1 /* 2 * This file is provided under a CDDLv1 license. When using or 3 * redistributing this file, you may do so under this license. 4 * In redistributing this file this license must be included 5 * and no other modification of this header file is permitted. 6 * 7 * CDDL LICENSE SUMMARY 8 * 9 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. 10 * 11 * The contents of this file are subject to the terms of Version 12 * 1.0 of the Common Development and Distribution License (the "License"). 13 * 14 * You should have received a copy of the License with this software. 15 * You can obtain a copy of the License at 16 * http://www.opensolaris.org/os/licensing. 17 * See the License for the specific language governing permissions 18 * and limitations under the License. 19 */ 20 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ********************************************************************** 28 * * 29 * Module Name: * 30 * e1000g_rx.c * 31 * * 32 * Abstract: * 33 * This file contains some routines that take care of Receive * 34 * interrupt and also for the received packets it sends up to * 35 * upper layer. * 36 * It tries to do a zero copy if free buffers are available in * 37 * the pool. * 38 * * 39 * ********************************************************************** 40 */ 41 42 #include "e1000g_sw.h" 43 #include "e1000g_debug.h" 44 45 static p_rx_sw_packet_t e1000g_get_buf(e1000g_rx_data_t *rx_data); 46 #pragma inline(e1000g_get_buf) 47 48 /* 49 * e1000g_rxfree_func - the call-back function to reclaim rx buffer 50 * 51 * This function is called when an mp is freed by the user thru 52 * freeb call (Only for mp constructed through desballoc call) 53 * It returns back the freed buffer to the freelist 54 */ 55 void 56 e1000g_rxfree_func(p_rx_sw_packet_t packet) 57 { 58 e1000g_rx_data_t *rx_data; 59 private_devi_list_t *devi_node; 60 struct e1000g *Adapter; 61 uint32_t ring_cnt; 62 uint32_t ref_cnt; 63 unsigned char *address; 64 65 if (packet->ref_cnt == 0) { 66 /* 67 * This case only happens when rx buffers are being freed 68 * in e1000g_stop() and freemsg() is called. 69 */ 70 return; 71 } 72 73 rx_data = (e1000g_rx_data_t *)(uintptr_t)packet->rx_data; 74 75 if (packet->mp == NULL) { 76 /* 77 * Allocate a mblk that binds to the data buffer 78 */ 79 address = (unsigned char *)packet->rx_buf->address; 80 if (address != NULL) { 81 packet->mp = desballoc((unsigned char *) 82 address, packet->rx_buf->size, 83 BPRI_MED, &packet->free_rtn); 84 } 85 } 86 87 /* 88 * Enqueue the recycled packets in a recycle queue. When freelist 89 * dries up, move the entire chain of packets from recycle queue 90 * to freelist. This helps in avoiding per packet mutex contention 91 * around freelist. 