	igb_m_start,
199 	igb_m_stop,
200 	igb_m_promisc,
201 	igb_m_multicst,
202 	NULL,
203 	NULL,
204 	NULL,
205 	igb_m_ioctl,
206 	igb_m_getcapab,
207 	NULL,
208 	NULL,
209 	igb_m_setprop,
210 	igb_m_getprop,
211 	igb_m_propinfo
212 };
213 
214 /*
215  * Initialize capabilities of each supported adapter type
216  */
217 static adapter_info_t igb_82575_cap = {
218 	/* limits */
219 	4,		/* maximum number of rx queues */
220 	1,		/* minimum number of rx queues */
221 	4,		/* default number of rx queues */
222 	4,		/* maximum number of tx queues */
223 	1,		/* minimum number of tx queues */
224 	4,		/* default number of tx queues */
225 	65535,		/* maximum interrupt throttle rate */
226 	0,		/* minimum interrupt throttle rate */
227 	200,		/* default interrupt throttle rate */
228 
229 	/* function pointers */
230 	igb_enable_adapter_interrupts_82575,
231 	igb_setup_msix_82575,
232 
233 	/* capabilities */
234 	(IGB_FLAG_HAS_DCA |	/* capability flags */
235 	IGB_FLAG_VMDQ_POOL),
236 
237 	0xffc00000		/* mask for RXDCTL register */
238 };
239 
240 static adapter_info_t igb_82576_cap = {
241 	/* limits */
242 	16,		/* maximum number of rx queues */
243 	1,		/* minimum number of rx queues */
244 	4,		/* default number of rx queues */
245 	16,		/* maximum number of tx queues */
246 	1,		/* minimum number of tx queues */
247 	4,		/* default number of tx queues */
248 	65535,		/* maximum interrupt throttle rate */
249 	0,		/* minimum interrupt throttle rate */
250 	200,		/* default interrupt throttle rate */
251 
252 	/* function pointers */
253 	igb_enable_adapter_interrupts_82576,
254 	igb_setup_msix_82576,
255 
256 	/* capabilities */
257 	(IGB_FLAG_HAS_DCA |	/* capability flags */
258 	IGB_FLAG_VMDQ_POOL |
259 	IGB_FLAG_NEED_CTX_IDX),
260 
261 	0xffe00000		/* mask for RXDCTL register */
262 };
263 
264 static adapter_info_t igb_82580_cap = {
265 	/* limits */
266 	8,		/* maximum number of rx queues */
267 	1,		/* minimum number of rx queues */
268 	4,		/* default number of rx queues */
269 	8,		/* maximum number of tx queues */
270 	1,		/* minimum number of tx queues */
271 	4,		/* default number of tx queues */
272 	65535,		/* maximum interrupt throttle rate */
273 	0,		/* minimum interrupt throttle rate */
274 	200,		/* default interrupt throttle rate */
275 
276 	/* function pointers */
277 	igb_enable_adapter_interrupts_82580,
278 	igb_setup_msix_82580,
279 
280 	/* capabilities */
281 	(IGB_FLAG_HAS_DCA |	/* capability flags */
282 	IGB_FLAG_VMDQ_POOL |
283 	IGB_FLAG_NEED_CTX_IDX),
284 
285 	0xffe00000		/* mask for RXDCTL register */
286 };
287 
288 static adapter_info_t igb_i350_cap = {
289 	/* limits */
290 	8,		/* maximum number of rx queues */
291 	1,		/* minimum number of rx queues */
292 	4,		/* default number of rx queues */
293 	8,		/* maximum number of tx queues */
294 	1,		/* minimum number of tx queues */
295 	4,		/* default number of tx queues */
296 	65535,		/* maximum interrupt throttle rate */
297 	0,		/* minimum interrupt throttle rate */
298 	200,		/* default interrupt throttle rate */
299 
300 	/* function pointers */
301 	igb_enable_adapter_interrupts_82580,
302 	igb_setup_msix_82580,
303 
304 	/* capabilities */
305 	(IGB_FLAG_HAS_DCA |	/* capability flags */
306 	IGB_FLAG_VMDQ_POOL |
307 	IGB_FLAG_NEED_CTX_IDX),
308 
309 	0xffe00000		/* mask for RXDCTL register */
310 };
311 
312 /*
313  * Module Initialization Functions
314  */
315 
316 int
317 _init(void)
318 {
319 	int status;
320 
321 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
322 
323 	status = mod_install(&igb_modlinkage);
324 
325 	if (status != DDI_SUCCESS) {
326 		mac_fini_ops(&igb_dev_ops);
327 	}
328 
329 	return (status);
330 }
331 
332 int
333 _fini(void)
334 {
335 	int status;
336 
337 	status = mod_remove(&igb_modlinkage);
338 
339 	if (status == DDI_SUCCESS) {
340 		mac_fini_ops(&igb_dev_ops);
341 	}
342 
343 	return (status);
344 
345 }
346 
347 int
348 _info(struct modinfo *modinfop)
349 {
350 	int status;
351 
352 	status = mod_info(&igb_modlinkage, modinfop);
353 
354 	return (status);
355 }
356 
357 /*
358  * igb_attach - driver attach
359  *
360  * This function is the device specific initialization entry
361  * point. This entry point is required and must be written.
362  * The DDI_ATTACH command must be provided in the attach entry
363  * point. When attach() is called with cmd set to DDI_ATTACH,
364  * all normal kernel services (such as kmem_alloc(9F)) are
365  * available for use by the driver.
366  *
367  * The attach() function will be called once for each instance
368  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
369  * Until attach() succeeds, the only driver entry points which
370  * may be called are open(9E) and getinfo(9E).
371  */
372 static int
373 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
374 {
375 	igb_t *igb;
376 	struct igb_osdep *osdep;
377 	struct e1000_hw *hw;
378 	int instance;
379 
380 	/*
381 	 * Check the command and perform corresponding operations
382 	 */
383 	switch (cmd) {
384 	default:
385 		return (DDI_FAILURE);
386 
387 	case DDI_RESUME:
388 		return (igb_resume(devinfo));
389 
390 	case DDI_ATTACH:
391 		break;
392 	}
393 
394 	/* Get the device instance */
395 	instance = ddi_get_instance(devinfo);
396 
397 	/* Allocate memory for the instance data structure */
398 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
399 
400 	igb->dip = devinfo;
401 	igb->instance = instance;
402 
403 	hw = &igb->hw;
404 	osdep = &igb->osdep;
405 	hw->back = osdep;
406 	osdep->igb = igb;
407 
408 	/* Attach the instance pointer to the dev_info data structure */
409 	ddi_set_driver_private(devinfo, igb);
410 
411 
412 	/* Initialize for fma support */
413 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
414 	    0, 0x0f,
415 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
416 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
417 	igb_fm_init(igb);
418 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
419 
420 	/*
421 	 * Map PCI config space registers
422 	 */
423 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
424 		igb_error(igb, "Failed to map PCI configurations");
425 		goto attach_fail;
426 	}
427 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
428 
429 	/*
430 	 * Identify the chipset family
431 	 */
432 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
433 		igb_error(igb, "Failed to identify hardware");
434 		goto attach_fail;
435 	}
436 
437 	/*
438 	 * Map device registers
439 	 */
440 	if (igb_regs_map(igb) != IGB_SUCCESS) {
441 		igb_error(igb, "Failed to map device registers");
442 		goto attach_fail;
443 	}
444 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
445 
446 	/*
447 	 * Initialize driver parameters
448 	 */
449 	igb_init_properties(igb);
450 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
451 
452 	/*
453 	 * Allocate interrupts
454 	 */
455 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
456 		igb_error(igb, "Failed to allocate interrupts");
457 		goto attach_fail;
458 	}
459 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
460 
461 	/*
462 	 * Allocate rx/tx rings based on the ring numbers.
463 	 * The actual numbers of rx/tx rings are decided by the number of
464 	 * allocated interrupt vectors, so we should allocate the rings after
465 	 * interrupts are allocated.
466 	 */
467 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
468 		igb_error(igb, "Failed to allocate rx/tx rings or groups");
469 		goto attach_fail;
470 	}
471 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
472 
473 	/*
474 	 * Add interrupt handlers
475 	 */
476 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
477 		igb_error(igb, "Failed to add interrupt handlers");
478 		goto attach_fail;
479 	}
480 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
481 
482 	/*
483 	 * Initialize driver parameters
484 	 */
485 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
486 		igb_error(igb, "Failed to initialize driver settings");
487 		goto attach_fail;
488 	}
489 
490 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
491 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
492 		goto attach_fail;
493 	}
494 
495 	/*
496 	 * Initialize mutexes for this device.
497 	 * Do this before enabling the interrupt handler and
498 	 * register the softint to avoid the condition where
499 	 * interrupt handler can try using uninitialized mutex
500 	 */
501 	igb_init_locks(igb);
502 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
503 
504 	/*
505 	 * Initialize the adapter
506 	 */
507 	if (igb_init(igb) != IGB_SUCCESS) {
508 		igb_error(igb, "Failed to initialize adapter");
509 		goto attach_fail;
510 	}
511 	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
512 
513 	/*
514 	 * Initialize statistics
515 	 */
516 	if (igb_init_stats(igb) != IGB_SUCCESS) {
517 		igb_error(igb, "Failed to initialize statistics");
518 		goto attach_fail;
519 	}
520 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
521 
522 	/*
523 	 * Register the driver to the MAC
524 	 */
525 	if (igb_register_mac(igb) != IGB_SUCCESS) {
526 		igb_error(igb, "Failed to register MAC");
527 		goto attach_fail;
528 	}
529 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
530 
531 	/*
532 	 * Now that mutex locks are initialized, and the chip is also
533 	 * initialized, enable interrupts.
534 	 */
535 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
536 		igb_error(igb, "Failed to enable DDI interrupts");
537 		goto attach_fail;
538 	}
539 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
540 
541 	igb_log(igb, "%s", igb_version);
542 	atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
543 
544 	/*
545 	 * Newer models have Energy Efficient Ethernet, let's disable this by
546 	 * default.
547 	 */
548 	if (igb->hw.mac.type == e1000_i350)
549 		(void) e1000_set_eee_i350(&igb->hw);
550 
551 	return (DDI_SUCCESS);
552 
553 attach_fail:
554 	igb_unconfigure(devinfo, igb);
555 	return (DDI_FAILURE);
556 }
557 
558 /*
559  * igb_detach - driver detach
560  *
561  * The detach() function is the complement of the attach routine.
562  * If cmd is set to DDI_DETACH, detach() is used to remove  the
563  * state  associated  with  a  given  instance of a device node
564  * prior to the removal of that instance from the system.
565  *
566  * The detach() function will be called once for each  instance
567  * of the device for which there has been a successful attach()
568  * once there are no longer  any  opens  on  the  device.
569  *
570  * Interrupts routine are disabled, All memory allocated by this
571  * driver are freed.
572  */
573 static int
574 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
575 {
576 	igb_t *igb;
577 
578 	/*
579 	 * Check detach command
580 	 */
581 	switch (cmd) {
582 	default:
583 		return (DDI_FAILURE);
584 
585 	case DDI_SUSPEND:
586 		return (igb_suspend(devinfo));
587 
588 	case DDI_DETACH:
589 		break;
590 	}
591 
592 
593 	/*
594 	 * Get the pointer to the driver private data structure
595 	 */
596 	igb = (igb_t *)ddi_get_driver_private(devinfo);
597 	if (igb == NULL)
598 		return (DDI_FAILURE);
599 
600 	/*
601 	 * Unregister MAC. If failed, we have to fail the detach
602 	 */
603 	if (mac_unregister(igb->mac_hdl) != 0) {
604 		igb_error(igb, "Failed to unregister MAC");
605 		return (DDI_FAILURE);
606 	}
607 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
608 
609 	/*
610 	 * If the device is still running, it needs to be stopped first.
611 	 * This check is necessary because under some specific circumstances,
612 	 * the detach routine can be called without stopping the interface
613 	 * first.
614 	 */
615 	mutex_enter(&igb->gen_lock);
616 	if (igb->igb_state & IGB_STARTED) {
617 		atomic_and_32(&igb->igb_state, ~IGB_STARTED);
618 		igb_stop(igb, B_TRUE);
619 		mutex_exit(&igb->gen_lock);
620 		/* Disable and stop the watchdog timer */
621 		igb_disable_watchdog_timer(igb);
622 	} else
623 		mutex_exit(&igb->gen_lock);
624 
625 	/*
626 	 * Check if there are still rx buffers held by the upper layer.
627 	 * If so, fail the detach.
628 	 */
629 	if (!igb_rx_drain(igb))
630 		return (DDI_FAILURE);
631 
632 	/*
633 	 * Do the remaining unconfigure routines
634 	 */
635 	igb_unconfigure(devinfo, igb);
636 
637 	return (DDI_SUCCESS);
638 }
639 
640 /*
641  * quiesce(9E) entry point.
642  *
643  * This function is called when the system is single-threaded at high
644  * PIL with preemption disabled. Therefore, this function must not be
645  * blocked.
646  *
647  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
648  * DDI_FAILURE indicates an error condition and should almost never happen.
649  */
650 static int
651 igb_quiesce(dev_info_t *devinfo)
652 {
653 	igb_t *igb;
654 	struct e1000_hw *hw;
655 
656 	igb = (igb_t *)ddi_get_driver_private(devinfo);
657 
658 	if (igb == NULL)
659 		return (DDI_FAILURE);
660 
661 	hw = &igb->hw;
662 
663 	/*
664 	 * Disable the adapter interrupts
665 	 */
666 	igb_disable_adapter_interrupts(igb);
667 
668 	/* Tell firmware driver is no longer in control */
669 	igb_release_driver_control(hw);
670 
671 	/*
672 	 * Reset the chipset
673 	 */
674 	(void) e1000_reset_hw(hw);
675 
676 	/*
677 	 * Reset PHY if possible
678 	 */
679 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
680 		(void) e1000_phy_hw_reset(hw);
681 
682 	return (DDI_SUCCESS);
683 }
684 
685 /*
686  * igb_unconfigure - release all resources held by this instance
687  */
688 static void
689 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
690 {
691 	/*
692 	 * Disable interrupt
693 	 */
694 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
695 		(void) igb_disable_intrs(igb);
696 	}
697 
698 	/*
699 	 * Unregister MAC
700 	 */
701 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
702 		(void) mac_unregister(igb->mac_hdl);
703 	}
704 
705 	/*
706 	 * Free statistics
707 	 */
708 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
709 		kstat_delete((kstat_t *)igb->igb_ks);
710 	}
711 
712 	/*
713 	 * Remove interrupt handlers
714 	 */
715 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
716 		igb_rem_intr_handlers(igb);
717 	}
718 
719 	/*
720 	 * Remove interrupts
721 	 */
722 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
723 		igb_rem_intrs(igb);
724 	}
725 
726 	/*
727 	 * Remove driver properties
728 	 */
729 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
730 		(void) ddi_prop_remove_all(devinfo);
731 	}
732 
733 	/*
734 	 * Stop the adapter
735 	 */
736 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
737 		mutex_enter(&igb->gen_lock);
738 		igb_stop_adapter(igb);
739 		mutex_exit(&igb->gen_lock);
740 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
741 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
742 	}
743 
744 	/*
745 	 * Free multicast table
746 	 */
747 	igb_release_multicast(igb);
748 
749 	/*
750 	 * Free register handle
751 	 */
752 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
753 		if (igb->osdep.reg_handle != NULL)
754 			ddi_regs_map_free(&igb->osdep.reg_handle);
755 	}
756 
757 	/*
758 	 * Free PCI config handle
759 	 */
760 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
761 		if (igb->osdep.cfg_handle != NULL)
762 			pci_config_teardown(&igb->osdep.cfg_handle);
763 	}
764 
765 	/*
766 	 * Free locks
767 	 */
768 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
769 		igb_destroy_locks(igb);
770 	}
771 
772 	/*
773 	 * Free the rx/tx rings
774 	 */
775 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
776 		igb_free_rings(igb);
777 	}
778 
779 	/*
780 	 * Remove FMA
781 	 */
782 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
783 		igb_fm_fini(igb);
784 	}
785 
786 	/*
787 	 * Free the driver data structure
788 	 */
789 	kmem_free(igb, sizeof (igb_t));
790 
791 	ddi_set_driver_private(devinfo, NULL);
792 }
793 
794 /*
795  * igb_register_mac - Register the driver and its function pointers with
796  * the GLD interface
797  */
798 static int
799 igb_register_mac(igb_t *igb)
800 {
801 	struct e1000_hw *hw = &igb->hw;
802 	mac_register_t *mac;
803 	int status;
804 
805 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
806 		return (IGB_FAILURE);
807 
808 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
809 	mac->m_driver = igb;
810 	mac->m_dip = igb->dip;
811 	mac->m_src_addr = hw->mac.addr;
812 	mac->m_callbacks = &igb_m_callbacks;
813 	mac->m_min_sdu = 0;
814 	mac->m_max_sdu = igb->max_frame_size -
815 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
816 	mac->m_margin = VLAN_TAGSZ;
817 	mac->m_priv_props = igb_priv_props;
818 	mac->m_v12n = MAC_VIRT_LEVEL1;
819 
820 	status = mac_register(mac, &igb->mac_hdl);
821 
822 	mac_free(mac);
823 
824 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
825 }
826 
827 /*
828  * igb_identify_hardware - Identify the type of the chipset
829  */
830 static int
831 igb_identify_hardware(igb_t *igb)
832 {
833 	struct e1000_hw *hw = &igb->hw;
834 	struct igb_osdep *osdep = &igb->osdep;
835 
836 	/*
837 	 * Get the device id
838 	 */
839 	hw->vendor_id =
840 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
841 	hw->device_id =
842 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
843 	hw->revision_id =
844 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
845 	hw->subsystem_device_id =
846 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
847 	hw->subsystem_vendor_id =
848 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
849 
850 	/*
851 	 * Set the mac type of the adapter based on the device id
852 	 */
853 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
854 		return (IGB_FAILURE);
855 	}
856 
857 	/*
858 	 * Install adapter capabilities based on mac type
859 	 */
860 	switch (hw->mac.type) {
861 	case e1000_82575:
862 		igb->capab = &igb_82575_cap;
863 		break;
864 	case e1000_82576:
865 		igb->capab = &igb_82576_cap;
866 		break;
867 	case e1000_82580:
868 		igb->capab = &igb_82580_cap;
869 		break;
870 	case e1000_i350:
871 		igb->capab = &igb_i350_cap;
872 		break;
873 	default:
874 		return (IGB_FAILURE);
875 	}
876 
877 	return (IGB_SUCCESS);
878 }
879 
880 /*
881  * igb_regs_map - Map the device registers
882  */
883 static int
884 igb_regs_map(igb_t *igb)
885 {
886 	dev_info_t *devinfo = igb->dip;
887 	struct e1000_hw *hw = &igb->hw;
888 	struct igb_osdep *osdep = &igb->osdep;
889 	off_t mem_size;
890 
891 	/*
892 	 * First get the size of device registers to be mapped.
