1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/cpuvar.h> 27 #include <sys/conf.h> 28 #include <sys/file.h> 29 #include <sys/ddi.h> 30 #include <sys/sunddi.h> 31 #include <sys/modctl.h> 32 33 #include <sys/socket.h> 34 #include <sys/strsubr.h> 35 #include <sys/sysmacros.h> 36 37 #include <sys/socketvar.h> 38 #include <netinet/in.h> 39 40 #include <sys/idm/idm.h> 41 #include <sys/idm/idm_so.h> 42 43 #define IDM_NAME_VERSION "iSCSI Data Mover" 44 45 extern struct mod_ops mod_miscops; 46 extern struct mod_ops mod_miscops; 47 48 static struct modlmisc modlmisc = { 49 &mod_miscops, /* Type of module */ 50 IDM_NAME_VERSION 51 }; 52 53 static struct modlinkage modlinkage = { 54 MODREV_1, (void *)&modlmisc, NULL 55 }; 56 57 extern int idm_task_compare(const void *t1, const void *t2); 58 extern void idm_wd_thread(void *arg); 59 60 static int _idm_init(void); 61 static int _idm_fini(void); 62 static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf); 63 static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf); 64 static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf); 65 static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf); 66 static void idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, 67 idm_abort_type_t abort_type); 68 static void idm_task_aborted(idm_task_t *idt, idm_status_t status); 69 static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, 70 int sleepflag); 71 72 boolean_t idm_conn_logging = 0; 73 boolean_t idm_svc_logging = 0; 74 #ifdef DEBUG 75 boolean_t idm_pattern_checking = 1; 76 #else 77 boolean_t idm_pattern_checking = 0; 78 #endif 79 80 /* 81 * Potential tuneable for the maximum number of tasks. Default to 82 * IDM_TASKIDS_MAX 83 */ 84 85 uint32_t idm_max_taskids = IDM_TASKIDS_MAX; 86 87 /* 88 * Global list of transport handles 89 * These are listed in preferential order, so we can simply take the 90 * first "it_conn_is_capable" hit. Note also that the order maps to 91 * the order of the idm_transport_type_t list. 92 */ 93 idm_transport_t idm_transport_list[] = { 94 95 /* iSER on InfiniBand transport handle */ 96 {IDM_TRANSPORT_TYPE_ISER, /* type */ 97 "/devices/ib/iser@0:iser", /* device path */ 98 NULL, /* LDI handle */ 99 NULL, /* transport ops */ 100 NULL}, /* transport caps */ 101 102 /* IDM native sockets transport handle */ 103 {IDM_TRANSPORT_TYPE_SOCKETS, /* type */ 104 NULL, /* device path */ 105 NULL, /* LDI handle */ 106 NULL, /* transport ops */ 107 NULL} /* transport caps */ 108 109 }; 110 111 int 112 _init(void) 113 { 114 int rc; 115 116 if ((rc = _idm_init()) != 0) { 117 return (rc); 118 } 119 120 return (mod_install(&modlinkage)); 121 } 122 123 int 124 _fini(void) 125 { 126 int rc; 127 128 if ((rc = _idm_fini()) != 0) { 129 return (rc); 130 } 131 132 if ((rc = mod_remove(&modlinkage)) != 0) { 133 return (rc); 134 } 135 136 return (rc); 137 } 138 139 int 140 _info(struct modinfo *modinfop) 141 { 142 return (mod_info(&modlinkage, modinfop)); 143 } 144 145 /* 146 * idm_transport_register() 147 * 148 * Provides a mechanism for an IDM transport driver to register its 149 * transport ops and caps with the IDM kernel module. Invoked during 150 * a transport driver's attach routine. 151 */ 152 idm_status_t 153 idm_transport_register(idm_transport_attr_t *attr) 154 { 155 ASSERT(attr->it_ops != NULL); 156 ASSERT(attr->it_caps != NULL); 157 158 switch (attr->type) { 159 /* All known non-native transports here; for now, iSER */ 160 case IDM_TRANSPORT_TYPE_ISER: 161 idm_transport_list[attr->type].it_ops = attr->it_ops; 162 idm_transport_list[attr->type].it_caps = attr->it_caps; 163 return (IDM_STATUS_SUCCESS); 164 165 default: 166 cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in " 167 "idm_transport_register", attr->type); 168 return (IDM_STATUS_SUCCESS); 169 } 170 } 171 172 /* 173 * idm_ini_conn_create 174 * 175 * This function is invoked by the iSCSI layer to create a connection context. 176 * This does not actually establish the socket connection. 177 * 178 * cr - Connection request parameters 179 * new_con - Output parameter that contains the new request if successful 180 * 181 */ 182 idm_status_t 183 idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con) 184 { 185 idm_transport_t *it; 186 idm_conn_t *ic; 187 int rc; 188 189 it = idm_transport_lookup(cr); 190 191 retry: 192 ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type, 193 &cr->icr_conn_ops); 194 195 bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr, 196 sizeof (cr->cr_ini_dst_addr)); 197 198 /* create the transport-specific connection components */ 199 rc = it->it_ops->it_ini_conn_create(cr, ic); 200 if (rc != IDM_STATUS_SUCCESS) { 201 /* cleanup the failed connection */ 202 idm_conn_destroy_common(ic); 203 204 /* 205 * It is possible for an IB client to connect to 206 * an ethernet-only client via an IB-eth gateway. 207 * Therefore, if we are attempting to use iSER and 208 * fail, retry with sockets before ultimately 209 * failing the connection. 210 */ 211 if (it->it_type == IDM_TRANSPORT_TYPE_ISER) { 212 it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]; 213 goto retry; 214 } 215 216 return (IDM_STATUS_FAIL); 217 } 218 219 *new_con = ic; 220 221 mutex_enter(&idm.idm_global_mutex); 222 list_insert_tail(&idm.idm_ini_conn_list, ic); 223 mutex_exit(&idm.idm_global_mutex); 224 225 return (IDM_STATUS_SUCCESS); 226 } 227 228 /* 229 * idm_ini_conn_destroy 230 * 231 * Releases any resources associated with the connection. This is the 232 * complement to idm_ini_conn_create. 233 * ic - idm_conn_t structure representing the relevant connection 234 * 235 */ 236 void 237 idm_ini_conn_destroy_task(void *ic_void) 238 { 239 idm_conn_t *ic = ic_void; 240 241 ic->ic_transport_ops->it_ini_conn_destroy(ic); 242 idm_conn_destroy_common(ic); 243 } 244 245 void 246 idm_ini_conn_destroy(idm_conn_t *ic) 247 { 248 /* 249 * It's reasonable for the initiator to call idm_ini_conn_destroy 250 * from within the context of the CN_CONNECT_DESTROY notification. 251 * That's a problem since we want to destroy the taskq for the 252 * state machine associated with the connection. Remove the 253 * connection from the list right away then handle the remaining 254 * work via the idm_global_taskq. 255 */ 256 mutex_enter(&idm.idm_global_mutex); 257 list_remove(&idm.idm_ini_conn_list, ic); 258 mutex_exit(&idm.idm_global_mutex); 259 260 if (taskq_dispatch(idm.idm_global_taskq, 261 &idm_ini_conn_destroy_task, ic, TQ_SLEEP) == NULL) { 262 cmn_err(CE_WARN, 263 "idm_ini_conn_destroy: Couldn't dispatch task"); 264 } 265 } 266 267 /* 268 * idm_ini_conn_connect 269 * 270 * Establish connection to the remote system identified in idm_conn_t. 271 * The connection parameters including the remote IP address were established 272 * in the call to idm_ini_conn_create. The IDM state machine will 273 * perform client notifications as necessary to prompt the initiator through 274 * the login process. IDM also keeps a timer running so that if the login 275 * process doesn't complete in a timely manner it will fail. 276 * 277 * ic - idm_conn_t structure representing the relevant connection 278 * 279 * Returns success if the connection was established, otherwise some kind 280 * of meaningful error code. 281 * 282 * Upon return the login has either failed or is loggin in (ffp) 283 */ 284 idm_status_t 285 idm_ini_conn_connect(idm_conn_t *ic) 286 { 287 idm_status_t rc = IDM_STATUS_SUCCESS; 288 289 rc = idm_conn_sm_init(ic); 290 if (rc != IDM_STATUS_SUCCESS) { 291 return (ic->ic_conn_sm_status); 292 } 293 294 /* Hold connection until we return */ 295 idm_conn_hold(ic); 296 297 /* Kick state machine */ 298 idm_conn_event(ic, CE_CONNECT_REQ, NULL); 299 300 /* Wait for login flag */ 301 mutex_enter(&ic->ic_state_mutex); 302 while (!(ic->ic_state_flags & CF_LOGIN_READY) && 303 !(ic->ic_state_flags & CF_ERROR)) { 304 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex); 305 } 306 mutex_exit(&ic->ic_state_mutex); 307 308 if (ic->ic_state_flags & CF_ERROR) { 309 /* ic->ic_conn_sm_status will contains failure status */ 310 idm_conn_rele(ic); 311 return (ic->ic_conn_sm_status); 312 } 313 314 /* Ready to login */ 315 ASSERT(ic->ic_state_flags & CF_LOGIN_READY); 316 (void) idm_notify_client(ic, CN_READY_FOR_LOGIN, NULL); 317 318 idm_conn_rele(ic); 319 320 return (rc); 321 } 322 323 /* 324 * idm_ini_conn_disconnect 325 * 326 * Forces a connection (previously established using idm_ini_conn_connect) 327 * to perform a controlled shutdown, cleaning up any outstanding requests. 