92 */ 93 mutex_enter(&rx_data->recycle_lock); 94 QUEUE_PUSH_TAIL(&rx_data->recycle_list, &packet->Link); 95 rx_data->recycle_freepkt++; 96 mutex_exit(&rx_data->recycle_lock); 97 98 ref_cnt = atomic_dec_32_nv(&packet->ref_cnt); 99 if (ref_cnt == 0) { 100 mutex_enter(&e1000g_rx_detach_lock); 101 e1000g_free_rx_sw_packet(packet, B_FALSE); 102 103 atomic_dec_32(&rx_data->pending_count); 104 atomic_dec_32(&e1000g_mblks_pending); 105 106 if ((rx_data->pending_count == 0) && 107 (rx_data->flag & E1000G_RX_STOPPED)) { 108 devi_node = rx_data->priv_devi_node; 109 110 if (devi_node != NULL) { 111 ring_cnt = atomic_dec_32_nv( 112 &devi_node->pending_rx_count); 113 if ((ring_cnt == 0) && 114 (devi_node->flag & 115 E1000G_PRIV_DEVI_DETACH)) { 116 e1000g_free_priv_devi_node( 117 devi_node); 118 } 119 } else { 120 Adapter = rx_data->rx_ring->adapter; 121 atomic_dec_32( 122 &Adapter->pending_rx_count); 123 } 124 125 e1000g_free_rx_pending_buffers(rx_data); 126 e1000g_free_rx_data(rx_data); 127 } 128 mutex_exit(&e1000g_rx_detach_lock); 129 } 130 } 131 132 /* 133 * e1000g_rx_setup - setup rx data structures 134 * 135 * This routine initializes all of the receive related 136 * structures. This includes the receive descriptors, the 137 * actual receive buffers, and the rx_sw_packet software 138 * structures. 139 */ 140 void 141 e1000g_rx_setup(struct e1000g *Adapter) 142 { 143 struct e1000_hw *hw; 144 p_rx_sw_packet_t packet; 145 struct e1000_rx_desc *descriptor; 146 uint32_t buf_low; 147 uint32_t buf_high; 148 uint32_t reg_val; 149 uint32_t rctl; 150 uint32_t rxdctl; 151 uint32_t ert; 152 uint16_t phy_data; 153 int i; 154 int size; 155 e1000g_rx_data_t *rx_data; 156 157 hw = &Adapter->shared; 158 rx_data = Adapter->rx_ring->rx_data; 159 160 /* 161 * zero out all of the receive buffer descriptor memory 162 * assures any previous data or status is erased 163 */ 164 bzero(rx_data->rbd_area, 165 sizeof (struct e1000_rx_desc) * Adapter->rx_desc_num); 166 167 if (!Adapter->rx_buffer_setup) { 168 /* Init the list of "Receive Buffer" */ 169 QUEUE_INIT_LIST(&rx_data->recv_list); 170 171 /* Init the list of "Free Receive Buffer" */ 172 QUEUE_INIT_LIST(&rx_data->free_list); 173 174 /* Init the list of "Free Receive Buffer" */ 175 QUEUE_INIT_LIST(&rx_data->recycle_list); 176 /* 177 * Setup Receive list and the Free list. Note that 178 * the both were allocated in one packet area. 179 */ 180 packet = rx_data->packet_area; 181 descriptor = rx_data->rbd_first; 182 183 for (i = 0; i < Adapter->rx_desc_num; 184 i++, packet = packet->next, descriptor++) { 185 ASSERT(packet != NULL); 186 ASSERT(descriptor != NULL); 187 descriptor->buffer_addr = 188 packet->rx_buf->dma_address; 189 190 /* Add this rx_sw_packet to the receive list */ 191 QUEUE_PUSH_TAIL(&rx_data->recv_list, 192 &packet->Link); 193 } 194 195 for (i = 0; i < Adapter->rx_freelist_num; 196 i++, packet = packet->next) { 197 ASSERT(packet != NULL); 198 /* Add this rx_sw_packet to the free list */ 199 QUEUE_PUSH_TAIL(&rx_data->free_list, 200 &packet->Link); 201 } 202 rx_data->avail_freepkt = Adapter->rx_freelist_num; 203 rx_data->recycle_freepkt = 0; 204 205 Adapter->rx_buffer_setup = B_TRUE; 206 } else { 207 /* Setup the initial pointer to the first rx descriptor */ 208 packet = (p_rx_sw_packet_t) 209 QUEUE_GET_HEAD(&rx_data->recv_list); 210 descriptor = rx_data->rbd_first; 211 212 for (i = 0; i < Adapter->rx_desc_num; i++) { 213 ASSERT(packet != NULL); 214 ASSERT(descriptor != NULL); 215 descriptor->buffer_addr = 216 packet->rx_buf->dma_address; 217 218 /* Get next rx_sw_packet */ 219 packet = (p_rx_sw_packet_t) 220 QUEUE_GET_NEXT(&rx_data->recv_list, &packet->Link); 