893 	 */
894 	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
895 	    DDI_SUCCESS) {
896 		return (IGB_FAILURE);
897 	}
898 
899 	/*
900 	 * Call ddi_regs_map_setup() to map registers
901 	 */
902 	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
903 	    (caddr_t *)&hw->hw_addr, 0,
904 	    mem_size, &igb_regs_acc_attr,
905 	    &osdep->reg_handle)) != DDI_SUCCESS) {
906 		return (IGB_FAILURE);
907 	}
908 
909 	return (IGB_SUCCESS);
910 }
911 
912 /*
913  * igb_init_properties - Initialize driver properties
914  */
915 static void
916 igb_init_properties(igb_t *igb)
917 {
918 	/*
919 	 * Get conf file properties, including link settings
920 	 * jumbo frames, ring number, descriptor number, etc.
921 	 */
922 	igb_get_conf(igb);
923 }
924 
925 /*
926  * igb_init_driver_settings - Initialize driver settings
927  *
928  * The settings include hardware function pointers, bus information,
929  * rx/tx rings settings, link state, and any other parameters that
930  * need to be setup during driver initialization.
931  */
932 static int
933 igb_init_driver_settings(igb_t *igb)
934 {
935 	struct e1000_hw *hw = &igb->hw;
936 	igb_rx_ring_t *rx_ring;
937 	igb_tx_ring_t *tx_ring;
938 	uint32_t rx_size;
939 	uint32_t tx_size;
940 	int i;
941 
942 	/*
943 	 * Initialize chipset specific hardware function pointers
944 	 */
945 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
946 		return (IGB_FAILURE);
947 	}
948 
949 	/*
950 	 * Get bus information
951 	 */
952 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
953 		return (IGB_FAILURE);
954 	}
955 
956 	/*
957 	 * Get the system page size
958 	 */
959 	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
960 
961 	/*
962 	 * Set rx buffer size
963 	 * The IP header alignment room is counted in the calculation.
964 	 * The rx buffer size is in unit of 1K that is required by the
965 	 * chipset hardware.
966 	 */
967 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
968 	igb->rx_buf_size = ((rx_size >> 10) +
969 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
970 
971 	/*
972 	 * Set tx buffer size
973 	 */
974 	tx_size = igb->max_frame_size;
975 	igb->tx_buf_size = ((tx_size >> 10) +
976 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
977 
978 	/*
979 	 * Initialize rx/tx rings parameters
980 	 */
981 	for (i = 0; i < igb->num_rx_rings; i++) {
982 		rx_ring = &igb->rx_rings[i];
983 		rx_ring->index = i;
984 		rx_ring->igb = igb;
985 	}
986 
987 	for (i = 0; i < igb->num_tx_rings; i++) {
988 		tx_ring = &igb->tx_rings[i];
989 		tx_ring->index = i;
990 		tx_ring->igb = igb;
991 		if (igb->tx_head_wb_enable)
992 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
993 		else
994 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
995 
996 		tx_ring->ring_size = igb->tx_ring_size;
997 		tx_ring->free_list_size = igb->tx_ring_size +
998 		    (igb->tx_ring_size >> 1);
999 	}
1000 
1001 	/*
1002 	 * Initialize values of interrupt throttling rates
1003 	 */
1004 	for (i = 1; i < MAX_NUM_EITR; i++)
1005 		igb->intr_throttling[i] = igb->intr_throttling[0];
1006 
1007 	/*
1008 	 * The initial link state should be "unknown"
1009 	 */
1010 	igb->link_state = LINK_STATE_UNKNOWN;
1011 
1012 	return (IGB_SUCCESS);
1013 }
1014 
1015 /*
1016  * igb_init_locks - Initialize locks
1017  */
1018 static void
1019 igb_init_locks(igb_t *igb)
1020 {
1021 	igb_rx_ring_t *rx_ring;
1022 	igb_tx_ring_t *tx_ring;
1023 	int i;
1024 
1025 	for (i = 0; i < igb->num_rx_rings; i++) {
1026 		rx_ring = &igb->rx_rings[i];
1027 		mutex_init(&rx_ring->rx_lock, NULL,
1028 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1029 	}
1030 
1031 	for (i = 0; i < igb->num_tx_rings; i++) {
1032 		tx_ring = &igb->tx_rings[i];
1033 		mutex_init(&tx_ring->tx_lock, NULL,
1034 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1035 		mutex_init(&tx_ring->recycle_lock, NULL,
1036 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1037 		mutex_init(&tx_ring->tcb_head_lock, NULL,
1038 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1039 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
1040 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1041 	}
1042 
1043 	mutex_init(&igb->gen_lock, NULL,
1044 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1045 
1046 	mutex_init(&igb->watchdog_lock, NULL,
1047 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1048 
1049 	mutex_init(&igb->link_lock, NULL,
1050 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1051 }
1052 
1053 /*
1054  * igb_destroy_locks - Destroy locks
1055  */
1056 static void
1057 igb_destroy_locks(igb_t *igb)
1058 {
1059 	igb_rx_ring_t *rx_ring;
1060 	igb_tx_ring_t *tx_ring;
1061 	int i;
1062 
1063 	for (i = 0; i < igb->num_rx_rings; i++) {
1064 		rx_ring = &igb->rx_rings[i];
1065 		mutex_destroy(&rx_ring->rx_lock);
1066 	}
1067 
1068 	for (i = 0; i < igb->num_tx_rings; i++) {
1069 		tx_ring = &igb->tx_rings[i];
1070 		mutex_destroy(&tx_ring->tx_lock);
1071 		mutex_destroy(&tx_ring->recycle_lock);
1072 		mutex_destroy(&tx_ring->tcb_head_lock);
1073 		mutex_destroy(&tx_ring->tcb_tail_lock);
1074 	}
1075 
1076 	mutex_destroy(&igb->gen_lock);
1077 	mutex_destroy(&igb->watchdog_lock);
1078 	mutex_destroy(&igb->link_lock);
1079 }
1080 
1081 static int
1082 igb_resume(dev_info_t *devinfo)
1083 {
1084 	igb_t *igb;
1085 
1086 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1087 	if (igb == NULL)
1088 		return (DDI_FAILURE);
1089 
1090 	mutex_enter(&igb->gen_lock);
1091 
1092 	/*
1093 	 * Enable interrupts
1094 	 */
1095 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1096 		if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1097 			igb_error(igb, "Failed to enable DDI interrupts");
1098 			mutex_exit(&igb->gen_lock);
1099 			return (DDI_FAILURE);
1100 		}
1101 	}
1102 
1103 	if (igb->igb_state & IGB_STARTED) {
1104 		if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1105 			mutex_exit(&igb->gen_lock);
1106 			return (DDI_FAILURE);
1107 		}
1108 
1109 		/*
1110 		 * Enable and start the watchdog timer
1111 		 */
1112 		igb_enable_watchdog_timer(igb);
1113 	}
1114 
1115 	atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1116 
1117 	mutex_exit(&igb->gen_lock);
1118 
1119 	return (DDI_SUCCESS);
1120 }
1121 
1122 static int
1123 igb_suspend(dev_info_t *devinfo)
1124 {
1125 	igb_t *igb;
1126 
1127 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1128 	if (igb == NULL)
1129 		return (DDI_FAILURE);
1130 
1131 	mutex_enter(&igb->gen_lock);
1132 
1133 	atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1134 
1135 	/*
1136 	 * Disable interrupts
1137 	 */
1138 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1139 		(void) igb_disable_intrs(igb);
1140 	}
1141 
1142 	if (!(igb->igb_state & IGB_STARTED)) {
1143 		mutex_exit(&igb->gen_lock);
1144 		return (DDI_SUCCESS);
1145 	}
1146 
1147 	igb_stop(igb, B_FALSE);
1148 
1149 	mutex_exit(&igb->gen_lock);
1150 
1151 	/*
1152 	 * Disable and stop the watchdog timer
1153 	 */
1154 	igb_disable_watchdog_timer(igb);
1155 
1156 	return (DDI_SUCCESS);
1157 }
1158 
1159 static int
1160 igb_init(igb_t *igb)
1161 {
1162 	mutex_enter(&igb->gen_lock);
1163 
1164 	/*
1165 	 * Initilize the adapter
1166 	 */
1167 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1168 		mutex_exit(&igb->gen_lock);
1169 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1170 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1171 		return (IGB_FAILURE);
1172 	}
1173 
1174 	mutex_exit(&igb->gen_lock);
1175 
1176 	return (IGB_SUCCESS);
1177 }
1178 
1179 /*
1180  * igb_init_mac_address - Initialize the default MAC address
1181  *
1182  * On success, the MAC address is entered in the igb->hw.mac.addr
1183  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1184  * address register.
1185  *
1186  * Important side effects:
1187  * 1. adapter is reset - this is required to put it in a known state.
1188  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1189  * MAC address and all default settings are stored, so a valid checksum
1190  * is required.
1191  */
1192 static int
1193 igb_init_mac_address(igb_t *igb)
1194 {
1195 	struct e1000_hw *hw = &igb->hw;
1196 
1197 	ASSERT(mutex_owned(&igb->gen_lock));
1198 
1199 	/*
1200 	 * Reset chipset to put the hardware in a known state
1201 	 * before we try to get MAC address from NVM.
1202 	 */
1203 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1204 		igb_error(igb, "Adapter reset failed.");
1205 		goto init_mac_fail;
1206 	}
1207 
1208 	/*
1209 	 * NVM validation
1210 	 */
1211 	if (e1000_validate_nvm_checksum(hw) < 0) {
1212 		/*
1213 		 * Some PCI-E parts fail the first check due to
1214 		 * the link being in sleep state.  Call it again,
1215 		 * if it fails a second time its a real issue.
1216 		 */
1217 		if (e1000_validate_nvm_checksum(hw) < 0) {
1218 			igb_error(igb,
1219 			    "Invalid NVM checksum. Please contact "
1220 			    "the vendor to update the NVM.");
1221 			goto init_mac_fail;
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Get the mac address
1227 	 * This function should handle SPARC case correctly.
1228 	 */
1229 	if (!igb_find_mac_address(igb)) {
1230 		igb_error(igb, "Failed to get the mac address");
1231 		goto init_mac_fail;
1232 	}
1233 
1234 	/* Validate mac address */
1235 	if (!is_valid_mac_addr(hw->mac.addr)) {
1236 		igb_error(igb, "Invalid mac address");
1237 		goto init_mac_fail;
1238 	}
1239 
1240 	return (IGB_SUCCESS);
1241 
1242 init_mac_fail:
1243 	return (IGB_FAILURE);
1244 }
1245 
1246 /*
1247  * igb_init_adapter - Initialize the adapter
1248  */
1249 static int
1250 igb_init_adapter(igb_t *igb)
1251 {
1252 	struct e1000_hw *hw = &igb->hw;
1253 	uint32_t pba;
1254 	uint32_t high_water;
1255 	int i;
1256 
1257 	ASSERT(mutex_owned(&igb->gen_lock));
1258 
1259 	/*
1260 	 * In order to obtain the default MAC address, this will reset the
1261 	 * adapter and validate the NVM that the address and many other
1262 	 * default settings come from.
1263 	 */
1264 	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1265 		igb_error(igb, "Failed to initialize MAC address");
1266 		goto init_adapter_fail;
1267 	}
1268 
1269 	/*
1270 	 * Setup flow control
1271 	 *
1272 	 * These parameters set thresholds for the adapter's generation(Tx)
1273 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1274 	 * settings.  Flow control is enabled or disabled in the configuration
1275 	 * file.
1276 	 * High-water mark is set down from the top of the rx fifo (not
1277 	 * sensitive to max_frame_size) and low-water is set just below
1278 	 * high-water mark.
1279 	 * The high water mark must be low enough to fit one full frame above
1280 	 * it in the rx FIFO.  Should be the lower of:
1281 	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1282 	 * frame.
1283 	 */
1284 	/*
1285 	 * The default setting of PBA is correct for 82575 and other supported
1286 	 * adapters do not have the E1000_PBA register, so PBA value is only
1287 	 * used for calculation here and is never written to the adapter.
1288 	 */
1289 	if (hw->mac.type == e1000_82575) {
1290 		pba = E1000_PBA_34K;
1291 	} else {
1292 		pba = E1000_PBA_64K;
1293 	}
1294 
1295 	high_water = min(((pba << 10) * 9 / 10),
1296 	    ((pba << 10) - igb->max_frame_size));
1297 
1298 	if (hw->mac.type == e1000_82575) {
1299 		/* 8-byte granularity */
1300 		hw->fc.high_water = high_water & 0xFFF8;
1301 		hw->fc.low_water = hw->fc.high_water - 8;
1302 	} else {
1303 		/* 16-byte granularity */
1304 		hw->fc.high_water = high_water & 0xFFF0;
1305 		hw->fc.low_water = hw->fc.high_water - 16;
1306 	}
1307 
1308 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1309 	hw->fc.send_xon = B_TRUE;
1310 
1311 	(void) e1000_validate_mdi_setting(hw);
1312 
1313 	/*
1314 	 * Reset the chipset hardware the second time to put PBA settings
1315 	 * into effect.
1316 	 */
1317 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1318 		igb_error(igb, "Second reset failed");
1319 		goto init_adapter_fail;
1320 	}
1321 
1322 	/*
1323 	 * Don't wait for auto-negotiation to complete
1324 	 */
1325 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1326 
1327 	/*
1328 	 * Copper options
1329 	 */
1330 	if (hw->phy.media_type == e1000_media_type_copper) {
1331 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1332 		hw->phy.disable_polarity_correction = B_FALSE;
1333 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1334 	}
1335 
1336 	/*
1337 	 * Initialize link settings
1338 	 */
1339 	(void) igb_setup_link(igb, B_FALSE);
1340 
1341 	/*
1342 	 * Configure/Initialize hardware
1343 	 */
1344 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1345 		igb_error(igb, "Failed to initialize hardware");
1346 		goto init_adapter_fail;
1347 	}
1348 
1349 	/*
1350 	 *  Start the link setup timer
1351 	 */
1352 	igb_start_link_timer(igb);
1353 
1354 	/*
1355 	 * Disable wakeup control by default
1356 	 */
1357 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1358 
1359 	/*
1360 	 * Record phy info in hw struct
1361 	 */
1362 	(void) e1000_get_phy_info(hw);
1363 
1364 	/*
1365 	 * Make sure driver has control
1366 	 */
1367 	igb_get_driver_control(hw);
1368 
1369 	/*
1370 	 * Restore LED settings to the default from EEPROM
1371 	 * to meet the standard for Sun platforms.
1372 	 */
1373 	(void) e1000_cleanup_led(hw);
1374 
1375 	/*
1376 	 * Setup MSI-X interrupts
1377 	 */
1378 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1379 		igb->capab->setup_msix(igb);
1380 
1381 	/*
1382 	 * Initialize unicast addresses.
1383 	 */
1384 	igb_init_unicst(igb);
1385 
1386 	/*
1387 	 * Setup and initialize the mctable structures.
1388 	 */
1389 	igb_setup_multicst(igb);
1390 
1391 	/*
1392 	 * Set interrupt throttling rate
1393 	 */
1394 	for (i = 0; i < igb->intr_cnt; i++)
1395 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1396 
1397 	/*
1398 	 * Save the state of the phy
1399 	 */
1400 	igb_get_phy_state(igb);
1401 
1402 	igb_param_sync(igb);
1403 
1404 	return (IGB_SUCCESS);
1405 
1406 init_adapter_fail:
1407 	/*
1408 	 * Reset PHY if possible
1409 	 */
1410 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1411 		(void) e1000_phy_hw_reset(hw);
1412 
1413 	return (IGB_FAILURE);
1414 }
1415 
1416 /*
1417  * igb_stop_adapter - Stop the adapter
1418  */
1419 static void
1420 igb_stop_adapter(igb_t *igb)
1421 {
1422 	struct e1000_hw *hw = &igb->hw;
1423 
1424 	ASSERT(mutex_owned(&igb->gen_lock));
1425 
1426 	/* Stop the link setup timer */
1427 	igb_stop_link_timer(igb);
1428 
1429 	/* Tell firmware driver is no longer in control */
1430 	igb_release_driver_control(hw);
1431 
1432 	/*
1433 	 * Reset the chipset
1434 	 */
1435 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1436 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1437 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1438 	}
1439 
1440 	/*
1441 	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1442 	 */
1443 }
1444 
1445 /*
1446  * igb_reset - Reset the chipset and restart the driver.
1447  *
1448  * It involves stopping and re-starting the chipset,
1449  * and re-configuring the rx/tx rings.
1450  */
1451 static int
1452 igb_reset(igb_t *igb)
1453 {
1454 	int i;
1455 
1456 	mutex_enter(&igb->gen_lock);
1457 
1458 	ASSERT(igb->igb_state & IGB_STARTED);
1459 	atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1460 
1461 	/*
1462 	 * Disable the adapter interrupts to stop any rx/tx activities
1463 	 * before draining pending data and resetting hardware.