328 * 329 * ic - idm_conn_t structure representing the relevant connection 330 * 331 * This is asynchronous and will return before the connection is properly 332 * shutdown 333 */ 334 /* ARGSUSED */ 335 void 336 idm_ini_conn_disconnect(idm_conn_t *ic) 337 { 338 idm_conn_event(ic, CE_TRANSPORT_FAIL, NULL); 339 } 340 341 /* 342 * idm_ini_conn_disconnect_wait 343 * 344 * Forces a connection (previously established using idm_ini_conn_connect) 345 * to perform a controlled shutdown. Blocks until the connection is 346 * disconnected. 347 * 348 * ic - idm_conn_t structure representing the relevant connection 349 */ 350 /* ARGSUSED */ 351 void 352 idm_ini_conn_disconnect_sync(idm_conn_t *ic) 353 { 354 mutex_enter(&ic->ic_state_mutex); 355 if ((ic->ic_state != CS_S9_INIT_ERROR) && 356 (ic->ic_state != CS_S11_COMPLETE)) { 357 idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, NULL, CT_NONE); 358 while ((ic->ic_state != CS_S9_INIT_ERROR) && 359 (ic->ic_state != CS_S11_COMPLETE)) 360 cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex); 361 } 362 mutex_exit(&ic->ic_state_mutex); 363 } 364 365 /* 366 * idm_tgt_svc_create 367 * 368 * The target calls this service to obtain a service context for each available 369 * transport, starting a service of each type related to the IP address and port 370 * passed. The idm_svc_req_t contains the service parameters. 371 */ 372 idm_status_t 373 idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc) 374 { 375 idm_transport_type_t type; 376 idm_transport_t *it; 377 idm_svc_t *is; 378 int rc; 379 380 *new_svc = NULL; 381 is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP); 382 383 /* Initialize transport-agnostic components of the service handle */ 384 is->is_svc_req = *sr; 385 mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL); 386 cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL); 387 mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL); 388 cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL); 389 idm_refcnt_init(&is->is_refcnt, is); 390 391 /* 392 * Make sure all available transports are setup. We call this now 393 * instead of at initialization time in case IB has become available 394 * since we started (hotplug, etc). 395 */ 396 idm_transport_setup(sr->sr_li); 397 398 /* 399 * Loop through the transports, configuring the transport-specific 400 * components of each one. 401 */ 402 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 403 404 it = &idm_transport_list[type]; 405 /* 406 * If it_ops is NULL then the transport is unconfigured 407 * and we shouldn't try to start the service. 408 */ 409 if (it->it_ops == NULL) { 410 continue; 411 } 412 413 rc = it->it_ops->it_tgt_svc_create(sr, is); 414 if (rc != IDM_STATUS_SUCCESS) { 415 /* Teardown any configured services */ 416 while (type--) { 417 it = &idm_transport_list[type]; 418 if (it->it_ops == NULL) { 419 continue; 420 } 421 it->it_ops->it_tgt_svc_destroy(is); 422 } 423 /* Free the svc context and return */ 424 kmem_free(is, sizeof (idm_svc_t)); 425 return (rc); 426 } 427 } 428 429 *new_svc = is; 430 431 mutex_enter(&idm.idm_global_mutex); 432 list_insert_tail(&idm.idm_tgt_svc_list, is); 433 mutex_exit(&idm.idm_global_mutex); 434 435 return (IDM_STATUS_SUCCESS); 436 } 437 438 /* 439 * idm_tgt_svc_destroy 440 * 441 * is - idm_svc_t returned by the call to idm_tgt_svc_create 442 * 443 * Cleanup any resources associated with the idm_svc_t. 444 */ 445 void 446 idm_tgt_svc_destroy(idm_svc_t *is) 447 { 448 idm_transport_type_t type; 449 idm_transport_t *it; 450 451 mutex_enter(&idm.idm_global_mutex); 452 /* remove this service from the global list */ 453 list_remove(&idm.idm_tgt_svc_list, is); 454 /* wakeup any waiters for service change */ 455 cv_broadcast(&idm.idm_tgt_svc_cv); 456 mutex_exit(&idm.idm_global_mutex); 457 458 /* teardown each transport-specific service */ 459 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 460 it = &idm_transport_list[type]; 461 if (it->it_ops == NULL) { 462 continue; 463 } 464 465 it->it_ops->it_tgt_svc_destroy(is); 466 } 467 468 /* tear down the svc resources */ 469 idm_refcnt_destroy(&is->is_refcnt); 470 cv_destroy(&is->is_count_cv); 471 mutex_destroy(&is->is_count_mutex); 472 cv_destroy(&is->is_cv); 473 mutex_destroy(&is->is_mutex); 474 475 /* free the svc handle */ 476 kmem_free(is, sizeof (idm_svc_t)); 477 } 478 479 void 480 idm_tgt_svc_hold(idm_svc_t *is) 481 { 482 idm_refcnt_hold(&is->is_refcnt); 483 } 484 485 void 486 idm_tgt_svc_rele_and_destroy(idm_svc_t *is) 487 { 488 idm_refcnt_rele_and_destroy(&is->is_refcnt, 489 (idm_refcnt_cb_t *)&idm_tgt_svc_destroy); 490 } 491 492 /* 493 * idm_tgt_svc_online 494 * 495 * is - idm_svc_t returned by the call to idm_tgt_svc_create 496 * 497 * Online each transport service, as we want this target to be accessible 498 * via any configured transport. 499 * 500 * When the initiator establishes a new connection to the target, IDM will 501 * call the "new connect" callback defined in the idm_svc_req_t structure 502 * and it will pass an idm_conn_t structure representing that new connection. 503 */ 504 idm_status_t 505 idm_tgt_svc_online(idm_svc_t *is) 506 { 507 508 idm_transport_type_t type, last_type; 509 idm_transport_t *it; 510 int rc = IDM_STATUS_SUCCESS; 511 512 mutex_enter(&is->is_mutex); 513 if (is->is_online == 0) { 514 /* Walk through each of the transports and online them */ 515 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 516 it = &idm_transport_list[type]; 517 if (it->it_ops == NULL) { 518 /* transport is not registered */ 519 continue; 520 } 521 522 mutex_exit(&is->is_mutex); 523 rc = it->it_ops->it_tgt_svc_online(is); 524 mutex_enter(&is->is_mutex); 525 if (rc != IDM_STATUS_SUCCESS) { 526 last_type = type; 527 break; 528 } 529 } 530 if (rc != IDM_STATUS_SUCCESS) { 531 /* 532 * The last transport failed to online. 533 * Offline any transport onlined above and 534 * do not online the target. 535 */ 536 for (type = 0; type < last_type; type++) { 537 it = &idm_transport_list[type]; 538 if (it->it_ops == NULL) { 539 /* transport is not registered */ 540 continue; 541 } 542 543 mutex_exit(&is->is_mutex); 544 it->it_ops->it_tgt_svc_offline(is); 545 mutex_enter(&is->is_mutex); 546 } 547 } else { 548 /* Target service now online */ 549 is->is_online = 1; 550 } 551 } else { 552 /* Target service already online, just bump the count */ 553 is->is_online++; 554 } 555 mutex_exit(&is->is_mutex); 556 557 return (rc); 558 } 559 560 /* 561 * idm_tgt_svc_offline 562 * 563 * is - idm_svc_t returned by the call to idm_tgt_svc_create 564 * 565 * Shutdown any online target services. 566 */ 567 void 568 idm_tgt_svc_offline(idm_svc_t *is) 569 { 570 idm_transport_type_t type; 571 idm_transport_t *it; 572 573 mutex_enter(&is->is_mutex); 574 is->is_online--; 575 if (is->is_online == 0) { 576 /* Walk through each of the transports and offline them */ 577 for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) { 578 it = &idm_transport_list[type]; 579 if (it->it_ops == NULL) { 580 /* transport is not registered */ 581 continue; 582 } 583 584 mutex_exit(&is->is_mutex); 585 it->it_ops->it_tgt_svc_offline(is); 586 mutex_enter(&is->is_mutex); 587 } 588 } 589 mutex_exit(&is->is_mutex); 590 } 591 592 /* 593 * idm_tgt_svc_lookup 594 * 595 * Lookup a service instance listening on the specified port 596 */ 597 598 idm_svc_t * 599 idm_tgt_svc_lookup(uint16_t port) 600 { 601 idm_svc_t *result; 602 603 retry: 604 mutex_enter(&idm.idm_global_mutex); 605 for (result = list_head(&idm.idm_tgt_svc_list); 606 result != NULL; 607 result = list_next(&idm.idm_tgt_svc_list, result)) { 608 if (result->is_svc_req.sr_port == port) { 609 if (result->is_online == 0) { 610 /* 611 * A service exists on this port, but it 612 * is going away, wait for it to cleanup. 613 */ 614 cv_wait(&idm.idm_tgt_svc_cv, 615 &idm.idm_global_mutex); 616 mutex_exit(&idm.idm_global_mutex); 617 goto retry; 618 } 619 idm_tgt_svc_hold(result); 620 mutex_exit(&idm.idm_global_mutex); 621 return (result); 622 } 623 } 624 mutex_exit(&idm.idm_global_mutex); 625 626 return (NULL); 627 } 628 629 /* 630 * idm_negotiate_key_values() 631 * Give IDM level a chance to negotiate any login parameters it should own. 632 * -- leave unhandled parameters alone on request_nvl 633 * -- move all handled parameters to response_nvl with an appropriate response 634 * -- also add an entry to negotiated_nvl for any accepted parameters 635 */ 636 kv_status_t 637 idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl, 638 nvlist_t *response_nvl, nvlist_t *negotiated_nvl) 639 { 640 ASSERT(ic->ic_transport_ops != NULL); 641 return (ic->ic_transport_ops->it_negotiate_key_values(ic, 642 request_nvl, response_nvl, negotiated_nvl)); 643 } 644 645 /* 646 * idm_notice_key_values() 647 * Activate at the IDM level any parameters that have been negotiated. 648 * Passes the set of key value pairs to the transport for activation. 