221 descriptor++; 222 } 223 } 224 225 E1000_WRITE_REG(&Adapter->shared, E1000_RDTR, Adapter->rx_intr_delay); 226 E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL, 227 "E1000_RDTR: 0x%x\n", Adapter->rx_intr_delay); 228 if (hw->mac.type >= e1000_82540) { 229 E1000_WRITE_REG(&Adapter->shared, E1000_RADV, 230 Adapter->rx_intr_abs_delay); 231 E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL, 232 "E1000_RADV: 0x%x\n", Adapter->rx_intr_abs_delay); 233 } 234 235 /* 236 * Setup our descriptor pointers 237 */ 238 rx_data->rbd_next = rx_data->rbd_first; 239 240 size = Adapter->rx_desc_num * sizeof (struct e1000_rx_desc); 241 E1000_WRITE_REG(hw, E1000_RDLEN(0), size); 242 size = E1000_READ_REG(hw, E1000_RDLEN(0)); 243 244 /* To get lower order bits */ 245 buf_low = (uint32_t)rx_data->rbd_dma_addr; 246 /* To get the higher order bits */ 247 buf_high = (uint32_t)(rx_data->rbd_dma_addr >> 32); 248 249 E1000_WRITE_REG(hw, E1000_RDBAH(0), buf_high); 250 E1000_WRITE_REG(hw, E1000_RDBAL(0), buf_low); 251 252 /* 253 * Setup our HW Rx Head & Tail descriptor pointers 254 */ 255 E1000_WRITE_REG(hw, E1000_RDT(0), 256 (uint32_t)(rx_data->rbd_last - rx_data->rbd_first)); 257 E1000_WRITE_REG(hw, E1000_RDH(0), 0); 258 259 /* 260 * Setup the Receive Control Register (RCTL), and ENABLE the 261 * receiver. The initial configuration is to: Enable the receiver, 262 * accept broadcasts, discard bad packets (and long packets), 263 * disable VLAN filter checking, set the receive descriptor 264 * minimum threshold size to 1/2, and the receive buffer size to 265 * 2k. 266 */ 267 rctl = E1000_RCTL_EN | /* Enable Receive Unit */ 268 E1000_RCTL_BAM | /* Accept Broadcast Packets */ 269 E1000_RCTL_LPE | /* Large Packet Enable bit */ 270 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) | 271 E1000_RCTL_RDMTS_HALF | 272 E1000_RCTL_LBM_NO; /* Loopback Mode = none */ 273 274 if (Adapter->strip_crc) 275 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC */ 276 277 if (Adapter->mem_workaround_82546 && 278 ((hw->mac.type == e1000_82545) || 279 (hw->mac.type == e1000_82546) || 280 (hw->mac.type == e1000_82546_rev_3))) { 281 rctl |= E1000_RCTL_SZ_2048; 282 } else { 283 if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_2K) && 284 (Adapter->max_frame_size <= FRAME_SIZE_UPTO_4K)) 285 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; 286 else if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_4K) && 287 (Adapter->max_frame_size <= FRAME_SIZE_UPTO_8K)) 288 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; 289 else if ((Adapter->max_frame_size > FRAME_SIZE_UPTO_8K) && 290 (Adapter->max_frame_size <= FRAME_SIZE_UPTO_16K)) 291 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX; 292 else 293 rctl |= E1000_RCTL_SZ_2048; 294 } 295 296 if (e1000_tbi_sbp_enabled_82543(hw)) 297 rctl |= E1000_RCTL_SBP; 298 299 /* 300 * Enable Early Receive Threshold (ERT) on supported devices. 301 * Only takes effect when packet size is equal or larger than the 302 * specified value (in 8 byte units), e.g. using jumbo frames. 