1464 	 */
1465 	igb_disable_adapter_interrupts(igb);
1466 
1467 	/*
1468 	 * Drain the pending transmit packets
1469 	 */
1470 	(void) igb_tx_drain(igb);
1471 
1472 	for (i = 0; i < igb->num_rx_rings; i++)
1473 		mutex_enter(&igb->rx_rings[i].rx_lock);
1474 	for (i = 0; i < igb->num_tx_rings; i++)
1475 		mutex_enter(&igb->tx_rings[i].tx_lock);
1476 
1477 	/*
1478 	 * Stop the adapter
1479 	 */
1480 	igb_stop_adapter(igb);
1481 
1482 	/*
1483 	 * Clean the pending tx data/resources
1484 	 */
1485 	igb_tx_clean(igb);
1486 
1487 	/*
1488 	 * Start the adapter
1489 	 */
1490 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1491 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1492 		goto reset_failure;
1493 	}
1494 
1495 	/*
1496 	 * Setup the rx/tx rings
1497 	 */
1498 	igb->tx_ring_init = B_FALSE;
1499 	igb_setup_rings(igb);
1500 
1501 	atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1502 
1503 	/*
1504 	 * Enable adapter interrupts
1505 	 * The interrupts must be enabled after the driver state is START
1506 	 */
1507 	igb->capab->enable_intr(igb);
1508 
1509 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1510 		goto reset_failure;
1511 
1512 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1513 		goto reset_failure;
1514 
1515 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1516 		mutex_exit(&igb->tx_rings[i].tx_lock);
1517 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1518 		mutex_exit(&igb->rx_rings[i].rx_lock);
1519 
1520 	atomic_or_32(&igb->igb_state, IGB_STARTED);
1521 
1522 	mutex_exit(&igb->gen_lock);
1523 
1524 	return (IGB_SUCCESS);
1525 
1526 reset_failure:
1527 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1528 		mutex_exit(&igb->tx_rings[i].tx_lock);
1529 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1530 		mutex_exit(&igb->rx_rings[i].rx_lock);
1531 
1532 	mutex_exit(&igb->gen_lock);
1533 
1534 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1535 
1536 	return (IGB_FAILURE);
1537 }
1538 
1539 /*
1540  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1541  */
1542 static void
1543 igb_tx_clean(igb_t *igb)
1544 {
1545 	igb_tx_ring_t *tx_ring;
1546 	tx_control_block_t *tcb;
1547 	link_list_t pending_list;
1548 	uint32_t desc_num;
1549 	int i, j;
1550 
1551 	LINK_LIST_INIT(&pending_list);
1552 
1553 	for (i = 0; i < igb->num_tx_rings; i++) {
1554 		tx_ring = &igb->tx_rings[i];
1555 
1556 		mutex_enter(&tx_ring->recycle_lock);
1557 
1558 		/*
1559 		 * Clean the pending tx data - the pending packets in the
1560 		 * work_list that have no chances to be transmitted again.
1561 		 *
1562 		 * We must ensure the chipset is stopped or the link is down
1563 		 * before cleaning the transmit packets.
1564 		 */
1565 		desc_num = 0;
1566 		for (j = 0; j < tx_ring->ring_size; j++) {
1567 			tcb = tx_ring->work_list[j];
1568 			if (tcb != NULL) {
1569 				desc_num += tcb->desc_num;
1570 
1571 				tx_ring->work_list[j] = NULL;
1572 
1573 				igb_free_tcb(tcb);
1574 
1575 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1576 			}
1577 		}
1578 
1579 		if (desc_num > 0) {
1580 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1581 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1582 
1583 			/*
1584 			 * Reset the head and tail pointers of the tbd ring;
1585 			 * Reset the head write-back if it is enabled.
1586 			 */
1587 			tx_ring->tbd_head = 0;
1588 			tx_ring->tbd_tail = 0;
1589 			if (igb->tx_head_wb_enable)
1590 				*tx_ring->tbd_head_wb = 0;
1591 
1592 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1593 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1594 		}
1595 
1596 		mutex_exit(&tx_ring->recycle_lock);
1597 
1598 		/*
1599 		 * Add the tx control blocks in the pending list to
1600 		 * the free list.
1601 		 */
1602 		igb_put_free_list(tx_ring, &pending_list);
1603 	}
1604 }
1605 
1606 /*
1607  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1608  */
1609 static boolean_t
1610 igb_tx_drain(igb_t *igb)
1611 {
1612 	igb_tx_ring_t *tx_ring;
1613 	boolean_t done;
1614 	int i, j;
1615 
1616 	/*
1617 	 * Wait for a specific time to allow pending tx packets
1618 	 * to be transmitted.
1619 	 *
1620 	 * Check the counter tbd_free to see if transmission is done.
1621 	 * No lock protection is needed here.
1622 	 *
1623 	 * Return B_TRUE if all pending packets have been transmitted;
1624 	 * Otherwise return B_FALSE;
1625 	 */
1626 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1627 
1628 		done = B_TRUE;
1629 		for (j = 0; j < igb->num_tx_rings; j++) {
1630 			tx_ring = &igb->tx_rings[j];
1631 			done = done &&
1632 			    (tx_ring->tbd_free == tx_ring->ring_size);
1633 		}
1634 
1635 		if (done)
1636 			break;
1637 
1638 		msec_delay(1);
1639 	}
1640 
1641 	return (done);
1642 }
1643 
1644 /*
1645  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1646  */
1647 static boolean_t
1648 igb_rx_drain(igb_t *igb)
1649 {
1650 	boolean_t done;
1651 	int i;
1652 
1653 	/*
1654 	 * Polling the rx free list to check if those rx buffers held by
1655 	 * the upper layer are released.
1656 	 *
1657 	 * Check the counter rcb_free to see if all pending buffers are
1658 	 * released. No lock protection is needed here.
1659 	 *
1660 	 * Return B_TRUE if all pending buffers have been released;
1661 	 * Otherwise return B_FALSE;
1662 	 */
1663 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1664 		done = (igb->rcb_pending == 0);
1665 
1666 		if (done)
1667 			break;
1668 
1669 		msec_delay(1);
1670 	}
1671 
1672 	return (done);
1673 }
1674 
1675 /*
1676  * igb_start - Start the driver/chipset
1677  */
1678 int
1679 igb_start(igb_t *igb, boolean_t alloc_buffer)
1680 {
1681 	int i;
1682 
1683 	ASSERT(mutex_owned(&igb->gen_lock));
1684 
1685 	if (alloc_buffer) {
1686 		if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1687 			igb_error(igb,
1688 			    "Failed to allocate software receive rings");
1689 			return (IGB_FAILURE);
1690 		}
1691 
1692 		/* Allocate buffers for all the rx/tx rings */
1693 		if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1694 			igb_error(igb, "Failed to allocate DMA resource");
1695 			return (IGB_FAILURE);
1696 		}
1697 
1698 		igb->tx_ring_init = B_TRUE;
1699 	} else {
1700 		igb->tx_ring_init = B_FALSE;
1701 	}
1702 
1703 	for (i = 0; i < igb->num_rx_rings; i++)
1704 		mutex_enter(&igb->rx_rings[i].rx_lock);
1705 	for (i = 0; i < igb->num_tx_rings; i++)
1706 		mutex_enter(&igb->tx_rings[i].tx_lock);
1707 
1708 	/*
1709 	 * Start the adapter
1710 	 */
1711 	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1712 		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1713 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1714 			goto start_failure;
1715 		}
1716 		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1717 	}
1718 
1719 	/*
1720 	 * Setup the rx/tx rings
1721 	 */
1722 	igb_setup_rings(igb);
1723 
1724 	/*
1725 	 * Enable adapter interrupts
1726 	 * The interrupts must be enabled after the driver state is START
1727 	 */
1728 	igb->capab->enable_intr(igb);
1729 
1730 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1731 		goto start_failure;
1732 
1733 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1734 		goto start_failure;
1735 
1736 	if (igb->hw.mac.type == e1000_i350)
1737 		(void) e1000_set_eee_i350(&igb->hw);
1738 
1739 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1740 		mutex_exit(&igb->tx_rings[i].tx_lock);
1741 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1742 		mutex_exit(&igb->rx_rings[i].rx_lock);
1743 
1744 	return (IGB_SUCCESS);
1745 
1746 start_failure:
1747 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1748 		mutex_exit(&igb->tx_rings[i].tx_lock);
1749 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1750 		mutex_exit(&igb->rx_rings[i].rx_lock);
1751 
1752 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1753 
1754 	return (IGB_FAILURE);
1755 }
1756 
1757 /*
1758  * igb_stop - Stop the driver/chipset
1759  */
1760 void
1761 igb_stop(igb_t *igb, boolean_t free_buffer)
1762 {
1763 	int i;
1764 
1765 	ASSERT(mutex_owned(&igb->gen_lock));
1766 
1767 	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1768 
1769 	/*
1770 	 * Disable the adapter interrupts
1771 	 */
1772 	igb_disable_adapter_interrupts(igb);
1773 
1774 	/*
1775 	 * Drain the pending tx packets
1776 	 */
1777 	(void) igb_tx_drain(igb);
1778 
1779 	for (i = 0; i < igb->num_rx_rings; i++)
1780 		mutex_enter(&igb->rx_rings[i].rx_lock);
1781 	for (i = 0; i < igb->num_tx_rings; i++)
1782 		mutex_enter(&igb->tx_rings[i].tx_lock);
1783 
1784 	/*
1785 	 * Stop the adapter
1786 	 */
1787 	igb_stop_adapter(igb);
1788 
1789 	/*
1790 	 * Clean the pending tx data/resources
1791 	 */
1792 	igb_tx_clean(igb);
1793 
1794 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1795 		mutex_exit(&igb->tx_rings[i].tx_lock);
1796 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1797 		mutex_exit(&igb->rx_rings[i].rx_lock);
1798 
1799 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1800 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1801 
1802 	if (igb->link_state == LINK_STATE_UP) {
1803 		igb->link_state = LINK_STATE_UNKNOWN;
1804 		mac_link_update(igb->mac_hdl, igb->link_state);
1805 	}
1806 
1807 	if (free_buffer) {
1808 		/*
1809 		 * Release the DMA/memory resources of rx/tx rings
1810 		 */
1811 		igb_free_dma(igb);
1812 		igb_free_rx_data(igb);
1813 	}
1814 }
1815 
1816 /*
1817  * igb_alloc_rings - Allocate memory space for rx/tx rings
1818  */
1819 static int
1820 igb_alloc_rings(igb_t *igb)
1821 {
1822 	/*
1823 	 * Allocate memory space for rx rings
1824 	 */
1825 	igb->rx_rings = kmem_zalloc(
1826 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1827 	    KM_NOSLEEP);
1828 
1829 	if (igb->rx_rings == NULL) {
1830 		return (IGB_FAILURE);
1831 	}
1832 
1833 	/*
1834 	 * Allocate memory space for tx rings
1835 	 */
1836 	igb->tx_rings = kmem_zalloc(
1837 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1838 	    KM_NOSLEEP);
1839 
1840 	if (igb->tx_rings == NULL) {
1841 		kmem_free(igb->rx_rings,
1842 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1843 		igb->rx_rings = NULL;
1844 		return (IGB_FAILURE);
1845 	}
1846 
1847 	/*
1848 	 * Allocate memory space for rx ring groups
1849 	 */
1850 	igb->rx_groups = kmem_zalloc(
1851 	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1852 	    KM_NOSLEEP);
1853 
1854 	if (igb->rx_groups == NULL) {
1855 		kmem_free(igb->rx_rings,
1856 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1857 		kmem_free(igb->tx_rings,
1858 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1859 		igb->rx_rings = NULL;
1860 		igb->tx_rings = NULL;
1861 		return (IGB_FAILURE);
1862 	}
1863 
1864 	return (IGB_SUCCESS);
1865 }
1866 
1867 /*
1868  * igb_free_rings - Free the memory space of rx/tx rings.
1869  */
1870 static void
1871 igb_free_rings(igb_t *igb)
1872 {
1873 	if (igb->rx_rings != NULL) {
1874 		kmem_free(igb->rx_rings,
1875 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1876 		igb->rx_rings = NULL;
1877 	}
1878 
1879 	if (igb->tx_rings != NULL) {
1880 		kmem_free(igb->tx_rings,
1881 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1882 		igb->tx_rings = NULL;
1883 	}
1884 
1885 	if (igb->rx_groups != NULL) {
1886 		kmem_free(igb->rx_groups,
1887 		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1888 		igb->rx_groups = NULL;
1889 	}
1890 }
1891 
1892 static int
1893 igb_alloc_rx_data(igb_t *igb)
1894 {
1895 	igb_rx_ring_t *rx_ring;
1896 	int i;
1897 
1898 	for (i = 0; i < igb->num_rx_rings; i++) {
1899 		rx_ring = &igb->rx_rings[i];
1900 		if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
1901 			goto alloc_rx_rings_failure;
1902 	}
1903 	return (IGB_SUCCESS);
1904 
1905 alloc_rx_rings_failure:
1906 	igb_free_rx_data(igb);
1907 	return (IGB_FAILURE);
1908 }
1909 
1910 static void
1911 igb_free_rx_data(igb_t *igb)
1912 {
1913 	igb_rx_ring_t *rx_ring;
1914 	igb_rx_data_t *rx_data;
1915 	int i;
1916 
1917 	for (i = 0; i < igb->num_rx_rings; i++) {
1918 		rx_ring = &igb->rx_rings[i];
1919 
1920 		mutex_enter(&igb->rx_pending_lock);
1921 		rx_data = rx_ring->rx_data;
1922 
1923 		if (rx_data != NULL) {
1924 			rx_data->flag |= IGB_RX_STOPPED;
1925 
1926 			if (rx_data->rcb_pending == 0) {
1927 				igb_free_rx_ring_data(rx_data);
1928 				rx_ring->rx_data = NULL;
1929 			}
1930 		}
1931 
1932 		mutex_exit(&igb->rx_pending_lock);
1933 	}
1934 }
1935 
1936 /*
1937  * igb_setup_rings - Setup rx/tx rings
1938  */
1939 static void
1940 igb_setup_rings(igb_t *igb)
1941 {
1942 	/*
1943 	 * Setup the rx/tx rings, including the following:
1944 	 *
1945 	 * 1. Setup the descriptor ring and the control block buffers;
1946 	 * 2. Initialize necessary registers for receive/transmit;
1947 	 * 3. Initialize software pointers/parameters for receive/transmit;
1948 	 */
1949 	igb_setup_rx(igb);
1950 
1951 	igb_setup_tx(igb);
1952 }
1953 
1954 static void
1955 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1956 {
1957 	igb_t *igb = rx_ring->igb;
1958 	igb_rx_data_t *rx_data = rx_ring->rx_data;
1959 	struct e1000_hw *hw = &igb->hw;
1960 	rx_control_block_t *rcb;
1961 	union e1000_adv_rx_desc	*rbd;
1962 	uint32_t size;
1963 	uint32_t buf_low;
1964 	uint32_t buf_high;
1965 	uint32_t rxdctl;
1966 	int i;
1967 
1968 	ASSERT(mutex_owned(&rx_ring->rx_lock));
1969 	ASSERT(mutex_owned(&igb->gen_lock));
1970 
1971 	/*
1972 	 * Initialize descriptor ring with buffer addresses
1973 	 */
1974 	for (i = 0; i < igb->rx_ring_size; i++) {
1975 		rcb = rx_data->work_list[i];
1976 		rbd = &rx_data->rbd_ring[i];
1977 
1978 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1979 		rbd->read.hdr_addr = NULL;
1980 	}
1981 
1982 	/*
1983 	 * Initialize the base address registers
1984 	 */
1985 	buf_low = (uint32_t)rx_data->rbd_area.dma_address;
1986 	buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
1987 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1988 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1989 
1990 	/*
1991 	 * Initialize the length register
1992 	 */
1993 	size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
1994 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1995 
1996 	/*
1997 	 * Initialize buffer size & descriptor type
1998 	 */
1999 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2000 	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2001 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2002 
2003 	/*
2004 	 * Setup the Receive Descriptor Control Register (RXDCTL)
2005 	 */
2006 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2007 	rxdctl &= igb->capab->rxdctl_mask;
2008 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2009 	rxdctl |= 16;		/* pthresh */
2010 	rxdctl |= 8 << 8;	/* hthresh */
2011 	rxdctl |= 1 << 16;	/* wthresh */
2012 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2013 
2014 	rx_data->rbd_next = 0;
2015 }
2016 
2017 static void
2018 igb_setup_rx(igb_t *igb)
2019 {
2020 	igb_rx_ring_t *rx_ring;
2021 	igb_rx_data_t *rx_data;
2022 	igb_rx_group_t *rx_group;
2023 	struct e1000_hw *hw = &igb->hw;
2024 	uint32_t rctl, rxcsum;
2025 	uint32_t ring_per_group;
2026 	int i;
2027 
2028 	/*
2029 	 * Setup the Receive Control Register (RCTL), and enable the
2030 	 * receiver. The initial configuration is to: enable the receiver,
2031 	 * accept broadcasts, discard bad packets, accept long packets,
2032 	 * disable VLAN filter checking, and set receive buffer size to
2033 	 * 2k.  For 82575, also set the receive descriptor minimum
2034 	 * threshold size to 1/2 the ring.
2035 	 */
2036 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2037 
2038 	/*
2039 	 * Clear the field used for wakeup control.  This driver doesn't do
2040 	 * wakeup but leave this here for completeness.
2041 	 */
2042 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2043 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2044 
2045 	rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
2046 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
2047 	    E1000_RCTL_LPE |		/* Large Packet Enable */
2048 					/* Multicast filter offset */
2049 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2050 	    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
2051 	    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
2052 
2053 	for (i = 0; i < igb->num_rx_groups; i++) {
2054 		rx_group = &igb->rx_groups[i];
2055 		rx_group->index = i;
2056 		rx_group->igb = igb;
2057 	}
2058 
2059 	/*
2060 	 * Set up all rx descriptor rings - must be called before receive unit
2061 	 * enabled.
2062 	 */
2063 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2064 	for (i = 0; i < igb->num_rx_rings; i++) {
2065 		rx_ring = &igb->rx_rings[i];
2066 		igb_setup_rx_ring(rx_ring);
2067 
2068 		/*
2069 		 * Map a ring to a group by assigning a group index
2070 		 */
2071 		rx_ring->group_index = i / ring_per_group;
2072 	}
2073 
2074 	/*
2075 	 * Setup the Rx Long Packet Max Length register
2076 	 */
2077 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2078 
2079 	/*
2080 	 * Hardware checksum settings
2081 	 */
2082 	if (igb->rx_hcksum_enable) {
2083 		rxcsum =
2084 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
2085 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
2086 
2087 		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2088 	}
2089 
2090 	/*
2091 	 * Setup classify and RSS for multiple receive queues
2092 	 */
2093 	switch (igb->vmdq_mode) {
2094 	case E1000_VMDQ_OFF:
2095 		/*
2096 		 * One ring group, only RSS is needed when more than
2097 		 * one ring enabled.
2098 		 */
2099 		if (igb->num_rx_rings > 1)
2100 			igb_setup_rss(igb);
2101 		break;
2102 	case E1000_VMDQ_MAC:
2103 		/*
2104 		 * Multiple groups, each group has one ring,
2105 		 * only the MAC classification is needed.
2106 		 */
2107 		igb_setup_mac_classify(igb);
2108 		break;
2109 	case E1000_VMDQ_MAC_RSS:
2110 		/*
2111 		 * Multiple groups and multiple rings, both
2112 		 * MAC classification and RSS are needed.
2113 		 */
2114 		igb_setup_mac_rss_classify(igb);
2115 		break;
2116 	}
2117 
2118 	/*
2119 	 * Enable the receive unit - must be done after all
2120 	 * the rx setup above.