649 * This will be invoked as the connection is entering full-feature mode. 650 */ 651 void 652 idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl) 653 { 654 ASSERT(ic->ic_transport_ops != NULL); 655 ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl); 656 } 657 658 /* 659 * idm_buf_tx_to_ini 660 * 661 * This is IDM's implementation of the 'Put_Data' operational primitive. 662 * 663 * This function is invoked by a target iSCSI layer to request its local 664 * Datamover layer to transmit the Data-In PDU to the peer iSCSI layer 665 * on the remote iSCSI node. The I/O buffer represented by 'idb' is 666 * transferred to the initiator associated with task 'idt'. The connection 667 * info, contents of the Data-In PDU header, the DataDescriptorIn, BHS, 668 * and the callback (idb->idb_buf_cb) at transfer completion are 669 * provided as input. 670 * 671 * This data transfer takes place transparently to the remote iSCSI layer, 672 * i.e. without its participation. 673 * 674 * Using sockets, IDM implements the data transfer by segmenting the data 675 * buffer into appropriately sized iSCSI PDUs and transmitting them to the 676 * initiator. iSER performs the transfer using RDMA write. 677 * 678 */ 679 idm_status_t 680 idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb, 681 uint32_t offset, uint32_t xfer_len, 682 idm_buf_cb_t idb_buf_cb, void *cb_arg) 683 { 684 idm_status_t rc; 685 686 idb->idb_bufoffset = offset; 687 idb->idb_xfer_len = xfer_len; 688 idb->idb_buf_cb = idb_buf_cb; 689 idb->idb_cb_arg = cb_arg; 690 gethrestime(&idb->idb_xfer_start); 691 692 /* 693 * Buffer should not contain the pattern. If the pattern is 694 * present then we've been asked to transmit initialized data 695 */ 696 IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT); 697 698 mutex_enter(&idt->idt_mutex); 699 switch (idt->idt_state) { 700 case TASK_ACTIVE: 701 idt->idt_tx_to_ini_start++; 702 idm_task_hold(idt); 703 idm_buf_bind_in_locked(idt, idb); 704 idb->idb_in_transport = B_TRUE; 705 rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini) 706 (idt, idb); 707 return (rc); 708 709 case TASK_SUSPENDING: 710 case TASK_SUSPENDED: 711 /* 712 * Bind buffer but don't start a transfer since the task 713 * is suspended 714 */ 715 idm_buf_bind_in_locked(idt, idb); 716 mutex_exit(&idt->idt_mutex); 717 return (IDM_STATUS_SUCCESS); 718 719 case TASK_ABORTING: 720 case TASK_ABORTED: 721 /* 722 * Once the task is aborted, any buffers added to the 723 * idt_inbufv will never get cleaned up, so just return 724 * SUCCESS. The buffer should get cleaned up by the 725 * client or framework once task_aborted has completed. 726 */ 727 mutex_exit(&idt->idt_mutex); 728 return (IDM_STATUS_SUCCESS); 729 730 default: 731 ASSERT(0); 732 break; 733 } 734 mutex_exit(&idt->idt_mutex); 735 736 return (IDM_STATUS_FAIL); 737 } 738 739 /* 740 * idm_buf_rx_from_ini 741 * 742 * This is IDM's implementation of the 'Get_Data' operational primitive. 743 * 744 * This function is invoked by a target iSCSI layer to request its local 745 * Datamover layer to retrieve certain data identified by the R2T PDU from the 746 * peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be 747 * mapped to the respective buffer by the task tags (ITT & TTT). 748 * The connection information, contents of an R2T PDU, DataDescriptor, BHS, and 749 * the callback (idb->idb_buf_cb) notification for data transfer completion are 750 * are provided as input. 751 * 752 * When an iSCSI node sends an R2T PDU to its local Datamover layer, the local 753 * Datamover layer, the local and remote Datamover layers transparently bring 754 * about the data transfer requested by the R2T PDU, without the participation 755 * of the iSCSI layers. 756 * 757 * Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out() 758 * assembles the Data-Out PDUs into the buffer. iSER uses RDMA read. 759 * 760 */ 761 idm_status_t 762 idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb, 763 uint32_t offset, uint32_t xfer_len, 764 idm_buf_cb_t idb_buf_cb, void *cb_arg) 765 { 766 idm_status_t rc; 767 768 idb->idb_bufoffset = offset; 769 idb->idb_xfer_len = xfer_len; 770 idb->idb_buf_cb = idb_buf_cb; 771 idb->idb_cb_arg = cb_arg; 772 gethrestime(&idb->idb_xfer_start); 773 774 /* 775 * "In" buf list is for "Data In" PDU's, "Out" buf list is for 776 * "Data Out" PDU's 777 */ 778 mutex_enter(&idt->idt_mutex); 779 switch (idt->idt_state) { 780 case TASK_ACTIVE: 781 idt->idt_rx_from_ini_start++; 782 idm_task_hold(idt); 783 idm_buf_bind_out_locked(idt, idb); 784 idb->idb_in_transport = B_TRUE; 785 rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini) 786 (idt, idb); 787 return (rc); 788 case TASK_SUSPENDING: 789 case TASK_SUSPENDED: 790 case TASK_ABORTING: 791 case TASK_ABORTED: 792 /* 793 * Bind buffer but don't start a transfer since the task 794 * is suspended 795 */ 796 idm_buf_bind_out_locked(idt, idb); 797 mutex_exit(&idt->idt_mutex); 798 return (IDM_STATUS_SUCCESS); 799 default: 800 ASSERT(0); 801 break; 802 } 803 mutex_exit(&idt->idt_mutex); 804 805 return (IDM_STATUS_FAIL); 806 } 807 808 /* 809 * idm_buf_tx_to_ini_done 810 * 811 * The transport calls this after it has completed a transfer requested by 812 * a call to transport_buf_tx_to_ini 813 * 814 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning. 815 * idt may be freed after the call to idb->idb_buf_cb. 816 */ 817 void 818 idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status) 819 { 820 ASSERT(mutex_owned(&idt->idt_mutex)); 821 idb->idb_in_transport = B_FALSE; 822 idb->idb_tx_thread = B_FALSE; 823 idt->idt_tx_to_ini_done++; 824 gethrestime(&idb->idb_xfer_done); 825 826 /* 827 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or 828 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes 829 * to 0. 830 */ 831 idm_task_rele(idt); 832 idb->idb_status = status; 833 834 switch (idt->idt_state) { 835 case TASK_ACTIVE: 836 idt->idt_ic->ic_timestamp = ddi_get_lbolt(); 837 idm_buf_unbind_in_locked(idt, idb); 838 mutex_exit(&idt->idt_mutex); 839 (*idb->idb_buf_cb)(idb, status); 840 return; 841 case TASK_SUSPENDING: 842 case TASK_SUSPENDED: 843 case TASK_ABORTING: 844 case TASK_ABORTED: 845 /* 846 * To keep things simple we will ignore the case where the 847 * transfer was successful and leave all buffers bound to the 848 * task. This allows us to also ignore the case where we've 849 * been asked to abort a task but the last transfer of the 850 * task has completed. IDM has no idea whether this was, in 851 * fact, the last transfer of the task so it would be difficult 852 * to handle this case. Everything should get sorted out again 853 * after task reassignment is complete. 854 * 855 * In the case of TASK_ABORTING we could conceivably call the 856 * buffer callback here but the timing of when the client's 857 * client_task_aborted callback is invoked vs. when the client's 858 * buffer callback gets invoked gets sticky. We don't want 859 * the client to here from us again after the call to 860 * client_task_aborted() but we don't want to give it a bunch 861 * of failed buffer transfers until we've called 862 * client_task_aborted(). Instead we'll just leave all the 863 * buffers bound and allow the client to cleanup. 864 */ 865 break; 866 default: 867 ASSERT(0); 868 } 869 mutex_exit(&idt->idt_mutex); 870 } 871 872 /* 873 * idm_buf_rx_from_ini_done 874 * 875 * The transport calls this after it has completed a transfer requested by 876 * a call totransport_buf_tx_to_ini 877 * 878 * Caller holds idt->idt_mutex, idt->idt_mutex is released before returning. 879 * idt may be freed after the call to idb->idb_buf_cb. 880 */ 881 void 882 idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status) 883 { 884 ASSERT(mutex_owned(&idt->idt_mutex)); 885 idb->idb_in_transport = B_FALSE; 886 idt->idt_rx_from_ini_done++; 887 gethrestime(&idb->idb_xfer_done); 888 889 /* 890 * idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or 891 * TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes 892 * to 0. 893 */ 894 idm_task_rele(idt); 895 idb->idb_status = status; 896 897 if (status == IDM_STATUS_SUCCESS) { 898 /* 899 * Buffer should not contain the pattern. If it does then 900 * we did not get the data from the remote host. 901 */ 902 IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT); 903 } 904 905 switch (idt->idt_state) { 906 case TASK_ACTIVE: 907 idt->idt_ic->ic_timestamp = ddi_get_lbolt(); 908 idm_buf_unbind_out_locked(idt, idb); 909 mutex_exit(&idt->idt_mutex); 910 (*idb->idb_buf_cb)(idb, status); 911 return; 912 case TASK_SUSPENDING: 913 case TASK_SUSPENDED: 914 case TASK_ABORTING: 915 case TASK_ABORTED: 916 /* 917 * To keep things simple we will ignore the case where the 918 * transfer was successful and leave all buffers bound to the 919 * task. This allows us to also ignore the case where we've 920 * been asked to abort a task but the last transfer of the 921 * task has completed. IDM has no idea whether this was, in 922 * fact, the last transfer of the task so it would be difficult 923 * to handle this case. Everything should get sorted out again 924 * after task reassignment is complete. 