303 */ 304 if ((hw->mac.type == e1000_82573) || 305 (hw->mac.type == e1000_82574) || 306 (hw->mac.type == e1000_ich9lan) || 307 (hw->mac.type == e1000_ich10lan)) { 308 309 ert = E1000_ERT_2048; 310 311 /* 312 * Special modification when ERT and 313 * jumbo frames are enabled 314 */ 315 if (Adapter->default_mtu > ETHERMTU) { 316 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); 317 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 0x3); 318 ert |= (1 << 13); 319 } 320 321 E1000_WRITE_REG(hw, E1000_ERT, ert); 322 } 323 324 /* Workaround errata on 82577/8 adapters with large frames */ 325 if ((hw->mac.type == e1000_pchlan) && 326 (Adapter->default_mtu > ETHERMTU)) { 327 328 e1000_read_phy_reg(hw, PHY_REG(770, 26), &phy_data); 329 phy_data &= 0xfff8; 330 phy_data |= (1 << 2); 331 e1000_write_phy_reg(hw, PHY_REG(770, 26), phy_data); 332 333 if (hw->phy.type == e1000_phy_82577) { 334 e1000_read_phy_reg(hw, 22, &phy_data); 335 phy_data &= 0x0fff; 336 phy_data |= (1 << 14); 337 e1000_write_phy_reg(hw, 0x10, 0x2823); 338 e1000_write_phy_reg(hw, 0x11, 0x0003); 339 e1000_write_phy_reg(hw, 22, phy_data); 340 } 341 } 342 343 reg_val = 344 E1000_RXCSUM_TUOFL | /* TCP/UDP checksum offload Enable */ 345 E1000_RXCSUM_IPOFL; /* IP checksum offload Enable */ 346 347 E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val); 348 349 /* 350 * Workaround: Set bit 16 (IPv6_ExDIS) to disable the 351 * processing of received IPV6 extension headers 352 */ 353 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { 354 reg_val = E1000_READ_REG(hw, E1000_RFCTL); 355 reg_val |= (E1000_RFCTL_IPV6_EX_DIS | 356 E1000_RFCTL_NEW_IPV6_EXT_DIS); 357 E1000_WRITE_REG(hw, E1000_RFCTL, reg_val); 358 } 359 360 /* Write to enable the receive unit */ 361 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 362 } 363 364 /* 365 * e1000g_get_buf - get an rx sw packet from the free_list 366 */ 367 static p_rx_sw_packet_t 368 e1000g_get_buf(e1000g_rx_data_t *rx_data) 369 { 370 p_rx_sw_packet_t packet; 371 372 mutex_enter(&rx_data->freelist_lock); 373 packet = (p_rx_sw_packet_t) 374 QUEUE_POP_HEAD(&rx_data->free_list); 375 if (packet != NULL) { 376 rx_data->avail_freepkt--; 377 } else { 378 /* 379 * If the freelist has no packets, check the recycle list 380 * to see if there are any available descriptor there. 381 */ 382 mutex_enter(&rx_data->recycle_lock); 383 QUEUE_SWITCH(&rx_data->free_list, &rx_data->recycle_list); 384 rx_data->avail_freepkt = rx_data->recycle_freepkt; 385 rx_data->recycle_freepkt = 0; 386 mutex_exit(&rx_data->recycle_lock); 387 packet = (p_rx_sw_packet_t) 388 QUEUE_POP_HEAD(&rx_data->free_list); 389 if (packet != NULL) 390 rx_data->avail_freepkt--; 391 } 392 mutex_exit(&rx_data->freelist_lock); 393 394 return (packet); 395 } 396 397 /* 398 * e1000g_receive - main receive routine 399 * 400 * This routine will process packets received in an interrupt 401 */ 402 mblk_t * 403 e1000g_receive(e1000g_rx_ring_t *rx_ring, mblk_t **tail, uint_t sz) 404 { 405 struct e1000_hw *hw; 406 mblk_t *nmp; 407 mblk_t *ret_mp; 408 mblk_t *ret_nmp; 409 struct e1000_rx_desc *current_desc; 410 struct e1000_rx_desc *last_desc; 411 p_rx_sw_packet_t packet; 412 p_rx_sw_packet_t newpkt; 413 uint16_t length; 414 uint32_t pkt_count; 415 uint32_t desc_count; 416 boolean_t accept_frame; 417 boolean_t