2121 	 */
2122 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2123 
2124 	/*
2125 	 * Initialize all adapter ring head & tail pointers - must
2126 	 * be done after receive unit is enabled
2127 	 */
2128 	for (i = 0; i < igb->num_rx_rings; i++) {
2129 		rx_ring = &igb->rx_rings[i];
2130 		rx_data = rx_ring->rx_data;
2131 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2132 		E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2133 	}
2134 
2135 	/*
2136 	 * 82575 with manageability enabled needs a special flush to make
2137 	 * sure the fifos start clean.
2138 	 */
2139 	if ((hw->mac.type == e1000_82575) &&
2140 	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2141 		e1000_rx_fifo_flush_82575(hw);
2142 	}
2143 }
2144 
2145 static void
2146 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2147 {
2148 	igb_t *igb = tx_ring->igb;
2149 	struct e1000_hw *hw = &igb->hw;
2150 	uint32_t size;
2151 	uint32_t buf_low;
2152 	uint32_t buf_high;
2153 	uint32_t reg_val;
2154 
2155 	ASSERT(mutex_owned(&tx_ring->tx_lock));
2156 	ASSERT(mutex_owned(&igb->gen_lock));
2157 
2158 
2159 	/*
2160 	 * Initialize the length register
2161 	 */
2162 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2163 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2164 
2165 	/*
2166 	 * Initialize the base address registers
2167 	 */
2168 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2169 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2170 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2171 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2172 
2173 	/*
2174 	 * Setup head & tail pointers
2175 	 */
2176 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2177 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2178 
2179 	/*
2180 	 * Setup head write-back
2181 	 */
2182 	if (igb->tx_head_wb_enable) {
2183 		/*
2184 		 * The memory of the head write-back is allocated using
2185 		 * the extra tbd beyond the tail of the tbd ring.
2186 		 */
2187 		tx_ring->tbd_head_wb = (uint32_t *)
2188 		    ((uintptr_t)tx_ring->tbd_area.address + size);
2189 		*tx_ring->tbd_head_wb = 0;
2190 
2191 		buf_low = (uint32_t)
2192 		    (tx_ring->tbd_area.dma_address + size);
2193 		buf_high = (uint32_t)
2194 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2195 
2196 		/* Set the head write-back enable bit */
2197 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2198 
2199 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2200 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2201 
2202 		/*
2203 		 * Turn off relaxed ordering for head write back or it will
2204 		 * cause problems with the tx recycling
2205 		 */
2206 		reg_val = E1000_READ_REG(hw,
2207 		    E1000_DCA_TXCTRL(tx_ring->index));
2208 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2209 		E1000_WRITE_REG(hw,
2210 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2211 	} else {
2212 		tx_ring->tbd_head_wb = NULL;
2213 	}
2214 
2215 	tx_ring->tbd_head = 0;
2216 	tx_ring->tbd_tail = 0;
2217 	tx_ring->tbd_free = tx_ring->ring_size;
2218 
2219 	if (igb->tx_ring_init == B_TRUE) {
2220 		tx_ring->tcb_head = 0;
2221 		tx_ring->tcb_tail = 0;
2222 		tx_ring->tcb_free = tx_ring->free_list_size;
2223 	}
2224 
2225 	/*
2226 	 * Enable TXDCTL per queue
2227 	 */
2228 	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2229 	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2230 	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2231 
2232 	/*
2233 	 * Initialize hardware checksum offload settings
2234 	 */
2235 	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2236 }
2237 
2238 static void
2239 igb_setup_tx(igb_t *igb)
2240 {
2241 	igb_tx_ring_t *tx_ring;
2242 	struct e1000_hw *hw = &igb->hw;
2243 	uint32_t reg_val;
2244 	int i;
2245 
2246 	for (i = 0; i < igb->num_tx_rings; i++) {
2247 		tx_ring = &igb->tx_rings[i];
2248 		igb_setup_tx_ring(tx_ring);
2249 	}
2250 
2251 	/*
2252 	 * Setup the Transmit Control Register (TCTL)
2253 	 */
2254 	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2255 	reg_val &= ~E1000_TCTL_CT;
2256 	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2257 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2258 
2259 	/* Enable transmits */
2260 	reg_val |= E1000_TCTL_EN;
2261 
2262 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2263 }
2264 
2265 /*
2266  * igb_setup_rss - Setup receive-side scaling feature
2267  */
2268 static void
2269 igb_setup_rss(igb_t *igb)
2270 {
2271 	struct e1000_hw *hw = &igb->hw;
2272 	uint32_t i, mrqc, rxcsum;
2273 	int shift = 0;
2274 	uint32_t random;
2275 	union e1000_reta {
2276 		uint32_t	dword;
2277 		uint8_t		bytes[4];
2278 	} reta;
2279 
2280 	/* Setup the Redirection Table */
2281 	if (hw->mac.type == e1000_82576) {
2282 		shift = 3;
2283 	} else if (hw->mac.type == e1000_82575) {
2284 		shift = 6;
2285 	}
2286 	for (i = 0; i < (32 * 4); i++) {
2287 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2288 		if ((i & 3) == 3) {
2289 			E1000_WRITE_REG(hw,
2290 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2291 		}
2292 	}
2293 
2294 	/* Fill out hash function seeds */
2295 	for (i = 0; i < 10; i++) {
2296 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2297 		    sizeof (uint32_t));
2298 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2299 	}
2300 
2301 	/* Setup the Multiple Receive Queue Control register */
2302 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2303 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2304 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2305 	    E1000_MRQC_RSS_FIELD_IPV6 |
2306 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2307 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2308 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2309 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2310 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2311 
2312 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2313 
2314 	/*
2315 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2316 	 *
2317 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2318 	 * checksum offloading provided by the 82575 chipset besides the IP
2319 	 * header checksum offloading and the TCP/UDP checksum offloading.
2320 	 * The Packet Checksum is by default computed over the entire packet
2321 	 * from the first byte of the DA through the last byte of the CRC,
2322 	 * including the Ethernet and IP headers.
2323 	 *
2324 	 * It is a hardware limitation that Packet Checksum is mutually
2325 	 * exclusive with RSS.
2326 	 */
2327 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2328 	rxcsum |= E1000_RXCSUM_PCSD;
2329 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2330 }
2331 
2332 /*
2333  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2334  */
2335 static void
2336 igb_setup_mac_rss_classify(igb_t *igb)
2337 {
2338 	struct e1000_hw *hw = &igb->hw;
2339 	uint32_t i, mrqc, vmdctl, rxcsum;
2340 	uint32_t ring_per_group;
2341 	int shift_group0, shift_group1;
2342 	uint32_t random;
2343 	union e1000_reta {
2344 		uint32_t	dword;
2345 		uint8_t		bytes[4];
2346 	} reta;
2347 
2348 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2349 
2350 	/* Setup the Redirection Table, it is shared between two groups */
2351 	shift_group0 = 2;
2352 	shift_group1 = 6;
2353 	for (i = 0; i < (32 * 4); i++) {
2354 		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2355 		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2356 		if ((i & 3) == 3) {
2357 			E1000_WRITE_REG(hw,
2358 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2359 		}
2360 	}
2361 
2362 	/* Fill out hash function seeds */
2363 	for (i = 0; i < 10; i++) {
2364 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2365 		    sizeof (uint32_t));
2366 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2367 	}
2368 
2369 	/*
2370 	 * Setup the Multiple Receive Queue Control register,
2371 	 * enable VMDq based on packet destination MAC address and RSS.
2372 	 */
2373 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2374 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2375 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2376 	    E1000_MRQC_RSS_FIELD_IPV6 |
2377 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2378 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2379 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2380 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2381 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2382 
2383 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2384 
2385 
2386 	/* Define the default group and default queues */
2387 	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2388 	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2389 
2390 	/*
2391 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2392 	 *
2393 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2394 	 * checksum offloading provided by the 82575 chipset besides the IP
2395 	 * header checksum offloading and the TCP/UDP checksum offloading.
2396 	 * The Packet Checksum is by default computed over the entire packet
2397 	 * from the first byte of the DA through the last byte of the CRC,
2398 	 * including the Ethernet and IP headers.
2399 	 *
2400 	 * It is a hardware limitation that Packet Checksum is mutually
2401 	 * exclusive with RSS.
2402 	 */
2403 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2404 	rxcsum |= E1000_RXCSUM_PCSD;
2405 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2406 }
2407 
2408 /*
2409  * igb_setup_mac_classify - Setup MAC classification feature
2410  */
2411 static void
2412 igb_setup_mac_classify(igb_t *igb)
2413 {
2414 	struct e1000_hw *hw = &igb->hw;
2415 	uint32_t mrqc, rxcsum;
2416 
2417 	/*
2418 	 * Setup the Multiple Receive Queue Control register,
2419 	 * enable VMDq based on packet destination MAC address.
2420 	 */
2421 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2422 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2423 
2424 	/*
2425 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2426 	 *
2427 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2428 	 * checksum offloading provided by the 82575 chipset besides the IP
2429 	 * header checksum offloading and the TCP/UDP checksum offloading.
2430 	 * The Packet Checksum is by default computed over the entire packet
2431 	 * from the first byte of the DA through the last byte of the CRC,
2432 	 * including the Ethernet and IP headers.
2433 	 *
2434 	 * It is a hardware limitation that Packet Checksum is mutually
2435 	 * exclusive with RSS.
2436 	 */
2437 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2438 	rxcsum |= E1000_RXCSUM_PCSD;
2439 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2440 
2441 }
2442 
2443 /*
2444  * igb_init_unicst - Initialize the unicast addresses
2445  */
2446 static void
2447 igb_init_unicst(igb_t *igb)
2448 {
2449 	struct e1000_hw *hw = &igb->hw;
2450 	int slot;
2451 
2452 	/*
2453 	 * Here we should consider two situations:
2454 	 *
2455 	 * 1. Chipset is initialized the first time
2456 	 *    Initialize the multiple unicast addresses, and
2457 	 *    save the default MAC address.
2458 	 *
2459 	 * 2. Chipset is reset
2460 	 *    Recover the multiple unicast addresses from the
2461 	 *    software data structure to the RAR registers.
2462 	 */
2463 
2464 	/*
2465 	 * Clear the default MAC address in the RAR0 rgister,
2466 	 * which is loaded from EEPROM when system boot or chipreset,
2467 	 * this will cause the conficts with add_mac/rem_mac entry
2468 	 * points when VMDq is enabled. For this reason, the RAR0
2469 	 * must be cleared for both cases mentioned above.
2470 	 */
2471 	e1000_rar_clear(hw, 0);
2472 
2473 	if (!igb->unicst_init) {
2474 
2475 		/* Initialize the multiple unicast addresses */
2476 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2477 		igb->unicst_avail = igb->unicst_total;
2478 
2479 		for (slot = 0; slot < igb->unicst_total; slot++)
2480 			igb->unicst_addr[slot].mac.set = 0;
2481 
2482 		igb->unicst_init = B_TRUE;
2483 	} else {
2484 		/* Re-configure the RAR registers */
2485 		for (slot = 0; slot < igb->unicst_total; slot++) {
2486 			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2487 			    slot, igb->vmdq_mode,
2488 			    igb->unicst_addr[slot].mac.group_index);
2489 		}
2490 	}
2491 }
2492 
2493 /*
2494  * igb_unicst_find - Find the slot for the specified unicast address
2495  */
2496 int
2497 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2498 {
2499 	int slot;
2500 
2501 	ASSERT(mutex_owned(&igb->gen_lock));
2502 
2503 	for (slot = 0; slot < igb->unicst_total; slot++) {
2504 		if (bcmp(igb->unicst_addr[slot].mac.addr,
2505 		    mac_addr, ETHERADDRL) == 0)
2506 			return (slot);
2507 	}
2508 
2509 	return (-1);
2510 }
2511 
2512 /*
2513  * igb_unicst_set - Set the unicast address to the specified slot
2514  */
2515 int
2516 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2517     int slot)
2518 {
2519 	struct e1000_hw *hw = &igb->hw;
2520 
2521 	ASSERT(mutex_owned(&igb->gen_lock));
2522 
2523 	/*
2524 	 * Save the unicast address in the software data structure
2525 	 */
2526 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2527 
2528 	/*
2529 	 * Set the unicast address to the RAR register
2530 	 */
2531 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2532 
2533 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2534 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2535 		return (EIO);
2536 	}
2537 
2538 	return (0);
2539 }
2540 
2541 /*
2542  * igb_multicst_add - Add a multicst address
2543  */
2544 int
2545 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2546 {
2547 	struct ether_addr *new_table;
2548 	size_t new_len;
2549 	size_t old_len;
2550 
2551 	ASSERT(mutex_owned(&igb->gen_lock));
2552 
2553 	if ((multiaddr[0] & 01) == 0) {
2554 		igb_error(igb, "Illegal multicast address");
2555 		return (EINVAL);
2556 	}
2557 
2558 	if (igb->mcast_count >= igb->mcast_max_num) {
2559 		igb_error(igb, "Adapter requested more than %d mcast addresses",
2560 		    igb->mcast_max_num);
2561 		return (ENOENT);
2562 	}
2563 
2564 	if (igb->mcast_count == igb->mcast_alloc_count) {
2565 		old_len = igb->mcast_alloc_count *
2566 		    sizeof (struct ether_addr);
2567 		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2568 		    sizeof (struct ether_addr);
2569 
2570 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2571 		if (new_table == NULL) {
2572 			igb_error(igb,
2573 			    "Not enough memory to alloc mcast table");
2574 			return (ENOMEM);
2575 		}
2576 
2577 		if (igb->mcast_table != NULL) {
2578 			bcopy(igb->mcast_table, new_table, old_len);
2579 			kmem_free(igb->mcast_table, old_len);
2580 		}
2581 		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2582 		igb->mcast_table = new_table;
2583 	}
2584 
2585 	bcopy(multiaddr,
2586 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2587 	igb->mcast_count++;
2588 
2589 	/*
2590 	 * Update the multicast table in the hardware
2591 	 */
2592 	igb_setup_multicst(igb);
2593 
2594 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2595 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2596 		return (EIO);
2597 	}
2598 
2599 	return (0);
2600 }
2601 
2602 /*
2603  * igb_multicst_remove - Remove a multicst address
2604  */
2605 int
2606 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2607 {
2608 	struct ether_addr *new_table;
2609 	size_t new_len;
2610 	size_t old_len;
2611 	int i;
2612 
2613 	ASSERT(mutex_owned(&igb->gen_lock));
2614 
2615 	for (i = 0; i < igb->mcast_count; i++) {
2616 		if (bcmp(multiaddr, &igb->mcast_table[i],
2617 		    ETHERADDRL) == 0) {
2618 			for (i++; i < igb->mcast_count; i++) {
2619 				igb->mcast_table[i - 1] =
2620 				    igb->mcast_table[i];
2621 			}
2622 			igb->mcast_count--;
2623 			break;
2624 		}
2625 	}
2626 
2627 	if ((igb->mcast_alloc_count - igb->mcast_count) >
2628 	    MCAST_ALLOC_COUNT) {
2629 		old_len = igb->mcast_alloc_count *
2630 		    sizeof (struct ether_addr);
2631 		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2632 		    sizeof (struct ether_addr);
2633 
2634 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2635 		if (new_table != NULL) {
2636 			bcopy(igb->mcast_table, new_table, new_len);
2637 			kmem_free(igb->mcast_table, old_len);
2638 			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2639 			igb->mcast_table = new_table;
2640 		}
2641 	}
2642 
2643 	/*
2644 	 * Update the multicast table in the hardware
2645 	 */
2646 	igb_setup_multicst(igb);
2647 
2648 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2649 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2650 		return (EIO);
2651 	}
2652 
2653 	return (0);
2654 }
2655 
2656 static void
2657 igb_release_multicast(igb_t *igb)
2658 {
2659 	if (igb->mcast_table != NULL) {
2660 		kmem_free(igb->mcast_table,
2661 		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2662 		igb->mcast_table = NULL;
2663 	}
2664 }
2665 
2666 /*
2667  * igb_setup_multicast - setup multicast data structures
2668  *
2669  * This routine initializes all of the multicast related structures
2670  * and save them in the hardware registers.
2671  */
2672 static void
2673 igb_setup_multicst(igb_t *igb)
2674 {
2675 	uint8_t *mc_addr_list;
2676 	uint32_t mc_addr_count;
2677 	struct e1000_hw *hw = &igb->hw;
2678 
2679 	ASSERT(mutex_owned(&igb->gen_lock));
2680 	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2681 
2682 	mc_addr_list = (uint8_t *)igb->mcast_table;
2683 	mc_addr_count = igb->mcast_count;
2684 
2685 	/*
2686 	 * Update the multicase addresses to the MTA registers
2687 	 */
2688 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2689 }
2690 
2691 /*
2692  * igb_get_conf - Get driver configurations set in driver.conf
2693  *
2694  * This routine gets user-configured values out of the configuration
2695  * file igb.conf.
2696  *
2697  * For each configurable value, there is a minimum, a maximum, and a
2698  * default.
2699  * If user does not configure a value, use the default.
2700  * If user configures below the minimum, use the minumum.
2701  * If user configures above the maximum, use the maxumum.
2702  */
2703 static void
2704 igb_get_conf(igb_t *igb)
2705 {
2706 	struct e1000_hw *hw = &igb->hw;
2707 	uint32_t default_mtu;
2708 	uint32_t flow_control;
2709 	uint32_t ring_per_group;
2710 	int i;
2711 
2712 	/*
2713 	 * igb driver supports the following user configurations:
2714 	 *
2715 	 * Link configurations:
2716 	 *    adv_autoneg_cap
2717 	 *    adv_1000fdx_cap
2718 	 *    adv_100fdx_cap
2719 	 *    adv_100hdx_cap
2720 	 *    adv_10fdx_cap
2721 	 *    adv_10hdx_cap
2722 	 * Note: 1000hdx is not supported.
2723 	 *
2724 	 * Jumbo frame configuration:
2725 	 *    default_mtu
2726 	 *
2727 	 * Ethernet flow control configuration:
2728 	 *    flow_control
2729 	 *
2730 	 * Multiple rings configurations:
2731 	 *    tx_queue_number
2732 	 *    tx_ring_size
2733 	 *    rx_queue_number
2734 	 *    rx_ring_size
2735 	 *
2736 	 * Call igb_get_prop() to get the value for a specific
2737 	 * configuration parameter.
2738 	 */
2739 
2740 	/*
2741 	 * Link configurations
2742 	 */
2743 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2744 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2745 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2746 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2747 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2748 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2749 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2750 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2751 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2752 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2753 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2754 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2755 
2756 	/*
2757 	 * Jumbo frame configurations
2758 	 */
2759 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2760 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2761 
2762 	igb->max_frame_size = default_mtu +
2763 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2764 
2765 	/*
2766 	 * Ethernet flow control configuration
2767 	 */
2768 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2769 	    e1000_fc_none, 4, e1000_fc_full);
2770 	if (flow_control == 4)
2771 		flow_control = e1000_fc_default;
2772 
2773 	hw->fc.requested_mode = flow_control;
2774 
2775 	/*
2776 	 * Multiple rings configurations
2777 	 */
2778 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2779 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2780 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2781 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2782 
2783 	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2784 	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2785 	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2786 	/*
2787 	 * Currently we do not support VMDq for 82576 and 82580.