925 * 926 * In the case of TASK_ABORTING we could conceivably call the 927 * buffer callback here but the timing of when the client's 928 * client_task_aborted callback is invoked vs. when the client's 929 * buffer callback gets invoked gets sticky. We don't want 930 * the client to here from us again after the call to 931 * client_task_aborted() but we don't want to give it a bunch 932 * of failed buffer transfers until we've called 933 * client_task_aborted(). Instead we'll just leave all the 934 * buffers bound and allow the client to cleanup. 935 */ 936 break; 937 default: 938 ASSERT(0); 939 } 940 mutex_exit(&idt->idt_mutex); 941 } 942 943 /* 944 * idm_buf_alloc 945 * 946 * Allocates a buffer handle and registers it for use with the transport 947 * layer. If a buffer is not passed on bufptr, the buffer will be allocated 948 * as well as the handle. 949 * 950 * ic - connection on which the buffer will be transferred 951 * bufptr - allocate memory for buffer if NULL, else assign to buffer 952 * buflen - length of buffer 953 * 954 * Returns idm_buf_t handle if successful, otherwise NULL 955 */ 956 idm_buf_t * 957 idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen) 958 { 959 idm_buf_t *buf = NULL; 960 int rc; 961 962 ASSERT(ic != NULL); 963 ASSERT(idm.idm_buf_cache != NULL); 964 ASSERT(buflen > 0); 965 966 /* Don't allocate new buffers if we are not in FFP */ 967 mutex_enter(&ic->ic_state_mutex); 968 if (!ic->ic_ffp) { 969 mutex_exit(&ic->ic_state_mutex); 970 return (NULL); 971 } 972 973 974 idm_conn_hold(ic); 975 mutex_exit(&ic->ic_state_mutex); 976 977 buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP); 978 if (buf == NULL) { 979 idm_conn_rele(ic); 980 return (NULL); 981 } 982 983 buf->idb_ic = ic; 984 buf->idb_buflen = buflen; 985 buf->idb_exp_offset = 0; 986 buf->idb_bufoffset = 0; 987 buf->idb_xfer_len = 0; 988 buf->idb_magic = IDM_BUF_MAGIC; 989 buf->idb_in_transport = B_FALSE; 990 buf->idb_bufbcopy = B_FALSE; 991 992 /* 993 * If bufptr is NULL, we have an implicit request to allocate 994 * memory for this IDM buffer handle and register it for use 995 * with the transport. To simplify this, and to give more freedom 996 * to the transport layer for it's own buffer management, both of 997 * these actions will take place in the transport layer. 998 * If bufptr is set, then the caller has allocated memory (or more 999 * likely it's been passed from an upper layer), and we need only 1000 * register the buffer for use with the transport layer. 1001 */ 1002 if (bufptr == NULL) { 1003 /* 1004 * Allocate a buffer from the transport layer (which 1005 * will also register the buffer for use). 1006 */ 1007 rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen); 1008 if (rc != 0) { 1009 idm_conn_rele(ic); 1010 kmem_cache_free(idm.idm_buf_cache, buf); 1011 return (NULL); 1012 } 1013 /* Set the bufalloc'd flag */ 1014 buf->idb_bufalloc = B_TRUE; 1015 } else { 1016 /* 1017 * For large transfers, Set the passed bufptr into 1018 * the buf handle, and register the handle with the 1019 * transport layer. As memory registration with the 1020 * transport layer is a time/cpu intensive operation, 1021 * for small transfers (up to a pre-defined bcopy 1022 * threshold), use pre-registered memory buffers 1023 * and bcopy data at the appropriate time. 1024 */ 1025 buf->idb_buf = bufptr; 1026 1027 rc = ic->ic_transport_ops->it_buf_setup(buf); 1028 if (rc != 0) { 1029 idm_conn_rele(ic); 1030 kmem_cache_free(idm.idm_buf_cache, buf); 1031 return (NULL); 1032 } 1033 /* 1034 * The transport layer is now expected to set the idb_bufalloc 1035 * correctly to indicate if resources have been allocated. 1036 */ 1037 } 1038 1039 IDM_BUFPAT_SET(buf); 1040 1041 return (buf); 1042 } 1043 1044 /* 1045 * idm_buf_free 1046 * 1047 * Release a buffer handle along with the associated buffer that was allocated 1048 * or assigned with idm_buf_alloc 1049 */ 1050 void 1051 idm_buf_free(idm_buf_t *buf) 1052 { 1053 idm_conn_t *ic = buf->idb_ic; 1054 1055 1056 buf->idb_task_binding = NULL; 1057 1058 if (buf->idb_bufalloc) { 1059 ic->ic_transport_ops->it_buf_free(buf); 1060 } else { 1061 ic->ic_transport_ops->it_buf_teardown(buf); 1062 } 1063 kmem_cache_free(idm.idm_buf_cache, buf); 1064 idm_conn_rele(ic); 1065 } 1066 1067 /* 1068 * idm_buf_bind_in 1069 * 1070 * This function associates a buffer with a task. This is only for use by the 1071 * iSCSI initiator that will have only one buffer per transfer direction 1072 * 1073 */ 1074 void 1075 idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf) 1076 { 1077 mutex_enter(&idt->idt_mutex); 1078 idm_buf_bind_in_locked(idt, buf); 1079 mutex_exit(&idt->idt_mutex); 1080 } 1081 1082 static void 1083 idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf) 1084 { 1085 buf->idb_task_binding = idt; 1086 buf->idb_ic = idt->idt_ic; 1087 idm_listbuf_insert(&idt->idt_inbufv, buf); 1088 } 1089 1090 void 1091 idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf) 1092 { 1093 /* 1094 * For small transfers, the iSER transport delegates the IDM 1095 * layer to bcopy the SCSI Write data for faster IOPS. 1096 */ 1097 if (buf->idb_bufbcopy == B_TRUE) { 1098 1099 bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen); 1100 } 1101 mutex_enter(&idt->idt_mutex); 1102 idm_buf_bind_out_locked(idt, buf); 1103 mutex_exit(&idt->idt_mutex); 1104 } 1105 1106 static void 1107 idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf) 1108 { 1109 buf->idb_task_binding = idt; 1110 buf->idb_ic = idt->idt_ic; 1111 idm_listbuf_insert(&idt->idt_outbufv, buf); 1112 } 1113 1114 void 1115 idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf) 1116 { 1117 /* 1118 * For small transfers, the iSER transport delegates the IDM 1119 * layer to bcopy the SCSI Read data into the read buufer 1120 * for faster IOPS. 1121 */ 1122 if (buf->idb_bufbcopy == B_TRUE) { 1123 bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen); 1124 } 1125 mutex_enter(&idt->idt_mutex); 1126 idm_buf_unbind_in_locked(idt, buf); 1127 mutex_exit(&idt->idt_mutex); 1128 } 1129 1130 static void 1131 idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf) 1132 { 1133 list_remove(&idt->idt_inbufv, buf); 1134 } 1135 1136 void 1137 idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf) 1138 { 1139 mutex_enter(&idt->idt_mutex); 1140 idm_buf_unbind_out_locked(idt, buf); 1141 mutex_exit(&idt->idt_mutex); 1142 } 1143 1144 static void 1145 idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf) 1146 { 1147 list_remove(&idt->idt_outbufv, buf); 1148 } 1149 1150 /* 1151 * idm_buf_find() will lookup the idm_buf_t based on the relative offset in the 1152 * iSCSI PDU 1153 */ 1154 idm_buf_t * 1155 idm_buf_find(void *lbuf, size_t data_offset) 1156 { 1157 idm_buf_t *idb; 1158 list_t *lst = (list_t *)lbuf; 1159 1160 /* iterate through the list to find the buffer */ 1161 for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) { 1162 1163 ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) || 1164 (idb->idb_bufoffset == 0)); 1165 1166 if ((data_offset >= idb->idb_bufoffset) && 1167 (data_offset < (idb->idb_bufoffset + idb->idb_buflen))) { 1168 1169 return (idb); 1170 } 1171 } 1172 1173 return (NULL); 1174 } 1175 1176 void 1177 idm_bufpat_set(idm_buf_t *idb) 1178 { 1179 idm_bufpat_t *bufpat; 1180 int len, i; 1181 1182 len = idb->idb_buflen; 1183 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t); 1184 1185 bufpat = idb->idb_buf; 1186 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) { 1187 bufpat->bufpat_idb = idb; 1188 bufpat->bufpat_bufmagic = IDM_BUF_MAGIC; 1189 bufpat->bufpat_offset = i; 1190 bufpat++; 1191 } 1192 } 1193 1194 boolean_t 1195 idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type) 1196 { 1197 idm_bufpat_t *bufpat; 1198 int len, i; 1199 1200 len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len; 1201 len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t); 1202 ASSERT(len <= idb->idb_buflen); 1203 bufpat = idb->idb_buf; 1204 1205 /* 1206 * Don't check the pattern in buffers that came from outside IDM 1207 * (these will be buffers from the initiator that we opted not 1208 * to double-buffer) 1209 */ 1210 if (!idb->idb_bufalloc) 1211 return (B_FALSE); 1212 1213 /* 1214 * Return true if we find the pattern anywhere in the buffer 1215 */ 1216 for (i = 0; i < len; i += sizeof (idm_bufpat_t)) { 1217 if (BUFPAT_MATCH(bufpat, idb)) { 1218 IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: " 1219 "idb %p bufpat %p " 1220 "bufpat_idb=%p bufmagic=%08x offset=%08x", 1221 (void *)idb, (void *)bufpat, bufpat->bufpat_idb, 1222 bufpat->bufpat_bufmagic, bufpat->bufpat_offset); 1223 DTRACE_PROBE2(bufpat__pattern__found, 1224 idm_buf_t *, idb, idm_bufpat_t *, bufpat); 1225 if (type == BP_CHECK_ASSERT) { 1226 ASSERT(0); 1227 } 1228 return (B_TRUE); 1229 } 1230 bufpat++; 1231 } 1232 1233 return (B_FALSE); 1234 } 1235 1236 /* 1237 * idm_task_alloc 1238 * 1239 * This function will allocate a idm_task_t structure. A task tag is also 1240 * generated and saved in idt_tt. The task is not active. 