end_of_packet; 418 boolean_t need_copy; 419 struct e1000g *Adapter; 420 dma_buffer_t *rx_buf; 421 uint16_t cksumflags; 422 uint_t chain_sz = 0; 423 e1000g_rx_data_t *rx_data; 424 uint32_t max_size; 425 uint32_t min_size; 426 427 ret_mp = NULL; 428 ret_nmp = NULL; 429 pkt_count = 0; 430 desc_count = 0; 431 cksumflags = 0; 432 433 Adapter = rx_ring->adapter; 434 rx_data = rx_ring->rx_data; 435 hw = &Adapter->shared; 436 437 /* Sync the Rx descriptor DMA buffers */ 438 (void) ddi_dma_sync(rx_data->rbd_dma_handle, 439 0, 0, DDI_DMA_SYNC_FORKERNEL); 440 441 if (e1000g_check_dma_handle(rx_data->rbd_dma_handle) != DDI_FM_OK) { 442 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 443 Adapter->e1000g_state |= E1000G_ERROR; 444 } 445 446 current_desc = rx_data->rbd_next; 447 if (!(current_desc->status & E1000_RXD_STAT_DD)) { 448 /* 449 * don't send anything up. just clear the RFD 450 */ 451 E1000G_DEBUG_STAT(rx_ring->stat_none); 452 return (ret_mp); 453 } 454 455 max_size = Adapter->max_frame_size - ETHERFCSL - VLAN_TAGSZ; 456 min_size = ETHERMIN; 457 458 /* 459 * Loop through the receive descriptors starting at the last known 460 * descriptor owned by the hardware that begins a packet. 461 */ 462 while ((current_desc->status & E1000_RXD_STAT_DD) && 463 (pkt_count < Adapter->rx_limit_onintr) && 464 ((sz == E1000G_CHAIN_NO_LIMIT) || (chain_sz <= sz))) { 465 466 desc_count++; 467 /* 468 * Now this can happen in Jumbo frame situation. 469 */ 470 if (current_desc->status & E1000_RXD_STAT_EOP) { 471 /* packet has EOP set */ 472 end_of_packet = B_TRUE; 473 } else { 474 /* 475 * If this received buffer does not have the 476 * End-Of-Packet bit set, the received packet 477 * will consume multiple buffers. We won't send this 478 * packet upstack till we get all the related buffers. 479 */ 480 end_of_packet = B_FALSE; 481 } 482 483 /* 484 * Get a pointer to the actual receive buffer 485 * The mp->b_rptr is mapped to The CurrentDescriptor 486 * Buffer Address. 487 */ 488 packet = 489 (p_rx_sw_packet_t)QUEUE_GET_HEAD(&rx_data->recv_list); 490 ASSERT(packet != NULL); 491 492 rx_buf = packet->rx_buf; 493 494 length = current_desc->length; 495 496 #ifdef __sparc 497 if (packet->dma_type == USE_DVMA) 498 dvma_sync(rx_buf->dma_handle, 0, 499 DDI_DMA_SYNC_FORKERNEL); 500 else 501 (void) ddi_dma_sync(rx_buf->dma_handle, 502 E1000G_IPALIGNROOM, length, 503 DDI_DMA_SYNC_FORKERNEL); 504 #else 505 (void) ddi_dma_sync(rx_buf->dma_handle, 506 E1000G_IPALIGNROOM, length, 507 DDI_DMA_SYNC_FORKERNEL); 508 #endif 509 510 if (e1000g_check_dma_handle( 511 rx_buf->dma_handle) != DDI_FM_OK) { 512 ddi_fm_service_impact(Adapter->dip, 513 DDI_SERVICE_DEGRADED); 514 Adapter->e1000g_state |= E1000G_ERROR; 515 } 516 517 accept_frame = (current_desc->errors == 0) || 518 ((current_desc->errors & 519 (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) != 0); 520 521 if (hw->mac.type == e1000_82543) { 522 unsigned char last_byte; 523 524 last_byte = 525 *((unsigned char *)rx_buf->address + length - 1); 526 527 if (TBI_ACCEPT(hw, 528 current_desc->status, current_desc->errors, 529 current_desc->length, last_byte, 530 Adapter->min_frame_size, Adapter->max_frame_size)) { 531 532 