2788 	 * If it is e1000_82576, set num_rx_groups to 1.
2789 	 */
2790 	if (hw->mac.type >= e1000_82576)
2791 		igb->num_rx_groups = 1;
2792 
2793 	if (igb->mr_enable) {
2794 		igb->num_tx_rings = igb->capab->def_tx_que_num;
2795 		igb->num_rx_rings = igb->capab->def_rx_que_num;
2796 	} else {
2797 		igb->num_tx_rings = 1;
2798 		igb->num_rx_rings = 1;
2799 
2800 		if (igb->num_rx_groups > 1) {
2801 			igb_error(igb,
2802 			    "Invalid rx groups number. Please enable multiple "
2803 			    "rings first");
2804 			igb->num_rx_groups = 1;
2805 		}
2806 	}
2807 
2808 	/*
2809 	 * Check the divisibility between rx rings and rx groups.
2810 	 */
2811 	for (i = igb->num_rx_groups; i > 0; i--) {
2812 		if ((igb->num_rx_rings % i) == 0)
2813 			break;
2814 	}
2815 	if (i != igb->num_rx_groups) {
2816 		igb_error(igb,
2817 		    "Invalid rx groups number. Downgrade the rx group "
2818 		    "number to %d.", i);
2819 		igb->num_rx_groups = i;
2820 	}
2821 
2822 	/*
2823 	 * Get the ring number per group.
2824 	 */
2825 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2826 
2827 	if (igb->num_rx_groups == 1) {
2828 		/*
2829 		 * One rx ring group, the rx ring number is num_rx_rings.
2830 		 */
2831 		igb->vmdq_mode = E1000_VMDQ_OFF;
2832 	} else if (ring_per_group == 1) {
2833 		/*
2834 		 * Multiple rx groups, each group has one rx ring.
2835 		 */
2836 		igb->vmdq_mode = E1000_VMDQ_MAC;
2837 	} else {
2838 		/*
2839 		 * Multiple groups and multiple rings.
2840 		 */
2841 		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2842 	}
2843 
2844 	/*
2845 	 * Tunable used to force an interrupt type. The only use is
2846 	 * for testing of the lesser interrupt types.
2847 	 * 0 = don't force interrupt type
2848 	 * 1 = force interrupt type MSIX
2849 	 * 2 = force interrupt type MSI
2850 	 * 3 = force interrupt type Legacy
2851 	 */
2852 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2853 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2854 
2855 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2856 	    0, 1, 1);
2857 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2858 	    0, 1, 1);
2859 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2860 	    0, 1, 1);
2861 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2862 	    0, 1, 1);
2863 
2864 	/*
2865 	 * igb LSO needs the tx h/w checksum support.
2866 	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2867 	 */
2868 	if (igb->tx_hcksum_enable == B_FALSE)
2869 		igb->lso_enable = B_FALSE;
2870 
2871 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2872 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2873 	    DEFAULT_TX_COPY_THRESHOLD);
2874 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2875 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2876 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2877 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2878 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2879 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2880 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2881 	    MIN_TX_RESCHED_THRESHOLD,
2882 	    MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
2883 	    igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
2884 	    DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
2885 
2886 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2887 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2888 	    DEFAULT_RX_COPY_THRESHOLD);
2889 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2890 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2891 	    DEFAULT_RX_LIMIT_PER_INTR);
2892 
2893 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2894 	    igb->capab->min_intr_throttle,
2895 	    igb->capab->max_intr_throttle,
2896 	    igb->capab->def_intr_throttle);
2897 
2898 	/*
2899 	 * Max number of multicast addresses
2900 	 */
2901 	igb->mcast_max_num =
2902 	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2903 	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2904 }
2905 
2906 /*
2907  * igb_get_prop - Get a property value out of the configuration file igb.conf
2908  *
2909  * Caller provides the name of the property, a default value, a minimum
2910  * value, and a maximum value.
2911  *
2912  * Return configured value of the property, with default, minimum and
2913  * maximum properly applied.
2914  */
2915 static int
2916 igb_get_prop(igb_t *igb,
2917     char *propname,	/* name of the property */
2918     int minval,		/* minimum acceptable value */
2919     int maxval,		/* maximim acceptable value */
2920     int defval)		/* default value */
2921 {
2922 	int value;
2923 
2924 	/*
2925 	 * Call ddi_prop_get_int() to read the conf settings
2926 	 */
2927 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2928 	    DDI_PROP_DONTPASS, propname, defval);
2929 
2930 	if (value > maxval)
2931 		value = maxval;
2932 
2933 	if (value < minval)
2934 		value = minval;
2935 
2936 	return (value);
2937 }
2938 
2939 /*
2940  * igb_setup_link - Using the link properties to setup the link
2941  */
2942 int
2943 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2944 {
2945 	struct e1000_mac_info *mac;
2946 	struct e1000_phy_info *phy;
2947 	boolean_t invalid;
2948 
2949 	mac = &igb->hw.mac;
2950 	phy = &igb->hw.phy;
2951 	invalid = B_FALSE;
2952 
2953 	if (igb->param_adv_autoneg_cap == 1) {
2954 		mac->autoneg = B_TRUE;
2955 		phy->autoneg_advertised = 0;
2956 
2957 		/*
2958 		 * 1000hdx is not supported for autonegotiation
2959 		 */
2960 		if (igb->param_adv_1000fdx_cap == 1)
2961 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2962 
2963 		if (igb->param_adv_100fdx_cap == 1)
2964 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2965 
2966 		if (igb->param_adv_100hdx_cap == 1)
2967 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
2968 
2969 		if (igb->param_adv_10fdx_cap == 1)
2970 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
2971 
2972 		if (igb->param_adv_10hdx_cap == 1)
2973 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
2974 
2975 		if (phy->autoneg_advertised == 0)
2976 			invalid = B_TRUE;
2977 	} else {
2978 		mac->autoneg = B_FALSE;
2979 
2980 		/*
2981 		 * 1000fdx and 1000hdx are not supported for forced link
2982 		 */
2983 		if (igb->param_adv_100fdx_cap == 1)
2984 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
2985 		else if (igb->param_adv_100hdx_cap == 1)
2986 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
2987 		else if (igb->param_adv_10fdx_cap == 1)
2988 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
2989 		else if (igb->param_adv_10hdx_cap == 1)
2990 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
2991 		else
2992 			invalid = B_TRUE;
2993 	}
2994 
2995 	if (invalid) {
2996 		igb_notice(igb, "Invalid link settings. Setup link to "
2997 		    "autonegotiation with full link capabilities.");
2998 		mac->autoneg = B_TRUE;
2999 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3000 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3001 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3002 	}
3003 
3004 	if (setup_hw) {
3005 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3006 			return (IGB_FAILURE);
3007 	}
3008 
3009 	return (IGB_SUCCESS);
3010 }
3011 
3012 
3013 /*
3014  * igb_is_link_up - Check if the link is up
3015  */
3016 static boolean_t
3017 igb_is_link_up(igb_t *igb)
3018 {
3019 	struct e1000_hw *hw = &igb->hw;
3020 	boolean_t link_up = B_FALSE;
3021 
3022 	ASSERT(mutex_owned(&igb->gen_lock));
3023 
3024 	/*
3025 	 * get_link_status is set in the interrupt handler on link-status-change
3026 	 * or rx sequence error interrupt.  get_link_status will stay
3027 	 * false until the e1000_check_for_link establishes link only
3028 	 * for copper adapters.
3029 	 */
3030 	switch (hw->phy.media_type) {
3031 	case e1000_media_type_copper:
3032 		if (hw->mac.get_link_status) {
3033 			(void) e1000_check_for_link(hw);
3034 			link_up = !hw->mac.get_link_status;
3035 		} else {
3036 			link_up = B_TRUE;
3037 		}
3038 		break;
3039 	case e1000_media_type_fiber:
3040 		(void) e1000_check_for_link(hw);
3041 		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3042 		break;
3043 	case e1000_media_type_internal_serdes:
3044 		(void) e1000_check_for_link(hw);
3045 		link_up = hw->mac.serdes_has_link;
3046 		break;
3047 	}
3048 
3049 	return (link_up);
3050 }
3051 
3052 /*
3053  * igb_link_check - Link status processing
3054  */
3055 static boolean_t
3056 igb_link_check(igb_t *igb)
3057 {
3058 	struct e1000_hw *hw = &igb->hw;
3059 	uint16_t speed = 0, duplex = 0;
3060 	boolean_t link_changed = B_FALSE;
3061 
3062 	ASSERT(mutex_owned(&igb->gen_lock));
3063 
3064 	if (igb_is_link_up(igb)) {
3065 		/*
3066 		 * The Link is up, check whether it was marked as down earlier
3067 		 */
3068 		if (igb->link_state != LINK_STATE_UP) {
3069 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3070 			igb->link_speed = speed;
3071 			igb->link_duplex = duplex;
3072 			igb->link_state = LINK_STATE_UP;
3073 			link_changed = B_TRUE;
3074 			if (!igb->link_complete)
3075 				igb_stop_link_timer(igb);
3076 		}
3077 	} else if (igb->link_complete) {
3078 		if (igb->link_state != LINK_STATE_DOWN) {
3079 			igb->link_speed = 0;
3080 			igb->link_duplex = 0;
3081 			igb->link_state = LINK_STATE_DOWN;
3082 			link_changed = B_TRUE;
3083 		}
3084 	}
3085 
3086 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3087 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3088 		return (B_FALSE);
3089 	}
3090 
3091 	return (link_changed);
3092 }
3093 
3094 /*
3095  * igb_local_timer - driver watchdog function
3096  *
3097  * This function will handle the hardware stall check, link status
3098  * check and other routines.
3099  */
3100 static void
3101 igb_local_timer(void *arg)
3102 {
3103 	igb_t *igb = (igb_t *)arg;
3104 	boolean_t link_changed = B_FALSE;
3105 
3106 	if (igb->igb_state & IGB_ERROR) {
3107 		igb->reset_count++;
3108 		if (igb_reset(igb) == IGB_SUCCESS)
3109 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3110 
3111 		igb_restart_watchdog_timer(igb);
3112 		return;
3113 	}
3114 
3115 	if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3116 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3117 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3118 		igb->reset_count++;
3119 		if (igb_reset(igb) == IGB_SUCCESS)
3120 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3121 
3122 		igb_restart_watchdog_timer(igb);
3123 		return;
3124 	}
3125 
3126 	mutex_enter(&igb->gen_lock);
3127 	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3128 		link_changed = igb_link_check(igb);
3129 	mutex_exit(&igb->gen_lock);
3130 
3131 	if (link_changed)
3132 		mac_link_update(igb->mac_hdl, igb->link_state);
3133 
3134 	igb_restart_watchdog_timer(igb);
3135 }
3136 
3137 /*
3138  * igb_link_timer - link setup timer function
3139  *
3140  * It is called when the timer for link setup is expired, which indicates
3141  * the completion of the link setup. The link state will not be updated
3142  * until the link setup is completed. And the link state will not be sent
3143  * to the upper layer through mac_link_update() in this function. It will
3144  * be updated in the local timer routine or the interrupts service routine
3145  * after the interface is started (plumbed).
3146  */
3147 static void
3148 igb_link_timer(void *arg)
3149 {
3150 	igb_t *igb = (igb_t *)arg;
3151 
3152 	mutex_enter(&igb->link_lock);
3153 	igb->link_complete = B_TRUE;
3154 	igb->link_tid = 0;
3155 	mutex_exit(&igb->link_lock);
3156 }
3157 /*
3158  * igb_stall_check - check for transmit stall
3159  *
3160  * This function checks if the adapter is stalled (in transmit).
3161  *
3162  * It is called each time the watchdog timeout is invoked.
3163  * If the transmit descriptor reclaim continuously fails,
3164  * the watchdog value will increment by 1. If the watchdog
3165  * value exceeds the threshold, the igb is assumed to
3166  * have stalled and need to be reset.
3167  */
3168 static boolean_t
3169 igb_stall_check(igb_t *igb)
3170 {
3171 	igb_tx_ring_t *tx_ring;
3172 	struct e1000_hw *hw = &igb->hw;
3173 	boolean_t result;
3174 	int i;
3175 
3176 	if (igb->link_state != LINK_STATE_UP)
3177 		return (B_FALSE);
3178 
3179 	/*
3180 	 * If any tx ring is stalled, we'll reset the chipset
3181 	 */
3182 	result = B_FALSE;
3183 	for (i = 0; i < igb->num_tx_rings; i++) {
3184 		tx_ring = &igb->tx_rings[i];
3185 
3186 		if (tx_ring->recycle_fail > 0)
3187 			tx_ring->stall_watchdog++;
3188 		else
3189 			tx_ring->stall_watchdog = 0;
3190 
3191 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3192 			result = B_TRUE;
3193 			if (hw->mac.type == e1000_82580) {
3194 				hw->dev_spec._82575.global_device_reset
3195 				    = B_TRUE;
3196 			}
3197 			break;
3198 		}
3199 	}
3200 
3201 	if (result) {
3202 		tx_ring->stall_watchdog = 0;
3203 		tx_ring->recycle_fail = 0;
3204 	}
3205 
3206 	return (result);
3207 }
3208 
3209 
3210 /*
3211  * is_valid_mac_addr - Check if the mac address is valid
3212  */
3213 static boolean_t
3214 is_valid_mac_addr(uint8_t *mac_addr)
3215 {
3216 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3217 	const uint8_t addr_test2[6] =
3218 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3219 
3220 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3221 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3222 		return (B_FALSE);
3223 
3224 	return (B_TRUE);
3225 }
3226 
3227 static boolean_t
3228 igb_find_mac_address(igb_t *igb)
3229 {
3230 	struct e1000_hw *hw = &igb->hw;
3231 #ifdef __sparc
3232 	uchar_t *bytes;
3233 	struct ether_addr sysaddr;
3234 	uint_t nelts;
3235 	int err;
3236 	boolean_t found = B_FALSE;
3237 
3238 	/*
3239 	 * The "vendor's factory-set address" may already have
3240 	 * been extracted from the chip, but if the property
3241 	 * "local-mac-address" is set we use that instead.
3242 	 *
3243 	 * We check whether it looks like an array of 6
3244 	 * bytes (which it should, if OBP set it).  If we can't
3245 	 * make sense of it this way, we'll ignore it.
3246 	 */
3247 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3248 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3249 	if (err == DDI_PROP_SUCCESS) {
3250 		if (nelts == ETHERADDRL) {
3251 			while (nelts--)
3252 				hw->mac.addr[nelts] = bytes[nelts];
3253 			found = B_TRUE;
3254 		}
3255 		ddi_prop_free(bytes);
3256 	}
3257 
3258 	/*
3259 	 * Look up the OBP property "local-mac-address?". If the user has set
3260 	 * 'local-mac-address? = false', use "the system address" instead.
3261 	 */
3262 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3263 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3264 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3265 			if (localetheraddr(NULL, &sysaddr) != 0) {
3266 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3267 				found = B_TRUE;
3268 			}
3269 		}
3270 		ddi_prop_free(bytes);
3271 	}
3272 
3273 	/*
3274 	 * Finally(!), if there's a valid "mac-address" property (created
3275 	 * if we netbooted from this interface), we must use this instead
3276 	 * of any of the above to ensure that the NFS/install server doesn't
3277 	 * get confused by the address changing as Solaris takes over!
3278 	 */
3279 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3280 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3281 	if (err == DDI_PROP_SUCCESS) {
3282 		if (nelts == ETHERADDRL) {
3283 			while (nelts--)
3284 				hw->mac.addr[nelts] = bytes[nelts];
3285 			found = B_TRUE;
3286 		}
3287 		ddi_prop_free(bytes);
3288 	}
3289 
3290 	if (found) {
3291 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3292 		return (B_TRUE);
3293 	}
3294 #endif
3295 
3296 	/*
3297 	 * Read the device MAC address from the EEPROM
3298 	 */
3299 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3300 		return (B_FALSE);
3301 
3302 	return (B_TRUE);
3303 }
3304 
3305 #pragma inline(igb_arm_watchdog_timer)
3306 
3307 static void
3308 igb_arm_watchdog_timer(igb_t *igb)
3309 {
3310 	/*
3311 	 * Fire a watchdog timer
3312 	 */
3313 	igb->watchdog_tid =
3314 	    timeout(igb_local_timer,
3315 	    (void *)igb, 1 * drv_usectohz(1000000));
3316 
3317 }
3318 
3319 /*
3320  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3321  */
3322 void
3323 igb_enable_watchdog_timer(igb_t *igb)
3324 {
3325 	mutex_enter(&igb->watchdog_lock);
3326 
3327 	if (!igb->watchdog_enable) {
3328 		igb->watchdog_enable = B_TRUE;
3329 		igb->watchdog_start = B_TRUE;
3330 		igb_arm_watchdog_timer(igb);
3331 	}
3332 
3333 	mutex_exit(&igb->watchdog_lock);
3334 
3335 }
3336 
3337 /*
3338  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3339  */
3340 void
3341 igb_disable_watchdog_timer(igb_t *igb)
3342 {
3343 	timeout_id_t tid;
3344 
3345 	mutex_enter(&igb->watchdog_lock);
3346 
3347 	igb->watchdog_enable = B_FALSE;
3348 	igb->watchdog_start = B_FALSE;
3349 	tid = igb->watchdog_tid;
3350 	igb->watchdog_tid = 0;
3351 
3352 	mutex_exit(&igb->watchdog_lock);
3353 
3354 	if (tid != 0)
3355 		(void) untimeout(tid);
3356 
3357 }
3358 
3359 /*
3360  * igb_start_watchdog_timer - Start the driver watchdog timer
3361  */
3362 static void
3363 igb_start_watchdog_timer(igb_t *igb)
3364 {
3365 	mutex_enter(&igb->watchdog_lock);
3366 
3367 	if (igb->watchdog_enable) {
3368 		if (!igb->watchdog_start) {
3369 			igb->watchdog_start = B_TRUE;
3370 			igb_arm_watchdog_timer(igb);
3371 		}
3372 	}
3373 
3374 	mutex_exit(&igb->watchdog_lock);
3375 }
3376 
3377 /*
3378  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3379  */
3380 static void
3381 igb_restart_watchdog_timer(igb_t *igb)
3382 {
3383 	mutex_enter(&igb->watchdog_lock);
3384 
3385 	if (igb->watchdog_start)
3386 		igb_arm_watchdog_timer(igb);
3387 
3388 	mutex_exit(&igb->watchdog_lock);
3389 }
3390 
3391 /*
3392  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3393  */
3394 static void
3395 igb_stop_watchdog_timer(igb_t *igb)
3396 {
3397 	timeout_id_t tid;
3398 
3399 	mutex_enter(&igb->watchdog_lock);
3400 
3401 	igb->watchdog_start = B_FALSE;
3402 	tid = igb->watchdog_tid;
3403 	igb->watchdog_tid = 0;
3404 
3405 	mutex_exit(&igb->watchdog_lock);
3406 
3407 	if (tid != 0)
3408 		(void) untimeout(tid);
3409 }
3410 
3411 /*
3412  * igb_start_link_timer - Start the link setup timer
3413  */
3414 static void
3415 igb_start_link_timer(struct igb *igb)
3416 {
3417 	struct e1000_hw *hw = &igb->hw;
3418 	clock_t link_timeout;
3419 
3420 	if (hw->mac.autoneg)
3421 		link_timeout = PHY_AUTO_NEG_LIMIT *
3422 		    drv_usectohz(100000);
3423 	else
3424 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3425 
3426 	mutex_enter(&igb->link_lock);
3427 	if (hw->phy.autoneg_wait_to_complete) {
3428 		igb->link_complete = B_TRUE;
3429 	} else {
3430 		igb->link_complete = B_FALSE;
3431 		igb->link_tid = timeout(igb_link_timer, (void *)igb,
3432 		    link_timeout);
3433 	}
3434 	mutex_exit(&igb->link_lock);
3435 }
3436 
3437 /*
3438  * igb_stop_link_timer - Stop the link setup timer
3439  */
3440 static void
3441 igb_stop_link_timer(struct igb *igb)
3442 {
3443 	timeout_id_t tid;
3444 
3445 	mutex_enter(&igb->link_lock);
3446 	igb->link_complete = B_TRUE;
3447 	tid = igb->link_tid;
3448 	igb->link_tid = 0;
3449 	mutex_exit(&igb->link_lock);
3450 
3451 	if (tid != 0)
3452 		(void) untimeout(tid);
3453 }
3454 
3455 /*
3456  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3457  */
3458 static void
3459 igb_disable_adapter_interrupts(igb_t *igb)
3460 {
3461 	struct e1000_hw *hw = &igb->hw;
3462 
3463 	/*
3464 	 * Set the IMC register to mask all the interrupts,
3465 	 * including the tx interrupts.