1241 */ 1242 idm_task_t * 1243 idm_task_alloc(idm_conn_t *ic) 1244 { 1245 idm_task_t *idt; 1246 1247 ASSERT(ic != NULL); 1248 1249 /* Don't allocate new tasks if we are not in FFP */ 1250 mutex_enter(&ic->ic_state_mutex); 1251 if (!ic->ic_ffp) { 1252 mutex_exit(&ic->ic_state_mutex); 1253 return (NULL); 1254 } 1255 idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP); 1256 if (idt == NULL) { 1257 mutex_exit(&ic->ic_state_mutex); 1258 return (NULL); 1259 } 1260 1261 ASSERT(list_is_empty(&idt->idt_inbufv)); 1262 ASSERT(list_is_empty(&idt->idt_outbufv)); 1263 1264 idm_conn_hold(ic); 1265 mutex_exit(&ic->ic_state_mutex); 1266 1267 idt->idt_state = TASK_IDLE; 1268 idt->idt_ic = ic; 1269 idt->idt_private = NULL; 1270 idt->idt_exp_datasn = 0; 1271 idt->idt_exp_rttsn = 0; 1272 1273 return (idt); 1274 } 1275 1276 /* 1277 * idm_task_start 1278 * 1279 * Mark the task active and initialize some stats. The caller 1280 * sets up the idm_task_t structure with a prior call to idm_task_alloc(). 1281 * The task service does not function as a task/work engine, it is the 1282 * responsibility of the initiator to start the data transfer and free the 1283 * resources. 1284 */ 1285 void 1286 idm_task_start(idm_task_t *idt, uintptr_t handle) 1287 { 1288 ASSERT(idt != NULL); 1289 1290 /* mark the task as ACTIVE */ 1291 idt->idt_state = TASK_ACTIVE; 1292 idt->idt_client_handle = handle; 1293 idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done = 1294 idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done = 1295 idt->idt_tx_bytes = idt->idt_rx_bytes = 0; 1296 } 1297 1298 /* 1299 * idm_task_done 1300 * 1301 * This function sets the state to indicate that the task is no longer active. 1302 */ 1303 void 1304 idm_task_done(idm_task_t *idt) 1305 { 1306 ASSERT(idt != NULL); 1307 1308 mutex_enter(&idt->idt_mutex); 1309 idt->idt_state = TASK_IDLE; 1310 mutex_exit(&idt->idt_mutex); 1311 1312 /* 1313 * Although unlikely it is possible for a reference to come in after 1314 * the client has decided the task is over but before we've marked 1315 * the task idle. One specific unavoidable scenario is the case where 1316 * received PDU with the matching ITT/TTT results in a successful 1317 * lookup of this task. We are at the mercy of the remote node in 1318 * that case so we need to handle it. Now that the task state 1319 * has changed no more references will occur so a simple call to 1320 * idm_refcnt_wait_ref should deal with the situation. 1321 */ 1322 idm_refcnt_wait_ref(&idt->idt_refcnt); 1323 idm_refcnt_reset(&idt->idt_refcnt); 1324 } 1325 1326 /* 1327 * idm_task_free 1328 * 1329 * This function will free the Task Tag and the memory allocated for the task 1330 * idm_task_done should be called prior to this call 1331 */ 1332 void 1333 idm_task_free(idm_task_t *idt) 1334 { 1335 idm_conn_t *ic; 1336 1337 ASSERT(idt != NULL); 1338 ASSERT(idt->idt_refcnt.ir_refcnt == 0); 1339 ASSERT(idt->idt_state == TASK_IDLE); 1340 1341 ic = idt->idt_ic; 1342 1343 /* 1344 * It's possible for items to still be in the idt_inbufv list if 1345 * they were added after idm_task_cleanup was called. We rely on 1346 * STMF to free all buffers associated with the task however STMF 1347 * doesn't know that we have this reference to the buffers. 1348 * Use list_create so that we don't end up with stale references 1349 * to these buffers. 1350 */ 1351 list_create(&idt->idt_inbufv, sizeof (idm_buf_t), 1352 offsetof(idm_buf_t, idb_buflink)); 1353 list_create(&idt->idt_outbufv, sizeof (idm_buf_t), 1354 offsetof(idm_buf_t, idb_buflink)); 1355 1356 kmem_cache_free(idm.idm_task_cache, idt); 1357 1358 idm_conn_rele(ic); 1359 } 1360 1361 /* 1362 * idm_task_find_common 1363 * common code for idm_task_find() and idm_task_find_and_complete() 1364 */ 1365 /*ARGSUSED*/ 1366 static idm_task_t * 1367 idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt, 1368 boolean_t complete) 1369 { 1370 uint32_t tt, client_handle; 1371 idm_task_t *idt; 1372 1373 /* 1374 * Must match both itt and ttt. The table is indexed by itt 1375 * for initiator connections and ttt for target connections. 1376 */ 1377 if (IDM_CONN_ISTGT(ic)) { 1378 tt = ttt; 1379 client_handle = itt; 1380 } else { 1381 tt = itt; 1382 client_handle = ttt; 1383 } 1384 1385 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1386 if (tt >= idm.idm_taskid_max) { 1387 rw_exit(&idm.idm_taskid_table_lock); 1388 return (NULL); 1389 } 1390 1391 idt = idm.idm_taskid_table[tt]; 1392 1393 if (idt != NULL) { 1394 mutex_enter(&idt->idt_mutex); 1395 if ((idt->idt_state != TASK_ACTIVE) || 1396 (idt->idt_ic != ic) || 1397 (IDM_CONN_ISTGT(ic) && 1398 (idt->idt_client_handle != client_handle))) { 1399 /* 1400 * Task doesn't match or task is aborting and 1401 * we don't want any more references. 1402 */ 1403 if ((idt->idt_ic != ic) && 1404 (idt->idt_state == TASK_ACTIVE) && 1405 (IDM_CONN_ISINI(ic) || idt->idt_client_handle == 1406 client_handle)) { 1407 IDM_CONN_LOG(CE_WARN, 1408 "idm_task_find: wrong connection %p != %p", 1409 (void *)ic, (void *)idt->idt_ic); 1410 } 1411 mutex_exit(&idt->idt_mutex); 1412 rw_exit(&idm.idm_taskid_table_lock); 1413 return (NULL); 1414 } 1415 idm_task_hold(idt); 1416 /* 1417 * Set the task state to TASK_COMPLETE so it can no longer 1418 * be found or aborted. 1419 */ 1420 if (B_TRUE == complete) 1421 idt->idt_state = TASK_COMPLETE; 1422 mutex_exit(&idt->idt_mutex); 1423 } 1424 rw_exit(&idm.idm_taskid_table_lock); 1425 1426 return (idt); 1427 } 1428 1429 /* 1430 * This function looks up a task by task tag. 1431 */ 1432 idm_task_t * 1433 idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt) 1434 { 1435 return (idm_task_find_common(ic, itt, ttt, B_FALSE)); 1436 } 1437 1438 /* 1439 * This function looks up a task by task tag. If found, the task state 1440 * is atomically set to TASK_COMPLETE so it can longer be found or aborted. 1441 */ 1442 idm_task_t * 1443 idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt) 1444 { 1445 return (idm_task_find_common(ic, itt, ttt, B_TRUE)); 1446 } 1447 1448 /* 1449 * idm_task_find_by_handle 1450 * 1451 * This function looks up a task by the client-private idt_client_handle. 1452 * 1453 * This function should NEVER be called in the performance path. It is 1454 * intended strictly for error recovery/task management. 1455 */ 1456 /*ARGSUSED*/ 1457 void * 1458 idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle) 1459 { 1460 idm_task_t *idt = NULL; 1461 int idx = 0; 1462 1463 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1464 1465 for (idx = 0; idx < idm.idm_taskid_max; idx++) { 1466 idt = idm.idm_taskid_table[idx]; 1467 1468 if (idt == NULL) 1469 continue; 1470 1471 mutex_enter(&idt->idt_mutex); 1472 1473 if (idt->idt_state != TASK_ACTIVE) { 1474 /* 1475 * Task is either in suspend, abort, or already 1476 * complete. 1477 */ 1478 mutex_exit(&idt->idt_mutex); 1479 continue; 1480 } 1481 1482 if (idt->idt_client_handle == handle) { 1483 idm_task_hold(idt); 1484 mutex_exit(&idt->idt_mutex); 1485 break; 1486 } 1487 1488 mutex_exit(&idt->idt_mutex); 1489 } 1490 1491 rw_exit(&idm.idm_taskid_table_lock); 1492 1493 if ((idt == NULL) || (idx == idm.idm_taskid_max)) 1494 return (NULL); 1495 1496 return (idt->idt_private); 1497 } 1498 1499 void 1500 idm_task_hold(idm_task_t *idt) 1501 { 1502 idm_refcnt_hold(&idt->idt_refcnt); 1503 } 1504 1505 void 1506 idm_task_rele(idm_task_t *idt) 1507 { 1508 idm_refcnt_rele(&idt->idt_refcnt); 1509 } 1510 1511 void 1512 idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type) 1513 { 1514 idm_task_t *task; 1515 int idx; 1516 1517 /* 1518 * Passing NULL as the task indicates that all tasks 1519 * for this connection should be aborted. 