e1000_tbi_adjust_stats(Adapter, 533 length, hw->mac.addr); 534 535 length--; 536 accept_frame = B_TRUE; 537 } else if (e1000_tbi_sbp_enabled_82543(hw) && 538 (current_desc->errors == E1000_RXD_ERR_CE)) { 539 accept_frame = B_TRUE; 540 } 541 } 542 543 /* 544 * Indicate the packet to the NOS if it was good. 545 * Normally, hardware will discard bad packets for us. 546 * Check for the packet to be a valid Ethernet packet 547 */ 548 if (!accept_frame) { 549 /* 550 * error in incoming packet, either the packet is not a 551 * ethernet size packet, or the packet has an error. In 552 * either case, the packet will simply be discarded. 553 */ 554 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 555 "Process Receive Interrupts: Error in Packet\n"); 556 557 E1000G_STAT(rx_ring->stat_error); 558 /* 559 * Returning here as we are done here. There is 560 * no point in waiting for while loop to elapse 561 * and the things which were done. More efficient 562 * and less error prone... 563 */ 564 goto rx_drop; 565 } 566 567 /* 568 * If the Ethernet CRC is not stripped by the hardware, 569 * we need to strip it before sending it up to the stack. 570 */ 571 if (end_of_packet && !Adapter->strip_crc) { 572 if (length > ETHERFCSL) { 573 length -= ETHERFCSL; 574 } else { 575 /* 576 * If the fragment is smaller than the CRC, 577 * drop this fragment, do the processing of 578 * the end of the packet. 579 */ 580 ASSERT(rx_data->rx_mblk_tail != NULL); 581 rx_data->rx_mblk_tail->b_wptr -= 582 ETHERFCSL - length; 583 rx_data->rx_mblk_len -= 584 ETHERFCSL - length; 585 586 QUEUE_POP_HEAD(&rx_data->recv_list); 587 588 goto rx_end_of_packet; 589 } 590 } 591 592 need_copy = B_TRUE; 593 594 if (length <= Adapter->rx_bcopy_thresh) 595 goto rx_copy; 596 597 /* 598 * Get the pre-constructed mblk that was associated 599 * to the receive data buffer. 600 */ 601 if (packet->mp == NULL) { 602 packet->mp = desballoc((unsigned char *) 603 rx_buf->address, length, 604 BPRI_MED, &packet->free_rtn); 605 } 606 607 if (packet->mp != NULL) { 608 /* 609 * We have two sets of buffer pool. One associated with 610 * the Rxdescriptors and other a freelist buffer pool. 611 * Each time we get a good packet, Try to get a buffer 612 * from the freelist pool using e1000g_get_buf. If we 613 * get free buffer, then replace the descriptor buffer 614 * address with the free buffer we just got, and pass 615 * the pre-constructed mblk upstack. (note no copying) 616 * 617 * If we failed to get a free buffer, then try to 618 * allocate a new buffer(mp) and copy the recv buffer 619 * content to our newly allocated buffer(mp). Don't 620 * disturb the desriptor buffer address. (note copying) 621 */ 622 newpkt = e1000g_get_buf(rx_data); 623 624 if (newpkt != NULL) { 625 /* 626 * Get the mblk associated to the data, 627 * and strip it off the sw packet. 628 */ 629 nmp = packet->mp; 630 packet->mp = NULL; 631 atomic_inc_32(&packet->ref_cnt); 632 633 /* 634 * Now replace old buffer with the new 635 * one we got from free list 636 * Both the RxSwPacket as well as the 637 * Receive Buffer Descriptor will now 638 * point to this new packet. 