3466 	 */
3467 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3468 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3469 
3470 	/*
3471 	 * Additional disabling for MSI-X
3472 	 */
3473 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3474 		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3475 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3476 		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3477 	}
3478 
3479 	E1000_WRITE_FLUSH(hw);
3480 }
3481 
3482 /*
3483  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3484  */
3485 static void
3486 igb_enable_adapter_interrupts_82580(igb_t *igb)
3487 {
3488 	struct e1000_hw *hw = &igb->hw;
3489 
3490 	/* Clear any pending interrupts */
3491 	(void) E1000_READ_REG(hw, E1000_ICR);
3492 	igb->ims_mask |= E1000_IMS_DRSTA;
3493 
3494 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3495 
3496 		/* Interrupt enabling for MSI-X */
3497 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3498 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3499 		igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3500 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3501 	} else { /* Interrupt enabling for MSI and legacy */
3502 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3503 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3504 		igb->ims_mask |= E1000_IMS_DRSTA;
3505 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3506 	}
3507 
3508 	/* Disable auto-mask for ICR interrupt bits */
3509 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3510 
3511 	E1000_WRITE_FLUSH(hw);
3512 }
3513 
3514 /*
3515  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3516  */
3517 static void
3518 igb_enable_adapter_interrupts_82576(igb_t *igb)
3519 {
3520 	struct e1000_hw *hw = &igb->hw;
3521 
3522 	/* Clear any pending interrupts */
3523 	(void) E1000_READ_REG(hw, E1000_ICR);
3524 
3525 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3526 
3527 		/* Interrupt enabling for MSI-X */
3528 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3529 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3530 		igb->ims_mask = E1000_IMS_LSC;
3531 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3532 	} else {
3533 		/* Interrupt enabling for MSI and legacy */
3534 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3535 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3536 		E1000_WRITE_REG(hw, E1000_IMS,
3537 		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3538 	}
3539 
3540 	/* Disable auto-mask for ICR interrupt bits */
3541 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3542 
3543 	E1000_WRITE_FLUSH(hw);
3544 }
3545 
3546 /*
3547  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3548  */
3549 static void
3550 igb_enable_adapter_interrupts_82575(igb_t *igb)
3551 {
3552 	struct e1000_hw *hw = &igb->hw;
3553 	uint32_t reg;
3554 
3555 	/* Clear any pending interrupts */
3556 	(void) E1000_READ_REG(hw, E1000_ICR);
3557 
3558 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3559 		/* Interrupt enabling for MSI-X */
3560 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3561 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3562 		igb->ims_mask = E1000_IMS_LSC;
3563 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3564 
3565 		/* Enable MSI-X PBA support */
3566 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3567 		reg |= E1000_CTRL_EXT_PBA_CLR;
3568 
3569 		/* Non-selective interrupt clear-on-read */
3570 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3571 
3572 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3573 	} else {
3574 		/* Interrupt enabling for MSI and legacy */
3575 		igb->ims_mask = IMS_ENABLE_MASK;
3576 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3577 	}
3578 
3579 	E1000_WRITE_FLUSH(hw);
3580 }
3581 
3582 /*
3583  * Loopback Support
3584  */
3585 static lb_property_t lb_normal =
3586 	{ normal,	"normal",	IGB_LB_NONE		};
3587 static lb_property_t lb_external =
3588 	{ external,	"External",	IGB_LB_EXTERNAL		};
3589 static lb_property_t lb_phy =
3590 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3591 static lb_property_t lb_serdes =
3592 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3593 
3594 enum ioc_reply
3595 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3596 {
3597 	lb_info_sz_t *lbsp;
3598 	lb_property_t *lbpp;
3599 	struct e1000_hw *hw;
3600 	uint32_t *lbmp;
3601 	uint32_t size;
3602 	uint32_t value;
3603 
3604 	hw = &igb->hw;
3605 
3606 	if (mp->b_cont == NULL)
3607 		return (IOC_INVAL);
3608 
3609 	switch (iocp->ioc_cmd) {
3610 	default:
3611 		return (IOC_INVAL);
3612 
3613 	case LB_GET_INFO_SIZE:
3614 		size = sizeof (lb_info_sz_t);
3615 		if (iocp->ioc_count != size)
3616 			return (IOC_INVAL);
3617 
3618 		value = sizeof (lb_normal);
3619 		if (hw->phy.media_type == e1000_media_type_copper)
3620 			value += sizeof (lb_phy);
3621 		else
3622 			value += sizeof (lb_serdes);
3623 		value += sizeof (lb_external);
3624 
3625 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3626 		*lbsp = value;
3627 		break;
3628 
3629 	case LB_GET_INFO:
3630 		value = sizeof (lb_normal);
3631 		if (hw->phy.media_type == e1000_media_type_copper)
3632 			value += sizeof (lb_phy);
3633 		else
3634 			value += sizeof (lb_serdes);
3635 		value += sizeof (lb_external);
3636 
3637 		size = value;
3638 		if (iocp->ioc_count != size)
3639 			return (IOC_INVAL);
3640 
3641 		value = 0;
3642 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3643 
3644 		lbpp[value++] = lb_normal;
3645 		if (hw->phy.media_type == e1000_media_type_copper)
3646 			lbpp[value++] = lb_phy;
3647 		else
3648 			lbpp[value++] = lb_serdes;
3649 		lbpp[value++] = lb_external;
3650 		break;
3651 
3652 	case LB_GET_MODE:
3653 		size = sizeof (uint32_t);
3654 		if (iocp->ioc_count != size)
3655 			return (IOC_INVAL);
3656 
3657 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3658 		*lbmp = igb->loopback_mode;
3659 		break;
3660 
3661 	case LB_SET_MODE:
3662 		size = 0;
3663 		if (iocp->ioc_count != sizeof (uint32_t))
3664 			return (IOC_INVAL);
3665 
3666 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3667 		if (!igb_set_loopback_mode(igb, *lbmp))
3668 			return (IOC_INVAL);
3669 		break;
3670 	}
3671 
3672 	iocp->ioc_count = size;
3673 	iocp->ioc_error = 0;
3674 
3675 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3676 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3677 		return (IOC_INVAL);
3678 	}
3679 
3680 	return (IOC_REPLY);
3681 }
3682 
3683 /*
3684  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3685  */
3686 static boolean_t
3687 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3688 {
3689 	struct e1000_hw *hw;
3690 	int i;
3691 
3692 	if (mode == igb->loopback_mode)
3693 		return (B_TRUE);
3694 
3695 	hw = &igb->hw;
3696 
3697 	igb->loopback_mode = mode;
3698 
3699 	if (mode == IGB_LB_NONE) {
3700 		/* Reset the chip */
3701 		hw->phy.autoneg_wait_to_complete = B_TRUE;
3702 		(void) igb_reset(igb);
3703 		hw->phy.autoneg_wait_to_complete = B_FALSE;
3704 		return (B_TRUE);
3705 	}
3706 
3707 	mutex_enter(&igb->gen_lock);
3708 
3709 	switch (mode) {
3710 	default:
3711 		mutex_exit(&igb->gen_lock);
3712 		return (B_FALSE);
3713 
3714 	case IGB_LB_EXTERNAL:
3715 		igb_set_external_loopback(igb);
3716 		break;
3717 
3718 	case IGB_LB_INTERNAL_PHY:
3719 		igb_set_internal_phy_loopback(igb);
3720 		break;
3721 
3722 	case IGB_LB_INTERNAL_SERDES:
3723 		igb_set_internal_serdes_loopback(igb);
3724 		break;
3725 	}
3726 
3727 	mutex_exit(&igb->gen_lock);
3728 
3729 	/*
3730 	 * When external loopback is set, wait up to 1000ms to get the link up.
3731 	 * According to test, 1000ms can work and it's an experimental value.
3732 	 */
3733 	if (mode == IGB_LB_EXTERNAL) {
3734 		for (i = 0; i <= 10; i++) {
3735 			mutex_enter(&igb->gen_lock);
3736 			(void) igb_link_check(igb);
3737 			mutex_exit(&igb->gen_lock);
3738 
3739 			if (igb->link_state == LINK_STATE_UP)
3740 				break;
3741 
3742 			msec_delay(100);
3743 		}
3744 
3745 		if (igb->link_state != LINK_STATE_UP) {
3746 			/*
3747 			 * Does not support external loopback.
3748 			 * Reset driver to loopback none.
3749 			 */
3750 			igb->loopback_mode = IGB_LB_NONE;
3751 
3752 			/* Reset the chip */
3753 			hw->phy.autoneg_wait_to_complete = B_TRUE;
3754 			(void) igb_reset(igb);
3755 			hw->phy.autoneg_wait_to_complete = B_FALSE;
3756 
3757 			IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3758 			    "reset to loopback none.");
3759 
3760 			return (B_FALSE);
3761 		}
3762 	}
3763 
3764 	return (B_TRUE);
3765 }
3766 
3767 /*
3768  * igb_set_external_loopback - Set the external loopback mode
3769  */
3770 static void
3771 igb_set_external_loopback(igb_t *igb)
3772 {
3773 	struct e1000_hw *hw;
3774 	uint32_t ctrl_ext;
3775 
3776 	hw = &igb->hw;
3777 
3778 	/* Set link mode to PHY (00b) in the Extended Control register */
3779 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3780 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3781 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3782 
3783 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3784 	(void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3785 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3786 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3787 }
3788 
3789 /*
3790  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3791  */
3792 static void
3793 igb_set_internal_phy_loopback(igb_t *igb)
3794 {
3795 	struct e1000_hw *hw;
3796 	uint32_t ctrl_ext;
3797 	uint16_t phy_ctrl;
3798 	uint16_t phy_pconf;
3799 
3800 	hw = &igb->hw;
3801 
3802 	/* Set link mode to PHY (00b) in the Extended Control register */
3803 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3804 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3805 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3806 
3807 	/*
3808 	 * Set PHY control register (0x4140):
3809 	 *    Set full duplex mode
3810 	 *    Set loopback bit
3811 	 *    Clear auto-neg enable bit
3812 	 *    Set PHY speed
3813 	 */
3814 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3815 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3816 
3817 	/* Set the link disable bit in the Port Configuration register */
3818 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3819 	phy_pconf |= (uint16_t)1 << 14;
3820 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3821 }
3822 
3823 /*
3824  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3825  */
3826 static void
3827 igb_set_internal_serdes_loopback(igb_t *igb)
3828 {
3829 	struct e1000_hw *hw;
3830 	uint32_t ctrl_ext;
3831 	uint32_t ctrl;
3832 	uint32_t pcs_lctl;
3833 	uint32_t connsw;
3834 
3835 	hw = &igb->hw;
3836 
3837 	/* Set link mode to SerDes (11b) in the Extended Control register */
3838 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3839 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3840 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3841 
3842 	/* Configure the SerDes to loopback */
3843 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3844 
3845 	/* Set Device Control register */
3846 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3847 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3848 	    E1000_CTRL_SLU);		/* Force link up */
3849 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3850 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3851 	    E1000_CTRL_LRST);		/* Clear link reset */
3852 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3853 
3854 	/* Set PCS Link Control register */
3855 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3856 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3857 	    E1000_PCS_LCTL_FSD |
3858 	    E1000_PCS_LCTL_FDV_FULL |
3859 	    E1000_PCS_LCTL_FLV_LINK_UP);
3860 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3861 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3862 
3863 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3864 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3865 	connsw &= ~E1000_CONNSW_ENRGSRC;
3866 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3867 }
3868 
3869 #pragma inline(igb_intr_rx_work)
3870 /*
3871  * igb_intr_rx_work - rx processing of ISR
3872  */
3873 static void
3874 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3875 {
3876 	mblk_t *mp;
3877 
3878 	mutex_enter(&rx_ring->rx_lock);
3879 	mp = igb_rx(rx_ring, IGB_NO_POLL);
3880 	mutex_exit(&rx_ring->rx_lock);
3881 
3882 	if (mp != NULL)
3883 		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3884 		    rx_ring->ring_gen_num);
3885 }
3886 
3887 #pragma inline(igb_intr_tx_work)
3888 /*
3889  * igb_intr_tx_work - tx processing of ISR
3890  */
3891 static void
3892 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3893 {
3894 	igb_t *igb = tx_ring->igb;
3895 
3896 	/* Recycle the tx descriptors */
3897 	tx_ring->tx_recycle(tx_ring);
3898 
3899 	/* Schedule the re-transmit */
3900 	if (tx_ring->reschedule &&
3901 	    (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
3902 		tx_ring->reschedule = B_FALSE;
3903 		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3904 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3905 	}
3906 }
3907 
3908 #pragma inline(igb_intr_link_work)
3909 /*
3910  * igb_intr_link_work - link-status-change processing of ISR
3911  */
3912 static void
3913 igb_intr_link_work(igb_t *igb)
3914 {
3915 	boolean_t link_changed;
3916 
3917 	igb_stop_watchdog_timer(igb);
3918 
3919 	mutex_enter(&igb->gen_lock);
3920 
3921 	/*
3922 	 * Because we got a link-status-change interrupt, force
3923 	 * e1000_check_for_link() to look at phy
3924 	 */
3925 	igb->hw.mac.get_link_status = B_TRUE;
3926 
3927 	/* igb_link_check takes care of link status change */
3928 	link_changed = igb_link_check(igb);
3929 
3930 	/* Get new phy state */
3931 	igb_get_phy_state(igb);
3932 
3933 	mutex_exit(&igb->gen_lock);
3934 
3935 	if (link_changed)
3936 		mac_link_update(igb->mac_hdl, igb->link_state);
3937 
3938 	igb_start_watchdog_timer(igb);
3939 }
3940 
3941 /*
3942  * igb_intr_legacy - Interrupt handler for legacy interrupts
3943  */
3944 static uint_t
3945 igb_intr_legacy(void *arg1, void *arg2)
3946 {
3947 	igb_t *igb = (igb_t *)arg1;
3948 	igb_tx_ring_t *tx_ring;
3949 	uint32_t icr;
3950 	mblk_t *mp;
3951 	boolean_t tx_reschedule;
3952 	boolean_t link_changed;
3953 	uint_t result;
3954 
3955 	_NOTE(ARGUNUSED(arg2));
3956 
3957 	mutex_enter(&igb->gen_lock);
3958 
3959 	if (igb->igb_state & IGB_SUSPENDED) {
3960 		mutex_exit(&igb->gen_lock);
3961 		return (DDI_INTR_UNCLAIMED);
3962 	}
3963 
3964 	mp = NULL;
3965 	tx_reschedule = B_FALSE;
3966 	link_changed = B_FALSE;
3967 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3968 
3969 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3970 		mutex_exit(&igb->gen_lock);
3971 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3972 		atomic_or_32(&igb->igb_state, IGB_ERROR);
3973 		return (DDI_INTR_UNCLAIMED);
3974 	}
3975 
3976 	if (icr & E1000_ICR_INT_ASSERTED) {
3977 		/*
3978 		 * E1000_ICR_INT_ASSERTED bit was set:
3979 		 * Read(Clear) the ICR, claim this interrupt,
3980 		 * look for work to do.
3981 		 */
3982 		ASSERT(igb->num_rx_rings == 1);
3983 		ASSERT(igb->num_tx_rings == 1);
3984 
3985 		/* Make sure all interrupt causes cleared */
3986 		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3987 
3988 		if (icr & E1000_ICR_RXT0) {
3989 			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3990 		}
3991 
3992 		if (icr & E1000_ICR_TXDW) {
3993 			tx_ring = &igb->tx_rings[0];
3994 
3995 			/* Recycle the tx descriptors */
3996 			tx_ring->tx_recycle(tx_ring);
3997 
3998 			/* Schedule the re-transmit */
3999 			tx_reschedule = (tx_ring->reschedule &&
4000 			    (tx_ring->tbd_free >= igb->tx_resched_thresh));
4001 		}
4002 
4003 		if (icr & E1000_ICR_LSC) {
4004 			/*
4005 			 * Because we got a link-status-change interrupt, force
4006 			 * e1000_check_for_link() to look at phy
4007 			 */
4008 			igb->hw.mac.get_link_status = B_TRUE;
4009 
4010 			/* igb_link_check takes care of link status change */
4011 			link_changed = igb_link_check(igb);
4012 
4013 			/* Get new phy state */
4014 			igb_get_phy_state(igb);
4015 		}
4016 
4017 		if (icr & E1000_ICR_DRSTA) {
4018 			/* 82580 Full Device Reset needed */
4019 			atomic_or_32(&igb->igb_state, IGB_STALL);
4020 		}
4021 
4022 		result = DDI_INTR_CLAIMED;
4023 	} else {
4024 		/*
4025 		 * E1000_ICR_INT_ASSERTED bit was not set:
4026 		 * Don't claim this interrupt.