1520 */ 1521 if (idt == NULL) { 1522 /* 1523 * Only the connection state machine should ask for 1524 * all tasks to abort and this should never happen in FFP. 1525 */ 1526 ASSERT(!ic->ic_ffp); 1527 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1528 for (idx = 0; idx < idm.idm_taskid_max; idx++) { 1529 task = idm.idm_taskid_table[idx]; 1530 if (task == NULL) 1531 continue; 1532 mutex_enter(&task->idt_mutex); 1533 if ((task->idt_state != TASK_IDLE) && 1534 (task->idt_state != TASK_COMPLETE) && 1535 (task->idt_ic == ic)) { 1536 rw_exit(&idm.idm_taskid_table_lock); 1537 idm_task_abort_one(ic, task, abort_type); 1538 rw_enter(&idm.idm_taskid_table_lock, RW_READER); 1539 } else 1540 mutex_exit(&task->idt_mutex); 1541 } 1542 rw_exit(&idm.idm_taskid_table_lock); 1543 } else { 1544 mutex_enter(&idt->idt_mutex); 1545 idm_task_abort_one(ic, idt, abort_type); 1546 } 1547 } 1548 1549 static void 1550 idm_task_abort_unref_cb(void *ref) 1551 { 1552 idm_task_t *idt = ref; 1553 1554 mutex_enter(&idt->idt_mutex); 1555 switch (idt->idt_state) { 1556 case TASK_SUSPENDING: 1557 idt->idt_state = TASK_SUSPENDED; 1558 mutex_exit(&idt->idt_mutex); 1559 idm_task_aborted(idt, IDM_STATUS_SUSPENDED); 1560 return; 1561 case TASK_ABORTING: 1562 idt->idt_state = TASK_ABORTED; 1563 mutex_exit(&idt->idt_mutex); 1564 idm_task_aborted(idt, IDM_STATUS_ABORTED); 1565 return; 1566 default: 1567 mutex_exit(&idt->idt_mutex); 1568 ASSERT(0); 1569 break; 1570 } 1571 } 1572 1573 /* 1574 * Abort the idm task. 1575 * Caller must hold the task mutex, which will be released before return 1576 */ 1577 static void 1578 idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type) 1579 { 1580 /* Caller must hold connection mutex */ 1581 ASSERT(mutex_owned(&idt->idt_mutex)); 1582 switch (idt->idt_state) { 1583 case TASK_ACTIVE: 1584 switch (abort_type) { 1585 case AT_INTERNAL_SUSPEND: 1586 /* Call transport to release any resources */ 1587 idt->idt_state = TASK_SUSPENDING; 1588 mutex_exit(&idt->idt_mutex); 1589 ic->ic_transport_ops->it_free_task_rsrc(idt); 1590 1591 /* 1592 * Wait for outstanding references. When all 1593 * references are released the callback will call 1594 * idm_task_aborted(). 1595 */ 1596 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1597 &idm_task_abort_unref_cb); 1598 return; 1599 case AT_INTERNAL_ABORT: 1600 case AT_TASK_MGMT_ABORT: 1601 idt->idt_state = TASK_ABORTING; 1602 mutex_exit(&idt->idt_mutex); 1603 ic->ic_transport_ops->it_free_task_rsrc(idt); 1604 1605 /* 1606 * Wait for outstanding references. When all 1607 * references are released the callback will call 1608 * idm_task_aborted(). 1609 */ 1610 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1611 &idm_task_abort_unref_cb); 1612 return; 1613 default: 1614 ASSERT(0); 1615 } 1616 break; 1617 case TASK_SUSPENDING: 1618 /* Already called transport_free_task_rsrc(); */ 1619 switch (abort_type) { 1620 case AT_INTERNAL_SUSPEND: 1621 /* Already doing it */ 1622 break; 1623 case AT_INTERNAL_ABORT: 1624 case AT_TASK_MGMT_ABORT: 1625 idt->idt_state = TASK_ABORTING; 1626 break; 1627 default: 1628 ASSERT(0); 1629 } 1630 break; 1631 case TASK_SUSPENDED: 1632 /* Already called transport_free_task_rsrc(); */ 1633 switch (abort_type) { 1634 case AT_INTERNAL_SUSPEND: 1635 /* Already doing it */ 1636 break; 1637 case AT_INTERNAL_ABORT: 1638 case AT_TASK_MGMT_ABORT: 1639 idt->idt_state = TASK_ABORTING; 1640 mutex_exit(&idt->idt_mutex); 1641 1642 /* 1643 * We could probably call idm_task_aborted directly 1644 * here but we may be holding the conn lock. It's 1645 * easier to just switch contexts. Even though 1646 * we shouldn't really have any references we'll 1647 * set the state to TASK_ABORTING instead of 1648 * TASK_ABORTED so we can use the same code path. 1649 */ 1650 idm_refcnt_async_wait_ref(&idt->idt_refcnt, 1651 &idm_task_abort_unref_cb); 1652 return; 1653 default: 1654 ASSERT(0); 1655 } 1656 break; 1657 case TASK_ABORTING: 1658 case TASK_ABORTED: 1659 switch (abort_type) { 1660 case AT_INTERNAL_SUSPEND: 1661 /* We're already past this point... */ 1662 case AT_INTERNAL_ABORT: 1663 case AT_TASK_MGMT_ABORT: 1664 /* Already doing it */ 1665 break; 1666 default: 1667 ASSERT(0); 1668 } 1669 break; 1670 case TASK_COMPLETE: 1671 /* 1672 * In this case, let it go. The status has already been 1673 * sent (which may or may not get successfully transmitted) 1674 * and we don't want to end up in a race between completing 1675 * the status PDU and marking the task suspended. 1676 */ 1677 break; 1678 default: 1679 ASSERT(0); 1680 } 1681 mutex_exit(&idt->idt_mutex); 1682 } 1683 1684 static void 1685 idm_task_aborted(idm_task_t *idt, idm_status_t status) 1686 { 1687 (*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status); 1688 } 1689 1690 void 1691 idm_task_cleanup(idm_task_t *idt) 1692 { 1693 idm_buf_t *idb, *next_idb; 1694 list_t tmp_buflist; 1695 ASSERT((idt->idt_state == TASK_SUSPENDED) || 1696 (idt->idt_state == TASK_ABORTED)); 1697 1698 list_create(&tmp_buflist, sizeof (idm_buf_t), 1699 offsetof(idm_buf_t, idb_buflink)); 1700 1701 /* 1702 * Remove all the buffers from the task and add them to a 1703 * temporary local list -- we do this so that we can hold 1704 * the task lock and prevent the task from going away if 1705 * the client decides to call idm_task_done/idm_task_free. 1706 * This could happen during abort in iscsit. 1707 */ 1708 mutex_enter(&idt->idt_mutex); 1709 for (idb = list_head(&idt->idt_inbufv); 1710 idb != NULL; 1711 idb = next_idb) { 1712 next_idb = list_next(&idt->idt_inbufv, idb); 1713 idm_buf_unbind_in_locked(idt, idb); 1714 list_insert_tail(&tmp_buflist, idb); 1715 } 1716 1717 for (idb = list_head(&idt->idt_outbufv); 1718 idb != NULL; 1719 idb = next_idb) { 1720 next_idb = list_next(&idt->idt_outbufv, idb); 1721 idm_buf_unbind_out_locked(idt, idb); 1722 list_insert_tail(&tmp_buflist, idb); 1723 } 1724 mutex_exit(&idt->idt_mutex); 1725 1726 for (idb = list_head(&tmp_buflist); idb != NULL; idb = next_idb) { 1727 next_idb = list_next(&tmp_buflist, idb); 1728 list_remove(&tmp_buflist, idb); 1729 (*idb->idb_buf_cb)(idb, IDM_STATUS_ABORTED); 1730 } 1731 list_destroy(&tmp_buflist); 1732 } 1733 1734 1735 /* 1736 * idm_pdu_tx 1737 * 1738 * This is IDM's implementation of the 'Send_Control' operational primitive. 1739 * This function is invoked by an initiator iSCSI layer requesting the transfer 1740 * of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a 1741 * iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover 1742 * layer to the peer iSCSI layer in the remote iSCSI node. The connection info 1743 * and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size 1744 * are provided as input. 1745 * 1746 */ 1747 void 1748 idm_pdu_tx(idm_pdu_t *pdu) 1749 { 1750 idm_conn_t *ic = pdu->isp_ic; 1751 iscsi_async_evt_hdr_t *async_evt; 1752 1753 /* 1754 * If we are in full-featured mode then route SCSI-related 1755 * commands to the appropriate function vector without checking 1756 * the connection state. We will only be in full-feature mode 1757 * when we are in an acceptable state for SCSI PDU's. 1758 * 1759 * We also need to ensure that there are no PDU events outstanding 1760 * on the state machine. Any non-SCSI PDU's received in full-feature 1761 * mode will result in PDU events and until these have been handled 1762 * we need to route all PDU's through the state machine as PDU 1763 * events to maintain ordering. 1764 * 1765 * Note that IDM cannot enter FFP mode until it processes in 1766 * its state machine the last xmit of the login process. 1767 * Hence, checking the IDM_PDU_LOGIN_TX flag here would be 1768 * superfluous. 1769 */ 1770 mutex_enter(&ic->ic_state_mutex); 1771 if (ic->ic_ffp && (ic->ic_pdu_events == 0)) { 1772 mutex_exit(&ic->ic_state_mutex); 1773 switch (IDM_PDU_OPCODE(pdu)) { 1774 case ISCSI_OP_SCSI_RSP: 1775 /* Target only */ 1776 idm_pdu_tx_forward(ic, pdu); 1777 return; 1778 case ISCSI_OP_SCSI_TASK_MGT_RSP: 1779 /* Target only */ 1780 idm_pdu_tx_forward(ic, pdu); 1781 return; 1782 case ISCSI_OP_SCSI_DATA_RSP: 1783 /* Target only */ 1784 idm_pdu_tx_forward(ic, pdu); 1785 return; 1786 case ISCSI_OP_RTT_RSP: 1787 /* Target only */ 1788 idm_pdu_tx_forward(ic, pdu); 1789 return; 1790 case ISCSI_OP_NOOP_IN: 1791 /* Target only */ 1792 idm_pdu_tx_forward(ic, pdu); 1793 return; 1794 case ISCSI_OP_TEXT_RSP: 1795 /* Target only */ 1796 idm_pdu_tx_forward(ic, pdu); 1797 return; 1798 case ISCSI_OP_TEXT_CMD: 1799 case ISCSI_OP_NOOP_OUT: 1800 case ISCSI_OP_SCSI_CMD: 1801 case ISCSI_OP_SCSI_DATA: 1802 case ISCSI_OP_SCSI_TASK_MGT_MSG: 1803 /* Initiator only */ 1804 idm_pdu_tx_forward(ic, pdu); 1805 return; 1806 default: 1807 break; 1808 } 1809 1810 mutex_enter(&ic->ic_state_mutex); 1811 } 1812 1813 /* 1814 * Any PDU's processed outside of full-feature mode and non-SCSI 1815 * PDU's in full-feature mode are handled by generating an 1816 * event to the connection state machine. The state machine 1817 * will validate the PDU against the current state and either 1818 * transmit the PDU if the opcode is allowed or handle an 1819 * error if the PDU is not allowed. 1820 * 1821 * This code-path will also generate any events that are implied 1822 * by the PDU opcode. For example a "login response" with success 1823 * status generates a CE_LOGOUT_SUCCESS_SND event. 