639 */ 640 packet = newpkt; 641 642 current_desc->buffer_addr = 643 newpkt->rx_buf->dma_address; 644 645 need_copy = B_FALSE; 646 } else { 647 E1000G_DEBUG_STAT(rx_ring->stat_no_freepkt); 648 } 649 } 650 651 rx_copy: 652 if (need_copy) { 653 /* 654 * No buffers available on free list, 655 * bcopy the data from the buffer and 656 * keep the original buffer. Dont want to 657 * do this.. Yack but no other way 658 */ 659 if ((nmp = allocb(length + E1000G_IPALIGNROOM, 660 BPRI_MED)) == NULL) { 661 /* 662 * The system has no buffers available 663 * to send up the incoming packet, hence 664 * the packet will have to be processed 665 * when there're more buffers available. 666 */ 667 E1000G_STAT(rx_ring->stat_allocb_fail); 668 goto rx_drop; 669 } 670 nmp->b_rptr += E1000G_IPALIGNROOM; 671 nmp->b_wptr += E1000G_IPALIGNROOM; 672 /* 673 * The free list did not have any buffers 674 * available, so, the received packet will 675 * have to be copied into a mp and the original 676 * buffer will have to be retained for future 677 * packet reception. 678 */ 679 bcopy(rx_buf->address, nmp->b_wptr, length); 680 } 681 682 /* 683 * The rx_sw_packet MUST be popped off the 684 * RxSwPacketList before either a putnext or freemsg 685 * is done on the mp that has now been created by the 686 * desballoc. If not, it is possible that the free 687 * routine will get called from the interrupt context 688 * and try to put this packet on the free list 689 */ 690 (p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_data->recv_list); 691 692 ASSERT(nmp != NULL); 693 nmp->b_wptr += length; 694 695 if (rx_data->rx_mblk == NULL) { 696 /* 697 * TCP/UDP checksum offload and 698 * IP checksum offload 699 */ 700 if (!(current_desc->status & E1000_RXD_STAT_IXSM)) { 701 /* 702 * Check TCP/UDP checksum 703 */ 704 if ((current_desc->status & 705 E1000_RXD_STAT_TCPCS) && 706 !(current_desc->errors & 707 E1000_RXD_ERR_TCPE)) 708 cksumflags |= HCK_FULLCKSUM | 709 HCK_FULLCKSUM_OK; 710 /* 711 * Check IP Checksum 712 */ 713 if ((current_desc->status & 714 E1000_RXD_STAT_IPCS) && 715 !(current_desc->errors & 716 E1000_RXD_ERR_IPE)) 717 cksumflags |= HCK_IPV4_HDRCKSUM; 718 } 719 } 720 721 /* 722 * We need to maintain our packet chain in the global 723 * Adapter structure, for the Rx processing can end 724 * with a fragment that has no EOP set. 725 */ 726 if (rx_data->rx_mblk == NULL) { 727 /* Get the head of the message chain */ 728 rx_data->rx_mblk = nmp; 729 rx_data->rx_mblk_tail = nmp; 730 rx_data->rx_mblk_len = length; 731 } else { /* Not the first packet */ 732 /* Continue adding buffers */ 733 rx_data->rx_mblk_tail->b_cont = nmp; 734 rx_data->rx_mblk_tail = nmp; 735 rx_data->rx_mblk_len += length; 736 } 737 ASSERT(rx_data->rx_mblk != NULL); 738 ASSERT(rx_data->rx_mblk_tail != NULL); 739 ASSERT(rx_data->rx_mblk_tail->b_cont == NULL); 740 741 /* 742 * Now this MP is ready to travel upwards but some more 743 * fragments are coming. 744 * We will send packet upwards as soon as we get EOP 745 * set on the packet. 