4027 		 */
4028 		result = DDI_INTR_UNCLAIMED;
4029 	}
4030 
4031 	mutex_exit(&igb->gen_lock);
4032 
4033 	/*
4034 	 * Do the following work outside of the gen_lock
4035 	 */
4036 	if (mp != NULL)
4037 		mac_rx(igb->mac_hdl, NULL, mp);
4038 
4039 	if (tx_reschedule)  {
4040 		tx_ring->reschedule = B_FALSE;
4041 		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4042 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4043 	}
4044 
4045 	if (link_changed)
4046 		mac_link_update(igb->mac_hdl, igb->link_state);
4047 
4048 	return (result);
4049 }
4050 
4051 /*
4052  * igb_intr_msi - Interrupt handler for MSI
4053  */
4054 static uint_t
4055 igb_intr_msi(void *arg1, void *arg2)
4056 {
4057 	igb_t *igb = (igb_t *)arg1;
4058 	uint32_t icr;
4059 
4060 	_NOTE(ARGUNUSED(arg2));
4061 
4062 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4063 
4064 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4065 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4066 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4067 		return (DDI_INTR_CLAIMED);
4068 	}
4069 
4070 	/* Make sure all interrupt causes cleared */
4071 	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4072 
4073 	/*
4074 	 * For MSI interrupt, we have only one vector,
4075 	 * so we have only one rx ring and one tx ring enabled.
4076 	 */
4077 	ASSERT(igb->num_rx_rings == 1);
4078 	ASSERT(igb->num_tx_rings == 1);
4079 
4080 	if (icr & E1000_ICR_RXT0) {
4081 		igb_intr_rx_work(&igb->rx_rings[0]);
4082 	}
4083 
4084 	if (icr & E1000_ICR_TXDW) {
4085 		igb_intr_tx_work(&igb->tx_rings[0]);
4086 	}
4087 
4088 	if (icr & E1000_ICR_LSC) {
4089 		igb_intr_link_work(igb);
4090 	}
4091 
4092 	if (icr & E1000_ICR_DRSTA) {
4093 		/* 82580 Full Device Reset needed */
4094 		atomic_or_32(&igb->igb_state, IGB_STALL);
4095 	}
4096 
4097 	return (DDI_INTR_CLAIMED);
4098 }
4099 
4100 /*
4101  * igb_intr_rx - Interrupt handler for rx
4102  */
4103 static uint_t
4104 igb_intr_rx(void *arg1, void *arg2)
4105 {
4106 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4107 
4108 	_NOTE(ARGUNUSED(arg2));
4109 
4110 	/*
4111 	 * Only used via MSI-X vector so don't check cause bits
4112 	 * and only clean the given ring.
4113 	 */
4114 	igb_intr_rx_work(rx_ring);
4115 
4116 	return (DDI_INTR_CLAIMED);
4117 }
4118 
4119 /*
4120  * igb_intr_tx - Interrupt handler for tx
4121  */
4122 static uint_t
4123 igb_intr_tx(void *arg1, void *arg2)
4124 {
4125 	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4126 
4127 	_NOTE(ARGUNUSED(arg2));
4128 
4129 	/*
4130 	 * Only used via MSI-X vector so don't check cause bits
4131 	 * and only clean the given ring.
4132 	 */
4133 	igb_intr_tx_work(tx_ring);
4134 
4135 	return (DDI_INTR_CLAIMED);
4136 }
4137 
4138 /*
4139  * igb_intr_tx_other - Interrupt handler for both tx and other
4140  *
4141  */
4142 static uint_t
4143 igb_intr_tx_other(void *arg1, void *arg2)
4144 {
4145 	igb_t *igb = (igb_t *)arg1;
4146 	uint32_t icr;
4147 
4148 	_NOTE(ARGUNUSED(arg2));
4149 
4150 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4151 
4152 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4153 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4154 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4155 		return (DDI_INTR_CLAIMED);
4156 	}
4157 
4158 	/*
4159 	 * Look for tx reclaiming work first. Remember, in the
4160 	 * case of only interrupt sharing, only one tx ring is
4161 	 * used
4162 	 */
4163 	igb_intr_tx_work(&igb->tx_rings[0]);
4164 
4165 	/*
4166 	 * Check for "other" causes.
4167 	 */
4168 	if (icr & E1000_ICR_LSC) {
4169 		igb_intr_link_work(igb);
4170 	}
4171 
4172 	/*
4173 	 * The DOUTSYNC bit indicates a tx packet dropped because
4174 	 * DMA engine gets "out of sync". There isn't a real fix
4175 	 * for this. The Intel recommendation is to count the number
4176 	 * of occurrences so user can detect when it is happening.
4177 	 * The issue is non-fatal and there's no recovery action
4178 	 * available.
4179 	 */
4180 	if (icr & E1000_ICR_DOUTSYNC) {
4181 		IGB_STAT(igb->dout_sync);
4182 	}
4183 
4184 	if (icr & E1000_ICR_DRSTA) {
4185 		/* 82580 Full Device Reset needed */
4186 		atomic_or_32(&igb->igb_state, IGB_STALL);
4187 	}
4188 
4189 	return (DDI_INTR_CLAIMED);
4190 }
4191 
4192 /*
4193  * igb_alloc_intrs - Allocate interrupts for the driver
4194  *
4195  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4196  * if not successful, try Legacy.
4197  * igb->intr_force can be used to force sequence to start with
4198  * any of the 3 types.
4199  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4200  */
4201 static int
4202 igb_alloc_intrs(igb_t *igb)
4203 {
4204 	dev_info_t *devinfo;
4205 	int intr_types;
4206 	int rc;
4207 
4208 	devinfo = igb->dip;
4209 
4210 	/* Get supported interrupt types */
4211 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4212 
4213 	if (rc != DDI_SUCCESS) {
4214 		igb_log(igb,
4215 		    "Get supported interrupt types failed: %d", rc);
4216 		return (IGB_FAILURE);
4217 	}
4218 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4219 
4220 	igb->intr_type = 0;
4221 
4222 	/* Install MSI-X interrupts */
4223 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4224 	    (igb->intr_force <= IGB_INTR_MSIX)) {
4225 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4226 
4227 		if (rc == IGB_SUCCESS)
4228 			return (IGB_SUCCESS);
4229 
4230 		igb_log(igb,
4231 		    "Allocate MSI-X failed, trying MSI interrupts...");
4232 	}
4233 
4234 	/* MSI-X not used, force rings to 1 */
4235 	igb->num_rx_rings = 1;
4236 	igb->num_tx_rings = 1;
4237 	igb_log(igb,
4238 	    "MSI-X not used, force rx and tx queue number to 1");
4239 
4240 	/* Install MSI interrupts */
4241 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4242 	    (igb->intr_force <= IGB_INTR_MSI)) {
4243 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4244 
4245 		if (rc == IGB_SUCCESS)
4246 			return (IGB_SUCCESS);
4247 
4248 		igb_log(igb,
4249 		    "Allocate MSI failed, trying Legacy interrupts...");
4250 	}
4251 
4252 	/* Install legacy interrupts */
4253 	if (intr_types & DDI_INTR_TYPE_FIXED) {
4254 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4255 
4256 		if (rc == IGB_SUCCESS)
4257 			return (IGB_SUCCESS);
4258 
4259 		igb_log(igb,
4260 		    "Allocate Legacy interrupts failed");
4261 	}
4262 
4263 	/* If none of the 3 types succeeded, return failure */
4264 	return (IGB_FAILURE);
4265 }
4266 
4267 /*
4268  * igb_alloc_intr_handles - Allocate interrupt handles.
4269  *
4270  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4271  * if fewer than 2 handles are available, return failure.
4272  * Upon success, this sets the number of Rx rings to a number that
4273  * matches the handles available for Rx interrupts.
4274  */
4275 static int
4276 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4277 {
4278 	dev_info_t *devinfo;
4279 	int orig, request, count, avail, actual;
4280 	int diff, minimum;
4281 	int rc;
4282 
4283 	devinfo = igb->dip;
4284 
4285 	switch (intr_type) {
4286 	case DDI_INTR_TYPE_FIXED:
4287 		request = 1;	/* Request 1 legacy interrupt handle */
4288 		minimum = 1;
4289 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4290 		break;
4291 
4292 	case DDI_INTR_TYPE_MSI:
4293 		request = 1;	/* Request 1 MSI interrupt handle */
4294 		minimum = 1;
4295 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4296 		break;
4297 
4298 	case DDI_INTR_TYPE_MSIX:
4299 		/*
4300 		 * Number of vectors for the adapter is
4301 		 * # rx rings + # tx rings
4302 		 * One of tx vectors is for tx & other
4303 		 */
4304 		request = igb->num_rx_rings + igb->num_tx_rings;
4305 		orig = request;
4306 		minimum = 2;
4307 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4308 		break;
4309 
4310 	default:
4311 		igb_log(igb,
4312 		    "invalid call to igb_alloc_intr_handles(): %d\n",
4313 		    intr_type);
4314 		return (IGB_FAILURE);
4315 	}
4316 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4317 	    request, minimum);
4318 
4319 	/*
4320 	 * Get number of supported interrupts
4321 	 */
4322 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4323 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4324 		igb_log(igb,
4325 		    "Get supported interrupt number failed. "
4326 		    "Return: %d, count: %d", rc, count);
4327 		return (IGB_FAILURE);
4328 	}
4329 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4330 
4331 	/*
4332 	 * Get number of available interrupts
4333 	 */
4334 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4335 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4336 		igb_log(igb,
4337 		    "Get available interrupt number failed. "
4338 		    "Return: %d, available: %d", rc, avail);
4339 		return (IGB_FAILURE);
4340 	}
4341 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4342 
4343 	if (avail < request) {
4344 		igb_log(igb, "Request %d handles, %d available",
4345 		    request, avail);
4346 		request = avail;
4347 	}
4348 
4349 	actual = 0;
4350 	igb->intr_cnt = 0;
4351 
4352 	/*
4353 	 * Allocate an array of interrupt handles
4354 	 */
4355 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4356 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4357 
4358 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4359 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4360 	if (rc != DDI_SUCCESS) {
4361 		igb_log(igb, "Allocate interrupts failed. "
4362 		    "return: %d, request: %d, actual: %d",
4363 		    rc, request, actual);
4364 		goto alloc_handle_fail;
4365 	}
4366 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4367 
4368 	igb->intr_cnt = actual;
4369 
4370 	if (actual < minimum) {
4371 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4372 		    actual);
4373 		goto alloc_handle_fail;
4374 	}
4375 
4376 	/*
4377 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4378 	 */
4379 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4380 		diff = orig - actual;
4381 		if (diff < igb->num_tx_rings) {
4382 			igb_log(igb,
4383 			    "MSI-X vectors force Tx queue number to %d",
4384 			    igb->num_tx_rings - diff);
4385 			igb->num_tx_rings -= diff;
4386 		} else {
4387 			igb_log(igb,
4388 			    "MSI-X vectors force Tx queue number to 1");
4389 			igb->num_tx_rings = 1;
4390 
4391 			igb_log(igb,
4392 			    "MSI-X vectors force Rx queue number to %d",
4393 			    actual - 1);
4394 			igb->num_rx_rings = actual - 1;
4395 		}
4396 	}
4397 
4398 	/*
4399 	 * Get priority for first vector, assume remaining are all the same
4400 	 */
4401 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4402 	if (rc != DDI_SUCCESS) {
4403 		igb_log(igb,
4404 		    "Get interrupt priority failed: %d", rc);
4405 		goto alloc_handle_fail;
4406 	}
4407 
4408 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4409 	if (rc != DDI_SUCCESS) {
4410 		igb_log(igb,
4411 		    "Get interrupt cap failed: %d", rc);
4412 		goto alloc_handle_fail;
4413 	}
4414 
4415 	igb->intr_type = intr_type;
4416 
4417 	return (IGB_SUCCESS);
4418 
4419 alloc_handle_fail:
4420 	igb_rem_intrs(igb);
4421 
4422 	return (IGB_FAILURE);
4423 }
4424 
4425 /*
4426  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4427  *
4428  * Before adding the interrupt handlers, the interrupt vectors have
4429  * been allocated, and the rx/tx rings have also been allocated.
4430  */
4431 static int
4432 igb_add_intr_handlers(igb_t *igb)
4433 {
4434 	igb_rx_ring_t *rx_ring;
4435 	igb_tx_ring_t *tx_ring;
4436 	int vector;
4437 	int rc;
4438 	int i;
4439 
4440 	vector = 0;
4441 
4442 	switch (igb->intr_type) {
4443 	case DDI_INTR_TYPE_MSIX:
4444 		/* Add interrupt handler for tx + other */
4445 		tx_ring = &igb->tx_rings[0];
4446 		rc = ddi_intr_add_handler(igb->htable[vector],
4447 		    (ddi_intr_handler_t *)igb_intr_tx_other,
4448 		    (void *)igb, NULL);
4449 
4450 		if (rc != DDI_SUCCESS) {
4451 			igb_log(igb,
4452 			    "Add tx/other interrupt handler failed: %d", rc);
4453 			return (IGB_FAILURE);
4454 		}
4455 		tx_ring->intr_vector = vector;
4456 		vector++;
4457 
4458 		/* Add interrupt handler for each rx ring */
4459 		for (i = 0; i < igb->num_rx_rings; i++) {
4460 			rx_ring = &igb->rx_rings[i];
4461 
4462 			rc = ddi_intr_add_handler(igb->htable[vector],
4463 			    (ddi_intr_handler_t *)igb_intr_rx,
4464 			    (void *)rx_ring, NULL);
4465 
4466 			if (rc != DDI_SUCCESS) {
4467 				igb_log(igb,
4468 				    "Add rx interrupt handler failed. "
4469 				    "return: %d, rx ring: %d", rc, i);
4470 				for (vector--; vector >= 0; vector--) {
4471 					(void) ddi_intr_remove_handler(
4472 					    igb->htable[vector]);
4473 				}
4474 				return (IGB_FAILURE);
4475 			}
4476 
4477 			rx_ring->intr_vector = vector;
4478 
4479 			vector++;
4480 		}
4481 
4482 		/* Add interrupt handler for each tx ring from 2nd ring */
4483 		for (i = 1; i < igb->num_tx_rings; i++) {
4484 			tx_ring = &igb->tx_rings[i];
4485 
4486 			rc = ddi_intr_add_handler(igb->htable[vector],
4487 			    (ddi_intr_handler_t *)igb_intr_tx,
4488 			    (void *)tx_ring, NULL);
4489 
4490 			if (rc != DDI_SUCCESS) {
4491 				igb_log(igb,
4492 				    "Add tx interrupt handler failed. "
4493 				    "return: %d, tx ring: %d", rc, i);
4494 				for (vector--; vector >= 0; vector--) {
4495 					(void) ddi_intr_remove_handler(
4496 					    igb->htable[vector]);
4497 				}
4498 				return (IGB_FAILURE);
4499 			}
4500 
4501 			tx_ring->intr_vector = vector;
4502 
4503 			vector++;
4504 		}
4505 
4506 		break;
4507 
4508 	case DDI_INTR_TYPE_MSI:
4509 		/* Add interrupt handlers for the only vector */
4510 		rc = ddi_intr_add_handler(igb->htable[vector],
4511 		    (ddi_intr_handler_t *)igb_intr_msi,
4512 		    (void *)igb, NULL);
4513 
4514 		if (rc != DDI_SUCCESS) {
4515 			igb_log(igb,
4516 			    "Add MSI interrupt handler failed: %d", rc);
4517 			return (IGB_FAILURE);
4518 		}
4519 
4520 		rx_ring = &igb->rx_rings[0];
4521 		rx_ring->intr_vector = vector;
4522 
4523 		vector++;
4524 		break;
4525 
4526 	case DDI_INTR_TYPE_FIXED:
4527 		/* Add interrupt handlers for the only vector */
4528 		rc = ddi_intr_add_handler(igb->htable[vector],
4529 		    (ddi_intr_handler_t *)igb_intr_legacy,
4530 		    (void *)igb, NULL);
4531 
4532 		if (rc != DDI_SUCCESS) {
4533 			igb_log(igb,
4534 			    "Add legacy interrupt handler failed: %d", rc);
4535 			return (IGB_FAILURE);
4536 		}
4537 
4538 		rx_ring = &igb->rx_rings[0];
4539 		rx_ring->intr_vector = vector;
4540 
4541 		vector++;
4542 		break;
4543 
4544 	default:
4545 		return (IGB_FAILURE);
4546 	}
4547 
4548 	ASSERT(vector == igb->intr_cnt);
4549 
4550 	return (IGB_SUCCESS);
4551 }
4552 
4553 /*
4554  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4555  *
4556  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4557  */
4558 static void
4559 igb_setup_msix_82575(igb_t *igb)
4560 {
4561 	uint32_t eims = 0;
4562 	int i, vector;
4563 	struct e1000_hw *hw = &igb->hw;
4564 
4565 	/*
4566 	 * Set vector for tx ring 0 and other causes.
4567 	 * NOTE assumption that it is vector 0.
4568 	 */
4569 	vector = 0;
4570 
4571 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4572 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4573 	vector++;
4574 
4575 	for (i = 0; i < igb->num_rx_rings; i++) {
4576 		/*
4577 		 * Set vector for each rx ring
4578 		 */
4579 		eims = (E1000_EICR_RX_QUEUE0 << i);
4580 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4581 
4582 		/*
4583 		 * Accumulate bits to enable in
4584 		 * igb_enable_adapter_interrupts_82575()
4585 		 */
4586 		igb->eims_mask |= eims;
4587 
4588 		vector++;
4589 	}
4590 
4591 	for (i = 1; i < igb->num_tx_rings; i++) {
4592 		/*
4593 		 * Set vector for each tx ring from 2nd tx ring
4594 		 */
4595 		eims = (E1000_EICR_TX_QUEUE0 << i);
4596 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4597 
4598 		/*
4599 		 * Accumulate bits to enable in
4600 		 * igb_enable_adapter_interrupts_82575()
4601 		 */
4602 		igb->eims_mask |= eims;
4603 
4604 		vector++;
4605 	}
4606 
4607 	ASSERT(vector == igb->intr_cnt);
4608 
4609 	/*
4610 	 * Disable IAM for ICR interrupt bits
4611 	 */
4612 	E1000_WRITE_REG(hw, E1000_IAM, 0);
4613 	E1000_WRITE_FLUSH(hw);
4614 }
4615 
4616 /*
4617  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4618  *
4619  * 82576 uses a table based method for assigning vectors.  Each queue has a
4620  * single entry in the table to which we write a vector number along with a
4621  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4622  * take a different position in the 4-byte register depending on whether
4623  * they are numbered above or below 8.