1824 */ 1825 switch (IDM_PDU_OPCODE(pdu)) { 1826 case ISCSI_OP_LOGIN_CMD: 1827 idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu); 1828 break; 1829 case ISCSI_OP_LOGIN_RSP: 1830 idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE); 1831 break; 1832 case ISCSI_OP_LOGOUT_CMD: 1833 idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE); 1834 break; 1835 case ISCSI_OP_LOGOUT_RSP: 1836 idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE); 1837 break; 1838 case ISCSI_OP_ASYNC_EVENT: 1839 async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr; 1840 switch (async_evt->async_event) { 1841 case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT: 1842 idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND, 1843 (uintptr_t)pdu); 1844 break; 1845 case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION: 1846 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND, 1847 (uintptr_t)pdu); 1848 break; 1849 case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS: 1850 idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND, 1851 (uintptr_t)pdu); 1852 break; 1853 case ISCSI_ASYNC_EVENT_SCSI_EVENT: 1854 case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION: 1855 default: 1856 idm_conn_tx_pdu_event(ic, CE_MISC_TX, 1857 (uintptr_t)pdu); 1858 break; 1859 } 1860 break; 1861 case ISCSI_OP_SCSI_RSP: 1862 /* Target only */ 1863 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1864 break; 1865 case ISCSI_OP_SCSI_TASK_MGT_RSP: 1866 /* Target only */ 1867 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1868 break; 1869 case ISCSI_OP_SCSI_DATA_RSP: 1870 /* Target only */ 1871 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1872 break; 1873 case ISCSI_OP_RTT_RSP: 1874 /* Target only */ 1875 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1876 break; 1877 case ISCSI_OP_NOOP_IN: 1878 /* Target only */ 1879 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1880 break; 1881 case ISCSI_OP_TEXT_RSP: 1882 /* Target only */ 1883 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1884 break; 1885 /* Initiator only */ 1886 case ISCSI_OP_SCSI_CMD: 1887 case ISCSI_OP_SCSI_TASK_MGT_MSG: 1888 case ISCSI_OP_SCSI_DATA: 1889 case ISCSI_OP_NOOP_OUT: 1890 case ISCSI_OP_TEXT_CMD: 1891 case ISCSI_OP_SNACK_CMD: 1892 case ISCSI_OP_REJECT_MSG: 1893 default: 1894 /* 1895 * Connection state machine will validate these PDU's against 1896 * the current state. A PDU not allowed in the current 1897 * state will cause a protocol error. 1898 */ 1899 idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu); 1900 break; 1901 } 1902 mutex_exit(&ic->ic_state_mutex); 1903 } 1904 1905 /* 1906 * Common allocation of a PDU along with memory for header and data. 1907 */ 1908 static idm_pdu_t * 1909 idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag) 1910 { 1911 idm_pdu_t *result; 1912 1913 /* 1914 * IDM clients should cache these structures for performance 1915 * critical paths. We can't cache effectively in IDM because we 1916 * don't know the correct header and data size. 1917 * 1918 * Valid header length is assumed to be hdrlen and valid data 1919 * length is assumed to be datalen. isp_hdrlen and isp_datalen 1920 * can be adjusted after the PDU is returned if necessary. 1921 */ 1922 result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag); 1923 if (result != NULL) { 1924 /* For idm_pdu_free sanity check */ 1925 result->isp_flags |= IDM_PDU_ALLOC; 1926 /* pointer arithmetic */ 1927 result->isp_hdr = (iscsi_hdr_t *)(result + 1); 1928 result->isp_hdrlen = hdrlen; 1929 result->isp_hdrbuflen = hdrlen; 1930 result->isp_transport_hdrlen = 0; 1931 if (datalen != 0) 1932 result->isp_data = (uint8_t *)result->isp_hdr + hdrlen; 1933 result->isp_datalen = datalen; 1934 result->isp_databuflen = datalen; 1935 result->isp_magic = IDM_PDU_MAGIC; 1936 } 1937 1938 return (result); 1939 } 1940 1941 /* 1942 * Typical idm_pdu_alloc invocation, will block for resources. 1943 */ 1944 idm_pdu_t * 1945 idm_pdu_alloc(uint_t hdrlen, uint_t datalen) 1946 { 1947 return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP)); 1948 } 1949 1950 /* 1951 * Non-blocking idm_pdu_alloc implementation, returns NULL if resources 1952 * are not available. Needed for transport-layer allocations which may 1953 * be invoking in interrupt context. 1954 */ 1955 idm_pdu_t * 1956 idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen) 1957 { 1958 return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP)); 1959 } 1960 1961 /* 1962 * Free a PDU previously allocated with idm_pdu_alloc() including any 1963 * header and data space allocated as part of the original request. 1964 * Additional memory regions referenced by subsequent modification of 1965 * the isp_hdr and/or isp_data fields will not be freed. 1966 */ 1967 void 1968 idm_pdu_free(idm_pdu_t *pdu) 1969 { 1970 /* Make sure the structure was allocated using idm_pdu_alloc() */ 1971 ASSERT(pdu->isp_flags & IDM_PDU_ALLOC); 1972 kmem_free(pdu, 1973 sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen); 1974 } 1975 1976 /* 1977 * Initialize the connection, private and callback fields in a PDU. 1978 */ 1979 void 1980 idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb) 1981 { 1982 /* 1983 * idm_pdu_complete() will call idm_pdu_free if the callback is 1984 * NULL. This will only work if the PDU was originally allocated 1985 * with idm_pdu_alloc(). 1986 */ 1987 ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) || 1988 (cb != NULL)); 1989 pdu->isp_magic = IDM_PDU_MAGIC; 1990 pdu->isp_ic = ic; 1991 pdu->isp_private = private; 1992 pdu->isp_callback = cb; 1993 } 1994 1995 /* 1996 * Initialize the header and header length field. This function should 1997 * not be used to adjust the header length in a buffer allocated via 1998 * pdu_pdu_alloc since it overwrites the existing header pointer. 1999 */ 2000 void 2001 idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen) 2002 { 2003 pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr); 2004 pdu->isp_hdrlen = hdrlen; 2005 } 2006 2007 /* 2008 * Initialize the data and data length fields. This function should 2009 * not be used to adjust the data length of a buffer allocated via 2010 * idm_pdu_alloc since it overwrites the existing data pointer. 2011 */ 2012 void 2013 idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen) 2014 { 2015 pdu->isp_data = data; 2016 pdu->isp_datalen = datalen; 2017 } 2018 2019 void 2020 idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status) 2021 { 2022 if (pdu->isp_callback) { 2023 pdu->isp_status = status; 2024 (*pdu->isp_callback)(pdu, status); 2025 } else { 2026 idm_pdu_free(pdu); 2027 } 2028 } 2029 2030 /* 2031 * State machine auditing 2032 */ 2033 2034 void 2035 idm_sm_audit_init(sm_audit_buf_t *audit_buf) 2036 { 2037 bzero(audit_buf, sizeof (sm_audit_buf_t)); 2038 audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1; 2039 } 2040 2041 static 2042 sm_audit_record_t * 2043 idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type, 2044 sm_audit_sm_type_t sm_type, 2045 int current_state) 2046 { 2047 sm_audit_record_t *sar; 2048 2049 sar = audit_buf->sab_records; 2050 sar += audit_buf->sab_index; 2051 audit_buf->sab_index++; 2052 audit_buf->sab_index &= audit_buf->sab_max_index; 2053 2054 sar->sar_type = r_type; 2055 gethrestime(&sar->sar_timestamp); 2056 sar->sar_sm_type = sm_type; 2057 sar->sar_state = current_state; 2058 2059 return (sar); 2060 } 2061 2062 void 2063 idm_sm_audit_event(sm_audit_buf_t *audit_buf, 2064 sm_audit_sm_type_t sm_type, int current_state, 2065 int event, uintptr_t event_info) 2066 { 2067 sm_audit_record_t *sar; 2068 2069 sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT, 2070 sm_type, current_state); 2071 sar->sar_event = event; 2072 sar->sar_event_info = event_info; 2073 } 2074 2075 void 2076 idm_sm_audit_state_change(sm_audit_buf_t *audit_buf, 2077 sm_audit_sm_type_t sm_type, int current_state, int new_state) 2078 { 2079 sm_audit_record_t *sar; 2080 2081 sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE, 2082 sm_type, current_state); 2083 sar->sar_new_state = new_state; 2084 } 2085 2086 2087 /* 2088 * Object reference tracking 2089 */ 2090 2091 void 2092 idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj) 2093 { 2094 bzero(refcnt, sizeof (*refcnt)); 2095 idm_refcnt_reset(refcnt); 2096 refcnt->ir_referenced_obj = referenced_obj; 2097 bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t)); 2098 refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1; 2099 mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL); 2100 cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL); 2101 } 2102 2103 void 2104 idm_refcnt_destroy(idm_refcnt_t *refcnt) 2105 { 2106 /* 2107 * Grab the mutex to there are no other lingering threads holding 2108 * the mutex before we destroy it (e.g. idm_refcnt_rele just after 2109 * the refcnt goes to zero if ir_waiting == REF_WAIT_ASYNC) 2110 */ 2111 mutex_enter(&refcnt->ir_mutex); 2112 ASSERT(refcnt->ir_refcnt == 0); 2113 cv_destroy(&refcnt->ir_cv); 2114 mutex_destroy(&refcnt->ir_mutex); 2115 } 2116 2117 void 2118 idm_refcnt_reset(idm_refcnt_t *refcnt) 2119 { 2120 refcnt->ir_waiting = REF_NOWAIT; 2121 refcnt->ir_refcnt = 0; 2122 } 2123 2124 void 2125 idm_refcnt_hold(idm_refcnt_t *refcnt) 2126 { 2127 /* 2128 * Nothing should take a hold on an object after a call to 2129 * idm_refcnt_wait_ref or idm_refcnd_async_wait_ref 2130 */ 2131 ASSERT(refcnt->ir_waiting == REF_NOWAIT); 2132 2133 mutex_enter(&refcnt->ir_mutex); 2134 refcnt->ir_refcnt++; 2135 REFCNT_AUDIT(refcnt); 2136 mutex_exit(&refcnt->ir_mutex); 2137 } 2138 2139 static void 2140 idm_refcnt_unref_task(void *refcnt_void) 2141 { 2142 idm_refcnt_t *refcnt = refcnt_void; 2143 2144 REFCNT_AUDIT(refcnt); 2145 (*refcnt->ir_cb)(refcnt->ir_referenced_obj); 2146 } 2147 2148 void 2149 idm_refcnt_rele(idm_refcnt_t *refcnt) 2150 { 2151 mutex_enter(&refcnt->ir_mutex); 2152 ASSERT(refcnt->ir_refcnt > 0); 2153 refcnt->ir_refcnt--; 2154 REFCNT_AUDIT(refcnt); 2155 if (refcnt->ir_waiting == REF_NOWAIT) { 2156 /* No one is waiting on this object */ 2157 mutex_exit(&refcnt->ir_mutex); 2158 return; 2159 } 2160 2161 /* 2162 * Someone is waiting for this object to go idle so check if 2163 * refcnt is 0. Waiting on an object then later grabbing another 2164 * reference is not allowed so we don't need to handle that case. 2165 */ 2166 if (refcnt->ir_refcnt == 0) { 2167 if (refcnt->ir_waiting == REF_WAIT_ASYNC) { 2168 if (taskq_dispatch(idm.idm_global_taskq, 2169 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) { 2170 cmn_err(CE_WARN, 2171 "idm_refcnt_rele: Couldn't dispatch task"); 2172 } 2173 } else if (refcnt->ir_waiting == REF_WAIT_SYNC) { 2174 cv_signal(&refcnt->ir_cv); 2175 } 2176 } 2177 mutex_exit(&refcnt->ir_mutex); 2178 } 2179 2180 void 2181 idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func) 2182 { 2183 mutex_enter(&refcnt->ir_mutex); 2184 ASSERT(refcnt->ir_refcnt > 0); 2185 refcnt->ir_refcnt--; 2186 REFCNT_AUDIT(refcnt); 2187 2188 /* 2189 * Someone is waiting for this object to go idle so check if 2190 * refcnt is 0. Waiting on an object then later grabbing another 2191 * reference is not allowed so we don't need to handle that case. 2192 */ 2193 if (refcnt->ir_refcnt == 0) { 2194 refcnt->ir_cb = cb_func; 2195 refcnt->ir_waiting = REF_WAIT_ASYNC; 2196 if (taskq_dispatch(idm.idm_global_taskq, 2197 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) { 2198 cmn_err(CE_WARN, 2199 "idm_refcnt_rele: Couldn't dispatch task"); 2200 } 2201 } 2202 mutex_exit(&refcnt->ir_mutex); 2203 } 2204 2205 void 2206 idm_refcnt_wait_ref(idm_refcnt_t *refcnt) 2207 { 2208 mutex_enter(&refcnt->ir_mutex); 2209 refcnt->ir_waiting = REF_WAIT_SYNC; 2210 REFCNT_AUDIT(refcnt); 2211 while (refcnt->ir_refcnt != 0) 2212 cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex); 2213 mutex_exit(&refcnt->ir_mutex); 2214 } 2215 2216 void 2217 idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func) 2218 { 2219 mutex_enter(&refcnt->ir_mutex); 2220 refcnt->ir_waiting = REF_WAIT_ASYNC; 2221 refcnt->ir_cb = cb_func; 2222 REFCNT_AUDIT(refcnt); 2223 /* 2224 * It's possible we don't have any references. To make things easier 2225 * on the caller use a taskq to call the callback instead of 2226 * calling it synchronously 2227 */ 2228 if (refcnt->ir_refcnt == 0) { 2229 if (taskq_dispatch(idm.idm_global_taskq, 2230 &idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) { 2231 cmn_err(CE_WARN, 2232 "idm_refcnt_async_wait_ref: " 2233 "Couldn't dispatch task"); 2234 } 2235 } 2236 mutex_exit(&refcnt->ir_mutex); 2237 } 2238 2239 void 2240 idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt, 2241 idm_refcnt_cb_t *cb_func) 2242 { 2243 mutex_enter(&refcnt->ir_mutex); 2244 if (refcnt->ir_refcnt == 0) { 2245 mutex_exit(&refcnt->ir_mutex); 2246 (*cb_func)(refcnt->ir_referenced_obj); 2247 return; 2248 } 2249 mutex_exit(&refcnt->ir_mutex); 2250 } 2251 2252 void 2253 idm_conn_hold(idm_conn_t *ic) 2254 { 2255 idm_refcnt_hold(&ic->ic_refcnt); 2256 } 2257 2258 void 2259 idm_conn_rele(idm_conn_t *ic) 2260 { 2261 idm_refcnt_rele(&ic->ic_refcnt); 2262 } 2263 2264 2265 static int 2266 _idm_init(void) 2267 { 2268 /* Initialize the rwlock for the taskid table */ 2269 rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL); 2270 2271 /* Initialize the global mutex and taskq */ 2272 mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL); 2273 2274 cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL); 2275 cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL); 2276 2277 /* 2278 * The maximum allocation needs to be high here since there can be 2279 * many concurrent tasks using the global taskq. 2280 */ 2281 idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri, 2282 128, 16384, TASKQ_PREPOPULATE); 2283 if (idm.idm_global_taskq == NULL) { 2284 cv_destroy(&idm.idm_wd_cv); 2285 cv_destroy(&idm.idm_tgt_svc_cv); 2286 mutex_destroy(&idm.idm_global_mutex); 2287 rw_destroy(&idm.idm_taskid_table_lock); 2288 return (ENOMEM); 2289 } 2290 2291 /* Start watchdog thread */ 2292 idm.idm_wd_thread = thread_create(NULL, 0, 2293 idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri); 2294 if (idm.idm_wd_thread == NULL) { 2295 /* Couldn't create the watchdog thread */ 2296 taskq_destroy(idm.idm_global_taskq); 2297 cv_destroy(&idm.idm_wd_cv); 2298 cv_destroy(&idm.idm_tgt_svc_cv); 2299 mutex_destroy(&idm.idm_global_mutex); 2300 rw_destroy(&idm.idm_taskid_table_lock); 2301 return (ENOMEM); 2302 } 2303 2304 /* Pause until the watchdog thread is running */ 2305 mutex_enter(&idm.idm_global_mutex); 2306 while (!idm.idm_wd_thread_running) 2307 cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex); 2308 mutex_exit(&idm.idm_global_mutex); 2309 2310 /* 2311 * Allocate the task ID table and set "next" to 0. 2312 */ 2313 2314 idm.idm_taskid_max = idm_max_taskids; 2315 idm.idm_taskid_table = (idm_task_t **) 2316 kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP); 2317 idm.idm_taskid_next = 0; 2318 2319 /* Create the global buffer and task kmem caches */ 2320 idm.idm_buf_cache = kmem_cache_create("idm_buf_cache", 2321 sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP); 2322 2323 /* 2324 * Note, we're explicitly allocating an additional iSER header- 2325 * sized chunk for each of these elements. See idm_task_constructor(). 2326 */ 2327 idm.idm_task_cache = kmem_cache_create("idm_task_cache", 2328 sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8, 2329 &idm_task_constructor, &idm_task_destructor, 2330 NULL, NULL, NULL, KM_SLEEP); 2331 2332 /* Create the service and connection context lists */ 2333 list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t), 2334 offsetof(idm_svc_t, is_list_node)); 2335 list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t), 2336 offsetof(idm_conn_t, ic_list_node)); 2337 list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t), 2338 offsetof(idm_conn_t, ic_list_node)); 2339 2340 /* Initialize the native sockets transport */ 2341 idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]); 2342 2343 /* Create connection ID pool */ 2344 (void) idm_idpool_create(&idm.idm_conn_id_pool); 2345 2346 return (DDI_SUCCESS); 2347 } 2348 2349 static int 2350 _idm_fini(void) 2351 { 2352 if (!list_is_empty(&idm.idm_ini_conn_list) || 2353 !list_is_empty(&idm.idm_tgt_conn_list) || 2354 !list_is_empty(&idm.idm_tgt_svc_list)) { 2355 return (EBUSY); 2356 } 2357 2358 mutex_enter(&idm.idm_global_mutex); 2359 idm.idm_wd_thread_running = B_FALSE; 2360 cv_signal(&idm.idm_wd_cv); 2361 mutex_exit(&idm.idm_global_mutex); 2362 2363 thread_join(idm.idm_wd_thread_did); 2364 2365 idm_idpool_destroy(&idm.idm_conn_id_pool); 2366 2367 /* Close any LDI handles we have open on transport drivers */ 2368 mutex_enter(&idm.idm_global_mutex); 2369 idm_transport_teardown(); 2370 mutex_exit(&idm.idm_global_mutex); 2371 2372 /* Teardown the native sockets transport */ 2373 idm_so_fini(); 2374 2375 list_destroy(&idm.idm_ini_conn_list); 2376 list_destroy(&idm.idm_tgt_conn_list); 2377 list_destroy(&idm.idm_tgt_svc_list); 2378 kmem_cache_destroy(idm.idm_task_cache); 2379 kmem_cache_destroy(idm.idm_buf_cache); 2380 kmem_free(idm.idm_taskid_table, 2381 idm.idm_taskid_max * sizeof (idm_task_t *)); 2382 mutex_destroy(&idm.idm_global_mutex); 2383 cv_destroy(&idm.idm_wd_cv); 2384 cv_destroy(&idm.idm_tgt_svc_cv); 2385 rw_destroy(&idm.idm_taskid_table_lock); 2386 2387 return (0); 2388 } 2389