746 */ 747 if (!end_of_packet) { 748 /* 749 * continue to get the next descriptor, 750 * Tail would be advanced at the end 751 */ 752 goto rx_next_desc; 753 } 754 755 rx_end_of_packet: 756 if (E1000G_IS_VLAN_PACKET(rx_data->rx_mblk->b_rptr)) 757 max_size = Adapter->max_frame_size - ETHERFCSL; 758 759 if ((rx_data->rx_mblk_len > max_size) || 760 (rx_data->rx_mblk_len < min_size)) { 761 E1000G_STAT(rx_ring->stat_size_error); 762 goto rx_drop; 763 } 764 765 /* 766 * Found packet with EOP 767 * Process the last fragment. 768 */ 769 if (cksumflags != 0) { 770 (void) hcksum_assoc(rx_data->rx_mblk, 771 NULL, NULL, 0, 0, 0, 0, cksumflags, 0); 772 cksumflags = 0; 773 } 774 775 /* 776 * Count packets that span multi-descriptors 777 */ 778 E1000G_DEBUG_STAT_COND(rx_ring->stat_multi_desc, 779 (rx_data->rx_mblk->b_cont != NULL)); 780 781 /* 782 * Append to list to send upstream 783 */ 784 if (ret_mp == NULL) { 785 ret_mp = ret_nmp = rx_data->rx_mblk; 786 } else { 787 ret_nmp->b_next = rx_data->rx_mblk; 788 ret_nmp = rx_data->rx_mblk; 789 } 790 ret_nmp->b_next = NULL; 791 *tail = ret_nmp; 792 chain_sz += length; 793 794 rx_data->rx_mblk = NULL; 795 rx_data->rx_mblk_tail = NULL; 796 rx_data->rx_mblk_len = 0; 797 798 pkt_count++; 799 800 rx_next_desc: 801 /* 802 * Zero out the receive descriptors status 803 */ 804 current_desc->status = 0; 805 806 if (current_desc == rx_data->rbd_last) 807 rx_data->rbd_next = rx_data->rbd_first; 808 else 809 rx_data->rbd_next++; 810 811 last_desc = current_desc; 812 current_desc = rx_data->rbd_next; 813 814 /* 815 * Put the buffer that we just indicated back 816 * at the end of our list 817 */ 818 QUEUE_PUSH_TAIL(&rx_data->recv_list, 819 &packet->Link); 820 } /* while loop */ 821 822 /* Sync the Rx descriptor DMA buffers */ 823 (void) ddi_dma_sync(rx_data->rbd_dma_handle, 824 0, 0, DDI_DMA_SYNC_FORDEV); 825 826 /* 827 * Advance the E1000's Receive Queue #0 "Tail Pointer". 828 */ 829 E1000_WRITE_REG(hw, E1000_RDT(0), 830 (uint32_t)(last_desc - rx_data->rbd_first)); 831 832 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 833 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 834 Adapter->e1000g_state |= E1000G_ERROR; 835 } 836 837 Adapter->rx_pkt_cnt = pkt_count; 838 839 return (ret_mp); 840 841 rx_drop: 842 /* 843 * Zero out the receive descriptors status 844 */ 845 current_desc->status = 0; 846 847 /* Sync the Rx descriptor DMA buffers */ 848 (void) ddi_dma_sync(rx_data->rbd_dma_handle, 849 0, 0, DDI_DMA_SYNC_FORDEV); 850 851 if (current_desc == rx_data->rbd_last) 852 rx_data->rbd_next = rx_data->rbd_first; 853 else 854 rx_data->rbd_next++; 855 856 last_desc = current_desc; 857 858 (p_rx_sw_packet_t)QUEUE_POP_HEAD(&rx_data->recv_list); 859 860 QUEUE_PUSH_TAIL(&rx_data->recv_list, &packet->Link); 861 /* 862 * Reclaim all old buffers already allocated during 863 * Jumbo receives.....for incomplete reception 864 */ 865 if (rx_data->rx_mblk != NULL) { 866 freemsg(rx_data->rx_mblk); 867 rx_data->rx_mblk = NULL; 868 rx_data->rx_mblk_tail = NULL; 869 rx_data->rx_mblk_len = 0; 870 } 871 /* 872 * Advance the E1000's Receive Queue #0 "Tail Pointer". 873 */ 874 E1000_WRITE_REG(hw, E1000_RDT(0), 875 (uint32_t)(last_desc - rx_data->rbd_first)); 876 877 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 878 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 879 Adapter->e1000g_state |= E1000G_ERROR; 880 } 881 882 return (ret_mp); 883 } 884