4624  */
4625 static void
4626 igb_setup_msix_82576(igb_t *igb)
4627 {
4628 	struct e1000_hw *hw = &igb->hw;
4629 	uint32_t ivar, index, vector;
4630 	int i;
4631 
4632 	/* must enable msi-x capability before IVAR settings */
4633 	E1000_WRITE_REG(hw, E1000_GPIE,
4634 	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4635 
4636 	/*
4637 	 * Set vector for tx ring 0 and other causes.
4638 	 * NOTE assumption that it is vector 0.
4639 	 * This is also interdependent with installation of interrupt service
4640 	 * routines in igb_add_intr_handlers().
4641 	 */
4642 
4643 	/* assign "other" causes to vector 0 */
4644 	vector = 0;
4645 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4646 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4647 
4648 	/* assign tx ring 0 to vector 0 */
4649 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4650 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4651 
4652 	/* prepare to enable tx & other interrupt causes */
4653 	igb->eims_mask = (1 << vector);
4654 
4655 	vector ++;
4656 	for (i = 0; i < igb->num_rx_rings; i++) {
4657 		/*
4658 		 * Set vector for each rx ring
4659 		 */
4660 		index = (i & 0x7);
4661 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4662 
4663 		if (i < 8) {
4664 			/* vector goes into low byte of register */
4665 			ivar = ivar & 0xFFFFFF00;
4666 			ivar |= (vector | E1000_IVAR_VALID);
4667 		} else {
4668 			/* vector goes into third byte of register */
4669 			ivar = ivar & 0xFF00FFFF;
4670 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4671 		}
4672 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4673 
4674 		/* Accumulate interrupt-cause bits to enable */
4675 		igb->eims_mask |= (1 << vector);
4676 
4677 		vector ++;
4678 	}
4679 
4680 	for (i = 1; i < igb->num_tx_rings; i++) {
4681 		/*
4682 		 * Set vector for each tx ring from 2nd tx ring.
4683 		 * Note assumption that tx vectors numericall follow rx vectors.
4684 		 */
4685 		index = (i & 0x7);
4686 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4687 
4688 		if (i < 8) {
4689 			/* vector goes into second byte of register */
4690 			ivar = ivar & 0xFFFF00FF;
4691 			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4692 		} else {
4693 			/* vector goes into fourth byte of register */
4694 			ivar = ivar & 0x00FFFFFF;
4695 			ivar |= (vector | E1000_IVAR_VALID) << 24;
4696 		}
4697 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4698 
4699 		/* Accumulate interrupt-cause bits to enable */
4700 		igb->eims_mask |= (1 << vector);
4701 
4702 		vector ++;
4703 	}
4704 
4705 	ASSERT(vector == igb->intr_cnt);
4706 }
4707 
4708 /*
4709  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4710  *
4711  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4712  * queue has a single entry in the table to which we write a vector number
4713  * along with a "valid" bit.  Vectors take a different position in the
4714  * register depending on * whether * they are numbered above or below 4.
4715  */
4716 static void
4717 igb_setup_msix_82580(igb_t *igb)
4718 {
4719 	struct e1000_hw *hw = &igb->hw;
4720 	uint32_t ivar, index, vector;
4721 	int i;
4722 
4723 	/* must enable msi-x capability before IVAR settings */
4724 	E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4725 	    E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4726 	/*
4727 	 * Set vector for tx ring 0 and other causes.
4728 	 * NOTE assumption that it is vector 0.
4729 	 * This is also interdependent with installation of interrupt service
4730 	 * routines in igb_add_intr_handlers().
4731 	 */
4732 
4733 	/* assign "other" causes to vector 0 */
4734 	vector = 0;
4735 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4736 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4737 
4738 	/* assign tx ring 0 to vector 0 */
4739 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4740 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4741 
4742 	/* prepare to enable tx & other interrupt causes */
4743 	igb->eims_mask = (1 << vector);
4744 
4745 	vector ++;
4746 
4747 	for (i = 0; i < igb->num_rx_rings; i++) {
4748 		/*
4749 		 * Set vector for each rx ring
4750 		 */
4751 		index = (i >> 1);
4752 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4753 
4754 		if (i & 1) {
4755 			/* vector goes into third byte of register */
4756 			ivar = ivar & 0xFF00FFFF;
4757 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4758 		} else {
4759 			/* vector goes into low byte of register */
4760 			ivar = ivar & 0xFFFFFF00;
4761 			ivar |= (vector | E1000_IVAR_VALID);
4762 		}
4763 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4764 
4765 		/* Accumulate interrupt-cause bits to enable */
4766 		igb->eims_mask |= (1 << vector);
4767 
4768 		vector ++;
4769 	}
4770 
4771 	for (i = 1; i < igb->num_tx_rings; i++) {
4772 		/*
4773 		 * Set vector for each tx ring from 2nd tx ring.
4774 		 * Note assumption that tx vectors numericall follow rx vectors.
4775 		 */
4776 		index = (i >> 1);
4777 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4778 
4779 		if (i & 1) {
4780 			/* vector goes into high byte of register */
4781 			ivar = ivar & 0x00FFFFFF;
4782 			ivar |= ((vector | E1000_IVAR_VALID) << 24);
4783 		} else {
4784 			/* vector goes into second byte of register */
4785 			ivar = ivar & 0xFFFF00FF;
4786 			ivar |= (vector | E1000_IVAR_VALID) << 8;
4787 		}
4788 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4789 
4790 		/* Accumulate interrupt-cause bits to enable */
4791 		igb->eims_mask |= (1 << vector);
4792 
4793 		vector ++;
4794 	}
4795 	ASSERT(vector == igb->intr_cnt);
4796 }
4797 
4798 /*
4799  * igb_rem_intr_handlers - remove the interrupt handlers
4800  */
4801 static void
4802 igb_rem_intr_handlers(igb_t *igb)
4803 {
4804 	int i;
4805 	int rc;
4806 
4807 	for (i = 0; i < igb->intr_cnt; i++) {
4808 		rc = ddi_intr_remove_handler(igb->htable[i]);
4809 		if (rc != DDI_SUCCESS) {
4810 			IGB_DEBUGLOG_1(igb,
4811 			    "Remove intr handler failed: %d", rc);
4812 		}
4813 	}
4814 }
4815 
4816 /*
4817  * igb_rem_intrs - remove the allocated interrupts
4818  */
4819 static void
4820 igb_rem_intrs(igb_t *igb)
4821 {
4822 	int i;
4823 	int rc;
4824 
4825 	for (i = 0; i < igb->intr_cnt; i++) {
4826 		rc = ddi_intr_free(igb->htable[i]);
4827 		if (rc != DDI_SUCCESS) {
4828 			IGB_DEBUGLOG_1(igb,
4829 			    "Free intr failed: %d", rc);
4830 		}
4831 	}
4832 
4833 	kmem_free(igb->htable, igb->intr_size);
4834 	igb->htable = NULL;
4835 }
4836 
4837 /*
4838  * igb_enable_intrs - enable all the ddi interrupts
4839  */
4840 static int
4841 igb_enable_intrs(igb_t *igb)
4842 {
4843 	int i;
4844 	int rc;
4845 
4846 	/* Enable interrupts */
4847 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4848 		/* Call ddi_intr_block_enable() for MSI */
4849 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4850 		if (rc != DDI_SUCCESS) {
4851 			igb_log(igb,
4852 			    "Enable block intr failed: %d", rc);
4853 			return (IGB_FAILURE);
4854 		}
4855 	} else {
4856 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4857 		for (i = 0; i < igb->intr_cnt; i++) {
4858 			rc = ddi_intr_enable(igb->htable[i]);
4859 			if (rc != DDI_SUCCESS) {
4860 				igb_log(igb,
4861 				    "Enable intr failed: %d", rc);
4862 				return (IGB_FAILURE);
4863 			}
4864 		}
4865 	}
4866 
4867 	return (IGB_SUCCESS);
4868 }
4869 
4870 /*
4871  * igb_disable_intrs - disable all the ddi interrupts
4872  */
4873 static int
4874 igb_disable_intrs(igb_t *igb)
4875 {
4876 	int i;
4877 	int rc;
4878 
4879 	/* Disable all interrupts */
4880 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4881 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4882 		if (rc != DDI_SUCCESS) {
4883 			igb_log(igb,
4884 			    "Disable block intr failed: %d", rc);
4885 			return (IGB_FAILURE);
4886 		}
4887 	} else {
4888 		for (i = 0; i < igb->intr_cnt; i++) {
4889 			rc = ddi_intr_disable(igb->htable[i]);
4890 			if (rc != DDI_SUCCESS) {
4891 				igb_log(igb,
4892 				    "Disable intr failed: %d", rc);
4893 				return (IGB_FAILURE);
4894 			}
4895 		}
4896 	}
4897 
4898 	return (IGB_SUCCESS);
4899 }
4900 
4901 /*
4902  * igb_get_phy_state - Get and save the parameters read from PHY registers
4903  */
4904 static void
4905 igb_get_phy_state(igb_t *igb)
4906 {
4907 	struct e1000_hw *hw = &igb->hw;
4908 	uint16_t phy_ctrl;
4909 	uint16_t phy_status;
4910 	uint16_t phy_an_adv;
4911 	uint16_t phy_an_exp;
4912 	uint16_t phy_ext_status;
4913 	uint16_t phy_1000t_ctrl;
4914 	uint16_t phy_1000t_status;
4915 	uint16_t phy_lp_able;
4916 
4917 	ASSERT(mutex_owned(&igb->gen_lock));
4918 
4919 	if (hw->phy.media_type == e1000_media_type_copper) {
4920 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4921 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4922 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4923 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4924 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4925 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4926 		(void) e1000_read_phy_reg(hw,
4927 		    PHY_1000T_STATUS, &phy_1000t_status);
4928 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4929 
4930 		igb->param_autoneg_cap =
4931 		    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4932 		igb->param_pause_cap =
4933 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4934 		igb->param_asym_pause_cap =
4935 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4936 		igb->param_1000fdx_cap =
4937 		    ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4938 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4939 		igb->param_1000hdx_cap =
4940 		    ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4941 		    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4942 		igb->param_100t4_cap =
4943 		    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4944 		igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4945 		    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4946 		igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4947 		    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4948 		igb->param_10fdx_cap =
4949 		    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4950 		igb->param_10hdx_cap =
4951 		    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4952 		igb->param_rem_fault =
4953 		    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4954 
4955 		igb->param_adv_autoneg_cap = hw->mac.autoneg;
4956 		igb->param_adv_pause_cap =
4957 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4958 		igb->param_adv_asym_pause_cap =
4959 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4960 		igb->param_adv_1000hdx_cap =
4961 		    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4962 		igb->param_adv_100t4_cap =
4963 		    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4964 		igb->param_adv_rem_fault =
4965 		    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4966 		if (igb->param_adv_autoneg_cap == 1) {
4967 			igb->param_adv_1000fdx_cap =
4968 			    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4969 			igb->param_adv_100fdx_cap =
4970 			    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4971 			igb->param_adv_100hdx_cap =
4972 			    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4973 			igb->param_adv_10fdx_cap =
4974 			    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4975 			igb->param_adv_10hdx_cap =
4976 			    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4977 		}
4978 
4979 		igb->param_lp_autoneg_cap =
4980 		    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4981 		igb->param_lp_pause_cap =
4982 		    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4983 		igb->param_lp_asym_pause_cap =
4984 		    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4985 		igb->param_lp_1000fdx_cap =
4986 		    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4987 		igb->param_lp_1000hdx_cap =
4988 		    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4989 		igb->param_lp_100t4_cap =
4990 		    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4991 		igb->param_lp_100fdx_cap =
4992 		    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4993 		igb->param_lp_100hdx_cap =
4994 		    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4995 		igb->param_lp_10fdx_cap =
4996 		    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4997 		igb->param_lp_10hdx_cap =
4998 		    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
4999 		igb->param_lp_rem_fault =
5000 		    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5001 	} else {
5002 		/*
5003 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5004 		 */
5005 		igb->param_autoneg_cap = 0;
5006 		igb->param_pause_cap = 1;
5007 		igb->param_asym_pause_cap = 1;
5008 		igb->param_1000fdx_cap = 1;
5009 		igb->param_1000hdx_cap = 0;
5010 		igb->param_100t4_cap = 0;
5011 		igb->param_100fdx_cap = 0;
5012 		igb->param_100hdx_cap = 0;
5013 		igb->param_10fdx_cap = 0;
5014 		igb->param_10hdx_cap = 0;
5015 
5016 		igb->param_adv_autoneg_cap = 0;
5017 		igb->param_adv_pause_cap = 1;
5018 		igb->param_adv_asym_pause_cap = 1;
5019 		igb->param_adv_1000fdx_cap = 1;
5020 		igb->param_adv_1000hdx_cap = 0;
5021 		igb->param_adv_100t4_cap = 0;
5022 		igb->param_adv_100fdx_cap = 0;
5023 		igb->param_adv_100hdx_cap = 0;
5024 		igb->param_adv_10fdx_cap = 0;
5025 		igb->param_adv_10hdx_cap = 0;
5026 
5027 		igb->param_lp_autoneg_cap = 0;
5028 		igb->param_lp_pause_cap = 0;
5029 		igb->param_lp_asym_pause_cap = 0;
5030 		igb->param_lp_1000fdx_cap = 0;
5031 		igb->param_lp_1000hdx_cap = 0;
5032 		igb->param_lp_100t4_cap = 0;
5033 		igb->param_lp_100fdx_cap = 0;
5034 		igb->param_lp_100hdx_cap = 0;
5035 		igb->param_lp_10fdx_cap = 0;
5036 		igb->param_lp_10hdx_cap = 0;
5037 		igb->param_lp_rem_fault = 0;
5038 	}
5039 }
5040 
5041 /*
5042  * synchronize the adv* and en* parameters.
5043  *
5044  * See comments in <sys/dld.h> for details of the *_en_*
5045  * parameters. The usage of ndd for setting adv parameters will
5046  * synchronize all the en parameters with the e1000g parameters,
5047  * implicitly disabling any settings made via dladm.
5048  */
5049 static void
5050 igb_param_sync(igb_t *igb)
5051 {
5052 	igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5053 	igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5054 	igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5055 	igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5056 	igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5057 	igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5058 	igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5059 }
5060 
5061 /*
5062  * igb_get_driver_control
5063  */
5064 static void
5065 igb_get_driver_control(struct e1000_hw *hw)
5066 {
5067 	uint32_t ctrl_ext;
5068 
5069 	/* Notify firmware that driver is in control of device */
5070 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5071 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5072 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5073 }
5074 
5075 /*
5076  * igb_release_driver_control
5077  */
5078 static void
5079 igb_release_driver_control(struct e1000_hw *hw)
5080 {
5081 	uint32_t ctrl_ext;
5082 
5083 	/* Notify firmware that driver is no longer in control of device */
5084 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5085 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5086 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5087 }
5088 
5089 /*
5090  * igb_atomic_reserve - Atomic decrease operation
5091  */
5092 int
5093 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5094 {
5095 	uint32_t oldval;
5096 	uint32_t newval;
5097 
5098 	/* ATOMICALLY */
5099 	do {
5100 		oldval = *count_p;
5101 		if (oldval < n)
5102 			return (-1);
5103 		newval = oldval - n;
5104 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
5105 
5106 	return (newval);
5107 }
5108 
5109 /*
5110  * FMA support
5111  */
5112 
5113 int
5114 igb_check_acc_handle(ddi_acc_handle_t handle)
5115 {
5116 	ddi_fm_error_t de;
5117 
5118 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5119 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5120 	return (de.fme_status);
5121 }
5122 
5123 int
5124 igb_check_dma_handle(ddi_dma_handle_t handle)
5125 {
5126 	ddi_fm_error_t de;
5127 
5128 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5129 	return (de.fme_status);
5130 }
5131 
5132 /*
5133  * The IO fault service error handling callback function
5134  */
5135 /*ARGSUSED*/
5136 static int
5137 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5138 {
5139 	/*
5140 	 * as the driver can always deal with an error in any dma or
5141 	 * access handle, we can just return the fme_status value.
5142 	 */
5143 	pci_ereport_post(dip, err, NULL);
5144 	return (err->fme_status);
5145 }
5146 
5147 static void
5148 igb_fm_init(igb_t *igb)
5149 {
5150 	ddi_iblock_cookie_t iblk;
5151 	int fma_dma_flag;
5152 
5153 	/* Only register with IO Fault Services if we have some capability */
5154 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5155 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5156 	} else {
5157 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5158 	}
5159 
5160 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5161 		fma_dma_flag = 1;
5162 	} else {
5163 		fma_dma_flag = 0;
5164 	}
5165 
5166 	(void) igb_set_fma_flags(fma_dma_flag);
5167 
5168 	if (igb->fm_capabilities) {
5169 
5170 		/* Register capabilities with IO Fault Services */
5171 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5172 
5173 		/*
5174 		 * Initialize pci ereport capabilities if ereport capable
5175 		 */
5176 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5177 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5178 			pci_ereport_setup(igb->dip);
5179 
5180 		/*
5181 		 * Register error callback if error callback capable
5182 		 */
5183 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5184 			ddi_fm_handler_register(igb->dip,
5185 			    igb_fm_error_cb, (void*) igb);
5186 	}
5187 }
5188 
5189 static void
5190 igb_fm_fini(igb_t *igb)
5191 {
5192 	/* Only unregister FMA capabilities if we registered some */
5193 	if (igb->fm_capabilities) {
5194 
5195 		/*
5196 		 * Release any resources allocated by pci_ereport_setup()
5197 		 */
5198 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5199 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5200 			pci_ereport_teardown(igb->dip);
5201 
5202 		/*
5203 		 * Un-register error callback if error callback capable
5204 		 */
5205 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5206 			ddi_fm_handler_unregister(igb->dip);
5207 
5208 		/* Unregister from IO Fault Services */
5209 		ddi_fm_fini(igb->dip);
5210 	}
5211 }
5212 
5213 void
5214 igb_fm_ereport(igb_t *igb, char *detail)
5215 {
5216 	uint64_t ena;
5217 	char buf[FM_MAX_CLASS];
5218 
5219 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5220 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5221 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5222 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5223 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5224 	}
5225 }
5226